Physics 102Rec Quiz#6 Chapter 21

Name:

Key

Id#:

Sect#:

 $\tan \theta = \frac{0.3}{0.4} = 0.75$

D= 36.9°

0.30 m

0.30 m

 Three charges, q₁ = q₂ = 2.0 μC and Q = 4.0 μC, are fixed in their places as shown in the figure. Calculate the magnitude and direction of the net electrostatic force on Q due to q₁ and q₂.

$$F_{aq_1} = \frac{k Q q_1}{r^2} \qquad r = 0.5m$$

$$= \frac{9 \times 10^{9} \times 4 \times 10^{6} \times 2 \times 10^{6}}{(0.5)^2} = 0.288 \text{ N}$$

Fag. = 0. 288 N

Physics 102Rec Quiz#6 Chapter 21

Name: Id#: Sect#:

The figure shows three identical conducting spheres that are well separated from one another. Sphere W (with an initial charge of zero) is touched to sphere A and then they are separated. Next, sphere W is touched to sphere B (with an initial charge of -14e) and then they are separated. The final charge on sphere W is +14e. What was the initial charge on sphere A?

$$A \bigcirc B \bigcirc$$
 $W \bigcirc$

(1) $Q_{W} = 0$ $Q_{A} = Q$ $Q_{B} = -14e$

(a) $Q_{N} = \frac{Q}{2}$ $Q_{A} = \frac{Q}{2}$ $Q_{B} = -14e$

 $Q_{N} = \frac{Q}{4} - 7e$

Q=+84e

Physics 102Rec Quiz#6 Chapter 21

	Id#:	Sect#:
Name:	10π .	

Three point charges, $+2~\mu C$, $-3~\mu C$, and $-3~\mu C$ are located at the vertices of an equilateral triangle of side a=5 cm. Determine the **magnitude** and **direction** of the electric force on the charge 2e due to the other two charges?

of side a = 3 in the charges?

$$F_{21} = \frac{|e| (91 | 921)}{|e|} = 9 \times 10^{9} \times (2 \times 10^{6}) (3 \times 10^{6})$$

$$= 21.6 \text{ N}$$

$$F_{23} = F_{21} = 21.6 \text{ N}$$

$$F_{23} = F_{21} \times 10^{9} \times 10$$