Summary of chapter 19

I. Objective:

1. Understand the concepts of thermal equilibrium and thermal contact between to bodies, and state the zeroth law of thermodynamics.
2. Describe the operation of the constant-volume gas thermometer and how is used to define the ideal-gas temperature scale.
3. Convert between the various temperature scales; degree Celsius-Kelvin, degree Fahrenheit kelvin, and degree Celsius - degree Fahrenheit.
4. Give a description of the origin of thermal expansion of solids and liquid and define the linear and volume expansion coefficient for solids.
5. Understand the properties of an ideal gas and the equation of state (perfect gas law).

II. Summary of major points:

1. If two bodies are in thermal equilibrium with each other they must have the same temperature.
2. The Zeroth-law of thermodynamics states that if two bodies \boldsymbol{A} and \boldsymbol{B} are separately in thermal equilibrium with a third body, C, then A and B are in thermal equilibrium with each other
3. $\quad \mathrm{T}\left({ }^{\circ} \mathrm{C}\right)=\mathrm{T}(\mathrm{K})-273$ and $\mathrm{T}_{\mathrm{F}}=9 / 5 \mathrm{~T}_{\mathrm{C}}+32\left(\mathrm{~F}^{\mathrm{o}}\right)$
$\mathrm{T}(\mathrm{K})=5 / 9 \mathrm{TF}+255$
4. When a substance is heated, it generally expands. The change in length, A is related to the change in temperature and the proportionality constant is called α (coefficient of linear expansion)
5. For one dimensional expansion

$$
\Delta L=L_{i} \alpha \Delta T \quad \text { or } \quad L_{f=L_{i}}(1+\boldsymbol{\alpha} \Delta T)
$$

For three dimensional expansion $\Delta V=\beta V_{i} \Delta T$ (Coefficient of volume expansion $\beta=3 \alpha$)
6. An ideal gas obeys the equation of state that interrelates the pressure, the volume and the temperature of the gas:

$$
\mathrm{PV}=\mathrm{n} \mathrm{RT}
$$

or

$$
\mathrm{PV}=\mathrm{Nk}_{\mathrm{B}} \mathrm{~T}
$$

Here the temperature is in Kelvin, n is the number of moles of the gas, k_{B} is Boltzman constant, R is the ideal gas constant.

$$
\mathrm{nR} \equiv \mathrm{Nk}_{\mathrm{B}}
$$

The number of moles \mathbf{n} of a substance is related to the mass m by;
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \quad$ where M is the molar mass and m is the mass of the substance
or the number of molecules N by;
$\mathrm{n}=\frac{\mathrm{N}}{\mathrm{N}_{\mathrm{A}}} \quad$ where N_{A} is Avogadro number

