Chapter \# 10 (Collisions)

1- A 2.00 kg object moving with a speed of $3.00 \mathrm{~m} / \mathrm{s}$ collides with a 1.00 kg object initially at rest. Immediately after collision, the 2.00 kg object has a velocity of 1.73 m / s directed 30 deg from its initial direction of motion. What is the speed of the 1.00 kg just after collision?
[$3.46 \mathrm{~m} / \mathrm{s}$]
2- A 3.0 kg object (A), moving at $8.0 \mathrm{~m} / \mathrm{s}$ in the positive x direction, makes a head-on elastic collision with an object B , of mass $=\mathrm{M}$, initially at rest. After the collision, object B has a velocity of $6.0 \mathrm{~m} / \mathrm{s}$ in the positive x direction. What is the value of M ? [5.0 kg]

3- A $2.0-\mathrm{kg}$ object moving with a speed of $5.0 \mathrm{~m} / \mathrm{s}$ in the positive x -direction collides and sticks to a $3.0-\mathrm{kg}$ object originally moving with a speed of $2.0 \mathrm{~m} / \mathrm{s}$ in the same direction. What is the final speed of the two masses? $[3.2 \mathrm{~m} / \mathrm{s}]$

4- Two $2.0-\mathrm{kg}$ bodies, A and B, collide. Before collision the velocity of body A is (10 i $+20 \mathrm{j}) \mathrm{m} / \mathrm{s}$ and after the collision body A moves with velocity $(-5.0 \mathrm{i}+10 \mathrm{j}) \mathrm{m} / \mathrm{s}$. Find the magnitude of the impulse delivered to body B. [$36 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$]

5 - A $20-\mathrm{g}$ bullet is fired into a $100-\mathrm{g}$ wooden block initially at rest on a horizontal frictionless surface. If the initial speed of the bullet is $10 \mathrm{~m} / \mathrm{s}$ and it comes out of the block with a speed of $5.0 \mathrm{~m} / \mathrm{s}$, find the speed of the block immediately after the collision. [$1.0 \mathrm{~m} / \mathrm{s}$]

6- A bullet of mass 30.0 g traveling at $600 \mathrm{~m} / \mathrm{s}$ penetrates 12.0 cm into a block of wood. What average force it exerts on the block? [$45 \times 10^{3} \mathrm{~N}$]

7- A $4000-\mathrm{kg}$ freight car, moving at $4.0 \mathrm{~m} / \mathrm{s}$, collides and couples with a $6000-\mathrm{kg}$ freight car, which was initially at rest. The common final speed of these two cars is: [$1.6 \mathrm{~m} / \mathrm{s}$]

8- A $3.00-\mathrm{g}$ bullet traveling horizontally at $400 \mathrm{~m} / \mathrm{s}$ hits a $3.00-\mathrm{kg}$ wooden block, which is initially at rest on a smooth horizontal table. The bullet buries itself in the block without passing through. The speed of the block after the collision is: $[0.40 \mathrm{~m} / \mathrm{s}]$

9- Blocks A and B are moving toward each other. A has a mass of 2.0 kg and a velocity of $50 \mathrm{~m} / \mathrm{s}$, while B has a mass of 4.0 kg and a velocity of $25 \mathrm{~m} / \mathrm{s}$. They suffer a completely inelastic collision. The kinetic energy dissipated during the collision is: [3750 J]

10- Body A has a mass of 5 kg and a velocity of $+2 \mathrm{i} \mathrm{m} / \mathrm{s}$. Body B has a mass of 3 kg and a velocity of $2 \mathrm{i} \mathrm{m} / \mathrm{s}$. The two bodies collide head-on and the collision is completely inelastic. Find the loss in kinetic energy due to the collision. [15 J]

