KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #3- CHAPTER 18

NAME:

Key

ID#

SECTION#

50 g of ice at -15 °C is mixed with 150 g of water at 25 °C in an insulated container. What quantity of ice will melt? The heat of fusion of water is 333 kJ/kg and the specific heat of ice is 2220 J/kg·K and water is 4190 J/kg·K.

Heat gained by ite from
$$-15^{\circ}C \rightarrow 0^{\circ}C$$
 still ite $Q = mC\Delta T = 0.05 \times 22.20 \times (0 - (-15))$

$$= 1665 T$$

mass of ice melted:
$$Q = 14048 = m' L_f = m' (333 \times 10^3)$$

 $m' = 0.042 \text{ Kg}$

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #3- CHAPTER 18

NAME:

Key

ID#

SECTION#

When a system is taken from state i to state f along path iaf, Q = 70 J and W = 30 J. Along path ibf, Q = 40 € aJ.

(a) What is the work done along path ibf?

W = 30 J. Along path ibf, Q =
$$\frac{40}{60J}$$
 so the work done along path ibf?

$$\Delta E_{iaf} = Q_{iaf} - W_{iaf} = 70 - 30 = 40J$$

$$\Delta E_{ia} = \Delta E_{ia} - Q_{ibf} - W_{ibf}$$

(b) If the work done along path fi is - 25 J, what is the heat energy for this path?

$$\Delta E_{fi} = -40J = Q_{fi} - W_{fi}$$

$$= Q_{fi} - (-25)$$
 $Q_{fi} = -40 - 25 = -65J$

$$Q_{fi} = -65J$$

(c) If $E_{int,i} = 10 J$, What is $E_{int,f}$?

$$\Delta E_{if} = E_{f} - E_{i}$$
 $A0 = 10 = 50$

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #3- CHAPTER 18

NAME:

Key

ID#

SECTION#

A brass ring is 3.992 cm in diameter at 25 °C. A steel rod has a diameter of 4.000 cm at 25 °C. At what common temperature will the ring just slide onto the rod? Given: α steel = 11 x 10⁻⁶ /C°, α brass = 19 x 10⁻⁶ /C°.

$$D_{find, ring} = D_{find, red}$$

$$D_{find} = D_{initial} (1+ \alpha \Delta T)$$

$$0.992 (1+ 19\times10^{6} \Delta T) = 4.0 (1+ 11\times10^{6} \Delta T)$$

$$0.998 (1+ 19\times10^{6} \Delta T) = 1+ 11\times10^{6} \Delta T$$

$$0.998 + 18.962\times10^{6} \Delta T = 1+ 11\times10^{6} \Delta T$$

$$\Delta T = 18.968 - 11\times10^{6} = 1 - 0.998 = 0.002$$

$$\Delta T = 251 C^{\circ}$$

$$T_{f} - T_{i} = 276 ^{\circ}C$$