Three particles are connected by rigid rods of negligible mass lying along the y axis (Fig. P10.19). If the system rotates about the x axis with an angular speed of $2.00 \mathrm{rad} / \mathrm{s}$, find (a) the moment of inertia about the x axis and the total rotational energy evaluated from $\frac{1}{2} I \omega^{2}$ and (b) the linear speed of each particle and the total energy evaluated from $\sum \frac{1}{2} m_{i} v_{i}{ }^{2}$.

(a) $I=\sum m_{i} r_{i}^{2}=4 \times 9+2 \times 4+3 \times 16=92 \mathrm{fg} \mathrm{m}^{2}$
(b) $K=\frac{1}{2} I \omega^{2}=\frac{1}{2} \times 92 \times(2)^{2}=184 \mathrm{~J}$
(c)

$$
\begin{aligned}
& v_{1}=\omega r_{1}=(2)(2)=\omega \mathrm{m} / \mathrm{s} \\
& v_{2}=\omega r_{2}=(2)(2)=4 \mathrm{~m} / \mathrm{s} \\
& v_{3}=\omega r_{3}=(2)(4)=8 \mathrm{~m} / \mathrm{s} \\
& K_{1}=\frac{1}{2} m_{1} v_{1}^{2}=72 \mathrm{~J} \\
& K_{2}=\frac{1}{2} m_{2} v_{2}^{2}=16 \mathrm{~J} \\
& K_{3}=\frac{1}{2} m_{3} v_{3}^{2}=96 \mathrm{~J} \\
& v^{\operatorname{sum}}=184 \mathrm{~J}
\end{aligned}
$$

The four particles in Figure P10.17 are connected by rigid rods of negligible mass. The origin is at the center of the rectangle. If the system rotates in the $x y$ plane about the z axis with an angular speed of 6.00 $\mathrm{rad} / \mathrm{s}$, calculate (a) the moment of inertia of the syrterm about the z axis and (b) the rotational energy of the system.

(a)

$$
\begin{aligned}
& I=\sum m_{i} r_{i}^{2} \\
& I=(3+2+2+4)(13)=\frac{\sqrt{3^{2}+2^{2}}=\sqrt{13} \mathrm{~m}}{143 \mathrm{~kg} m^{2}}
\end{aligned}
$$

(b) $k=\frac{1}{2} I \omega^{2}=\frac{1}{2}(143)(6)^{2}=2.6 \times 10^{3} \mathrm{~J}$

The blocks shown in Figure 10.51 are connected by a string of negligible mass passing over a pulley of radius R and moment of inertia I. The block on the incline is moving up with a constant acceleration of magnitude a. (a) Determine T_{1} and T_{2}, the tensions in the two parts of the string, and (b) find the moment of inertia of the pulley.

$$
\begin{align*}
& T_{1}-m_{1} g \sin \theta=m_{1} a-(i) \Longrightarrow T_{1}=m_{1}(g \sin \theta+a)=118 \mathrm{~N} \\
& -T_{2}+m_{2} g=m_{2} a-(2) \Longrightarrow T_{2}=m_{2}(g-a)=156 \mathrm{~N} \\
& T_{2} R-T_{1} R=I \alpha=\frac{I a}{R}=(3) \tag{3}\\
& (3) \Longrightarrow I=\frac{\left(T_{2}-T_{1}\right) R^{2}}{a}=1.19
\end{align*}
$$

