Name:

ID#

The equation of a transverse wave on a string is:

$$Y = (2.0 \text{ mm}) \sin[(20 \text{ m}^{-1}) \text{ x} - (600 \text{ s}^{-1}) \text{ t}]$$

The tension in the string is 15 N.

a- Calculate the speed of the wave.

b- Find the linear mass density of this string (in kg/m).

$$V = \sqrt{\frac{\tau}{\mu}} \implies \mu = \frac{\tau}{\sqrt{2}} = \frac{15}{(30)^2} = \frac{0.017 \text{ kg}}{\text{m}}$$

c- Calculate the average power transmitted by the wave.

$$P_{avg} = \frac{1}{2} M V W^{2} J_{n}^{2} = \frac{1}{2} (0.017)(30)(600^{2})(2 \times 10^{-3})^{2}$$

$$= [0.37 W]$$

d-Calculate the magnitude of the transverse speed at x = 2.0 m and

d-Calculate the magnitude of the transverse speed at
$$x = 2.0$$
 m and $t = 1.0$ s. $u = \frac{dy}{dt} = -wy_m$ Gs $(20 \times -600 t)$ magnitude $= |u| = |-600(2 mm)$ Gs $(20(2) - 600) = 834 \frac{mm}{s} = 0.84 \frac{mm}{s}$.

2- A 1.0 m long string with a mass of 0.02 kg is stretched with a tension of 20 N between two fixed supports. What is the resonant frequency of the longest wavelength on this string?

$$N = 1$$

$$L = \frac{1}{2} \Rightarrow \lambda = 2L \Rightarrow longest wavelength.$$

$$f_1 = \frac{\nabla}{2L} = \frac{\nabla L}{2L} = \frac{\nabla L}{2L}$$

$$f_1 = \frac{\nabla (i)}{2(1)} = \frac{15.8 \text{ Hz}}{2(1)}$$