## Old-Examination Questions Chapter 26

## T062

Q18.: If a wire is stretched uniformly to n-times its original length, it's resistance changes by a factor of: $\left(\mathrm{n}^{2}\right)$

Q19.: The potential difference across the ends of a wire is doubled in magnitude. If Ohm's law is obeyed, which one of the following statements concerning the resistance of the wire is true? (The resistance is not changed)

Q20.: A $40-\mathrm{W}$ and a $60-\mathrm{W}$ light bulbs are designed for use with the same voltage. What is the ratio of the resistance of the $60-\mathrm{W}$ bulb to the resistance of the $40-\mathrm{W}$ bulb? ( 0.67 )

## T061:

Q\#19. A 100 W bulb is designed to operate with a line voltage of $120-\mathrm{V}$. If the line voltage decreases and the bulb consumes only 90 W , find the final voltage in the line. Assuming the resistance of the bulb is constant. ( 114 V )

Q\#20. A heater of unknown resistance is plugged into a $120-\mathrm{V}$ line. The charge passing through it in one hour is 4800 C . What is the resistance of the heater? ( $90 \Omega$ )

## T051:

Q\#18. If 1200 C of charge flows through a 10 -ohm resistor in 4 minutes, what is the value of the voltage across the resistor? $(50 \mathrm{~V})$.

Q\#19. Two wires are made from different materials and carry the same uniform current. The current density in both is the same only if:(their radii are the same).

Q\#20. In a simple circuit a voltage of 5 V is applied across a 10 Ohm resistance. The energy dissipated in the resistor in 2 minutes is: $(300 \mathrm{~J})$.

## T042:

Q\#19: A 500 W electric heater is designed to operate from a $120-\mathrm{V}$ power supply. The line voltage decreases and the heater takes only 459 W . Find the voltage drop in the line voltage (Assuming the resistance is constant) (5 Volts.)

Q\#20: What diameter must a copper wire have if its resistance is to be the same as that of an equal length of an aluminum wire with 3.26 mm diameter? [Resistivity of aluminum $=2.75 \times 10^{-8} \Omega . \mathrm{m}$; Resistivity of copper $=1.69 \times 10^{-8}$ $\Omega . \mathrm{m}$; ( 2.6 mm .)

## T-041:

Q\#1 The resistivity of nichrome wire is $1.0 \times 10^{-6} \Omega . \mathrm{m}$. Calculate the length of wire needed for a 1200 watt electric heater that is connected across a 120 V potential difference. [The wire's radius is 0.40 mm ] ( 6.0 m .)

Q\#2: A heating coil is immersed in a 0.2 kg of cold water. The coil is connected to a 12 V supply and a current of 5 A flows for 140 seconds. Calculate the temperature increase of the water. [Specific heat of water is $4200 \mathrm{~J} /(\mathrm{kg} * \mathrm{~K})$ ] ( 10 K .)

Q\#3: Figure 7 shows three cylindrical copper conductors along with their face areas and length. Rank them according to the current through them, greatest first, when the same potential difference V is placed across their lengths. (1,3 and 2.)


Figure (7)

## T-032:

Q\#1: A $20 \%$ increase in the resistance of a copper wire was noticed when its temperature was raised above room temperature. Find the final temperature of the wire if the temperature coefficient of resistivity for copper is $4.0 \times 10^{-3} / \mathrm{K}$. [Assume the room temperature $=290 \mathrm{~K}$ ] ( 340 K )

Q\#2: A potential difference of 9.0 V is applied across the length of a cylindrical conductor with radius 2.0 mm . Calculate the current density if the conductor has a resistance of 90 ohms. $\left(8.0 \times 10^{3} \mathrm{~A} / \mathrm{m}^{2}\right)$

Q\#3: A current of 5.0 A exists in a 10 ohms resistor for 5.0 min . How many electrons pass through any cross section of the resistor in this time? ( $9.4 \times 10^{21}$ )

Q\#5: A 6-V battery supplies a total of 48 W to two identical light bulbs connected in parallel. The resistance (in ohm) of each bulb is (1.5)

## Final-T031:

Q\#1: A cylindrical wire of radius $\mathrm{R}=2.0 \mathrm{~mm}$ has a uniform current density J $=2.0 \times 10^{5} \mathrm{~A} / \mathrm{m}^{2}$. What is the current through the portion of the wire between radial distances $\mathrm{R} / 3$ and $\mathrm{R} / 2$ ? (see figure 1 ) ( 0.35 A )


Figure 1

Q\#2: A heater element of resistance $10^{* *} 3 \mathrm{Ohm}$ is constructed to operate at 110 V . How much thermal energy is produced in one hour by the heater? ( $4.4 \times 10^{4} \mathrm{~J}$.)

## T-012:

Q\#1: A copper wire "1" has a length L1 and diameter d1. Another copper wire "2" has a length L2 and diameter d2. At constant temperature, the second conductor has smaller resistance if: (Ans: $\mathrm{d} 2>\mathrm{d} 1$ and L2 $<\mathrm{L} 1$.)

Q\#2: If $4.7 \times 10^{16}$ electrons pass a particular point in a wire every minute, what is the current in the wire? $\left(1.3 \times 10^{-4} \mathrm{~A}\right.$.)

Q\#3: An electric device, which heats water by immersing a resistance wire in the water, generates 153 J of heat per second when an electric potential difference of 12 V is placed across its ends. What is the resistance of the heater wire? $(0.94 \Omega)$

