Old Exam. Questions Ch. 1

T072:

Q1.: The position y of a particle moving along the y axis depends on the time t according to the equation $y=A t-B t^{2}$. The dimensions of the quantities A and B are respectively: (Ans: $\mathrm{L} / \mathrm{T}, \mathrm{L} / \mathrm{T}^{2}$)

T071:

Q1.: A swimming pool is filled with $16,500 \mathrm{ft}^{3}$ of water. What is the volume of water in m^{3} ? (12 inch $=1 \mathrm{ft}$ and $2.54 \mathrm{~cm}=1$ inch $)$. (Ans: $467 \mathrm{~m}^{3}$)
Q2.: The position x of a particle is given by $x=B t^{2}+\frac{C}{B} t$, where x is in meters and t is in seconds. The dimension of C is: (Ans: $\frac{L^{2}}{T^{3}}$)

T062:

Q1: From the fact that the average density of the Earth is $5.50 \mathrm{~g} / \mathrm{cm}^{3}$ and its mean radius is $6.37 \times 10^{6} \mathrm{~m}$, the mass of the Earth is: (Ans: $5.95 \times 10^{24} \mathrm{~kg}$)

Q2: Suppose $A=B^{n} / C^{\mathrm{m}}$ where A has dimensions LT, B has dimensions $\mathrm{L}^{2} \mathrm{~T}^{-1}$, and C has dimensions LT^{2}. Then the exponents n and m have the values: (Ans: $n=1 / 5 ; m=-3 / 5$)

T061

Q1: An aluminum cylinder of density $2.70 \mathrm{~g} / \mathrm{cm}^{3}$, a radius of 2.30 cm , and a height of 1.40 m has the mass of: (Ans: 6.28 kg)

T052:

Q1. A nucleus of volume $3.4 \times 10^{3} \mathrm{fm}^{3}$ and mass of $1.0 \times 10^{2} \mathrm{u}$ has a density of: $\left(1 \mathrm{fm}=10^{-15} \mathrm{~m}, 1 \mathrm{u}=1.7 \times 10^{-27} \mathrm{~kg}\right)$ (Ans: $5.0 \times 10^{16} \mathrm{~kg} / \mathrm{m}^{3}$)

T051:

Q1. The mass of $1.0 \mathrm{~cm}^{3}$ of gold is 19.3 g . What is the mass of a solid cube of gold having a side of 0.70 cm ? (Ans: $6.6 \times 10^{-3} \mathrm{~kg}$)

T042:
Q1 Express speed of sound, $330 \mathrm{~m} / \mathrm{s}$ in miles $/ \mathrm{h} .(1 \mathrm{mile}=1609 \mathrm{~m})($ Ans: A1 738 miles/h)

Q2 A cylindrical can, 6.00 inches high and 3.00 inches in diameter is filled with water. Density of water is $1.00 \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of water in the can in gram ? (1 inch $=2.54 \mathrm{~cm} .($ Ans: 695 g$)$

T041:

Q1 1 shake $=10^{-8}$ seconds. Find out how many nano seconds (ns) are there in 1 shake. (1 nano $=10^{-9}$) (Ans: 10 ns)

Q2 A drop of oil (mass $=0.90$ milligram and density $=918 \mathrm{~kg} / \mathrm{m}^{3}$) spreads out on a surface and forms a circular thin film of radius $=41.8 \mathrm{~cm}$ and thickness h $(\operatorname{see} \operatorname{Fig} 8)$. Find h in nano meter $(\mathrm{nm}) .\left(1\right.$ nano $\left.=10^{-9}\right)($ Ans: 1.8 nm$)$

T032:

Q1 A solid lead cylinder has a mass of 56.5 kg and radius of 35 cm . Find the height of the cylinder. (The density of lead is $11.3 \mathrm{~g} / \mathrm{cm}^{3}$) (Ans: 1.3 cm)

T031:

Q1 An empty fuel tank of a car needs 50 liters of gasoline to fill up. Find the volume of the fuel tank in m^{3}. ($1 \mathrm{milliliter}=1 \mathrm{~cm}^{3}$) (Ans: 0.050)

T022:

Q4 Dimension of an atom is often measured in a unit called Angstrom which is equal to 0.1 nm .1 mm is equal to: $\left(1 \mathrm{~nm}=10^{-9} \mathrm{~m}\right)$ (Ans: 10000000 Angstrom)

Q5 A student remembers that it takes roughly 8.4 minutes for the sun's light to reach the earth. Using this information and the fact that the speed of light is (3.0 $\left.\mathrm{x} 10^{8}\right) \mathrm{m} / \mathrm{s}$, estimate the distance to the sun in km (Ans: $1.50 \times 10^{8} \mathrm{~km}$)

T021:

Q1 The standard kilogram is a platinum-iridium cylinder 39 mm in height and 19.5 mm in radius. What is the density of the material? (Ans: $21 \mathrm{~g} / \mathrm{cm}^{3}$)

Q3 The speed of sound in air is about $350 \mathrm{~m} / \mathrm{s}$. Express this speed in miles per hour $(\mathrm{mi} / \mathrm{h}) .(1 \mathrm{mile}=1.61 \mathrm{~km})($ Ans: $783 \mathrm{mi} / \mathrm{h})$

T012:

Q1 Speed of sound is $340 \mathrm{~m} / \mathrm{s}$. Express this in millimeters per nanosecond[1 ns $\left.=10^{-9} \mathrm{~s}\right]$. (Ans: $3.40 \times 10^{-4} \mathrm{~mm} / \mathrm{ns}$)

T011:

Q1 Speed of sound is $330 \mathrm{~m} / \mathrm{s}$. Express this in miles per hour $(1 \mathrm{mile}=1609 \mathrm{~m})$. (Ans: 738 miles $/ \mathrm{h}$)

Q2 The average radius of a nucleus is $\mathrm{R}=10.0 \mathrm{fm}$. Find the density of the nucleus which has a mass of $15 \mathrm{u}\left[1 \mathrm{fm}=10^{-15} \mathrm{~m}, 1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}\right]$. (Ans: $5.94 \times 10^{15} \mathrm{~kg} / \mathrm{m}^{3}$)

T992:

Q1 A cube of copper has a mass $\mathrm{m}=126 \mathrm{~g}$. Find the number of copper atoms in this cube. Atomic mass of copper $=63.0 \mathrm{~g} / \mathrm{mole}$; Avogadro number $=6.02 \times 10^{23}$ atoms $/ \mathrm{mole}$ (Ans: 1.20×10^{24})

T991:

Q2 How many molecules of water are there in a cup containing $250 \mathrm{~cm}^{3}$ of water? Molecular mass of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g} / \mathrm{mole}$; Density of water $=1.0 \mathrm{~g} / \mathrm{cm}^{3}$; Avogadro s number $=6.02 \times 10^{23}$ molecules/mole (Ans: 8.4×10^{24})

Q3 Using the fact that the speed of light in space is about $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$, determine how many miles light will travel in one hour. $(1 \mathrm{mile}=1.61 \mathrm{~km})$ (Ans: 6.71×10^{8} miles)

