Physics 102-Rec Quiz#9 Chapter 24

Name:

Id#:

Sect#:

Consider a spherical shell of radius R=10 cm and charge $q_1=-20~\mu C$. A point charge $q_2=+40$ μ C is located at the center of the shell. Calculate the electric potential at

(a) $r_1 = 8.0 \text{ cm}$

$$r_i < R$$

$$= 9 \times 10^{9} \times (-20 \times 10^{6}) + 9 \times 10^{9} \times 40 \times 10^{9}$$

$$-1.8 \times 10^6 + 4.5 \times 10^6 = [2.7 \times 10^6 \text{ V}]$$

(b) $r_2 = 20$ cm from the center of the sphere.

$$V_{\perp} > R$$
 $V_{2} = \frac{kg_{1}}{r_{2}} + \frac{kg_{2}}{r_{2}}$

$$= 9 \times 10^{9} (-20 + 40) \times 10^{-6}$$

Physics 102Rec Quiz #9 Chapter 24

Name:

Key

Id#:

Sect#:

- 1. Consider two points in an electric field. The potential at point P_1 is $V_1 = -140$ V, and the potential at point P_2 is $V_2 = 260$ V.
- (a) Draw the electric field lines between points P_1 and P_2 .

(b) How much work is required in moving a charge $q = -12 \mu C$ from point P_2 to point P_1 .

$$W = \Delta U = q (V_1 - V_2)$$

$$= (-12 \times 10^6) (-140 - 266)$$

$$= [2] 4.8 \times 10^{-3} \text{ J}$$

(c) Assume the electric field has magnitude of 5000 V/m, what is the distance between points P_1 and P_2 ?

$$\Delta V = -E d$$

- 140-260 = - 5000 d
 $d = \sqrt{0.08m} = 8cm$

Physics 102-Rec Quiz#9 Chapter 24

Name:

Key

Id#:

Sect#:

(a) Four identical point charges, each with charge $q=+30~\mu C$, are placed at the corners of a rectangle, as shown in the figure. How much work must be done to bring a charge $Q=+56~\mu C$ from infinity to point P, located at the midpoint of one of the 6.0-m long sides of the rectangle?

$$Wlapp = \Delta U = Uf - \chi i^{\circ}$$

$$= QV_{p} = Q \left[\frac{2 kq}{3} + \frac{2 kq}{5} \right]$$

$$= 56 \times 10^{6} \left[\frac{2 \times 9 \times 10^{7} \times 30 \times 10^{6}}{3} + \frac{2 \times 9 \times 10^{7} \times 30 \times 10^{6}}{5} \right]$$

$$= [16.1]$$

(b) Is work done by the electric field or external agent? Why?

Work done by applied force because it is positive.