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CHAPTER 14 
 
1. The required heat flow is 
  ∆Q = mc ∆T = (20.0 kg)(4186 J/kg · C°)(95°C – 15°C) =       6.7 × 106 J. 
 
 
2. For the work to equal the energy value of the food, we have 
  W = (750 Cal)(4186 J/Cal) =       3.14 × 106 J. 
 
 
3. We find the temperature from 
  W = ∆Q = mc ∆T; 
  7700 J = (3.0 kg)(4186 J/kg · C°)(T – 10.0°C), which gives T =       10.6°C. 
 
 
4. (a) We convert the units: 
   (2500 Cal/day)(4186 J/Cal) =       1.05 × 107 J/day. 
 (b) We convert the units: 
   (1.05 × 107 J/day)(1 W · s/J)/(3600 s/h)(1000 W/kW) =       2.9 kWh/day. 
 (c) Cost = (Rate)(Energy) = ($0.10/kWh)(2.9 kWh/day) =       $0.29 /day. 
  Difficult to feed yourself on 29 cents/day. 
 
 
5. We convert the units: 
  ∆Q = mc ∆T; 
  1 Btu = (1 lb)(1.00 kcal/kg · C°)(1 F°)(0.454 kg/lb)(5 C°/9 F°) = 0.252 kcal; 
  1 Btu = (0.252 kcal)(4186 J/kcal) = 1055 J. 
 
 
6. We find the time from 
  ∆Q = mc ∆T; 
  (350 W)t = (250 mL)(1.00 g/mL)(10–3 kg/g)(4186 J/kg · C°)(50°C – 20°C), which gives t =       90 s. 
 
 
7. We find the mass per hour from 
  ∆Q/t = (m/t)c ∆T; 
  7200 kcal/h = (m/t)(1.00 kcal/kg · C°)(50°C – 15°C), which gives m/t =       2.1 × 102 kg/h. 
 
 
8. The heat flow generated must equal the kinetic energy loss: 
  ∆Q = !mv2 = !(1000 kg)[(100 km/h)/(3.6 ks/h)]2(1 kcal/4186 J) =       92 kcal. 
 
 
9. We find the specific heat from 
  ∆Q = mc ∆T; 
  135 × 103 J = (5.1 kg)c (30°C – 20°C), which gives c =       2.6 × 103 J/kg · C°. 
 
 
10. The required heat flow is 
  ∆Q = mc ∆T = (18 L)(1.00 kg/L)(4186 J/kg · C°)(90°C – 20°C) =       5.3 × 106 J. 
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11. Because ∆Q and ∆T are the same, from ∆Q = mc ∆T we see that m ∝ 1/c: 
  mCu : mAl : mw  = 1/cCu : 1/cAl : 1/cw 
      = 1/390 : 1/900 : 1/4186 =       10.7 : 4.65 : 1. 
 
 
12. We convert the units: 
  c = (4186 J/kg · C°)(1 Btu/1055 J)(5 C°/9 F°)(0.454 kg/lb) =       1.00 Btu/lb · F°. 
 
 
13. To be equivalent the water and lead must have the same mc: 
  mleadclead = mwatercwater; 
  (4.00 kg)(130 J/kg · C°) = mwater(4186 J/kg · C°), which gives mwater =        0.124 kg. 
 
 
14. We find the temperature from 
  heat lost = heat gained; 
  mwatercwater ∆Twater = mglasscglass ∆Tglass; 
  (135 mL)(1.00 g/mL)(10–3 kg/g)(4186 J/kg · C°)(T – 39.2°C) =  
            (0.030 kg)(840 J/kg · C°)(39.2°C – 21.6°C),  
 which gives T =       40.0°C. 
 
 
15. If all the kinetic energy in the hammer blows is absorbed by the nail, we have 
  KE = 10(!mv2) = mc ∆T; 
  10[!(1.20 kg)(8.0 m/s)2] = (0.014 kg)(450 J/kg · C°) ∆T, which gives ∆T =       61 C°. 
 
 
16. We find the temperature from 
  heat lost = heat gained; 
  mCucCu ∆TCu = (mAlcAl + mwatercwater) ∆TAl ; 
  (0.270 kg)(390 J/kg · C°)(300°C – T) =  
    [(0.150 kg)(900 J/kg · C°) + (0.820 kg)(4186 J/kg · C°)](T – 12.0°C), which gives T =       20.2°C. 
 
 
17. We find the temperature from 
  heat lost = heat gained; 
  mpokercpoker ∆Tpoker = mciderccider ∆Tcider ; 
  (0.55 kg)(450 J/kg · C°)(700°C – T) = (0.50 L)(1.00 kg/L)(4186 J/kg · C°)](T – 15°C),  
 which gives T =       87°C. 
 
 
18. We find the temperature from 
  heat lost = heat gained; 
  mshoecshoe ∆Tshoe = (mpotcpot + mwatercwater) ∆Tpot ; 
  (0.40 kg)(450 J/kg · C°)(T – 25°C) =  
       [(0.30 kg)(450 J/kg · C°) + (1.60 L)(1.00 kg/L)(4186 J/kg · C°)](25°C – 20°C),  
 which gives T =       215°C. 
 
 
19. We find the specific heat from 
  heat lost = heat gained; 
  mFecFe ∆TFe = (mAlcAl + mglycerincglycerin) ∆Tglycerin ; 
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  (0.290 kg)(450 J/kg · C°)(180°C – 38°C) = [(0.100 kg)(900 J/kg · C°) + (0.250 kg)cglycerin](38°C – 10°C),  
 which gives cglycerin =       2.3 × 103 J/kg · C°. 
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20. We find the specific heat from 
  heat lost = heat gained; 
  mxcx ∆Tx = (mAlcAl + mwatercwater + mglasscglass) ∆Twater ; 
  (0.195 kg)cx (330°C – 35.0°C) =  
   [(0.100 kg)(900 J/kg · C°) + (0.150 kg)(4186 J/kg · C°) + (0.017 kg)(840 J/kg · C°)](35.0°C – 12.5°C),  
 which gives cx =       286 J/kg · C°. 
 
 
21. The water must be heated to the boiling temperature, 100°C.  We find the time from 
  t  = (heat gained)/P = [(mAlcAl+ mwatercwater) ∆Twater]/P 
   = [(0.360 kg)(900 J/kg · C°) + (0.60 L)(1.00 kg/L)(4186 J/kg · C°)](100°C – 8.0C)/(750 W)  
   = 348 s =      5.8 min. 
 
 
22. The silver must be heated to the melting temperature, 961°C, and then melted.  We find the heat required 

from 
  Q = msilvercsilver ∆Tsilver + msilverLsilver 
   = (16.50 kg)(230 J/kg · C°)(961°C – 20° C) + (16.50 kg)(0.88 × 105 J/kg) =       5.02 × 106 J. 
 
 
23. If we assume that the heat is required just to evaporate the water, we have 
  Q = mwaterLwater ; 
  180 kcal = mwater(539 kcal/kg), which gives mwater =       0.334 kg (0.334 L). 
 
 
24. The temperature of the liquid nitrogen will not change, so the ice will cool to 77 K.  We find the amount 

of nitrogen that has evaporated from 
  heat lost = heat gained; 
  micecice ∆Tice = mnitrogenLnitrogen ; 
  (0.030 kg)(2100 J/kg · C°)(273 K – 77 K) = mnitrogen(200 × 103 J/kg), which gives mnitrogen =       0.062 kg. 
 Note that a change of 1 K is equal to a change of 1 C°. 
 
 
25. The temperature of the ice will rise to 0°C, at which point melting will occur, and then the resulting water 

will rise to the final temperature.  We find the mass of the ice cube from 
  heat lost = heat gained; 
  (mAlcAl + mwatercwater) ∆TAl  = mice(cice ∆Tice + Lice + cwater ∆Twater); 
  [(0.100 kg)(900 J/kg · C°) + (0.300 kg)(4186 J/kg · C°)](20°C – 17°C) =  
     mice{(2100 J/kg · C°)[0°C – (– 8.5°C)] + (3.33 × 105 J/kg) + (4186 J/kg · C°)(17°C – 0°C)},  
 which gives mice = 9.6 × 103 kg =       9.6 g. 
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26. (a) We find the heat required to reach the boiling point from 
   Q1 = (mFecFe + mwatercwater)∆T  
    = [(230 kg)(450 J/kg · C°) + (830 kg)(4186 J/kg · C°)](100°C – 20° C) = 2.86 × 108 J. 
  We find the time from 
   t1 = Q1/P = (2.86 × 108 J)/(52,000 × 103 J/h) =      5.5 h. 
 (b) There is no change in the temperature, so the additional heat required to change the water into  
  steam is 
   Q2 = mwaterLsteam  
    = (830 kg)(22.6 × 105 J/kg) = 1.88 × 109 J. 
  We find the additional time from 
   t2 = Q2/P = (1.88 × 109 J)/(52,000 × 103 J/h) = 36.1 h. 
  Thus the total time required is 
   t = t1 + t2 = 5.5 h + 36.1 h =       41.6 h. 
 
 
27. We use the heat of vaporization at body temperature: 585 kcal/kg.   
 If all of the energy supplied by the bicyclist evaporates the water, we have 
  Q = mwaterLwater  
   = (8.0 L)(1.00 kg/L)(585 kcal/kg) =       4.7 × 103 kcal. 
 
 
28. The steam will condense at 100°C, and then the resulting water will cool to the final temperature.  The ice 

will melt at 0°C, and then the resulting water will rise to the final temperature.  We find the mass of the 
steam required from 

  heat lost = heat gained; 
  msteam(Lsteam + cwater ∆T1) = mice(Lice + cwater ∆T2); 
  msteam[(22.6 × 105 J/kg) + (4186 J/kg · C°)](100°C – 20°C) =  
          (1.00 kg)[(3.33 × 105 J/kg) + (4186 J/kg · C°)(20°C – 0°C)],  
 which gives msteam =       0.16 kg. 
 
 
29. We find the latent heat of fusion from 
  heat lost = heat gained; 
  (mAlcAl + mwatercwater) ∆Twater = mHg(LHg + cHg ∆THg) 
  [(0.620 kg)(900 J/kg · C°) + (0.400 kg)(4186 J/kg · C°)](12.80°C – 5.06°C) =  
           (1.00 kg){LHg + (138 J/kg · C°)[5.06°C – (– 39.0°C)]},  
 which gives LHg =       1.12 × 104 J/kg. 
 
 
30. We assume that the water created by the melting of the ice stays at 0°C.  Because the work done by 

friction, which decreases the kinetic energy, generates the heat flow, we have 
  Q = !(∆KE); 
  miceLice = !(!mv2); 
  mice(3.33 × 105 J/kg) = ((54.0 kg)(6.4 m/s)2, which gives mice = 1.7 × 10–3 kg =      1.7 g. 
 
 
31. The work done by friction, which decreases the kinetic energy, generates the heat flow.  In general a 

fraction of the heat flow is used to raise the temperature of the lead bullet and then melt the lead bullet.  
The larger this fraction is, the smaller the bullet velocity needed.  We determine the minimum muzzle 
velocity by assuming that this fraction is 1: 

  Q = ∆KE; 
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  mlead(clead ∆T + Llead) = !mleadv2; 
  [(130 J/kg · C°)(327°C – 20°C) + 0.25 × 105 J/kg] = !v2, which gives v =       360 m/s. 
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32. The strong gusty winds will provide heat convection, so the temperature at the outside of the window 
will be the external air temperature.  We find the rate of heat flow from 

  ∆Q/∆t = kA(∆T/L)  
    = (0.84 J/s · m · C°)(3.0 m2)[15°C – (– 5°C)]/(3.2 × 10–3 m) =       1.6 × 104 W. 
 
 
33. (a) We find the radiated power from 
   ∆Q/∆t = eσAT4 
     = (0.35)(5.67 × 10–8 W/m2 · K4)4π(0.22 m)2(298 K)4 =       95 W. 
 (b) We find the net flow rate from 
   ∆Q/∆t = eσA(T2

4 – T1
4) 

     = (0.35)(5.67 × 10–8 W/m2 · K4)4π(0.22 m)2[(298 K)4 – (268 K)4] =      33 W. 
 
 
34. We find the distance for the conduction from 
  ∆Q/∆t = kA(∆T/L)  
  200 W = (0.2 J/s · m · C°)(1.5 m2)(0.50 C°)/L, which gives L  = 7.5 × 10–4 m =      0.75 mm. 
 
 
35. We find the radiated power from 
  ∆Q/∆t = eBetelgeuseσABetelgeuseTBetelgeuse

4 = eBetelgeuseσ4πrBetelgeuse
2TBetelgeuse

4. 
    = (1.0)(5.67 × 10–8 W/m2 · K4)4π(3.1 × 1011 m)2(2800 K)4 =       4.2 × 1030 W. 
 If we form the ratio for Betelgeuse and the Sun, we have 
  PBetelgeuse/PSun = (rBetelgeuse/rSun)2(TBetelgeuse/TSun)4,  or  
  PBetelgeuse = (3.1 × 1011 m/7.0 × 108 m)2(!)4PSun =      1.2 × 104 PSun . 
 
 
36. (a) The cross-sectional area of the beam that falls on an area  
  A is A cos θ.  Thus the rate at which energy is absorbed is 
   P  = IeA cos θ = (1000 W/m2)(0.75)(225 × 10–4 m2) cos 40°  
    =       13 W. 
 (b) With the new emissivity we have 
   P  = IeA cos θ = (1000 W/m2)(0.20)(225 × 10–4 m2) cos 40°  
    =       3.4 W. 
 
 
37. We find the rate of heat flow through the wall from 
  ∆Q/∆t = kA(∆T/L)  
    = (0.84 J/s · m · C°)(4.0 m)(4.0 m)(30°C – 10°C)/(0.12 m) = 2.24 × 103 W. 
 We find the number of bulbs required to provide this heat flow from 
  N =(∆Q/∆t)/P = (2.24 × 103 W)/(100 W) = 22.4  =       22 bulbs. 
 
 
38. The cross-sectional area of the beam that falls on an area A is A cos θ.  Thus the rate at which energy is 

absorbed is 
  P = IeA cos θ.  
 There is no change in temperature of the ice.  We find the time to provide the energy to melt the ice from 
  Q = mL = ρAhL = Pt = (IeA cos θ)t; 
  (917 kg/m3)(0.010 m)(3.33 × 105 J/kg) = (1000 W/m2)(0.050)(cos 30°)t, which gives t = 7.1 s =       20 h. 
 Note that the result is independent of the area. 
 

A θ

I

θ
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39. In the steady state, the intermediate temperature does not change, so the heat flow must be the same 
through the two rods: 

  ∆Q/∆t = kCuACu(Thot – T)/LCu = kAlAAl(Thot – T)/LAl . 
 The rods have the same area and length, so we have 
  kCu(Thot – T) = kAl(Thot – T); 
  (380 J/s · m · C°)(250°C – T) = (200 J/s · m · C°)(T – 0.0°C), which gives T =      164°C. 
 
 
40. We find the temperature from the power radiated into space: 
  ∆Q/∆t = eσAT4,  or  (∆Q/∆t)/A = eσT4; 
  430 W/m2 = (1.0)(5.67 × 10–8 W/m2 · K4)T4, which gives T =       295 K (22°C). 
 
 
41. We find the temperature difference from conduction through the glass: 
  ∆Q/∆t = kA(∆T/L);  
  95 W = (0.84 J/s · m · C°)4π(0.030 m)2 ∆T/(1.0 × 10–3 m), which gives ∆T =       10 C°. 
 
 
42. The total rate of thermal energy loss through the wall and windows must be the power output of the 

stove: 
  P  = ∆Q/∆t = (∆Q/∆t)wall + (∆Q/∆t)windows   
   = (k1A1 ∆T/L1) + (k2A2 ∆T/L2) =      [(k1A1/L1) + (k2A2/L2)]∆T. 
 
 
43. The rate of thermal energy flow is the same for the brick and  
 the insulation: 
  ∆Q/∆t = A(T1 – T2)/Reff = A(T1 – Tint)/R2 = A(Tint – T2)/R1 , 
 where Tint  is the temperature at the brick-insulation interface.  
 By equating the first term to each of the others, we have 
  Reff(T1 – Tint) = R2(T1 – T2),    and    Reff(Tint – T2) = R1(T1 – T2). 
 If we add these two equations, we get 
  Reff(T1 – T2) =  R1(T1 – T2) + R2(T1 – T2), which gives         
  Reff = R1 + R2 . 
 This shows the usefulness of the R-value. 
 For the R-value of the brick we have 
  R1 = L1/k1  
   = [(4.0 in)/(12 in/ft)](3.28 ft/m)/(0.84 J/s · m · C°)(1 Btu/1055 J)(1 h/3600 s)(5 C°/9 F°)  
   = 0.69 ft2 · h · F°/Btu. 
 Thus the total R-value of the wall is  
  Reff = R1 + R2 = 0.69 ft2 · h · F°/Btu + 19 ft2 · h · F°/Btu = 19.7 ft2 · h · F°/Btu. 
 The rate of heat loss is  
  ∆Q/∆t = A(T1 – T2)/Reff  
    = [(240 ft2)(10 F°)/(19.7 ft2 · h · F°/Btu)](1055 J/Btu)/(3600 s/h) =       36 W. 
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44. (a) We call the temperatures at the interfaces Ta and Tb , as  
  shown.  In the steady state, the rate of heat flow is the same  
  for each layer: 
   ∆Q/∆t = k1A(T2 – Ta)/¬1 = k2A(Ta – Tb)/¬2 = k3A(Tb – T1)/¬3 .  
  We treat this as three equations: 
   T2 – Ta = [(∆Q/∆t)/A]¬1/k1 ; 
   Ta – Tb = [(∆Q/∆t)/A]¬2/k2 ; 
   Tb – T1 = [(∆Q/∆t)/A]¬3/k3 . 
  If we add these equations, we get 
   T2 – T1 = [(∆Q/∆t)/A][(¬1/k1) + (¬2/k2) + (¬3/k3)], which gives 
   ∆Q/∆t = A(T2 – T1)/[(¬1/k1) + (¬2/k2) + (¬3/k3)]. 
 (b) We can generalize this by recognizing that more layers will mean more equations, similar to the  
  three that we had.  When we eliminate the intermediate temperatures by adding all the  
  equations, we get 
   ∆Q/∆t = A(T2 – T1)/∑(¬i/ki). 
 
 
45. The total area of the six sides of the icebox is 
  A = 2[(0.25 m)(0.35 m) + (0.25 m)(0.50 m) + (0.35 m)(0.50 m)] = 0.775 m2. 
 As the ice melts, the inside temperature of the icebox remains at 0°C.  The rate at which heat flows 

through the sides of the icebox is 
  ∆Q/∆t = miceLice/∆t = kA(∆T/L); 
  (11.0 kg)(3.33 × 105 J/kg)/∆t = (0.023 J/s · m · C°)(0.775 m2)(30°C – 0°C)/(0.015 m), 
 which gives ∆t = 5.14 × 104 s =      14 h. 
 
 
46. We assume that the rate of heat loss is proportional to the temperature difference, so the heat flow in a 

time t is  
  Q = K(∆T)t. 
 We assume that the constant K takes into account all forms of heat loss, but does not depend on the 

temperature difference, and thus is the same day and night.  When the thermostat is turned down, we 
have 

  Q1 = K(∆Tday)tday + K(∆T1night)tnight  
   = K[(22°C – 8°C)(17.0 h) + (12°C – 0°C)(7.0 h)] = (322 h · C°)K. 
 When the thermostat is not turned down, we have 
  Q2 = K(∆Tday)tday + K(∆T2night)tnight  
   = K[(22°C – 8°C)(17.0 h) + (22°C – 0°C)(7.0 h)] = (392 h · C°)K. 
 For the percentage increase we have 
  (∆Q/Q1)(100) = {[(392 h · C°)K – (322 h · C°)K]/[(322 h · C°)K]}(100) =       22%. 
 
 
47. Because 70% of the heat generated by burning the coal heats the house, we have 
  0.70mcoal(7000 kcal/kg) = 4.8 × 107 kcal, which gives mcoal =       9.8 × 103 kg. 
 
 
48. The work done by friction, which decreases the kinetic energy, generates the heat flow.  If all the heat 

flow is absorbed by the lead bullet and wooden block, we have 
  Q = ∆KE; 
  (mleadclead + mwoodcwood)∆T  = !mleadv2; 
  [(0.015 kg)(130 J/kg · C°) + (1.05 kg)(1700 J/kg · C°)](0.020 C°) = !(0.015 kg)v2,  
 which gives v =       69 m/s. 
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49. (a) We find the power radiated from 
   ∆Q/∆t = eσAT4 
     = (1.0)(5.67 × 10–8 W/m2 · K4)4π(7.0 × 108 m)2(5500 K)4 =       3.2 × 1026 W. 
 (b) Because this radiation passes through a sphere centered at the Sun, we have 
   P/4πR2 = (3.2 × 1026 W)/4π(1.5 × 1011 m)2 =      1.1 × 103 W/m2. 
 
 
50. We find the temperature rise from 
  Q = mc ∆T; 
  (0.70)(200 kcal/h)(1.00 h) = (70 kg)(0.83 kcal/kg · C°)∆T, which gives ∆T =      2.8 C°.  
 
 
51. The heat generated in stopping the fall equals the decrease in kinetic energy.  From energy conservation 

for the fall, this must equal the change in potential energy.  We find the temperature rise from 
  Q = (0.50)mgh = mc ∆T; 
  (0.50)(340 kg)(9.80 m/s2)(140 m) = (340 kg)(860 J/kg · C°)∆T, which gives ∆T =      0.80 C°.  
 
 
52. (a) We use the two expressions for Q: 
   Q = mc ∆T = C ∆T, which gives      C = mc. 
 (b) For 1 kg we have 
   C = mc = (1.00 kg)(4186 J/kg · C°) =      4186 J/C°. 
 (c) For 50 kg we have 
   C = mc = (50.0 kg)(4186 J/kg · C°) =      2.09 × 105 J/C°. 
 
 
53. We find the temperature rise in the rod of length L from 
  ∆Q = mc ∆T = ρALc ∆T; 
  320 × 103 J = (3.64 kg/m3)π(0.0100 m)2L(130 J/kg · C°) ∆T, which gives ∆T = (676 C° · m)/L. 
 Because the rod is very long, the temperature rise will be small.  We find the change in length from 
  ∆L = Lα ∆T = L[29 × 10–6 (C°)–1][(676 C° · m)/L] = 1.96 × 10–2 m =      1.96 cm. 
 If the rod is 2.0 cm long, the temperature rise will be 
  ∆T = (676 C° · m)/L = (676 C° · m)/(2.0 × 10–2 m) = 3.4 × 104 C°. 
 This is so much greater than the boiling point for lead, 1750°C, that the      rod vaporizes. 
 
 
54. (a) We find the rate of heat flow through the clothing from 
   ∆Q/∆t = kA(∆T/L)  
     = (0.025 J/s · m · C°)(1.7 m2)[34°C – (– 20°C)]/(0.035 m) =       66 W. 
 (b) When the clothing is wet, we have 
   ∆Q/∆t = kA(∆T/L)  
     = (0.56 J/s · m · C°)(1.7 m2)[34°C – (– 20°C)]/(0.0050 m) =       1.0 × 104 W. 
 
 
55. If we assume that all the energy evaporates the water, with the latent heat at 20° given in the text, we 

have 
  Q = mwaterLwater  
  (1000 kcal/h)(2.5 h) = mwater(585 kcal/kg), which gives mwater =       4.3 kg. 
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56. We find the rate of heat conduction from 
  ∆Q/∆t = kA(∆T/L)  
    = (0.2 J/s · m · C°)(1.5 m2)(37°C – 34°C)/(0.040 m) =       23 W. 
 This is much less than the 230 W that must be dissipated, so the convection provided by the blood in 

carrying a heat flow to the skin is necessary. 
 
 
57. The net heat flow rate from radiation, when the temperature difference is ∆T = T1 – T2 , is 
  ∆Q/∆t = eσA(T1

4 – T2
4)  

    = eσA[(T2 + ∆T)4 – T2
4] = eσA{T2

4[1 + (∆T/T2)]4 – T2
4} = eσAT2

4{[1 + (∆T/T2)]4 – 1}. 
 Because ∆T/T2 « 1, we use the binomial expansion for the first term: 
  [1 + (∆T/T2)]4 ≈ 1 + 4(∆T/T2). 
 When we substitute this, we get 
  ∆Q/∆t ≈ eσAT2

4[1 + 4(∆T/T2) – 1]  
    = 4eσAT2

4(∆T/T2) = 4eσAT2
3 ∆T = 4eσAT2

3 (T1 – T2) = constant × (T1 – T2). 
 
 
58. (a) We find the rate of heat flow from 
   ∆Q/∆t = k1A1(∆T/L1) + k2A2(∆T/L2) + k3A3(∆T/L3)  
     = [(k1A1/L1) + (k2A2/L2) + (k3A3/L3)]∆T 
     = {[(0.023 J/s · m · C°)(410 m2)/(0.175 m)] + [(0.12 J/s · m · C°)(280 m2)/(0.065 m)] +  
         [(0.84 J/s · m · C°)(33 m2)/(0.0065 m)]}[23°C – (– 10°C)] = 1.60 × 105 W  
     =      160 kW. 
 (b) The heat flow needed to raise the temperature of the air is 
   Qair = maircair ∆T = ρairVaircair ∆T 
    = (1.29 kg/m3)(750 m3)(0.24 kcal/kg · C°)(4186 J/kcal)(23°C – 10° C) = 1.26 × 107 J. 
  During the 30 minutes there will be heat loss from conduction.  We use the average temperature  
  difference: 
   ∆Tav = !(23°C + 10°C) – (– 10°C) = 26.5 C°. 
  Because the conduction loss is proportional to the temperature difference, the loss during the 30  
  minutes is 
   Qloss = [(1.60 × 105 W)/(33 C°)](26.5 C°)(30 min)(60 s/min) = 2.30 × 108 J. 
  The total heat required is 
   Qtotal = Qair + Qloss = 1.26 × 107 J + 2.30 × 108 J =       2.4 × 108 J. 
 (c) We find the amount of gas required from 
   0.90mgas(5.4 × 107 J/kg) = (1.60 × 105 W)(24 h/day)(30 day/month)(3600 s/h),  
  which gives mgas = 8.48 × 103 kg/month. 
  We find the cost from 
   Cost = (rate)mgas = ($0.080/kg)(8.48 × 103 kg/month) =       $6.8 × 102/month. 
 
 
59. (a) The work done by friction, which decreases the kinetic energy, generates the heat flow.   
  If 50% of the heat flow is absorbed by the lead bullet, we have 
   Q = !∆KE; 
   mleadclead ∆T = !(!mlead)(vf

2 – vi
2) 

   [(0.015 kg)(130 J/kg · C°)∆T = ((0.015 kg)[(220 m/s)2 – (160 m/s)2],  
  which gives ∆T =       44 C°. 
 (b) With an ambient temperature of 20°C, we have Tlead = 20°C + 44 C° = 64°C.  Because this is less  
  than the melting point of lead, 327°C, there will be       no melting       of the bullet. 
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60. (a) If we assume that all of the radiation is absorbed to raise the temperature of the leaf, we have 
   P = IeA = mleafcleaf (∆T /∆t); 
   (1000 W/m2)(0.85)(40 × 10–4 m2) = (4.5 × 10–4 kg)(0.80 kcal/kg · C°)(4186 J/kcal)(∆T /∆t),  
  which gives ∆T /∆t =      2.3 C°/s. 
 (b) When the leaf reaches the temperature at which the absorbed energy is re-radiated to the  
  surroundings from both sides of the leaf, we have 
   IeA = eσ2A(T2

4 – T1
4),   or   I = 2σ(T2

4 – T1
4); 

   (1000 W/m2) = 2(5.67 × 10–8 W/m2 · K4)[T2
4 – (293 K)4], which gives T2 = 357 K =      84°C. 

 (c) The major ways that heat can be dissipated are by       convection      from     conduction       to the air  
  in contact with the leaf, and       evaporation. 
 
 
61. When we consider radiation from both sides of the leaf, the net absorbtion rate is 
  Pnet = IeA – eσ2A(T2

4 – T1
4) = eA [I – 2σ(T2

4 – T1
4)]. 

 To remove this energy by evaporation, we have 
  eA [I – 2σ(T2

4 – T1
4)] = (m/t)L; 

  (0.85)(40 × 10–4 m2){1000 W/m2 – 2(5.67 × 10–8 W/m2 · K4)[(308 K)4 – (293)4]} =  
            (m/t)(585 kcal/kg)(4186 J/kcal),  
 which gives m/t =       1.1 × 10–6 kg/s (4.1 g/h). 
 Note that we have used the latent heat at 20°C given in the text. 
 
 
62. The work done by friction, which decreases the kinetic energy, generates the heat flow.  In general, some 

of the heat flow will heat the air and some will be radiated, so a fraction of the heat flow is used to raise 
the temperature of the iron meteorite and then melt the iron meteorite.  The larger this fraction is, the 
smaller the necessary velocity.  We determine the minimum velocity by assuming that this fraction is 1: 

  Q = ∆KE; 
  miron(ciron ∆T + Liron) = !mironvmin

2; 
  (450 J/kg · C°)[1808°C – (– 125°C)] + 2.89 × 105 J/kg = !vmin

2, which gives vmin =       1.5 × 103 m/s. 
 
 


