Chapter \# 3 (Vectors)

1- The angle between vector $\mathbf{B}=4.0 \mathbf{j}+3.0 \mathbf{k}$, and the positive y axis is approximately: [37 degrees]

2- Vector $\mathbf{A}=(5.0 \mathbf{i}+3.0 \mathbf{j}) \mathrm{m}$, and vector \mathbf{B} is 6 m in length and making 120 degrees angle with +ve x -axis. Find A-B. [($8.0 \mathbf{i}-2.2 \mathbf{j}) \mathrm{m}]$

3- If $\mathbf{a}=(3.0 \mathbf{i}+4.0 \mathbf{j}) \mathrm{m}$ and $\mathbf{b}=(5.0 \mathbf{i}-2.0 \mathbf{j}) \mathrm{m}$, find the angle between the two vectors. [75 degrees]

4- For the following three vectors;
$\mathbf{A}=2 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}, \mathbf{B}=4 \mathbf{i}+4 \mathbf{j}$ and $\mathbf{C}=2 \mathbf{i}+2 \mathbf{k}$, find $\mathbf{A} .(\mathbf{B x A})$. [0]
5- A vector in the xy-plane has a magnitude of 25.0 and an x-component of 12.0. The angle that it makes with the positive x -axis is: [61.3 degrees]

6- The unit vectors in the positive directions of the x, y, and z axes are labeled \mathbf{i}, \mathbf{j}, and \mathbf{k}. The value of $[\mathbf{i} .(\mathbf{j} \times \mathbf{k})]$ is: [+1]

7- Two vectors $\mathbf{A}=3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$ and $\mathbf{B}=2 \mathbf{i}+4 \mathbf{j} \mathbf{q} \mathbf{k}$ (q is a constant) are perpendicular to each other. Find the constant q. [5]

8- If vector $\mathbf{A}=28 \mathbf{i}+11 \mathbf{j}$ and vector \mathbf{B} (magnitude of $B=25$) as shown in the figure, what is the magnitude of the sum of these two vectors? [32]

9- Vector $\mathbf{A}=-6 \mathbf{i}+14 \mathbf{j}$. Find vector \mathbf{B} whose magnitude is twice that of \mathbf{A} and
 is opposite in direction to \mathbf{A}. $[12 \mathbf{i}-28 \mathbf{j}]$

10- If vector $\mathbf{A}=6 \mathbf{i}-7 \mathbf{j}$ and vector $\mathbf{B}=-12 \mathbf{i}+10 \mathbf{j}$, what angle does vector $\mathbf{C}=2 * \mathbf{A}-\mathbf{B}$ make with +x -axis measured counterclockwise.

11- The vectors v, w, and x are related by $x=v+w$. Which diagram below illustrates this relationship? [II]

\vec{a}
\vec{a}

II

III

\vec{a}

12- A vector of magnitude 3 CANNOT be added to a vector of magnitude 4 so that the magnitude of the resultant is:
A) [zero]
B) 1
C) 3
D) 5
E) 7

