Physics 102Rec Quiz#7 Chapter 22

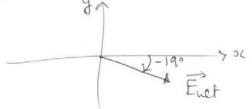
Name:	Key	Id#:	Sect#:

Two point charges, q and 2q (where $q = 1 \mu C$) are located at the vertices of an equilateral triangle of side a = 5 cm as shown in the figure. Determine the magnitude and direction of the net electric field at point P.

$$E_{1} = \frac{k_{1}(2q)}{62} = \frac{9 \times 10^{7} \times 2 \times 10^{6}}{(0.05)^{2}}$$

$$= 7.2 \times 10^{6} \text{ N}$$

$$E_{2} = 3.6 \times 10^{6} \text{ N}$$


$$\begin{array}{c|c}
 & 2 & q \\
\hline
 & a & & \\
\hline
 & a & & \\
\hline
 & & &$$

$$E_{\text{net}, \text{ sc.}} = E_1 + E_2 \cos 60^\circ$$

= $7.2 \times 10^6 + 3.6 \times 10^6 \times \cos 60^\circ = 9 \times 10^6 \text{ Nz}$

$$E_{\text{net},y} = -E_2 \sin 60^\circ = -3.1 \times 10^6 \text{ Nz}$$

$$E_{\text{net}} = \frac{-3.1 \times 10^6 \text{ û} + 9 \times 10^6 \text{ û}}{-9 \times 10^6 \text{ û} - 3.1 \times 10^6 \text{ û}} = \frac{3.1 \times 10^6 \text{ Nz}}{-3.1 \times 10^6 \text{ û}}$$

direction:
$$\theta = \tan^{-1}\left(\frac{-3.1}{9}\right) = -19^{\circ}$$

Physics 102Rec Quiz#7 Chapter 22

	V.		
Name:	Ney	Id#:	Sect#:

A charged plastic ball of mass 1 g is suspended on a light string in the presence of a uniform electric field given by $\mathbf{E} = (3\mathbf{i} + 5\mathbf{j}) \times 10^5$ N/C. The ball is in equilibrium when $\theta = 40^\circ$. Find the charge on the ball.

$$\frac{x - axis}{9E_x - T \sin \theta = 0}$$

$$9 \times 3 \times 10^5 - T \sin 40^\circ = 0 \quad \text{(1)}$$

$$\frac{y - \alpha x i s}{9} = 0$$

$$\frac{1}{9} = \frac{1}{9} + \frac{1}{9} \cos \theta - m = 0$$

$$\frac{1}{9} = \frac{1}{9} + \frac{1}{9} \cos \theta - \frac{1}{9} \cos \theta = 0$$

$$\frac{1}{9} = \frac{3}{9} \times \frac{10}{9} = \frac{1}{9} \cos \theta + \frac{1}{9} \cos \theta = 0$$

$$\frac{1}{9} = \frac{3}{9} \times \frac{10}{9} = \frac{1}{9} \cos \theta + \frac{1}{9} \cos \theta = 0$$

$$9 \Rightarrow 5q \times 10^{5} + 466717 q \times 0.766 - 0.0098 = 0$$

$$q (857526) = 0.0098$$

$$\Rightarrow q = 1.14 \times 10^{8} C$$

Physics 102Rec Quiz#7 Chapter 22

Name I	U
Name: / Id	#: Sect#:

An electric dipole, consisting of charges of magnitude 2.0 μ C separated by 6.0 μ m, is an electric field of strength 1000 N/C. Initially the dipole is parallel the field.

(a) What is the torque on the dipole in this orientation?

The torque on the dipole in this orientation?

$$T = P \times E \qquad P = 0$$

There $D = 0$

There $D = 0$

There $D = 0$

(b) How much work is required to rotate the dipole from parallel to antiparallel to the field?

$$W_{app} = \Delta U = U_f - U_i$$

$$U_f = -P E \cos \theta_f \qquad \theta_f = 180^\circ \qquad \overrightarrow{P} \Rightarrow \overrightarrow{E}$$

$$= P E$$

$$V_i = -P E \cos \theta_i \qquad \theta_i = 0^\circ \qquad \overrightarrow{P} \Rightarrow \overrightarrow{E}$$

$$= -P E$$

$$W_{app} = 2P E = 2 \times 9 d \times E$$

$$= 2 \times 2 \times 15^\circ \times 6 \times 15^\circ \times 1000 = 2.4 \times 15^8 J$$