Old Exam. Questions Ch.1

<u>T072:</u>

Q1.: The position y of a particle moving along the y axis depends on the time t according to the equation $y = At - Bt^2$. The dimensions of the quantities A and B are respectively: (Ans: L/T, L/T²)

<u>T071</u>:

Q1.: A swimming pool is filled with 16,500 ft³ of water. What is the volume of water in m³? (12 inch = 1 ft and 2.54 cm = 1 inch). (Ans: 467 m³)

Q2.: The position x of a particle is given by $x = B t^2 + \frac{C}{B} t$, where x is in meters and t is in seconds. The dimension of C is: (Ans: $\frac{L^2}{T^3}$)

<u>T062:</u>

Q1: From the fact that the average density of the Earth is 5.50 g/cm^3 and its mean radius is $6.37 \times 10^6 m$, the mass of the Earth is: (Ans: $5.95 \times 10^{24} kg$)

Q2: Suppose $A=B^n/C^m$ where *A* has dimensions LT, *B* has dimensions L^2T^{-1} , and *C* has dimensions LT^2 . Then the exponents *n* and *m* have the values: (Ans: n = 1/5; m = -3/5)

<u>T061</u>

Q1: An aluminum cylinder of density 2.70 g/cm³, a radius of 2.30 cm, and a height of 1.40 m has the mass of: (Ans: 6.28 kg)

<u>T052</u>:

Q1. A nucleus of volume 3.4 x 10³ fm ³ and mass of 1.0x 10² u has a density of: (1 fm = 10^{-15} m, 1 u = 1.7 x 10^{-27} kg) (**Ans:** 5.0×10^{16} kg/m ³)

<u>T051</u>:

Q1. The mass of 1.0 cm³ of gold is 19.3 g. What is the mass of a solid cube of gold having a side of 0.70 cm ? (**Ans:** 6.6×10^{-3} kg)

<u>T042</u>:

 $\overline{\mathbf{Q1}}$ Express speed of sound, 330 m/s in miles/h . (1 mile = 1609 m)(**Ans:** A1 738 miles/h)

Q2 A cylindrical can, 6.00 inches high and 3.00 inches in diameter is filled with water. Density of water is 1.00 g/cm^3 . What is the mass of water in the can in gram? (1 inch = 2.54 cm. (**Ans:** 695 g.)

<u>T041</u>:

 $\overline{\mathbf{Q1} \ 1}$ shake = 10^{-8} seconds. Find out how many nano seconds (ns) are there in 1 shake.(1 nano = 10^{-9}) (**Ans:** 10 ns)

Q2 A drop of oil (mass = 0.90 milligram and density = 918 kg/m³) spreads out on a surface and forms a circular thin film of radius = 41.8 cm and thickness h (see Fig 8). Find h in nano meter (nm). (1 nano = 10^{-9}) (**Ans:**1.8 nm)

<u>T032</u>:

Q1 A solid lead cylinder has a mass of 56.5 kg and radius of 35 cm. Find the height of the cylinder. (The density of lead is 11.3 g/cm^3) (**Ans:** 1.3 cm)

<u>T031:</u>

 $\overline{\mathbf{Q1}}$ An empty fuel tank of a car needs 50 liters of gasoline to fill up. Find the volume of the fuel tank in m³. (1 milliliter = 1 cm³) (**Ans:** 0.050)

T022:

Q4 Dimension of an atom is often measured in a unit called Angstrom which is equal to 0.1 nm. 1 mm is equal to: $(1 \text{ nm} = 10^{-9} \text{ m})$ (**Ans:**10 000 000 Angstrom)

Q5 A student remembers that it takes roughly 8.4 minutes for the sun's light to reach the earth. Using this information and the fact that the speed of light is (3.0×10^8) m/s, estimate the distance to the sun in km (**Ans:** 1.50×10^8 km)

T021:

Q1 The standard kilogram is a platinum-iridium cylinder 39 mm in height and 19.5 mm in radius. What is the density of the material? (Ans: 21 g/cm^3)

Q3 The speed of sound in air is about 350 m/s. Express this speed in miles per hour (mi/h). (1 mile = 1.61 km) (**Ans:** 783 mi/h)

<u>T012:</u>

Q1 Speed of sound is 340 m/s. Express this in millimeters per nanosecond[1 ns = 10^{-9} s]. (**Ans:** 3.40 x 10^{-4} mm/ns)

T011:

Q1 Speed of sound is 330 m/s. Express this in miles per hour (1 mile = 1609 m). (Ans: 738 miles/h)

Q2 The average radius of a nucleus is R = 10.0 fm. Find the density of the nucleus which has a mass of 15u [1 fm = 10^{-15} m, 1 u = 1.66 x 10^{-27} kg]. (Ans: 5.94 x 10^{15} kg/m³)

<u>**T992:**</u>

Q1 A cube of copper has a mass m = 126 g. Find the number of copper atoms in this cube. Atomic mass of copper = 63.0 g/mole; Avogadro number = 6.02×10^{23} atoms/mole (**Ans:** 1.20 x 10²⁴)

<u>T991:</u>

 $\overline{\mathbf{Q2}}$ How many molecules of water are there in a cup containing 250 cm³ of water? Molecular mass of H₂O = 18 g/mole; Density of water = 1.0 g/cm³; Avogadro s number = 6.02 x 10²³ molecules/mole (**Ans:** 8.4 x 10²⁴)

Q3 Using the fact that the speed of light in space is about 3.00×10^8 m/s, determine how many miles light will travel in one hour. (1 mile = 1.61 km) (**Ans:** 6.71 x 10⁸ miles)