Chapter # 3 (Vectors)

1- The angle between vector $\mathbf{B} = 4.0 \ \mathbf{j} + 3.0 \ \mathbf{k}$, and the positive y axis is approximately: [37 degrees]

2- Vector $\mathbf{A} = (5.0 \, \mathbf{i} + 3.0 \, \mathbf{j}) \, \text{m}$, and vector \mathbf{B} is 6m in length and making 120 degrees angle with +ve x-axis. Find \mathbf{A} - \mathbf{B} . [($8.0 \, \mathbf{i} - 2.2 \, \mathbf{j}$)m]

3- If $\mathbf{a} = (3.0 \, \mathbf{i} + 4.0 \, \mathbf{j})$ m and $\mathbf{b} = (5.0 \, \mathbf{i} - 2.0 \, \mathbf{j})$ m, find the angle between the two vectors. [75 degrees]

4- For the following three vectors; $\mathbf{A} = 2 \mathbf{i} + 3 \mathbf{j} + 4 \mathbf{k}$, $\mathbf{B} = 4 \mathbf{i} + 4 \mathbf{j}$ and $\mathbf{C} = 2 \mathbf{i} + 2 \mathbf{k}$, find $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{A}) \cdot [0]$

5- A vector in the xy-plane has a magnitude of 25.0 and an x-component of 12.0. The angle that it makes with the positive x-axis is: [61.3 degrees]

6- The unit vectors in the positive directions of the x, y, and z axes are labeled \mathbf{i} , \mathbf{j} , and \mathbf{k} . The value of $[\mathbf{i}.(\mathbf{j} \times \mathbf{k})]$ is: [+1]

7- Two vectors $\mathbf{A} = 3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $\mathbf{B} = 2\mathbf{i} + 4\mathbf{j}$ q k (q is a constant) are perpendicular to each other. Find the constant q. [5]

8- If vector $\mathbf{A} = 28 \mathbf{i} + 11 \mathbf{j}$ and vector \mathbf{B} (magnitude of $\mathbf{B} = 25$) as shown in the figure, what is the magnitude of the sum of these two vectors? [32]

9- Vector $\mathbf{A} = -6 \mathbf{i} + 14 \mathbf{j}$. Find vector \mathbf{B} whose magnitude is twice that of \mathbf{A} and is opposite in direction to \mathbf{A} . [12 \mathbf{i} - 28 \mathbf{j}]

10- If vector $\mathbf{A} = 6 \mathbf{i} - 7 \mathbf{j}$ and vector $\mathbf{B} = -12 \mathbf{i} + 10 \mathbf{j}$, what angle does vector $\mathbf{C} = 2 \cdot \mathbf{A} - \mathbf{B}$ make with +x-axis measured counterclockwise.

11- The vectors v, w, and x are related by x = v + w. Which diagram below illustrates this relationship? [II]

12- A vector of magnitude 3 CANNOT be added to a vector of magnitude 4 so that the magnitude of the resultant is:

A) [zero]

B)1

C) 3

D) 5

E)7