KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #6- CHAPTER 22

NAME:

Key

SECTION#

A charged particle has a mass of 2.0×10^{-4} kg. It is held stationary by a downward 300 N/C electric field.

(a) Calculate the charge of the particle.

$$q = mg$$

$$\Rightarrow q = mg$$

$$= 2x \frac{10^{4}}{x} = \frac{9.8}{300}$$

$$= 5.5 \times 10^{6} C$$

(b) Is the charge positive or negative? Explain why?

Negative charge so that the electric force (qE) is opposite to the weight (mg).

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS

PHYSICS DEPARTMENT QUIZ #6- CHAPTER 22

NAME:

ID#

SECTION#

Consider the charges configuration shown in the figure. Q1 = 2.0 mC and Q2 = -2.0 mC. The distance a = 5 cm. Calculate the net electric field at point P.

$$|\vec{E}_1| = |\vec{E}_2| = \frac{1}{2} \frac{2}{r^2}$$

$$= \frac{9 \times 10^9 \times 2 \times 10^3}{(0.05)^2}$$

=
$$2 E_1 \cos 45^\circ$$

= $2 \times 7.2 \times 10 \times \sqrt{2} = 1.02 \times 10^\circ N_2$

$$\vec{E} = 1.02 \times 10^{90} \vec{l} + 0 \hat{j} \frac{N}{c}$$

direction: positive x-axis.

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT

NAME: QUIZ #6- CHAPTER 22

An electric dipole consists of charges +2e and -2e separated by 0.78×10^{-9} m. It is in an electric field of strength 3.0×10^{6} N/C.

(a) How much work is needed to rotate the dipole from perpendicular to the electric field to antiparallel to the electric field direction?

$$W_{app} = \Delta U = U_f - U_i$$

$$U_f = -P E \cos 180^\circ = P E$$

$$U_i = -P E \cos 9^\circ = 0$$

$$W_{app} = P E = q_d E$$

$$= (2 \times 1.6 \times 10^{19}) (0.78 \times 10^9) (3 \times 10^6)$$

$$= \overline{17.5 \times 10^{-22}} J$$

SECTION#

(b) Who does the work, the electric field or external agent? Why?

External agent does the work because Wapp >0.