Chapter \# 9 (Systems of Paticles)

1- Three identical particles each of mass $=1 \mathrm{~kg}$ are placed in the xy plane. The position vector of the first is $\mathbf{r} \mathbf{1}=(1 \mathbf{i}+4 \mathbf{j}) \mathrm{m}$ and the second is $\mathbf{r} \mathbf{2}=(3 \mathbf{i}+1 \mathbf{j}) \mathrm{m}$. What would be the position vector of the third particle if the center of mass of the three particles were at $(3 \mathrm{~m}, 3 \mathrm{~m})$?
a. $\mathrm{r} 3=(5 \mathrm{i}+4 \mathrm{j}) \mathrm{m}$
b. $\mathrm{r} 3=(3 \mathrm{i}-1 \mathrm{j}) \mathrm{m}$
c. $\mathrm{r} 3=(1 \mathrm{i}+2 \mathrm{j}) \mathrm{m}$
d. $\mathrm{r} 3=(2 \mathrm{i}-6 \mathrm{j}) \mathrm{m}$
e. $\mathrm{r} 3=(4 \mathrm{i}+3 \mathrm{j}) \mathrm{m}$

2- An object at rest explodes into three pieces A, B and C. After the explosion, A has a mass of 2.0 kg and velocity $(3.0 * i) \mathrm{m} / \mathrm{s}$, B has a mass of 3.0 kg and velocity $(-1.0 * \mathrm{j}) \mathrm{m} / \mathrm{s}$, and C has a mass of 1.0 kg and velocity v. Find the velocity v.
a. $(-6 * i+3 * j) \mathrm{m} / \mathrm{s}$
b. $(3 * i+6 * j) \mathrm{m} / \mathrm{s}$
c. $(6 * \mathrm{i}-3 * \mathrm{j}) \mathrm{m} / \mathrm{s}$
d. $(6 * i+3 * j) \mathrm{m} / \mathrm{s}$
e. $\left(3^{*}-6 * j\right) \mathrm{m} / \mathrm{s}$

3- Three particles are placed in the xy plane. A 4 -gram particle is located at $(3,4) \mathrm{m}$, and a 6 -gram particle is located at $(-2,-6) \mathrm{m}$. Where must a 2 -gram particle be placed so that the center of mass of this three-particle system is located at the origin ?
a. $(0,10) \mathrm{m}$
b. $(6,-2) \mathrm{m}$
c. $(5,10) \mathrm{m}$
d. $(9,16) \mathrm{m}$
e. $(-2,4) \mathrm{m}$

4- A $2.0-\mathrm{kg}$ particle has a velocity of $4.0 \mathrm{~m} / \mathrm{s}$ in the positive x direction and a $3.0-\mathrm{kg}$ particle has a velocity of $5.0 \mathrm{~m} / \mathrm{s}$ in the positive y direction. What is the speed of their center of mass?
a. $3.4 \mathrm{~m} / \mathrm{s}$
b. $3.8 \mathrm{~m} / \mathrm{s}$
c. $5.0 \mathrm{~m} / \mathrm{s}$
d. $4.4 \mathrm{~m} / \mathrm{s}$
e. $4.6 \mathrm{~m} / \mathrm{s}$

5- Two masses, 5 kg each, have velocities (in m / s): V1 $=12 \mathrm{i} 16 \mathrm{j}$ and $\mathrm{V} 2=-20 \mathrm{I}+14 \mathrm{j}$.
Determine the momentum of the center mass of the two masses (in $\mathrm{kg} \mathrm{m} / \mathrm{s}$).
a. $-40 \mathrm{i}-10 \mathrm{j}$
b. 160 i 150 j
c. $-40 \mathrm{i}+10 \mathrm{j}$
d. 40 i 10 j
e. $-160 i+150 j$

6- A uniform wire of mass M and length 2 m is bent to be all in one plane (see the figure). Find its center of mass with respect to point O .
a. $(0,1 / 8)$
b. $(-1,1 / 8)$
c. $(1 / 2,1 / 3)$
d. $(1 / 8,3 / 8)$
e. $(1 / 3,1 / 3)$

