Old Exam. Questions Ch. 9

T072
Q9: A sulfur dioxide molecule SO_{2} consists of a Sulfur atom $(M=32 u)$ located at the origin with two Oxygen atoms each of mass ($\mathrm{m}=16 \mathrm{u}$) bound to it as in Fig 4. The angle between the two bonds is 120°. If each bond is 0.1432 nm long, what is the location of the center of mass of the molecule (x,y)? (Ans: $(0.0358,0) \mathrm{nm})$

Q10. A 10.0 kg toy car is moving along the x axis. The only force F_{x} acting on the car is shown in Fig. 5 as a function of time (t). At time $t=0 \mathrm{~s}$ the car has a speed of $4.0 \mathrm{~m} / \mathrm{s}$. What is its speed at time $t=6.0 \mathrm{~s}$? (Ans: 8.0 m / s)

Q11. An object of mass M moving on a frictionless frozen lake with speed V explodes into two equal pieces, one moving at $6.0 \mathrm{~m} / \mathrm{s}$ due north, and the other at $8.0 \mathrm{~m} / \mathrm{s}$ due west. Determine V. (Ans: $5.0 \mathrm{~m} / \mathrm{s}$)

Q12. A 4.0 kg block with a velocity of $2 \boldsymbol{i} \mathrm{~m} / \mathrm{s}$ makes an elastic collision with a 2.0 kg block moving with a velocity of $(2 i+j) \mathrm{m} / \mathrm{s}$. What is the total kinetic energy of the two blocks after the collision? (Ans: 13 J)

T071

Q8. Two velocities of the three-particle system are shown in the Fig. 1. If the velocity of the center of mass is zero, find the velocity v of the 4.0 kg mass. (Ans: (5i-3j) m/s)

Q9. A 4.0 kg object moving with velocity (9.0) $i \mathrm{~m} / \mathrm{s}$ explodes into two pieces, one with mass 1.0 kg and velocity $(6.0 \mathrm{j}) \mathrm{m} / \mathrm{s}$ and the other with mass 3.0 kg and velocity v. Determine v. (Ans: (12i-2.0 j) m / s)

Q10. A 5 kg object moving along the x axis is subjected to a force F_{x} in the positive x direction. A graph of F_{x} as a function of time t is shown in Fig. 2. Find the magnitude of the change in the velocity of the object during the time the force is being applied. (Ans: $0.8 \mathrm{~m} / \mathrm{s}$)

Q11. A block of mass $\mathrm{m}=500 \mathrm{~g}$ moving on a frictionless track at an initial speed of $3.20 \mathrm{~m} / \mathrm{s}$ undergoes an elastic collision with an initially stationary block of mass M. After collision, the first block moves opposite to its original direction at $0.500 \mathrm{~m} / \mathrm{s}$. The mass M is: (Ans: 685 g)

Q12. Two bodies, A and B each of mass 2.0 kg moving with velocities $\mathrm{v}_{\mathrm{A}}=$ $(2.0 i+5.0 \mathrm{j}) \mathrm{m} / \mathrm{s}$ and $\mathrm{v}_{\mathrm{B}}=(1.0 i-5.0 \mathrm{j}) \mathrm{m} / \mathrm{s}$ collide and stick together after collision. After the collision, the velocity of the composite object is: (Ans: $1.5 \mathrm{i} \mathrm{m} / \mathrm{s}$)

T062: Q9. An impulsive force $F x$ as a function of time (in ms) is shown in the Fig. 3 as applied to an object ($\mathrm{m}=5.0$ kg) at rest. What will be its final speed? A) $2.0 \mathrm{~m} / \mathrm{s}$.

Q10. Each object in Fig. 4 has a mass of 2.0 kg . The mass m_{1} is at rest, m_{2} has a speed of $3.0 \mathrm{~m} / \mathrm{s}$ in the direction of $+v e x$-axis and m_{3} has a speed of $6.0 \mathrm{~m} / \mathrm{s}$ in the direction of +ve y -axis. The momentum of the center of mass of the system is: (Ans: $6 i+12 j$)

Q11. A 0.20 kg steel ball, travels along the x -axis at $10 \mathrm{~m} / \mathrm{s}$, undergoes an elastic collision with a 0.50 kg steel ball traveling along the y -axis at $4.0 \mathrm{~m} / \mathrm{s}$. The total kinetic energy of the two balls after collision is: (Ans: 14 J.)

Q12. If the masses of m_{1} and m_{3} in Fig. 5 are 1.0 kg each and m_{2} is 2.0 kg , what are the coordinates of the center of mass? (Ans: $(1.00,0.50) \mathrm{m}$)

T061;

Q10. A small object with linear momentum $5.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ makes a head-on collision with a large object at rest. The small object bounces straight back with a momentum of magnitude $4.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. What is the magnitude of the change in momentum of the large object? (Ans: $9.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$)

Q11. A 1500 kg car traveling at $90.0 \mathrm{~km} / \mathrm{h}$ east collides with a 3000 kg car traveling at $60.0 \mathrm{~km} / \mathrm{h}$ south. The two cars stick together after the collision (see Fig 2). What is the speed of the cars after collision? (Ans: $13.9 \mathrm{~m} / \mathrm{s}$)

Before Collision

Q12. A 3.0 kg mass is positioned at $(0,8.0) \mathrm{m}$, and a 1.0 kg mass is positioned at $(12,0) \mathrm{m}$. What are the coordinates of a 4.0 kg mass which will result in the center of mass of the system of three masses being located at the origin $(0,0)$? (Ans: $(-3.0,-6.0) m$)

T052:

Q9: The location of two thin flat objects of masses $\mathrm{m}_{1}=4.0 \mathrm{~kg}$ and $\mathrm{m}_{2}=2.0 \mathrm{~kg}$ are shown in Fig. 3, where the units are in m. The x and y coordinates of the center of mass of this system are: (Ans: 1.0 m , 0.33 m).

Figure 3

Q10: The impulse which will change the velocity of a $2.0-\mathrm{kg}$ object from v_{1} $=+30 \mathrm{j} \mathrm{m} / \mathrm{s}$ to $v_{2}=-30 \mathrm{im} / \mathrm{s}$ is : $(-60 \mathrm{i}-60 \mathrm{j}) \mathrm{N} . \mathrm{s}$.

Q11: A 2.00 kg pistol is loaded with a bullet of mass 3.00 g . The pistol fires the bullet at a speed of $400 \mathrm{~m} / \mathrm{s}$. The recoil speed of the pistol when the bullet was fired is: (Ans: $0.600 \mathrm{~m} / \mathrm{s}$)

Q\#12: Sphere A has mass $3 m$ and is moving with velocity v in the positive the x direction. Sphere B has a mass m and is moving with velocity v in the negative x direction. The two spheres make a head-on elastic collision. After the collision the velocity of $A\left(v_{A}\right)$ is: (Ans:zero)

T051:

Q9: Sphere A has a mass M and is moving with speed $10 \mathrm{~m} / \mathrm{s}$. It makes a headon elastic collision with a stationary sphere B of mass 3 M . After the collision the speed of B is: (Ans: $5.0 \mathrm{~m} / \mathrm{s}$)

Q10: The two pieces of uniform sheets made of the same metal are placed in the $x-y$ plane as shown in the Figure 2. The center of mass ($x_{\text {com }}, y_{\text {com }}$) of this arrangement is(Ans: $(-0.75,0.75) \mathrm{cm})$

Figure 2

Q\#11: A 0.50 kg ball moving at $2.0 \mathrm{~m} / \mathrm{s}$ perpendicular to a wall rebounds from the wall at $1.4 \mathrm{~m} / \mathrm{s}$. The impulse on the ball is: (Ans: $1.7 \mathrm{~N} \cdot \mathrm{~s}$ away from wall)

Q\#12: An object of 12.0 kg at rest explodes into two pieces of masses 4.00 kg and 8.00 kg . The velocity of the 8.00 kg mass is $6.00 \mathrm{~m} / \mathrm{s}$ in the +ve x -direction. The change in the kinetic is: (Ans: 432 J)

