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Preface

Statistical Methods in Radiation Physics began as an effort to help clarify, for our
students and colleagues, implications of the probabilistic nature of radioactive decay
for measuring its observable consequences. Every radiological control technician
knows that the uncertainty in the number of counts detected from a long-lived
radioisotope is taken to be the square root of that number. Butwhy is that so?Andhow
is the corresponding uncertainty estimated for counts from a short-lived species, for
which the count rate dies away even as themeasurement ismade?One of us (JET) had
already been presented with these types of questions while teaching courses in the
Oak Ridge Resident Graduate Program of the University of Tennessee�s Evening
School. A movement began in the late 1980s in the United States to codify
occupational radiation protection and monitoring program requirements into Fed-
eral Regulations, and to include performance testing of programs and laboratories
that provide the supporting external dosimetry and radiobioassay services. The
authors� initial effort at a textbook consequently addressed statistics associated with
radioactive decay and measurement, and also statistics used in the development of
performance criteria and reporting of monitoring results.

What began as a short textbook grew eventually to 15 chapters, correspondingwith
the authors� growing realization that there did not appear to be a comparable text
available. The book�s scope consequently broadened from a textbook for health
physicists to one useful to a wide variety of radiation scientists.

This is a statistics textbook, but the radiological focus is immediately emphasized
in the first two chapters and continues throughout the book. Chapter 1 traces the
evolution of deterministic classical physics at the end of the nineteenth century into
the modern understanding of the wave–particle duality of nature, statistical limita-
tions on precision of observables, and the development of quantum mechanics and
its probabilistic view of nature. Chapter 2 begins with the familiar (to radiological
physicists) exponential decay equation, a continuous, differentiable equation de-
scribing the behavior of large numbers of radioactive atoms, and concludes with the
application of the binomial distribution to describe observations of small, discrete
numbers of radioactive atoms. With the reader now on somewhat familiar ground,
the next six chapters introduce probability, probability distributions, parameter and
interval estimations, and error (uncertainty) propagation in derived quantities. These
statistical tools are then applied in the remaining chapters to practical problems of
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measuring radioactivity, establishing performancemeasures for laboratories, instru-
ment response, Monte Carlo modeling, dose response, and regression analysis. The
final chapter introduces Bayesian analysis, which has seen increasing application in
health physics in the past decade. The book is written at the senior or beginning
graduate level as a text for a 1-year course in a curriculum of physics, health physics,
nuclear engineering, environmental engineering, or an allied discipline. A large
number of examples are worked in the text, with additional problems at the end of
each chapter. SI units are emphasized, although traditional units are also used in
someexamples. SI abbreviations are used throughout.StatisticalMethods inRadiation
Physics is also intended as a reference for professionals in various fields of radiation
physics and contains supporting tables, figures, appendices, and numerous
equations.

We are indebted to our students and colleagues who first stimulated our interest in
beginning such a textbook, and then who later contributed in many ways to its
evolution and kept encouraging us to finish the manuscript. Some individual and
institutional contributions are acknowledged in figure captions. We would like to
thank Daniel Strom, in particular, for his encouragement and assistance in adding a
chapter introducing Bayesian analysis.

The professional staff at Wiley-VCH has been most supportive and patient, for
which we are extremely thankful. It has been a pleasure to work with Anja
Tshcoertner, in particular, who regularly encouraged us to complete the manuscript.
We also owe a debt of gratitude toMaike Peterson and the technical staff for their help
in typesetting many equations.

We must acknowledge with great sorrow that James E. (Jim) Turner died on
December 29, 2008, and did not see the publication of Statistical Methods in Radiation
Physics. Jim conceived the idea that a statistics book applied to problems of
radiological measurements would be useful, and provided the inspiration for this
textbook. Hewas instrumental in choosing the topic areas and helped develop a large
portion of thematerial. It was our privilege to have workedwith Jim on this book, and
we dedicate it to thememory of thismanwho professionally and personally enriched
our lives and the lives of so many of our colleagues.
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1
The Statistical Nature of Radiation, Emission, and Interaction

1.1
Introduction and Scope

This book is about statistics, with emphasis on its role in radiation physics, measure-
ments, and radiation protection. That this subject is essential for understanding in
these areas stems directly from the statistical nature of the submicroscopic, atomic
world, as we briefly discuss in the next section. The principal aspects of atomic physics
with which we shall be concerned are radioactive decay, radiation transport, and
radiation interaction.Knowledge of these phenomena is necessary for success inmany
practical applications, which include dose assessment, shielding design, and the
interpretation of instrument readings. Statistical topics will be further developed for
establishing criteria to measure and characterize radioactive decay, assigning confi-
dence limits for measured quantities, and formulating statistical measures of perfor-
mance and compliance with regulations. An introduction to biological dose–response
relations and to modeling the biological effects of radiation will also be included.

1.2
Classical and Modern Physics – Determinism and Probabilities

A principal objective of physical science is to discover laws and regularities that
provide a quantitative description of nature as verified by observation. Adesirable and
useful outcome to be derived from such laws is the ability tomake valid predictions of
future conditions from a knowledge of the present state of a system. Newton�s
classical laws of motion, for example, determine completely the future motion of a
system of objects if their positions and velocities at some instant of time and the
forces acting between them are known. On the scale of the very large, the motion of
the planets andmoons can thus be calculated forward (and backward) in time, so that
eclipses and other astronomical phenomena can be predictedwith great accuracy. On
the scale of everyday common life, Newton�s laws describe all manner of diverse
experience involvingmotion and statics. However, in the early twentieth century, the
seemingly inviolate tenets of traditional physics were found to fail on the small scale
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of atoms. In place of a deterministic world of classical physics, it was discovered that
atoms and radiation are governed by definite, but statistical, laws of quantumphysics.
Given the present state of an atomic system, one can predict its future, but only in
statistical terms. What is the probability that a radioactive sample will undergo a
certain number of disintegrations in the next minute? What is the probability that a
given 100-keV gamma photon will penetrate a 0.5-cm layer of soft tissue? According
tomodern quantum theory, these questions can be answered as fully as possible only
by giving the complete set of probabilities for obtaining any possible result of a
measurement or observation.

By the close of the nineteenth century, the classical laws of mechanics, electro-
magnetism, thermodynamics, and gravitation were firmly established in physics.
There were, however, some outstanding problems – evidence that all was not quite
right. Two examples illustrate the growing difficulties. First, in the so-called
�ultraviolet catastrophe,� classical physics incorrectly predicted the distribution of
wavelengths in the spectrum of electromagnetic radiation emitted from hot bodies,
such as the sun. Second, sensitive measurements of the relative speed of light in
different directions on earth – expected to reveal the magnitude of the velocity of the
earth through space – gave a null result (no difference!). Planck found that the first
problem could be resolved by proposing a nonclassical, quantum hypothesis related
to the emission and absorption of radiation by matter. The now famous quantum of
action, h¼ 6.6261� 10�34 J s, was thus introduced into physics. The second dilemma
was resolved by Einstein in 1905with the revolutionary special theory of relativity. He
postulated that the speed of light has the same numerical value for all observers in
uniform translational motion with respect to one another, a situation wholly in
conflict with velocity addition in Newtonian mechanics. Special relativity further
predicts that energy andmass are equivalent and that the speed of light in a vacuum is
the upper limit for the speed that any object can have. The classical concepts of
absolute space and absolute time, which had been accepted as axiomatic tenets for
Newton�s laws of motion, were found to be untenable experimentally.

& Example
In a certain experiment, 1000 monoenergetic photons are normally incident
on a shield. Exactly 276 photons are observed to interact in the shield, while
724 photons pass through without interacting.

a) What is the probability that the next incident photon, under the same
conditions, will not interact in the shield?

b) What is the probability that the next photon will interact?

Solution
a) Based on the given data, we estimate that the probability for a given photon
to traverse the shield with no interaction is equal to the observed fraction
that didnot interact. Thus, the �best value� for the probability Pr(no) that the
next photon will pass through without interacting is

PrðnoÞ ¼ 724
1000

¼ 0:724: ð1:1Þ
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b) By the same token, the estimated probability Pr(yes) that the next photon
will interact is

PrðyesÞ ¼ 276
1000

¼ 0:276; ð1:2Þ
based on the observation that 276 out of 1000 interacted.

This example suggests several aspects of statistical theory that we shall see often
throughout this book. The sum of the probabilities for all possible outcomes
considered in an experiment must add up to unity. Since only two possible alter-
natives were regarded in the example – either a photon interacted in the shield or it
did not –wehad Pr(no) þ Pr(yes)¼ 1.Wemight have considered further whether an
interactionwas photoelectric absorption, Compton scattering, or pair production.We
could assign separate probabilities for these processes and then ask, for example,
what the probability is for the next interacting photon to be Compton scattered in the
shield. In general, whatever number and variety of possible outcomes we wish to
consider, the sum of their probabilities must be unity. This condition thus requires
that there be some outcome for each incident photon.

It is evident, too, that a larger data sample will generally enable more reliable
statistical predictions to be made. Knowing the fate of 1000 photons in the example
givesmore confidence in assigning values to the probabilities Pr(no) and Pr(yes) than
would knowing the fate of, say, only 10photons.Havingdata for 108 photonswould be
even more informative.

Indeed, the general question arises, �How can one ever know the actual, true
numerical values formany of the statistical quantities that wemust deal with?�Using
appropriate samples and protocols that we shall develop later, one can often obtain
rather precise values, but always within well-defined statistical limitations. A typical
result expresses a �best� numerical value that lies within a given range with a
specified degree of confidence. For instance, from the data given in the example
above, we can express the �measured� probability of no interaction as

PrðnoÞ ¼ 0:724� 0:053 ð95% confidence levelÞ: ð1:3Þ
(The stated uncertainty, �0.053, is �1.96 standard deviations from an estimated
mean of 0.724, based on the single experiment, aswe shall discuss later in connection
with thenormal distribution.)Given the result (1.3), there is still no guarantee that the
�true� value is actually in the stated range. Many such probabilities can also be
accurately calculated fromfirst principles by using quantummechanics. In all known
instances, the theoretical results are in agreementwithmeasurements. Confirmation
by observation is, of course, the final criterion for establishing the validity of the
properties we ascribe to nature.

1.3
Semiclassical Atomic Theory

Following the unexpected discovery of X-rays by Roentgen in 1895, a whole series
of new findings ushered in the rapidly developing field of atomic and radiation
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physics. Over the span of the next two decades, it became increasingly clear that
classical science did not give a correct picture of the world as new physics unfolded.
Becquerel discovered radioactivity in 1896, and Thomson measured the charge-to-
mass ratio of the electron in 1897. Millikan succeeded in precisely measuring the
charge of the electron in 1909. By 1910, a number of radioactive materials had been
investigated, and the existence of isotopes and the transmutation of elements by
radioactive decay were recognized. In 1911, Rutherford discovered the atomic
nucleus – a small, massive dot at the center of the atom, containing all of the positive
charge of the neutral atom and virtually all of its mass. The interpretation of his
experiments on alpha-particle scattering from thin layers of gold pointed to a
planetary structure for an atom, akin to a miniature solar system. The atom
was pictured as consisting of a number of negatively charged electrons traversing
most of its volume in rapid orbital motion about a tiny, massive, positively charged
nucleus.

The advancemade with the discovery of the nuclear atom posed another quandary
for classical physics. The same successful classical theory (Maxwell�s equations) that
predicted many phenomena, including the existence of electromagnetic radiation,
required the emission of energy by an accelerated electric charge. An electron in orbit
about a nucleus should thus radiate energy and quickly spiral into the nucleus. The
nuclear atomcould not be stable. To circumvent this dilemma,Bohr in 1913proposed
a new, semiclassical nuclearmodel for the hydrogen atom. The single electron in this
system moved in classical fashion about the nucleus (a proton). However, in
nonclassical fashion Bohr postulated that the electron could occupy only certain
circular orbits in which its angular momentum about the nucleus was quantized.
(The quantum condition specified that the angular momentum was an integral
multiple of Planck�s constant divided by 2p.) In place of the continuum of unstable
orbits allowed by classical mechanics, the possible orbits for the electron in Bohr�s
model were discrete. Bohr further postulated that the electron emitted radiation only
when it went from one orbit to another of lower energy, closer to the nucleus. The
radiation was then emitted in the form of a photon, having an energy equal to the
difference in the energy the electron had in the two orbits. The atom could absorb a
photon of the same energy when the electron made the reverse transition between
orbits. These criteria for the emission and absorption of atomic radiation replaced the
classical ideas. They also implied the recognized fact that the chemical elements emit
and absorb radiation at the samewavelengths and that different elements would have
their own individual, discrete, characteristic spectra. Bohr�s theory for the hydrogen
atom accounted in essential detail for the observed optical spectrum of this element.
When applied to other atomic systems, however, the extension of Bohr�s ideas often
led to incorrect results.

An intensive period of semiclassical physics then followed into the 1920s. The
structure and motion of atomic systems was first described by the equations of
motion of classical physics, and then quantum conditions were superimposed, as
Bohr had done for hydrogen. The quantized character of many variables, such as
energy and angular momentum, previously assumed to be continuous, became
increasingly evident experimentally.
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Furthermore, nature showed a puzzling wave–particle duality in its fundamental
makeup. Electromagnetic radiation, originally conceived as a purely wave phenom-
enon, exhibited properties of both waves and particles. The diffraction and inter-
ference of X-rays was demonstrated experimentally by von Laue in 1912, establishing
their wave character. Einstein�s explanation of the photoelectric effect in 1905
described electromagnetic radiation of frequency n as consisting of packets, or
photons, having energy E¼ hn. The massless photon carries an amount of momen-
tum that is given by the relation

p ¼ E
c
¼ hn

c
; ð1:4Þ

where c¼ 2.9979� 108m s�1 is the speed of light in a vacuum. This particle-like
property of momentum is exhibited experimentally, for example, by the Compton
scattering of photons from electrons (1922). The wavelength l of the radiation is
given by l¼ c/n. It follows from Eq. (1.4) that the relationship between the
wavelength and momentum of a photon is given by

l ¼ h
p
: ð1:5Þ

In 1924, de Broglie postulated that this relationship applies not only to photons, but
also to other fundamental atomic particles. Electron diffraction was demonstrated
experimentally by Davisson and Germer in 1927, with the electron wavelength being
correctly given by Eq. (1.5). (Electron microscopes have much shorter wavelengths
and hence much greater resolving power than their optical counterparts.)

There was no classical analogue to these revolutionary quantization rules and
thewave–particle duality thus introduced into physics. Yet they appeared towork. The
semiclassical procedures had some notable successes, but they also led to some
unequivocally wrong predictions for other systems. There seemed to be elements of
truth in quantizing atomic properties, but nature�s secrets remained hidden in the
early 1920s.

1.4
Quantum Mechanics and the Uncertainty Principle

Heisenberg reasoned that the root of the difficulties might lie in the use of
nonobservable quantities to describe atomic constituents – attributes that the
constituents might not even possess. Only those properties should be ascribed to
an object that have an operational definition through an experiment that can be
carried out to observe or measure them. What does it mean, for example, to ask
whether an electron is blue or red, or even to ask whether an electron has a color?
Such questions must be capable of being answered by experiment, at least in
principle, or else they have no meaning in physics. Using only observable atomic
quantities, such as those associated with the frequencies of the radiation emitted by
an atom,Heisenberg in 1924 developed a new,matrix theory of quantummechanics.
At almost the same time, Schr€odinger formulated his wave equation from an entirely
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different standpoint. He soon was able to show that his formulation and
Heisenberg�s were completely equivalent. The new quantum mechanics was born.

In the Newtonian mechanics employed by Bohr and others in the semiclassical
theories, it was assumed that an atomic electron possesses a definite position and
velocity at every instant of time. Heisenberg�s reasoning required that, in order to
have any meaning or validity, the very concept of the �position and velocity of the
electron� should be defined operationally by means of an experiment that would
determine it. He showed that the act of measuring the position of an electron ever
more precisely would, in fact, make the simultaneous determination of its momen-
tum (and hence velocity) more and more uncertain. In principle, the position of an
electron could be observed experimentally by scattering a photon from it. The
measured position would then be localized to within a distance comparable to the
wavelength of the photon used, which limits its spatial resolving power. The scattered
photonwould, in turn, impartmomentum to the electron being observed. Because of
thefinite aperture of any apparatus used to detect the scattered photon, its direction of
scatter and hence its effect on the struck electron�s momentum would not be known
exactly. To measure the position of the electron precisely, one would need to use
photons of very short wavelength. These, however, would have large energy and
momentum, and the act of scattering would be coupled with large uncertainty in the
simultaneous knowledge of the electron�s momentum. Heisenberg showed that the
product of the uncertainties in the position Dx in any direction in space and
the component of momentum Dpx in that direction must be at least as large as
Planck�s constant divided by 2p (h¼ h/2p¼ 1.0546� 10�34 J s):

DxDpx � h: ð1:6Þ
It is thus impossible to assign both position and momentum simultaneously with
unlimited precision. (The equality applies only under optimum conditions.) The
inequality (1.6) expresses one form of Heisenberg�s uncertainty principle. A similar
relationship exists between certain other pairs of variables, such as energy E and
time t:

DEDt � h: ð1:7Þ
The energy of a system cannot be determinedwith unlimited precisionwithin a short
interval of time.

These limits imposed by the uncertainty principle are not due to any shortcomings
in our measurement techniques. They simply reflect the way in which the act of
observation itself limits simultaneous knowledge of certain pairs of variables. To
speculatewhether an electron �really does have� an exact position and velocity at every
instant of time, although we cannot know them together, apparently has no
operational meaning. As we shall see in an example below, the limits have no
practical effect on massive objects, such as those experienced in everyday life. In
contrast, however, on the atomic scale the limits reflect an essential need to define
carefully and operationally the concepts that are to have meaning and validity.

The subsequent development of quantummechanics has provided an enormously
successful quantitative description of many phenomena: atomic and nuclear struc-
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ture, radioactive decay, lasers, semiconductors, antimatter, electron diffraction,
superconductivity, elementary particles, radiation emission and absorption, the
covalent chemical bond, and many others. It has revealed the dual wave–particle
nature of the constituents ofmatter. Photons, electrons, neutrons, protons, and other
particles have characteristics of both particles and waves. Instead of having a definite
position and velocity, they can be thought of as being �smeared out� in space, as
reflected by the uncertainty principle. They can be described in quantummechanics
by wave packets related to a probability density for observing them in different
locations. They have both momentum p and wavelength l, which are connected by
the de Broglie relation (1.5). Endowed with such characteristics, the particles exhibit
diffraction and interference effects under proper experimental conditions. Many
quantum-mechanical properties, essential for understanding atomic and radiation
physics, simply have no classical analogue in the experience of everyday life.

& Example
The electron in thehydrogen atom is localized towithin about 1A

�
, which is the

size of the atom. Use the equality in the uncertainty relation to estimate the
uncertainty in its momentum. Estimate the order of magnitude of the kinetic
energy that the electron (mass¼m¼ 9.1094� 10�31 kg) would have in
keeping with this amount of localization in its position.

Solution
With Dx¼ 1 A

� ¼ 10�10m in Eq. (1.6), we estimate that the uncertainty in the
electron�s momentum is1)

Dp ffi h

Dx
¼ 1:05� 10�34 J s

10�10 m
ffi 10�24 kg m s�1: ð1:8Þ

We assume that the electron�s momentum is about the same order of
magnitude as this uncertainty. Denoting the electron mass bym, we estimate
for its kinetic energy

T ¼ ðDpÞ2
2m

ffi ð10�24 kg m s�1Þ2
2� 9:11� 10�31 kg

ffi 5� 10�19 J ffi 3 eV; ð1:9Þ

since 1 eV¼ 1.60� 10�19 J. An electron confined to the dimensions of the
hydrogen atomwould be expected to have a kinetic energy in the eVrange. The
meankinetic energy of the electron in the ground state of the hydrogen atom is
13.6 eV.

The uncertainty principle requires that observing the position of a particle with
increased precision entails increaseduncertainty in the simultaneous knowledge of its

1) Energy, which has the dimensions of force� distance, has units 1 J¼ 1Nm. The newton of force has
the same units asmass� acceleration: 1 N¼ 1 kgm s�2. Therefore, 1 J sm�1¼ 1 kgm s�1, which are
the units of momentum (mass� velocity).
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momentum, or energy. Greater localization of a particle, therefore, is accompanied by
greater likelihood that measurement of its energy will yield a large value. Conversely,
if the energy is knownwith precision, then the particlemust be �spread out� in space.
Particles and photons can be describedmathematically by quantum-mechanical wave
packets, which, in place of classical determinism, provide probability distributions
for the possible results of any measurement. These essential features of atomic
physics are not manifested on the scale of familiar, everyday objects.

& Example
How would the answers to the last example be affected if

a) the electron were localized to nuclear dimensions (Dx� 10�15m) or
b) the electron mass were 100 g?

Solution
a) With Dx� 10�15m, the equality in the uncertainty principle (1.6) gives, in
place of Eq (1.8), Dpffi 10�19 kg m s�1, five orders of magnitude larger
than before. The corresponding electron energy would be relativistic.
Calculation shows that the energy of an electron localized to within 10�15m
would be about 200MeV. (The numerical solution is given in Section 2.5 in
Turner (2007), listed in the Bibliography at the end of this book.)

b) SinceDx is the same as before (10�10m),Dp in Eq. (1.8) is unchanged.With
m¼ 100 g¼ 0.1 kg, the energy in place of Eq. (1.9) is now smaller by a factor
of themass ratio (9.11� 10�31)/0.1ffi 10�29. For all practical purposes, with
the resultant extremely small value of T, the uncertainty in the velocity is
negligible.Whereas the actual electron, localized to such small dimensions,
has a large uncertainty in itsmomentum, the �100-g electron�would appear
to be stationary.

Quantum-mechanical effects are generally expressed to a lesser extent with relatively
massive objects, as this example shows. By atomic standards, objects in the
macroscopic world are massive and have very large momenta. Their de Broglie
wavelengths, expressed by Eq. (1.5), are vanishingly small. Quantum mechanics
becomes important on the actual physical scale because of the small magnitude of
Planck�s constant.

1.5
Quantum Mechanics and Radioactive Decay

Before the discovery of the neutron by Chadwick in 1932, it was speculated that the
atomic nucleus must be made up of the then known elementary subatomic
particles: protons and electrons. However, according to quantum mechanics, this
assumption leads to the wrong prediction of the angular momentum for certain
nuclei. The nucleus of 6Li, for example, would consist of six protons and three
electrons, representing nine particles of half-integral spin. By quantum rules for
addition of the spins of an odd number of such particles, the resulting nuclear
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angularmomentum for 6Li would also have to be a half-integralmultiple of Planck�s
constant, h. The measured value, however, is just h. A similar circumstance occurs
for 14N. These two nuclei contain even numbers (6 and 14) of spin-1/2 particles
(protons and neutrons), and hence must have integral angular momentum,
as observed.

The existence of electrons in the nucleus would also have to be reconciled with the
uncertainty principle. In part (a) of the last example, we saw that an electron confined
to nuclear dimensions would have an expected kinetic energy in the range of
200MeV. There is no experimental evidence for such large electron energies
associated with beta decay or other nuclear phenomena.

If the electron is not there initially, how is its ejection from the nucleus in
beta decay to be accounted for? Quantum mechanics explains the emission of
the beta particle through its creation, along with an antineutrino, at the
moment of the decay. Both particles are then ejected from the nucleus, causing
it to recoil (slightly, because the momentum of the ejected mass is small). The
beta particle, the antineutrino, and the recoil nucleus share the released energy,
which is equivalent to the loss of mass (E¼mc2) that accompanies the
radioactive transformation. Since the three participants can share this energy
in a continuum of ways, beta particles emitted in radioactive decay have a
continuous energy spectrum, which extends out to the total energy released.
Similarly, gamma-ray or characteristic X-ray photons are not �present� in the
nucleus or atom before emission. They are created when the quantum
transition takes place. An alpha particle, on the other hand, is a tightly bound
and stable structure of two protons and two neutrons within the nucleus. Alpha
decay is treated quantum mechanically as the tunneling of the alpha particle
through the confining nuclear barrier, a process that is energetically forbidden
in classical mechanics. The emitted alpha particle and recoil nucleus, which
separate back to back, share the released energy uniquely in inverse proportion
to their masses. The resultant alpha-particle energy spectra are therefore
discrete, in contrast to the continuous beta-particle spectra. The phenomenon
of tunneling, which is utilized in a number of modern electronic and other
applications, is purely quantum mechanical. It has no classical analogue
(see Figure 1.1).

The radioactive decay of atoms and the accompanying emission of radiation are
thus described in detail by quantummechanics. As far as is known, radioactive decay
occurs spontaneously and randomly, without influence from external factors. The
energy thus released derives from the conversion of mass into energy, in accordance
with Einstein�s celebrated equation, E¼mc2.

& Example
Each of 10 identical radioactive atoms is placed in a line of 10 separate
counters, having 100% counting efficiency. The question is posed, �Which
atom will decay first?� How can the question be answered, and how can the
answer be verified?
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Solution
Since the atoms are identical anddecay is spontaneous, themost one can say is
that it is equally likely for any of the atoms, 1 through 10, to decay first. The
validity of this answer, like any other, is to be decided on an objective basis by
suitable experiments or observations. To perform such an experiment, in
principle a large number of identical sources of 10 atoms could be prepared
and then observed to see howmany times the first atom to decay in a source is
atom 1, atom 2, and so on. One would find a distribution, giving the relative
frequencies for each of the 10 atoms that decays first. Because the atoms are
identical, the distributionwould be expected to show randomfluctuations and
become relatively flatter with an increasing number of observations.

& Example
A source consists of 20 identical radioactive atoms. Each has a 90% chance of
decaying within the next 24 h.

a) What is the probability that all 20 will decay in 24 h?
b) What is the probability that none will decay in 24 h?

Solution
a) The probability that atom 1 will decay in 24 h is 0.90. The probability that

atoms 1 and 2will both decay in 24 h is 0.90� 0.90¼ (0.90)2¼ 0.81. That is,

Figure 1.1 An early scanning tunneling
microscope (left) is used to image the electron
clouds of individual carbon atoms on the surface
of a highly oriented pyrolytic graphite sample. As
a whisker tip just above the surface scans it
horizontally in two dimensions, electrons tunnel
through a classically forbiddenbarrier toproduce
a current through the tip. This current is

extremely sensitive to the separation between
the tip and the surface. As the separation tends
to change according to the surface contours
during the scan, negative feedback keeps it
constant bymoving amicrometer vertically up or
down. These actions are translated by computer
into the surface picture shown on the right.
(Courtesy of R.J. Warmack.)

10j 1 The Statistical Nature of Radiation, Emission, and Interaction



if the experiment is repeated many times, atom 2 is expected to decay in
90% of the cases (also 90%) in which atom 1 also decays. By extension, the
probability for all atoms to decay in 24 h is

ð0:90Þ20 ¼ 0:12: ð1:10Þ

b) Since a given atom must either decay or not decay, the probability for not
decaying in 24 h is 1� 0.90¼ 0.10. The probability that none of the 20
atoms will decay is

ð0:10Þ20 ¼ 1:0� 10�20: ð1:11Þ

As these examples illustrate, quantummechanics does not generally predict a single,
definite result for a single observation. It predicts, instead, a probability for each of all
possible outcomes. Quantum mechanics thus brings into physics the idea of the
essential randomness of nature. While it is the prevalent conceptual foundation in
modern theory, as espoused by Bohr and others, this fundamental role of chance in
our universe has not been universally acceptable to all scientists. Which atom will
decayfirst? The contrasting viewpoint was held by Einstein, for example, summedup
in the words, �God does not play dice.�

Problems

1.1 The dimensions of angular momentum are those of momentum times
distance. Show that Planck�s constant, h¼ 6.63� 10�34 J s, has the units of
angular momentum.

1.2 Einstein�s famous equation, E¼mc2, where c is the speed of light in a vacuum,
gives the energy equivalence E of mass m. If m is expressed in kg and c in
m s�1, show that E is given in J.

1.3 According to classical theory, how are electromagnetic waves generated?
1.4 Why would the Bohr model of the atom be unstable, according to classical

physics?
1.5 Calculate the wavelength of a 2.50-eV photon of visible light.
1.6 Calculate the wavelength of an electron having an energy of 250 eV.
1.7 What is the wavelength of a 1-MeV gamma ray?
1.8 If a neutron and an alpha particle have the same speed, how do their

wavelengths compare?
1.9 If a neutron and an alpha particle have the same wavelength, how do their

energies compare?
1.10 If a proton and an electron have the same wavelength, how do their momenta

compare?
1.11 An electron moves freely along the X-axis. According to Eq. (1.6), if the

uncertainty in its position in this direction is reduced by a factor of 2, how
is the minimum uncertainty in its momentum in this direction affected?
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1.12 Why is the uncertainty principle, so essential for understanding atomic
physics, of no practical consequence for hitting a baseball?

1.13 Decay of the nuclide 226Ra to the ground state of 222Rn by emission of an alpha
particle releases 4.88MeV of energy.

a) What fraction of the total mass available is thus converted into energy? (1
atomic mass unit¼ 931.49MeV.)

b) What is the initial energy of the ejected alpha particle?

1.14 Two conservation laws must be satisfied whenever a radioactive atom decays.
As a result of these two conditions, the energies of the alpha particle and the
recoil nucleus are uniquely determined in the two-body disintegration by
alpha-particle emission. These two laws are also satisfied in beta decay, but do
not suffice to determine uniquely the energy of any of the three decay
products. What are these two laws, which thus require alpha-particle energies
to be discrete and beta-particle energies to be continuous?

1.15 The fission of 235U following capture of a thermal neutron releases an average
of 195MeV. What fraction of the total mass available (neutron plus uranium
atom) is thus converted into energy? (1 atomic mass unit¼ 931.49MeV.)

1.16 Five gamma rays are incident on a concrete slab. Each has a 95% chance of
penetrating the slab without experiencing an interaction.

a) What is the probability that the first three photons pass through the slab
without interacting?

b) What is the probability that all five get through without interacting?

1.17 a) In the last problem, what is the probability that photons 1, 2, and 3 penetrate
the slab without interacting, while photons 4 and 5 do not?

b) What is the probability that any three of the photons penetrate without
interaction, while the other two do not?

1.18 Eachphoton in the last twoproblemshas a binary fate – it either interacts in the
slab or else goes through without interaction. A more detailed fate can be
considered: 2/3 of the photons that interact do so by photoelectric absorption
and 1/3 that interact do so by Compton scattering.

a) What is the probability that an incident photon undergoes Compton
scattering in the slab?

b) What is the probability that it undergoes photoelectric absorption?
c) What is the probability that an incident photon is not photoelectrically

absorbed in the slab?

1.19 An atom of 42K (half-life¼ 12.4 h) has a probability of 0.894 of surviving 2 h.
For a source that consists of five atoms,

a) what is the probability that all five will decay in 2 h and
b) what is the probability that none of the five atoms will decay in 2 h?

1.20 What are the answers to (a) and (b) of the last problem for a source of
100 atoms?

12j 1 The Statistical Nature of Radiation, Emission, and Interaction



1.21 Monoenergetic neutrons are normally incident on a pair of slabs, arranged
back to back, as shown in Figure 1.2. A neutron either is absorbed in a slab or
else goes through without interacting. The probability that a neutron gets
through slab 1 is 1/3. If a neutron penetrates slab 1, then the probability that it
gets through slab 2 is 1/4. What is the probability that a neutron, incident on
the pair of slabs, will

a) traverse both slabs?
b) be absorbed in slab 1?
c) not be absorbed in slab 2?

1.22 If, in Figure 1.2, a neutron is normally incident from the right on slab 2, then
what is the probability that it will

a) be absorbed in slab 1?
b) not be absorbed in slab 2?

1.23 For the conditions of Problem 1.21, calculate the probability that a neutron,
normally incident from the left, will

a) not traverse both slabs,
b) not be absorbed in slab 1, and
c) be absorbed in slab 2.

1.24 What is the relationship among the three answers to the last problem and the
corresponding answers to Problem 1.21?

Neutrons

21

Figure 1.2 Neutrons normally incident on a pair of slabs, 1 and 2. See Problems 1.21–1.24.
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2
Radioactive Decay

2.1
Scope of Chapter

This chapter deals with the random nature of radioactive decay. We begin by
considering the following experiment. One prepares a source of a pure radionuclide
andmeasures the number of disintegrations that occur during afixed length of time t
immediately thereafter. The procedure is then repeated over and over, exactly as
before, with a large number of sources that are initially identical. The number of
disintegrations that occur in the same fixed time t from the different sources will
show a distribution of values, reflecting the random nature of the decay process. The
objective of the experiment is to measure the statistical distribution of this number.

Poisson and normal statistics are often used to describe the distribution. However,
as we shall see, this description is only an approximation, though often a very good
one. The actual number of decays is described rigorously by another distribution,
called the binomial.1) In many applications in health physics, the binomial, Poisson,
and normal statistics yield virtually indistinguishable results. Since the last two are
usually more convenient to deal with mathematically, it is often a great advantage to
employ one of them in place of the exact binomial formalism. This cannot always be
done without large error, however, and one must then resort to the rigorous, but
usually more cumbersome, binomial distribution. In Chapters 5 and 6, we shall
address the conditions under which the use of one or another of the three distribu-
tions is justified.

In this chapter, we discuss radioactive disintegration from the familiar standpoint
of the exponential decay of a pure radionuclide source, characterized by its half-life or,
equivalently, its decay constant.We examine the relationship between activity and the
number of atoms present and treat radioactive disintegration from the standpoint of

1) Both the Poisson and normal distributions predict a nonzero probability for the decay of an arbitrarily
large number of atoms from a source in any time t. In particular, the probability is not zero for the
decay of more atoms than are in the source originally. The normal distribution, in addition,
approximates the number of disintegrations as a continuous, rather than discrete, random variable.

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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the survival or decay probability in a specified time for each atom in a source.We shall
arrive at the binomial distribution, which is confirmed by experiments like that
described in the last paragraph.

2.2
Radioactive Disintegration – Exponential Decay

Exponential decay of a pure radionuclide source is a familiar concept. It is often
discussed in the following way. In a short time dt, the change dN in a large number of
atomsN in the source is proportional toN and to dt. The constant of proportionality is
called the decay constant, l, and one writes

dN ¼ �lN dt: ð2:1Þ
The negative sign indicates that N decreases as t increases. Integration gives

N ¼ No e
�lt; ð2:2Þ

where the constant of integrationNo represents the original number of atoms in the
source at time t¼ 0. Rewriting Eq. (2.1) as l¼�(dN/N)/dt, we see that the decay
constant gives, at anymoment, the fraction of atoms, dN/N, that decay per unit time.
It thus represents the probability per unit time that a given atomwill decay. The decay
constant has the dimensions of reciprocal time (e.g., s�1, h�1).

The decay rate, or activity, of the source is

A ¼ � dN
dt

¼ lN: ð2:3Þ

It follows from Eq. (2.2) that the activity as a function of time is given by

A ¼ Ao e
�lt; ð2:4Þ

whereAo¼ lNo is the initial activity. The unit of activity is the becquerel (Bq), defined
as the rate of one complete transformation of an atom per second: 1 Bq¼ 1 s�1. The
older unit, curie (Ci), is now defined in terms of the becquerel: 1 Ci� 3.7� 1010 Bq,
exactly. It is the amount of activity associated with 1 g of 226Ra, as shown in an
example in the next section.

In addition to its decay constant, a given radionuclide can also be characterized by
its half-life. Figure 2.1 shows a plot of the relative activity A/Ao¼ e�lt of a source, as
follows from Eq. (2.4). The half-life T1/2 of the nuclide is defined as the time needed
for the activity (or the number of atoms) to decrease to one-half its value. Setting
A=Ao ¼ e�lT1=2 ¼ 1=2 in Eq. (2.4) implies that

�lT1=2 ¼ lnð1=2Þ ¼ �ln 2; ð2:5Þ

or

T1=2 ¼ ln 2
l

¼ 0:693
l

: ð2:6Þ
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We thus obtain the relationship between the half-life and the decay constant. As can
be seen fromFigure 2.1, starting at any time, the activity decreases by a constant factor
of 2 over successive half-lives.

The mean, or average, lifetime of an atom provides another way to characterize a
radionuclide. The number of disintegrations that occur in a source during a certain
time is equal to the product of the activity at the beginning of that time and the average
lifetime of the atoms that decay during the time. When a source has decayed
completely away, the total number of disintegrations will be equal to the number
of atomsNo originally present. This total number can also be regarded as the product
of the original decay rate,Ao, and the average lifetime t that an atomhad in the source:
No¼Aot. Since, as stated after Eq. (2.4),Ao¼ lNo, it follows that themean life is equal
to the reciprocal of the decay constant. Combining this result with Eq. (2.6), we write

t ¼ No

Ao
¼ 1

l
¼ T1=2

ln 2
¼ T1=2

0:693
: ð2:7Þ

The mean life is treated rigorously as a statistical average in Section 4.2.

& Example
The radionuclide 32P has a half-life of 14.3 d.

a) What is the decay constant?
b) What will be the activity of a 7.6-MBq source of 32P after 1 y? (The nuclide

decays by emission of a beta particle into stable 32S.)
c) What is the mean life of a 32P atom?

Solution

t

A/Ao

0.00

0.25

0.50

0.75

1.00

T1/2 2T1/2

e-λt

Figure 2.1 Plot of relative activity, A/Ao (¼relative number of atoms, N/No), in a pure
radionuclide source as a function of time t. The half-life T1/2 is shown.
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a) With T1/2¼ 14.3 d, Eq. (2.6) gives

l ¼ 0:693
14:3 d

¼ 0:0485 d�1: ð2:8Þ

b) From Eq. (2.4), with Ao¼ 7.6� 106 Bq, we find for the activity at time
t¼ 1 y¼ 365 d,

A ¼ 7:6� 106 e�0:0485�365 ¼ 0:16 Bq: ð2:9Þ

Because the exponent has to be a dimensionless number, l and t in this
equation must involve the same time unit. Here we expressed l in d�1 and t
in d.
c) The mean life is given by Eq. (2.7):

t ¼ 1
l
¼ 1

0:0485 d�1 ¼ 20:6 d: ð2:10Þ

As a check, we see that T1/2/t¼ 14.3/20.6¼ 0.694. To within roundoff, this
ratio is equal to ln 2, as required by Eq. (2.7).

2.3
Activity and Number of Atoms

The activity associated with a given radionuclide source depends on the number of
atoms present and the decay constant, as related by Eq. (2.3). The relative strengths of
different sources can be expressed in terms of their specific activity, defined as the
disintegration rate per unitmass of the nuclide. Examples of units for specific activity
are Bq kg�1 and Ci g�1.

The specific activity of a radionuclide can be calculated from its gram atomic
weight M and decay constant l. Since M grams of the nuclide contain Avogadro�s
number of atoms, NA¼ 6.0221� 1023, the number of atoms in 1 g is

N ¼ NA

M
¼ 6:02� 1023

M
: ð2:11Þ

It follows that the specific activity of the radionuclide can be written as

S ¼ lN ¼ lNA

M
¼ 6:02� 1023l

M
: ð2:12Þ
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Since M is in g, if l is in s�1, then this expression gives S in Bq g�1. Alternatively,
using Eq. (2.6) to replace l by the half-life T1/2, we write

S ¼ NA ln 2
MT1=2

¼ 4:17� 1023

MT1=2
: ð2:13Þ

With T1/2 in s and M in g, the specific activity in Eq. (2.13) is in Bq g�1.

& Example

a) How many atoms are there in 1mg of 226Ra? The nuclide has a half-
life of 1600 y and a gram atomic weight of 226 g.

b) Calculate the specific activity of 226Ra in Bq g�1.

Solution

a) With M¼ 226 g, Eq. (2.11) gives for the number of atoms in 1mg

N ¼ 10�3 � 6:02� 1023

266
¼ 2:66� 1018: ð2:14Þ

b) To obtain S in Bq g�1, we use either Eq. (2.12) with l in s�1 or Eq. (2.13)
with T1/2 in s. Choosing the latter and writing T1/2¼ 1600 y� (365 d
y�1)� (86 400 s d�1)¼ 5.05� 1010 s, we find that

S ¼ 4:17� 1023

ð226 gÞ � ð5:05� 1010 sÞ ¼ 3:7� 1010 Bq g�1

¼ 1 Ci g�1: ð2:15Þ

As mentioned after Eq. (2.4), 1 Ci¼ 3.7� 1010 Bq exactly, by definition. The curie
was originally defined as the activity of 1 g of 226Ra. This fact leads to a simple
formula for calculating the specific activity of other radionuclides in these units. As
seen fromEq. (2.13), specific activity is inversely proportional to the half-life T1/2 and
the gramatomicweightM of a radionuclide. Comparingwith 226Ra, one can compute
the specific activity of a nuclide by writing

S ¼ 1600
T1=2

� 226
M

Ci g�1; ð2:16Þ

where T1/2 is its half-life in years.

& Example

a) Calculate the specific activity of 60Co (half-life 5.27 y) exactly from
Eq. (2.13).

b) Calculate the approximate value from Eq. (2.16) and compare the answer
with that from (a).

c) How many atoms of 60Co are there in a 1-Ci source?
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Solution

a) The gram atomic weight isM¼ 60 g. Expressing the half-life in s, T1/2¼
5.27 y� 365 d y�1� 86 400 s d�1¼ 1.66� 108 s, we find from (2.13)

S ¼ 4:17� 1023

MT1=2
¼ 4:17� 1023

60 g� 1:66� 108 s

¼ 4:19� 1013 Bq g�1; ð2:17Þ

where the replacement, 1 Bq¼ 1 s�1, has been made.
b) From Eq. (2.16), which requires expressing T1/2 in y, we obtain

S ffi 1600
5:27

� 226
60

¼ 1:14� 103 Ci g�1: ð2:18Þ

Converting to the same units as in part (a), we find

S ffi 1:14� 103 Ci g�1 � 3:7� 1010 Bq Ci�1

¼ 4:23� 1013 Bq g�1: ð2:19Þ

Comparison with Eq. (2.17) shows that the approximate formula gives the
correct result to within about 4 parts in 400, or 1%.
c) UsingEqs. (2.3) and (2.6), wehave for thenumber of atoms in a 1-Ci source

(A¼ 1 Ci¼ 3.7� 1010 s�1)

N ¼ A
l
¼ AT1=2

0:693
¼ ð3:7� 1010 s�1Þð1:66� 108 sÞ

0:693

¼ 8:86� 1018: ð2:20Þ

2.4
Survival and Decay Probabilities of Atoms

In the experiment proposed at the beginning of this chapter, one can ask what the
probability is for a given atom in a pure radionuclide source to survive or decay in the
time t. When the number of atoms in the source is large, Eq. (2.2) gives for the
fraction of undecayed atoms at time t,N/No¼ e�lt. Therefore, the probability q that a
given atom will not decay in time t is just equal to this fraction:

q ¼ e�lt ðsurvival probabilityÞ: ð2:21Þ

The probability that a given atom will decay sometime during t is, then,

p ¼ 1�q ¼ 1�e�lt ðdecay probabilityÞ: ð2:22Þ
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The fact that a given atomeither decays or does not decay during time t is expressedby
the requirement that p þ q¼ 1. (Probability will be formally defined in Section 3.4.)

& Example
What is the probability that an atom of 60Co will decay in 100 d?

Solution
From the value of the half-life given in the last example, we find for the decay
constant, l¼ 0.693/T1/2¼ 0.693/(5.27 y� 365 d y�1)¼ 3.60� 10�4 d�1. The
probability for decay in a time t¼ 100 d is, therefore,

p ¼ 1�e�lt ¼ 1�e�3:60�10�4�100 ¼ 0:0354: ð2:23Þ

& Example
The radionuclide 222Rn has a half-life of 3.82 d.

a) What is the probability that a given 222Rn atom in a source will not decay in
1 wk?

b) If a 222Rn atom survives for 1 wk, what is the probability that it will survive
a second week?

c) What is the probability that a given 222Rn atom will survive for 2 wk?
d) How are the probabilities in (a)–(c) related?
e) What is the probability that a given 222Rn atom will survive the first week

and then decay during the second week?

Solution

a) The survival probability is given by Eq. (2.21). The decay constant is, from
Eq. (2.6),

l ¼ 0:693
T1=2

¼ 0:693
3:82 d

¼ 0:181 d�1: ð2:24Þ

It follows that the survival probability q(7) for a time t¼ 1 wk¼ 7 d is

qð7Þ ¼ e�lt ¼ e�0:181�7 ¼ 0:282: ð2:25Þ
b) As far as is known, all 222Rn atoms are identical and the decay is completely

spontaneous and random. It is assumed that the survival probability into
the future for a given atom at anymoment is independent of how long that
atommight have already existed. Given that the atomhas survived the first
week, the probability that it will survive the secondweek is the same as that
for the first week: q(7)¼ 0.282. This example illustrates conditional
probability, which is discussed in Section 3.5.

c) Like (a), the probability that a given atom will not decay in a time t¼ 2
wk¼ 14 d is

qð14Þ ¼ e�lt ¼ e�0:181�14 ¼ 0:0793: ð2:26Þ
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d) An alternative way of answering the question asked in part (c) is the
following. The probability for a given atom to survive 2 wk is equal to the
probability that it survives for 1 wk times the probability that it survives
again for 1 wk. From (a) and (b),

qð14Þ ¼ qð7Þqð7Þ ¼ ½qð7Þ�2 ¼ ð0:282Þ2 ¼ 0:0795; ð2:27Þ
which is the same result as in Eq. (2.26) to within roundoff. The probability in
part (c) is thus equal to the product of the probabilities from parts (a) and (b).
The equality results from the independence of the events, as we shall see in
Section 3.5.
e) The probability for an atomof 222Rn to decay in aweek�s time is (Eq. (2.22))

p(7)¼ 1� q(7)¼ 0.718. The probability that a given atomwill decay during
week 2 is equal to the probability that it survives 1 wk times the probability
that it then decays in the next week:

qð7Þpð7Þ ¼ 0:282� 0:718 ¼ 0:202: ð2:28Þ
This last example illustrates how probabilities can be assigned to various events, or

possible alternative outcomes, for a set of observations.

2.5
Number of Disintegrations – The Binomial Distribution

We return once more to the experiment introduced at the beginning of this chapter.
A large number of identical sources of a pure radionuclide, each containing exactlyN
atoms initially, are prepared. The number of disintegrations that occur in a time t is
observed for each source, starting at time t¼ 0.One thus obtains a distribution for the
number k of atoms that decay,with the possible values k¼ 0, 1, 2, . . . ,N.We can think
of each source as undergoing a process in which, during the time t, each individual
atom represents a single one ofN trials to decay or not decay. Decay of an atom can be
called a �success� andnon-decay, a �failure.� The outcomeof each trial is binary. Since
all of the atoms are identical and independent, each trial has the same probability of
success or failure, and its outcome is independent of the other trials.

In statistics, the process just described for radioactive decay is called a Bernoulli
process. The resulting number of disintegrations from source to source is described
by the binomial distribution, which will be discussed more completely in Chapter 5.
For now, we examine several examples to further illustrate the statistical nature of
radioactive decay.

& Example
A source that consists initially of 15 atoms of 11C (half-life¼ 20.4min) is
observed for 5min.

a) What is the probability that atoms 1, 2, and 7 in the source will decay in this
time?
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b) What is the probability that only these three atoms decay in this time?
c) What is the probability that exactly three atoms (any three) decay in 5min?

Solution

a) The survival and decay probabilities for each atom in the source are given
by Eqs. (2.21) and (2.22), respectively. The decay constant is l¼ 0.693/
T1/2¼ 0.693/(20.4min)¼ 0.0340min�1. The probability that a given atom
will not decay in the allotted time, t¼ 5min, is

q ¼ e�lt ¼ e�0:0340�5 ¼ 0:844: ð2:29Þ

The decay probability for each atom is then

p ¼ 1�q ¼ 0:156: ð2:30Þ
The probability that the particular atoms, 1, 2, and 7, will decay in 5min
is, therefore,

p3 ¼ ð0:156Þ3 ¼ 3:80� 10�3: ð2:31Þ
Since the decay of each atom is an independent event, their probabilities
multiply (Section 3.5).

b) Part (a) says nothing about the other atoms. If only the specified three
decay, then the other 12 survive for the time t¼ 5min, the probability
being q12. Therefore, the probability that only atoms 1, 2, and 7 decay is

p3q12 ¼ ð0:156Þ3ð0:844Þ12 ¼ 4:96� 10�4: ð2:32Þ
c) In this part, we are asked for the probability that exactly three atoms decay,

and they can be any three. The answer will be p3q12 times the number of
ways that the three atoms can be chosen from among the 15, without
regard for the order in which the three are selected. The decay of atoms 1, 2,
and 7 in that order, for example, is not to be distinguished from their decay
in the order 2, 1, and 7. Both ways are registered as three disintegrations.
To select any three, there are 15 independent choices for the first atom to
decay, 14 for the second, and 13 for the third atom. The total number of
ways in which three atoms can be chosen from 15 is, therefore, 15� 14
� 13¼ 2730. Among this number, those that differ only in the order of
their selection are redundant and are not to be counted as different
outcomes. Therefore, we must divide the total number of choices by the
number of ways (permutations) that the three can be arranged, namely,
3� 2� 1 � 3!¼ 6. With the help of Eq. (2.32), we find for the probability
that exactly three disintegrations will occur in 5 min

Prð3Þ ¼ 15� 14� 13
3!

p3q12 ¼ 2730
6

ð4:96� 10�4Þ ¼ 0:226: ð2:33Þ
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We can generalize the results just found to calculate the probability for k disin-
tegrations in a time t from a source consisting initially of N identical radioactive
atoms. For the decay of exactly k atoms we write, in analogy with Eq. (2.33),

PrðkÞ ¼ N � ðN�1Þ � � � � � ðN�kþ 1Þ
k!

pkqN�k; ð2:34Þ

where p and q are given by Eqs. (2.22) and (2.21), respectively. The coefficient in
Eq. (2.34) represents the number of permutations of N distinct objects taken k at a
time. In more common notation, we write it in the form (read �N choose k�)

N
k

� �
¼ NðN�1Þ � � � ðN�kþ 1Þ

k!
: ð2:35Þ

Multiplying the numerator and denominator by (N� k)!, we can write the alternative
expression

N
k

� �
¼ NðN�1Þ � � � ðN�kþ 1Þ

k!
� ðN�kÞ!
ðN�kÞ! ¼

N!

k!ðN�kÞ! : ð2:36Þ

The probability (2.34) for exactly k disintegrations then has the compact form

PrðkÞ ¼ N
k

� �
pkqN�k; ð2:37Þ

where k¼ 0, 1, 2, . . . ,N. This result is the binomial distribution, which takes its name
from the series expansion for a binomial. With p þ q¼ 1,

ðpþ qÞN ¼
XN
k¼0

N
k

� �
pkqN�k ¼

XN
k¼0

PrðkÞ ¼ 1; ð2:38Þ

showing that the distribution is normalized. This distribution and its properties will
be discussed in Section 5.4.

The binomial distribution from the last example, with N¼ 15 and p¼ 0.156, is
represented in Figure 2.2. The bars show the probability that k¼ 0, 1, 2, . . . , 15 of the
original 11C atoms in the source will decay in 5min. The answer Pr(3)¼ 0.226
(Eq. (2.33)) can be seen as the fourth bar. The function Pr(k)¼ 0when k< 0 and k>N.
The sum of the probabilities, represented by the total height of all the bars, is unity.

& Example

a) In the last example, compute the probability that none of the original 15
11C atoms will decay in 5min.

b) What is the probability that no atoms will decay in 5min if the source
consists of 100 atoms?

c) 1000 atoms?
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Solution

a) With the help of Eqs. (2.37) and (2.36), we find that

Prð0Þ ¼ 15!
0!15!

p0q15 ¼ q15 ¼ ð0:844Þ15 ¼ 0:0785: ð2:39Þ

With 15 atoms initially present, there is thus a 7.85% chance that none will
decay in 5min, a time equal to about one-fourth the half-life. This result can
also be seen in Figure 2.2.
b) With N¼ 100,

Prð0Þ ¼ qN ¼ ð0:844Þ100 ¼ 4:31� 10�8; ð2:40Þ
or about one chance in 23 million.
c) With N¼ 1000, the probability that none will decay in 5min is

Prð0Þ ¼ ð0:844Þ1000 ¼ 2:20� 10�74: ð2:41Þ
Note that, with 10 times the number of atoms in part (c) comparedwith (b), the
probability (2.41) is the 10th power of that in Eq. (2.40), that is, q1000¼ (q100)10.

k
151050

Pr(k)

0.0  

0.1  

0.2  

0.3  

Figure 2.2 Binomial distribution for example in the text, a 11C source with N¼ 15 and p¼ 0.156.
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The next example illustrates how calculations with the binomial distribution
rapidly get cumbersome with increasing numbers of atoms.

& Example
A source consists of 2800 atoms of 24Na, which has a decay constant
l¼ 0.0462 h�1. What is the probability that exactly 60 atoms will disintegrate
in 30min?

Solution
The solution is given by Eq. (2.37) with N¼ 2800 and k¼ 60. For time
t¼ 30min¼ 0.5 h, we have lt¼ (0.0462 h�1)(0.5 h)¼ 0.0231. The survival
and decay probabilities are q¼ e�lt¼ e�0.0231¼ 0.9772 and p¼ 0.0228. The
factor involving these probabilities in Eq. (2.37) is

pkqN�k ¼ ð0:0228Þ60ð0:9772Þ2740
¼ ð2:99� 10�99Þð3:59� 10�28Þ ¼ 1:07� 10�126: ð2:42Þ

The binomial coefficient (2.36) involves the enormous number N!¼ 2800!,
which is out of the range of most hand calculators. However, we can use
Eq. (2.35), which has smaller numbers. There are 60 factors approximately
equal to 2800 in thenumerator. Thus,weobtain, approximately, fromEq. (2.35)

N
k

� �
¼ 2800

60

� �
¼ ð2800Þð2799Þð2798Þ � � � ð2741Þ

60!

ffi ð2800Þ60
60!

¼ 6:75� 10206

8:32� 1081
¼ 8:12� 10124: ð2:43Þ

Substituting the last two factors into Eq. (2.37), we obtain

Prð60Þ ¼ 8:12� 10124 � 1:07� 10�126 ¼ 0:0869: ð2:44Þ

Computations with the binomial distribution are not feasible for many or even most
common sources dealt with in health physics. A 1-Ci source of 60Co, for instance,
contains N¼ 8.86� 1018 atoms of the radionuclide (Eq. (2.20)). Fortunately, conve-
nient and very good approximations to the binomial distribution exist in the form of
the Poisson and the normal distributions for making many routine calculations.
These will be discussed in Chapters 5 and 6.

2.6
Critique

The description of the exponential decay of a radionuclide presented in this chapter
often provides an accurate and usefulmodel for radioactive decay.However, it cannot
be strictly valid. In carrying out the derivations for the number of atoms and the
activity for a source as functions of time in Section 2.2, the discrete number of atoms
N was treated as a continuous, differentiable function of the time. The analysis thus
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tacitly requires thatN be very large, so that its behavior can be approximated by that of
a continuous variable. However, the number of atoms in a source and the number
that decay during any given time are discrete, rather than continuous. Furthermore,
the decay always shows fluctuations, in contrast to what is implied by Eq. (2.3). As we
did in arriving at the binomial distribution, Eq. (2.37), a rigorous description must
treat the number of disintegrations as a discrete random variable.

Problems

2.1 222Rn has a half-life of 3.82 d.
a) What is the value of the decay constant?
b) What is the mean life?
c) How much 222Rn activity will remain from a 1.48� 108-Bq source after

30 d?

2.2 The half-life of 32P is 14.3 d. How long does it take for the activity of a
32P source to decay to 0.1% of its initial value?

2.3 a) Calculate the number of 60Co atoms in a 30-mCi source (half-life¼ 5.27 y).
b) Calculate themass of 60Co in this source (atomic weight of 60Co¼ 59.934).
c) What is the specific activity of 60Co in mCi g�1?
d) What is the specific activity in Bq kg�1?

2.4 a) What is the decay constant of 238U (half-life¼ 4.47� 109 y)?
b) What is its specific activity in Bq kg�1?
c) In Ci g�1?

2.5 Calculate the specific activity of 3H (half-life¼ 12.3 y) in (a) Bq kg�1 and (b)
Ci g�1.

2.6 Modify the formula (2.13) to give S in units of
a) Ci kg�1;
b) Bq g�1 when T1/2 is expressed in years.

2.7 Whatmass of 238U (half-life¼ 4.47� 109 y) has the same activity as 1 g of 3H?
2.8 A source is to be preparedwith a radioisotope, having amean life of 5.00 h. The

expected value of the number of disintegrations in 3.00 h is to be as close as
possible to 20.4.
a) How many atoms should there be initially in the source?
b) If such a source has 100 atoms initially, what is the probability that there

would be exactly one undecayed atom left after five half-lives?

2.9 How many disintegrations occur in 24 h with a source of 24Na (half-life¼
15.0 h), having an initial activity of 4.79 mCi?

2.10 The half-life of 32P is 14.3 d.
a) What is the probability that an atom of 32P will not decay within 3 wk?
b) What is the probability that an atom of 32P will decay during the

fourth week?
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c) If an atomhasnot decayed in thefirst 3wk,what is the probability that it will
decay during the fourth week?

2.11 A source consists of 15 atoms of 85Y, having a half-life of 5.0 h.
a) What is the probability that no atoms will decay in 4 h?
b) What is the probability that 10 atoms will decay in 4 h?

2.12 A source consists of 10 atoms of 32P, having a decay constant of 0.0485 d�1.
a) What is the probability that exactly 2 atoms will decay in 12 d?
b) If the source consists originally of 50 atoms, what is the probability that

exactly 10 atoms will decay in 12 d?
c) Why are the answers to (a) and (b) different, even though they are the

probabilities for the decay of 20% of the original atoms?

2.13 a) What is the probability that exactly 3 atoms of 11C (half-life¼ 20.4min) will
decay in 4min from a source that has initially 1128 atoms?

b) What is the probability that no more that 3 atoms will decay in 4min?
c) How is the probability in (b) related to the probability that at least 4 of the

1128 atoms will decay in 4min?

2.14 A source consists of 12 atoms of 24Na (half-life¼ 15.0 h) and 10 atoms of
42K (half-life¼ 12.4 h).
a) What is the probability that exactly 2 atoms of 24Na and exactly 2 atoms of

42K will decay in the first 5 h?
b) If exactly 6 atoms of 24Na decay in 5 h, what is the probability that

exactly 2 atoms of 42K will decay during this time?

2.15 a) In the last problem,what is the probability that exactly three disintegrations
will occur in the source in the first 5 h?

b) What is the probability that only one atom in the source remains undecayed
after 100 h?

2.16 For Figure 2.2, calculate Pr(k) for (a) k¼ 5, (b) k¼ 10, and (c) k¼ 15.
2.17 The half-life of 11C is 0.0142 d, and the decay constant is l¼ 48.8 d�1. Since l

represents the probability per unit time that an atom of 11C will decay,
how can its numerical value exceed unity.

2.18 For the last example in the text (Eqs. ), write as a sum over k an exact formula
that, when evaluated, would give the probability that 50� k� 150 atoms will
disintegrate in 30min.
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3
Sample Space, Events, and Probability

The previous chapter illustrated how the random nature of radioactive decay can be
treated mathematically by means of the binomial distribution. With the present
chapter we begin the development of a number of formal concepts needed as a
foundation for the statistical treatments of the subjects in this book.

3.1
Sample Space

The word �experiment� is used by statisticians to describe any process that generates
a set of data. An example is the experiment introduced at the beginning of Chapter 2.
The raw data from the experiment are the numbers of disintegrations from a series of
identical radioactive sources in the specified time t. Each observation gives a
nonnegative integer, 0, 1, 2, . . . . The data are generated randomly in the sense that,
although we know all the possible outcomes, the result of any given observation is
governed by chance and cannot be predicted with certainty ahead of time. We define
the set of all possible outcomes of an experiment as the sample space, whichwe denote
by the symbol S.

Definition 3.1
The sample space S consists of all possible outcomes of an experiment.

Each of the possible outcomes is called an individual element of the sample space,
which is defined by the experiment. In the example just considered, the sample space
consists of all nonnegative integers up through the fixed number of atoms initially in
a source. The individual elements are the integers themselves.

To establish the notation that describes sample spaces, we first consider a single
radioactive atom that we observe for some stated time period to see if it decays. The
sample space S for this experiment thus consists of two individual elements, which
we denote by d or n, where d is short for decay and n is short for no decay.We describe
the sample space for the experiment by writing

S ¼ fd; ng: ð3:1Þ
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We next consider two atoms present, each having the same two possible outcomes –
either d or n in the stated time – and our experiment is to observe the fate of both of
them. The sample space now consists of four possible outcomes, or individual
elements, which we denote in parentheses by writing for the sample space

S ¼ fðd; dÞ; ðd; nÞ; ðn; dÞ; ðn; nÞg: ð3:2Þ
For each individual element, enclosed in parentheses, the two symbols refer to the
fate of the first and second atoms, respectively. Thus, (d, n), for instance, indicates
the decay of the first atom and survival of the second. For a system consisting of
an arbitrary number N of atoms, we let ai denote the fate of the ith atom (d or n). We
generalize Eq. (3.2) and write for the sample space,

S ¼ fða1; a2; . . . ; aNÞjai ¼ d or n; for i ¼ 1; 2; . . . ;Ng: ð3:3Þ
The vertical bar stands for �such that� and this statement is read �S is the set
consisting ofN variables (a1, a2, . . ., aN) such that each ai is either d or n.� This sample
space applies to the experiment in which the fate of each atom in the stated time is
described. Since each ai represents one of two alternatives, there are 2N individual
elements in the sample space of this experiment.

Performing a different experiment will generally change the sample space, even
for the same system under study. Returning to the system of two atoms, we can
observe thenumber of atoms that decay in the stated time, rather than the fate of each.
The sample space S then consists of three integers,

S ¼ f0; 1; 2g; ð3:4Þ
inwhich the individual elements 0, 1, 2 describe all possible outcomes for the number
of atoms that can decay. Sample spaces can thus be different for experiments that
may be similar, but with outcomes recorded in different ways.We note, also, that each
individual element in the sample space (3.2) is associated uniquely with one of the
individual elements in Eq. (3.4), but the reverse is not true. Whereas (d, n) in Eq. (3.2)
corresponds to theelement 1 inEq. (3.4), the latter inEq. (3.4) corresponds toboth (d,n)
and(n,d) inEq. (3.2).Thus, forthesamesystemunderobservation,somesamplespaces
can evidently contain more information than others, depending on what experiment
or observation is being made. Some examples of different sample spaces follow.

& Example
An experiment consists of flipping a coin and recording the face that lands up,
and then tossing a die and recording the number of dots on the up face. Write
an expression for the sample space. Howmany individual elements are there
in the sample space?

Solution
We can represent any outcome of the experiment by writing a pair of symbols
(a1, a2), where a1 denotes the result of the coin toss and a2 denotes the result of
the die toss. Specifically, we let a1 be eitherH (heads) or T (tails) and a2 be an
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integer from 1 to 6. Then we may write S as

S ¼ fðH; 1Þ; ðH; 2Þ; ðH; 3Þ; ðH; 4Þ; ðH; 5Þ; ðH; 6Þ; ðT ; 1Þ; ðT ; 2Þ; ðT ; 3Þ; ðT ; 4Þ; ðT ; 5Þ; ðT ; 6Þg:
ð3:5Þ

There are thus 12 individual elements in the sample space of this experiment.

& Example
Three solder connections on a circuit board are examined to see whether each
is good (G) or defective (D). Describe the sample space.

Solution
We let the triple (a1, a2, a3) denote the outcome for each of the three solder
connections. Each ai takes on the valueG orD, and the sample space S can be
written as

S ¼ fðG;G;GÞ; ðG;G;DÞ; ðG;D;GÞ; ðD;G;GÞ; ðG;D;DÞ; ðD;G;DÞ; ðD;D;GÞ; ðD;D;DÞg:
ð3:6Þ

& Example
Describe the sample space for recording the number of defective solder
connections in the last example.

Solution
Although the system is the same as before, scoring the number of defective
connections is a different experiment fromseeingwhether each is good or bad.
The individual elements now are the integers 0 through 3. The sample space is

S ¼ f0; 1; 2; 3g: ð3:7Þ

& Example
Six slips of paper are numbered 1 through 6 and placed in a box. The
experiment consists of drawing a slip of paper from the box and recording
the number that appears on it. Write an expression for the sample space.

Solution
The sample space consists simply of the numbers 1 through 6:

S ¼ f1; 2; 3; 4; 5; 6g: ð3:8Þ

& Example
With the same setup as in the last example, the experiment now consists of
drawing two slips of paper in succession and recording the numbers. The first
slip is not replaced before the second is drawn. Write an expression for the
sample space. How many individual elements are there?
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Solution
We let the pair (a1, a2) represent the individual elements of the sample space,
where a1 denotes the number on the first slip drawn and a2 denotes the
number on the second slip. Then we can write for the sample space,

S ¼ fð1; 2Þ; ð1; 3Þ; ð1; 4Þ; ð1; 5Þ; ð1; 6Þ; ð2; 1Þ; ð2; 3Þ; ð2; 4Þ; ð2; 5Þ; ð2; 6Þ;
ð3; 1Þ; ð3; 2Þ; ð3; 4Þ; ð3; 5Þ; ð3; 6Þ; ð4; 1Þ; ð4; 2Þ; ð4; 3Þ; ð4; 5Þ; ð4; 6Þ;
ð5; 1Þ; ð5; 2Þ; ð5; 3Þ; ð5; 4Þ; ð5; 6Þ; ð6; 1Þ; ð6; 2Þ; ð6; 3Þ; ð6; 4Þ; ð6; 5Þg: ð3:9Þ

There are thus 30 individual elements, or possible outcomes, for this
experiment. Note that the first slip of paper is not replaced before drawing
the second slip, and so a1 6¼ a2 for all of the possible outcomes in Eq. (3.9).

& Example
Weperforman experiment as in the previous example, except that thefirst slip
is now returned to the box before the second slip is drawn. Describe the
sample space. How many individual elements does it have?

Solution
This experiment differs from the last one, and thefirst slip nowhas a chance of
being drawn again. The individual elements with a1¼ a2 are now to be added
to those expressed by Eq. (3.9). The new sample space is

S ¼ fð1; 1Þ; ð1; 2Þ; ð1; 3Þ; ð1; 4Þ; ð1; 5Þ; ð1; 6Þ; ð2; 1Þ; ð2; 2Þ; ð2; 3Þ; ð2; 4Þ; ð2; 5Þ; ð2; 6Þ;
ð3; 1Þ; ð3; 2Þ; ð3; 3Þ; ð3; 4Þ; ð3; 5Þ; ð3; 6Þ; ð4; 1Þ; ð4; 2Þ; ð4; 3Þ; ð4; 4Þ; ð4; 5Þ; ð4; 6Þ;
ð5; 1Þ; ð5; 2Þ; ð5; 3Þ; ð5; 4Þ; ð5; 5Þ; ð5; 6Þ; ð6; 1Þ; ð6; 2Þ; ð6; 3Þ; ð6; 4Þ; ð6; 5Þ; ð6; 6Þg:

ð3:10Þ
There are now 36 individual elements.

& Example
Describe the sample spaces (3.9) and (3.10) for the two experiments in a
compact form like Eq. (3.3).

Solution
In place of Eq. (3.9), for which the first slip is not returned to the box, we write

S ¼ fða1; a2Þjai ¼ 1; 2; . . . ; 6; for i ¼ 1; 2 and a1 6¼ a2g: ð3:11Þ
In place of Eq. (3.10),

S ¼ fða1; a2Þjai ¼ 1; 2; . . . ; 6; for i ¼ 1; 2g: ð3:12Þ

Thus far, we have considered only discrete sample spaces, in which all of the
possible events can be enumerated. Sample spaces can also be continuous. An
example is the continuous sample space generated by the time at which an atom
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in a radionuclide source decays. As governed by Eq. (2.22), the time of decay t can
have any value in the interval 0� t<1. This continuous sample space can be
expressed by writing

S ¼ ftjt 2 ½0;1Þg: ð3:13Þ
This statement is read, �The sample space S consists of all times t such that t is
contained in the semiclosed interval [0, 1).� Like any continuous sample space,
Eq. (3.13) has an infinite number of subsets. Discrete sample spaces can be finite or
infinite and can alsohave an infinite number of subsets. For example, the energy levels
En of the electron in the bound, negative-energy states of the hydrogen atom are
quantized and have the values En¼�13.6/n2 eV, where n¼ 1, 2, . . . is any positive
integer. This set of levels is discrete and countably infinite in number, with an infinite
number of subsets. In addition, the unbound, positive-energy states of the electron
have a continuum of values over the energy interval [0,1). The sample space for all
energies that the electron can have consists of (1) a countably infinite, discrete set of
negative numbers and (2) the continuum of all nonnegative numbers.

We turn now to the concept of an event and related ideas that are used in statistics.
As we shall see, probability theory is concerned with events and the notion of the
likelihood of their occurrence.

3.2
Events

Definition 3.2
An event is any subset of a sample space.

Using this terminology, we also refer to the individual elements in a sample space as
the simple events. For anexperimentwhere theflip of a coinwill result inheads (H) or tails
(T ), the sample space is S¼ {H, T} and the simple events areH and T. One can observe
the decay or survival of each of the two atoms considered before, there being four simple
events, shown explicitly by Eq. (3.2). An example of an event that is not a simple event is
the decay of either atom 1 or atom 2, but not both. This event is comprised of the two
simple events (d, n) and (n, d), which is a subset of Eq. (3.2). Another event is the decay of
either one or two atoms, which is comprised of the first three simple events in Eq. (3.2).
Generally, a sample space consists of the union of all simple events.

We usually denote an event by a capital letter, for example,A, B, orC. An event can
consist of each of the simple events in the sample space, any subset of them, or none
of them. If the event consists of no elements of the sample space, it is called the empty
set or null set, and is denoted by the symbol Ø.

These ideas can be further illustrated by considering an ordinary deck of playing
cards. Drawing a card will produce one of a set of 52 different designations that
identify each card. This set, which cannot be subdivided further, constitutes the 52
simple events in the sample space for drawing a card. An example of an event is
drawing a queen. We can designate this event by writing

A ¼ fQS;QH;QD;QCg; ð3:14Þ
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where the symbols represent, respectively, the queen of spades, hearts, diamonds,
and clubs. In this case, the event that a drawn card is a queen is comprised of four
simple events.

Two events,A andB, associated with a sample space can have various relationships
with one another. The intersection of two events, denoted by A\B, is the event
consisting of all elements common to A and B. The union of two events, denoted by
A[B, is the event that contains all of the elements that belong to A or B or to both.
Two events aremutually exclusive if they have no elements in common, in which case
their intersection is the empty set and onewritesA\B¼Ø.One can also consider an
event A that contains some of the elements of the sample space S. The set A0 that
consists of all of the elements in S that are not inA is called the complement ofA. The
complement set is always taken with respect to the sample space S. Since, by
definition, A and A0 have no common elements, it follows that their intersection
is the empty set: A\A0 ¼Ø; and their union is the whole space: A[A0 ¼ S.

& Example
A source consisting of four atoms of 11C is observed for 5min to see which, if
any, of the atoms decay during this time. LetA be the event that atoms 1 and 2
decay, B be the event that only these two atoms decay, and C the event that
exactly three atoms (any three) decay, all events within the 5min.

a) Write the statement that designates the sample space.
b) Write expressions for the events A, B, and C.
c) What event is the intersection of A and B, A\B?
d) The union of A and B, A[B?
e) The complement B0 of B?
f) How many events are possible in the sample space?

Solution

a) The whole sample space consists of 24¼ 16 simple events, corresponding
to each atom and its two possible outcomes, decay (d) or not (n).We denote
this space by writing

S ¼ fða1; a2; a3; a4Þjai ¼ d or n; for i ¼ 1; 2; 3; 4g: ð3:15Þ
Alternatively, we show the 16 simple events of the sample space explicitly
by writing

S ¼ fðd; d; d; dÞ; ðd; d; d; nÞ; ðd; d; n; dÞ; ðd; n; d; dÞ; ðn; d; d; dÞ; ðd; d; n; nÞ;
ðd; n; d; nÞ; ðn; d; d; nÞ; ðd; n; n; dÞ; ðn; d; n; dÞ; ðn; n; d; dÞ;
ðd; n; n; nÞ; ðn; d; n; nÞ; ðn; n; d; nÞ; ðn; n; n; dÞ; ðn; n; n; nÞg:

ð3:16Þ
b) The eventA that atoms 1 and 2 decay consists of all of the simple events in

Eq. (3.15) or Eq. (3.16) for which a1¼ a2¼ d and the other ai can be either d
or n:

A ¼ fðd; d; d; dÞ; ðd; d; d; nÞ; ðd; d; n; dÞ; ðd; d; n; nÞg: ð3:17Þ
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The event that only atoms 1 and 2 decay implies that the other two do not,
and so

B ¼ fðd; d; n; nÞg: ð3:18Þ
In this case, B itself is a simple event, the fates of all four atoms being
specified. When exactly (any) three atoms decay, the event is

C ¼ fðd; d; d; nÞ; ðd; d; n; dÞ; ðd; n; d; dÞ; ðn; d; d; dÞg: ð3:19Þ
c) The event that is the intersection of A and B consists of all events that are

common to both A and B. Since B is one of the elements of A, we see that
the intersection is just the event B itself:

A \ B ¼ fðd; d; n; nÞg ¼ B: ð3:20Þ
d) The union ofA andB consists of all of the events that are inA or B or both.

Since B is already contained inA, the union is equivalent toA itself. Thus,

A [ B ¼ fðd; d; d; dÞ; ðd; d; d; nÞ; ðd; d; n; dÞ; ðd; d; n; nÞg
¼ A: ð3:21Þ

e) The complement of an event is always taken with respect to the whole
space, S. Thus, event B�s complement, which is defined as the set of all
simple events inS that are not inB, is the union of all the simple events inS
except (d, d, n, n).

f) For a given event that is a subset of the sample space, each of the 16 simple
events in S has two possibilities: it is either part of the event or not.
Therefore, there are 216 possible events in all.

The notion of events, intersections, and unions can be visualized graphically by the
use ofVenn diagrams. Figure 3.1 illustrates a sample space S that contains two events,

Figure 3.1 Example of Venn diagram. See the text. The dark shaded area is the intersectionA\B of
two events, A and B, in a sample space S. The union of the three mutually exclusive regions A\B0,
A\B, and A0 \B is the total space represented by the union of the two events, A[B.
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A andB, shown as intersecting geometrical figures. The overlapping, darkly shaded
area represents the intersection, A\B, of events A and B. The union, A[B, of the
two events is all of the space occupied by the two figures together. The lightly
shaded area insideA isA\B0 – that is, the intersection ofA and the complement of
B (those elements of S not in B). Likewise, the lightly shaded portion in B is the
intersection, A0 \B. The three pieces A\B0, A\B, and A0 \B are mutually
exclusive, and their union is A [B. Venn diagrams are often useful in representing
events and their subsets.

3.3
Random Variables

Definition 3.3
A random variable is a function that maps a sample space onto a set of real numbers.

The random variable thus associates a real number with each element in the
sample space. We denote a random variable by an uppercase letter, for example, X,
and the numerical values that it can have by the corresponding lowercase letter, that
is, x. For example, the number of disintegrations that can occur in a given timewith a
radioactive source, initially containing N atoms, is a random variable, say X. The
values thatX can have are x¼ 0, 1, . . .,N. These integers are the real numbers that the
sample space is mapped onto by the number of disintegrations X (the random
variable).We designate the probability of, say, 10 disintegrations occurring by writing
Pr(X¼ 10). The probability for an unspecified number x of disintegrations is
designated Pr(X¼ x). This formalism, which we adopt from now on, replaces some
of our earlier notation, for example, Eq. (2.37).

A random variable is said to be discrete if it can take on a finite or countably infinite
number of values. It is called continuous if it can take on the infinite number of values
associated with intervals of real numbers. The number of counts from a radioactive
sample in a specified time is a discrete random variable. The time of decay of an atom
is a continuous random variable.

3.4
Probability of an Event

When performing an experiment that defines a discrete sample space, one is often
interested in the likelihood, or probability, of a given outcome. Before presenting a
formal definition of probability, we can see intuitively how it can be structured from
the concepts we have developed up to now.

To illustrate, if a sample space consists of a set of N simple events that represent
equally likely outcomes, then the probability that a random simple event will be a
particular one of the set is 1/N. Thus, the probability that the roll of anunbiased diewill
yield a three is 1/6, there being six equally likely simple events. The probability for
rolling either a three or afive, for example,which is not a simple event, is the sumof the
probabilities for the two simple events: 1/6 þ 1/6¼ 1/3. The probabilities for the
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different simpleevents in the samplespaceneednotbe thesame,but their summustbe
unity. If the die is biased in such a way that the likelihood of getting a three is twice that
for getting any one of the other five (equally likely) numbers, then the probability for
rolling a three can be represented by 2p, where p is the probability for any of the others.
Since the sum of the probabilities for the six simple events must be unity, we have
2p þ 5p¼ 7p¼ 1, so that p¼ 1/7.Theprobability of rolling a threenow is2p¼ 2/7.The
probability of getting a three or a five is 2p þ p¼ 3p¼ 3/7. The total probability for
getting some number, one through six, is 2/7 þ 5/7¼ 1. Furthermore, the probability
for an event outside the sample space, such as rolling a seven with the die, is zero.

With this introduction, we now define probability for discrete sample spaces.
(Continuous sample spaces will be treated in Section 4.1 in terms of probability
density functions.)We consider an experiment that has an associated sample space S,
comprised of n simple events, E1, E2, . . ., En. We note that S is the union of all of the
simple events by writing S ¼ Sn

i¼1 Ei:

Definition 3.4
A probability is a numerically valued function that assigns to every event A in S a real
number, Pr(A), such that the following axioms hold:

PrðAÞ � 0: ð3:22Þ
PrðSÞ ¼ 1: ð3:23Þ

If A and B are mutually exclusive events in S; then PrðA [ BÞ
¼ PrðAÞþPrðBÞ: ð3:24Þ

Axiom (3.22) states that the probability of every event must be nonnegative.
Axiom (3.23) corresponds to the fact that the probability of the union of all simple
events thatmake up the sample spacemust equal unity. Thus, the axiom is equivalent
to saying that at least one event must occur, that is, that the probability for an event
outside the sample space is zero: Pr(Ø)¼ 0. Finally, Eq. (3.24) states that the
probability of the occurrence of any two events, having no simple events in common,
is the sum of their respective probabilities.

& Example
A source consists of three identical radioactive atoms. What is the probability
that either atom 1 or atom 3 will be the first of the three atoms to decay?

Solution
We let E1 be the event that atom 1 decays first, E2 the event that atom 2 decays
first, and E3 the event that atom 3 decays first. Since the atoms are identical,
equal probabilities Pr(E1)¼Pr(E2)¼Pr(E3)¼ 1/3 are assigned to each of
these events, their sum being unity as required by Eq. (3.23). The events
E1, E2, and E3 constitute the simple events in the sample space. Let A be the
event that atom 1 or atom 3 is the first of the three to decay. We then write

A ¼ E1 [ E3: ð3:25Þ
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Since E1 and E3 are mutually exclusive, we also have

E1 \ E3 ¼ ? : ð3:26Þ
By axiom (3.24),

PrðAÞ ¼ PrðE1 [ E3Þ ¼ PrðE1ÞþPrðE3Þ ¼ 1
3
þ 1

3
¼ 2

3
: ð3:27Þ

Thus, the chances are two out of three that either atom 1 or atom 3 will be the
first to decay.

In the last example we see a trivial application of axiom (3.24). The important point
of this example is the fact that, once we can express the event of interest as the union
of simple events, the problem is solved if we can assign the probabilities to each of the
simple events.We note that axiom (3.24) can be extended to the case where we have n
mutually exclusive events, A1, A2, . . ., An, in S. Then

PrðA1 [ A2 [ � � � [ AnÞ ¼
Xn

i¼1

PrðAiÞ: ð3:28Þ

Equation (3.28) provides away to calculate the probability of an event that is the union
of a set of simple events.

3.5
Conditional and Independent Events

Another important concept in probability theory and statistics is that of conditional
probability. The term �conditional� is used to describe the occurrence of one event A,
given that some other event B has already occurred. The notation for the conditional
probability is Pr(A|B), which is read, �the probability of A given that B has occurred.�

& Example
A radioactive source consisted initially of 20 atoms of 131I and 20 atoms of 32P.
The numbers of each that were observed to decay or not over a subsequent
5-day period are shown in Table 3.1. One of the 40 atoms is selected at random
from the table. Let A be the event that the atom is 131I and B be the event
that the atom has decayed. For such a random selection, what is the
probability, Pr(A|B), that the atom is 131I, given that the atom decayed?

Solution
Table 3.1 shows that, of the 10 decayed atoms, 6 were 131I. Hence,

PrðAjBÞ ¼ 6
10

: ð3:29Þ
The table summarizes the complete sample space of the 40 simple events that
describe the possible outcomes (decay ornot) for all 40 atoms in the source.The
solution (3.29) is clear when we look in the table at the reduced sample space,
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corresponding to the event B that the atom decayed. In essence, given B, the
sample space then contains only thefirst rowofnumbers inTable 3.1. Since our
selection is random, each of the 10 first-row atoms has the same probability of
beingselected, that is, 1/10.Since sixof these correspond todecayed 131I atoms,
the probability (3.29) is 6/10. However, one does not need to use the reduced
sample space. Employing the complete space,we canwrite insteadofEq. (3.29),

PrðAjBÞ ¼ 6
10

¼ 6=40
10=40

¼ PrðA \ BÞ
PrðBÞ ; ð3:30Þ

where Pr(A\B) and Pr(B) are found from the original sample space. Thus, one
can use either the original sample space or the subspace resulting from the
conditional event to calculate conditional probabilities. Using a subspace, one
always assigns to the elements probabilities that are proportional to the original
probabilities and that add to unity.

The following is a formal definition of conditional probability.

Definition 3.5
The conditional probability of A given B, denoted by Pr(A|B), is defined as

PrðAjBÞ ¼ PrðA \ BÞ
PrðBÞ ; with PrðBÞ > 0: ð3:31Þ

If Pr(B)¼ 0, then Pr(A|B) is undefined. Since the intersection A\B¼B\A is the
same, it also follows from the definition (3.31) that the conditional probability of B
given A is Pr(B|A)¼Pr(A\B)/Pr(A), with Pr(A)> 0.

& Example
The possible relationship between smoking and lung cancer is under inves-
tigation. In one study, 500 people were examined for lung cancer, and the
results are reported in Table 3.2. Let Sm denote the event that a person,
randomly selected in the study, is a smoker and letC denote the event that the
individual selected has lung cancer. What is the probability that this person
has lung cancer, given that he or she smokes?

Table 3.1 Decay of atoms over 5 d in a source consisting initially of 20 atoms each of 131I and 32P.

Status after 5 d Number of atoms

131I 32P Total
Decayed 6 4 10
Not decayed 14 16 30
Total 20 20 40

See example in the text.

3.5 Conditional and Independent Events j39



Solution
Using the definition (3.31) of conditional probability, we write

PrðCjSmÞ ¼ PrðC \ SmÞ
PrðSmÞ ¼ 25=500

100=500
¼ 0:25: ð3:32Þ

Thus, the probability that a randomly selected person in the study has lung
cancer, given that the person smokes, is 0.25

& Example
A source consists of three identical radioactive atoms at time zero. At the end
of 1 d, it is found that a single atom has decayed. What is the probability that
either atom 1 or atom 3 decayed?

Solution
The system here is the same as that in the last example of the last section.
However, in this setting we are interested in the fate of each atom and not the
first to decay. The statement �a single atom has decayed� describes a
conditioning event. Thus, we need to investigate the conditional probability
of either atom 1 or atom 3 decaying, given that a single atom decayed. As
before, we represent the sample space S for the decay or not of the three atoms
by writing for the eight simple events

S ¼ fðn; n; nÞ; ðd; n; nÞ; ðn; d; nÞ; ðn; n; dÞ; ðd; d; nÞ; ðd; n; dÞ; ðn; d; dÞ; ðd; d; dÞg:
ð3:33Þ

Letting A be the event that only atom 1 or only atom 3 decayed, we write

A ¼ fðd; n; nÞ; ðn; n; dÞg: ð3:34Þ
The event B that a single atom decayed can be written as

B ¼ fðd; n; nÞ; ðn; d; nÞ; ðn; n; dÞg: ð3:35Þ
The probability of A, given B, is obtained by applying Eq. (3.31). The
intersection of events A and B in the numerator of Eq. (3.31) is seen from
Eqs. (3.34) and (3.35) to be the same as the union of the two simple events

Table 3.2 Conditional probability for the effect of smoking on lung cancer incidence.

Number of persons

Lung cancer No lung cancer Total
Smokers 25 75 100
Nonsmokers 5 395 400
Total 30 470 500

See example in the text.
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(n, n, d) and (d, n, n). Event B in the denominator of Eq. (3.31) is the union of
the three simple events in Eq. (3.33) that represent a single decay. Thus,

PrðAjBÞ ¼ PrðA \ BÞ
PrðBÞ ¼ Pr½ðd; n; nÞ [ ðn; n; dÞ�

Pr½ðd; n; nÞ [ ðn; d; nÞ [ ðn; n; dÞ� : ð3:36Þ

Applying axiom (3.24) for the probabilities ofmutually exclusive events (either
atom 1 or atom 3 decays, but not both), we have

PrðAjBÞ ¼ Pr½ðd; n; nÞ� þPr½ðn; n; dÞ�
Pr½ðd; n; nÞ� þPr½ðn; d; nÞ� þPr½ðn; n; dÞ� : ð3:37Þ

Although we do not know the numerical value, the individual probabilities
here for exactly one atom to decay are assumed to be equal, because the three
atoms are identical. Therefore, the ratio (3.37) gives Pr(A|B)¼ 2/3. It is
interesting that this method gives the same result found earlier when we
asked for the probability that either atom 1 or atom 3 would be the first to
decay. The reduced sample space caused by the conditional event of one atom
decaying is equivalent to the sample space generated by the experiment to
observe the first atom to decay.

Conditional probability allows one to adjust the probability of the event under
consideration in the light of other information. In the last example, we had no
knowledge of what the actual probabilities were for the eight simple events in the
sample space (3.33). We did not know, for instance, the probability Pr[(d, n, n)] that
only atom 1 would decay. However, expression of the conditional probability
effectively selected a set of simple events from Eq. (3.33) for which the individual
probabilities, though unknown, were assumed to be equal. We thus were able to
obtain the numerical answer. The other simple events in Eq. (3.33) generally have
probabilities different from those in Eq. (3.37). In the preceding example on smoking
and lung cancer (Table 3.2), one would calculate Pr(C)¼ 30/500¼ 0.060. However,
given the additional information that the person was a smoker, the probability is
adjusted to 25/100¼ 0.25, a considerable change.

The idea of conditional probability can be extended to the case where we may
have several subevents that can occur. In the above example, the sample space was
split between smokers and nonsmokers. There are situations where we may have
several splits of the sample space, that is, events A1, A2, . . ., Ak that partition the
whole sample space. These events are mutually exclusive and exhaustive, by which
we mean that

S ¼
[k

i¼1

Ai and Ai \ Aj ¼ ? for all i 6¼ j: ð3:38Þ

Since S can be partitioned completely into k disjoint sets, the following theorem
holds. It is often called the theorem of total probability, but also goes by the name of
the rule of elimination.
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Theorem of Total Probability, or Rule of Elimination
If the events A1, A2, . . ., Ak constitute a mutually exclusive and exhaustive partition of
the sample space S, then, for any event B in S, we have

PrðBÞ ¼ PrðB \ SÞ ¼
Xk

i¼1

PrðB \ AiÞ ¼
Xk

i¼1

PrðAiÞPrðBjAiÞ: ð3:39Þ

The proof of this theorem lies in the fact that B can be seen to be the union of k
mutually exclusive events B\A1, B\A2, . . ., B\Ak. By Eq. (3.28),

PðBÞ ¼ PrðB \ A1ÞþPrðB \ A2Þþ � � � þPrðB \ AkÞ: ð3:40Þ

Next we simply apply Eq. (3.31) to each term, using it in the form of a product rather
than a ratio. We obtain

PðBÞ ¼ PrðA1ÞPrðBjA1ÞþPrðA2ÞPrðBjA2Þþ � � � þPrðAkÞPrðBjAkÞ; ð3:41Þ
thus completing the proof.

The following example is somewhat contrived, but clearly shows the usefulness of
the theorem.

& Example
Anurn contains 5 redballs, 6 black balls, and 10white balls. Aball is selected at
random and set aside without noting its color. If a second ball is now selected,
what is the probability that it is red?

Solution
Without knowing the color of the first ball selected, we consider three
mutually exclusive and exhaustive events for the result of the first draw.
These events are

A1¼ a red ball is selected on the first draw.
A2¼ a black ball is selected on the first draw.
A3¼ a white ball is selected on the first draw.

We let B be the event that a red ball is selected on the second draw, and so we
are asked to find Pr(B). Using the theorem of total probability, Eq. (3.39),
we obtain

PðBÞ ¼ PrðA1ÞPrðBjA1ÞþPrðA2ÞPrðBjA2ÞþPrðA3ÞPrðBjA3Þ ð3:42Þ

¼ 5
21

4
20

þ 6
21

5
20

þ 10
21

5
20

¼ 100
420

¼ 0:238: ð3:43Þ

This example also suggests other questions. What is the probability that a red ball
was the result of the first draw, given that red was found on the second draw? Is the
probability of getting red on the first draw related to the particular event of the second
draw? Is there cause and effect? (The earlier example concerning lung cancer and
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smoking is more appropriate in this setting, where we might ask what is the
probability that a person is a smoker given that he or she has lung cancer.) Questions
like these can be answered by the following rule, which is called Bayes� theorem.

Bayes’ Theorem
If the events A1, A2, . . ., Ak form a mutually exclusive and exhaustive partition of the
sample space S, and if B is any non-null event in S, then

PrðAjjBÞ ¼
PrðAj \ BÞ

PrðBÞ ¼ PrðAjÞPrðBjAjÞPk
i¼1 PrðAiÞPrðBjAiÞ

: ð3:44Þ

The first equality is just the definition (3.31), which also leads to the substitution
Pr(Aj|B)¼Pr(Aj)Pr(B|Aj) in the numerator of the second equality. In the denom-
inator, Pr(B) is, by the theorem of total probability (Eq. (3.39)), the same as the
denominator in the last equality of Eq. (3.44), thus proving Bayes� theorem for
discrete events. The theorem will be extended to continuous random variables in
Section 4.8.

& Example
An urn contains five black and seven red balls. One ball is drawn out at
random. It is then put back into the urn alongwith three additional balls of the
same color. A second ball is randomly drawn, and it is red. What is the
probability that the first ball drawn was black?

Solution
As always, it is important to specify events clearly. We denote the two possible
events that could occur on the first draw and their probabilities as follows:

A1¼ black ball drawn and Pr(A1)¼ 5/12.
A2¼ red ball drawn and Pr(A2)¼ 7/12.

We note that these events are mutually exclusive and exhaustive. We let B
represent the event that the second ball drawnwas red.We are asked tofind Pr
(A1|B), the probability that the first ball was black (A1) given that the second
was red (B). The two conditional probabilities in Eq. (3.44) with k¼ 2 still need
to be assigned. The probability Pr(B|A1) that the second ball was red given
that the first was black is just 7/15, which would be the fraction of red balls in
the urn after three more black balls were added. Similarly, Pr(B|A2)¼ 10/15
after drawing a red first and making the additions. Thus, from Eq. (3.44)
it follows that

PrðA1jBÞ ¼ PrðA1ÞPrðBjA1Þ
PrðA1ÞPrðBjA1ÞþPrðA2ÞPrðBjA2Þ ð3:45Þ

¼ ð5=12Þð7=15Þ
ð5=12Þð7=15Þþ ð7=12Þð10=15Þ ¼

1
1þ 2

¼ 1
3
: ð3:46Þ
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In some cases, given additional informationwill cause no change in the probability
of the event occurring. Then, in symbols, Pr(A|B)¼Pr(A), and so the occurrence ofB
has no effect on the probability of the occurrence of A. We then say that event A is
independent of event B. The lung cancer and smoking example is one in which there
may be a dependence between the two events. In contrast, the events cancer and the
height of a person would logically be considered to be independent. The concept of
independence in statistics is defined as follows.

Definition 3.6
Two events A and B are independent if and only if

PrðAjBÞ ¼ PrðAÞ ð3:47Þ
and

PrðBjAÞ ¼ PrðBÞ: ð3:48Þ

Otherwise A and B are dependent.
The definitions of independence and conditional probability can be used together

to derive the multiplicative rule.

The General Multiplicative Rule
If A and B are two events in a sample space, then

PrðA \ BÞ ¼ PrðAÞPrðBjAÞ ¼ PrðBÞPrðAjBÞ: ð3:49Þ
This rule is a direct consequence of the definition (3.31) of conditional probability

(Problem 3.19). The next theorem is a result of applying the definition of indepen-
dence to the conditional probability statements in Eq. (3.49).

Independence Theorem
Two events, A and B, in a sample space are independent if and only if

PrðA \ BÞ ¼ PrðAÞPrðBÞ: ð3:50Þ
This result can be seen by noting that, for independent events, Pr(B|A)¼Pr(B) and

Pr(A|B)¼Pr(A) and then applying Eq. (3.49). In general, for any set of n independent
events, Ai, i¼ 1, 2, . . ., n, it follows that (see Problem 3.20)

PrðA1 \ A2 \ � � � \ AnÞ ¼ PrðA1ÞPrðA2Þ � � � PrðAnÞ: ð3:51Þ

& Example
Two photons of a given energy are normally incident on a metal foil. The
probability that a given photon will have an interaction in the foil is 0.2.
Otherwise, it passes through without interacting. What are the probabil-
ities that neither photon, only one photon, or both photons will interact in
the foil?
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Solution
The number of photons that interact in the foil is a random variable X, which
can take on the possible values 0, 1, or 2. Similar to Eq. (3.2) for the decay or not
of the two atoms in Section 3.1, there are four simple events for the sample
space for the two photons: (n, n), (n, y), (y, n), (y, y). Here ymeans �yes, there is
an interaction� and n means �no, there is not,� the pair of symbols in
parentheses denoting the respective fates of the two photons. The probability
of interaction for each photon is given as 0.2, and so the probability for its
having no interaction is 0.8.We are asked tofind the probabilities for the three
possible values ofX. For the probability that neither photon interacts, wewrite

PrðX ¼ 0Þ ¼ Pr½ðn; nÞ�: ð3:52Þ
We can regard n for photon 1 and n for photon 2 as independent events, each
having a probability of 0.8. By Eq. (3.50), the probability that neither photon
interacts is, therefore,

PrðX ¼ 0Þ ¼ 0:8� 0:8 ¼ 0:64: ð3:53Þ
The probability that exactly one photon interacts is

PrðX ¼ 1Þ ¼ Pr½ðy; nÞ [ ðn; yÞ� ¼ Pr½ðy; nÞ� þPr½ðn; yÞ�; ð3:54Þ

inwhich the last equalitymakes use of Eq. (3.24). Since the probability of �yes�
for a photon is 0.2 and that for �no� is 0.8, we find

PrðX ¼ 1Þ ¼ 0:2� 0:8þ 0:8� 0:2 ¼ 0:32: ð3:55Þ

The probability that both photons interact is

PrðX ¼ 2Þ ¼ Pr½ðy; yÞ� ¼ 0:2� 0:2 ¼ 0:04: ð3:56Þ

This example shows how the random variable Xmaps the sample space of simple
events onto a set of real numbers, with a probability attached to each. It demonstrates
how important the idea of independence is in being able to work problems. We see,
in addition, that axiom (3.23) in the definition of probability is satisfied, that is,
Pr(X¼ 0) þ Pr(X¼ 1) þ Pr(X¼ 2)¼ 1.

Problems

3.1 Does the sample space (3.5) apply to an experiment in which the coin and/or
die is biased?

3.2 The experiment leading to Eq. (3.9) ismodified so that only the identities of the
two numbers drawn are scored, without regard to the order in which they are
drawn. Thus, for example, (2, 5) and (5, 2) are regarded as the same individual
element, or simple event.
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a) Write an expression for the new sample space.
b) How many individual elements are there now?

3.3 An experiment is to be performed in which a 12-sided, unbiased die is thrown
and the number of dots on the up face is observed.
a) Write an expression that describes the sample space.
b) How is the sample space affected if the die is biased?

3.4 Using the sample space of the last problem, describe the following events:
a) A, that the up face has an even number of dots;
b) B, that the up face has an odd number of dots; and
c) C, that the number of dots on the up face is a multiple of three.

3.5 Using events A, B, and C from the last problem, find
a) A\C;
b) B\C;
c) A\B;
d) B[C;
e) A[B;
f) B0.

3.6 An experiment consists of recording the times t at which identical radioactive
atoms in a source decay.
a) Describe the sample space.
b) Does the sample space change if the atoms are not identical?

3.7 In the last problem, let A be the event that the time to decay is at least 10min
and B be the event that the disintegration time is between 5 and 20min.
a) Write the events A and B in symbolic notation.
b) Are A and B mutually exclusive events? Why or why not?
c) Describe the event A\B.

3.8 Identify the shaded areas for the Venn diagrams in Figure 3.2.
3.9 Show by using Venn diagrams that the following rules hold:

a) (E[F)0 ¼E0 \F0.
b) (E\F)0 ¼E0 [F0.
(Note: The rules can be generalized to any number of events. They are
sometimes referred to as De Morgan�s laws.)

3.10 For an eventA in a sample spaceS, verify the following statements bymeans of
Venn diagrams:
a) A0 \A¼Ø;
b) A0 [A¼ S;
c) S0 ¼Ø;

Figure 3.2 See Problem 3.8. (Courtesy of Steven E. Smith.)
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d) A[Ø¼A;
e) A\Ø¼Ø.

3.11 Draw a Venn diagram and shade in the appropriate region for each of the
following events:
a) A[B;
b) (A[B)0;
c) A0 \B;
d) A\B0;
e) (A0 \B)[ (A0 \B0);
f) A0 \B0;
g) (A\B)0;
h) A0 [B0.

3.12 a) For two mutually exclusive events, A and B in a sample space S, represent
Eq. (3.24) by means of a Venn diagram.

b) If A and B are any two events in S, draw a Venn diagram to show the
additivity rule for their union,

PrðA [ BÞ ¼ PrðAÞþPrðBÞ�PrðA \ BÞ:
3.13 a) Calculate Pr(A) in place of Eq. (3.27) if atom 3 is four times as likely to be

the first to decay as atom 1 or 2, the latter pair having equal probabilities,
as before.

b) Same as (a), except that atom 2 has four times the likelihood of being first,
compared with atoms 1 and 3, having equal probabilities.

3.14 Four identical radioactive atoms are observed to see which ones decay over a
10-min time period. The probability that a given atomwill decay in this time is
0.25. For the four atoms, let ðx1; x2; x3; x4Þ represent a point in the sample
space for the experiment, where xi¼ n or d for i¼ 1, 2, 3, 4 and n¼no decay
and d¼ decay.
a) Write an expression that describes the sample space.
b) How many simple events are there in the sample space?
c) List the items in the sample space that represent the decay of a single atom.
d) Determine the probability of the event (n, d, d, d) by using the concept of

independence and the given probability of decay.
e) Determine the probability of each simple event in the sample space.
f) Show that the sum of the probabilities for the sample space is unity. Which

of the axioms (3.22)–(3.24) support this result?
g) Calculate the probabilities for the events that 0, 1, 2, 3, or 4 atoms decay.
h) Graph the results from (g), letting the ordinate denote the probability and

the abscissa the number of atoms that decay.
3.15 An experiment consists of drawing a card randomly from a deck of 52 playing

cards.
a) What is the probability of drawing a black card?
b) What assumptions are necessary to determine this probability?
c) Given that the drawn card is red,what is the probability that it is a diamond?
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d) When two cards are drawn from the full deck without replacing the first,
what is the probability that the second card is black?

(Hint: The first card drawn must be either black or red, B or R. Thus, Pr(B on
2nd draw)¼Pr(B on 2nd|R on 1st)�Pr(R on 1st) þ Pr(B on 2nd|B on
1st)�Pr(B on 1st).)

3.16 Refer to the example immediately following Bayes� theorem (Eq. (3.44)).
Show that, if the urn originally contains b black and r red balls, and if c
balls of the proper color are added after the first draw, then the probability is
b/(b þ r þ c).

3.17 A ball is drawn at random from an urn that contains three white and four
black balls. The drawn ball is then placed into a second urn, which contains
five white and three black balls. A ball is then randomly selected from the
second urn.
a) What is the probability that the ball drawn from the second urn is white,

given that the ball taken from the first urn is white?
b) What is the probability that the ball drawn from the second urn is white,

given that the ball taken from the first urn is black?
c) What is the probability that the ball drawn from the second urn is

white?
d) How are the answers to (a), (b), and (c) related?

3.18 Aporch is illuminated with two identical, independent lights. If each light has
a failure probability of 0.004 on any given evening, then
a) what is the probability that both lights fail?
b) what is the probability that neither light fails?
c) what is the probability that only one light fails?
d) what is the sum of these probabilities?

3.19 Prove Eq. (3.49), the general multiplicative rule.
3.20 Equation (3.50) states that, if two events A and B are independent, then the

probability of their joint occurrence (their intersection) is equal to the product
of their individual probabilities: Pr(A\B)¼Pr(A)Pr(B). For three indepen-
dent events A, B, and C, prove that

PrðA \ B \ CÞ ¼ PrðAÞPrðBÞPrðCÞ:

(Hint: Consider B\C¼D and apply Eq. (3.50) twice.)
3.21 With anunbiased pair of dice, what is the probability of rolling (a) 7, (b) 11, (c) 7

or 11, (d) 2, and (e) 2, 11, or 12?
3.22 Write an expression that describes the sample space in the last problem.
3.23 What is the probability of drawing from a well-shuffled, regular deck of 52

playing cards (a) a black card; (b) a red ace; (c) a face card; (d) a jack; (e) a black
king or a red ace; (f) a 5, 6, or 7?

3.24 For a certain airline flight, experience shows that the probability for all
passengers to be at the departure gate on time is 0.95, the probability for the
flight to arrive on time is 0.93, and the probability for theflight to arrive on time
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given that all passengers are at the departure gate on time is 0.97. Find the
probability that
a) The flight will arrive on time and all passengers will be at the gate on time.
b) All passengerswere at the gate on time given that theflight arrived on time.
c) Write an expression for the sample space.

3.25 A gamma-ray spectrometer is used to screen a series of samples for the
presence of a certain radioisotope. The instrument will detect the isotope 99%
of the timewhenpresent. Itwill also give a �false positive� result 1%of the time
when the isotope is not there.
a) If 0.5% of the samples being screened contain the radioisotope, what is

the probability that a given sample contains the isotope, given that the
spectrometer indicates that it does?

(Hint: LetR denote the event that the isotope is present in the sample andE the
event that the instrument indicates that it is. Thenwhat is asked for is Pr(R|E).)
b) Describe the sample space.

3.26 A fair coin is tossed three times.
a) What is assumed about the outcome of each toss?
b) What is the probability of obtaining three heads?
c) What is the probability of at most two heads?
d) What is the relationship between the events in parts (b) and (c)?
e) If the first two tosses result in heads, what is the probability that the third

toss will give heads? Why?
3.27 One box contains three white and two black marbles, and a second box

contains two white and four black marbles. One of the two boxes is selected at
random, and a marble is randomly withdrawn from it.
a) What is the probability that the withdrawn marble is white?
b) Given that the withdrawnmarble is white, what is the probability that box 1

was chosen?
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4
Probability Distributions and Transformations

4.1
Probability Distributions

In the previous chapter, we saw how probabilities can be associated with values that a
random variable takes on in a discrete sample space. The random variable X in the
example at the end of the previous chapter had the three possible values, x¼ 0, 1, and
2. Corresponding to each, a probability Pr(X¼ x) was assigned (Eqs. (3.53), (3.55),
and (3.56)). The set of ordered pairs, (x, Pr(X¼ x)), is an example of a probability
distribution. It associates a probability with each value of X. To simplify notation, we
shall write f(x) in place of Pr(X¼ x).

Definition 4.1
The set of ordered pairs (x, f(x)) is called the probability distribution for the discrete
random variable X if, for each possible outcome x,

PrðX ¼ xÞ ¼ f ðxÞ; ð4:1Þ

f ðxÞ � 0; ð4:2Þ

and X
all x

f ðxÞ ¼ 1: ð4:3Þ

Equation (4.1) defines the shortened notation for probability, and Eq. (4.2) requires
that probabilities be nonnegative, consistent with Eq. (3.22). The last relationship,
Eq. (4.3), states that the sum of the probabilities over all the possible events must be
unity, consistentwith Eq. (3.23). Implicit in the definition is the fact that f(x)¼ 0 for all
values of x that are not possible values of the random variable X.

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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& Example

a) Write the ordered pairs (x, f(x)), giving the probability distribution for the
number of photons that interact in a foil when two are incident, as
considered in the last example of Chapter 3.

b) Show that condition (4.3) in the definition of a probability distribution is
satisfied.

Solution

a) The probability distribution obtained from Eqs. (3.53), (3.55), and (3.56)
for the numberX of photons that interact can be represented bywriting the
ordered pairs (x, f(x)) as given in Table 4.1. The distribution is also shown
by the plot in Figure 4.1.

b) From Table 4.1, we haveX
all x

f ðxÞ ¼ 0:64þ 0:32þ 0:04 ¼ 1:00; ð4:4Þ

showing that Eq. (4.3) is satisfied, as required of any discrete probability
distribution.

In Chapter 1, we discussed how quantum mechanics provides a probabilistic,
rather than deterministic, description of atomic and radiative phenomena. We can
relate that discussion to the last example, in which two photons are incident on a foil.
The basic physical factor used to interpret the observations is that the probability is
p¼ 0.2 that a given photonwill interact in the foil (and hence the probability is 0.8 that
it will not). The numerical value of p can be determined with good precision by an
experiment in which a pencil beam of photons of a given energy is directed normally
at the foil. Under �good geometry� conditions,1) the measured fraction of photons
that pass through without interaction gives the value of p. Also, depending on the
photon energy and the particular material of the foil, the probability p can often be

Table 4.1 Probability distribution for the number of photons that interact
in a foil, each with probability 0.2, when two photons are incident.

x f(x)

0 0.64
1 0.32
2 0.04

See example in the text.

1) See, for example, Section 8.7 of Turner (2007) in the Bibliography.
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calculated from quantum mechanics. As discussed in Chapter 1, however, knowing
the numerical value of p does not tell us what a given photon will do.

The two-photon problem illustrates how predictions are made in terms of
probability distributions. From the basic description of p¼ 0.2, the function
f(x) that we determined above gives the probabilities for x¼ 0, 1, and 2. The
predictions can be checked experimentally by bombarding the foil with a large
number of photons in pairs and observing the fraction of pairs for which x¼ 0, 1,
or 2.

One is often interested not only in a probability distribution function f(x), but also
in the probability that the random variable X has a value less than or equal to some
real number x. Such a probability is described by a cumulative distribution
function. We denote the cumulative distribution function F(x) for f(x) by using
a capital letter and writing F(x)¼Pr(X� x) for the probability that the random
variable X has a value less than or equal to x.

Definition 4.2
The cumulative distribution function F(x) of a discrete random variable X with a
probability distribution f(x) is given by

FðxÞ ¼ PrðX � xÞ ¼
X
t�x

f ðtÞ; for �1 < x < 1: ð4:5Þ

x
0 1 2

f(x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.1 Probability distribution f(x) for the number x of photons that interact in a foil when
two are incident. See example in the text.
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It is implicit in this definition that F(x) is defined over the whole real line
(�1< x<1). We see from Eq. (4.3) that the cumulative distribution function
increases monotonically from zero to unity as x increases. Furthermore, Eq. (4.3)
implies that the probability that X has a value greater than x is given by

PrðX > xÞ ¼ 1� FðxÞ: ð4:6Þ

It also follows fromEq. (4.5) that the individual probabilities f(x) are the differences in
the values of F(x) for successive values of x:

PrðX ¼ xkÞ ¼ f ðxkÞ ¼ FðxkÞ � Fðxk�1Þ: ð4:7Þ

& Example
Find the cumulative probability distribution for two photons incident on the
foil in the last example.

Solution
The cumulative distribution function for the two photons is given in Table 4.2.
The values of F(x) are obtained by continually summing the values f(x) from
the probability distribution in Table 4.1, as specified in the definition (4.5).
Figure 4.2 shows the function F(x). Notice that the cumulative probability
distribution is defined for all real x (�1< x<1), and not just for the three
values (0, 1, 2) assumed by the discrete random variable. Figure 4.2 shows that
the probability for fewer than zero photons to interact is zero. The probability
that less than one photon (i.e., neither photon) will interact when two are
incident is 0.64. The probability that fewer than two (i.e., zero or one) will
interact when two are incident is 0.96. When two photons are incident, the
probability for interaction is unity for fewer than any number equal to or
greater than two (e.g., the probability that fewer than five photons interact
when two are incident is unity).

Thus far, we have dealt only with probability distributions for discrete random
variables. Analogous definitions apply to continuous random variables. When X is

Table 4.2 Cumulative distribution function F(x) for the number of photons x
that interact in a foil, eachwith probability 0.2, when twophotons are incident.

x F(x)

<0 0
0� x< 1 0.64
1� x< 2 0.96
�2 1.00
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continuous, x has an uncountably infinite number of values. Consequently, the
probability of occurrence for a single value X¼ x, exactly, is zero. For a continuous
random variable X, we define a probability density function, denoted by f(x). The
integral of f(x) over any interval of x then gives the probability that the random
variable X has a value in that interval.

Definition 4.3
The function f(x) is a probability density function for the continuous randomvariableX,
defined over the set of real numbers R, if 2)

Prða � X < bÞ ¼
ðb
a

f ðxÞdx; ð4:8Þ

f ðxÞ � 0 for all x 2 R; ð4:9Þ

x
3210

F(x)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.2 Cumulative probability distribution F(x) for the number of photons x that interact when
two are incident. See example in the text.

2) With regard to notation, we generally assign the probability over the semiclosed interval, a�X< b,
which includes the lower, but not the upper, boundary.Whether one includes a boundary point in the
definition makes no difference mathematically, because the probability is zero for a continuous
random variable at a single point, as mentioned in the last paragraph.

4.1 Probability Distributions j55



and

ð1
�1

f ðxÞdx ¼ 1: ð4:10Þ

Equations (4.8)–(4.10) for a continuous random variable are analogous to
Eqs. (4.1)–(4.3) foradiscreterandomvariable, andcanbegiventhesameinterpretation.

The corresponding cumulative distribution gives the probability that the contin-
uous random variable has a value less than a specified value.

Definition 4.4
The cumulative distribution F(x) of a continuous random variable X with density
function f(x) is given by

FðxÞ ¼ PrðX < xÞ ¼
ðx

�1
f ðtÞdt; for �1 < x < 1: ð4:11Þ

It follows from Eqs. (4.8), (4.10), and (4.11) that (Problem 4.5)

PrðX � xÞ ¼ 1� PrðX < xÞ ¼
ð1
x

f ðtÞdt: ð4:12Þ

Also, comparison of the definition (4.11) with Eq. (4.8) shows that the probability
over any interval is given by the difference in the cumulative distribution at the end
and at the beginning of the interval. Thus (Problem 4.6),

Prða � X < bÞ ¼ FðbÞ � FðaÞ: ð4:13Þ

With the definition (4.11), the fundamental theorem of integral calculus implies
that

f ðxÞ ¼ dFðxÞ
dx

; ð4:14Þ

provided the derivative of F(x) exists everywhere except possibly at a finite number of
points. For our needs, F(x) will be a continuous function of x, and hence the
probability density function can be obtained from the cumulative distribution by
taking its first derivative.

& Example
In quantum mechanics, the probability density for the position of a particle
confined to a box in one dimension with sides at x¼� a/2 is

f ðxÞ ¼ 2
a
cos2

px
a
; for � a

2
� x <

a
2

ð4:15Þ

and

f ðxÞ ¼ 0; elsewhere: ð4:16Þ
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This probability density function, which is shown in Figure 4.3, applies to the
ground state, or state of lowest energy, of the particle.

a) Calculate the cumulative distribution function for the particle�s position.
b) Show that the cumulative distribution function equals unity when x¼ a/2.
c) What is the probability of finding the particle between x¼ 0 and x¼ a/4?

Solution

a) The cumulative distribution is defined by Eq. (4.11). Since f (x)¼ 0 when
x<�a/2, the cumulative distribution function is also zero in the interval
on the left, outside the box in Figure 4.3:

FðxÞ ¼ 0; for x < � a
2
: ð4:17Þ

For the interval inside the box, we can write

FðxÞ ¼
ðx

�1
f ðtÞdt ¼

ðx
�a=2

f ðtÞdt

¼ 2
a

ðx
�a=2

cos2
pt
a

� �
dt; for � a

2
� x <

a
2
: ð4:18Þ

x

f(x)

0 a/2-a/2

BOX
2/a

Figure 4.3 Probability density function f(x) for the position X of a quantum-mechanical particle with
lowest energy confined in a one-dimensional box with sides at x¼� a/2. See example in the text.
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Using the identity cos2 a¼ (1 þ cos 2a)/2, we find that

FðxÞ ¼ 1
a

ðx
�a=2

1þ cos
2pt
a

� �� �
dt ¼ 1

a
tþ a

2p
sin

2pt
a

� �x
�a=2

ð4:19Þ

¼ x
a
þ 1

2
þ 1

2p
sin

2px
a

; for � a
2
� x <

a
2
; ð4:20Þ

where sin(�p)¼ 0 has been used in the last equality. Finally, the particle is
always left of the right edge of the box. Therefore, the probability that the
value of X is equal to any number greater than or equal to a/2 is unity:

FðxÞ ¼ 1; for x � a
2
: ð4:21Þ

Equations (4.17), (4.20), and (4.21) constitute the desired cumulative
distribution function, defined for all x.

b) Since the particle cannot be outside the box, the cumulative distribution
must reach unity when x reaches or exceeds a/2. From Eq. (4.20), we find
that, indeed,

F
a
2

� �
¼ 1

2
þ 1

2
þ 1

2p
sin p ¼ 1; ð4:22Þ

as required.
c) From Eq. (4.8), the probability of finding the particle in the specified

portion of the box is the integral of the probability density f(x) from x¼ 0 to
x¼ a/4:

Pr 0 � X <
a
4

� �
¼
ða=4
0

f ðxÞdx; ð4:23Þ

which can be evaluated directly. We have for this integral (see Eq. (4.19))

Pr 0 � X <
a
4

� �
¼ 1

a
tþ a

2p
sin

2pt
a

� �a=4
0

¼ 1
4
þ 1

2p
sin

p

2
¼ 0:409: ð4:24Þ

Alternatively, we can use Eq. (4.13) and the cumulative function (4.20):

Pr 0 � X <
a
4

� �
¼ F

a
4

� �
� Fð0Þ ð4:25Þ

¼ 1
4
þ 1

2
þ 1

2p
sin

p

2
� 1
2
¼ 0:409; ð4:26Þ

in agreement with Eq. (4.24).
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4.2
Expected Value

Various characteristics of discrete and continuous random variables are of interest.
The mean, or average value, of the random variable is an important parameter.
Equation (2.7), for example, shows how themean life of a radionuclide is related to its
decay constant, which represents the probability per unit time that a given atom will
disintegrate. Another name for the mean of a random variable is its expected value.

Definition 4.5
The expected value E(X) of the random variable X is defined as

EðXÞ ¼
X
all x

xf ðxÞ; if X is discrete; ð4:27Þ

or

EðXÞ ¼
ð1

�1
xf ðxÞdx; if X is continuous: ð4:28Þ

In Eq. (4.27), f(x) denotes the probability distribution, and in Eq. (4.28), the
probability density function. The expected value is customarily denoted by the
symbol m.

From this definition, it follows that, if X¼ c is a constant, then its expected value is
the constant itself, E(X)¼E(c)¼ c. Also, if X ¼ X1 þX2 þ � � � is the sum of two or
more random variables, then its expected value is equal to the sum of the expected
values, EðX1ÞþEðX2Þþ � � � .

This definition can be generalized and put in the form of a theorem. The theorem
expresses the interesting and useful result that the expected value of a function g(X) of
a random variable X can be obtained by taking the expected value of the function with
respect to the original probability distribution function on X. For example, if E(X2) is
desired, it is not necessary (though still correct) to find the probability distribution
associated with Y¼X2 and then calculate E(Y). One can simply use the above
definition, replacing X with the function g(X). We state the following theorem
without proof.

Theorem 4.1
Let X be a random variable with probability distribution f(x). The mean, or expected value,
of the random variable g(X) is

mgðXÞ ¼ E½gðXÞ� ¼
X
all x

gðxÞf ðxÞ; ð4:29Þ

if X is discrete, and

mgðXÞ ¼ E½gðXÞ� ¼
ð1

�1
gðxÞf ðxÞdx; ð4:30Þ

if X is continuous.
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Equations (4.29) and (4.30) can be understood by regarding the distribution f(x) as
the weighting factor for x in determining the mean of g(X).

& Example

a) For the two-photon problem in the last section, what is the expected value
of the number of photons that interact in the foil when two are incident?

b) What is the expected value of the number of photons that traverse the foil
without interacting when two are incident?

Solution

a) The probability distribution function, f(x), for the number of photons that
interact is given in Table 4.1 and shown in Figure 4.1. Using the
definition (4.27) for the discrete random variable, we obtain for the mean,
or expected value,

m ¼ EðXÞ ¼ 0� 0:64þ 1� 0:32þ 2� 0:04 ¼ 0:40: ð4:31Þ

Thus, an average of 0.40 photons are expected to interact in the foil when
two are incident. As the example shows, the mean of a probability
distribution need not equal one of the values that the random variable
can take on. Such predictions can be tested against experiment. For
example, if we repeated this experiment with 10 pairs and added the
number of photons that interacted in each pairwise trial, the expected
value for the total number of photons interacting in the foil would be four.

b) SinceX represents the number of photons in a pair that interact in the foil,
Y¼ 2�X is the number in a pair that traverse the foil without interacting.
Taking the expected value of Y and using Eq. (4.29) yields

EðYÞ ¼ Eð2� XÞ ¼ Eð2Þ � EðXÞ ¼ 2� 0:40 ¼ 1:60: ð4:32Þ

Thus, an average of 1.60 photons per pair are expected to traverse the foil
without interacting. The expectation operator E in the last equation was
applied to each of the terms in the difference 2�X. This operation is
permitted through the distributive law for integration or summation of
terms in Eqs. (4.29) and (4.30). Note, also, that the expected value of a
constant is the constant itself – in this instance, E(2)¼ 2.

In Section 2.2, we determined that the mean, or average, life of a radionuclide is
given by the reciprocal of the decay constant: t¼ 1/l (Eq. (2.7)). However, the
argument presented there was more heuristic than rigorous. As mentioned earlier,
the decay time Tof a radionuclide is an example of a continuous random variable. Its
mean can be obtained analytically from the above definition, Eq. (4.28), provided one
knows the probability density function f(t) for the decay times T. We carry out this
calculation next.
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The probability that a given atom present at time t¼ 0 in a radioactive source will
decay during a short time between t and t þ dt is equal to the product of (1) the
probability that the atom has survived until time t and (2) the probability that it
subsequently decays during dt. The former probability is e�lt, as given by Eq. (2.21).
For very small dt, the latter probability is proportional to dt and can be written asC dt,
where C is the constant of proportionality. Thus, the probability for an atom to decay
between t and t þ dt is C e�lt dt. The probability that the decay will occur between
arbitrary times a and b is then given by the integral

Prða � T < bÞ ¼ C
ðb
a

e�lt dt: ð4:33Þ

Comparisonwith Eq. (4.8) shows that the probability density function for the random
decay time of an atom is

f ðtÞ ¼ C e�lt: ð4:34Þ
The constant C is determined by the requirement (4.10) that this function be
normalized (i.e., have unit area). Thus,

C
ð1
0

e�lt dt ¼ 1: ð4:35Þ

(Since we start at time t¼ 0, the probability density for decay during the time t< 0 is
zero.) Integration of Eq. (4.35) givesC¼ l, and so the probability density function for
the random decay time T of a radionuclide is

f ðtÞ ¼ l e�lt; t � 0; ð4:36Þ
and

f ðtÞ ¼ 0; t < 0: ð4:37Þ
The average decay time, or mean life for radioactive decay, is usually denoted by the
special symbol t. We find that

t ¼ EðTÞ ¼
ð1
0

tf ðtÞdt ¼ l

ð1
0

t e�lt dt ¼ 1
l
; ð4:38Þ

where the integration has been performed by parts (Problem 4.10). This result
confirms that expressed in Eq. (2.7).

& Example

a) Use the probability density function f(t) for the decay time of a radionuclide
to construct the cumulative distribution F(t).

b) Use F(t) to find the relationship between the decay constant l and the half-
life T1/2 of a radionuclide.
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Solution

a) We first find the function F(t) and then, for part (b), we set F(t)¼ 1/2 with
t¼T1/2. Combining Eqs. (4.36) and (4.37) with the definition (4.11) of the
cumulative distribution for a continuous random variable T, one has

FðtÞ ¼ 0; for t < 0; ð4:39Þ

and

FðtÞ ¼
ðt

�1
f ðt0Þdt0 ¼ l

ðt
0

e�lt0 dt0 ¼ 1� e�lt; for t � 0: ð4:40Þ

b) When t equals the half-life, the cumulative distribution has the value
F(T1/2)¼ 1/2. That is, at time T1/2, the probability that the random decay
time has a value less than T1/2 is 1/2, reflecting the condition that one-half
of the original atoms are still present. We obtain from Eq. (4.40)

1
2
¼ 1� e�lT1=2 ; ð4:41Þ

giving T1/2¼ (ln 2)/l, in agreement with Eq. (2.6).

In addition to the expected value, or mean, another important characteristic of a
distribution is the median. For a continuous distribution, the median is defined as
that value me such that the probability Pr(X�me)¼ 1/2, exactly. We write

ðme

�1
f ðxÞdx ¼ 1

2
: ð4:42Þ

The median divides the cumulative probability function into two equal portions.
Comparison with the cumulative function, Eq. (4.11), shows that it is equally likely
that the value of the continuous random variable X will occur on either side of the
median. If the random variable is discrete, then themedian is defined in terms of the
cumulative function F(x) as the number me such that

lim
x!m�

e

FðxÞ ¼ Fðme � 0Þ � 1
2
� Fðme þ 0Þ ¼ lim

x!mþ
e

FðxÞ: ð4:43Þ

Here the symbol x!m�
e implies that x approaches me from below, and x!mþ

e

implies that the approach is fromabove. Since the variable is discrete, theremay be an
interval of points that satisfy this equation. When this is the case, one uses the
midpoint of the interval as the median. The mean of the absolute value of the
deviation of a random variable about a given value in a distribution is a minimum at
the median of the distribution (Problem 4.12).
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4.3
Variance

Another important property of a random variable is its variance, which measures the
variability, or dispersion (spread), of the probability distribution.

Definition 4.6
The variance is defined as the expected value of the square of the difference between
the random variable and its mean:

VarianceðXÞ ¼ VarðXÞ ¼ E½ðX � mÞ2�: ð4:44Þ

For a discrete random variable one has

VarðXÞ ¼
X
all x

ðx � mÞ2f ðxÞ; ð4:45Þ

and for a continuous random variable,

VarðXÞ ¼
ð1

�1
ðx � mÞ2f ðxÞdx: ð4:46Þ

The variance of sums or differences of independent random variables is the sum of
their variances.

The variance, which is in squared units, is usually denoted by the symbol s2. The
positive square root of the variance is called the standard deviation, s. Taking the
square root converts the measure of variability to the original units of the random
variable. The standard deviation is very important in describing a distribution, not
onlymeasuring its spread, but also serving as a yardstick to gauge the probability that
an observation is some distance from the mean. The mean determines a center for
the distribution, and the standard deviation tells us how far most observations range
from that center. As we shall see in future applications, for most probability
distributions it would be rare to observe outcomes that exceed three standard
deviations from the mean in either direction.

To calculate the variance, one can use the definition (4.44) or the following
expression:

VarðXÞ ¼ E½ðX � mÞ2� ¼ EðX 2 � 2Xmþ m2Þ ¼ EðX 2Þ � 2mEðXÞþ m2: ð4:47Þ

Since E(X)¼m, one can combine the last two terms to obtain

VarðXÞ ¼ EðX2Þ � m2: ð4:48Þ

The expression (4.48) is usuallymore convenient to use for computing variances than
the definition (4.44), although either may be used.
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& Example
Calculate the standard deviation for the decay time of a radionuclide.

Solution
We employ Eq. (4.48). The distribution for the decay time T is given by
Eqs. (4.36) and (4.37). The second term on the right-hand side of Eq. (4.48)
is the square of themean life, given by Eq. (4.38): m¼ t¼ 1/l. The first term on
the right-hand side in Eq. (4.48) is

EðT2Þ ¼
ð1

�1
t2f ðtÞdt ¼ l

ð1
0

t2 e�lt dt: ð4:49Þ

Integration by parts (Problem 4.14) gives

EðT2Þ ¼ � 2

l2
e�ltj10 ¼ 2

l2
: ð4:50Þ

Hence, the variance of the distribution of decay times is, from Eq. (4.48),

s2 ¼ EðT2Þ � 1

l2
¼ 2

l2
� 1

l2
¼ 1

l2
: ð4:51Þ

The standard deviation is

s ¼ 1
l
: ð4:52Þ

Thus, the distribution of decay times has a mean and standard deviation both
equal to 1/l.

As alreadymentioned, one can use the standard deviation as ameasure of distance
in the space of a probability distribution, as the next example illustrates.

& Example
What is the probability of observing a nuclide decay time T that is at least two
standard deviations later than the mean?

Solution
We seek the probability

PrðT � t � 2sÞ ¼ PrðT � tþ 2sÞ: ð4:53Þ
Substituting t¼ s¼ 1/l for the mean and standard deviation, we write

PrðT � t � 2sÞ ¼ Pr T � 1
l
þ 2

1
l

� �� �
¼ Pr T � 3

l

� �
: ð4:54Þ
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Applying Eq. (4.12) for the cumulative probability and using the probability density
function, Eqs. (4.36) and (4.37), for the decay time T, we obtain

Pr T � 3
l

� �
¼ l

ð1
3=l

e�lt dt ¼ �e�ltj13=l ¼ e�3 ¼ 0:0498: ð4:55Þ

Thus, only about 5 times in 100 would we expect an atom in the original source to
decay at a time later than two standard deviations beyond the mean. Comparison of
the last equality in Eq. (4.55) with q in Eq. (2.21) shows that the probability calculated
here is, as it should be, just the same as that for an atom in the original source to
survive for a time equal to at least three mean lives.

4.4
Joint Distributions

We consider next the variation of several random variables at once and introduce
the idea of joint distributions. Just as we define probability functions for discrete
and continuous random variables, we do the same for situations in which we
observe two or more random variables simultaneously. Joint distributions can
occur when we describe outcomes by giving the values of several random variables.
For example, we might measure the weight and hardness of materials; the color,
pH, and temperature for certain chemical reactions; or the height, weight, and fat
content of different individuals. If x1, x2, . . ., xk are the values of k random variables,
we shall refer to a function, f, with values f(x1, x2, . . ., xk) as the joint probability
density function of these variables. For simplicity, we shall usually deal with the
bivariate case, k¼ 2. Extensions to larger k are straightforward. As with the
univariate case, described by Eqs. (4.8)–(4.10), only certain functions can qualify
as joint probability functions.

Definition 4.7
A function f(x1, x2) is a joint probability density function for the continuous random
variables X1 and X2, defined over the set of real numbers R, if

Prða1 � X1 < b1; a2 � X2 < b2Þ ¼
ðb2
a2

ðb1
a1

f ðx1; x2Þdx1 dx2; ð4:56Þ

f ðx1; x2Þ � 0 for all x1; x2 2 R; ð4:57Þ
and

ð1
�1

ð1
�1

f ðx1; x2Þdx1 dx2 ¼ 1: ð4:58Þ
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One can similarly define joint probability functions for discrete random variables,
replacing the integrals in this definition with appropriate sums.

& Example
Let X1 and X2 have the joint probability density function

f ðx1; x2Þ ¼ e�x1�x2 ; where 0 < x1 < 1 and 0 < x2 < 1
0; otherwise:

�
ð4:59Þ

a) Show that this probability function satisfies requirements (4.57) and (4.58)
in the above definition.

b) Determine Pr(X1 þ X2< 5).

Solution

a) First, inspection of Eq. (4.59) shows that f(x1, x2)� 0 for all values of x1 and
x2; hence, condition (4.57) is satisfied. Second, we show that this function
integrates to unity:

ð1
�1

ð1
�1

f ðx1; x2Þdx1 dx2 ¼
ð1
0

ð1
0

e�x1�x2 dx1 dx2

¼
ð1
0

e�x1 dx1

ð1
0

e�x2 dx2 ¼ ð1Þð1Þ ¼ 1: ð4:60Þ

b) To determine Pr(X1 þ X2< 5), we consider the region in the x1, x2 plane
that satisfies the relation x1 þ x2< 5, as shown in Figure 4.4. We can
integrate over x1 from 0 to 5� x2, and then over x2 from 0 to 5. Thus,

PrðX1 þX2 < 5Þ ¼
ð5
0

ð5�x2

0

e�x1�x2 dx1 dx2 ¼
ð5
0

e�x2 ½�e�x1 �5�x2
0 dx2 ð4:61Þ

¼
ð5
0

e�x2ð1� e�5þ x2Þdx2 ¼
ð5
0

ðe�x2 � e�5Þdx2 ð4:62Þ

¼ ½�e�x2 � x2e
�5�50 ¼ 1� 6e�5 ¼ 0:960: ð4:63Þ

For random variables X1, X2, . . ., Xk, we can define the joint cumulative distribution
function (or, simply, joint distribution function), F(x1, x2, . . ., xk). This function gives
the probability that X1< x1, X2< x2, . . ., Xk< xk.

An important concept in the discussion of joint distributions is that of independence
among the random variables. Independence is defined in terms of the marginal
densities of all of the individual variables. Themarginal densities are obtained when a
continuous joint probability density is integrated over all but a single random
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variable, or a discrete joint probability distribution is summed over all but a single
variable. The following definition and examples address these ideas.

Definition 4.8
X1, X2, . . ., Xk are independent random variables if and only if

f ðx1; x2; . . . ; xkÞ ¼ f1ðx1Þf2ðx2Þ � � � fkðxÞk; ð4:64Þ
where f1(x1), f2(x2), . . ., fk(xk) are, respectively, the k marginal densities obtained by
integrating out the (k� 1) other variables in the joint probability distribution f(x1, x2,
. . ., xk).

& Example
The discrete random variables X1 and X2 have the following joint probability
function:

f ðx1; x2Þ ¼
x1 þ x2
32

; when x1 ¼ 1; 2 and x2 ¼ 1; 2; 3; 4

0; otherwise:

8<
: ð4:65Þ

a) Find the marginal distribution on X1.
b) Find the marginal distribution on X2.
c) Are X1 and X2 independent?
d) Obtain Pr(X1 þ X2¼ 5).

x1

7531-1

x2

-1

1

3

5

7

x1 + x2 = 5

2 4 6

2

4

6

x1 + x2 < 5

Figure 4.4 Shaded area shows the region of nonnegative probability for x1 þ x2< 5, calculated for
example in the text (Eq. (4.63)).
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Solution

a) We sum over X2 to obtain the marginal distribution, f1(x1), on X1:

f1ðx1Þ ¼

X4
x2¼1

x1 þ x2
32

¼ 1
32

ðx1 þ 1Þþ ðx1 þ 2Þþ ðx1 þ 3Þþ ðx1 þ 4Þ½ �

4x1 þ 10
32

¼ 2x1 þ 5
16

; when x1 ¼ 1; 2

0; otherwise:

8>>>>>><
>>>>>>:

ð4:66Þ

One should check to see whether the marginal distribution f1(x1) is a true
probability function. It is, because it is nonnegative and

X2
x1¼1

f1ðx1Þ ¼ 7
16

þ 9
16

¼ 1: ð4:67Þ

b) The marginal distribution on X2 is

f2ðx2Þ ¼
X2
x1¼1

x1 þ x2
32

¼ 2x2 þ 3
32

; x2 ¼ 1; 2; 3; 4

0; elsewhere:

8><
>: ð4:68Þ

It is straightforward to verify that f2(x2) is a true probability function
(Problem 4.15).

c) The definition of independence states that X1 and X2 are independent if
and only if f(x1, x2)¼ f1(x1)f2(x2). From Eqs. (4.66) and (4.68), we see that
this is not true, and so X1 and X2 are dependent.

d) To obtain Pr(X1 þ X2¼ 5) we need to find the values of X1 and X2 whose
sums equal 5. Those pairs are (x1, x2)¼ (1, 4) and (x1, x2)¼ (2, 3).
Therefore,

PrðX1 þX2 ¼ 5Þ ¼ f ð1; 4Þþ f ð2; 3Þ ¼ 1þ 4
32

þ 2þ 3
32

¼ 10
32

¼ 5
16

: ð4:69Þ

& Example
If X1 and X2 have the joint probability density function

f ðx1; x2Þ ¼ 30e�5x1�6x2 ; x1 > 0; x2 > 0
0; elsewhere;

�
ð4:70Þ

show that they are independent random variables.
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Solution
Wecalculate themarginal densities for the two variables and seewhether their
product is equal to the joint probability density given by Eq. (4.70). We have

f1ðx1Þ ¼
ð1
0

30e�5x1�6x2 dx2 ¼ 30e�5x1
h�e�6x2

6

i1
0

¼ 5e�5x1 ; x1 > 0

0; elsewhere:

8>><
>>:

ð4:71Þ
Similarly (Problem 4.16, or by inspection of (4.71)),

f2ðx2Þ ¼ 6e�6x2 ; x2 > 0
0; elsewhere:

�
ð4:72Þ

Wesee from the last three equations that f(x1)f(x2)¼ f(x1, x2), andhenceX1 and
X2 are independent random variables.

We next show how expected values are calculated for joint distributions. For
continuous distributions, integrations are carried out over all variables. The expected
value of a single random variable Xi in a joint distribution, for example, is given by

EðXiÞ ¼
ð1

�1

ð1
�1

� � �
ð1

�1
xi f ðx1; x2; . . . ; xkÞdx1 dx2 � � � dxk: ð4:73Þ

For the product of two random variables,

EðXiXjÞ ¼
ð1

�1

ð1
�1

� � �
ð1

�1
xixjf ðx1; x2; . . . ; xkÞdx1 dx2 � � � dxk: ð4:74Þ

Higher order products are obtained by extending this procedure. Similar equations
apply for discrete random variables, with the integrals replaced by appropriate sums.
In addition to products of random variables, other functions can be treated in similar
fashion.

Conditional probability is another important aspect of joint distributions. In
Chapter 3 (Eq. (3.31)), we defined the conditional probability of one event A, given
knowledge that another event B had occurred, as

PrðAjBÞ ¼ PrðA \ BÞ
PrðBÞ ; with PðBÞ > 0: ð4:75Þ

For two discrete random variables, if A and B represent events given by X¼ x and
Y¼y, respectively, then we may write

PrðX ¼ xjY ¼ yÞ ¼ PrðX ¼ x;Y ¼ yÞ
PrðY ¼ yÞ ¼ f ðx; yÞ

f2ðyÞ ; ð4:76Þ
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which defines functions f(x, y) and f2(y), with f2(y)> 0. The quantity f(x, y) is thus
a function of x alone when y is fixed. One can show that it satisfies all of the
properties of a probability distribution. The same conditions hold also when X and Y
are continuous randomvariables. The joint probability density function is then f(x, y),
and the marginal probability density on Y is f2(y).

Definition 4.9
Let X and Y be two (discrete or continuous) random variables with joint probability
density function f(x, y). The conditional distribution ofX, given thatY¼y, is denoted by
the symbol f ðxjyÞ and defined as

f ðxjyÞ ¼ f ðx; yÞ
f2ðyÞ ; f2ðyÞ > 0: ð4:77Þ

Similarly, the symbol f ðyjxÞ denotes the conditional distribution of Y, given that
X¼ x,

f ðyjxÞ ¼ f ðx; yÞ
f1ðxÞ ; f1ðxÞ > 0: ð4:78Þ

& Example
The joint density of X and Y is given by

f ðx; yÞ ¼ 6xyð2� x � yÞ; 0 < x < 1; 0 < y < 1
0; elsewhere:

�
ð4:79Þ

Obtain the conditional probability of X, given that Y¼y¼ 1/2.

Solution
From the definition (4.77), we write

f xjy ¼ 1
2

� �
¼ f ðx; 1=2Þð1

0
f ðx; 1=2Þdx

: ð4:80Þ

Substitution from Eq. (4.79) then gives

f xjy ¼ 1
2

� �
¼ 3xð3=2� xÞð1

0
3xð3=2� xÞdx

¼ 12x
5

3
2
� x

� �
: ð4:81Þ
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4.5
Covariance

Whendealingwith the joint distribution function of two randomvariables,X1 andX2,
it is useful to recognize the existence of any association that might exist between the
two. For instance, large values of X1 might tend to occur when X2 is large. Unless the
random variables are independent, values ofX1 andX2 will be correlated in someway
with one another. A quantity that reflects such an association is the covariance of two
random variables.

Definition 4.10
For any pair of random variables X1 and X2 with means m1 and m2, the covariance,
denoted by s12, is defined as

CovðX1;X2Þ ¼ s12 ¼ E½ðX1 � m1ÞðX2 � m2Þ�: ð4:82Þ

The covariance expresses how the random variables vary jointly about theirmeans.
Thus, if both X1 and X2 tend to be relatively large or relatively small together, then the
product (X1� m1)(X2� m2) will tend to be positive. On the other hand, if large X1 and
smallX2 are apt to occur together and vice versa, then (X1�m1)(X2�m2)will tend to be
negative. Therefore, the sign of the covariance indicates whether there is a positive or
negative relationship between two random variables. (IfX1 andX2 are independent, it
can be shown that the covariance is zero. The converse, however, is not true.) In place
of the definition (4.82), it is often convenient to use the equivalent expression,

s12 ¼ EðX1X2Þ � m1m2; ð4:83Þ

for the covariance (Problem 4.23).
Although the covariance provides information on the nature of the relationship

between two random variables, it is not a quantitative measure of the strength of that
relationship. Its numerical value depends on the units chosen for X1 and X2. To
overcome this limitation, one defines the following dimensionless coefficient of
correlation.

Definition 4.11
The coefficient of correlation, Corr(X1, X2), denoted by �, between any pair of random
variables X1 and X2, having variances s2

1 and s
2
2, is

CorrðX1;X2Þ ¼ � ¼ CovðX1;X2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðX1ÞVarðX2Þ

p ¼ s12ffiffiffiffiffiffiffiffiffiffi
s2
1s

2
2

p : ð4:84Þ

If the relationship betweenX1 andX2 is not linear, then the correlation coefficient is
a poor estimate of the dependence of the two variables on one another.
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& Example
Using the discrete probability function, Eq. (4.65), and the results obtained in
that example, find

a) the expected values, m1 and m2, of X1 and X2;
b) the variances, s2

1 and s2
2;

c) the covariance, s12; and
d) the coefficient of correlation � between X1 and X2.

Solution

a) The expected values of the single variables can be obtained from the joint
distribution by applying the prescription analogous to Eq. (4.73) for
discrete random variables. However, it is simpler to use the marginal
distributions straightaway, which we already determined through
Eqs. (4.66) and (4.68). We have

m1 ¼ EðX1Þ ¼
X2
x1¼1

x1ð2x1 þ 5Þ
16

¼ 1ð2þ 5Þþ 2ð4þ 5Þ
16

¼ 25
16

ð4:85Þ

and

m2 ¼ EðX2Þ ¼
X4
x2¼1

x2ð2x2 þ 3Þ
32

¼ 1ð2þ 3Þþ 2ð4þ 3Þþ 3ð6þ 3Þþ 4ð8þ 3Þ
32

¼ 45
16

: ð4:86Þ

b) For the variances, with i¼ 1, 2, we calculate EðX2
i Þ and use Eq. (4.48):

s2
i ¼ EðX 2

i Þ � ½EðXiÞ�2. Thus,

EðX 2
1 Þ ¼

X2
x1¼1

x21ð2x1 þ 5Þ
16

¼ 1ð2þ 5Þþ 4ð4þ 5Þ
16

¼ 43
16

: ð4:87Þ

Using this result and that of Eq. (4.85) in Eq. (4.48), we obtain for the
variance of X1,

s2
1 ¼

43
16

� 25
16

� �2

¼ 63
256

: ð4:88Þ

In similar fashion, one obtains (Problem 4.24) s2
2 ¼ 295=256.

c) To determine the covariance, s12, we use Eq. (4.83). The first term on the
right-hand side is
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EðX1X2Þ ¼
X4
x2¼1

X4
x1¼1

x1x2
x1 þ x2
32

¼
X4
x2¼1

x2
X2
x1¼1

x1ðx1 þ x2Þ
32

ð4:89Þ

¼
X4
x2¼1

x2
1þ x2 þ 4þ 2x2

32
¼
X4
x2¼1

5x2 þ 3x22
32

¼ 140
32

¼ 35
8
: ð4:90Þ

Combining this result with Eqs. (4.85) and (4.86) for m1 and m2, we find that
Eq. (4.83) gives for the covariance

s12 ¼ 35
8
� 25

16

� �
45
16

� �
¼ � 5

256
: ð4:91Þ

d) It follows from the definition (4.84) of the correlation coefficient and the
results obtained thus far that

� ¼ s12ffiffiffiffiffiffiffiffiffiffi
s2
1s

2
2

p ¼ �5=256ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið63=256Þð295=256Þp ¼ �0:0367: ð4:92Þ

Thus, there is a very weak, negative linear relationship between X1 and X2.

The following two theorems apply to the coefficient of correlation and indicate its
usefulness in a quantitative way.

Theorem 4.2
If X1 and X2 are independent random variables, then the coefficient of correlation is zero.
That is,

if X1 and X2 are independent; then � ¼ 0: ð4:93Þ
The proof of this theorem is left as Problem 4.25 at the end of the chapter. (One can

use the fact that E(X1X2)¼E(X1)E(X2).)

Theorem 4.3
The value of the correlation coefficient � lies in the closed interval [�1, 1]; that is,

�1 � � � 1: ð4:94Þ
To prove this theorem, we form the following nonnegative function of an arbitrary

variable t:

HðtÞ ¼ Ef½ðX1 � m1ÞtþðX2 � m2Þ�2g ð4:95Þ

¼ E½ðX1 � m1Þ2�t2 þ 2E½ðX1 � m1ÞðX2 � m2Þ�tþE½ðX2 � m2Þ2�: ð4:96Þ
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Because H(t)� 0 for all values of t, the discriminant associated with this quadratic
function of t cannot be positive,3) and so we may write

f2E½ðX1 � m1ÞðX2 � m2Þ�g2 � 4E½ðX1 � m1Þ2�E½ðX2 � m2Þ2� � 0: ð4:97Þ

The expected values are the squares of the covariance and the variances. Thus
(dividing out the common factor of four),

s2
12 � s2

1s
2
2 � 0; ð4:98Þ

and so

�2 ¼ s2
12

s2
1s

2
2
� 1; ð4:99Þ

which is equivalent to Eq. (4.94).
The two theorems, (4.93) and (4.94), provide some interesting quantitative

information regarding the joint relationship between two random variables. If the
variables are independent, then the correlation coefficient will be zero. (As noted
above, however, the converse is not necessarily true.) Also, the largestmagnitude that
the correlation coefficient can have is unity. The value of unity implies that the
variables have a perfect linear relationship; that is, X1¼ a þ bX2, where a and b are
constants.

Finally, we state without proof an additional theorem, which is important for later
applications, especially when we investigate the properties of estimators.

Theorem 4.4
For a collection of n random variables Xi, i¼ 1, 2, . . ., n, havingmeansmi, variancess2

i , and
covariances sij (i 6¼ j), the variance of a linear combination of the n variables is

Var
Xn
i¼1

aiXi

 !
¼
Xn
i¼1

a2i VarðXiÞþ 2
Xn�1

i¼1

Xn
j¼iþ 1

aiaj CovðXi;XjÞ

¼
Xn
i¼1

a2i s
2
i þ 2

Xn�1

i¼1

Xn
j¼iþ 1

aiajsij; ð4:100Þ

3) The quadratic function (4.96) of t is associated with the quadratic equation of the form at2 þ bt þ
c¼ 0. The two roots are t ¼ ð�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
Þ=ð2aÞ. If H(t) does not change sign over the infinite

domain of t, then the quadratic equation does not have two distinct real roots. Thus, the discriminant,
b2� 4ac, cannot be positive, and so b2� 4ac� 0.
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where the ai and aj are constants. Note that, for independent random variables, this
equation simplifies to (Problem 4.26)

Var
Xn
i¼1

aiXi

 !
¼
Xn
i¼1

a2i VarðXiÞ ¼
Xn
i¼1

a2i s
2
i : ð4:101Þ

& Example
Let X1 and X2 have the joint probability density function

f ðx1; x2Þ ¼ x1 þ x2; 0 < x1 < 1 and 0 < x2 < 1;
0; elsewhere:

�
ð4:102Þ

a) Calculate m1, m2, s2
1, s

2
2, and s12.

b) Determine the mean and variance of the average,M¼ (X1 þ X2)/2, of X1

and X2.

Solution

a) The mean of X1 is

m1 ¼ EðX1Þ ¼
ð1
0

ð1
0

x1ðx1 þ x2Þdx1 dx2

¼
ð1
0

x31
3

þ x1x2
2

� �1
x1¼0

dx2 ð4:103Þ

¼
ð1
0

1
3
þ x2

2

� �
dx2 ¼ x2

3
þ x22

4

� �1
0

¼ 7
12

: ð4:104Þ

Also, the mean of X2 is, by symmetry,

m2 ¼ EðX2Þ ¼
ð1
0

ð1
0

x2ðx1 þ x2Þdx1 dx2 ¼ 7
12

: ð4:105Þ

To calculate the variance, we employ Eq. (4.48). Since

EðX2
1 Þ ¼

ð1
0

ð1
0

x21ðx1 þ x2Þdx1 dx2 ¼
ð1
0

x41
4

þ x31x2
3

� �1
x1¼0

dx2 ð4:106Þ

¼
ð1
0

1
4
þ x2

3

� �
dx2 ¼ x2

4
þ x22

6

� �1
0

¼ 5
12

; ð4:107Þ
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we obtain

s2
1 ¼

5
12

� 7
12

� �2

¼ 11
144

: ð4:108Þ

Again, by symmetry, one finds (Problem 4.27) that s2
2 ¼ s2

1 ¼ 11=144. For
the covariance, we use Eq. (4.83). Thus,

EðX1X2Þ ¼
ð1
0

ð1
0

x1x2ðx1 þ x2Þdx1 dx2 þ
ð1
0

x31x2
3

þ x21x
2
2

2

� �1
x1¼0

dx2

ð4:109Þ

¼
ð1
0

x2
3

þ x22
2

� �
dx2 ¼ x22

6
þ x32

6

� �1
0
¼ 1

3
; ð4:110Þ

and so

s12 ¼ 1
3
� 7

12

� �
7
12

� �
¼ � 1

144
: ð4:111Þ

b) The mean of M is

EðMÞ ¼ 1
2
EðX1 þX2Þ ¼ 1

2
ðm1 þ m2Þ ¼

7
12

: ð4:112Þ

The variance is, with the help of Eq. (4.100),

VarðMÞ ¼ Var
X1

2
þ X2

2

� �

¼ VarðX1Þ
4

þ VarðX2Þ
4

þ 2
1
2

� �
1
2

� �
CovðX1;X2Þ ð4:113Þ

¼ 1
4

11
144

� �
þ 1

4
11
144

� �
þ 1

2
�1
144

� �
¼ 5

144
: ð4:114Þ

4.6
Chebyshev�s Inequality

The rarity of observations that exceed several standard deviations from the mean is
confirmed by Chebyshev�s inequality, which we present without proof.

Chebyshev’s Inequality
Let the random variable X have a probability distribution with finite mean m and
variance s2. Then, for every k> 0,

PrðjX � mj � ksÞ � 1
k2

: ð4:115Þ
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Accordingly, the probability that a random variable has a value at least as far away
as ks from the mean, either to the right or left, is at most 1/k2. This relationship
provides a rigorous, but often very loose, upper bound to the actual probability.
When k¼ 2, for example, Chebyshev�s inequality states that the probability of an
observation being at least two standard deviations away from the mean does not
exceed 0.25. In the last example in Section 4.3, we found that the probability for the
random decay time to be at least two standard deviations beyond the mean was
0.0498 (Eq. (4.55)). Thus, we see how the upper bound of 0.25 from Chebyshev�s
inequality is satisfied in this instance, although it is far from the actual value of the
true probability. Nevertheless, the general applicability of Chebyshev�s inequality to
any distribution with finite mean and variance often makes it very useful.
Chebyshev�s inequality is valid for both continuous and discrete random variables,
as long as they possess finite means and variances.

4.7
Transformations of Random Variables

Change of variables is commonpractice in analysis. Given the kinetic energy of a beta
particle, for instance, one can transform this quantity into the particle�s velocity or
momentum for various purposes. Such a change of variable is straightforward.
Nonrelativistically, for instance, if the kinetic energy is E, then the velocity is
V ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2E=m
p

, where m is the electron mass, and the momentum is P ¼ ffiffiffiffiffiffiffiffiffiffi
2mE

p
.

Less straightforward are transformations of a function of a randomvariable. Given the
spectrum (i.e., the probability density function) of energies E for a source of beta
particles, one might want to describe the probability density function for the velocity
or themomentumof the emitted electrons. In this section,we showhow to transform
a probability distribution, given as a function of one random variable, into a
distribution in terms of another, related variable. We treat first discrete, and then
continuous, random variables.

We let X be a discrete random variable and Y be a single-valued function of X,
which we denote by writing Y¼u(X). Given a value of X, the function u(X) then
provides a unique value of the random variable Y. We restrict the inverse trans-
formation,X¼w(Y), of Y intoX to be single-valued also, so that there is a one-to-one
relation between the values of X and Y. (For example, Y¼X2 implies that X¼� ffiffiffiffi

Y
p

,
which is not single-valued. Tomake the transformation single-valued, we can select
either X¼ þ ffiffiffiffi

Y
p

or X¼� ffiffiffiffi
Y

p
, depending on the application at hand.) Given the

probability distribution on X, we wish to find the distribution on Y. The transfor-
mation is accomplished by writing, for all y,

PrðY ¼ yÞ ¼ Pr½uðXÞ ¼ y� ¼ Pr½X ¼ wðyÞ�: ð4:116Þ

An example will illustrate the performance of these operations.
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& Example
A random variable X has the binomial distribution shown for x¼ k in
Eq. (2.37), with parameters N and p.

a) Find the distribution Pr(Y¼y) on the random variable Y¼X2.
b) With N¼ 50 and p¼ 0.70, find Pr(Y¼ 961).

Solution

a) Since X consists of nonnegative integers, we choose X¼ þ ffiffiffiffi
Y

p
(rather

than � ffiffiffiffi
Y

p
) to be the single-valued inverse w(Y) that makes the transfor-

mation one-to-one. This choice also requires X to be nonnegative, as
desired. Using Eq. (4.116), we find that the probability distribution on Y is
given by

PrðY ¼ yÞ ¼ PrðX2 ¼ yÞ ¼ PrðX ¼ ffiffiffi
y

p Þ: ð4:117Þ

Substituting k¼ x ¼ ffiffiffi
y

p
and q¼ 1� p in Eq. (2.37) and applying the last

equality in (4.117) gives

PrðY ¼ yÞ ¼ Nffiffiffi
y

p
� �

p
ffiffi
y

p ð1� pÞN� ffiffi
y

p
; ð4:118Þ

in which y¼ 0, 1, 4, . . ., N2.
b) When Y¼ 961,

ffiffiffiffi
Y

p ¼ 31. For N¼ 50, Eq. (4.118) yields

PrðY ¼ 961Þ ¼ 50
31

� �
ð0:70Þ31ð0:30Þ50�31 ¼ 0:0558: ð4:119Þ

As a check, we see that Eq. (2.37) with k¼ x gives the same numerical
expression as Eq. (4.119) for the probability Pr(X¼ 31).

We next consider two continuous random variables, X and Y, with Y¼u(X) and
X¼w(Y) representing their functional relationship. Given the probability density f(x)
on X, we want to determine the density g(y) on Y. We shall assume that the
transformation between X and Y is either an increasing or decreasing monotonic
function over the entire domain ofX, thus assuring a one-to-one relationship between
the two random variables. To be specific, we first select an increasing function. Then
an event c� Y<d, where c and d are two arbitrary values of Y, must be equivalent to
the event w(c) � X<w(d). (If the relationship is monotonically decreasing, then the
latter condition is w(d)<X � w(c).) Thus,

Prðc � Y < dÞ ¼ Pr½wðcÞ � X < wðdÞ�: ð4:120Þ

It follows from Eq. (4.8) that
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ðd
c

gðyÞdy ¼
ðwðdÞ

wðcÞ

f ðxÞdx: ð4:121Þ

Changing variables in the integrand on the right-hand side to equivalentY quantities,
one has

f ðxÞ ¼ f wðyÞ½ � and dx ¼ dwðyÞ
dy

dy: ð4:122Þ

Equation (4.121) can thus be written as

ðd
c

gðyÞdy ¼
ðwðdÞ

wðcÞ

f wðyÞ½ � dwðyÞ
dy

dy; ð4:123Þ

from which it follows that

gðyÞ ¼ f wðyÞ½ � dwðyÞ
dy

: ð4:124Þ

This expression enables one to transform a probability density function f(x) on X
to the corresponding probability density function g(y) on Y when the derivative
dw(y)/dy is positive. If the transformation between X and Y is monotonically
decreasing, then to maintain nonnegative probabilities, we use the absolute value
and write

gðyÞ ¼ f wðyÞ½ � dwðyÞ
dy

				
				: ð4:125Þ

Since Eq. (4.125) is valid for both increasing and decreasing monotonic transfor-
mations, we shall henceforth always use it for transformations.

& Example
Let X be a random variable with probability density given by

f ðxÞ ¼
x3

4
; 0 � x < 2

0; elsewhere:

8><
>: ð4:126Þ

a) Find the probability density function g(y) for Y¼X 2.
b) Show that g(y) integrates to unity, as required of a probability density

function (Eq. (4.10)).

Solution

a) Choosing the positive square root, X¼w(Y)¼ þ ffiffiffiffi
Y

p
, gives an increasing

monotonic function in which Y goes from 0 to 4 over the domain of X
between 0 and 2. Using Eq. (4.125), we write
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gðyÞ ¼ f ð ffiffiffi
y

p Þ d
dy

ðy1=2Þ ¼ y3=2

4
� y�1=2

2

¼
y
8
; 0 � y < 4

0; elsewhere:

8<
: ð4:127Þ

b) Integration of the probability density function (4.127) yields

ð1
�1

gðyÞdy ¼
ð4
0

gðyÞdy ¼ 1
8

ð4
0

y dy ¼ y2

16

					
4

0

¼ 1: ð4:128Þ

The region where the density function is nonzero is called the support of a
continuous random variable. In the last example, the support of Y is 0 � y< 4 over
the domain of X.

& Example
The random variable X has the probability density function

f ðxÞ ¼ 2x; 0 � x < 1
0; elsewhere:

�
ð4:129Þ

Find the probability density function for Y¼ 1� 2X.

Solution
The inverse function is x¼ (1� y)/2, and the support of y is �1< y � 1 over
the domain of X. This example thus involves a monotonic decreasing
transformation. From Eq. (4.125),

gðyÞ ¼ f
1� y
2

� �
d
dy

1� y
2

				
				 ¼ ð1� yÞ � 1

2

				
				 ¼ 1

2
ð1� yÞ: ð4:130Þ

Hence, the probability density function on Y is

gðyÞ ¼
1� y
2

; �1 < y � 1

0; elsewhere:

8<
: ð4:131Þ

This function is normalized (Problem 4.34).
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& Example
The normalized energy-loss spectrum for fast neutrons of energyEo, scattered
elastically from protons initially at rest, is shown in Figure 4.5a. For the flat
spectrum, the probability f(q)dq that the neutron loses an amount of energy
between q and q þ dq is simply (Turner, 2007, Section 9.6)

f ðqÞdq ¼
1
Eo

dq; 0 � q < Eo

0; elsewhere:

8<
: ð4:132Þ

a) Determine the probability density function for the recoil velocity of the
proton.

b) What are the MKS units of the velocity density function?
c) Show that the velocity density function is normalized.
d) What is the probability that a neutron of energy Eo loses between 1/4 and

1/2 its energy in a collision?
e) What is the probability that a struck proton recoils with a velocity between

1/4 and 1/2 the original velocity of the neutron?

Solution

a) We can express the proton recoil energyQbywritingQ¼MV 2/2,whereM
and V are the proton mass and velocity. Since the scattering is elastic,Q is
also equal to the energy lost by the neutron in the collision. Therefore, the
spectrum shown in Figure 4.5a also represents the probability density for
the proton recoil energy.We are asked to transform f(q) into the probability
density function, which we shall call g(v), for the recoil velocity V of the
proton. For the inverse transformation between V and Q we choose the
positive square root, V¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Q=M
p

, giving a monotonically increasing
relationship between the proton recoil energy and velocity. The neutron
mass is assumed to be the same as that of the proton, M. Therefore, the
proton can acquire any amount of the neutron energy Eo and thus recoil
with any velocity up to a maximum of vo¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eo=M

p
in a head-on, billiard-

ball-like collision. Applying the formalismof Eq. (4.125)withX¼Q,Y¼V,
f¼ 1/Eo, and w(y)¼w(v)¼Mv2/2, we find that

gðvÞ ¼
1
Eo

d
dv

�
Mv2

2

�
¼ Mv

Eo
; 0 � v < vo

0; elsewhere:

8><
>: ð4:133Þ

This function is shown in Figure 4.5b. Whereas all proton recoil energies
up to Eo are equally probable, this result shows that the probability density
for the recoil velocity of the proton increases linearly with v up to a
maximum given by vo¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eo=M

p
, equal to the velocity of the incident

neutron.
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b) Since g(v)dv is dimensionless (a probability) and dv has the dimensions of
velocity, it follows that the MKS units of g(v) must be the reciprocal
velocity units, (m s�1)�1¼m�1 s. To show this result explicitly, we see
from Eq. (4.133) that the dimensions of g are those of E�1

o Mv. The
energy Eo is in joules, where 1 J¼ 1 kgm2 s�2 (i.e., work¼ force �
distance¼mass � acceleration � distance). Thus, we write

Units ½E�1
o Mv� ¼ ðkgm2 s�2Þ�1kgm s�1 ¼ m�1 s: ð4:134Þ

c) From Eq. (4.133) it follows that

ð1
�1

gðvÞdv ¼
ðvo
0

gðvÞdv ¼ M
Eo

ðvo
0

v dv ¼ M
Eo

� v2o
2
¼ 1: ð4:135Þ

The probability density function for the velocity must be normalized.
d) The probability that a neutron loses between 1/4 and 1/2 its energy Eo in a

collision can be found by integrating the probability density function in
Eq. (4.132) between these two limits. However, by inspection of the flat
spectrum in Figure 4.5a one sees that this probability must be 1/4.

e) The probability that the struck proton acquires a velocity between 1/4 and
1/2 that of the original neutron, vo, can be found by integrating the
probability density function (4.133):

Pr
vo
4
� V <

vo
2

� �
¼ M

Eo

ðvo=2
vo=4

v dv ¼ M
2Eo

v2o
4
� v2o
16

� �
¼ 3Mv2o

32Eo

¼ 3
16

: ð4:136Þ

Transformations do not alter the general conditions on probability density func-
tions. Two quick checks are often useful to see whether calculated transformations
meet these conditions. The transformed probability density must be nonnegative
everywhere, and the new density function must integrate to unity. These conditions
are readily seen in the last example.

Transformations formore than one variable can also be performed. The interested
reader can find multivariable transformations discussed in the books by Hogg and
Craig (1978) and by Taylor (1974) listed in the Bibliography.

4.8
Bayes� Theorem

We next extend Bayes� theorem for discrete events to continuous random variables.
In place of the discrete event B and the partitioning Aj of the sample space in
Eq. (3.44), we consider a continuous random variable X, having a probability density
function f(x) that also depends on another variable H. We denote the conditional

82j 4 Probability Distributions and Transformations



probability density function ofX givenH as f(x|y) and the probability density function
ofH as g(y). In analogy with Eq. (3.44), we can write Bayes� theorem for continuous
random variables as follows. For every x such that f(x)> 0 exists, the probability

q

f(q)

0

(a)

Eo

 1 
Eo

∆q

v

g(v)

0

(b)

vo

∆v

Figure 4.5 Normalized probability density functions (a) f(q) for the energy lossQ by a neutron and
(b) g(v) for the recoil velocity V of the struck proton in the collision of a fast neutron with a proton.
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density function of H given X¼ x is

f ðyjxÞ ¼ f ðx; yÞ
f ðxÞ ¼ f ðxjyÞgðyÞ

f ðxÞ ¼ f ðxjyÞgðyÞÐ
f ðxjyÞgðyÞdy : ð4:137Þ

The denominator is the marginal probability density function of X (Section 4.4).
The statement (4.137) for continuous random variables can be compared directly
with Eq. (3.44) for discrete events.

Chapter 15 on Bayesian analysis will show applications of Bayes� theorem in the
form Eq. (4.137). In that context, g(y) is referred to as the prior probability density
function of H, and g(y|x) is called the posterior probability density function of H. In
contrast to classical methods, Bayesian analysis offers an alternative – and concep-
tually different – basis for making statistical inferences.

Problems

4.1 An experiment has exactly four possible outcomes: E1, E2, E3, and E4. Check
whether the following assignments of probabilities are possible and state why
or why not:
a) Pr(E1)¼ 0.26, Pr(E2)¼ 0.24, Pr(E3)¼ 0.17, Pr(E4)¼ 0.33.
b) Pr(E1)¼ 0.27, Pr(E2)¼ 0.31, Pr(E3)¼ 0.26, Pr(E4)¼ 0.17.
c) Pr(E1)¼ 0.08, Pr(E2)¼ 0.57, Pr(E3)¼�0.08, Pr(E4)¼ 0.43.
d) Pr(E1)¼ 1.01, Pr(E2)¼ 0.01, Pr(E3)¼ 0.04, Pr(E4)¼ 0.31.

4.2 Show that the function

f ðxÞ ¼
2x

nðnþ 1Þ ; x ¼ 1; 2; . . . ; n

0; elsewhere;

8<
:

satisfies Eqs. (4.2) and (4.3) and hence can be called a probability distribution.
4.3 Using the probability function in the last problem, calculate its (a) mean and

(b) variance.
4.4 Use the probability function from Problem 4.2.

a) Determine the cumulative probability function for arbitrary n.
b) Plot the cumulative function for n¼ 5.

4.5 Verify Eq. (4.12).
4.6 Verify Eq. (4.13).
4.7 A continuous random variable X has the density function

f ðxÞ ¼ 6xð1� xÞ; 0 < x < 1;
0; elsewhere:

�

a) Determine the cumulative distribution function.
b) Plot both the density function and the cumulative distribution function.
c) Determine Pr(0.2<X< 0.6) by straightforward integration.
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d) Determine Pr(0.2<X< 0.6) by using the cumulative distribution function
and Eq. (4.13).

4.8 A continuous random variable X has the following probability density
function:

f ðxÞ ¼ 4x e�2x; 0 < x < 1;
0; elsewhere:

�

a) Plot f(x).
b) Determine the cumulative distribution function, F(x), and plot it.
c) Obtain the expected value of X and locate it on the plots in parts (a) and (b).

4.9 In a sample offive urine specimens, letXdenote the numbers that are found to
contain reportable activity. If we assume that the specimens are independent
and that the probability of being found radioactive is 0.05 for each, then X
follows the binomial distribution.
a) Show that the probability distribution for X is

PrðX ¼ xÞ ¼
5
x

� �
0:05ð Þx 0:95ð Þ5�x; for x ¼ 0; 1; 2; . . . ; 5;

0; elsewhere:

8<
:

Graph the probability distribution.
b) What is the probability of observing at most two radioactive specimens?
c) What is the expected value of X? Explain what this value means. Can X

have this value?
d) Plot the cumulative distribution function for X.

4.10 Verify Eq. (4.38).
4.11 The single-parameter (l> 0) exponential distribution is often used to model

the lifetime X (or time to failure) of an item:

f ðxÞ ¼ l e�lx; for x > 0
0; elsewhere:

�

The expected value of the lifetime is the reciprocal of the parameter l: E(X)¼
1/l (cf. Eq. (4.38)).
a) A manufacturer claims that his light bulbs have a expected life of 2000 h.

Assuming that the exponential distribution is an adequate representation
of the length-of-life distribution for the bulbs, determine the probability
that a given bulb will last more than 2400 h.

b) Determine the lifetime that only 5% of the bulbs will exceed.
c) What is the probability that a light bulbwill last at least 1800 h, but notmore

than 4000 h?
d) Find the cumulative distribution function for the model.
e) Check your answer to part (c) by using the cumulative distribution.
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4.12 For a continuous random variable X, show that E(|X� v|) has its minimum
value when v is the median of the distribution.
(Hint: Write

uðvÞ ¼ EðjX � vjÞ ¼
ð1

�1
jx � vjf ðxÞdx

¼
ðv

�1
ðv� xÞf ðxÞdxþ

ð1
v

ðx � vÞf ðxÞdx:

Solve du/dv¼ 0 for v, taking into account the fact that the variable v appears in
the limits of integration as well as in the integrands.)

4.13 In place of Eq. (4.46), one can consider the mean squared deviation from an
arbitrary value v of a continuous random variable X. Show that E[(X� v)2] has
its minimum value when v is the mean of the distribution.

4.14 Verify Eq. (4.50).
4.15 Show that the marginal distribution (4.68) is a true probability function.
4.16 Verify that the marginal density function on X2 from Eq. (4.70) is given by

Eq. (4.72).
4.17 The random variables X1 and X2 have the following joint probability distri-

bution:

x1 ¼ 1 2 3 1 2 3 1 2 3

x2 ¼ 1 1 1 2 2 2 3 3 3

f ðx1; x2Þ ¼ 0
1
6

1
12

0
1
5

1
9

2
15

1
6

5
36

9>>>>>>=
>>>>>>;
:

a) Find the marginal distribution of X1.
b) Find the marginal distribution of X2.
c) Are X1 and X2 independent random variables? Why or why not?
d) Find Pr(X2¼ 3|X1¼ 2).

4.18 Let X1 and X2 be the larger and smaller, respectively, of the two numbers
showing when a pair of fair dice is thrown.
a) Find the joint distribution of X1 and X2.
b) Obtain the marginal distributions on X1 and on X2.
(Hint: List all possibilities in a table and find the ones that are possible for X1

and X2, with X1 � X2.)
4.19 The random variables X1 and X2 have the following joint probability

density:

f ðx1; x2Þ ¼
2
3
ðx1 þ 2x2Þ; 0 � x1 � 1; 0 � x2 � 1

0; elsewhere:

8<
:
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a) Find the marginal density on X1.
b) Find the marginal density on X2.
c) Are X1 and X2 independent? Why or why not?
d) Calculate Pr(X1<X2).

4.20 The random variables X1 and X2 denote the lifetimes in years of two electronic
components, having the following joint density:

f ðx1; x2Þ ¼ 2e�x1�2x2 ; x1 > 0; x2 > 0;
0; elsewhere:

�

a) Determine the marginal density on X1.
b) Determine the marginal density on X2.
c) Show that X1 and X2 are independent.
d) Use the results from (a), (b), and (c) to calculate Pr(X1> 1, X2< 2).

4.21 A company produces blended oils, each blend containing various proportions
of type A and type B oils, plus others. The proportions X and Yof types A and B
in a blend are random variables, having the joint density function

f ðx; yÞ ¼ 24xy; 0 < x � 1; 0 < y � 1; xþ y � 1
0; elsewhere:

�

a) Obtain the marginal probability densities on X and Y.
b) For a given can of oil, find the probability that type A accounts for over

one-half of the blend.
c) If a given can of oil contains 3/4 of type B oil, find the probability that the

proportion of type A will be less than 1/8.
4.22 Given the joint density function

f ðx; yÞ ¼
1
27

ð7� x � yÞ; 0 < x < 3; 1 < y < 4

0; elsewhere:

8<
:

a) Find the marginal densities on X and Y.
b) Obtain the conditional probability density of Y given X.
c) Using the result from part (b), compute Pr(1 � Y � 3|X¼ 2).

4.23 Show that Eq. (4.83) follows from the definition (4.82) of covariance.
4.24 After Eq. (4.88), show that s2

2 ¼ 295/256.
4.25 Prove the theorem (4.93).
4.26 For independent random variables, show that Eq. (4.101) follows from

Eq. (4.100).
4.27 Following Eq. (4.108), show that s2

2 ¼ 11/144.
4.28 If it is known that X has a mean of 25 and a variance of 16, use Chebyshev�s

inequality to obtain
a) a lower bound for Pr(17<X< 33)
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(Hint: Chebyshev�s inequality, Eq. (4.115), states that Pr(|X�m|� ks) � 1/k2;
and so the complementary event yields Pr(|X�m|< ks) � 1� 1/k2.)
and
b) an upper bound for Pr(|X� 25| � 14).

4.29 If E(X)¼ 10 and E(X2)¼ 136, use Chebyshev�s inequality to obtain
a) a lower bound for Pr(�2<X< 22) and
b) an upper bound for Pr(|X� 10| � 18).

4.30 Let X be uniformly distributed over the open interval (0, 1).
a) Determine the distribution of Y¼X 3.
b) Calculate E(Y).
c) Use Eq. (4.30) to obtain E(Y)¼E(X 3) directly from the density function

on X.
4.31 A continuous random variable X has a probability density function fX(x) and

cumulative distribution function FX(x). Consider the transformation Y¼X2.
For y< 0, the set {x: x2 � y} is the empty set of real numbers. Consequently,
FY(y)¼ 0 for y< 0. For y � 0,

FY ðyÞ ¼ PrðY � yÞ ¼ PrðX 2 � yÞ ¼ Prð� ffiffiffi
y

p � X � ffiffiffi
y

p Þ
¼ FX ð ffiffiffi

y
p Þ � FX ð� ffiffiffi

y
p Þ:

Show that the probability density for Y is given by

fY ðyÞ ¼
1

2
ffiffiffi
y

p fX
ffiffiffi
y

p þ fX ð� ffiffiffi
y

p Þ
 �
; for y � 0

0; for y < 0:

8<
:

4.32 A random variable X has the following density function:

fX ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p e�x2=2; �1 < x < 1:

Obtain the probability density for the random variable Y¼X2 by using the
result of the last problem. (Note: The random variable X has the density
function associated with a normal random variable with zero mean and unit
variance. The distribution on Y is that of a chi-squared variable with degrees
of freedom equal to unity. The chi-squared distribution is discussed in
Section 6.8.)

4.33 The distribution of temperatures X in degrees Fahrenheit of normal, healthy
persons has a density function approximated by

f ðxÞ ¼ 1

2
ffiffiffi
p

p e�ð1=4Þðx�98:6Þ2 ; �1 < x < 1:

Find the density function for the temperature Y¼ 5(X� 32.0)/9, measured in
degrees centigrade.

88j 4 Probability Distributions and Transformations



4.34 Show that the probability density function (4.131) integrates to unity.
4.35 For the example involving the probability density function (4.132), calculate, as

functions of Eo,
a) the expected value of the proton recoil energy and
b) the variance of the proton recoil energy.

4.36 Repeat the last problem for the proton recoil velocity, rather than the energy.
4.37 With reference to the last two problems, show that the ratio of (1) the expected

value of the proton recoil velocity and (2) the velocity corresponding to the
expected value of the proton recoil energy is 2

ffiffiffi
2

p
=3¼ 0.943. Why are the two

velocities not equal?
4.38 What is the median proton recoil velocity for the distribution given by

Eq. (4.133)?
4.39 Apoint source emits radiation isotropically, that is, uniformly in all directions

over the solid angle of 4p steradians. In spherical polar coordinates (y, j),
where y andj are, respectively, the polar and azimuthal angles, the probability
for isotropic emission into the solid angle dy dj is

pðy;jÞdj dy ¼
1
4p

sin y dy dj; 0 � y < p; 0 � j < 2p

0; elsewhere;

8<
:

where p(y, j) is the probability density function.
a) Show that the density function for emission at a polar angle 0� y<p is

(1/2)sin y and zero elsewhere.
b) How is the answer to (a) related to the marginal density function on y?
c) Find the cumulative density function for emission at a polar angle not

exceeding y.
d) Derive the expression given above for the probability density function

p(y, j) and show that it is normalized.
4.40 If H is uniformly distributed on (�p/2, p/2), show that Y¼ tan H has the

density function

f ðyÞ ¼ 1
pð1þ y2Þ ; �1 < y < 1:

The random variable Ysatisfies this Cauchy distribution, and has the property
that its mean as well as all higher moments are infinite. Graphically, it is
similar to the normal distribution, except that its tails are much thicker,
leading to its infinite mean. The Student�s distribution with one degree of
freedom has the Cauchy distribution (Section 6.9).
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5
Discrete Distributions

5.1
Introduction

Having laid the foundation of probability theory, essential to the application of
statistics, we now focus on specific probability distributions that are capable of
describing many practical applications. The exponential function and the binomial
distribution were employed in Chapter 2 for computations of radioactive disinte-
gration. We shall discuss other models that provide useful approximations to
observed data. As we shall see, a variety of probability distributions, characterized
by a few parameters, describe many phenomena that occur naturally. We treat
discrete probability distributions in this chapter and continuous distributions in
Chapter 6. Additional discrete distributions are discussed in Johnson et al. (2005).

5.2
Discrete Uniform Distribution

The discrete uniform distribution describes a case in which the probability is the same
for all values that a discrete random variable can take on. The gambler�s roulette
wheel provides an example. It has 38 identical holes, designated 1–36, 0, and 00. If the
wheel is balanced and the ball is rolled in a fair way, then all 38 holes have the same
chance of being the one in which the ball will land. The discrete uniform distribution
is then a good model for describing the probability of landing on any given number
1–36, 0, or 00. When the random variable X takes on the k values x1, x2, . . ., xk with
equal likelihood, the discrete uniform distribution is given by writing

PrðX ¼ xÞ ¼ 1
k
; for x ¼ x1; x2; . . . ; xk: ð5:1Þ

Other examples of the discrete uniform distribution occur in tossing a fair die,
randomly drawing a card from a deck, and randomly drawing a number from a hat.
The discrete uniformdistribution is often ascribed to a random sample drawn from a

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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population, when the assumption is made that each sample point is chosen with
equal probability.

Similar ideas apply to continuous uniform random variables, as described in
Section 6.2. In principle, a computer random number generator produces a uniform
distribution of numbers 0< r� 1.However, because of their finite precision, digital
computers generate a discrete distribution of pseudorandomnumbers, ideally with
a uniform distribution.

& Example
A hat contains 50 identical pieces of paper, each marked with a different
integer from 1 to 50. Let X denote the number on a piece of paper drawn
randomly from the hat. Determine the expected value and variance of X.

Solution
The appropriate probability model for this experiment is the discrete uniform
distribution, for which X takes on the values x from 1 to 50 with probability
distribution given by

PrðX ¼ xÞ ¼ 1
50

; for x ¼ 1; 2; . . . ; 50: ð5:2Þ

The expected value for X is, from Eq. (4.27),

EðXÞ ¼
X50
i¼1

xiPrðxiÞ ¼
X50
i¼1

i
1
50

¼ 1
50

X50
i¼1

i ¼ 1
50

� 1þ 50
2

� 50

¼ 51
2
: ð5:3Þ

The variance canbe obtained by usingEq. (4.48). The sumof the squares of the
first k integers is k(k þ 1)(2k þ 1)/6, and so E(X2)¼ (k þ 1)(2k þ 1)/6. Thus,
from Eq. (4.48), we find

s2
X ¼ ð51Þð101Þ

6
� 51

2

� �2

¼ 858:50�650:25 ¼ 208:25: ð5:4Þ

5.3
Bernoulli Distribution

A statistical experiment can consist of repeated, identical, independent trials,
each trial resulting in either one or another of only two possible outcomes,
which can be labeled �success� or �failure.� When independent trials have two
possible outcomes and the probability for success or failure remains the same
from trial to trial, the experiment is termed a Bernoulli process. Each trial is called
a Bernoulli trial.

One can formally describe the probability distribution for Bernoulli trials. We let X
denote a Bernoulli random variable and arbitrarily assign the value 1 to success and
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the value 0 to failure. Then, if p is the probability of success, we write for theBernoulli
distribution,

PrðX ¼ xÞ ¼ pxð1�pÞ1�x; for x ¼ 0; 1: ð5:5Þ
We see that the probability for success in a given trial is then Pr(X¼ 1)¼ p, and that
for failure is Pr(X¼ 0)¼ 1� p.

A familiar example of Bernoulli trials is the repeated tossing of a coin. The coin toss
is considered fair if the probability of either side landing face up is exactly 1/2. In this
case, p¼ 1/2, irrespective of whether heads or tails is regarded as success. It follows
from Eq. (5.5) that Pr(X¼ 0)¼Pr(X¼ 1)¼ 1/2. As long as each toss is independent
of the others and the probability of a given side landing face up is constant (not
necessarily 1/2), then repeated tosses of the coin constitute a series of independent
Bernoulli trials.

& Example
A biased coin, which turns up heads (H) with probability 0.7, is tossed
five times in succession. Determine the probability of obtaining the sequence
H, H, T, H, T in five tosses.

Solution
The Bernoulli probability model is appropriate for this experiment. Letting Xi

(i¼ 1, 2, . . ., 5) denote the outcomes of each toss, whereXi¼ 0 if heads appears
on the ith toss, then we desire

PrðX1 ¼ 0;X2 ¼ 0;X3 ¼ 1;X4 ¼ 0;X5 ¼ 1Þ
¼ ð0:7Þð0:7Þð0:3Þð0:7Þð0:3Þ ¼ ð0:7Þ3ð0:3Þ2 ¼ 0:0309:

ð5:6Þ

5.4
Binomial Distribution

The binomial distribution was introduced in Section 2.5 to describe the number of
atoms that decay in a given period of time from a radioactive sourcewith afixed initial
number of identical atoms. This distribution is a model for statistical experiments in
which there are only two possible outcomes. In Chapter 2, the alternatives for each
atom in the source were to �decay� or �not decay,� which we described there as
�success� or �failure,� respectively. The following set of statements formalizes the
specific conditions that lead to the binomial distribution.

A binomial experiment consists of a number n of repeated Bernoulli trials made
under the following conditions:

1) The outcome of each trial is either one of two possibilities, success or failure.
2) The probability of either outcome is constant from trial to trial.
3) The number of trials n is fixed.
4) The repeated trials are independent.
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A binomial experiment of n trials can be repeated over and over. The number of
successes in a given experiment is thus itself a random variable, taking on the
discrete, integral values 0, 1, 2, . . ., n. If p represents the probability of success in an
individual trial and 1� p the probability of failure, then the number of successes X
has the binomial distribution with parameters n and p. We write

PrðX ¼ xÞ ¼ bðx; n; pÞ ¼ n
x

� �
pxð1�pÞn�x; for x ¼ 0; 1; . . . ; n; ð5:7Þ

where

n
x

� �
¼ n!

x!ðn�xÞ! : ð5:8Þ

With slightly different notation, Eq. (5.7) is the same as Eq. (2.37) in Chapter 2. It
represents the number of combinations of n things taken x at a time. It can also be
thought of as the number of ways we can partition n objects into two groups, one
containing x successes and the other (n� x) failures. In the above notation, b(x; n, p)
denotes the probability that the binomial random variable takes on the value x (i.e.,
one observes x successes), when there are n trials and the probability of success on
any trial is p.

We shall use the notation B(r; n, p) to denote the cumulative binomial distribution,
that is, the probability Pr(X� r) of observing r or fewer successes in n trials, where the
probability of success on any trial is p. We write

Bðr; n; pÞ ¼ PrðX � rÞ ¼
Xr
x¼0

bðx; n; pÞ; ð5:9Þ

where b(x; n, p) is given by Eq. (5.7). The cumulative binomial distribution is
tabulated in Table A.1 in the Appendix for selected values of r, n, and p. One is
frequently interested in the probability Pr(X> x) that the binomial random variable
has a value greater than x. From Eq. (4.6) it follows that Pr(X> r)¼ 1�B(r; n, p). Also,
since the cumulative distribution gives the values for Pr(X� r), individual proba-
bilities b(x; n, p) can be obtained by subtracting values of B(r; n, p) for successive
values of r. Thus, from Eq. (4.7),

PrðX ¼ rÞ ¼ Bðr; n; pÞ�Bðr�1; n; pÞ: ð5:10Þ
These uses of Table A.1 are illustrated in the examples that follow and in the
problems at the end of the chapter.

Comparison of Eqs. (5.7) and (5.5) shows that the binomial model becomes the
same as the Bernoulli model when the number of trials is n¼ 1 (Problem 5.4). This
fact can be used to calculate themean and variance of the binomial distribution, aswe
shownext. (Themean and variance can also be found directly by using the probability
distribution (5.7) (Problem 5.10).) Since each trial is a Bernoulli trial, we can regard
the binomial distribution as the result of summing the outcomes of n individual
Bernoulli trials. We let X1, X2, . . ., Xn denote the consecutive outcomes of each
Bernoulli trial, each Xi having the value 0 or 1, according to whether a failure or
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success occurred. Then, if X denotes the number of successes in n trials, we have

X ¼
Xn
i¼1

Xi : ð5:11Þ

Since the Xi are independent random variables, we may write for the mean

EðXÞ ¼ E
Xn
i¼1

Xi

 !
¼
Xn
i¼1

EðXiÞ: ð5:12Þ

Since each Xi takes on the value 0 with probability (1� p), and the value 1 with
probability p, its expected value is E(Xi)¼ p (Problem 5.3). Therefore, we obtain for
the mean of the binomial distribution,

EðXÞ ¼
Xn
i¼1

EðXiÞ ¼ np: ð5:13Þ

For the variance of each Xi, we have, with the help of Eqs. (4.47) and (4.48),

VarðXiÞ ¼ E½ðXi�pÞ2� ¼ EðX2
i Þ�p2 ¼ ð0Þ2ð1�pÞþ ð1Þ2p�p2

¼ pð1�pÞ: ð5:14Þ

Thus, the variance of the binomial distribution is given by

VarðXÞ ¼ Var
Xn
i¼1

Xi

 !
¼
Xn
i¼1

VarðXiÞ ¼ npð1�pÞ: ð5:15Þ

We see from Eq. (5.13) that the mean of the binomial distribution is simply the
proportion p of the total number of n trials that are successes. On the other hand,
the expression (5.15) for the variance, which is a measure of the spread of the
distribution, is not intuitively apparent.

& Example
Tomonitor for possible intakes of radioactivematerial, the urine of radiation
workers is sometimes tested by counting for high radiation content. At a
certain installation, the probability that the test procedure will falsely declare
a high content for an individual�s specimenwhen it should not is 0.10. In one
survey, specimens from a group of 20 workers are counted, and 5 are found
to score in the high range. Could this finding be a random occurrence, or is
there reason to be concerned that some individuals in the group have
elevated intakes?

Solution
The observed result of 5 high out of 20 tested appears to be rather large, if
some individuals in the group did not, in fact, experience elevated intakes.
One way to gauge this frequency is to look at how far the observed number is
from themean, asmeasured by the standard deviation. The testing procedure
meets the conditions of a binomial experiment, in which n¼ 20 and p¼ 0.10
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is the probability that an individual outcome is declared �high� when it should
not be, the alternative being �not high.� From Eq. (5.13), the expected value of
the number of tests declared high, when they should not be so declared, is 20
(0.10)¼ 2. We are asked whether the observed result, 5� 2¼ 3 more than the
mean, is too large a deviation to expect. FromEq. (5.15), the variance is 20(0.10)
(0.90)¼ 1.80, and so the standard deviation is

ffiffiffiffiffiffiffiffiffi
1:80

p ¼ 1:34. The observed
result is thus 3/1.34¼ 2.24 standard deviations beyond themean. Chebyshev�s
inequality, Eq. (4.115), provides a rigorous upper bound to the probability for
theoccurrenceof this result. It follows fromEq. (4.115) that theprobability isno
larger than 1/k2¼ 1/(2.24)2¼ 0.199. Since Chebyshev�s inequality is usually
very imprecise (it applies to any distribution), the actual probability is pre-
sumably considerably less than 20%. Based on this evidence, we should
suspect that finding 5 false high specimens is not just a random occurrence
among 20 unexposed individuals. While the application of Chebyshev�s
inequality is of some use, it is not decisive in this example. We can, however,
find the actual probability from the binomial distribution, as we do next.

We let X be the number of specimens that the procedure declares to have
high radiation content when they should not. Then Eq. (5.7) gives the
probability Pr(X¼ x)¼ b(x; n, p) of observing exactly x high results. Our
concern is whether any result as large as 5 should occur randomly in the
absence of elevated intakes. Therefore, we evaluate the probability for X� 5.
The evaluation can be conveniently carried out with the help of the cumulative
binomial distribution function. As discussed in the paragraph following
Eqs. (5.7) and (5.8), we can use Table A.1 to write

PrðX � 5Þ ¼
X20
x¼5

bðx; 20; 0:10Þ ¼ 1�Bð4; 20; 0:10Þ ¼ 1�0:957

¼ 0:043: ð5:16Þ

Thus, it would be rare to find five or more high results in the group, if no
individuals had experienced elevated intakes. The evidence strongly suggests
that elevated intakes might have occurred and thus been detected. Additional
measurements are called for. Also, the analytical procedures could be checked
for possible errors.

We note in this example that the probability of finding exactly five high results is, of
itself, not as significant as finding any number as large as five. Therefore, our
judgment is based on the value of Pr(X� 5) rather than Pr(X¼ 5).

& Example
In the last example with 20 specimens,

a) What is the probability that exactly five specimens falsely show high
radiation content?

b) What is the probability that at most two specimens will falsely read high?
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c) What is the probability that between two and five specimens will falsely
read high?

Solution
a) The first question asks for

PrðX ¼ 5Þ ¼ bð5; 20; 0:10Þ ¼ Bð5; 20; 0:10Þ�Bð4; 20; 0:10Þ
¼ 0:989�0:957 ¼ 0:032: ð5:17Þ

(This quantity can also be computed directly from Eq. (5.7).) Comparison
with Eq. (5.16) shows that Pr(X� 5) is about half again as large as the
probability of finding exactly five high readings.

b) The probability for at most two false high readings is

PrðX � 2Þ ¼ Bð2; 20; 0:10Þ ¼ 0:667; ð5:18Þ
where, again, we have employed Table A.1.

c) The probability that between two and five specimens are falsely
declared as high is conveniently found as the difference in the values
from Table A.1:

X4
x¼3

bðx; 20; 0:10Þ ¼ Bð4; 20; 0:10Þ�Bð2; 20; 0:10Þ ¼ 0:957�0:677 ¼ 0:280:

ð5:19Þ

Answers like (a)–(c) would be likely to occur in the absence of elevated
intakes.

& Example
Use the cumulative distribution to calculate the probability that exactly five
persons will be falsely declared high in the last examples when the
probability of that happening for an individual is 0.50 and the group
size is 20.

Solution
The solution we desire is b(5; 20, 0.5), which we are asked to evaluate from the
cumulative distribution, rather than directly fromEq. (5.7). To do this,weneed
to subtract B(4; 20, 0.5) from B(5; 20, 0.5). Using Table A.1, we obtain

bð5; 20; 0:50Þ ¼ Bð5; 20; 0:50Þ�Bð4; 20; 0:50Þ ¼ 0:021�0:006
¼ 0:015: ð5:20Þ

(Alternatively, Eq. (5.7) yields the result 0.014785. . ..)

Similarly, to calculate the probability that the random variable lies in any interval,
we simply subtract the two table values for that interval.
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& Example
Determine the probability that anywhere from 4 to 10 false high results would
be observed in a group of 20, when the probability is 0.10 for a single
specimen.

Solution
In this case, from Table A.1,

Prð4 � X � 10Þ ¼ Bð10; 20; 0:10Þ�Bð3; 20; 0:10Þ
¼ 1:000�0:867 ¼ 0:133: ð5:21Þ

5.5
Poisson Distribution

In his lifetime, Poisson (Figure 5.1) made a number of fundamental contributions to
mathematics and physics. One of the most remarkable statistical distributions in
these fields bears his name. The Poisson distribution describes all random processes
that occur with a probability that is both small and constant. As such, it finds an

Figure 5.1 Sim�eon-Denis Poisson (1781–1840), French mathematician and teacher, did
pioneering work on definite integrals, electromagnetic theory, mechanics, and probability
theory. (Courtesy of Académie des sciences Institut de France.)

98j 5 Discrete Distributions



enormous variety of applications. It describes the statistical fluctuations in such
phenomena as radioactive decay for long-lived nuclides, the number of traffic
accidents per week in a city, the number of skunks per acre in a rural county on
a summer day, and the number of calvary men killed annually in an army by mule
kicks. These and many other observations have in common the counting of random
events that occur in a specified time or place at a constant average rate. The Poisson
distribution was originally worked out as an approximation to the binomial under
certain circumstances. We shall first present this derivation of the Poisson distri-
bution and, later in this section, derive it from first principles.

As with the binomial experiment in the last section, a particular set of conditions
constitutes a Poisson process.

A Poisson process has the following properties:

1) The number of successes in one interval of time or space is independent of the
number that occur in any other disjoint interval. (In other words, the Poisson
process has no memory.)

2) The probability of success in a very small interval is proportional to the size of the
interval.

3) The probability that more than one success will occur in such a small interval is
negligible.

There are similarities as well as differences between the binomial and Poisson
experiments.

We next show that the binomial distribution (5.7), in a particular limit of large n,
yields a distribution for which the conditions of the Poisson process are satisfied.
Starting with Eqs. (5.7) and (5.8), we write

bðx; n; pÞ ¼ nðn�1Þ � � � ðn�xþ 1Þ
x!

pxð1�pÞn�x: ð5:22Þ

We consider an experiment in which events take place at a constant mean rate, l,
over a time interval, t, of any size. An example of such an experiment is the
recording of counts from a long-lived radionuclide, in which case m¼ lt is the
expected value of the number of counts in time t. We divide t into a large
number n of equal subintervals of length t/n. By making n very large, we assume
that the probability of recording two or more counts in an interval can be made
negligible (property 3, above). Furthermore, whether an event happens in one
subinterval is independent of whether an event has happened in any other
subinterval (property 1). The probability of registering an event in a given
subinterval is then given by p¼ l(t/n)¼m/n (property 2). Substituting p¼m/n
into Eq. (5.22) gives

bðx; n; pÞ ¼ nðn�1Þ � � � ðn�xþ 1Þ
x!

m

n

� �x
1� m

n

� �n�x
ð5:23Þ

¼ 1� 1
n

� �
1� 2

n

� �
� � � 1� x�1

n

� �
mx

x!
1� m

n

� �n�x
: ð5:24Þ

5.5 Poisson Distribution j99



To preserve the conditions applicable to the Poisson experiment, we evaluate
Eq. (5.24) in the limit where n ! 1, p ! 0, and m¼ np remains constant. All of
the (x� 1) multiplicative factors in front on the right-hand side approach unity as
n ! 1. We obtain a new distribution p(x; m), which depends only upon x and m:

pðx; mÞ ¼ lim
n!1 bðx; n; pÞ ¼ mx

x!
lim
n!1 1� m

n

� �n
1� m

n

� ��x
: ð5:25Þ

The limit of the last factor here is also unity. The middle factor is just the definition
of e, the base of the natural logarithms, raised to the power �m:

lim
n!1 1� m

n

� �n
� e�m: ð5:26Þ

Therefore, Eq. (5.25) becomes

pðx; mÞ ¼ lim
n!1 bðx; n; pÞ ¼ mx e�m

x!
; ð5:27Þ

which is the Poisson distribution with parameter m¼ lt. It describes the probability
Pr(X¼ x) for the number of successes x that occur over an interval t at a constant
mean rate l per unit interval. As we show explicitly later in this section, E(X)¼m, as
we have already anticipated in deriving Eq. (5.27). Table A.2 in the Appendix gives
values of the cumulative Poisson distribution sums P(r; m)¼Pr(X� r) for selected
values of r and m. Equations exactly analogous to Eqs. (5.9) and (5.10) for the
binomial functions, b(x; n, p) and B(r ; n, p), apply to the Poisson functions, p(x; m)
and P(r; m).

As we showed in Chapter 2, the decay of a radionuclide is rigorously described by
the binomial distribution. If we deal with a long-lived source, then the average rate of
decay over our observation time can be considered constant. Since only a small
fraction of the total number of atoms present decay over an observation period, and
since all of the atoms are identical and independent, the conditions of a Poisson
process are satisfied. Thus, we may use Eq. (5.27) in place of Eq. (5.7), if desired, to
describe the decay of long-lived radionuclides to a very good approximation. The
Poisson distribution is oftenmuchmore convenient than the binomial for numerical
computations when n is large and p is small.

Figure 5.2 shows a comparison of the binomial and Poisson distributions, having
the same mean m¼ pn¼ 10, in each panel, but with various values of p and n. The
steady merging of the binomial into the Poisson can be seen as one progresses
through larger values of n and smaller values of p. They are indistinguishable, for all
practical purposes, in the last panel.

Other comparisons in Figure 5.2 are instructive. Since the mean of the distribu-
tions stays fixed, the Poisson distribution itself is the same in each panel, while the
binomial changes. (Compare Eqs. (5.27) and (5.7).) Where the distributions
are clearly different, as in the first panel, the Poisson probabilities are smaller
than the binomial around the mean and larger in the wings of the distributions.
This is understandable, because the two distributions are normalized, and the
Poisson is positive for all nonnegative integers, whereas the binomial probabilities
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Figure 5.2 Comparison of binomial
(histogram) and Poisson (solid bars)
distributions, having the same mean m, but
different values of the sample size n and
probability of success p. The ordinate in each

panel gives the probability for the number
successes shown on the abscissa. Because m is
the same in each panel, the Poisson distribution
is the same throughout.
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span only the interval 0� x� n. (One cannot have more atoms decay than are
present!)

In anticipation of the use of the normal distribution for radioactive decay, we note
that the two distributions in Figure 5.2 merge into a bell-shaped form. This fact is a
result of n becoming relatively large (1000) in the last panel. In contrast, in Figure 5.3,
n¼ 100 throughout, with p changing from 0.90 to 0.01. The mean thus shifts to
smaller values as one progresses through the figure. The two distributions virtually
coincide in the last panel, but not into a bell-shaped form. The first panel also
illustrates clearly how the nonzero probabilities for the Poisson distribution can
extend well beyond the limit (n¼ 100 in this instance) after which the binomial
probabilities are identically zero.

& Example
A long-lived radionuclide being monitored shows a steady average decay rate
of 3min�1.

a) What is the probability of observing exactlyfive decays in any givenminute?
b) What is the probability of observing 13 or more decays in a 5-min period?

Solution

a) Since we deal with a long-lived source, we may employ the Poisson
formula (5.27). (In fact, we cannot use the binomial formula (5.7), because
we are not given values for p and n. Only themean decay rate, l¼ 3min�1,
is specified.) In an interval of t¼ 1min, themean number of counts would
be m¼ lt¼ 3min�1� 1min¼ 3. For X¼ 5, Eq. (5.27) then gives

PrðX ¼ 5Þ ¼ pð5; 3Þ ¼ 35e�3

5!
¼ 0:101: ð5:28Þ

b) For the 5-min interval, m¼ 3min�1� 5min¼ 15. With the help of the
cumulative Poisson distribution in Table A.2, we find

PrðX � 13Þ ¼
X1
x¼13

15xe�15

x!
¼ 1�Pð12; 15Þ ¼ 1�0:268

¼ 0:732: ð5:29Þ

This example illustrates an important aspect of the Poisson process. The 5-min
interval in part (b) can be considered as the sum of five 1-min intervals as in part (a).
The sum of identically distributed Poisson random variables is also Poisson dis-
tributed with parameter equal to the sum of the parameters for each of the individual
distributions.

& Example
A certain particle counter, which locks when more than four particles enter it
in a millisecond, is used to monitor a steady radiation field. If the average
number of particles entering the counter is 1.00ms�1, what is the probability
that the counter will become locked in any given millisecond?
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Figure 5.3 Comparison of binomial
(histogram) and Poisson (solid bars)
distributions for fixed sample size, n¼ 100, and
different values of the probability of success p.

The ordinate in each panel gives the probability
for the number successes shown on the
abscissa. The mean of the two distributions in a
given panel is the same.
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Solution
We let X denote the number of particles entering the counter in amillisecond.
For the rate of incidence l¼ 1ms�1 and time t¼ 1ms, X has the Poisson
distribution with parameter m¼ lt¼ 1ms�1� 1ms¼ 1. The counter locks
when X> 4 in this interval. With the help of Table A.2, we find

PrðX > 4Þ ¼
X1
k¼5

1ke�1

k!
¼ 1�Pð4; 1Þ ¼ 1�0:996 ¼ 0:004: ð5:30Þ

Wenext derive the Poisson distribution function fromfirst principles, based on the
Poisson process, rather than a limiting case of the binomial distribution. If l is the
(constant) average rate that events occur, then the averagenumber that happenduring
a time t ism¼ lt.We let px(t) denote the probability that exactlyX¼ x events happen in
t. During a very short subsequent time Dt between t and t þ Dt, the probability that
an event occurs is lDt, and the probability that no event occurs is 1� lDt. (The
probability for more than one event to happen in Dt is, by the conditions of the
Poisson process, negligible.) The probability that X¼ x events happen over the entire
time t þ Dt is the sum of the probabilities (1) for having (x� 1) events in t and one
event inDt and (2) for having x events in t andnone inDt. This is expressed bywriting

pxðtþDtÞ ¼ px�1ðtÞlDtþ pxðtÞð1�lDtÞ; ð5:31Þ
or

pxðtþDtÞ�pxðtÞ
Dt

¼ l px�1ðtÞ�pxðtÞ½ �: ð5:32Þ

In the limit as Dt ! 0, the left-hand side of this equation is the derivative, dpx(t)/dt,
and so

dpxðtÞ
dt

¼ l px�1ðtÞ�pxðtÞ½ �: ð5:33Þ

Solution of a recurrence-type differential equation can often be facilitated by use of an
exponential integrating factor. Substituting a solution of the form

pxðtÞ ¼ qxðtÞe�lt ð5:34Þ
reduces Eq. (5.33) to

dqxðtÞ
dt

¼ lqx�1ðtÞ: ð5:35Þ

The solution is

qxðtÞ ¼ ðltÞx
x!

; ð5:36Þ

as can be seen by direct substitution:

dqxðtÞ
dt

¼ lxxtx�1

x!
¼ l

ðltÞx�1

ðx�1Þ! ¼ lqx�1ðtÞ: ð5:37Þ
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Combining Eqs. (5.34) and (5.36) gives

pxðtÞ ¼ ðltÞxe�lt

x!
; ð5:38Þ

which is the Poissondistributionwith parameterm¼ lt, as derived earlier (Eq. (5.27)).
We next show that the Poisson distribution function is normalized and then obtain

the expected value and variance. For the normalization, we return to Eq. (5.27) and
sum over all nonnegative integers. Thus,

X1
x¼0

pðx; mÞ ¼ e�m
X1
x¼0

mx

x!
¼ e�mem ¼ 1; ð5:39Þ

in which the sum is identically the power-series expansion of em.
The mean of the distribution is given by

EðXÞ ¼
X1
x¼0

xpðx; mÞ ¼
X1
x¼0

x
mxe�m

x!
¼ e�m

X1
x¼1

xmx

x!
¼ e�m

X1
x¼1

mx

ðx�1Þ! ; ð5:40Þ

where the zero contribution from x¼ 0 has been omitted in writing the third
summation. The quantity x is a dummy integer in these summations. Letting
x¼ y þ 1, we can transform the last summation in Eq. (5.40) in the following way
without changing the value of E(X):

EðXÞ ¼ m e�m
X1
x¼1

mx�1

ðx�1Þ! ¼ m e�m
X1
y¼0

my

y!
: ð5:41Þ

Again, as in Eq. (5.39), the summation is just em, leaving the important result that, for
the Poisson distribution,

EðXÞ ¼ m: ð5:42Þ
For the variance, Eq. (4.48), we need to evaluate E(X2):

EðX2Þ ¼
X1
x¼0

x2pðx; mÞ ¼ e�m
X1
x¼0

x2mx

x!
¼ e�m

X1
x¼1

x2mx

x!

¼ m e�m
X1
x¼1

xmx�1

ðx�1Þ! : ð5:43Þ

Letting x¼ y þ 1 again, we write (Problem 5.21)

EðX2Þ ¼ m e�m
X1
y¼0

ðyþ 1Þmy
y!

¼ m e�m
X1
y¼0

ymy

y!
þ my

y!

� �
¼ mðmþ 1Þ: ð5:44Þ

The last equality can be seen from the sums in Eqs. (5.40) and (5.41). Equation (4.48)
then gives

VarðXÞ ¼ EðX2Þ�m2 ¼ mðmþ 1Þ�m2 ¼ m: ð5:45Þ
The variance of the Poisson distribution is thus identical with its mean.
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& Example
A 1.00-nCi tritium source is placed in a counter having an efficiency of 39.0%.
Tritium is a pure beta emitter with a half-life of 12.3 y. If X is the number of
counts recorded in 5-s time intervals, find

a) E(X);
b) the distribution of X;
c) the standard deviation of X.

Solution
a) The observation time is negligibly short comparedwith the half-life, and so

wemay use Poisson statistics. Themean count rate mc is the product of the
mean disintegration rate l and the counter efficiency e:

mc ¼ le ¼ ð1� 10�9 CiÞ � ð3:70� 1010 s�1 Ci�1Þ � 0:390
¼ 14:4 s�1: ð5:46Þ

In 5-s intervals, the mean number of counts is

EðXÞ ¼ m ¼ mct ¼ 14:4 s�1 � 5 s ¼ 72:2: ð5:47Þ

b) The distribution of the number of counts in 5-s intervals is

PrðX ¼ xÞ ¼ 72:2xe�72:2

x!
: ð5:48Þ

c) From Eq. (5.45), Var(X)¼ 72.2, and so the standard deviation is
sc ¼

ffiffiffiffiffiffiffiffiffi
72:2

p ¼ 8:49:

In Chapter 7, we shall discuss the relative error, or ratio of the standard
deviation and the mean, in counting measurements. One can see from this example
how the relative error with a long-lived radionuclide decreases as a longer time
interval is used for taking a single count as an estimate of the mean. The ratio sc/m
varies as

ffiffiffiffi
lt

p
=ðltÞ ¼ 1=

ffiffiffiffi
lt

p
. Thus, when counting for a longer time, the relative error

decreases as the square root of the time.

5.6
Hypergeometric Distribution

We have seen that the binomial distribution results when one counts the number of
successes fromn independent trials, having only twopossible outcomes, inwhich the
probability of success p (or failure, 1� p) is constant each time. If a trial consists of
randomly selecting an object from a population of finite size, then the binomial
distribution results only when one returns the selected object to the population pool
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each time before making the next selection. This method of repeated sampling
with replacement from the finite population ensures that p is constant for each
independent trial.

Sampling from a finite population without replacement is a different, but related,
procedure. The probability of success on any given trial after thefirst then depends on
the particular outcomes of the previous trials. The resulting frequency distribution of
the number of successes is called the hypergeometric distribution. An example is
afforded by randomly drawing successive balls without replacement from an initial
collection of three white and seven black balls. We designate drawing a white ball as
success. The probability that the second draw will be a success depends on the result
of the first draw. If the first draw was a success, then the probability of success on the
second drawwill be 2/9; if the first ball was black, then 3/9 is the chance of success on
the second draw.

To describe the hypergeometric distribution formally, we let k denote the number
of elements to be regarded as successes in a population of size N. The number of
elements that are failures is then N� k. If we randomly sample n items from this
population without replacement, then the number of successes X has the hyper-
geometric distribution with probability function

PrðX ¼ xÞ ¼
k
x

� �
N�k
n�x

� �
N
n

� � ; x ¼ 0; 1; 2; . . . ;minðn; kÞ; ð5:49Þ

where min(n, k) denotes the smaller of the values, n and k. (The interested reader is
referred to pp. 81–82 of Scheaffer and McClane (1982), listed in the Bibliography,
for a derivation of the hypergeometric distribution.) It can be shown (Problem 5.22)
that the mean and variance are given by

EðXÞ ¼ nk
N

ð5:50Þ

and

VarðXÞ ¼ n
k
N

� �
N�k
N

� �
N�n
N�1

� �
: ð5:51Þ

The hypergeometric distribution is applied in quality control, acceptance testing, and
finite population sampling.

The relationship between the binomial and hypergeometric distributions can be
seen as follows. If we consider p¼ k/N as the proportion of successes, then Eq. (5.50)
is equivalent to the binomial mean, Eq. (5.13). The variances (5.51) and (5.15) are
equivalent except for the factor (N� n)/(N� 1), which is sometimes called the finite
population correction factor. If the population sizeN is large comparedwith the sample
sizen, thenwe can approximate thehypergeometric distributionwith the binomial by
using n and p¼ k/N as the binomial parameters.

5.6 Hypergeometric Distribution j107



& Example
A large, outdoor site is to be assessed for possible pockets of radioactive
contamination. In lieu of surveying the entire site, it is divided uniformly into
a grid of 100 squares, which can be individually monitored. The survey team
randomly selects 20 of the squares for a thorough search, which will detect
contamination, if present, with certainty. Unknown to the team, 10 of the
squares, also located randomly on the site, have contamination; the other 90
are clean.

a) What is the probability that the surveyors will find exactly three contam-
inated squares?

b) What is the probability that none of the 20 squares they have chosen will
have contamination?

Solution
a) The conditions can be modeled by the hypergeometric distribution, with

N¼ 100, k¼ 10, and n¼ 20. If X represents the number of contaminated
grid squares found in the survey, then from Eq. (5.49) we find

PrðX ¼ 3Þ ¼
10
3

� �
100�10
20�3

� �
100
20

� � ¼ 10!
3!7!

90!
17!73!

20!80!
100!

¼ 0:209: ð5:52Þ

b) With k¼ 0, we obtain from Eq. (5.49)

PrðX ¼ 0Þ ¼
10
0

� �
100�10
20�0

� �
100
20

� � ¼ 0:0951: ð5:53Þ

Thus, the chances are about 1 in 10 that the survey protocol would not
detect any of the 10 contaminated squares that are on the site.

& Example
Use the binomial approximation to the hypergeometric distribution to
obtain Pr(X¼ 3) in the last example. Compare the approximate and exact
solutions.

Solution
We let p¼ k/N¼ 10/100¼ 0.1 and n¼ 20. Then from Eq. (5.7) we write

PrðX ¼ 3Þ ffi bð3; 20; 0:1Þ ¼ 20
3

� �
ð0:1Þ3ð0:9Þ17 ¼ 0:190: ð5:54Þ
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The relative error in the binomial approximation is

0:209�0:190
0:209

¼ 0:0909; ð5:55Þ

and so the approximation is about 9% too low. This inaccuracy is not
surprising, however, because the finite population factor,

N�n
N�1

¼ 100�20
100�1

¼ 0:808; ð5:56Þ

differs significantly from unity.

& Example
In the last two examples, suppose the site consists of 10 000 uniform squares
and that the proportion of contaminated squares is the same as before, that
is, 10%, randomly distributed on the site. What is the probability of finding
three contaminated squares if, again, 20 randomly selected squares are
surveyed? How does the binomial approximation compare with the exact
answer in this case?

Solution
The hypergeometric distribution now has parameters k¼ 1000, N¼ 10 000,
and n¼ 20. Thus, from Eq. (5.49),

PrðX ¼ 3Þ ¼
1000
3

� �
10 000�1000

20�3

� �
10 000
20

� � ¼ 0:190: ð5:57Þ

The binomial approximation to thehypergeometric result is, as before, b(20, 3,
0.1)¼ 0.190 (Eq. (5.54)). Thus, the approximation is excellent in this case,
since the finite population correction factor is nearly unity (Problem 5.29).

The hypergeometric distribution can be extended to the case where we have
m categories, rather than just two. The population N is partitioned into these
m categories, so that there are k1 elements of category 1, k2 of category 2, . . ., and km
of category m. In this situation, we take a random sample of size n and consider
the probability that x1 members of the sample are from category 1, x2 are from
category 2, . . ., and xm are from category m. We can represent this multivariate
hypergeometric probability distribution by writing

PrðX1 ¼ x1;X2 ¼ x2; . . . ;Xm ¼ xmÞ ¼
k1
x1

� �
k2
x2

� �
� � � km

xm

� �
N
n

� � ; ð5:58Þ

where
Pm

i¼1 ki ¼ N and
Pm

i¼1 xi ¼ n .
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& Example
ACity BeautificationCommittee of 4 is to be randomly selected froma group
of 10 politicians, consisting of 3 Republicans, 5 Democrats, and 2 Inde-
pendents. What is the probability that this random sample will have two
Republicans, one Democrat, and one Independent?

Solution
Using the above notation, we have k1¼ 3, k2¼ 5, and k3¼ 2, respectively, for
the three named parties. The sample yields x1¼ 2, x2¼ 1, and x3¼ 1. By
Eq. (5.58), we have

PrðX1 ¼ 2;X2 ¼ 1;X3 ¼ 1Þ ¼
3
2

� �
5
1

� �
2
1

� �
10
4

� � ¼ 1
7
¼ 0:143: ð5:59Þ

5.7
Geometric Distribution

We have considered the frequency distribution of the number of successes in
repeated Bernoulli trials, in which the probability of success p and failure q¼ 1� p
is constant and the trials are independent. Another aspect of this procedure is to
consider the frequency distribution of the number X of the trial in which the first
success occurs. Since the first success comes immediately after X� 1 failures, it
follows that

PrðX ¼ xÞ ¼ ð1�pÞx�1p; x ¼ 1; 2; . . . : ð5:60Þ
This function is called the geometric distribution. To show that it is normalized, we
substitute q¼ 1� p and write

X1
x¼1

ð1�pÞx�1p ¼ p
X1
x¼1

qx�1 ¼ pð1þ qþ q2 þ � � � Þ ¼ p
1

1�q

� �
¼ 1: ð5:61Þ

The geometric progression (hence the name) is the binomial expansion of 1/(1�
q)¼ 1/p, and so the normalization condition follows in Eq. (5.61). The mean and
variance are

EðXÞ ¼ 1
p

ð5:62Þ

and

VarðXÞ ¼ 1�p
p

: ð5:63Þ
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& Example
Apulse height analyzer is usedwith a high discriminator setting tomonitor by
the hour random background events that deposit a relatively large amount of
energy. It is found that one recordable event occurs on average every 114min.

a) What is the probability that the first recordable event happens during the
first hour?

b) During the fourth hour?
c) On the average, during which hour does the first event occur?
d) What is the probability that onemust wait at least 3 h before observing the

first event?

Solution
We divide the observation time into successive 1-h intervals, starting at time
t¼ 0. The average event rate is 1/(114min)¼ 1/(1.9 h)¼ 0.526 h�1. We
let p¼ 0.526 be the probability that an event occurs (success) in any of the
given 1-h periods andX represent the number of the interval in which the first
event happens. Equation (5.60) then gives for the probability distribution of
the number of that interval

PrðX ¼ xÞ ¼ ð1�0:526Þx�1ð0:526Þ ¼ 0:526ð0:474Þx�1: ð5:64Þ
a) The probability that the first event occurs in the first hour (x¼ 1) is

PrðX ¼ 1Þ ¼ 0:526ð0:474Þ0 ¼ 0:526: ð5:65Þ
b) Similarly,

PrðX ¼ 4Þ ¼ 0:526ð0:474Þ3 ¼ 0:0560: ð5:66Þ
c) The average number of the interval in which the first event occurs is, from

Eq. (5.62),

m ¼ 1
p
¼ 1

0:526
¼ 1:90: ð5:67Þ

Thus, on the average, the first event occurs during the second 1-h time
interval.

d) If one has towait at least 3 h for thefirst event to happen, thenwe are asked
to find Pr(X� 4), the first event thus coming in the fourth or later interval.
This probability is equal to unity minus the probability that the first event
happens in any of the first three intervals. From Eq. (5.60),

PrðX � 4Þ ¼ 1�PrðX � 3Þ ¼ 1�½PrðX ¼ 1Þ
þPrðX ¼ 2ÞþPrðX ¼ 3Þ� ð5:68Þ

¼ 1�½ð0:474Þ0ð0:526Þþ ð0:474Þ1ð0:526Þþ ð0:474Þ2ð0:526Þ�
¼ 1�0:894 ¼ 0:106:

ð5:69Þ
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5.8
Negative Binomial Distribution

With the geometric distribution we were concerned with the probability
distribution of the trial at which the first success occurred. We consider next
the probability distribution for the trial number at which the rth success occurs.
The distribution that describes this behavior is called the negative binomial
distribution.

We letX denote the number of the trial at which the rth success happens, where, as
before, each trial is an independent Bernoulli trial with constant probability p of
success. The probability function for X is then given by

PrðX ¼ xÞ ¼ x�1
r�1

� �
prð1�pÞx�r ; x ¼ r; r þ 1; . . . ð5:70Þ

Since the rth successmust occur on the xth trial, the preceding (r� 1) successesmust
happen in the previous (x� 1) trials. The number of different ways in which this can

occur is
x�1
r�1

� �
. Each trial is independent; r of them result in successes, giving the

term pr in Eq. (5.70). The remaining (x� r) trials result in failure, giving the term
(1� p)x�r. The product of these three factors gives the negative binomial probability
distribution (5.70) on X.

& Example
The probability that a person will purchase high-test gasoline at a certain
service station is 0.20.

a) What is the probability that the first high-test purchase will bemade by the
fifth customer of the day?

b) What is the probability that the thirdhigh-test purchasewill bemadeby the
10th customer of the day?

Solution
a) This part is solved by the geometric distribution. If purchasing high-test

gasoline is considered a success, then we use p¼ 0.20 and x¼ 5 in
Eq. (5.60) to obtain

PrðX ¼ 5Þ ¼ ð1�0:20Þ5�1ð0:20Þ ¼ ð0:80Þ4ð0:20Þ ¼ 0:0819: ð5:71Þ
b) The negative binomial distribution applies. Using p¼ 0.20, as before,

r¼ 3 (purchase number), and x¼ 10 (customer number) in Eq. (5.70), we
find

PrðX ¼ 10Þ ¼ 10�1
3�1

� �
ð0:20Þ3ð1�0:20Þ10�3

¼ 9
2

� �
ð0:20Þ3ð0:80Þ7 ¼ 0:0604: ð5:72Þ
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The negative binomial distribution can result as the sum of r geometric random
variables in the following way. The geometric distribution describes the trial X at
which the first success occurs, and the negative binomial describes the trial Y
at which the rth success occurs. Assume that the probability of success, p, is the
same for both of these experiments. Also, letX1 be the number of trials until thefirst
success, X2 be the number of trials from the first until the second success occurs,
and so on with Xr being the number of trials from the (r� 1)th success until the rth
success. Then

Y ¼ X1 þX2 þ � � � þXr ; ð5:73Þ

since each Xi has the geometric distribution with parameter p and they are
independent. This relationship allows for simplified calculations of E(Y) and
Var(Y). Since the Xi are independent and identically distributed geometric random
variables, it follows that

EðYÞ ¼ EðX1 þX2 þ � � � þXrÞ ¼ r
1
p
¼ r

p
ð5:74Þ

and

VarðYÞ ¼
Xr
i¼1

VarðXiÞ ¼ r
q
p2

¼ rq
p2

: ð5:75Þ

An alternative form of the negative binomial distribution is provided by the
distribution of the number of failures Y that precede the rth success:

PrðY ¼ yÞ ¼ yþ r�1
y

� �
prð1�pÞy; y ¼ 1; 2; . . . ð5:76Þ

In this case, the factors pr and (1� p)y account, respectively, for r successes and y
failures among the r þ y independent trials. The last trial consists of the rth
success. The binomial coefficient in Eq. (5.76) then gives the number of different
ways in which y failures and the other (r� 1) successes can occur in the remaining
(y þ r� 1) trials.

Problems
5.1 Show that the probability distribution (5.1) is normalized.
5.2 Ten identical paper slips numbered 5, 10, . . ., 50 are placed in a box. A slip

is randomly drawn and its number, X, is recorded. It is then placed back in
the box.
a) Describe a probability distribution that may be associated with X, stating

any assumptions necessary.
b) Using the distribution, obtain the mean value of X.
c) Using the distribution, obtain the variance of X.
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5.3 Let X be a Bernoulli random variable such that X¼ 0 with probability (1� p)
and X¼ 1 with probability p. Find
a) E(X);
b) Var(X).

5.4 Show that the binomial model (5.7) is the same as the Bernoulli model with
n¼ 1.

5.5 A neutron either penetrates a target with a probability of 0.20 or else is
deflected with a probability of 0.80. If five such neutrons are incident in
succession on the target, what is the probability that
a) the first three pass through and the last two are deflected?
b) all five pass through undeflected?
c) none pass through undeflected?
d) at least one passes through?
e) What is the relationship between the last two answers?

5.6 Tests show that 0.20% of TLD chips produced by a new process are defective.
Find the probability that a given batch of 1000 chips will contain the following
numbers of defective units:
a) zero;
b) one;
c) three;
d) five.

5.7 In the last problem, what is the probability that a batch of 1000 chips will have
no more than three defective units?

5.8 For a binomial randomvariablewithn¼ 20 and p¼ 0.30, use either Eq. (5.7) or
Table A.1 to find
a) Pr(X < 4);
b) Pr(2�X� 4);
c) Pr(X > 9);
d) Pr(X¼ 6).

5.9 a) For a fixed number of trials, how does the spread of the binomial
distribution vary with the probability p of success of each Bernoulli
trial?

b) For what value of p does the variance have an extremum?
c) Is the extremum a maximum or a minimum?

5.10 Use Eq. (5.7) to derive the mean, Eq. (5.13), and variance, Eq. (5.15), of the
binomial distribution.

5.11 a) Calculate b(6; 10, 0.4) from Eq. (5.7).
b) Use Table A.1 to obtain b(6; 10, 0.4).

5.12 a) Use Table A.1 to evaluate Pr(X� 12) with p¼ 0.70 and n¼ 20.
b) What is the value of Pr(X� 12)?

5.13 Calculate the value of the first term (x¼ 5) in the summation in Eq. (5.16) by
using
a) the binomial distribution (5.7);
b) the Poisson distribution (5.27).
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5.14 a) For the binomial distribution, prove that

bðxþ 1; n; pÞ
bðx; n; pÞ ¼ pðn�xÞ

ð1�pÞðxþ 1Þ
for x¼ 0, 1, 2, . . ., n� 1.
b) Use this recursion formula to calculate the binomial distribution for n¼ 5

and p¼ 0.30.
5.15 A group of 1000 persons selected at random is sampled for a rare disease,

which occurs in 0.10% of the population. What is the probability of finding in
the group
a) two persons with the disease?
b) at least two persons with the disease?

5.16 A long-lived radioisotope is being counted at a mean rate of 20min�1. Find
a) the distribution of the number of particles X recorded in half-minute

intervals;
b) E(X);
c) Var(X);
d) Pr(X� 12).

5.17 An alpha-particlemonitor has a steady background rate of 8.0 counts per hour.
What is the probability of observing
a) five counts in 30min?
b) zero counts in 5min?
c) zero counts in 60min?

5.18 a) In the last problem, if a 5-min interval passes with zero counts, what is the
probability that there will be no counts in the next 5min?

b) What is the probability for having no counts in a 10-min interval?
c) What is the relationship between the two probabilities in (a) and (b)?

5.19 Show by direct substitution that the Poisson distribution function (5.38)
satisfies Eq. (5.33).

5.20 For the Poisson distribution, show that the probability of observing one fewer
than the mean is equal to the probability of observing the mean.

5.21 Verify Eqs. (5.43) and (5.44).
5.22 If X has the hypergeometric distribution (5.49), show that the mean and

variance of X are given by Eqs. (5.50) and (5.51), respectively.
5.23 Six squares in a uniform grid of 24 have hot spots. An inspector randomly

selects four squares for a survey. What is the probability that he or she selects
a) no squares having hot spots?
b) exactly two squares with hot spots?
c) at least two squares with hot spots?

5.24 A certain process makes parts with a defective rate of 1.0%. If 100 parts are
randomly selected from the process, find Pr(f� 0.03), where f¼X/n is the
sample fraction defective, defined as the ratio of the number of defective
parts X and the sample size n.
a) Use the binomial distribution.
b) Use the Poisson approximation.
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5.25 Aprocessmakes parts with a defective rate of 1.0%. Amanager is alerted if the
sample fraction defective in a random sample of 50 parts is greater than or
equal to 0.060.
a) If the process is in control (i.e., the defective rate is within 1.0%), what is the

probability that the manager will be alerted?
b) If the process worsens and the defective rate increases to 5.0%, what is

the probability that the manager will not be alerted, given this higher
rate?

5.26 Solve the last problem by means of Poisson statistics.
5.27 Let X have the hypergeometric distribution (5.49). Show that the distribution

on X converges to a binomial b(x; n, p), with p¼ k/N remaining fixed while
N ! 1. (As a rule of thumb, the binomial distribution may be used as an
approximation to the hypergeometric when n�N/10.)
(Hint: Begin by showing that

PrðX ¼ mÞ ¼
k

m

� �
N�k

n�m

� �
N

n

� � ¼ n

m

� � ðkÞmðN�kÞn�m

ðNÞn
;

form ¼ 0; 1; . . . ; n;

where ðrÞj ¼ ðr�1Þðr�2Þ � � � ðr�jþ 1Þ. Then rewrite the equation in terms of
p¼ k/N.)

5.28 A crate contains N¼ 10 000 bolts. If the manufacturing process is in control,
then no more than p¼ 0.050 of the bolts will be defective. Assume that the
process is in control and that a sample of n¼ 100 bolts is randomly selected.
Using the binomial approximation, find the probability that exactly three
defective bolts are found. (Exact treatment with the hypergeometric distribu-
tion gives the result 0.1394.)

5.29 Compute the finite population correction factor for the example involving
Eq. (5.57).

5.30 A potential customer enters a store every hour on the average. A clerk has
probability p¼ 0.25 of making a sale. If the clerk is determined to work until
making three sales, what is the probability that the clerk will have to work
exactly 8 h?

5.31 Skiers are lifted to the top of amountain. The probability of any skiermaking it
to the bottomof the runwithout falling is 0.050.What is the probability that the
first skier to make the run without falling is
a) the 15th skier of the day?
b) the 20th of the day?
c) either the 15th, the 16th, or the 17th?

5.32 In amatch against one another, two tennis players both have an 85% chance of
successfully making their shot (including service). Any given point ends the
first time either player fails to keep the ball in play.
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a) What is the probability that a given point will take exactly eight strokes,
ending on the missed eighth shot?

b) What is the probability that a point will last longer than three strokes,
including the last shot?

c) If thefirst player serves and has a success probability of 0.85 and the second
player has a success probability of only 0.70, repeat (a).

d) Which player loses the point in (c)?
e) Repeat (b) under the conditions given in (c).

5.33 A 60Co atom decays (99þ% of the time) by nuclear emission of a b� particle,
followed immediately by two c photons (1.17 and 1.33MeV) in succession.
Assume that these radiations are emitted isotropically from the nucleus
(although the two photon directions are, in fact, correlated). A small detector
is placed near a point source of 60Co.
a) What is the probability that the first five entities to strike the detector are c

photons and that the sixth is a b� particle?
b) What is the probability that the first five are b� particles and the sixth is a

photon?
c) What is the probability that the first b� particle to strike the target is either

the fifth, sixth, or seventh entity that hits it?
5.34 In the original statement (5.70) of the negative binomial distribution, X is the

number of the trial at which the rth success occurs. In Eq. (5.76), Y refers to
the number of failures that occur until the rth success. Thus, Y¼X� r. By
using this transformation in Eq. (5.70), show that Eq. (5.76) results.
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6
Continuous Distributions

6.1
Introduction

Conditions and constraints associated with discrete random variables usually lead to
a probability model that can be chosen with little doubt. In contrast, for continuous
data theremight be several probability distributions thatfit a given set of observations
well. The true distribution associated with a continuous random variable is hardly
ever known. There are goodness-of-fit techniques (Chapter 14) that allowone to check
assumptions about distributions, but these are applied after data collection. A
number of continuous distributions are available to provide alternatives formodeling
empirical data. There are many situations where the physical model of the process
under study leads to a good choice of the probability distribution, as we shall see with
the exponential function in Section 6.7. In this chapter, we look at several of themost
prominent continuous distributions used in statistical analysis of data. Additional
continuous distributions are discussed in Johnson et al. (1994).

A number of useful tools, including statistical calculators, tables, and demonstra-
tions of statistical principles, are available on the World Wide Web. Values of the
probability densities and cumulative functions can be obtained for many
distributions.

6.2
Continuous Uniform Distribution

Herewederive the probability density function for the continuous uniform distribution,
corresponding to that for discrete variables in Section 5.2. We consider a random
variable X that has support, or positive probability, only over a finite closed interval
[a, b]. If the probability that X lies in any subspace A¼ [x1, x2] of this
interval is proportional to the ratio of (x2� x1) and (b� a), then we may write

PrðX 2 AÞ ¼ c
x2 � x1
b� a

; ð6:1Þ

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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where c is the constant of proportionality. Since the probability thatX lies in [a, b]must
be unity, it follows that c¼ 1. The cumulative probability function is

FðxÞ ¼ PrðX 2 a; x½ �Þ ¼

0; x < a;

x � a
b� a

; a � x < b;

1; x � b:

8>>>><
>>>>:

ð6:2Þ

We find by differentiation (see Eq. (4.14)) that the probability density function for the
random variable X is

f ðxÞ ¼
1

b� a
; a � x < b;

0; elsewhere:

8<
: ð6:3Þ

The term uniform is attached to a random variable whose probability density function
is constant over its support; thus, we say here that X has the uniform distribution.

& Example
Let X have the uniform distribution over the interval [a, b].

a) Obtain the mean of X as a function of a and b.
b) Obtain the variance of X.
c) If a¼ 0 and b¼ 1, determine the numerical values of the mean and

variance.

Solution

a) Using Eq. (6.3), we find for the mean,

m ¼
ð1

�1
xfðxÞdx ¼

ðb

a

x
b� a

dx ¼ b2 � a2

2ðb� aÞ ¼
aþ b
2

: ð6:4Þ

b) To find the variance, we use Eq. (4.48), for which we need

EðX 2Þ ¼
ðb

a

x2

b� a
dx ¼ b3 � a3

3ðb� aÞ ¼
b2 þ abþ a2

3
: ð6:5Þ

From Eq. (4.48), then

VarðXÞ ¼ b2 þ abþ a2

3
� ðaþ bÞ2

4
¼ ðb� aÞ2

12
: ð6:6Þ

c) Direct substitution into Eqs. (6.4) and (6.6) gives

m ¼ 0þ 1
2

¼ 1
2

ð6:7Þ
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and

VarðXÞ ¼ ð1� 0Þ2
12

¼ 1
12

: ð6:8Þ

Note that the value of m coincides with the midpoint of the support over X.

The continuous uniformdistribution plays an important role in the generation of a
random sample from the probability distribution function f(x) for a given continuous
random variable X. If we make the transformation Y¼ F(X), where F(x) is the
cumulative distribution forX, then 0�Y� 1 over the entire range of values ofX.With
the help of Eq. (4.125), we can write the transformed probability density function g(y)
onY, where 0� y� 1. Substituting the inverse function x¼ F�1(y)¼w(y) and y¼ F(x)
into Eq. (4.125), we obtain

gðyÞ ¼ f wðyÞ½ � dwðyÞ
dy

����
���� ¼ f ðxÞ dx

dy

����
���� ¼ f ðxÞ 1

dFðxÞ=dxj j : ð6:9Þ

Since, by Eq. (4.14), the derivative of the cumulative distribution function is equal to
the probability density function, it follows that

gðyÞ ¼ 1; 0 � y � 1: ð6:10Þ
We thus have the important result that, if X is a continuous random variable having a
probability density function f(x) and cumulative distribution function F(x), then the
random variable Y¼F(X) has a uniform distribution g(y) on [0, 1]. A random sample
drawn from the uniform distribution can then be used to generate a corresponding
random sample from any continuous distribution by use of the inverse function
x¼F�1(y).

& Example
Given the exponential probability density function

f ðxÞ ¼ 5e�5x; x > 0;
0; elsewhere;

�
ð6:11Þ

show how a random sample of values of X can be generated.

Solution
We know that the random variable Y¼F(X) has a uniform distribution. Thus,
observing Y is equivalent to observing X from the distribution F(x), such that
y¼F(x). To obtain the distribution in X, we need to find the inverse function,
x¼ F�1(y). From (6.11), we obtain for the cumulative distribution function,

FðxÞ ¼
ðx

0

5e�5t dt ¼ �e�5tjx0 ¼ 1� e�5x; 0 < x < 1; ð6:12Þ
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and F(x)¼ 0 elsewhere. Then, letting y¼ F(x) and solving for x yields

x ¼ � lnð1� yÞ
5

; ð6:13Þ

which is defined over the range 0� y< 1. Random numbers Y selected
uniformly over the interval [0, 1) in Eq. (6.13) will generate values of X having
the probability density function f(x) given by Eq. (6.11).

This example illustrates how a uniform random number generator allows one to
generate random samples from any continuous distribution. The solutionwas simple
here, because the cumulative distribution function has an analytical form. When the
cumulative function is not known analytically, one can still use the result implied by
Eq. (6.10). However, one then has to use algorithms to compute the values of x that
satisfy the relationship y¼F(x). The use of random number generators and such
numerical, rather than analytical, calculations are readily handled with digital com-
putersandwithmanyhand-heldcalculators. InChapter12,weshall seeexamplesof the
generationof randomsamples fromgivenprobabilitydistribution functions– samples
needed in order to solve problems by Monte Carlo techniques. Such computational
methods are extensively used in radiation protection for shielding and dosimetry.

& Example
Individual photons from a point source in Figure 6.1 can be directed at an
adjustable angle � to travel in the plane of the page toward a flat screen (shown
edgewise in Figure 6.1), placed a unit distance away. Aphoton thus strikes the
screen somewhere along a vertical line at a position y relative to an arbitrary
reference point O, as indicated. The source itself is located opposite the point
y¼ t. If photons are emitted randomly with a uniform distribution of angles,
�p/2<H< þp/2, find the probability density function for their arrival
coordinates Y on the screen.

Unit Distance

Source θ

y

τ

O

Screen

Figure 6.1 Screen, seen edge-on, located at unit distance from an isotropic point source of
photons. See example in the text.
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Solution
The uniform probability density function f(�) on H is given by

f ð�Þ ¼
1
p
; �p

2
� � � p

2
;

0; elsewhere:

8<
: ð6:14Þ

The density onYcan be found from the transformation procedure, Eq. (4.125).
The relationship between the random variables H and Y is given by
tan �¼ y� t, the source being unit distance away from the screen. The
inverse relationship is �¼ tan�1(y� t). Differentiating, one has

d�
dy

¼ 1

1þðy � tÞ2 : ð6:15Þ

Substitution into Eq. (4.125), with �¼w(y)¼ tan�1(y� t), gives

gðyÞ ¼ f tan�1ðy � tÞ� � 1

1þðy � tÞ2 ¼
1
p

1

1þðy � tÞ2 ; ð6:16Þ

with �1< y<1. A random variable Y having this probability density
function, shown in Figure 6.2, is called a Cauchy random variable. As
discussed below in Section 6.9, this distribution is the same as the Student�s
t-distribution with one degree of freedom. A unique characteristic of the
distribution is the fact that it has an infinite mean.

y - τ
1050-5-10

g(y)

0.05

0.15

0.25

0.35

Figure 6.2 Cauchy distribution, Eq. (6.16).
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6.3
Normal Distribution

The normal, orGaussian, distribution is themost widely used probability distribution
in statistics. Its importance is due to its general applicability in a large number of
areas and due to the fact that many sample statistics tend to follow the normal
distribution. This latter circumstance is described by the central limit theorem, which
is discussed in the next section. In addition, observations often entail a combination
of errors from several sources, thus increasing the tendency toward a Gaussian
distribution. For example, a temperature measurement might be affected by pres-
sure, vibration, and other factors, which can cause slight changes in the measuring
equipment, leading to variability in the result. It can be shown that sums of random
variables often tend to have a normal distribution. Thus, a measurement, which
includes the sum of errors induced by different factors, frequently tends to be
normally distributed.

The normal density function for a random variable X is given by

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e� 1

2

� x�m
s

�2
; �1 < x < 1: ð6:17Þ

The distribution is characterized by two independent parameters, m and s, the
mean and standard deviation, with �1<m<1 and s> 0. The density is a
symmetric, bell-shaped curve with inflection points at m� s (Problem 6.11). We
introduce the symbol ��� to be read �is distributed as.� The fact that a random
variableX is normally distributedwithmean m and standard deviation s can then be
conveniently indicated by using the shorthand notation, X�N(m, s).

One can employ the so-called standard normal distribution in place of Eq. (6.17) to
deal withmany different problems having awide range of possible values for m and s.
The standard normal is, in essence, a dimensionless form of the normal distribution,
having zero mean and unit standard deviation. We introduce the (dimensionless)
standardized variable,

Z ¼ X � m

s
: ð6:18Þ

The quantity Z expresses the displacement of X from the mean in multiples of the
standard deviation. To transform the distribution (6.17) fromX intoZ, we employ Eq.
(4.125). The inverse function for doing so is, from Eq. (6.18), x¼w(z)¼sz þ m, and
so dw/dz¼ s. When we substitute into Eq. (4.125), the factor s from the derivative
cancels the factor s in the denominator of Eq. (6.17). The transformed function,
therefore, does not depend explicitly on either s or m. It thus represents the normal
distribution (6.17) with zeromean and unit standard deviation (m¼ 0 and s¼ 1), and
so we write it as

f ðzÞ ¼ 1ffiffiffiffiffiffi
2p

p e�ð1=2Þz2 ; �1 < z < 1: ð6:19Þ
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The probability density function f(z) is called the standard normal distribution. Since
it is normally distributed, we may also describe it by writing Z�N(0, 1). The
cumulative distribution is given by

FðzÞ ¼ PrðZ � zÞ ¼ 1ffiffiffiffiffiffi
2p

p
ðz

�1
e�ð1=2Þt2 dt: ð6:20Þ

The two distributions, (6.19) and (6.20), are shown in Figure 6.3. Also, numerical
values for the cumulative standard normal distribution (6.20) are given in Table A.3.
Often one is interested in the probability that a measurement lies within a given
number of standard deviations from the mean. The shaded area in Figure 6.4a, for
instance, gives the probability that Z falls within the interval one standard deviation
on either side of the mean. Numerical integration of Eq. (6.19) gives the result

Prð�1 � Z < 1Þ ¼ Prð Zj j < 1Þ ¼ 0:6826: ð6:21Þ
The probability that Z falls outside this interval is

Prð Zj j � 1Þ ¼ 1� 0:6826 ¼ 0:3174; ð6:22Þ
shown by the shaded regions in Figure 6.4b. This latter value is commonly referred to
as a �two-tail� area, giving the probability thatZhas a value somewhere in either tail of
the distribution, outside the symmetric shaded area in Figure 6.4a. In counting
statistics, the probability for exceeding a certain number of counts is often used for
control purposes. Such a probability can be represented by a �one-tail� portion of the
standard normal curve to the right of the mean. Since the distribution is symmetric,
the one-tail probability is one-half the two-tail value. From Eq. (6.22) we have

PrðZ � 1Þ ¼ 0:1587; ð6:23Þ
as indicated by the one-tail area in Figure 6.4c.

& Example
Use Table A.3 to verify the results given by Eqs. (6.21)–(6.23) for Figure 6.4.

Solution
Table A.3 gives numerical values of the cumulative standard normal distri-
butionF(Z) definedbyEq. (6.20). The shaded area in Figure 6.4a is equal to the
difference in the cumulative function at the two boundaries (see Eq. (4.13)).
From the table,

Prð�1 � z < 1Þ ¼ Fð1Þ � Fð�1Þ ¼ 0:8413� 0:1587
¼ 0:6826; ð6:24Þ

as given by Eq. (6.21), above. Using Table A.3 to evaluate the probability
outside the shaded area, we write

PrðjZj � 1Þ ¼ Fð�1Þþ ½1� Fð1Þ� ¼ 0:1587þ ½1� 0:8413�
¼ 0:3174; ð6:25Þ
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as obtained before in Eq. (6.22). Finally,

PrðZ � 1Þ ¼ 1� Fð1Þ ¼ 1� 0:8413 ¼ 0:1587: ð6:26Þ
We see that the areas of the two tails are equal, and that the one-tail area in this
example is given numerically by F(�1), whether to the right or to the left of the
shaded area.

(a)

(b)

43210-1-2-3-4

f(z)

0.2

0.3

0.4

z

43210-1-2-3-4

F(z)

1.0

0.5

0.1

Figure 6.3 (a) Standard normal distribution, Eq. (6.19). (b) Cumulative distribution, Eq. (6.20).
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43210-1-2-3-4

f(z)

0.1

0.3

Area = 0.6826

43210-1-2-3-4

f(z)

0.1

0.3

Two-tail
Area = 0.3174

z

43210-1-2-3-4

f(z)

0.1

0.3

One-tail
Area = 0.1587

(a)

(b)

(c)

Figure 6.4 Areas under several different
portions of the standard normal distribution
determined by one standard deviation from the
mean, m¼ 0. (a) Area of the shaded region gives
the probability, 0.6826, that the random variable

has a value within one standard deviation
(z¼� 1) of the mean. (b) Two-tail shaded
area outside one standard deviation is 0.3174.
(c) One-tail area outside one standard deviation
is 0.1587.
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Table 6.1 lists some one-tail areas for the standard normal distribution to the right of
the mean. For instance, one finds the value given by Eq. (6.26) for z¼ 1. This result
implies that, for anynormally distributed randomvariable, theprobability is 0.1587 that
its value exceeds the mean m by one standard deviation s or more. One sees, also, that
there is a 5% chance that a randomly chosen value from a normal distribution will lie
beyond 1.645s. The probability quickly becomes very small for an observation to be
outside several standarddeviations.Thechances are one inamillion that itwill bemore
than 4.753s beyond the mean and only one in a billion that it will be beyond 6.000s.
These areas, given by 1�F(z) (¼F(�z)), are complementary to values found in Table
A.3 for the cumulative normal distribution. It is interesting to compare the behavior
shown in Table 6.1 with Chebyshev�s inequality, Eq. (4.115) (see Problem 6.19).

& Example
Find the following probabilities for the standard normal distribution:

a) Pr(0.34<Z< 1.31);
b) Pr(�0.56<Z< 1.10);
c) Pr(�1.20<Z<�0.60).

Solution
We use Table A.3 throughout:

ðaÞ Prð0:34 < Z < 1:31Þ ¼ Fð1:31Þ � Fð0:34Þ
¼ 0:9049� 0:6331 ¼ 0:2718: ð6:27Þ

Table 6.1 One-tail areas under the standard normal
distribution from z to 1.

z Area

0.000 0.5000
0.675 0.2500
1.000 0.1587
1.282 0.1000
1.645 0.0500
1.960 0.0250
2.000 0.0228
2.236 0.0100
2.576 0.0050
3.000 0.0013
3.500 2.3� 10�4

4.000 3.2� 10�5

4.753 1.0� 10�6

5.000 2.9� 10�7

6.000 1.0� 10�9

7.000 1.3� 10�12
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ðbÞ Prð�0:56 < Z < 1:10Þ ¼ Fð1:10Þ � Fð�0:56Þ
¼ 0:8643� 0:2877 ¼ 0:5766: ð6:28Þ

ðcÞ Prð�1:20 < Z < �0:60Þ ¼ Fð�0:60Þ � Fð�1:20Þ
¼ 0:2743� 0:1151 ¼ 0:1592: ð6:29Þ

These probabilities are shown by the shaded areas in Figure 6.5.

For typical problems in practice, the mean will not be zero and the standard
deviation will not be unity. One can still use the standard normal table for numerical
work by transforming the problem into the standardized variable Z, defined by
Eq. (6.18). If X is normally distributed with mean m and standard deviation s

(indicated by the notation X�N(m, s)), then

Prða < X < bÞ ¼ Pr
a� m

s
<

X � m

s
<

b� m

s

� 	

¼ Pr
a� m

s
< Z <

b� m

s

� 	
: ð6:30Þ

Here we have subtracted m from each of the three quantities a, X, b and then divided
by s, operations that do not change the equalities in (6.30). The middle term thus
becomes the standard normal variable Z. The probability that X lies in the originally
specified interval (a, b) is thus identical with the probability that the transformed
variable Z lies in the corresponding interval shown in this equation. Both the X and
the Z distributions are normal. The respective intervals in the second equality
of (6.30) are the same, expressed by the number of standard deviations to the left
and to the right of themeans of both distributions. SinceZ�N(0, 1), one can employ
the standard normal Table A.3 to find probabilities forX. The next example illustrates
this procedure.

& Example
Given X�N(100, 10), find Pr(80<X< 120).

Solution
We are given the normally distributed random variable X with mean m¼ 100
and standard deviation s¼ 10. As shown by Eq. (6.30), we transform the
required probability statement into one for the standardized variable Z in
order to use Table A.3. To this end, we subtract m¼ 100 from each part of the
given probability statement and then divide by s¼ 10 in each part. Thus, with
the help of Table A.3, we find that

Prð80 < X < 120Þ ¼ Pr
80� 100

10
<

X � 100
10

<
120� 100

10

� 	
ð6:31Þ

¼ Prð�2 < Z < 2Þ ¼ Fð2Þ � Fð�2Þ ¼ 0:9772� 0:0228
¼ 0:9544: ð6:32Þ
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This probability is equal to the area of the shaded region under the given
normal curve in Figure 6.6a, which, in turn, is equal to the corresponding
shaded area under the standard normal curve in Figure 6.6b. Note the
differences in the scales of the axes in Figure 6.6a and b. Compared with

43210-1-2-3-4

f(z)

0.1

0.3
Area = 0.2718

43210-1-2-3-4

f(z)

0.1

0.3

z

43210-1-2-3-4

f(z)

0.1

0.3

Area = 0.1592

Area = 0.5766

(a)

(b)

(c)

Figure 6.5 See example in the text, Eqs. (6.27)–(6.29).

130j 6 Continuous Distributions



the random variable X, the scale of the abscissa for the standard normal Z is
10 times smaller and its ordinate is 10 times larger. The areas in Figure 6.6a
and b are identical in size, namely, 0.9544.

& Example
The chromium content of soil samples in a particular region is observed to
follow a normal distribution with amean of 5 ppm and a standard deviation of

x
14013012011010090807060

N(100,10)

0.01

z

43210-1-2-3-4

N(0,1)

0.1

0.3

(a)

(b)

0.03

Figure 6.6 In (a), X�N(100, 10), and in (b), Z�N(0, 1). The shaded area in (a), included in the
interval m� 2s about the mean, is equal to the shaded area in (b) under the standard normal
distribution in the interval (�2< z< 2).
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1.2 ppm. What is the probability of a particular soil sample yielding a reading
of 7.4 ppm or greater?

Solution
If X denotes the amount of chromium in a soil sample, then we are given
X�N(5, 1.2). We are asked to make the following evaluation:

PrðX � 7:4Þ ¼ Pr
X � m

s
� 7:4� 5

1:2

� 	
ð6:33Þ

¼ PrðZ � 2:0Þ ¼ 1� PrðZ < 2:0Þ ¼ 0:0228: ð6:34Þ
This probability is the same as that represented by the unshaded area to the
right under the standard normal curve in Figure 6.6b.

The normal distribution is also called the Gaussian distribution or, simply, �the
Gaussian,� in honor of the German mathematician, Carl Friedrich Gauss
(1777–1855). It was, however, actually discovered in 1733 by the French mathema-
tician, Abraham de Moivre (1667–1754) who, among other things, was particularly
skilled in the application of probability theory to gambling. The numerous contribu-
tions of Gauss and his place in scientific history were also recognized in his native
country�s currency. The former German 10-Mark bill, shown in Figure 6.7, displays
his picture and the famous formula and its plot. This note was legal tender until the
beginning of 2002, when the euro replaced the traditional currencies ofGermany and
most other member nations of the European Union.

6.4
Central Limit Theorem

In the last section, we mentioned the special importance of the normal distribution,
because, among other things, it describes the behavior of the sampling distribution of
many statistics, such as sample mean, median, and others.

To illustrate, we consider the distribution of average values, X ¼ ð1=nÞPn
i¼1 Xi,

obtained when random samples of size n are drawn from a population having finite

Figure 6.7 German 10-Mark bank note honoring Gauss and the normal distribution.
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mean m and standard deviation s. The mean mX of this distribution, which is called
the sampling distribution of the means, is the same as the mean of the population
from which the drawing is made: mX ¼ m. We state without proof that the standard
deviation sX of the sampling distribution is equal to s=

ffiffiffi
n

p
. (A proof is given later,

Eq. (8.24).) Thus, the standard deviation of the sampling distribution of themeans is
smaller than that of the sampled distribution by the factor

ffiffiffi
n

p
. Although it is unlikely

that a given value of X will exactly equal m, values of X might be expected to be closely
distributed about m, particularly if the sample size n is large. These relationships
between the sampling distribution of X and the original population, characterized
by m and s, are summarized by writing

mX ¼ m and sX ¼ sffiffiffi
n

p : ð6:35Þ

The quantity sX, which is called the standard error of the mean, becomes vanishingly
small as n increases without limit, and the mean X approaches the true mean m.
Whereas s reflects the uncertainty in a single measurement, s=

ffiffiffi
n

p
reflects the

uncertainty in the sample mean from a sample of size n.
The sampled population itself might have a normal distribution. If so, then the Xi

in a sample are also normally distributed, and the sampling distribution ofmeanswill
have a normal distribution, exactly, with parameters given by Eq. (6.35). For other
population distributions, the sampling distribution of the mean will be approxi-
mately normal when n is sufficiently large, generally when n� 30. The approxima-
tion to the normal improves as the sample size increases, approaching the normal in
the limit as n ! 1.

These remarkable results are formalized in the following statement, which casts
the random variable X in terms of the standard normal variable.

Central Limit Theorem
If X is the mean of a random sample of size n drawn from a population with finite
mean m and standard deviation s, then in the limit as n ! 1 the distribution on X
converges to the normal with mean m and standard deviation s=

ffiffiffi
n

p
. Using the symbol �

_
_��

to be read �is approximately distributed as,�we represent the central limit theorem formeans
in a compact form by writing

X
_
_�N m;

sffiffiffi
n

p
� 	

: ð6:36Þ

The symbol �
_
_�� is meant to imply that the distribution converges to the normal in the

limit as n increases without bound. Alternatively, we can express the central limit theorem
for the mean in terms of the standard normal variable,

Z ¼ X � m

s=
ffiffiffi
n

p ; ð6:37Þ

by writing

Z
_
_�Nð0; 1Þ: ð6:38Þ
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Proof of the central limit theorem can be found in advanced texts (e.g.,Walpole and
Myers (1989), p. 216).

The power of the central limit theorem lies in the fact that it holds for any
distribution, discrete or continuous, that has a finite mean and finite standard
deviation. Furthermore, if the sampled population is normal, then the sampling
distribution will always be normal exactly, without the above-mentioned restriction,
n� 30. In place of Eq. (6.38) one can then write Z� (0, 1), where the symbol ���
without the dots denotes an exact relationship, as defined following Eq. (6.17).

The central limit theorem can also be applied to the sum Yn ¼
Pn

i¼1 Xi ¼ nX of n
independent and identically distributed random variables Xi with the same mean m

and standard deviation s. If we multiply the numerator and denominator on the
right-hand side of Eq. (6.37) by n, we obtain

Z ¼ nX � nmffiffiffi
n

p
s

¼ Yn � nmffiffiffi
n

p
s

; ð6:39Þ

which still satisfies Eq. (6.38). Comparison with Eq. (6.36) implies that

Yn
_
_�Nðnm; ffiffiffi

n
p

sÞ: ð6:40Þ

Returning to Eq. (6.35), we note that the second relationship applies strictly to an
infinitely large population or to a finite population that is sampled with replacement.
If afinite population of sizenp> n is sampledwithout replacement, then the standard
deviation of the sample distribution of the mean is given by (Problem 6.23)

sX ¼ sffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
np � n

np � 1

r
; ð6:41Þ

in place of that shown in Eq. (6.35). The additional factor, not present in Eq. (6.35),
is called the finite population correction factor. The relationship mX ¼ m given by
Eq. (6.36) remains the same.

& Example
A total of 20 random air samples taken one afternoon in a large outdoor area
were analyzed for their airborne radon concentration. The mean Rn concen-
tration of the 20 samples was found to be 8.1 Bqm�3 and their standard
deviation, 1.6 Bqm�3. The true, underlying distribution of the airborne Rn
concentration is not known.

a) What information can one offer about the population of the means of
samples of size 20 taken from this site?

b) Estimate the probability of finding a mean greater than 8.4 Bqm�3 when
20 such independent, random samples are analyzed.

Solution
a) If we assume that each of the samples is independent and identically

distributed, then we can apply the central limit theorem. Although the
number of samples, n¼ 20, is smaller than the general criterion of 30
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given for the theorem to assure a very good approximation, it is reason-
able to assume that the distribution of the sample means would be at
least approximately normal. Using the only measurements provided,
we estimate that the unknown population mean is x ¼ 8:1 Bqm�3

and the standard deviation is s¼ 1.6 Bqm�3. The central limit theorem
as expressed by Eq. (6.35) then gives for the distribution of the
sample mean,

m̂X ¼ m̂ ¼ x ¼ 8:1 Bqm�3 and ŝX ¼ ŝffiffiffi
n

p ¼ sffiffiffi
n

p ¼ 1:6ffiffiffiffiffi
20

p
¼ 0:36 Bqm�3: ð6:42Þ

With the help of Eq. (6.36), we thus describe the distribution of the sample
mean by writing

X
_
_�Nð8:1; 0:36Þ; ð6:43Þ

with the units Bq m�3 implied. The central limit theorem states that the
sample mean is approximately normally distributed with a mean of
8.1 Bqm�3 and a standard deviation, or standard error, of 0.36 Bqm�3.
Notice how the central limit theorem provides a factor of

ffiffiffi
n

p
smaller

uncertainty for the mean than that for the individual measurements.
b) Using the result (6.42) and Z

_
_�Nð0; 1Þ, as implied by Eq. (6.38), we find

from Table A.3 that

PrðX > 8:4Þ ¼ Pr
X � m

s=
ffiffiffi
n

p >
8:4� 8:1
0:36

� 	
ffi PrðZ > 0:83Þ

¼ 0:2033: ð6:44Þ

We thus estimate the probability to be about 0.20.

6.5
Normal Approximation to the Binomial Distribution

In addition to describing sample statistics, the normal distribution can often be used
to approximate another distribution. If the latter has a finitemean and variance, then,
under certain conditions, the normal will do a good job of representing it. The
binomial distribution, Eq. (5.7), with mean m¼ np and variance s2¼ np(1� p) (Eqs.
(5.13) and (5.15)), is a case in point. Its relationship to the normal distribution can be
described as follows.

Theorem 6.1
For a random variable X having the binomial distribution, X� b(x; n, p),

X � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

_
_�Nð0; 1Þ: ð6:45Þ
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The theorem states that the normal distribution with parameters n and p provides
an accurate representation of the binomial when n is large. Furthermore, the
binomial distribution approaches the normal in the limit as n ! 1. The degree
to which the normal approximates the binomial distribution as represented by
Eq. (6.45) depends on the values of n and p. When p¼ 1/2, the binomial distribution
is, like the normal, symmetric. For a given degree of accuracy in the approximation,
the restriction of largen is then less severe for pnear 1/2 than for p closer to 0 or 1.As a
rule of thumb, the normal approximation to the binomial distribution is adequate for
many purposes when np and n(1� p) are both greater than about five.

& Example
Find the probability of getting from 10 to 15 (inclusively) heads with 20 tosses
of an unbiased coin by using

a) the exact binomial model and
b) the normal approximation to the binomial distribution.

Solution
a) The number of heads X is distributed according to the binomial proba-

bilities (Eq. (5.7)) b(x; n, p) with n¼ 20 and p¼ 1/2. Using the cumulative
probabilities in Table A.1, we find

Prð10 � X � 15Þ ¼ Bð15; 20; 0:5Þ � Bð9; 20; 0:5Þ
¼ 0:994� 0:412 ¼ 0:582: ð6:46Þ

b) We employ the normal distribution with the same mean and standard
deviation as in (a), namely,

m ¼ np ¼ 10 and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
¼

ffiffiffi
5

p
: ð6:47Þ

The histogram of b(x; 20, 0.5) and the superimposed normal distribution
Nð10; ffiffiffi

5
p Þ are shown in Figure 6.8. The probability for each value of the

random variable X is equal to the area of the histogram bar of unit width
centered about that value of X on the abscissa. The exact probability
calculated in (a) is indicated by the shaded area of the histogram elements
between x¼ 9.5 and x¼ 15.5. Converting these boundaries into values of
the standard normal variable and using Table A.3, we find for the
approximate probability as included under the standard normal curve,

Prð9:5 � X � 15:5Þ ffi Pr
9:5� 10ffiffiffi

5
p � Z � 15:5� 10ffiffiffi

5
p

� 	
ð6:48Þ

¼ Fð2:46Þ � Fð�0:22Þ ¼ 0:9931� 0:4129 ¼ 0:580: ð6:49Þ

Comparison of Eqs. (6.49) with (6.46) shows that the normal approximation
gives a result that differs from the exact answer by about 0.3%. In this example,
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np¼ n(1� p)¼ 10, which satisfies the rule of thumb value (�5) given above for the
general validity of the approximation. In addition, the approximation is best when
p¼ 1/2, as is the case here. Figure 6.9 illustrates how the normal approximation to the
binomial distribution appears under two altered conditions from this example. In
Figure 6.9a, n has been changed from 20 to 40; in Figure 6.9b, n is again 20, while p
has been changed from 1/2 to 1/5. Compared with Figure 6.8, the change to larger n
in Figure 6.9a improves the approximation. The change of p away from 1/2 while
keeping n¼ 20 in Figure 6.9b results in a poorer approximation.

In the last example, the binomial probabilities were represented by histogram bars
with heights Pr(X¼ x)¼ b(x; n, p) and unit widths, centered on integral values of x
along the abscissa. The areas of the bars are thus equal to the binomial probabilities.
As seen from Figure 6.8, when the histogram is approximated by using a continuous
probability distribution, such as thenormal, someportions of the rectangular bars are
wrongly excluded from under the curve, while other portions outside the bars are
wrongly included. When calculating continuous approximations to the discrete
probabilities, one should apply the additive continuity correction factors of �1/2
to the continuous random variable. The particular factors to be applied depend on the
information sought. The following indicates some of the rules, in which the exact
binomial probabilities are approximated by using the cumulative probability, F(z), of
the continuous variable:

for PrðX � aÞ use F aþ 1=2� m

s

� 	
; ð6:50Þ

for PrðX � aÞ use 1� F
a� 1=2� m

s

� 	
; ð6:51Þ
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Figure 6.8 Exact binomial (histogram) and normal approximation (solid curve) for example in the
text.
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for Prða � X � bÞ use F bþ 1=2� m

s

� 	
� F

a� 1=2� m

s

� 	
: ð6:52Þ

Other rules can be similarly formulated (Problem 6.24).

& Example
If X� b(x; 100, 0.05), use the normal approximation to determine the
following probabilities, with and without the continuity correction factors:

a) Pr(X� 3);
b) Pr(10�X� 20).

(a)

(b)

403020100

Pr
(X

=x
)

0.00

0.05

0.10

x
20151050

Pr
(X

=x
)

0.00

0.05

0.10

0.15

0.20

0.25

Figure 6.9 (a) Same conditions as in Figure 6.8, except that n has been changed from 20 to 40,
improving the approximation. (b) Same as Figure 6.8, except that p has been changed from 1/2 to
1/5, showing that the approximation is not as good as when p¼ 1/2.
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Solution
a) Ignoring the continuity correction factors, we simply use X¼ 3 in

Eq. (6.45). The mean of the binomial distribution is np¼ 100� 0.05¼ 5,
and the standard deviation is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100� 0:05ð1� 0:05Þ

p
¼ 2:18: ð6:53Þ

Therefore, from Eq. (6.45),

PrðX � 3Þ ffi Pr Z � 3� 5
2:18

� 	
¼ PrðZ � �0:92Þ ð6:54Þ

¼ 1� Fð�0:92Þ ¼ 1� 0:1788 ¼ 0:8212: ð6:55Þ
With the continuity correction factor, in this case Eq. (6.51),

PrðX � 3Þ ffi Pr Z � 2:5� 5
2:18

� 	
¼ PrðZ � �1:15Þ ð6:56Þ

¼ 1� Fð�1:15Þ ¼ 1� 0:1251 ¼ 0:8749: ð6:57Þ
This value is considerably closer to the exact answer, 0.8817, than the
uncorrected result (6.55).

b) With no continuity correction factor, Eq. (6.45) implies that

Prð10� X � 20Þ ffi Pr
10� 5
2:18

� Z � 20� 5
2:18

� 	
¼ Prð2:29� Z � 6:88Þ ð6:58Þ

¼ Fð6:88Þ � Fð2:29Þ ¼ 1:000� 0:9890¼ 0:0110: ð6:59Þ
With the correction factor (6.52), one finds

Prð10� X � 20Þ ffi Pr
9:5� 5
2:18

�Z� 20:5� 5
2:18

� 	
¼ Prð2:06�Z� 7:11Þ ð6:60Þ

¼ Fð7:11Þ�Fð2:06Þ ¼ 1:000� 0:9803¼ 0:0197: ð6:61Þ
The exact answer is 0.0282. The corrected result (6.61) is closer than (6.59),
but still has a relatively big error. The parameter n is large here, but p is
rather far removed from the optimum value of 1/2 for use of the
approximation. Whereas the normal approximation is always symmetric,
the binomial distribution is very skewed in this example. The nonzero
binomial probabilities, though small, extend out to x¼ 20 in Figure 6.10.
The normal distribution extends to infinity in both directions.
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The normal distribution is very convenient to use as an approximating distribution
because its standard cumulative distribution is readily tabulated. The next example
illustrates its use in radioactive decay to solve a practical problem that would offer
considerable difficulty to compute by using the exact binomial formulation.

& Example
A 37-Bq (1-nCi) source of pure 42K contains 2.39� 106 atoms. The half-life is
12.36 h. Consider the probability that from 27 to 57 atoms (inclusive) will
decay in 1 s.

a) Solve for the probability by using the normal approximation to the
binomial distribution.

b) Use the exact binomial model for radioactive decay to set up the solution.

(a)

(b)
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Figure 6.10 Binomial distribution, b(x; n, p) (histogram), and normal approximation (solid curve)
for example in the text, parts (a) and (b).
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Solution
a) We let p be the probability that a given atomwill decay in 1 s. Sincem¼ 37 is

the mean number of atoms that decay in this time from among the
n¼ 2.39� 106 present,

p ¼ m

n
¼ 37

2:39� 106
¼ 0:0000155: ð6:62Þ

(Note that this probability for decay in 1 s is numerically equal to the decay
constant of the nuclide in s�1.) The standard deviation is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:39� 106ð0:0000155Þð1� 0:0000155Þ

q
¼ 6:08: ð6:63Þ

Applying Eq. (6.52) with appropriate continuity correction factors, we find
for the probability that the number of disintegrations X in 1 s will be in the
declared interval,

Prð27 � X � 57Þ ffi Pr
26:5� 37

6:08
� Z � 57:5� 37

6:08

� 	

¼ Prð�1:73 � Z � 3:37Þ ð6:64Þ

¼ Fð3:37Þ � Fð�1:73Þ ¼ 0:9996� 0:0418 ¼ 0:9578: ð6:65Þ

The problem is thus readily and accurately solved by using the normal
approximation.

b) We are asked to set up, but not solve, the problem with the exact binomial
model. One has (Eqs. (5.7) and (5.8))

PrðX ¼ xÞ ¼ bðx; n; pÞ ¼ n!
x!ðn� xÞ! p

xð1� pÞn�x: ð6:66Þ

Substituting the numerical values of n and p, we have for the exact answer,

Prð27 � X � 57Þ

¼
X57
x¼27

ð2:39� 106Þ!
x!ð2:39� 106 � xÞ! ð0:0000155Þ

xð0:9999845Þ2:39�106�x:

ð6:67Þ

This expression involves the sum of products of some extremely large and
small numbers, necessitating the use of practical approximations. In so
doing, one is led naturally to the more readily handled Poisson approx-
imation to the binomial, which we described in Chapter 5 (Eq. (5.27)).
(This example is an extension of one given in Turner (2007), pp. 310–311.
Also, see the last example in Section 2.5 of the present book.)
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6.6
Gamma Distribution

The gamma distribution is useful in the analysis of reliability and queuing, for
example, times to the failure of a system or times between the arrivals of certain
events. Two special cases of the gamma distribution find widespread use in health
physics. These are the exponential and the chi-square distributions, discussed in the
next two sections.

The gamma distribution for a continuous random variable X has two parameters,
k> 0 and l> 0. Its density function is1)

f ðx; k; lÞ ¼
lkxk�1e�lx

CðkÞ ; for x > 0;

0; elsewhere:

8><
>: ð6:68Þ

The mean and variance are (Problem 6.30)

m ¼ k
l

and s2 ¼ k

l2
: ð6:69Þ

By way of review, the gamma function is defined for k> 0 as

CðkÞ ¼
ð1

0

xk�1 e�x dx: ð6:70Þ

It satisfies the recursion relation

Cðkþ 1Þ ¼ kCðkÞ; ð6:71Þ
as can be shown by integration of the right-hand side of Eq. (6.70) by parts (Problem
6.31). When k is a positive integer, then repeated application of Eq. (6.71) gives

Cðkþ 1Þ ¼ k!; ð6:72Þ
the factors terminating with C(1)¼ 0!¼ 1.

Gamma distributions can assume a variety of shapes, depending on the values of
the parameters k and l. Figure 6.11 shows the density functions for l¼ 1 and several
values of k. We turn now to the density function for k¼ 1.

6.7
Exponential Distribution

When k¼ 1, the gamma distribution (6.68) becomes the exponential probability
density function

f ðx; 1; lÞ ¼ l e�lx; x > 0;
0; elsewhere:

�
ð6:73Þ

1) Some texts use b¼ 1/l in place of l in the definition (6.68).
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As we have seen, this important continuous random variable can be used to describe
the discrete process of radioactive decay. We next discuss its relationship to the
Poisson process (Section 5.5).

We showedbyEq. (5.38) that thePoissondistribution describes the probability px(t)
for the number of events X that occur in time twhen themean number of events per
unit time is l. We now consider the random variable T that describes the time taken
for the first event to happen. The probability that no events (X¼ 0) take place during
the time span from zero up to T¼ t is, from Eq. (5.38),

p0ðtÞ ¼ ðltÞ0e�lt

0!
¼ e�lt: ð6:74Þ

Letting the random variable T be the time to the first Poisson event, we have for the
probability that no event occurs in the time interval (0, t),

PrðT � tÞ ¼ e�lt: ð6:75Þ
Therefore,

PrðT < tÞ ¼ 1� e�lt; ð6:76Þ
thus providing the cumulative distribution for the first-event times. (These same
functions describe the survival and decay probabilities, Eqs. (2.21) and (2.22), for
radioactive decay of an atom.) Differentiation of the right-hand side of Eq. (6.76) with
respect to t (see Eq. (4.14)) gives the probability density function for the arrival times
of the first Poisson event:

f ðtÞ ¼ l e�lt; t > 0;
0; otherwise;

�
ð6:77Þ

x
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Figure 6.11 Gamma distributions for l¼ 1 and different values of k from Eq. (6.68).
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in agreement with Eq. (6.73). We derived this density function in an earlier chapter
from another standpoint (Eqs. (4.36) and (4.37)). We showed there that its mean and
standard deviation are both equal to 1/l (Eqs. (4.38) and (4.52)), which agrees with
Eq. (6.69) when k¼ 1.

We see from Eq. (6.77) that the time to first arrival for a Poisson process has an
exponential distribution. If failures happen randomly according to a Poisson process,
then the resulting times to occurrence have an exponential distribution. In this way,
the exponential as well as the more general gamma distributions prove useful for
describing reliability and the time to failure of industrial products and components.
Applied to radioactive decay, Eq. (6.77) describes the distribution of the decay times of
a large number of identical radionuclides. (See Eq. (5.27) and the discussion
following it.) The parameter l is the decay constant, and the mean life is 1/l.

& Example
An alpha-particle counter has a steady average background rate of 30 counts
per hour.

a) What fraction of the intervals between successive counts will be longer
than 5min?

b) What fraction will be shorter than 30 s?
c) What is the probability that, between two successive counts, a time interval

will occur whose length is within two standard deviations of the mean
length of the intervals?

Solution
a) The number of alpha particles counted per unit time is Poisson distrib-

uted. The probability density function for the decay events is described by
Eq. (6.77) with parameter l¼ 30 h�1 and t in hours:

f ðtÞ ¼ 30e�30t; t > 0;
0; otherwise:

�
ð6:78Þ

The fraction of successive intervals that are longer than 5min¼ 1/12 h is
given by

Pr T >
1
12

� 	
¼ 30

ð1

1=12

e�30t dt ¼ e�30=12 ¼ 0:0821: ð6:79Þ

b) The fraction of successive intervals shorter than T¼ 30 s¼ 1/120 h is

Pr T <
1
120

� 	
¼ 30

ð1=120

0

e�30t dt ¼ 0:221: ð6:80Þ

c) The count rate of 30 h�1 corresponds to a mean interval length of 2min,
which is also the standard deviation for the exponential distri-
bution. The relevant time interval for this example, therefore, goes from
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t¼ 2� 4¼� 2min to t¼ 2 þ 4¼ 6min, or from �1/30 to 1/10 h. Using
the density function (6.78), we find (f¼ 0 when T� 0)

Pr T <
1
10

� 	
¼ 30

ð1=10

0

e�30t dt ¼ 0:950: ð6:81Þ

Note from Table 6.1 how close this answer is to the one-tail area under the
standard normal curve within two standard deviations of the mean.

An interesting aspect of the exponential density is its �no memory� feature. If a
radionuclide has been observed not to decay for a time t, what is the chance that it will
not decay during an additional time s? In other words, what is the probability for a
random decay time T> t þ s, given that T> t has been observed? If we let A denote
the event T> t þ s and B the event T> t, then we ask for the conditional probability
Pr(A|B), discussed in Section 3.5. According to Eq. (3.31),

PrðAjBÞ ¼ PrðA \ BÞ
PrðBÞ : ð6:82Þ

The intersection of A and B is just A itself:

A \ B ¼ fT > tþ sg \ fT > tg ¼ fT > tþ sg ¼ A: ð6:83Þ
Using Eq. (6.77) to describe radioactive decay, we obtain from the last two equations,

PrðAjBÞ ¼ PrðAÞ
PrðBÞ ¼

PrðT > tþ sÞ
PrðT > tÞ ¼ e�lðtþ sÞ

e�lt
¼ e�ls ¼ PrðT > sÞ: ð6:84Þ

The last term is the probability that Twill exceed s, irrespective of the fact that we have
observed T for the time t already. In other words, an �old� radioactive atom that has
already lived a time thas the same probability of living any additional time s as a newly
formed identical atom. That the older atom might have been �at risk for decay� for
some time is irrelevant. Thus, one can characterize the exponential distribution as
�having no memory.�

It can be shown that, if X1, X2, . . ., Xk is a random sample from the exponential
distribution with parameter l, then Y ¼ Pk

i¼1 Xi has the gamma distribution with
parameters k and l. Since eachXihasmean 1/l and variance 1/l2, it follows thatYhas
mean k/l and variance k/l2, as given by Eq. (6.69).

6.8
Chi-Square Distribution

Another important continuous distributionwithmany applications in statistics is the
chi-square distribution. As we shall see in later chapters, �chi-square testing� is often
used to help judge whether a given hypothesis can reasonably account for observed
data. Another application is estimation of the population variance when sampling
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from a normal population. The density function for the chi-square distribution is a
special case of the gamma distribution with parameters l¼ 1/2 and k¼ v/2. From
Eq. (6.68), we write it in the form

f x2;
v
2
;
1
2

� 	
¼

ðx2Þðv=2Þ�1e�x2=2

2v=2Cðv=2Þ ; x2 � 0;

0; elsewhere:

8><
>: ð6:85Þ

The density depends on the single parameter v, which is called the number of degrees
of freedom, or simply the degrees of freedom. Its role will become clearer in later
applications. Since the chi-square distribution is a gamma distribution, its mean and
variance are given by Eq. (6.69) (Problem 6.37):

m ¼ v and s2 ¼ 2v: ð6:86Þ
Figure 6.12 shows some plots of the distribution for several values of v.

Letting x2v;a denote the value of x2 with v degrees of freedom for which the
cumulative probability is a, we write

a ¼ Prðx2 � x2v;aÞ
1

2v=2Cðv=2Þ
ðx2v;a

0

ðx2Þðv=2Þ�1 e�x2=2 dx2: ð6:87Þ

Table A.4 in the Appendix gives the quantiles for x2v;a for v¼ 1 to 30 degrees of
freedom and various probability values a. (A quantile, such as x2v;a, refers to the value
of the variable thatmarks the division of the distribution into that fractiona to the left
or to the right, depending on how the quantile is defined.)
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Figure 6.12 Chi-squared distribution, Eq. (6.85), for various values of the degrees of freedom v.
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& Example
Answer the following with the help of Table A.4.

a) What is the value of x2 with 6 degrees of freedom below which 30% of the
distribution lies?

b) Find the value of x2 with 7 degrees of freedom that cuts off 5% of the
distribution to the right.

c) Find the probability that the value of x2 with 12 degrees of freedom could
be as large as 15.0.

d) What is the probability that x2 with 3 degrees of freedom will be greater
than 12.2?

Solution
a) With v¼ 6 and a¼ 0.300 in Table A.4, we find x2v;a ¼ x26;0:30 ¼ 3:828.
b) In this case, wewant the value of x2with 7 degrees of freedombelowwhich

95% of the area lies. Table A.4 gives x2v;a ¼ x27;0:95 ¼ 14:07.
c) With reference to Eq. (6.87), we are asked to find a when x212;a ¼ 15:0,

where a is the area to the left of x2¼ 15.0. In Table A.4, we need to
interpolate between the two entries x212;0:75 ¼ 14:85 and x212;0:80 ¼ 15:81.
Linear interpolation gives x212;0:758 ¼ 15:0, and so
Prðx2 � 15:0Þ ¼ a ¼ 0:758.

d) From Table A.4, x23;0:990 ¼ 11:35 and x23;0:995 ¼ 12:84. Linear interpolation
gives x23;0:993 ¼ 12:2, or Pr(x2� 12.2)¼a¼ 0.993. The area to the right of
12.2 is Pr(x2> 12.2)¼ 1�a¼ 0.007.

When the degrees of freedom v> 30 are beyond the range given inTable A.4, one can
proceed as follows. It turns out that the quantity Z ¼ ð

ffiffiffiffiffiffiffi
2x2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

2v� 1
p Þ is then very

nearly normally distributedwith zeromean andunit standarddeviation. Lettingx2v;a and
za denote the 100ath percentiles of the chi-square and the standard normal distribu-
tions, it follows that the normal approximation to the chi-square distribution yields

x2v;a ¼ 1
2
ðza þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2v� 1

p
Þ2; v > 30: ð6:88Þ

The cumulative standard normal Table A.3 can then be employed.
Often one is interested in the boundaries of an interval that cuts off equal areas of a

chi-square distribution on both ends. Unless stated otherwise, we shall assume by
convention that such an interval is always implied. As we have seen, the boundaries
for the interval are symmetric for the standard normal curve. In contrast, the chi-
square distribution is asymmetric, and therefore fixing the interval is somewhat
more involved, as the next example illustrates.

& Example
A random variable has a chi-square distribution with 21 degrees of freedom.
Find the constants b1 and b2 such that Prðb1 � x2 � b2Þ ¼ 0:90.
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Solution
The interval (b1, b2) is chosen to cut off 5% of the chi-square distribution on
both ends (in accordance with the convention, Prðx2 < b1Þ ¼ Prðx2 > b2Þ).
The relevant values of a are 0.05 and 0.95 with v¼ 21. From Table A.4 we find
that b1 ¼ x221;0:05 ¼ 11:591 and that b2 ¼ x221;0:95 ¼ 32:67. Thus, the interval
(b1, b2)¼ (11.591, 32.67) encloses the middle 90% of the distribution, as
shown in Figure 6.13, and excludes the two shaded areas of 5% on either end.

The chi-square distribution has the property of additivity, which we state here, but
do not prove. If Y1, Y2, . . ., Yn are independent random variables having chi-square
distributions with v1, v2, . . ., vn degrees of freedom, respectively, then Y ¼ Pn

i¼1 Yi is
chi-square distributed with v ¼ Pn

i¼1 vi degrees of freedom.
A very important relationship exists between the chi-square and normal distribu-

tions. If the random variableZ has the standard normal distribution, then Y¼Z2 has
the chi-square distribution with v¼ 1 degree of freedom. To show this, we focus on
the cumulative probability distribution function G(y), writing

GðyÞ ¼ PrðY � yÞ ¼ PrðZ2 � yÞ ¼ Prð� ffiffiffi
y

p � Z � ffiffiffi
y

p Þ: ð6:89Þ
In terms of the cumulative standard normal distribution F(z) given by Eq. (6.20), it
follows that

GðyÞ ¼ Fð ffiffiffi
y

p Þ � Fð� ffiffiffi
y

p Þ: ð6:90Þ
The probability density function g(y) forY is the derivative of the cumulative function
G(y) with respect to y, as shown by Eq. (4.14). Using the chain rule, we write from
Eq. (6.90)
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Figure 6.13 See example in the text. The values b1 and b2 cut off 5%of the area (shaded) on the left
and right, respectively, of the chi-squared distribution with v¼ 21 degrees of freedom.
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gðyÞ ¼ dG
dy

¼ dFð ffiffiffi
y

p Þ
dz

dð ffiffiffi
y

p Þ
dy

� dFð� ffiffiffi
y

p Þ
dz

dð ffiffiffi
y

p Þ
dy

: ð6:91Þ

The quantity dF/dz¼ f(z) is the standard normal density function (6.19). Also,
dð ffiffiffi

y
p Þ=dy ¼ ð1=2Þy�1=2. Thus, with the help of Eq. (6.19), Eq. (6.91) becomes

gðyÞ ¼ 1
2
y�1=2 f ð ffiffiffi

y
p Þþ f ð� ffiffiffi

y
p Þ� � ¼ y�1=2

2
ffiffiffiffiffiffi
2p

p ðe�y=2 þ e�y=2Þ

¼ 1ffiffiffiffiffiffi
2p

p y�1=2 e�y=2: ð6:92Þ

Comparison with Eq. (6.85) shows that Y¼Z2 has the chi-square distribution with
v¼ 1 degree of freedom. The constant Cð1=2Þ ¼ ffiffiffi

p
p

, and the density (6.92) is zero
when y< 0.

For a normal distribution with mean m and standard deviation s, we have thus
shown that the square of the standard normal variable Z¼ (X�m)/s defined by
Eq. (6.18) has a chi-square distribution with one degree of freedom. Combining this
finding with the additivity property of chi-square distributions leads to a powerful
result thatwe shall use in later sections. If wehaveX1,X2, . . .,Xn independent random
variables with the same normal distribution with mean m and standard deviation s,
then additivity implies that the random variable

Y ¼
Xn
i¼1

X � m

s

� 	2

�x2n; ð6:93Þ

where the notation x2n means that Y has a chi-square distribution with n degrees of
freedom.

6.9
Student�s t-Distribution

The random variable T is defined as follows in terms of two independent random
variablesZandY that have, respectively, the standardnormal distribution and the chi-
square distribution with v degrees of freedom:

T ¼ Zffiffiffiffiffiffiffiffi
Y=v

p : ð6:94Þ

The sampling distribution of T has Student�s t-distribution with v degrees of
freedom. Its density function is given by

hðtÞ ¼ 1ffiffiffiffiffi
pv

p Cððvþ 1Þ=2Þ
Cðv=2Þ 1þ t2

v

� 	�ðvþ 1Þ=2
; �1 < t < 1; v > 0: ð6:95Þ

Figure 6.14 shows the t-distribution for v¼ 1 and v¼ 4 degrees of freedom and the
standard normal distribution. One sees that the t-distribution, which is symmetric
about zero, approaches the standard normal as v increases. The two nearly coincide
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when v� 30. In fact, many tables of the t-distribution simply refer to the normal
distribution after 30 degrees of freedom. At the other extreme, when v¼ 1, h(t)
coincides with the Cauchy distribution, Eq. (6.16) with t¼ 0 (Problem 6.46).

TableA.5 in theAppendix gives the quantiles tv;a of the t-distributionwith vdegrees
of freedom, such that the fraction a of the distribution lies to the right:

a ¼ PrðT > tv;aÞ ¼
ð1

tv;a

hðtÞdt: ð6:96Þ

Values of a in the table range from 0.100 to 0.005. Because of the symmetry of the t-
distribution, �tv;a is the quantile for which the fraction a of the area lies to the left.

& Example
Use Table A.5 to answer the following.

a) With 10 degrees of freedom, what value of t leaves 5% of the t-distribution
to the right?

b) What is the value of t with 6 degrees of freedom that cuts off 2.5% of the
distribution to the left?

c) Find the value of t1 with 21 degrees of freedom such that
Pr(�t1�T� t1)¼ 0.900.

d) Find Pr(�1.325<T< 2.086) for the t-distribution with 20 degrees of
freedom.

Solution
a) The quantile asked for is given directly in Table A.5, t10;0:050 ¼ 1:812.

t
420-2-4

h(t)

0.0

0.1

0.2

0.3

0.4 ν = 4

ν = 1

N(0,1)

Figure 6.14 Student�s t-distribution, Eq. (6.95), for v¼ 1 and v¼ 4 degrees of freedom and the
standard normal distribution N(0, 1).
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b) In the notation of Table A.5, we are asked to find t6;0:975, which leaves 2.5%
of the distribution on its left. Using the table and the fact that the t-
distribution is symmetric, we find that t6;0:975 ¼ �t6;0:025 ¼ 2:447.

c) The interval (�t1, t1) leavesa¼ 0.050 of the symmetric distribution outside
on the left and the same fraction outside on the right. With v¼ 21, Table
A.5 gives t1¼ t21;0:050 ¼ 1.721.

d) With v¼ 20 in Table A.5, we find that t20;0:100 ¼ 1:325 and t20;0:025 ¼ 2:026.
The value t¼� 1.325 at the lower boundary of the interval excludes 0.100
of the area to the left. The value 2.086 excludes 0.025 to the right. Since the
total area outside the interval between the last two values of t is
0.100 þ 0.025¼ 0.125, it follows that

Prð�1:325 < T < 2:086Þ ¼ 1� 0:125 ¼ 0:875: ð6:97Þ

The discoverer of the t-distribution in the early twentieth century wasW.S. Gosset,
who published under the pseudonym �Student�; consequently, the designation
�Student�s t-distribution.� The distribution is important for comparing sample
means for a normal population when the population variance is unknown.

6.10
F Distribution

The F distribution is useful for obtaining confidence intervals or tests of hypothesis
in comparing two variances. It is also used to test whether two or more mean values
are equal. TheFrandomvariable is defined as the ratio of two independent chi-square
random variables, U1 and U2, each divided by its respective degrees of freedom, v1
and v2:

Fðv1; v2Þ ¼ U1=v1
U2=v2

¼ Fv1 ;v2 : ð6:98Þ

By convention, when describing F the number of degrees of freedom v1 associated
with the function U1 in the numerator is always stated first, followed by v2. The
probability density function for an F random variable with v1 and v2 degrees of
freedom is given by

hðf Þ ¼
Cððv1 þ v2Þ=2Þ
Cðv1=2ÞCðv2=2Þ

�
v1
v2

	v1=2 f ðv1=2Þ�1

ð1þðv1f =v2ÞÞðv1 þ v2Þ=2 ; 0 < f < 1;

0; elsewhere:

8><
>: ð6:99Þ

Three examples of the density function are shown in Figure 6.15. Each depends on
the two parameters v1 and v2. Quantiles for the cumulative probability,

a ¼
ðfaðv1;v2Þ

0

hðf Þdf ; ð6:100Þ
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are given for different values of v1 and v2 in Tables A.6 and A.7 in the Appendix. The
quantity fa(v1, v2) is the value of f that includes the fraction a of the area under the
curve F on its left and cuts off (1�a) on its right. Tables A.6 and A.7 include only
values for a¼ 0.95 and a¼ 0.99, respectively, for various combinations of v1 and v2.
However, these tables can also be used to obtain values for a¼ 0.05 and a¼ 0.01 by
means of the following relation between the lower and upper quantiles of the
F distribution (Problem 6.47):

f1�aðv1; v2Þ ¼ 1
faðv2; v1Þ : ð6:101Þ

& Example
Find the F value with 5 and 10 degrees of freedom that leaves an area 0.95 to
the right.

Solution
We are asked to find faðv1; v2Þ ¼ f0:05ð5; 10Þ. Since Tables A.6 and A.7 provide
values only fora¼ 0.95 and0.99,weuseEq. (6.101).Witha¼ 0.95, v1¼ 5, and
v2¼ 10, substitution into Eq. (6.101) gives, from Table A.6,

f0:05ð5; 10Þ ¼ 1
f0:95ð10; 5Þ ¼

1
4:735

¼ 0:211: ð6:102Þ

& Example
Find values b1 and b2 such that Pr(b1<F< b2)¼ 0.90, where F is an F random
variable with 14 and 19 degrees of freedom.
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Figure 6.15 Three examples of the probability density function, Eq. (6.99), for the F distribution
with degrees of freedom v1 and v2 shown.
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Solution
We follow the convention that, unless otherwise specified, intervals are
selected to cut off equal areas on both ends of the distribution. Accordingly,
we need to determine b1 and b2 byfinding the quantiles that cut off 5%on each
end. The area between the two boundaries will then be 0.90, as required. The
right-hand boundary b2 is tabulated directly in Table A.6. With a¼ 0.95,
v1¼ 14, and v2¼ 19, we find b2 ¼ faðv1; v2Þ ¼ f0:95ð14; 19Þ ¼ 2:256. The value
of b1 would be given in Table A.6 by b1 ¼ f0:05ð14; 19Þ, but this value is not
tabulated. We can still determine the b1 boundary from the table, however,
with the help of the relation (6.101). Substituting a¼ 0.95 into Eq. (6.101),
keeping v1 and v2 the same as before, and referring to Table A.6, we obtain

f0:05ð14; 19Þ ¼ 1
f0:95ð19; 14Þ ¼

1
2:400

¼ 0:417: ð6:103Þ

Thus, Pr(0.417<F< 2.256)¼ 0.90.

6.11
Lognormal Distribution

Many population distributions are skewed with a long tail in one direction or the
other. Distributions of this kind can arise, for example, in survival analysis, envi-
ronmental measurements, and salaries earned. A frequently used model for such
data is the lognormal distribution. In this case, it is the natural logarithm Y¼ ln X of a
random variable X that is normally distributed, rather than the variable X itself.

We obtain the distribution for X by transforming variables. For the normally
distributed Y with mean my and standard deviation sy, we write from the defini-
tion (6.17)

f ðyÞ ¼ 1ffiffiffiffiffiffi
2p

p
sy

e�ðy�myÞ2=2s2
y ; �1 < y < 1: ð6:104Þ

The distribution on X can be inferred from Eq. (4.125). In the present notation,
we substitute y¼ ln x into Eq. (6.104) and then multiply by the derivative
d(ln x)/dx¼ 1/x. Thus, the lognormal distribution is

gðxÞ ¼
1ffiffiffiffiffiffi

2p
p

syx
e�ðln x�myÞ2=2s2

y ; x > 0; �1 < my < 1; sy > 0;

0; elsewhere:

8><
>: ð6:105Þ

The two parameters my and sy of the distribution are the true mean and standard
deviation of the transformed random variable Y¼ ln X. Put another way, if Y is
normally distributed with mean my and standard deviation sy, then X¼ eY has the
lognormal distribution with density function given by Eq. (6.105).

The mean of the original variable X is

mx ¼ emy þð1=2Þs2
y ð6:106Þ
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and its variance is

s2
x ¼ e2my þ 2s2

y � e2my þ s2
y ¼ e2my þs2

y ðes2
y � 1Þ: ð6:107Þ

& Example
If Y¼ ln X has the normal distribution with my¼ 1 and sy¼ 2, determine the
mean and standard deviation for X.

Solution
From Eq. (6.106), the mean is

mx ¼ e1þð1=2Þð2Þ2 ¼ e3 ¼ 20:1: ð6:108Þ
From Eq. (6.107), the variance is

s2
x ¼ e2ð1Þþ 2ð2Þ2 � e2ð1Þþ ð2Þ2 ¼ e10 � e6 ¼ e6ðe4 � 1Þ
¼ 2:16� 104: ð6:109Þ

The standard deviation is

sx ¼ e3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e4 � 1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:16� 104

p
¼ 147: ð6:110Þ

6.12
Beta Distribution

The beta distribution is commonly used inmodeling the reliability,X, of a system. The
distribution also arises naturally in the statistical area of Bayesian analysis, whichwill
be discussed in Chapter 15. The probability density function of a beta random
variable, which has two parameters a> 0 and b> 0, is given by

f ðx;a; bÞ ¼
Cðaþ bÞ
CðaÞCðbÞ x

a�1ð1� xÞb�1; 0 � x � 1;

0; elsewhere:

8><
>: ð6:111Þ

The mean and variance are (Problem 6.53)

m ¼ a

aþ b
and s2 ¼ ab

ðaþ bþ 1Þðaþ bÞ2 : ð6:112Þ

An important relationship exists between the gamma and beta distributions. We
consider two independent gamma random variables, X1 and X2, with parameters
(a, l) and (b, l), respectively. Since X1 and X2 are independent, the random variables
Y1¼X1 þ X2 andY2¼X1/(X1 þ X2) are also independently distributed. The variable
Y1 represents the sum of the two variables, and Y2 represents the fraction of the sum
due toX1. It can be shown that the joint probability density function forY1 is a gamma
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distribution with parameters (a þ b, l) and that Y2 has a beta distribution with
parameters (a, b) (see, for example, Hogg and Tanis (1993)).

This relationship provides an interesting result. Consider, for example, two
sources of the same radionuclide (decay constant¼ l), source A having originally a
atoms and source B, b atoms. If X1 and X2, respectively, denote the times for each of
the two sources to decay away completely, it can be shown that X1 and X2 are
independent gamma variables, having parameters (a, l) and (b, l), respectively.
Then the above result states that, independently of the time needed for all a þ b

disintegrations to occur, the proportion of the total time that comes from source A
has a beta distribution with parameters (a, b). This result is illustrated in the
next example.

& Example
Consider two sources of a radionuclide with decay constant l¼ 2.0min�1.
Initially, source A has two atoms and source B has five atoms.

a) Describe the distribution of the total time for all atoms from both sources
to decay.

b) Calculate the mean and variance of the total time for all atoms to decay.
c) Write the density function and determine the mean and variance of the

proportion of time for source A to decay totally.

Solution
a) We let a¼ 2 and b¼ 5, respectively, be the numbers of atoms initially

present in the two sources. The total time in minutes for both sources to
decay then has a gamma distribution with parameters a þ b¼ 2 þ 5¼ 7
and l¼ 2.0min�1.

b) The mean and variance for the total time are given by Eq. (6.69):

m ¼ aþ b

l
¼ 7

2:0min�1 ¼ 3:5min ð6:113Þ

and

s2 ¼ aþ b

l2
¼ 7

ð2:0min�1Þ2 ¼ 1:75min2: ð6:114Þ

c) The density is the beta distribution (6.111) with parameters a¼ 2 and
b¼ 5:

f ðxÞ ¼
Cð7Þ

Cð2ÞCð5Þ xð1� xÞ4; 0 < x < 1;

0; elsewhere:

8><
>: ð6:115Þ

The mean and variance are, from Eq. (6.112),

m ¼ a

aþ b
¼ 2

7
¼ 0:2857 ð6:116Þ
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and

s2 ¼ ð2Þð5Þ
ð2þ 5þ 1Þð2þ 5Þ2 ¼ 0:02551: ð6:117Þ

Figure 6.16 shows a plot of the beta distribution (6.115) with a¼ 2 and
b¼ 5 for the portion of the time for source 1 to decay completely. The
dashed line marks the location of the mean (6.116).

Problems

6.1 The random variable X has a uniform distribution on the interval [0, 1]. Find
a) Pr(X> 0.5);
b) Pr(0.3<X< 0.7);
c) Pr(X< 0.3).

6.2 If X has the uniform distribution on the interval [0, 100], determine
a) E(X);
b) Var(X).

6.3 Use the definingEq. (4.44) for the variance in place of Eq. (4.48) to compute the
result given by Eq. (6.8).

6.4 Verify the probability density function (6.14) and show that it is normalized.
6.5 The spectrumof energy losses q for the scattering of a fast neutron of energyEo

from hydrogen, shown in Figure 4.5a, is a uniform distribution.
a) What is the probability that a collision of a 5.21-MeVneutronwill reduce its

energy to a value between 3.37 and 3.39MeV?

x
1.00.80.60.40.20.0

f(x
;2

,5
)

0.0

0.5

1.0

1.5

2.0

2.5

Figure 6.16 Beta distribution, Eq. (6.115), with parameters a¼ 2 and b¼ 5. Vertical dashed line
marks positionof themean,m¼ 0.2857, for proportionof sourceA todecay completely. See example
in the text.
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b) What is the probability that the energy of the 5.21-MeV neutron after the
collision will lie in any energetically possible interval of width 0.020MeV?

c) Write the cumulative energy-loss spectrum from Eq. (4.132) for �1< q
<1 and sketch it.

6.6 Show that the Cauchy distribution (6.16) is normalized.
6.7 Refer to Figure 6.1 and consider an unshielded source of photons that are

randomly emitted isotropically (in three dimensions) from a point source and
strike the screen over its surface in two dimensions. Let r be the distance from
the intersection of the perpendicular to the screen (at t) and the point where a
photon hits the screen.
a) Find the probability density function on r, where 0�r<1.
b) Show that this probability density function is normalized.

6.8 Show that Eq. (6.19) follows from Eqs. (6.17) and (6.18).
6.9 Verify that the standard normal distribution (6.19) is normalized.
6.10 For the normal distribution, Eq. (6.17), show that E(X)¼m and Var(X) 	

E[(X� m)2]¼s2. (Hint: Starting with Eq. (6.17), make the change of vari-
ables (6.18) and then integrate by parts, remembering that the function (6.19)
is normalized.)

6.11 Show that the normal distribution (6.17) has inflection points at x¼ m� s.
6.12 For the random variable Zwith the standard normal distribution, determine

the following:
a) Pr(Z> 1.96);
b) Pr(�1.96<Z< 1.96);
c) Pr(Z< 1.28);
d) Pr(�1.28<Z< 1.28).

6.13 The amount of coffee, X, dispensed per cup by an automatic machine has a
normal distribution with a mean of 6.00 ounces and a standard deviation of
0.25 ounce. What is the probability that the amount of coffee dispensed in a
cup will be
a) less than 5.50 ounces?
b) between 5.50 and 6.50 ounces?
c) more than 6.25 ounces?

6.14 The average neutron fluence rate from a sealed 252Cf source, determined
from many measurements, is normally distributed with mean 2.58� 1010

cm�2 s�1 and standard deviation 0.11� 1010 cm�2 s�1. (The change in
source strength over the measurement period is negligible.) What is
the probability that a subsequent measurement will indicate a neutron
fluence rate of
a) less than 2.36� 1010 cm�2 s�1?
b) between 2.36� 1010 and 2.79� 1010 cm�2 s�1?
c) greater than 2.69� 1010 cm�2 s�1?

6.15 The sealed 252Cf source in the last problem is stored in a pool of water, which
provides a biological shield when the source is not in use. Water samples are
periodically taken from the pool and analyzed for total alpha-particle activity to
verify that the source encapsulation has not failed and that radioactivematerial
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is not leaking. Measurements of the net alpha-particle activity concentration
in the water have a mean of 0.0253Bq l�1 and a standard deviation of
0.0128Bq l�1. (The net activity concentration is the difference between the
samplemeasurement and that of an otherwise identical sample known to have
no added activity.) For control purposes, net results exceeding 0.0509Bq l�1

are taken to indicate an abnormal condition that requires additional testing.
Assume that the source is not leaking and that measurement results are from
the net background alpha-particle activity alone.
a) What is the probability that a measurement will yield a net total alpha-

particle activity concentration exceeding 0.0278Bq l�1?
b) What proportion ofmeasurements will yield net total alpha-particle activity

concentration between 0.0003 and 0.0509Bq l�1?
c) What proportion of measurements will exceed the level above which

additional testing is required?
6.16 A manufacturing process produces bolts that have a length that is normally

distributed with mean 1.0000 cm and standard deviation 0.0100 cm.
a) What is the probability that a bolt�s length will exceed 1.0196 cm?
b) What proportion of bolts will have lengths between 0.9800 and 1.0200 cm?

6.17 The amount of rainfall in a year for a certain city is normally distributed with a
mean of 89 cm and standard deviation of 5 cm.
a) Determine the annual rainfall amount that will be exceeded only 5% of the

time.
b) Determine what percentage of annual rainfall amounts will qualify as a

drought year of 74 cm or less.
c) What is the probability that rainfall is between 79 and 99 cm in a given year?

6.18 The time it takes a health physicist to travel daily from work to home is
normally distributed with mean 43.0min and standard deviation 4.2min.
a) What is the probability that it will take longer than 50min to get home from

work?
b) What travel time will be exceeded in 99% of the trips?

6.19 Chebyshev�s inequality as expressed by the relation (4.115) gives a rigorous
upper bound for the two-tail probability for any random variable X.
a) Determine this upper bound when X lies outside the interval m� 3.2s.
b) From Table 6.1, what is the exact two-tail probability for a normally

distributed random variable?
6.20 Passengers flying on a certain airline have baggage weights that are normally

distributed with mean weight 15.0 kg and standard deviation 3.0 kg. If 30
passengers board a flight,
a) What is the probability that the average baggage weight lies between 14.3

and 15.7 kg?
b) What is the probability that the total baggage weight exceeds 482.2 kg?

6.21 LetX be the randomnumber of spots that showwhen anunbiased die is rolled.
a) Calculate the mean and standard deviation of X.
b) Determine the mean and standard deviation of the sampling distribution

for the mean number of spots X that show when the die is rolled twice.
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c) Make a plot of Pr(X).
d) Make a plot of PrðXÞ.

6.22 The die in the last problem is rolled 20 times.
a) What are the mean and standard deviation of the sampling distribution?
b) Make a rough sketch of PrðXÞ.

6.23 Verify Eq. (6.41).
6.24 Write appropriate rules, similar to Eqs. (6.50)–(6.52), for

a) Pr(X< a);
b) Pr(X> a);
c) Pr(a�X< b).

6.25 For X� b(x; 20, 0.4), use the normal approximation to determine the follow-
ing, with and without continuity correction factors:
a) Pr(X� 5);
b) Pr(6�X� 13);
c) Pr(6<X< 13).

6.26 Compare the answers to the last problem with the exact answers found from
Table A.1.

6.27 The example involving Eq. (6.48) in the text used continuity correction factors.
a) Repeat the calculations without applying these factors.
b) What are the percentages of error made with and without the factors?

6.28 In order to see whether her new proposal will be favored by the public, a
politician performs a survey on 100 randomly selected voters.
a) Use the normal approximation to the binomial distribution to find the

probability that 60 or more of the persons sampled would say that they
favored the proposal, if the true proportion in favor were 0.50.

b) Express the exact probability by assuming that the binomial model is
correct, but do not calculate the value.

6.29 A new manufacturing process for special thermoluminescent dosimeter
(TLD) chips is said to be in control if no more than 1% of its product is
defective. A random sample of 100 specimens from the process is examined.
a) If the process is in control, what is the probability of finding at most three

defective chips?
b) Suppose that the process has slipped, and now 5% of the product is

defective. What is then the probability of finding at most three defective
chips from a random sample of 100?

6.30 Show that the mean and variance of the gamma distribution are given by
Eq. (6.69).

6.31 a) Show that the recursion relation (6.71) follows from the definition (6.70) of
the gamma function.

b) Show that 0!¼ 1.
c) Show that Cð1=2Þ ¼ ffiffiffi

p
p

.
6.32 Show that the exponential probability density function (6.73) is normalized.
6.33 For a random variable X that has the exponential distribution (6.73), show that

a) E(X)¼ 1/l;
b) Var(X)¼ 1/l2.
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6.34 The number of persons entering a store is Poisson distributed with parameter
l¼ 20 customers per hour.
a) What is the mean time in minutes between successive customers?
b) What is the probability that the time between two successive customers is

from 1 to 5min?
6.35 The length of time that a patron waits in queue to buy popcorn at a certain

movie theater is a random variable, having an exponential distribution with
mean m¼ 4min.
a) What is the probability that a patron will be served within 3min?
b) What is the probability that exactly three of the next five persons will be

served in less than 3min?
c) What is the probability that at least three of the next five persons will be

served in less than 3min?
6.36 Show that Eq. (6.84) can be written as

PrðT > sÞ ¼ PrðT > tþ sjX > tÞ:
6.37 Verify Eq. (6.86) for themean and variance of the chi-square distributionwith v

degrees of freedom.
6.38 a) With 17 degrees of freedom, what value of x2 cuts off 5% of the area of the

distribution to the right?
b) Find Pr(x2� 20.00).
c) Find Pr(x2> 31.00).
d) Calculate Pr(20.00� x2� 31.00).

6.39 a) What range of values includes 99% of the chi-square distribution with 10
degrees of freedom?

b) What is the mean value of x2?
c) What is the standard deviation?

6.40 Use Eq. (6.88) to find the upper 5% point for the chi-square distribution with
40 degrees of freedom.

6.41 a) The text states that
ffiffiffiffiffiffiffi
2x2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
2v� 1

p
is approximately distributed as

standard normal when v is large. Use this fact to approximate the upper
2.5 percentile for the chi-square distribution with v¼ 30.

b) In addition, the central limit theorem implies that ðx2 � vÞ= ffiffiffiffiffi
2v

p
is also

approximately standard normal for large v. Work part (a) by using this
approximation.

c) Compare with the exact value in Table A.5.
6.42 Let X1, X2, . . ., X10 represent a random sample from a normal population with

zero mean and unit standard deviation. For the variable Y ¼ P10
i¼1 X

2
i ,

determine
a) Pr(Y� 7.267);
b) Pr(3.940<Y< 18.31).

6.43 The random variable X has a uniform distribution on the interval [0, 1].
a) Determine the probability density function for Y¼� 2 ln X.
b) Show that Y has a chi-square distribution with 2 degrees of freedom.
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6.44 a) For Student�s t-distribution with 5 degrees of freedom, find the value of t
below which 90% of the distribution lies.

b) Find the value of t with 8 degrees of freedom that cuts off 5% of the
distribution to the right.

6.45 a) Find the probability that the value of t in the t-distribution with 15 degrees
of freedom could be as large as 1.90. (Use linear interpolation.)

b) With 13 degrees of freedom, find the value of a such that
Pr(�a<T<a)¼ 0.95.

6.46 Show that Eq. (6.95) with one degree of freedom leads to the Cauchy
distribution (6.16) with t¼ 0.

6.47 Prove Eq. (6.101).
6.48 For the Fdistribution with 4 and 12 degrees of freedom, find the value of f that

a) leaves an area of 0.05 to the right;
b) leaves an area of 0.95 to the right.

6.49 Find values b1 and b2 such that Pr(b1< F< b2)¼ 0.90 for an F random variable
with 8 and 12 degrees of freedom.

6.50 The random variable Y¼ ln X has a normal distribution with mean 1 and
variance 4.
a) Determine c1 and c2 such that Prðc1 < Y < c2Þ ¼ 0:95:
b) Use part (a) and the fact that Y¼ ln X to determine a1 and a2 such that

Prða1 < X < a2Þ ¼ 0:95.
6.51 Given that Y¼ ln X is normally distributed with mean 1.5 and variance 3.0,

determine Prð0:0954 < X < 28:4806Þ.
6.52 If Y¼ ln X has a normal distribution with mY¼ 2 and sY ¼ ffiffiffi

3
p

, determine the
mean and standard deviation for X.

6.53 Derive the relations (6.112) for themean and variance of the beta distribution.
6.54 Let Y be distributed as a beta random variable with a¼ 1 and b¼ 3.

a) Calculate the mean and variance of Y.
b) Find the value of b for which Pr(Y> b)¼ 0.05.
c) Find the value of a for which Pr(Y<a)¼ 0.05.
d) Using these values of a and b, show that Pr(a<Y< b)¼ 0.90.

6.55 Consider two sources of a radionuclide with decay constant l¼ 2.0min�1.
Initially, source A has three atoms and source B has five atoms.
a) Describe the distribution of the total time for all atoms fromboth sources to

decay.
b) Calculate the mean and variance of the total time for all atoms to decay.
c) Write an equation whose solution would determine themedian of the total

time for all atoms to decay.
d) Describe the distribution of the portion of the time that comes from

source A.
e) Determine themean and variance of the proportion of the time for sourceA

to decay totally.
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7
Parameter and Interval Estimation

7.1
Introduction

This chapter treats the practical problem of estimating (1) the numerical value of a
parameter that characterizes a large population fromwhichwe can sample and (2) the
uncertainty associated with that estimate. We discuss point and interval estimates,
how they can be calculated, and their interpretation. For example, what is the �best
value� to report for a population mean, estimated on the basis of a given sample of
data?What is the uncertainty in the value thus reported?What statistical distribution
is associated with the estimator itself?

The next chapter, on the propagation of errors, treats the uncertainty in a quantity
that is derived from a combination of random variables, each with its own random
error.

7.2
Random and Systematic Errors

How reliable is the numerical value assigned to a physical quantity that onemeasures
or observes? A practical way to answer this question is to repeat the measurement a
number of times, in exactly the same way, and examine the set of values obtained.
Experimental uncertainties that can be thus revealed are called random errors. For
example, the period of a pendulum can bemeasured directly by using a stopwatch to
determine the time it takes the pendulum to return to its position of maximum
displacement in one complete swing. Repeated measurements will generally yield a
distribution of the times that are obtained for different swings. An obvious source of
error in this procedure is the variability in the instant at which the watch is started or
stopped relative to the precise location of the pendulum at the beginning or end of a
swing.Without bias, the watch will sometimes be started a bit early or a bit late. From
the distribution of the timed values for a number of observations made in the same
way, one can get a reliable estimate of the random error that is thus occurring in
the determination of the pendulum�s period. In general, the precision in the

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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determination of a quantity is reflected in the spread, or range of values, obtained
when repeated, independentmeasurements aremade in the sameway. Precision can
be expressed quantitatively in terms of the variance or standard deviation computed
from the results of the measurements.

In contrast to random errors, systematic errors are not revealed through repeated
measurements. If the stopwatch runs too fast or too slow, this condition will cause a
systematic error in the individualmeasurements of the period. This kind of error will
not be detected by repeated observations, and it will always affect the results in the
same way. If the watch runs too fast, for instance, the effect is to make the measured
value of the pendulum�s period too large. Systematic errors always reduce the
accuracy of the result obtained. Whereas random errors can usually be assessed
from repeated observations, systematic errors are often hard to detect or even
recognize and evaluate. However, steps can be taken to reduce them and improve
accuracy. Such steps include careful calibration of equipment, comparison with
measurements made at other laboratories, and review and analysis of one�s mea-
surement procedures. The accuracy of the stopwatch should be checked against a
certified time standard for possible corrections to its readings. Calibration is an
extremely important element of any radiation monitoring program.

In the treatment of errors and error propagation in this and the next chapter, we
shall not address systematic errors in experimental data. While this subject is
extremely important, it is outside the scope of this book. We shall deal only with
the effects and assessment of random errors.

7.3
Terminology and Notation

A parameter is a value associated with a probability distribution that helps
characterize or describe that distribution. For example, the binomial distribution
depends on two parameters, n and p, representing the number of trials and the
probability of success. If we know themboth, thenwe canwrite down the distribution
explicitly and calculate probabilities. Similarly, the Poisson distribution is completely
determined by the single rate parameter, l. The normal distribution has two
parameters, the mean and variance, usually denoted by m and s2, that identify it
completely. The single parameter, called degrees of freedom, characterizes the
chi-squared distribution. A parameter can also be a function of other parameters.
For instance, the variance of the binomial random variable with parameters n and p is
also a parameter, given by s2¼ np(1� p).

The dimensionless coefficient of variation (CV) is defined as the ratio s/m of the
standard deviation s and themean m of a distribution. It thus represents the standard
deviation of the distribution in multiples of its mean. The coefficient of variation is
often used to compare populations with varying means or to express the relative
variation of the population as a percentage of themean. For example, onemight want
to measure the variability in the responses of two ionization chambers, having
sensitive volumes of different sizes, when exposed to X-rays under the same

164j 7 Parameter and Interval Estimation



conditions. The larger chamber would tend to show the greater variation due simply
to the larger amount of charge it collects. A way of standardizing the variation for
comparing the two chambers is to use the relative response, or coefficient of
variation.

A statistic is any function of the observable random variables from a random
sample that does not depend upon any unknown parameters. An example of a
statistic is the samplemean ormedian. Another important example of a statistic is the
sample variance, defined as

S2 ¼
Pn

i¼1 ðXi � �XÞ2
n� 1

; ð7:1Þ

where �X is the sample mean and n is the number of observations. In contrast, the
quantity

S�2 ¼
Pn

i¼1 ðXi � mÞ2
n

ð7:2Þ

qualifies as a statistic only when the population mean m is known.
A point estimate of a population parameter is the single value of a statistic obtained

for that parameter fromdata collected from the population. The statistic that one uses
is called the estimator. In general notation, for the population parameter � we let �̂
denote the value, or point estimate, of the statistic Ĥ. For example, the value m̂ ¼ �x of
the statistic �X obtained from a random sampleX1,X2, . . . ,Xn is a point estimate of the
population mean m. The sample mean �X is the estimator, and the sample value �x is
called the point estimate, or simply the estimate.

7.4
Estimator Properties

In addition to �X , there are other statistics that one can use to estimate the population
mean m. For instance, the samplemedian or any single Xi could serve as an estimator
of m. However, these estimators behave differently from �X . In general, we want an
estimator to be unbiased, consistent, and have small variability. We discuss these
properties next.

The first characteristic, unbiased, means that the expected value of the estimator
equals the parameter being estimated. For the random sample X1, X2, . . . , Xn, the
statistic Ĥ is said to be an unbiased estimator for the parameter � if

mĤ ¼ EðĤÞ ¼ �: ð7:3Þ

Thus, in repeated samples, if we obtain �̂1; �̂2; . . . ; �̂n; then the average value of these
estimators should be close to the true value �. In other words, Ĥ is a statistic, having
its own associated distribution; if Ĥ is unbiased for �, then the mean of the
distribution on Ĥ is �.
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The second property, consistency, implies that a larger sample size will provide a
more accurate estimate of a population characteristic. In a practical sense, more
sampling leads to a better estimate. Consistency is one reason why we do not use
any single observation from a sample as an estimator. It is not a consistent estimator.
For instance, we might sample an entire population completely (a process called
a census). We would then know the population mean exactly, without error. We
could elect to use any single observation to estimate the population mean.
However, the variance associated with this estimate is the same, regardless of
how many items in the population we sample. Using all the observations in the
population and calculating the average yields m with zero variability. A much
more precise definition of consistency is found in Garthwaite, Jolliffe, and Jones
(2002).

With the third property, we want to select an estimator having the smallest
variability, restricted, however, to those that are unbiased. An unbiased estimator
with a smaller variance than any other unbiased estimator is called the minimum
variance unbiased estimator (MVUE).

Any estimator that is a function of the random sample will generally vary from
sample to sample. One does not expect an estimator to yield the exact value of the
parameter it is estimating – there will generally be some random error in the
estimation. The variability of this error in repeated sampling will be reflected in the
variability in the sampling distribution of the estimator. For two unbiased estimators
Ĥ1 and Ĥ2 for �, if the variance s2

Ĥ1
of Ĥ1 is smaller than the variance s2

Ĥ2
of Ĥ2, then

one says that Ĥ1 is more efficient than Ĥ2.

& Example
Let the randomsampleX1,X2, . . . ,Xn of size n represent the number of counts
in a given, fixed amount of time from a long-lived radioactive source. If the
distribution of counts is Poisson with parameter l, then it can be shown that
the MVUE is

l̂ ¼
Pn

i¼1 Xi

n
: ð7:4Þ

a) Show that l̂ is an unbiased estimator for l.
b) Find the variance of l̂.
c) Is l̂ a consistent estimator?

Solution

a) To prove that l̂ is unbiased, wemust show that its expected value is l. From
Eq. (7.4) we write

Eðl̂Þ ¼ E
1
n

Xn
i¼1

Xi

 !
¼ 1

n

Xn
i¼1

EðXiÞ: ð7:5Þ
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Since each Xi is distributed as a Poisson random variable with parameter l,
it follows that E(Xi)¼ l for each i. Hence, the sumon the right-hand side of
Eq. (7.5) is just nl, and so the last equality gives Eðl̂Þ ¼ l.

b) The variance of l̂ is given by

Varðl̂Þ ¼ Var
1
n

Xn
i¼1

Xi

 !
¼ 1

n2
Var

Xn
i¼1

Xi

 !
: ð7:6Þ

Since the variance of the sum of the independent random variables Xi is
equal to the sum of the variances (Section 4.3), we find that

Varðl̂Þ ¼ 1
n2
Xn
i¼1

VarðXiÞ ¼ 1
n2
Xn
i¼1

l ¼ l

n
: ð7:7Þ

c) The above result also shows that l̂ is a consistent estimator. That is, as n
gets larger, the variance of l̂ gets smaller. All of the estimators that we
discuss in this chapter are consistent.

Estimation theory is a rich and extensive field in itself, which we can only touch
upon here. Table 7.1 summarizes the estimation of parameters for several common
distributions, or populations, for a random sample X1, X2, . . . , Xn of size n. In each
case, the estimator is the unique MVUE for that population. Table 7.1 lists the point
estimator for the parameter of interest.

Table 7.1 Minimum variance unbiased estimator for parameters of several distributions
(n¼number of observations).

Population Parameter Estimator

Normal with mean m and variance s2:

f ðX ; m; s2Þ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�ð1=2s2ÞðX�mÞ2

m m̂ ¼ �X

s2 ŝ2 ¼ s2 ¼
Pn

i¼1 ðXi � �XÞ2
n� 1

Poisson with parameter l:

PðX ¼ kÞ ¼ lk e�l

k!
; k ¼ 0; 1; 2; . . .

l l̂ ¼ �X

Discrete uniformwith values 1, 2, . . ., �:

PðXi ¼ kÞ ¼ 1
�
for k ¼ 1; 2; . . . ; �

� Ĥ ¼ ðmax XiÞnþ1 � ðmax Xi� 1Þnþ1

ðmax XiÞn � ðmax Xi� 1Þn

Exponential with parameter l:

f ðx; lÞ ¼ l e�lx ; x > 0

l l̂ ¼ nPn
i¼1 Xi

� n� 1
n

¼ n� 1
n�x

Binomial with parameters p and n:

n
x

� �
pxð1� pÞn�x

p p̂ ¼
Pn

i¼1 Xi

n
, where Xi¼ 1

if success, or Xi¼ 0 if not
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It can be shown that the statistic S2 defined by Eq. (7.1) is an unbiased estimator of
the population variance s2. Consider a randomsample of size n drawn from anormal
population with variance s2. From Eq. (7.1) we write the following and state without
proof that

ðn� 1ÞS2
s2

¼
Xn
i¼1

Xi � �X
s

� �2

� x2ðn � 1Þ; ð7:8Þ

where the notation means that the quantities have the chi-squared distribution with
(n� 1) degrees of freedom. This statement can be comparedwith Eq. (6.93), in which
the population mean appears rather than �X . The sum (6.93) from the normal
population has the chi-squared distribution with n degrees of freedom. Since �X is
a computed quantity for the sample, the sum (7.8) is distributed as a chi-squared
random variable with (n� 1) degrees of freedom. When drawn from a normal
population, the sample mean itself has a normal distribution. Thus,

�X �N m;
sffiffiffi
n

p
� �

: ð7:9Þ

It can be shown that the distributions of �X and S2 given by the two important results
embodied in Eqs. (7.8) and (7.9) are independent.

7.5
Interval Estimation of Parameters

While valuable, a point estimate will rarely give the true parameter value exactly.
Often ofmore practical importance is knowledge of a numerical interval in which the
true parameter value lies with a high degree of confidence. Such a determination is
called an interval estimate, the subject of this section.

Each of the parameter estimators shown in the last column of Table 7.1 for
different distributions has, itself, an associated sampling distribution. For example,
we can randomly sample from a population and estimate the population mean by
using the sample mean �X . If we sample the population again (for convenience,
keeping the sample size n the same), we obtain a second value for �X, which is likely
different from the first value. Sampling k times produces a distribution of sample
means, �X 1; �X2; . . . ; �Xk, which form the sampling distribution. The standard deviation
of a sampling distribution is called the standard error.

7.5.1
Interval Estimation for Population Mean

We consider first the sampling distribution of themeans obtained by sampling from
a population that is normally distributed with standard deviation s. Equation (7.9)
tells us that the sampling distribution of �X is normal, with the samemean value as the
population fromwhich it is derived and a standard deviation that is smaller than that
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of the original population by a factor
ffiffiffi
n

p
. Thus, the standard error for themean, when

sampling from anormal population, iss/
ffiffiffi
n

p
. By using this information, it is possible

to obtain an interval estimate about the mean within which we are confident that the
truemean lies.Weobtain this interval fromEq. (7.9) and the laws of probability theory
in the following way.

From Eq. (7.9) and Eq. (6.18), it follows that, for the sampling distribution of the
standardized mean when the population standard deviation s is known,

Z ¼
�X � m

s=
ffiffiffi
n

p �Nð0; 1Þ: ð7:10Þ

We can write, for the standard normal distribution,

Prð� za=2 < Z < za=2Þ ¼ 1� a; ð7:11Þ

where za/2 is the quantity that cuts off an area of size a/2 to the right under the
standard normal curve. By symmetry,�za/2 cuts off an areaa/2 to the left. According
to Eq. (7.11), the probability that the value of Z lies between these two limits is,
therefore, 1� 2(a/2)¼ 1�a. Substituting for Z from Eq. (7.10) gives, in place of
Eq. (7.11),

Pr � za=2 <
�X � m

s=
ffiffiffi
n

p < za=2

� �
¼ 1� a: ð7:12Þ

Solving the inequality for m yields (Problem 7.8)

Pr �X � za=2
sffiffiffi
n

p < m < �X þ za=2
sffiffiffi
n

p
� �

¼ 1� a: ð7:13Þ

Thus, the interval

�X � za=2
sffiffiffi
n

p ; �X þ za=2
sffiffiffi
n

p
� �

ð7:14Þ

forms what is called a 100(1�a)% confidence interval for m. One must be careful to
understand the interpretation of such an interval. When a sample is collected, �X
computed, and the interval (7.14) determined, there is no guarantee that the interval
actually contains the true value m. The interpretation is that 100(1�a)% of the
intervals so constructed in repeated sampling are expected to contain m. Thus, for a
given sample, one can be 100(1�a)% confident that the interval contains the true
value m.

Depending on the application at hand, different confidence intervals may be
employed. Perhaps the most common is the standard error. The width of the
symmetric interval about the estimated mean is then two standard deviations. For
the standard normal curve, the value of za/2 in Eq. (7.11) is then exactly 1, and so
a/2¼ 0.1587 (Table 6.1 or A.3). The 100(1�a)% confidence interval for the one
standard error is thus 100(1� 2� 0.1587)%¼ 68.3%. A measured mean count rate
and its one standard error for a long-lived source might be reported, for example, as
850� 30 cpm.This statement implies that the truemean count rate has been found to

7.5 Interval Estimation of Parameters j169



be between 820 and 880 cpm, with a probability of 0.683. (As emphasized in the last
paragraph, however, there is no certainty that the true mean even lies within
the stated interval.) Another quantity, the probable error, is defined such that the
confidence interval is 50%; that is, there is a 50–50 probability that the true value lies
within the range specified, which is�0.675 standard deviations (Problem7.9).When
a result is reported without a specific statement that defines the interval, the one
standard error is usually, but not always, implied.

& Example
The mean of potassium concentrations in body tissue from whole-body
counts of 36 randomly selected women aged 22 y is 1685mg kg�1 of body
weight. State the standard error and find the 95 and 99% confidence intervals
for the mean of the entire female population of this age if the population
standard deviation is 60mgkg�1.

Solution
The point estimate of the population mean m is �x ¼ 1685mg kg�1, and the
population standard deviation is s¼ 60mg kg�1. The standard error for the
sample mean with sample size n¼ 36 is s=

ffiffiffi
n

p ¼ 60=6 ¼ 10. (We shall omit
writing the units for now and insert them at the end.) With the standard
normal function, the z value leaving an area of 0.025 to the right and,
therefore, an area of 0.975 to the left is z0.025¼ 1.960 (Table 6.1 or A.3).
Hence, the 95% confidence interval for m is, from (7.14),

�X � 1:960
sffiffiffi
n

p ; �X þ 1:960
sffiffiffi
n

p
� �

: ð7:15Þ

This reduces to

ð1665mg kg�1; 1705mg kg�1Þ: ð7:16Þ
For the 99% confidence interval, the value that cuts off 0.005 of the area to the
right is z0.005¼ 2.575. One finds

�X � 2:575
sffiffiffi
n

p ; �X þ 2:575
sffiffiffi
n

p
� �

; ð7:17Þ

or

ð1659mg kg�1; 1711mg kg�1Þ: ð7:18Þ
We note that a higher confidence level requires a wider interval.

Determination of the interval (7.14) depends on knowing the true population
variance, s2. This quantity (as well as the truemean) is rarely known in practice. One
can then use the sample variance S2 to estimate s2 and then proceed as described
above, using, however, the Student�s t-distribution (Section 6.9). When the sample
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comes from a normal distribution with both mean m and variance s2 unknown, we
can use �X and S2 to form, like Eq. (7.10),

T ¼
�X � m

S=
ffiffiffi
n

p : ð7:19Þ

From Eqs. (7.8), (7.9), and (6.94), one can show that the sampling distribution of T is
the Student�s t-distribution with (n� 1) degrees of freedom (Problem 7.13). Because
T as defined by Eq. (7.19) contains m, which is unknown, it is not a statistic. The
quantityT is called, instead, a pivotal quantity. If m is assumed known, the distribution
ofT is known, and this pivotal quantity can be used to derive confidence limits. (Some
texts do not distinguish between statistics and pivotal quantities.) We can now use
the quantiles of the Student�s t-distribution in a manner similar to that employed
for the normal distribution in the last section. That is, using the fact that the
t-distribution is symmetric about the origin, we define the confidence interval by
first writing the probability statement

Prð�tn�1;a=2 < T < tn�1;a=2Þ ¼ 1� a: ð7:20Þ

Substituting for T from Eq. (7.19) and arranging terms to get m alone between the
inequality signs, we find that

Pr �X � tn�1;a=2
Sffiffiffi
n

p < m < �X þ tn�1;a=2
Sffiffiffi
n

p
� �

¼ 1� a: ð7:21Þ

Thus, the 100(1�a)% confidence interval for m when s2 is unknown is given by
(Problem 7.14)

�X � tn�1;a=2
Sffiffiffi
n

p ; �X þ tn�1;a=2
Sffiffiffi
n

p
� �

: ð7:22Þ

The interpretation of this interval is the same as that described for (7.14). With
repeated sampling, the truemean is expected to lie within the interval 100(1�a)% of
the time.

& Example
Cobalt pellets are being fabricated in the shape of right circular cylinders.
The diameters in cm of nine pellets drawn at random from the production
line are 1.01, 0.97, 1.04, 1.02, 0.95, 0.99, 1.01, 1.03, and 1.03. Find a 95%
confidence interval for the mean diameter of pellets, assuming an approxi-
mately normal distribution.

Solution
The sample mean and standard deviation are �x ¼ 1:01 cm and s¼ 0.03 cm
(Problem 7.15). Using Table A.5 with v¼ 8, we find t0.025,8¼ 2.306. From
Eq. (7.21) we obtain

7.5 Interval Estimation of Parameters j171



1:01� 2:306
0:03ffiffiffi

9
p

� �
< m < 1:01þ 2:306

0:03ffiffiffi
9

p
� �

: ð7:23Þ

The 95% confidence interval for m is, therefore, (0.987 cm, 1.033 cm).

7.5.2
Interval Estimation for the Proportion of Population

The abovemethods work well for determining a confidence interval for themean of a
population. Similar methods may be applied when interest centers on the proportion
of the population that is defined by some criterion. For example, we might be
interested in estimating the proportion of people in favor of a particular political
candidate, or the proportion of cancer patients that respond favorably to some
treatment. In such instances, we can run a binomial experiment (Section 5.4) and
use the results to estimate the proportion p. For the binomial parameter p, the
estimator P̂ is simply the proportion of successes in the sample.We letX1, X2, . . . ,Xn

represent a random sample of size n from a Bernoulli population such that Xi¼ 1
with probability p and Xi¼ 0 with probability (1� p). Thus,

P̂ ¼ 1
n

Xn
i¼1

Xi ¼ �X : ð7:24Þ

By the central limit theorem (Section 6.4), for sufficiently large n, P̂ is approximately
normally distributed with mean

mP̂ ¼ EðP̂Þ ¼ E
1
n

Xn
i¼1

Xi

 !
¼ np

n
¼ p ð7:25Þ

and variance

s2
P̂ ¼ VarðP̂Þ ¼ Var

1
n

Xn
i¼1

Xi

 !
¼ 1

n2
Var

Xn
i¼1

Xi

 !
: ð7:26Þ

We recall fromSection 5.4 (Eq. (5.11)) that the sumof nBernoulli random variables is
a binomial random variable with parameters n and p. The variance of the binomial
random variablewith these parameters is, by Eq. (5.15), np(1� p). Replacing the term
in the last equality of Eq. (7.26) by this quantity, we find

s2
P̂ ¼ pð1� pÞ

n
: ð7:27Þ

The distribution of �X is approximately normal because n is large, and so it can now be
described by writing

�X _
_
� N p;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r !
: ð7:28Þ
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We can now standardize �X and use the standard normal distribution to write

Pr �za=2 <
�X � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ=np < za=2

 !
¼ 1� a; ð7:29Þ

or

Pr �X � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
< p < �X þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r !
¼ 1� a: ð7:30Þ

This expression can be solved for p.However, whenn is large, little error is introduced
if we substitute P̂ for p under the radical. An approximate 100(1�a)% confidence
interval for p is then (Problem 7.16)

P̂ � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ð1� P̂Þ

n

s
; P̂ þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ð1� P̂Þ

n

s0
@

1
A: ð7:31Þ

& Example
A random sample of blood specimens from 100 different workers in a
manufacturing plant yielded 9 cases that were outside, either above or below,
the normal range for a certain chemical marker. Use these data to calculate a
95% confidence interval for the proportion of the worker population whose
reading will fall outside the normal range.

Solution
The sample proportion is P̂ ¼ 9=100 ¼ 0:09. Using Eq. (7.31) and z0.025, we
have

0:09� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:09ð1� 0:09Þ

100

r
< p < 0:09þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:09ð1� 0:09Þ

100

r
; ð7:32Þ

giving the 95% confidence interval, (0.034, 0.146).

7.5.3
Estimated Error

The interval estimates we have discussed thus far are of the form

Ĥ� qa=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ĥ

p
; ð7:33Þ

where qa/2 is the a/2 quantile associated with the sampling distribution of Ĥ. The
quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ĥ

p
is the standard error of the estimator Ĥ, that is, the standard

deviation associatedwith the sampling distribution on Ĥ. In caseswhere the variance
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of Ĥ contains unknown parameters, we estimate them (e.g., using S2 for s2 and P̂
for p). The square root of this estimated variance is then called the estimated standard
error.

The error of estimation is the difference, Ĥ�H, between the estimate and the true
value. Using the interval estimators, we can say that we are 100(1�a)% confident
that the error in estimation is bounded by�qa=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ĥ

p
. This condition is expressed

by writing

PrðjĤ�Hj < qa=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ĥ

p
Þ ¼ 1� a: ð7:34Þ

& Example
In the example before last, dealing with cobalt pellets, by how much is the
estimate of the mean bounded?

Solution
We previously found s¼ 0.03 cm with a sample size n¼ 9. Noting that
t0.025,8¼ 2.306, we computed

2:306

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:03Þ2

9

s
¼ 0:023: ð7:35Þ

We may thus say that we are 95% confident that the error in estimating the
mean is bounded by �0.023 cm.

It is often important to assure with 100(1�a)% confidence that an error of
estimation will not exceed some fixed amount E. This can generally be accomplished
by using sufficiently large samples, as we now describe. We see from Eq. (7.34) that
the condition imposed is

E ¼ qa=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ĥ

p
: ð7:36Þ

LettingH¼m and Ĥ ¼ �X , and assumingwe are sampling from a normal population,
we have

E ¼ za=2

ffiffiffiffiffi
s2

n

r
: ð7:37Þ

For the error not to exceedE at the stated level of confidence, it follows that the sample
size needed is

n ¼
z2a=2s

2

E2
: ð7:38Þ
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IfH¼ p, and the sample size is large enough to invoke the central limit theorem, then
the same argument that led to Eq. (7.38) yields

n ¼
z2a=2pð1� pÞ

E2
: ð7:39Þ

This expression involves p, which, like s2, is unknown.We can either (1) substitute P̂
for p or (2) set p¼ 1/2, thus maximizing p(1� p) and making n as large as possible,
yielding a conservative estimate for n.

& Example
In the example before last, 9 out of 100 urine sampleswere found to be outside
normal range, for a proportion of 0.09.What sample size would be required to
estimate the true proportion within an error 0.02 with 95% confidence if one

a) assumes p¼ 0.09 or
b) makes no assumption regarding the value of p?

Solution

a) Assuming p¼ 0.09 and a 95%confidence level, wefind fromEq. (7.39) that
a sample size of

n ¼ ð1:96Þ2ð0:09Þð1� 0:09Þ
ð0:02Þ2 ¼ 787 ð7:40Þ

would be needed.
b) With no knowledge about the value of p, we use p¼ 0.50 in Eq. (7.39), thus

maximizing n:

n ¼ ð1:96Þ2ð0:50Þð1� 0:50Þ
ð0:02Þ2 ¼ 2401: ð7:41Þ

7.5.4
Interval Estimation for Poisson Rate Parameter

We next consider estimating the rate parameter l for a Poisson population. In this
case, l̂ ¼ �X . By the central limit theorem, l̂ for large n is approximately normally
distributed with mean

ml̂ ¼ Eðl̂Þ ¼ E
1
n

Xn
i¼1

Xi

 !
¼ nl

n
¼ l ð7:42Þ

and variance

s2
l̂
¼ Varðl̂Þ ¼ Var

1
n

Xn
i¼1

Xi

 !
¼ nl

n2
¼ l

n
: ð7:43Þ
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Using the same techniques as before (e.g., Eqs. (7.29) and (7.30)), we find that a
100(1�a)% confidence interval for l is

�X � za=2

ffiffiffiffi
�X
n

r
; �X þ za=2

ffiffiffiffi
�X
n

r !
; ð7:44Þ

where
ffiffiffiffiffiffiffiffiffi
�X=n

p
is the estimated standard error.

& Example
The number of disintegrations for a radioactive source was measured in 10
successive 1-min intervals, yielding the results: 26, 24, 26, 32, 26, 26, 27, 32,
17, and 22. Use this sample, assuming it came from a Poisson distribution, to
obtain an approximate 95% confidence interval for the rate parameter l in
counts per minute.

Solution
We use Eq. (7.44). The mean of the numbers in the sample is �x ¼ 25:8. For a
95% confidence interval, z0.975¼ 1.96 (Table A.3), the required interval for the
1min count numbers is

25:8� 1:96

ffiffiffiffiffiffiffiffiffi
25:8
10

r
; 25:8þ 1:96

ffiffiffiffiffiffiffiffiffi
25:8
10

r !
: ð7:45Þ

It follows that the 95% confidence interval for l is

ð22:7min�1; 28:9min�1Þ: ð7:46Þ
(Using a computer to randomly select the count numbers for this example,
we sampled from a Poisson distribution with a true rate (decay constant),
l¼ 25.00min�1. In this instance, themethod did capture the true value in the
interval found.)

7.6
Parameter Differences for Two Populations

In addition to point and interval estimates of a parameter for a single population, one
is often interested in such estimates for the difference in parameters for two
populations. An example of another type is the difference in the proportion of
Democratic and Republican senators who are in favor of a certain bill before
Congress. Estimating the differences between means or proportions is straightfor-
ward, but forming confidence intervals requires some assumptions.

7.6.1
Difference in Means

We let X1, X2, . . . , Xn1 denote a random sample of size n1 from a normally distributed
population withmean mx and variance s2

x . Similarly, Y1, Y2, . . . , Yn2 denotes a sample
of size n2 from another normally distributed population with mean my and
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variance s2
y . For the difference inmeans,mx� my, the point estimate, whichwe denote

by m̂x�y, is

m̂x�y ¼ m̂x � m̂y ¼ �X � �Y : ð7:47Þ

To obtain confidence intervals for this difference, we shall consider three special
caseswith respect to the population variances: (1)s2

x ands
2
y both known; (2)s

2
x ands

2
y

unknown, but equal; and (3) s2
x and s2

y unknown and not equal. Recall from the
discussion following the definition (4.44) that the variance of the sumor difference of
two independent random variables is the sum of their individual variances.

7.6.1.1 Case 1: s2x and s2y Known
For the two normal distributions, we have

m̂x�y ¼ m̂x � m̂y ¼ �X � �Y �N mx � my;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x

n1
þ s2

y

n2

s0
@

1
A: ð7:48Þ

Transforming to the standard normal distribution, we write for the 100(1�a)%
confidence interval on the mean,

Pr �za=2 <
�X � �Y � ðmx � myÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

x=n1Þ þ ðs2
y=n2Þ

q < za=2

0
B@

1
CA ¼ 1� a: ð7:49Þ

Solving this inequality for mx�my, we obtain

�X � �Y � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x

n1
þ s2

y

n2

s
< ðmx � myÞ < �X � �Y þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x

n1
þ s2

y

n2

s
: ð7:50Þ

& Example
An experiment was performed to compare the effectiveness of two chemical
compounds, A and B, in blocking the thyroid uptake of iodine. A number of
mice of the same age, sex, and size were selected and considered to be
identical for this experiment. A fixed amount of radioactive iodine was
injected into each of n1¼ 10mice (group 1) after administration of compound
A and into n2¼ 15 othermice (group 2) after they were given compound B, all
other conditions being the same. Themice were latermonitored by observing
the activity of the iodine in the thyroid at a particular time. The average activity
for themice in group Awas �x ¼ 25 kBq, and that for group B was �y ¼ 27 kBq.
Assume that the variances in the activities for the two groups were s2

x ¼
25 kBq2 and s2

y ¼ 45 kBq2. Obtain a 95% confidence interval for the difference
between the truemeans of the two groups.Which thyroid blocking compound
is the more effective, based on this experiment?
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Solution
Denoting the true means by mx and my and using units of kBq, we write from
Eq. (7.50) with za/2¼ z0.025¼ 1.96,

25� 27� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25
10

þ 45
15

r
< mx � my < 25� 27þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25
10

þ 45
15

r
: ð7:51Þ

Completing the arithmetic operations gives

�6:6 kBq < mx � my < 2:6 kBq: ð7:52Þ

Since zero is included in this 95% confidence interval, the true means are
likely to be close to each other. The two compounds thus appear to have
comparable effects in blocking the uptake of iodine by the thyroid.

7.6.1.2 Case 2: s2x and s2y Unknown, but Equal (=s2)
In place of Eq. (7.48), we write

m̂x�y ¼ �X � �Y �N mx � my;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

n1
þ s2

n2

s !
: ð7:53Þ

The variance of the estimator is

Varð�X � �YÞ ¼ s2 1
n1

þ 1
n2

� �
: ð7:54Þ

In order to find a good estimator of s2, we note that the sample variance S2x is the best
estimator of s2

x ¼ s2 and, similarly, S2y is the best estimator of s2
y ¼ s2. Since the

variances are the same, S2x and S
2
y should be similar in value, and we should combine

them in some way. We could average them, using as the estimator �S2 ¼ ðS2x þ S2yÞ=2,
but this choice does not account for possibly different sample sizes. A better selection
is the pooled estimator for the variance.

S2p ¼
ðn1� 1ÞS2x þ ðn2� 1ÞS2y

n1 þ n2� 2
: ð7:55Þ

We see that, if n1 ¼ n2, then S2p ¼ ðS2x þ S2yÞ=2, as first suggested. The weighting
factors ðn1� 1Þ and ðn2� 1Þ reflect the fact that S2x and S2y have, respectively, that
many independent pieces of information. Thus, using these factors and dividing by
ðn1þ n2� 2Þ in Eq. (7.55) apportions the weights appropriately. It can be shown
theoretically that, if we are sampling from a normal population,

�X � �Y � ðmx� myÞ
Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=n1Þ þ ð1=n2Þ
p � tn1þn2�2: ð7:56Þ
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The quantity on the left-hand side has Student�s t-distribution with (n1 þ n2� 2)
degrees of freedom. Thus, we may write

Pr �tn1þn2�2;a=2 <
�X � �Y � ðmx � myÞ

Sp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=n1Þ þ ð1=n2Þ

p < tn1þn2�2;a=2

 !
¼ 1� a: ð7:57Þ

Solving the inequality for mx� my, we find that, for the 100(1�a)% confidence
interval,

�X � �Y � Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1

þ 1
n2

r
tn1þn2�2;a=2 < mx � my

< �X � �Y þ Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1

þ 1
n2

r
tn1þn2�2;a=2:

ð7:58Þ

& Example
The time untilfirst decay ismeasured 10 times for each of two pure, long-lived
radioisotope samples, A and B. The results are given in Table 7.2. Using these
data, obtain a 95% confidence interval for the difference in the mean first-
decay times of the two isotopes, assuming normality and equal variances.
What can one conclude about the decay rates of the two isotopes?

Solution
From the data in Table 7.2, we compute the following values (with time
expressed in seconds) for the means and variances of the samples for the two
isotopes:

�xA ¼ 2:109; s2A ¼ 3:753 ð7:59Þ

Table 7.2 Ten measurements of time in seconds to first decay of two isotopes.

Measurement Time (s)

Isotope A Isotope B

1 0.66 0.28
2 4.45 1.44
3 2.01 12.04
4 2.94 0.37
5 2.11 0.30
6 1.31 8.61
7 0.73 4.21
8 0.15 2.76
9 0.54 0.61
10 6.19 3.86

Data are used in several examples in the text.
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and

�xB ¼ 3:448; s2B ¼ 15:911: ð7:60Þ
Assuming that the variances are equal for the two isotopes, we pool them
according to Eq. (7.55). With n1¼ n2¼ 10, we have

s2p ¼
9ð3:753Þ þ 9ð15:911Þ

18
¼ 9:832: ð7:61Þ

The 0.975 quantile of the Student�s t-distribution with 18 degrees of freedom
is (Table A.5)

t18;0:025 ¼ 2:101: ð7:62Þ
From Eq. (7.58) we write for the 95% confidence interval for the difference in
the means of the decay times

ð2:109� 3:448Þ � 3:136

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
10

þ 1
10

r
ð2:101Þ < mA � mB

< ð2:109� 3:448Þ þ 3:136

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
10

þ 1
10

r
ð2:101Þ: ð7:63Þ

Thus, to the appropriate number of significant figures,

�4:29 s < mA � mB < 1:61 s: ð7:64Þ

Since the interval includes zero, we can conclude that the two isotopes have
similar decay rates. They could even be the same radionuclide.

7.6.1.3 Case 3: s2x and s2y Unknown and Unequal
As before, Eq. (7.48) holds; however, we do not know either variance. In this case, we
use the best estimators for them, namely, S2x and S2y , and form the approximate
100(1�a)% confidence interval for mx�my:

�X � �Y � tv;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x
n1

þ S2y
n2

s
< mx � my < �X � �Y þ tv;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x
n1

þ S2y
n2

s
: ð7:65Þ

Here, tv;a=2 is the t-value with degrees of freedom v. It can be shown (Satterthwaite,
1946) that the t-distribution in (7.65) can be approximated by a Student�s t-distri-
bution with degrees of freedom given by Satterthwaite�s approximation,

v ¼ ððS2x=n1Þ þ ðS2y=n2ÞÞ2
ð1=ðn1 � 1ÞÞðS2x=n1Þ2 þ ð1=ðn2 � 1ÞÞðS2y=n2Þ2

: ð7:66Þ

In most instances, v as defined by this equation will not be an integer, in which case
we round down to the nearest integer to be conservative.
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& Example
Repeat the last example for the data in Table 7.2, assuming in place of equal
variances, that s2

A 6¼ s2
B.

Solution
We apply Eq. (7.66) with nA¼ nB¼ 10 and express times in seconds. The
sample variances were previously calculated (Eqs. (7.59) and (7.60)). The
approximate degrees of freedom for the t-value are, from Eq. (7.66),

v ¼ ðð3:753=10Þ þ ð15:911=10ÞÞ2
ð1=ð10� 1ÞÞð3:753=10Þ2 þ ð1=ð10� 1ÞÞð15:911=10Þ2

¼ 13:02: ð7:67Þ

Rounding down to v¼ 13, we find the 0.975 quantile of the Student�s
t-distribution to be (Table A.5) t13,0.025¼ 2.160. The 95% confidence interval
for mA�mB is then, from Eq. (7.65),

ð2:109� 3:448Þ � 2:160

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:753
10

þ 15:911
10

r
< mA � mB

< ð2:109� 3:448Þ þ 2:160

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:753
10

þ 15:911
10

r
: ð7:68Þ

It follows that

�4:37 s < mA � mB < 1:69 s: ð7:69Þ

This interval is slightly larger than that found earlier (see Eq. (7.64)). The
previous assumption of equal variances for the two samples implies more
knowledge about the populations fromwhich we are sampling than we had in
the present example. The increased knowledge translates into a smaller
confidence interval. That the two confidence intervals are not too different
implies that the variances are not too different. In Section 7.8,we shall see how
to compare two variances.

7.6.2
Difference in Proportions

Differences in proportions present similar problems. To form confidence intervals,
we must rely on the central limit theorem. We let P̂1 represent the proportion of
successes in a random sample of size n1 from one population and P̂2 the proportion
in a random sample of size n2 from another population. By the central limit theorem,

P̂1 � P̂2 _
_
� N p1 � p2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1q1
n1

þ p2q2
n2

r� �
; ð7:70Þ
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where q1¼ 1� p1 and q2¼ 1� p2. An approximate 100(1�a)% confidence interval is
then

Pr �za=2 <
P̂1 � P̂2 � ðp1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1q1=n1 þ p2q2=n2

p < za=2

 !
¼ 1� a: ð7:71Þ

Solving for p1� p2, we find that

P̂1 � P̂2 � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1q1
n1

þ p2q2
n2

r
< p1 � p2 < P̂1 � P̂2 þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1q1
n1

þ p2q2
n2

r
: ð7:72Þ

Under the radical we see that these limits require values of p1 and p2, which are
unknown. As before, for the confidence interval on a single proportion, we simply
substitute our estimates P̂1 and P̂2 for p1 and p2 under the radical in Eq. (7.72).

& Example
New safety signs were proposed to replace existing ones at a plant.Workers on
two shifts were shown the new signs and asked whether they thought they
would be an improvement. Of the 75 workers queried on the first shift, 60
responded favorably toward the change; 85 out of 95 on the second shift were
also in favor. Using this information, obtain a 95% confidence interval on the
difference in the proportions of the two shifts that favor the new signs. Based
on this survey, are the proportions of favorable responses among workers on
the two shifts different?

Solution
For use in Eq. (7.72), we compute the favorable proportions for the two shifts:
P̂1 ¼ 60=75 ¼ 0:80 and P̂2 ¼ 85=95 ¼ 0:89. Recalling that z0.025¼ 1.96, we
write

ð0:80� 0:89Þ � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:80Þð0:20Þ

75
þ ð0:89Þð0:11Þ

95

r
< p1 � p2

< ð0:80� 0:89Þ þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:80Þð0:20Þ

75
þ ð0:89Þð0:11Þ

95

r
: ð7:73Þ

The solution is

�0:20 < p1 � p2 < 0:02: ð7:74Þ

We see that zero is contained in the interval. We might conclude with 95%
confidence that the proportion in favor of the new signs is essentially the same
on both shifts.
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7.7

Interval Estimation for a Variance

In discussing interval estimation for a variance, we assume that we sample from a
normal population with mean m and variance s2, both unknown. The chi-squared
distribution, discussed in Chapter 6, then plays a special role. According to Eq. (7.8),
the quantity

Q ¼ ðn� 1ÞS2
s2

ð7:75Þ

has a chi-squared distribution with (n� 1) degrees of freedom. Thus,

Prðx2n�1;a=2 < Q < x2n�1;1�a=2Þ ¼ 1� a: ð7:76Þ

We note that x2n�1;a is the value that leaves the fraction a of the area to the left under
the chi-squared distribution with (n� 1) degrees of freedom (Table A.4). Unlike the
normal and Student�s t-distributions, the chi-squared distribution is not symmetric.
Choosing x2n�1;a=2 and x2n�1;1�a=2 will provide an interval that is nearly the shortest
possible, although one might do better by numerical methods. For most practical
purposes, these values will result in an acceptable interval. Using Eqs. (7.75) and
(7.76), we write

Pr x2n�1;a=2 <
ðn� 1ÞS2

s2
< x2n�1;1�a=2

� �
¼ 1� a: ð7:77Þ

We thus obtain the following inequality for the variance:

ðn� 1ÞS2
x2n�1;1�a=2

< s2 <
ðn� 1ÞS2
x2n�1;a=2

: ð7:78Þ

& Example
In a previous example, we analyzed the time to the first decay of a radionu-
clide. Data for isotope A in Table 7.2 for a sample size n¼ 10 yielded
�xA ¼ 2:109 and s2A ¼ 3:753, with the times in seconds (Eq. (7.59)). Obtain
a 95% confidence interval for the variance s2

A.

Solution
We need the 0.025 and 0.975 quantiles of the chi-squared distribution with 9
degrees of freedom (n¼ 10). From Table A.4, we find x29;0:025 ¼ 2:70 and
x29;0:975 ¼ 19:02. Using Eq. (7.78), we find that

9ð3:753Þ
19:02

< s2 <
9ð3:753Þ
2:70

; ð7:79Þ
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or

1:776 < s2 < 12:51: ð7:80Þ
The units are s2.

7.8
Estimating the Ratio of Two Variances

Just as important as the comparison of two population means is the comparison of
their variances. Usually, one is interested in the ratio of the variances, which are both
measures of the spread of the two distributions. A ratio near unity indicates near
equality of the variances. On the other hand, either a very large or a very small ratio
occurs when there is a wide difference in variation between the two populations.

We consider twonormally distributed populations, having variances s2
1 and s

2
2.We

select from the first a random sample of size n1 and estimate the variance using S21
and, similarly, from the second a sample of size n2 and estimate its variance using S22.
Recalling the chi-squared distribution from Eq. (7.75), we write

Q1 ¼ ðn1� 1ÞS21
s2
1

� x2n1�1 ð7:81Þ

and

Q2 ¼ ðn2� 1ÞS22
s2
2

� x2n2�1: ð7:82Þ

The ratio of two independent chi-squared random variables, divided by their
respective degrees of freedom, has the F distribution (Section 6.10). From the last
two equations and the definition (6.98), it follows, therefore, that

F ¼ Q1=ðn1� 1Þ
Q2=ðn2� 1Þ ¼

S21s
2
2

S22s
2
1
�Fðn1 � 1; n2� 1Þ: ð7:83Þ

We express a confidence interval by writing

Prðfa=2ðn1� 1; n2� 1Þ < F < f1�a=2ðn1� 1; n2� 1ÞÞ ¼ 1� a: ð7:84Þ

Combining Eqs. (7.83) and (7.84) gives

Pr fa=2ðn1� 1; n2� 1Þ < S21s
2
2

S22s
2
1

< f1�a=2ðn1� 1; n2� 1Þ
� �

¼ 1� a: ð7:85Þ

The ratio of the variances thus satisfies the following inequality:

S21
S22

1
f1�a=2ðn1� 1; n2 � 1Þ <

s2
1

s2
2
<

S21
S22

1
fa=2ðn1� 1; n2� 1Þ : ð7:86Þ
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Lower values of the F distribution are not usually tabulated. However, by Eq. (6.101)
we have

f1�a=2ðn1� 1; n2 � 1Þ ¼ 1
fa=2ðn2� 1; n1 � 1Þ ; ð7:87Þ

and so, in place of Eq. (7.86), we can write (Problem 7.28)

S21
S22

1
f1�a=2ðn1� 1; n2� 1Þ <

s2
1

s2
2
<

S21
S22

f1�a=2ðn2� 1; n1� 1Þ: ð7:88Þ

& Example
The times for first decay of two radioisotopes, 1 and 2, are measured in an
experiment. The following data summarize the results, with time in seconds.

Isotope, i Mean time, x�i Variance, si
2 Sample size, ni

1 6.95 13.75 8
2 13.75 24.39 12

Obtain a 90% confidence interval for the ratio s2
1=s

2
2 of the two population

variances in the time to first decay.

Solution
The interval is found from Eq. (7.88) with a¼ 0.10. Using Table A.6, we find
for the upper 0.95 quantile of the f distributionwith n1� 1¼ 7 and n2� 1¼ 11
degrees of freedom, f0.95(7, 11)¼ 3.603. For the lower quantile, Eq. (7.87) gives
f0.95(11, 7)¼ 3.012. Substitution into Eq. (7.88) yields

13:75
24:39

1
3:012

<
s2
1

s2
2
<

13:75
24:39

3:603; ð7:89Þ

or

0:187 <
s2
1

s2
2
< 2:03: ð7:90Þ

Since this interval includes unity, we can be 90% confident that these
population variances are approximately the same.

7.9
Maximum Likelihood Estimation

In the previous sections we looked at various estimators and their properties, largely
without derivations. In this section we discuss a method that allows one to derive an
estimator. We consider a random sample X1, X2, . . . , Xn drawn from a population
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having unknown parameters that we wish to estimate. For example, we might select
from a large population, having a characteristic that occurs in some (unknown)
proportion p of that population. Each draw results in aBernoulli trial with outcomeXi,
i¼ 1, 2, . . . , n, and probability distribution

f ðxi; pÞ ¼ PrðXi ¼ xiÞ ¼ pxið1� pÞ1�xi ; ð7:91Þ
with xi¼ 0, 1 and 0� p� 1.We seek a function u(X1, X2, . . . , Xn) (the estimator) such
that the sample value u(X1, X2, . . . , Xn) is a good point estimate of the population
proportion p.

We consider the joint distribution of X1, X2, . . . , Xn under the assumption
that this is a random sample from the same, identical distribution (so that each
draw is independent and identically distributed). We then write for the observed
values

PrðX1 ¼ x1;X2 ¼ x2; . . . ;Xn ¼ xnÞ ¼
Yn
i¼1

pxið1� pÞ1�xi

¼ pSxið1� pÞn�Sxi ; ð7:92Þ

in which the sums in the exponents go from i¼ 1 to n. We can treat this joint
probability function as a function of p, rather than the xi, and then find the value of p
that maximizes it, this value being the one most likely to have produced the set of
observations. As a function of p, the resulting joint probability function is called the
likelihood function. In the illustration (7.91), the likelihood function is

LðpÞ ¼ PrðX1 ¼ x1;X2 ¼ x2; . . . ;Xn ¼ xn; pÞ ð7:93Þ

¼ f ðx1; pÞf ðx2; pÞ � � � f ðxn; pÞ ð7:94Þ

¼ pSxið1� pÞn�Sxi ; 0 � p � 1: ð7:95Þ
To find the value of p that maximizes L(p), we first differentiate:

dLðpÞ
dp

¼
X

xi
� �

pSxi�1ð1� pÞn�Sxi � n�
X

xi
� �

pSxið1� pÞn�Sxi�1: ð7:96Þ

Setting the derivative equal to zero and solving for p gives the maximum likelihood
estimator, which we denote by p̂. That is,

p̂Sxið1� p̂Þn�Sxi

P
xi
p̂

� n�P xi
1� p̂

� �
¼ 0: ð7:97Þ

The cases p̂ ¼ 0 and p̂ ¼ 1 are uninteresting in the sense that the characteristic is
either never present or always present. Hence, we treat only 0< p̂< 1. Then
Eq. (7.97) can be satisfied only if the term in the parentheses vanishes:P

xi
p̂

� n�P xi
1� p̂

¼ 0: ð7:98Þ
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Multiplying by p̂ð1� p̂Þ and simplifying, we find that

p̂ ¼
P

xi
n

¼ �x: ð7:99Þ

The corresponding statistic,
P

Xið Þ=n ¼ �X , which maximizes the likelihood func-
tion (Problem 7.33), is called the maximum likelihood estimator, abbreviated MLE.
Our earlier estimator, Eq. (7.24), is the same as theMLEwhen the random variables
are replaced by the sample values.

Thismaximization procedure can also be applied to the logarithm of the likelihood
function, thus often simplifying the mathematics involved. In place of Eq. (7.95), for
example, we can write

ln LðpÞ ¼
X

xi ln pþ n�
X

xi
� �

lnð1� pÞ: ð7:100Þ

The first derivative is

d ln LðpÞ
dp

¼
P

xi
p

� n�P xi
1� p

; ð7:101Þ

which, when set equal to zero, leads to Eq. (7.98).

& Example
Assume that one can obtain a random sample of size n for a decay process that
follows a Poisson distribution with parameter l. Obtain the MLE for l.

Solution
Let X1, X2, . . . , Xn denote the random sample from the Poisson population
with decay parameter l. The probability function is given by

f ðxi; lÞ ¼ e�llxi

xi!
; ð7:102Þ

with i¼ 1, 2, . . . , n and 0< l<1. The likelihood function is

LðlÞ ¼
Yn
i¼1

e�llxi

xi!
¼ e�nll

P
xiQ

xi!
: ð7:103Þ

Taking natural logarithms gives

ln LðlÞ ¼ �nlþ
X

xi ln l� ln
Y

xi!
� �

: ð7:104Þ

Differentiating, we find that

d ln LðlÞ
dl

¼ �nþ
P

xi
l

: ð7:105Þ
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Setting the derivative equal to zero then yields

l̂ ¼
P

xi
n

¼ �x: ð7:106Þ

Comparison with Eq. (7.4) shows that theMLE ¼ �X is the same as theMVUE
(Section 7.4).

A population might have more than one parameter. The likelihood function is
then differentiated for each parameter, yielding coupled equations to be solved
simultaneously.

& Example
A normal population is characterized by the two parameters (m, s2). For a
random sample of size n, determine the maximum likelihood estimators for
m and s2.

Solution
We let X1, X2, . . . , Xn denote the random sample from the normal population.
The probability density function is given by

f ðxi; m; s2Þ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�ðxi�mÞ2=2s2

; ð7:107Þ

where�1< xi<1 (i¼ 1, 2, . . . , n),�1<m<1, and s2> 0. The likelihood
function is

Lðm; s2Þ ¼
Yn
i¼1

1ffiffiffiffiffiffi
2p

p
s
e�ðxi�mÞ2=2s2 ð7:108Þ

¼ ð2pÞ�n=2ðs2Þ�n=2 e�ð1=2s2Þ
P

ðxi�mÞ2 ; ð7:109Þ
and its natural logarithm is

ln Lðm; s2Þ ¼ � n
2
lnð2pÞ � n

2
ln s2 � 1

2s2

X
ðxi � mÞ2: ð7:110Þ

Taking the partial derivatives with respect to m and s2 and equating them to
zero, we write

q ln Lðm̂; ŝ2Þ
qm̂

¼ 1

ŝ2

X
ðxi � m̂Þ ¼ 0 ð7:111Þ

and

q ln Lðm̂; ŝ2Þ
qŝ2 ¼ � n

2ŝ2 þ
1

2ŝ4

X
ðxi � m̂Þ2 ¼ 0: ð7:112Þ
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The two equations yield

m̂ ¼
P

xi
n

¼ �x ð7:113Þ

and

ŝ2 ¼
P ðxi � m̂Þ2

n
: ð7:114Þ

Since the estimator m̂ is �x, we have

ŝ2 ¼
P ðxi � �xÞ2

n
: ð7:115Þ

We note that the relation m̂ ¼ �x corresponds to the estimator discussed in
Section 7.3, but that ŝ2 is not equal to S2, our usual estimator for the variance.
Comparing Eqs. (7.1) and (7.115), we see that

ŝ2 ¼ ðn� 1ÞS2
n

: ð7:116Þ

It can be shown that S2 is an unbiased estimator; that is, E(S2)¼s2. This
follows from Eq. (7.8) and the fact that the expected value of a chi-squared
random variable is equal to its degrees of freedom (Problem 7.34). Hence,

Eðŝ2Þ ¼ n� 1
n

EðS2Þ ¼ n� 1
n

s2; ð7:117Þ

and it follows that ŝ2 is biased. The bias diminishes with increasing sample
size, but tends to underestimate the true value of the variance for small
samples. This feature is one of the drawbacks of maximum likelihood
estimation, although the bias can usually be removed by some multiplicative
adjustment (e.g., n/(n� 1) in this example).

There are many nice properties of MLEs, also. Under some general conditions,
their asymptotic (large-sample) distributions converge to normal distributions. If a
MVUE exists, it can be shown to be a function of the MLE. For example, S2 is the
MVUE of s2, and the MLE of ŝ2 is (n� 1)S2/n. Thus, MLEs are good estimators. In
the multiparameter case, there might be no analytical solution, and iterative
numerical techniques must be applied. The interested reader can find out much
more aboutMLEs in theworks byHogg and Tanis (1993), Bickel andDoksum (1977),
and Edwards (1972), listed in the Bibliography.

7.10
Method of Moments

Another means of estimation is provided by the method of moments. Let X1,
X2, . . . , Xn be a random sample of size n from a population with distribution
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function given by f(x; �1, �2, . . . , �r), where the �k, k¼ 1, 2, . . . , r, are parameters of the
distribution. (For example, we might deal with the normal population f(x; m, s2), in
which case �1¼ m and �2¼s2.) The jth moment of the random variable X about the
origin is defined as the expected value of the jth power,

mj ¼ EðXjÞ; j ¼ 1; 2; . . . : ð7:118Þ

Similarly, the jth moment of the sample is defined as

m̂j ¼ 1
n

Xn
i¼1

xji; j ¼ 1; 2; . . . : ð7:119Þ

To obtain estimates of the �k by the method of moments, we can use Eq. (7.118) to
generate a number of moments that express the mj in terms of the �k. We start with
j¼ 1 and continue until there are enough equations to provide a set that can be solved
for the �k as functions of themj. We then replace themj by the sample moments m̂j,
thus providing the estimates for �k.

& Example
Let X1, X2, . . . , Xn be a random sample from a normal population with
unknown mean m and unknown variance s2. Use the method of moments to
obtain point estimates of m and s2.

Solution
The first two moments of the normal distribution about the origin are
(Problem 7.38)

m1 ¼ EðXÞ ¼ m ð7:120Þ

and

m2 ¼ EðX2Þ ¼ s2 þ m2: ð7:121Þ

The latter expression follows directly from Eq. (4.48). Solving Eqs. (7.120)
and (7.121) for m and s2, we find

m ¼ m1 ð7:122Þ
and

s2 ¼ m2 � m2 ¼ m2 �m2
1: ð7:123Þ

The estimates of m and s2 are obtained by replacing the mj by the m̂j. Thus,

m̂ ¼ m̂1 ¼ 1
n

Xn
i¼1

Xi ¼ �X ð7:124Þ
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and

ŝ2 ¼ m̂2 � m̂2
1 ¼

1
n

Xn
i¼1

X2
i � �X2 ¼ 1

n

Xn
i¼1

ðXi � �XÞ2: ð7:125Þ

In this example, the method of moments gives the same estimators as the
maximum likelihood method. This will not be true in general. The example also
shows that themoment estimatorsmay be biased estimators, since ŝ2 above is biased
(Eq. (7.117)). In some cases, the moment estimators may not be unique. An example
is afforded by sampling from a Poisson distribution with parameter l. If we want
moment estimators of the mean and variance, we can proceed as in the last example
to obtain Eqs. (7.122) and (7.123). For the Poisson distribution, m¼ s2¼ l, and so we
can estimate l by using either m̂ or ŝ2. On the positive side, moment estimators are
easy to obtain and they are consistent.

To use this method easily, one needs a means to calculate the moments. One way
utilizes the moment generating function, which we now define for the random
variable X. Let there be a positive number h such that, for �h< t< h, the mathe-
matical expectation E(etx) exists. If X is continuous with density function f(x), then its
moment generating function is

MðtÞ ¼ EðetxÞ ¼
ð1

�1
etx f ðxÞdx: ð7:126Þ

If X is discrete with probability function p(x), then its moment generating function is

MðtÞ ¼ EðetxÞ ¼
X
x

etx pðxÞ: ð7:127Þ

Note that the existence of E(etx) for�h< t< h (with h> 0) implies that derivatives of
M(t) to all orders exist at t¼ 0. Thus, we may write, for instance,

d
dt
MðtÞ ¼ Mð1ÞðtÞ ¼

ð1
�1

x etx f ðxÞdx ð7:128Þ

for a continuous random variable X, or

d
dt
MðtÞ ¼ Mð1ÞðtÞ ¼

X
x

x etx pðxÞ ð7:129Þ

if X is discrete. Setting t¼ 0 in either of the last two equations yields

Mð1Þð0Þ ¼ EðXÞ ¼ m: ð7:130Þ

In general, if j is a positive integer andM(j)(t) denotes the jth derivative ofM(t) with
respect to t, then repeated differentiation of Eq. (7.126) or Eq. (7.127) and setting

7.10 Method of Moments j191



t¼ 0 gives

MðjÞð0Þ ¼ EðXjÞ ¼ mj: ð7:131Þ

These derivatives of the moment generating function E(etx) with respect to t,
evaluated at t¼ 0, are thus the moments defined by Eq. (7.118).

We note also that these are moments defined about the origin. One can also
investigate moments about points other than the origin. Let X denote a random
variable and j a positive integer. Then the expected value E[(X� b)j] is called the jth
moment of the random variable about the point b. If we replace b by m, then we
would say the jth moment about the mean. We could replace M(t) in Eq. (7.126) by
R(t)¼E(et(x� b)) with the same conditions as for M(t) and obtain a moment gener-
ating function about the point b. However, for our needs it is easier to work withM(t).

& Example
Let X be a Bernoulli random variable taking on the values 1 and 0 with
probability p and (1� p), respectively. Determine the moment generating
function for X and use it to obtain the first two moments.

Solution
By definition,

MðtÞ ¼ EðetxÞ ¼
X1
x¼0

etx pxð1� pÞ1�x ¼ ð1� pÞ þ p et: ð7:132Þ

Taking the first derivative ofM(t) with respect to t and setting t¼ 0, we find for
the first moment

Mð1Þð0Þ ¼ p: ð7:133Þ

Taking the second derivative and setting t¼ 0 gives

Mð2Þð0Þ ¼ p: ð7:134Þ
Sinces2 ¼ EðX2Þ � ½EðXÞ�2 ¼ Mð2Þð0Þ � ½Mð1Þð0Þ�2, we see thats2¼ p� p2¼
p(1� p) for the Bernoulli random variable.

Not all distributions have moment generating functions (e.g., the Cauchy distri-
bution). When such a function does exist, its representation is unique. As a
consequence, for example, given the moment generating function, 1/2 þ (1/2)et,
of a random variable X, we can say that X has a Bernoulli distribution with p¼ 1/2.
(Replace p by 1/2 in Eq. (7.132).) The uniqueness property comes from the theory of
transforms in mathematics. Thus, if X1 and X2 have the same moment generating
function, then both have the same distribution. Inmore advanced texts, themoment
generating function is replaced by the characteristic function, w(t)¼E(eitx), where
i ¼ ffiffiffiffiffiffiffi�1

p
. The characteristic function exists for all distributions. The interested

reader can consult Parzen (1960).
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Another interesting property of the moment generating function is the following.
If X1, X2, . . . , Xn are n independent random variables with moment generating
functionsM1(t),M2(t), . . . ,Mn(t), then themoment generating function of their sum,
Y ¼ X1 þ X2 þ � � � þ Xn, is the product M1ðtÞ �M2ðtÞ � � � MnðtÞ. This property is
seen by applying the definition (7.126) or (7.127):

MY ¼ EðetyÞ ¼ Eðetðx1þx2þ ��� þxnÞÞ ð7:135Þ
¼ Eðetx1Þ � Eðetx2Þ � � � EðetxnÞ ¼ M1ðtÞ �M2ðtÞ � � � MnðtÞ: ð7:136Þ

Note that the expectation values factor because X1, X2, . . . , Xn are independent.

& Example
Let X have a Poisson distribution with parameter l.

a) Show that the moment generating function is elðe
t�1Þ.

b) Let X1, X2, . . . , Xn be independent, identically distributed Poisson random
variables with parameter l. Show that Y ¼ X1 þ X2 þ � � � þ Xn is also
Poisson distributed, but with parameter nl.

Solution

a) For the moment generating function (7.127), we write

MX ðtÞ ¼ EðetxÞ ¼
X1
x¼0

etx
e�llx

x!
ð7:137Þ

¼ e�l
X1
x¼0

ðletÞx
x!

¼ e�lele
t ¼ elðe

t�1Þ: ð7:138Þ

(Note that we have used the series expansion,
P1

x¼0 a
x=x! ¼ ea).

Table 7.3 Moment generating functions of some common distributions.

Sampling distribution Moment generating function

Bernoulli: pðxÞ ¼ pð1� pÞ1�x ; x ¼ 0; 1 p et þ 1� p

Binomial: pðxÞ ¼ n
x

� �
pxð1� pÞn�x ; x ¼ 0; 1; . . . ; n ðp et þ 1� pÞn

Poisson: pðxÞ ¼ e�l lx

x! ; x ¼ 0; 1; 2; . . . elðe
t�1Þ

Geometric: pðxÞ ¼ pð1� pÞx�1; x ¼ 1; 2; . . . p et

1�ð1�pÞet

Uniform over (a, b): f ðxÞ ¼ 1
b�a ; a < x < b etb�eta

tðb�aÞ

Normal: f ðxÞ ¼ 1
s
ffiffiffiffi
2p

p e�ð1=2Þ½ðx�mÞ=s�2 etmþðt2s2=2Þ

Exponential: f ðxÞ ¼ l e�lx l
l�t ¼ 1� t

l

� ��1

Gamma: f ðxÞ ¼ baxa�1 e�bx

CðaÞ 1� t
b

� ��a
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b) With Y ¼ X1 þ X2 þ � � � þ Xn, we write from Eqs. (7.136) and (7.138)

MY ðtÞ ¼
Yn
i¼1

MXiðtÞ ¼
Yn
i¼1

elðe
t�1Þ ¼ enlðe

t�1Þ: ð7:139Þ

This result is identicalwith thePoisson function (7.138), butwithparameter
nl. By the uniqueness property of the moment generating function, we
can conclude that Y has the Poisson distribution with parameter nl.

For reference, Table 7.3 provides a number of moment generating
functions.

Problems

7.1 The heights of 50 randomly selected male military recruits were measured,
and the average height was reported to be 175.2� 7.9 cm.
a) Give an example of a systematic error that could affect this finding.
b) What sources of random error contribute to the uncertainty?
c) Distinguish between the accuracy and the precision of the reported result.

7.2 The following gives results of 10 observations in each of two samples. Obtain
the sample means, standard deviations, and coefficients of variation for
Sample (a): 6.6, 4.4, 6.1, 4.2, 4.0, 6.0, 6.2, 5.5, 5.7, 2.4.
Sample (b): �6.4, 25.7, �1.3, 38.3, 41.6, 37.2, 28.2, 4.9, 40., �11.6.

7.3 a) What is a statistic?
b) What is an estimator?
c) What is an unbiased estimator?

7.4 Unknown to an investigator, a population consists simply of the first five
positive integers 1, 2, 3, 4, 5. The investigator chooses to use any single
observation as an estimator for the population mean.
a) Is the estimator unbiased? Explain.
b) Calculate the variance for this estimator.
c) Is the estimator consistent? Why or why not?

7.5 A sample of n observations is drawn from a normal population with mean m

and variance s2. If we use

S�
2 ¼ 1

n

Xn
i¼1

ðXi � �XÞ2

as the estimator for s2, is it unbiased or biased?Why or why not? If it is biased,
is there a way to make it unbiased? If so, show how it can be done.

7.6 Ten observations taken from a Poisson population with unknown parameter l
yield the following data: X¼ 3, 2, 5, 5, 4, 4, 5, 6, 9, 6. Use Eq. (7.4) to obtain the
MVUE of l.

7.7 Using Eq. (7.7) and the estimator obtained in the last problem, estimate the
variance of l̂.

7.8 Show that Eq. (7.13) follows from Eqs. (7.10) and (7.11).
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7.9 a) In the notation of (7.14), what values ofa determine the probable error and
the standard error?

b) How many standard deviations determine the half-widths of the inter-
vals (7.14) for the probable error and the standard error?

7.10 A random sample of 16 men yielded an average potassium concentration in
body tissues of 1895mgkg�1 of body weight. Assume that the data are
normally distributed and that the population standard deviation is 80mgkg�1.
Obtain
a) the standard error of the mean;
b) a 90% confidence interval on the true mean.

7.11 In the last problem, if the population standard deviationwere not known and if
the sample standard deviation came out to be 94mgkg�1, what would be the
answers to (a) and (b)?

7.12 Using the samplemean of 1895mgkg�1 and population standard deviation of
94mg kg�1 from the last problem, find the confidence interval for the mean
that corresponds to the probable error.

7.13 Show that the random variable T in Eq. (7.19) has the Student�s t-distribution
with (n� 1) degrees of freedom.

7.14 Verify that (7.22) follows from Eqs. (7.19) and (7.20).
7.15 In the example leading to Eq. (7.23), show that �x ¼ 1:01 cm and s¼ 0.03 cm.
7.16 Starting with Eq. (7.29), verify (7.30) and (7.31).
7.17 Swipes in a laboratory building were collected at random from 100 different

areas, known to be uncontaminated, and analyzed for total activity. It was
found that five of the swipes exceeded the maximum total activity used as a
control for posted contamination areas.
a) Estimate the proportion of swipes expected to exceed the control limit in

similarly contaminated areas.
b) Obtain an approximate 95% confidence interval on this value.

7.18 In the last problem we estimated the proportion p of smears with count
numbers that exceed the control limit. We now want to determine the true
proportion exceeding the upper limit within an error E¼ 0.02 with 80%
confidence. What sample size is needed to do this if
a) we assume that p¼ 0.05?
b) we do not know the value of p?

7.19 An alpha source was counted 10 times over 5-min intervals, yielding the
following count numbers: 19, 23, 29, 15, 22, 29, 28, 23, 22, 26. Assume that the
sample came from a Poisson distribution.
a) Estimate the rate parameter l in counts per minute.
b) Obtain an approximate 95% confidence interval for l.

7.20 Two types of filters, A and B, were compared for their ability to reduce the
activity of a radioactive aerosol. A fixed activity of 1000Bqwas drawn through a
freshfilter, and the amount that passed throughwasmeasured. Ten typeA and
eight type B filters were tested. The average activity that passed through type A
was 250Bq,while the average for typeBwas 242Bq.Assume that the variances
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in the transmitted activities for the two filter types were s2
A ¼ 25 Bq2 and

s2
B ¼ 49 Bq2.

a) Obtain a 95%confidence interval for the difference between the truemeans
of the two groups.

b) Which filter type is more effective, based on these tests? Why?
7.21 Assume that the variances in the last problem are not known, but that

measurements from the experiment give the estimates, s2A ¼ 25 Bq2 and
s2B ¼ 49 Bq2. Assume, further, that the variances are equal.
a) Determine the best estimate of the common variance.
b) Obtain a 95% confidence interval for the difference in the means, assum-

ing that the variances are equal, but unknown.
7.22 In the last problem, assume that the variances are unknown and unequal.

a) Find a 95% confidence interval for the difference in means.
b) Write down the 95% confidence intervals for the last two problems. Why

should the length of the interval get larger as one proceeds from there to the
present problem?

7.23 Two ointments are being tested for possible use in skin decontamination, in
order to see whether they produce a rash. Ointment A was applied to 200
persons, and 15 developed a rash. Ointment Bwas used with 250 persons, and
23 developed a rash.
a) What percentages of subjects developed a rash with each ointment?
b) Use the central limit theorem to obtain a 95% confidence interval on the

difference between the two percentages.
c) Are the proportions of rashes different for the two ointments?

7.24 For each of the following, construct a 95% confidence interval for the
population variance:
a) n¼ 15, s2¼ 40.1;
b) n¼ 25, s2¼ 25.6;
c) n¼ 11, s2¼ 10.2.

7.25 A random sample of size 11 is taken from a normal population. The sample
mean is 12.6, and the sample standard deviation is 4.2. Find 95% confidence
intervals for the population mean and variance.

7.26 The amount of potassium inmg per kg of body weight for a random sample of
five adult males is reported to be 1740, 1820, 1795, 1910, and 1850.
a) What is the sample standard deviation?
b) Obtain a 95% confidence interval on the variance, assuming a normal

population.
7.27 Is the quantity Q given by Eq. (7.75) a statistic? Why or why not?
7.28 Starting with Eqs. (7.81) and (7.82), verify the result (7.88).
7.29 A new procedure is to be tested for performing a certain assay at a laboratory.

Ten technicians are randomly chosen and divided into two groups, A and B,
with five members each. Group A is taught the new procedure, while group B
continues to use the standard method. A test preparation is made with a
known amount of material, and each technician independently performs the
assay. The objective is to seewhether the newmethod reduces the variability of
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results among the technicians. The results of the testing for the two groups are
as follows:
Group A: 6.12, 6.08, 6.15, 6.08, 6.10.
Group B: 5.95, 6.25, 5.80, 6.05, 6.01.
The true amount material used in the test preparation is 6.00.
a) Obtain the sample mean and sample variance for each group.
b) Obtain a 90% confidence interval for the ratio of variances (A to B).
c) Is the new method better than the old? Why or why not?
d) Knowing that the true value is 6.00, what is the significance of the results

for the two procedures? Which method would you use and why?
7.30 For each of the following, construct a 90% confidence interval for the ratio of

the variances (1 to 2):
a) n1¼ 20, s21 ¼ 25:6; n2¼ 15, s22 ¼ 16:8;
b) n1¼ 10, s21 ¼ 5:40; n2¼ 25, s22 ¼ 8:90.

7.31 Uniform random soil samples were collected from two sites, A and B. The
number of alpha countsmeasured in 5min from the collected sampleswere as
follows:

Site Sample size Sample mean Sample standard deviation

A 6 3.2 2.5
B 8 4.5 4.9

a) Calculate the coefficient of variation for each site.
b) Calculate a 90% confidence interval on the ratio of the variance at site A to

the variance at site B.
c) Does the variability appear to be different at the two sites?

7.32 Let x1, x2, . . . , xn denote n values obtained by randomly sampling from an
exponential distribution with density

f ðx; �Þ ¼ 1
�
e�x=�; x > 0; � > 0:

a) Show that the likelihood function for � is given by

Lð�Þ ¼ 1
�n

e�
P

xi=�;

where the summation goes from i¼ 1 to n.
b) Show that the maximum likelihood estimator for � is given by �̂ ¼ �x.
c) Verify that �̂ is unbiased for �; that is, Eð�̂Þ ¼ �.
d) Show that the variance of �̂ is given by �2/n.

7.33 Show that the value of p̂ given by Eq. (7.99)maximizes, rather thanminimizes,
L(p).

7.34 The maximum likelihood estimator for the variance when sampling from a
normal population is given by Eq. (7.115). Using this result and the fact that
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ðn� 1ÞS2=s2 � x2n�1, find the expected value of the MLE for s2. Use this
information to adjust ŝ2 to be unbiased.

7.35 For a random variable X, show that the second moment about the mean m is
equal to the difference between the secondmoment about an arbitrary point b
and the square of the first moment about b. That is, show that

E½ðX � mÞ2� ¼ E½ðX � bÞ2� � ½EðX � bÞ�2:
7.36 Let X1, X2, . . . , Xn be the disintegration times in seconds of n individual,

identical atoms. Assume that these random variables are independent and
identically distributed as exponential distributions with unknown parameter l.
a) Find a method of moments estimator for l.
b) Determine the variance of the exponential and use this information to

obtain another moment estimator for l. Is the moment estimator for l
unique?

c) Find the probability Pr(X1	 1) that the first atom will �live� at least 1 s
before decaying.

d) Obtain a method of moments estimator for the probability in part (c).
7.37 Show that themoment generating function for the normal probability density

function is that given in Table 7.3.
7.38 Use the generating function from the last problem to calculate the first two

moments of the normal distribution about the origin.
7.39 Use moment generating functions to show that, if X1, X2, . . . , Xn are

independent, normal random variables with mean m and variance s2, then
Y ¼ X1 þ X2 þ � � � þ Xn is normal with mean nm and variance ns2.

7.40 If X has the moment generating functionMx(t), show that Y¼aX þ b has the
moment generating function My¼ ebt Mx(at).

7.41 Use the results of the last two problems to show that Z ¼ �X ¼
ðX1 þ X2 þ � � � þ XnÞ=n is normal with mean m and variance s2/n.
(Hint: From the problem before last, we know the moment generating
function of Y ¼ X1 þ X2 þ � � � þ Xn. Note that Z ¼ �X ¼ Y=n, and apply the
results of the last problem.)
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8
Propagation of Error

8.1
Introduction

In addition to statistical errors associated with measurements of a random variable,
one often needs to assess the error in a quantity that is derived from a combination of
independent random variables. For example, the activity of a radioactive source can
be inferred by subtracting background counts observed in the absence of the source
from counts with the source present. Both counts are independent random variables.
Given their individual errors, how does one obtain the error for the count difference
and hence the activity of the source?

Uncertainty in a derived quantity is a combination of all errors in the component
parts. Systematic errors, if known, can be used to correct the values of the compo-
nents before calculating the derived quantity. Independent random errors, on the
other hand, act together to contribute to the overall random variation in a composite
quantity. The way in which random errors in individual variables are combined to
estimate the resulting random error in a derived quantity is commonly called error
propagation – the subject of this chapter.

8.2
Error Propagation

We consider a quantity Q(X1, X2, . . . , Xn), which is a function of n independent
random variables Xi, each, respectively, having a mean mi and variance s2

i , with i¼ 1,
2, . . . , n. We wish to determine how random errors in the Xi propagate into the error
in the derived quantityQ. This goal is accomplished by calculating the variance ofQ
in terms of the variances s2

i . The analysis is greatly simplified ifQ is a linear function
of the Xi. If Q is nonlinear, then we approximate it in linear form by using a Taylor
series expansion, keeping only the zero- and first-order terms. Nonlinear aspects will
be considered in an example presented in Section 8.4. We shall see that, when the
si�mi for all i, the linear approximation works well.
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We expand Q through first order in the Xi about the point m¼ (m1, m2, . . ., mn) in
n-dimensional space by writing

Q X1;X2; . . . ;Xnð Þ ffi QðmÞþ
Xn
i¼1

qQ
qXi

� �
m

ðXi � miÞ

� Q*ðX1;X2; . . . ;XnÞ: ð8:1Þ

We thus approximate the exact functionQby the functionQ�, which is linear in theXi.
The partial derivatives are understood to be evaluated at the point m. It is straight-
forward to calculate themean and variance of the functionQ�. (IfQ is linear to begin
with, then, of course, Q¼Q�.)

The expected value of the sums in Eq. (8.1) is equal to the sum of the individual
expected values (Section 4.2), and so it follows that (Problem 8.1)

EðQ*Þ ¼ E QðmÞ½ � þ
Xn
i¼1

qQ
qXi

� �
m

EðXiÞ � EðmiÞ½ � ¼ QðmÞ: ð8:2Þ

Since E(Xi)¼ mi, each term in brackets in Eq. (8.2) is identically zero. Also, the
expected value of the constant Q(m), which remains, is just the constant itself.
Therefore, Eq. (8.2) shows that the expected value of Q� is just Q(m)¼Q(m1, m2, . . . ,
mn), or Q evaluated at the means of the Xi.

The variance of Q is given approximately by Var(Q�). Since the mean is Q(m), we
have from Eqs. (4.44) and (8.1)

Var Q*
� � ¼ E ½Q*ðX1;X2; . . . ;XnÞ �QðmÞ�2

n o

¼ E
Xn
i¼1

qQ
qXi

� �
m

ðXi � miÞ
" #2( )

: ð8:3Þ

Separating the squared and the cross terms in the square of the sum, one can write

VarðQ*Þ ¼ E
Xn
i¼1

qQ
qXi

� �2

m

ðXi � miÞ2
" #

þE
Xn
i 6¼j¼1

qQ
qXi

� �
m

qQ
qXj

� �
m

ðXi � miÞðXj � mjÞ
2
4

3
5

ð8:4Þ

¼
Xn
i¼1

qQ
qXi

� �2

m

E ðXi � miÞ2
h i

þ
Xn
i 6¼j¼1

qQ
qXi

� �
m

qQ
qXj

� �
m

E ðXi � miÞðXj � mjÞ
h i

:

ð8:5Þ
In the first summation, E½ðXi � miÞ2� ¼ s2

i , the variance of Xi. In the second
summation, each term E[(Xi� mi)(Xj�mj)] is the covariance sij (Eq. (4.82)), which
vanishes because the Xi are independent. We are left with the result (Problem 8.2),

VarðQ*Þ ¼
Xn
i¼1

qQ
qXi

� �2

m

s2
i : ð8:6Þ
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Equations (8.2) and (8.6) give themean and variance of the (linear) approximationQ�

to the functionQ. The latter equation shows explicitly how the variance of the derived
quantityQ� depends on the standard errors si in the individual, independent random
variables.

In practice, the value of the derived quantity is often inferred from repeated
determinations of the randomvariables. If onemeasures a total ofmi values xik, k¼ 1,
2, . . . , mi, for the independent random variables Xi, then useful estimates of mi and
s2
i are

m̂i ¼
Pmi

k¼1 xik
mi

¼ �xi ð8:7Þ

and

ŝ2
i ¼

Pmi
k¼1 ðxik � �xiÞ2
mi � 1

¼ s2i ; ð8:8Þ

in which xik is the value obtained in the kthmeasurement ofXi. These estimates from
the sample are then substituted formi ands2

i in Eqs. (8.2) and (8.6) in order to estimate
the mean and standard error of Q�, which approximates Q when the latter is
nonlinear.

We can use these results to calculate confidence intervals. If we assume that the
Xi are normally distributed with means mi and variances s2

i , then the approximate
100(1�a)% confidence interval for E(Q) in Eq. (8.2) is

QðmÞ � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

qQ
qXi

� �2

m

s2
i

vuut ; ð8:9Þ

where za=2 is the quantity that cuts off an area of size a/2 to the right under the
standard normal distribution. If we obtain sample estimates of mi and s2

i , given by
Eqs. (8.7) and (8.8), then an approximate 100(1�a)% confidence interval for E(Q) is
given by

Qð�xÞ � tv;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

qQ
qXi

� �2

�x
s2i

vuut ; ð8:10Þ

in which tv;a=2 is defined in Table A.5 and �x ¼ ð�x1; �x2; . . . ; �xnÞ, where the �xi are the
sample averages. The degrees of freedom are calculated by using the Satterthwaite
approximation to the degrees of freedom (Satterthwaite, 1946; Anderson and
McLean, 1974),

v ¼
Pn

i¼1ðqQ=qXiÞ�x2s2i
h i2

Pn
i¼1ð1=ðm1 � 1ÞÞðqQ=qXiÞ�x4s4i

: ð8:11Þ

The degrees of freedom, which are nonintegral, can be truncated to the next lowest
integer (in order to be conservative), so that Student�s t-tables can be used.
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8.3
Error Propagation Formulas

One can use Eq. (8.6) to compute the variance of any derived quantityQ in the linear
approximation. A number of functional forms occur frequently in practice, and we
next develop explicit formulas for estimating their variances.

8.3.1
Sums and Differences

When Q consists of sums and differences of random variables, one has the general
form

QðX1;X2; . . . ;XnÞ ¼
Xn
i¼1

aiXi; ð8:12Þ

where the ai are constants. In this case, Q itself is linear in the Xi and, therefore,
identical with Q�. The error computation is then exact. The partial derivatives,
obtained from Eq. (8.12), are qQ/qXi¼ ai. Equation (8.6) then gives

VarðQÞ ¼ VarðQ*Þ ¼
Xn
i¼1

a2i s
2
i : ð8:13Þ

In the example cited in the first paragraph of this chapter, the net number of counts
from a source is the difference in the two direct count measurements: X1¼ source
plus background (gross counts) and X2¼ background alone. Comparing with
Eq. (8.9), we can write for the net number of counts Q¼X1�X2, with n¼ 2,
a1¼ 1, and a2¼�1. Applying Eq. (8.6) shows that the variances in the two individ-
ually measured count numbers add in quadrature:

VarðQÞ ¼ a21s
2
1 þ a22s

2
2 ¼ s2

1 þ s2
2: ð8:14Þ

The standard deviation in the net number of counts is thus equal to the square root of
the sumof the variances in the gross and background count numbers. Asmentioned,
this result is exact, because Q is a linear function of the Xi in Eq. (8.12).

8.3.2
Products and Powers

For all other functions, we substitute the linear approximation Q� for Q. For a
combination of products of n random variables Xi raised to any power pi, the most
general form for Q can be written as

Q ¼ Xp1
1 Xp2

2 � � � Xpn
n : ð8:15Þ

Taking the partial derivative ofQ with respect to Xi introduces a multiplicative factor
of pi and reduces the power of Xi by one unit. Therefore, we may write (Problem 8.6)
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qQ
qXi

¼ piQ
Xi

: ð8:16Þ

According to Eq. (8.6), with the derivatives evaluated at the point m¼ (m1, m2, . . ., mn)
we obtain

VarðQ*Þ ¼
Xn
i¼1

piQ
Xi

� �2

m

s2
i ¼ Q2ðmÞ

Xn
i¼1

pisi

mi

� �2

: ð8:17Þ

This equation can be written conveniently in dimensionless form:

VarðQ*Þ
Q2ðmÞ ¼

Xn
i¼1

pisi

mi

� �2
: ð8:18Þ

8.3.3
Exponentials

We consider a function of the form Q¼ eW, where the exponent

W ¼ Xp1
1 Xp2

2 � � � Xpn
n ð8:19Þ

is the same as Q in Eq. (8.15). The partial derivatives are

qQ
qXi

¼ qeW

qXi
¼ qW

qXi
eW ¼ piW

Xi
Q : ð8:20Þ

With the quantities evaluated at m, we obtain from Eq. (8.6) (Problem 8.7)

VarðQ*Þ ¼
Xn
i¼1

piWQ
mi

� �2

s2
i : ð8:21Þ

In dimensionless form,

VarðQ*Þ
Q2ðmÞ ¼ W2ðmÞ

Xn
i¼1

pisi

mi

� �2

: ð8:22Þ

8.3.4
Variance of the Mean

The formalismhere can be applied to calculate the variance of themean. For a set of n
independentmeasurementsXi of a random variableX, themean is, by definition, the
linear function

QðX1;X2; . . . ;XnÞ ¼
Pn

i¼1 Xi

n
: ð8:23Þ
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Here the Xi can be regarded as n independent random variables, all having the same
variance s2

i ¼ s2 as the random variable X. The function (8.23) is then a special case
of Eq. (8.12), with Q� ¼Q and ai¼ 1/n for all i. Applying Eq. (8.6), we find that

VarðQÞ ¼
Xn
i¼1

s2

n2
¼ n

s2

n2

� �
¼ s2

n
: ð8:24Þ

The result was given earlier (Eq. (6.35)) without proof.

& Example
The specific gross count rate of a source is defined as the count rate of the
sample plus background divided by the mass of the source, and it can be
expressed as N/(TM) in s�1 g�1. An unknown source is placed in a counter,
and a total of n¼ m̂N ¼ 1999 counts is registered in a time t¼ m̂T ¼ 60.00�
0.05 s. Themass of the source ism¼ m̂M ¼ 3.04� 0.02 g. (The usual notation,
showing one standard deviation, will be used in this example.) Find

a) the specific gross count rate and
b) its standard error.

Solution
a) The specific gross count rate is given by

Qðn; t;mÞ ¼ m̂N
m̂T m̂M

¼ 1999
ð60:00 sÞð3:04 gÞ ¼ 11:0 s�1 g�1: ð8:25Þ

The given values of m̂N ; m̂T ; and m̂M serve as estimates of the individual
means, which are to be used in accordance with Eq. (8.1). The result (8.25)
has been rounded to three significant figures, equal to the number in the
least precise measurement – that of the mass.

b) The functionQ in Eq. (8.25) has the form (8.15) with each pi equal to either
þ 1 or �1. The variance is given by Eq. (8.18):

VarðQ*Þ ¼ Q2ðm̂N ; m̂T ; m̂MÞ
sN

mN

� �2

þ �sT

mT

� �2

þ �sM

mM

� �2
" #

;

ð8:26Þ
where the quantities s are the standard deviations in the respective
quantities. The estimated errors are given for T and M. We shall assume
that the number of counts is Poisson distributed and use as an estimate
ŝN ffi ffiffiffiffiffiffiffiffiffiffi

1999
p ¼ 44:7. Substitution of the numerical values into (8.26) gives

for the estimated variance of Q� and hence Q,

ŝ2
Q ffi ŝ2

Q* ¼ ð11:0 s�1 g�1Þ2 44:7
1999

� �2

þ �0:05
60:00

� �2

þ �0:02
3:04

� �2
" #

ð8:27Þ
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¼ 121ð5:00	 10�4 þ 6:94	 10�7 þ 4:33	 10�5Þ

¼ 6:58	 10�2 s�2 g�2: ð8:28Þ

The estimated standard error is, therefore, approximately, ŝQ ¼ 0.257 s�1

g�1. We report the specific gross count rate with its one standard error as
Q̂ ¼ 11.0� 0.3 s�1 g�1, to three significant figures. We see from Eq. (8.28)
that most of the uncertainty is due to the random error in the number of
counts in this example. (Time measurements almost always have negli-
gible error compared with other factors in a counting experiment.)

& Example
The activityQ of an airborne radionuclide deposited on the filter of a constant
airmonitor is related to the deposition rateD (activity per unit time), the decay
constant L of the nuclide, and the collection time T. If there is initially no
activity on the filter and the deposition rate D is constant, then the activity of
the material on the filter at time T is given by the following expression
(Cember, 1996, p. 571; Turner et al., 1988, p. 32):

Q ¼ D
L
ð1� e�LT Þ: ð8:29Þ

If d¼ 115� 7Bq h�1, l¼ 0.301� 0.004 h�1, and t¼ 8.00� 0.03 h, where the
standard errors are indicated, find

a) the activity on the filter at time t and
b) its standard error.

Solution
a) The activity expressed by Eq. (8.29) is a function Q(D, L, T) of the three

variables shown. Using their given values as estimates of the means, we
find for the estimated activity

Q̂ ¼ 115 Bq h�1

0:301 h�1 ð1� e�ð0:301 h�1Þð8:00 hÞÞ ¼ 348 Bq: ð8:30Þ

b) The function (8.29) is not one of the �standard� forms for variance
worked out in this section, and so we employ the general expression (8.6)
to calculate the variance. The partial derivatives are to be evaluated at the
point m determined by the means of the three variables, estimated with
the given values. The exponential term, e�lt¼ e�0.301	8.00¼ 0.0900,
calculated in Eq. (8.30), will occur in all of the partial derivatives. We
estimate the si in Eq. (8.6) by using the given standard deviations. Thus,
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we find that

qQ
qD

� �
m̂

ŝD ¼ 1� e�lt

l

� �
ŝD ¼ 1� e�0:301	8

0:301 h�1 	 7 Bq h�1

¼ 21:2 Bq; ð8:31Þ

qQ
ql

� �
m̂

ŝl ¼ d � 1� e�lt

l2
þ t e�lt

l

� �
ŝl ð8:32Þ

¼ ð115 Bq h�1Þ � 1� e�0:301	8

ð0:301 h1�Þ2 þ ð8 hÞ 	 e�0:301	8

0:301 h�1

" #
ð0:004 h�1Þ

¼ �3:52 Bq;

ð8:33Þ
and

qQ
qt

� �
m̂

ŝt ¼ d
l
ðl e�ltÞ

� �
ŝt

¼ ð115 Bq h�1Þðe�0:301	8Þð0:03 hÞ ¼ 0:310 Bq: ð8:34Þ

Adding the squares from Eqs. (8.31), (8.33), and (8.34), we obtain from
Eq. (8.6) the estimated variance,

ŝ2
Q ffi ð21:2Þ2 þð�3:52Þ2 þð0:310Þ2 ¼ 462 Bq2: ð8:35Þ

The estimated standard error for the activity on the filter is, therefore,

ŝQ ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
462 Bq2

q
¼ 21:49 Bq ¼ 20 Bq: ð8:36Þ

Since the standard errors for the random variables all carry only one
significantfigure, in writing Eq. (8.36) we have rounded off the calculated
error in the derived activity accordingly. Thefilter activity togetherwith its
one standard error can be reported as

Q̂ ¼ 348� 20 Bq: ð8:37Þ

& Example
A certain nuclide has a radiological half-life TR with estimated mean m̂TR

¼
8.0� 0.1 d and ametabolic half-life TMwith estimatedmean m̂TM

¼ 100� 5 d,
where both uncertainties are one standard deviation.

a) Calculate the effective half-life, given by

TE ¼ TRTM

TR þTM
: ð8:38Þ

b) What is the standard error in the effective half-life?
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Solution
a) Inserting the given data into Eq. (8.38), we obtain

T̂E ¼ ð8:0 dÞ 	 ð100 dÞ
ð8:0 dÞþ ð100 dÞ ¼ 7:4 d: ð8:39Þ

b) The expression (8.38) is not one of the standard forms from earlier in this
section, and so we employ Eq. (8.6), writing

VarðTEÞ ffi qTE

qTR

� �2

m

s2
R þ

qTE

qTM

� �2

m

s2
M: ð8:40Þ

The partial derivatives are to be evaluated at the point m determined by
using the givenmean estimates m̂TR

and m̂TM
. Similarly, the given values can

be employed to estimate sR and sM. Using Eq. (8.38) in Eq. (8.40) gives
(Problem 8.13)

VarðTEÞ ¼ s2
E ffi TM

TR þTM

� �4

m

s2
R þ

TR

TR þTM

� �4

m

s2
M: ð8:41Þ

Putting in the numerical values, we find

ŝ2
E ffi 100 d

108 d

� �4

ð0:1 dÞ2 þ 8:0 d
108 d

� �4

ð5 dÞ2

¼ 8:10	 10�3 d2: ð8:42Þ
Thus, the estimated standard error in the effective half-life is ŝE ffi 0:09 d,
to the appropriate number of significant figures.

8.4
A Comparison of Linear and Exact Treatments

It is not our intent to go beyond an introductory presentation of the conditions
under which error computation by means of the linear approximation is satisfac-
tory. Suffice it to say that the formulas in the last section are sufficiently accurate for
many purposes when the standard deviations of the random variables are much
smaller than their means, that is, when si� mi for all i. Looking back at the
three examples presented in the last section, one can see that this condition was
met. Use of the linear function Q� thus gave a good approximation to the
propagated error.

The condition si� mi for the validity of the linear approximation can be under-
stood from Eq. (8.1), which represents the lowest order expansion of the random
variables about their means. Higher order terms are not important when the spread
of the variables about their mean values is relatively small. To illustrate, we next
present an example in which the propagated error is computed in the linear
approximation and then compared with the exact result.
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&

Example
The distance of a fixed point P from the origin O of the orthogonal coordinate
axes in Figure 8.1 is determined bymeasuring the displacements X1 and X2 of
the projections of P along the two perpendicular axes. The square of the
distance of P from O is given by

QðX1;X2Þ ¼ X 2
1 þX2

2 : ð8:43Þ

The random variables X1 and X2 have means m1 and m2 and variances s2
1 and

s2
2. Find the mean and variance of Q

a) approximately, by using the linear approximation Q� for Q, and
b) exactly, given that X1 and X2 have normal distributions.

Solution
a) From Eqs. (8.2) and (8.43) it follows that the mean value for the square of

the distance from O to P is, in the linear approximation,

EðQÞ ffi EðQ*Þ ¼ EðmÞ ¼ m21 þ m22: ð8:44Þ

(Q(m)¼Q(m1, m2) is the value of Q at the point m¼ (m1, m2).) For the
variance, the partial derivatives in Eq. (8.6) are, from Eq. (8.43),

x2

x1O

P

Figure 8.1 See Eq. (8.43) and example in Section 8.4.
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qQ
qXi

� �
m

¼ 2Xijm ¼ 2mi; ð8:45Þ

where i¼ 1, 2. Thus, we find from Eq. (8.6) that

VarðQÞ ffi VarðQ*Þ ¼
X2
i¼1

4m2i s
2
i ¼ 4m21s

2
1 þ 4m22s

2
2; ð8:46Þ

which is the estimate of Var(Q) in the linear approximation.
b) We next deal with Q exactly. The mean is

EðQÞ ¼ EðX 2
1 þX 2

2 Þ ¼ EðX 2
1 ÞþEðX 2

2 Þ: ð8:47Þ

From Eq. (4.48),

EðQÞ ¼ m21 þ s2
1 þ m22 þ s2

2: ð8:48Þ

This exact result can be compared with Eq. (8.44). The error in our
estimating the mean of Q by the linear approximation is seen to amount
to neglecting s2

1 þs2
2 compared with m21 þ m22. As pointed out at the

beginning of this section, use of the linear approximation for error
propagation is accurate to the extent that the standard deviations are
negligible compared with the means of the random variables.For the exact
computation of the variance, we have

VarðQÞ ¼ VarðX 2
1 þX 2

2 Þ: ð8:49Þ

Using Eq. (4.48), we write in place of Eq. (8.49)

VarðQÞ ¼ E½ðX2
1 þX 2

2 Þ2� � ½EðX 2
1 þX 2

2 Þ�2: ð8:50Þ

The expected value in the second term is given by Eqs. (8.47) and (8.48).
The expected value in the first term can be expanded:

E½ðX2
1 þX2

2 Þ2� ¼ EðX4
1 Þþ 2EðX2

1 ÞEðX2
2 ÞþEðX4

2 Þ: ð8:51Þ

After a lengthy, term-by-term evaluation one finds from Eq. (8.50) that
(Problem 8.21)

VarðQÞ ¼ 4m21s
2
1 þ 4m22s

2
2 þ 2s4

1 þ 2s4
2: ð8:52Þ

Comparison with Eq. (8.46) shows that the linear approximation for the
variance neglects the last two terms in the exact expression (8.52) in
comparison with the first two. As with the mean, the linear approximation
for variance is good when s2

i � m2i for all i.
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8.5

Delta Theorem

The results in Sections 8.1–8.3 have been presented without much distributional
underpinning. There is a theorem referred to as the delta method that proves that,
under certain conditions, the distribution ofQ(X1,X2, . . .,Xn) as expressed byEq. (8.1)
is normalwithmeanQ(m) and variance given byEq. (8.6). For this to be true, onemust
assume that each Xi 
 N(mi, si). The Taylor series gives a linear approximation, and
the sum of normal random variables is normal. There aremany situations where the
Xi will not be normally distributed, and the question of how to handle them arises.
Generally, good estimates of the mi are needed for the Taylor approximation to work
well. In most instances, if it is possible to sample mi times from the populations Xi,
then the samplemeans �Ximi will be good estimators of themi.We also know that under
rather general conditions the central limit theorem holds and, therefore,
�Ximi _

_
Nðmi; si=
ffiffiffiffiffi
mi

p Þ. If this condition holds for each �Ximi , i¼ 1, 2, . . . , n, then

Qð�X1m1 ; �X 2m2 ; . . . ; �XnmnÞ _
_
N QðmÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarQ*

q� �
ð8:53Þ

where, from Eq. (8.6),

VarðQ*Þ ¼
Xn
i¼1

qQ
q�Xi

� �2

�X

s2
i

mi
: ð8:54Þ

The delta theorem is discussed by Bishop, Fienberg, and Holland (1975).

Problems

8.1 Verify Eq. (8.2).
8.2 Show that Eq. (8.6) follows from Eq. (8.3).
8.3 A technician takes a series of five 30-s counts with a long-lived source. The

results are 72, 49, 55, 63, and 51.
a) Find the mean and standard deviation of the measurements.
b) What is the standard deviation of the mean?

8.4 A student takes five 10-min measurements with a long-lived radioactive
source. The numbers of counts observed are 120, 108, 131, 117, and 137.
a) What is the mean count number?
b) What is the standard deviation of the count number?
c) What is the standard deviation of the mean count number?
d) State the value of the mean count rate� its standard error in cpm.

8.5 A 90Mo generator is to be milked for the daughter 99mTc with an efficiency of
91.2� 0.8%. Before milking, the 99mTc content of the generator is 844� 8
mCi. After milking, how much 99mTc is expected? State the result with its
standard error.

8.6 Verify Eq. (8.16).
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8.7 Show that Eq. (8.21) follows fromEq. (8.6) for the exponential functionQ¼ eW

with W defined by Eq. (8.19).
8.8 a) How does the standard deviation of the measurements in Problem 8.3

compare with the square root of the mean number of counts?
b) Why are the two numbers not the same?

8.9 For two independent random variables X1 and X2 show that the standard
deviations of a1X1 þ a2X2 and a1X1� a2X2 are the same.

8.10 In what sense are the quantities D, l, and t in Eq. (8.29) independent random
variables?

8.11 A fresh air monitor filter begins collecting activity of a radionuclide at a
constant rate of 97.2� 10.3 Bqmin�1. The decay constant of the nuclide is
given as 2.22� 0.46 h�1.
a) Show that the activity on the filter and its standard error when the filter is

removed after 1.25 h is 2460� 490Bq. The time measurement has neg-
ligible error.

b) State the value of the half-life and its standard error.
8.12 In the last problem, what is the activity on the filter and its standard error

90.00� 0.10min after it is removed?
8.13 Verify Eq. (8.41).
8.14 Show that the variance of the effective half-life (8.41) can be written in the

compact form

VarðQEÞ ¼ T4
E

s2
R

T4
R
þ s2

M

T4
M

� �
:

8.15 A pressurized ion chamber is used to determine the typical penetrating
radiation background in a green field location adjacent to an operating
radiological facility. The results of eight observations are provided below. A
series of suchmeasurement sets is planned, each consisting of eight readings.
What numerical value would you expect the standard deviation of the averages
of these sets to have?

Background measurement results (mrem)

175 163 171 182 185 170 180 173

8.16 An ion chamber is used to determine the exposure rate _E (R h�1) fromanX-ray
machine according to the relation

_E ¼ ðIBeam � IBKgÞ fTP :

With units given below, IBeam and IBkg are, respectively, the ion chamber
currents with the X-ray beam on and off, f is a conversion factor, T is the
ambient temperature, and P is the atmospheric pressure.
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a) What is the exposure rate and its standard error for the following observed
values with their standard errors?

f ¼ ð1:49� 0:02Þ 	 1010 R Torr min C�1 K�1 h�1;

IBeam ¼ ð3:513� 0:165Þ 	 10�11 Cmin�1;

IBkg ¼ ð6:000� 5:000Þ 	 10�13 Cmin�1;

T ¼ 24:3� 0:2 �C;

P ¼ 752� 1 Torr:

b) Which of the variables makes the largest contribution to the error in the
exposure rate?

8.17 Currentmeasurementswith an ion chamber, given in the table below, are used
to determine the net air kerma rate from a radiation source. A set of readings,
IS and IB, were taken with the source present and background alone,
respectively. The data were taken at a temperature T¼ 22.0 �C and pressure
P¼ 743 Torr. The ion chamber was calibrated at standard temperature and
pressure (T0¼ 0 �C and P0¼ 760 Torr) to obtain the conversion factor
f¼ (9.807� 0.098)	 107 Gy C�1. The net air kerma rate _K at ambient
temperature and pressure is given by

_K ¼ f �INet
P0

P

� �
T
T0

� �
;

where �INet ¼ �IS � �IB.

Ion chamber current (C min�1)

IS	 108 IB	 1013

3.630 6.0
3.612 8.8
3.624 8.0
3.618 5.2
3.620 7.6
3.622 9.4
3.618 5.5
3.616 4.8
3.624 2.7
3.626 6.3

a) What is the best estimate of average net air kerma rate _K from these data?
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b) If temperature and pressure in the laboratory can be measured within�0.5
�Cand�1Torr, determine the total uncertainty in the estimate of _K inpart (a).

c) What variable contributes the greatest uncertainty in the estimate of _K ?
8.18 A radiation worker submits amonthly urine sample, which is analyzed for the

particular radioisotope to which she is occupationally exposed. Average
background B in the counter used to determine activity in the processed
sample is obtained from several individual measurements in the standard
time t. Gross activityG in the sample is based on a singlemeasurement for the
same time t. Daily urinary excretionQ (Bq d�1) of the radioisotope is estimated
from the analytical result according to the expression

Q ¼ R
f
;

where R¼G�B is the net activity in the sample. The conversion factor f
includes a chemical recovery factor, counter efficiency, sample volume, and
daily urinary excretion rate. Values and associated standard errors for the
quantities described above are

f ¼ 0:3041� 0:0742 d;
G ¼ 244 s�1:

Individual background measurements (s�1)

175 169
178 182
170 185
160 182

a) What is the average background and its standard error?
b) Determine the best estimate of Q and its standard error.

8.19 Californium-252 decays both by alpha emission (96.91%of transitions) and by
spontaneous fission (3.09%). A 252Cf source has a total neutron emission rate
of 7.63	 109 s�1, with a standard error of 1.5%. Answer the questions below,
giving the value requested and its standard error.
a) What is the neutronfluence rate (cm�2 s�1) from this source at a distance of

50.0� 0.3 cm?
b) The half-life of 252Cf is 2.645� 0.212 y.What is the neutron fluence (cm�2)

in 30 d from the source under the conditions in part (a)? (Take into account
the decrease in the activity of the source during this time.)

8.20 The specific activity A of radium in soil was determined by measuring the
activity of a sample with a well counter and applying the relationship

A ¼ G� B
met

:
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Here,

G ¼ number of gross counts with sample ¼ 15 000;
B ¼ number of background counts ¼ 350� 15;
m ¼ mass of soil ¼ 150� 1 g;
e ¼ counter efficiency ¼ 0:250� 0:005;
t ¼ count time ¼ 4 h ðexactlyÞ:

Assume that fluctuations in G are due solely to the random nature of
radioactive decay. Find
a) the specific activity of the sample in Bq g�1 and
b) its standard error.

8.21 Verify Eq. (8.52).
8.22 The fraction of monoenergetic, normally incident photons that traverse a

uniform shield of thickness xwithout collision is given by e�mx, where m is the
linear attenuation coefficient for the shield material (cf. Cember, 1996, pp.
134–138; Turner, 2007, pp. 187–190). In a certain experiment, m¼ 0.90 cm�1

and x¼ 2.0 cm.
a) If the shield thickness is increased by 5%, differentiate and use the linear

approximation with dx/x¼ 0.05 to determine how much the fraction of
uncollided photons will change.

b) Use the exact exponential function to answer (a).
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9
Measuring Radioactivity

9.1
Introduction

Analyzing samples for radioactive content plays an important role in health
physics. Procedures are needed to determine whether an unknown sample should
be treated as �radioactive� and, if so, how much activity is present. In the simplest
procedure, twomeasurements can bemade and compared: (1) a background count
with a blank in place of a sample and (2) a gross count of the sample plus
background. The difference between the two observed count rates, called the net
count rate, can be used to infer the possible presence of radioactivity in the sample
itself. Because of statistical fluctuations in both the number of counts due to
background and the possible number of disintegrations in a source, such proce-
dures often do not yield a simple �yes� or �no� answer to the question of whether
radioactive material is present. In principle, the level of activity, if any, can be
described only in statistical terms. That is to say, measurements indicate only
that the activity of a sample probably lies in a specified range with a certain degree
of confidence.

In this chapter, we develop some concepts and descriptions that apply to the
counting and characterization of samples for radioactivity. Formal protocols and
criteria that provide decision tools for judging activity are given in the next chapter.

We first treat long-lived radionuclide sources, having negligible change in
activity over the time of observation. Short-lived sources will be dealt with in
Section 9.6. It is assumed that background radiation does not change and that it is
characterized by a Poisson distribution of counts Nb in a fixed measurement
time tb. The number of gross counts Ng obtained in a given time tg will also be
treated as Poisson distributed. Both random variables are also assumed to be
approximated well by normal distributions, having means mb and mg, respectively,
and standard deviations

ffiffiffiffiffi
mb

p
and ffiffiffiffiffi

mg
p . Time intervals are determined with

negligible error compared with random fluctuations in the count numbers.

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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9.2
Normal Approximation to the Poisson Distribution

Section 6.5 described how the normal distribution can be used to approximate the
exact binomial distribution for radioactive decay when n is large (Eq. (6.45)). That the
normal distribution can also be used to approximate the Poisson for long counting
times (provided the change in activity is negligible) can be seen in the following way.
LetX represent thenumber of counts observed in time t. Since this randomvariable is
Poisson distributed, we write X�P(lt), where the rate parameter l is counts per unit
time.With l expressed in s�1, for example, we can think ofX as the sumof the counts
Yi in each of the i¼ 1, 2, . . ., t seconds of the observation. The observed count rate over
time t can then be expressed as

X
t
¼ 1

t

Xt
i¼1

Yi; ð9:1Þ

where the right-hand side represents the average number of counts per second. We
recall from the central limit theorem (Eq. (6.36)) that averages tend to have normal
distributions. Thus,

X � PðltÞ
_
_�Nðlt;

ffiffiffiffi
lt

p
Þ ð9:2Þ

tends asymptotically with large lt toward the normal distribution with mean lt and
standard deviation

ffiffiffiffi
lt

p
. The normal approximation to the Poisson distribution can be

generally used when lt� 10.

9.3
Assessment of Sample Activity by Counting

It is important to distinguish between the number of counts and an associated count
rate. To this end, we shall begin the subscript of a symbol for a random variable that
represents a ratewith the letter, lowercase �r�. Thus, withNg counts obtained in time
tg, the gross count rate is given by Rrg¼Ng/tg. Similarly, for the background rate
measurement, Rrb¼Nb/tb.

Operationally, a �measurement� of activity in a sample begins with the observation
of the numbers of gross and background counts, with and without the sample
present, made under a specified set of standard conditions. The difference, or net
valueRrn¼Rrg�Rrb, of the resulting count rates is assumed to be proportional to the
sample activity A. Thus,

A ¼ cRrn ¼ cðRrg � RrbÞ ¼ c
Ng

tg
� Nb

tb

� �
: ð9:3Þ

The constant of proportionality c is determined numerically by calibration of the
instrument. It can depend on sample preparation, self-absorption in the sample, and
other factors. In the present discussion, c in Eq. (9.3) can be considered as the

216j 9 Measuring Radioactivity



reciprocal of the counter efficiency, e¼Rrn/A, which relates thenet count rate (counts
per unit time, cps) and the sample activity (disintegrations per unit time, dps). More
generally, the calibration constant c can be evaluated to yield other quantities, such as
activity concentration, based on count rates or count numbers. Under the assump-
tions given in Section 9.1, the means of the gross and background count rates in
Eq. (9.3) are, respectively, mrg¼mg/tg and mrb¼mb/tb. The standard deviations of the
two rates are

srg ¼
ffiffiffiffiffi
mg

p
tg

and srb ¼
ffiffiffiffiffi
mb

p
tb

: ð9:4Þ

The difference of the two functions Rrg and Rrb in Eq. (9.3) forms a distribution
that describes the net count rate Rrn and the corresponding activity Awhen repeated
measurements are taken. ThemeansmA of the activity andmrn of the net count rate are
given by

mA ¼ cmrn ¼ cðmrg � mrbÞ: ð9:5Þ
By the central limit theorem (Section 6.4),Awill be normally distributed about the

true activitymA, which is the object of themeasurements. If no activity is present, then
the distribution is centered about the value mA¼ 0.

In the terminology of Section 7.3, the two sample values ng and nb forNg andNb in
times tg and tb can be used to estimate the sample activity. We write for the two count
rates

m̂rg ¼
ng
tg

and m̂rb ¼
nb
tb
: ð9:6Þ

From Eq. (9.5) the estimate for the mean activity is

m̂A ¼ cm̂rn ¼ cðm̂rg � m̂rbÞ ¼ c
ng
tg

� nb
tb

� �
: ð9:7Þ

9.4
Assessment of Uncertainty in Activity

The uncertainty associated with the determination of the activity can be expressed in
terms of the standard deviation of the distribution for A in Eq. (9.3). The variance s2

rn

of the net rate Rrn in Eq. (9.3) is obtained (exactly) from Eqs. (8.12) and (8.13) for the
linear combination (difference) of the two independent random variables. It follows
that

s2
rn ¼ s2

rg þ s2
rb ¼

mg

t2g
þ mb

t2b
: ð9:8Þ

Since mrg¼mg/tg and mrb¼mb/tb, we arrive at the alternative forms for the standard
deviation of the net count rate,

srn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mg

t2g
þ mb

t2b

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mrg

tg
þ mrb

tb

s
: ð9:9Þ
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As before, one can use the sample count numbers and rates as estimators for the
indicated quantities. The estimates of the standard deviations are (Problem 9.7)

ŝrn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ng
t2g

þ nb
t2b

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂rg

tg
þ m̂rb

tb

s
ð9:10Þ

and

ŝA ¼ cŝrn ð9:11Þ
(see Problem 9.8). Either of the alternative forms in Eq. (9.10) can be used for the net
rate standard deviation. One sees, incidentally, from the last equality in Eq. (9.10) that
the standard deviation of an individual count rate decreases as the square root of the
counting time.

& Example
Measurement with a long-lived radioactive source gives 123 gross counts in
1min.

a) Estimate the mean gross count rate and its standard deviation.
b) Based on this measurement, how long would the sample have to be

counted in order to obtain the gross count rate to a precision of�5% with
95% confidence?

Solution
a) With ng¼ 123 in the time tg¼ 1min, the estimated mean gross count rate

is, from Eq. (9.6), m̂rg ¼ 123/(1min)¼ 123min�1. From Eq. (9.4), the
estimated standard deviation of the gross count rate is

ŝrg ¼
ffiffiffiffiffi
ng

p
tg

¼
ffiffiffiffiffiffiffiffi
123

p

1min
¼ 11:1min�1: ð9:12Þ

b) Weuse a confidence interval as described by (7.14)with n¼ 1 for the single
measurement. For 95% confidence, a¼ 0.050. The symmetric limits that
leave this amount of area outside their boundaries in the tails of the
standard normal distribution are z0.025¼ 1.96 (Table 6.1 or A.3). With
the use of the sample values, the required condition is 0:05m̂rg ¼ 1:96ŝrg.
The new counting time is found from the relation

0:05� 123min�1 ¼ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
123min�1

tg

s
; ð9:13Þ

giving tg¼ 12.5min for the estimated time needed. One can also solve this
part of the example by first estimating the number of counts ng that would be
needed. For the count number one writes in place of Eq. (9.13)

0:05ng ¼ 1:96
ffiffiffiffiffi
ng

p
; ð9:14Þ
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where
ffiffiffiffiffi
ng

p
is the estimated standard deviation of the count number.

Solution gives ng¼ 1.54� 103, and so the counting time is

tg ¼ ng
m̂rg

¼ 1:54� 103

123min�1 ¼ 12:5min: ð9:15Þ

It is important to emphasize that the statistical precision of the count rate is
governed solely by the number of counts that are observed, andnot by themagnitude of
the rate itself. A larger number of counts increases confidence in the result obtained
for the count rate.

This example can also be treated in a probabilistic context, as we show next.

& Example
In the last example, solve part (b) by specifying that there is a 0.95 probability
that the estimated gross count rate will be within �5% of the mean.

Solution
Using the estimated mean gross rate m̂rg ¼ 123min�1, we want to find the
time tg such that

Pr
Ng

tg
� mrg

����
���� � 0:05mrg

� �
¼ 0:95: ð9:16Þ

Multiplying both sides of the inequality by tg=
ffiffiffiffiffiffiffiffiffiffi
mrgtg

p
inside the parentheses,

we may write

Pr
jNg � mrgtgjffiffiffiffiffiffiffiffiffiffi

mrgtg
p � 0:05mrgtgffiffiffiffiffiffiffiffiffiffi

mrgtg
p

 !
¼ 0:95: ð9:17Þ

The term on the left-hand side of the inequality in the parentheses has the
form of the standard normal variableZ, sinceNg hasmean mrg tg and standard
deviation

ffiffiffiffiffiffiffiffiffiffi
mrgtg

p
. Therefore, the term on the right-hand side of the inequality

has the value z0.025¼ 1.96, corresponding to a probability of 0.95, as reflected
on the right-hand side of Eq. (9.17). With the estimate m̂rg ¼ 123min�1 from
the last example, we obtain

0:05m̂rgtgffiffiffiffiffiffiffiffiffiffi
m̂rgtg

q ¼ 0:05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
123min�1tg

q
¼ 1:96; ð9:18Þ

giving tg¼ 12.5min, as before.

& Example
At a certain facility, a 60-min background reading gives 4638 counts. Mea-
surement with a sample yields 3217 counts in 15min. The counter efficiency
is 18%.
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a) Estimate the mean net count rate and its standard deviation.
b) Estimate the activity of the sample and its standard deviation.
c) How might one express numerically this measurement of activity and its

associated uncertainty?

Solution
a) Using the given data, we write for the estimated gross and background

mean count rates

m̂rg ¼
ng
tg

¼ 3217
15min

¼ 214 cpm ð9:19Þ

and

m̂rb ¼
nb
tb

¼ 4638
60min

¼ 77:3 cpm: ð9:20Þ

The estimated mean net count rate is, therefore,

m̂rn ¼ m̂rg � m̂rb ¼ 214� 77:3 ¼ 137 cpm: ð9:21Þ

Using the first equality in Eq. (9.10),1) we find for the estimated standard
deviation of the net count rate

ŝrn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3217

ð15minÞ2 þ 4638

ð60minÞ2
s

¼ 3:95 cpm: ð9:22Þ

b) With c¼ 1/0.18, we find for the estimated activity

m̂A ¼ cm̂rn ¼ 137min�1

0:18
¼ 761 dpm ¼ 12:7 dps ¼ 12:7 Bq: ð9:23Þ

The estimated standard deviation is

ŝA ¼ cŝrn ¼ 3:95min�1

0:18
¼ 21:9 dpm ¼ 0:366 Bq: ð9:24Þ

c) There are various ways to express the result. Using the standard error (one
standard deviation of the estimate) as a measure of the precision of the
result, one could report the estimated activity as m̂A ¼ 12.7� 0.4 Bq, with
an implied confidence level of 68% (Section 7.5). Alternatively, using the
probable error, 0.675ŝA ¼ 0.675� 0.366¼ 0.2 Bq, one could report the
activity as 12.7� 0.2 Bq, at a confidence level of 50%. At the 95% confi-
dence level (�1.96ŝA), the activity could be reported as 12.7� 0.7 Bq.
Specification of a higher confidence level is accompanied by a larger
interval of uncertainty.

1) Use of the first, rather than second, equality in Eq. (9.10) is slightly preferable here to the extent that it
depends directly on the information as given. The second equality involves calculated rates.
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& Example

a) With only the single background measurement in the last example, how
long would the sample have to be counted in order to obtain the activity to
within �5% of its expected value with 95% confidence?

b) Repeat part (a) for a precision of �3% with 95% confidence.
c) Without remeasuring background, what is the greatest precision that one

could obtain for the activity itself at the 95% confidence level?

Solution
a) Our estimate of the mean net count rate from Eq. (9.21) is m̂rn ¼ 137

min�1. For the normal distribution, 95% confidence corresponds to the
interval �1.96 standard deviations centered about the mean. For this
interval to span �5% about the estimated mean requires that

0:05m̂rn ¼ 1:96ŝrn: ð9:25Þ
Employing the second equality fromEq. (9.10), letting tg represent the new
gross counting time inminutes, and inserting the other numerical values,
we write in place of Eq. (9.25),

0:05� 137 ¼ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
214
tg

þ 77:3
60

s
: ð9:26Þ

The solution is tg¼ 19.6min.
b) The 95% confidence interval corresponds to �1.96 standard deviations

centered about the mean. In place of Eq. (9.26) we have, for a precision
of �3%,

0:03� 137 ¼ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
214
tg

þ 77:3
60

s
; ð9:27Þ

giving the time tg¼ 68.8min.
c) Given the single background measurement that was made, greater pre-

cision in the net count rate and activity can be obtained by increasing the
gross counting time. The limiting precision is found by letting tg ! 1. If
P represents the limiting precision in place of 0.03 on the left-hand side of
Eq. (9.27), that is, P � 137 ¼ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið214=tgÞþ ð77:3=60Þp
, then when

tg ! 1, we have for the 95% confidence level (1.96 standard deviations),

lim
tg !1P ¼ lim

tg !1
1:96
137

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
214
tg

þ 77:3
60

s
¼ 1:96

137

ffiffiffiffiffiffiffiffiffi
77:3
60

r
¼ 0:016: ð9:28Þ

Since our estimate of the activity from part (b) of the last example is m̂A ¼ 12.7 Bq,
the greatest precision obtainable forA at the 95% confidence level without additional
background counting is 0.016� 12.7¼ 0.203 Bq. In essence, letting tg become very
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large in Eq. (9.27) reduces the variance of the gross count rate until it is negligible
compared with the variance for background. Apart from any uncertainty in the value
of the counter efficiency, the precision in themeasured activity is then limited only by
the relative magnitude of the random fluctuations in the number of background
counts during itsmeasurement.We also see the law of diminishing returns, in that as
we reduce P we increase tg, and we see that going from a P¼ 0.05 to a P¼ 0.03 costs
an additional 49.2min of counting time. Decreasing P even further requires an even
longer counting time. So the question is how much precision is necessary? One can
look at the interplay between P and tg and pick the pair that gives us the best precision
for the cost (in time) that we can afford.

9.5
Optimum Partitioning of Counting Times

One can see from Eq. (9.9) how the standard deviation of the net count rate changes
when the gross and background counting times are changed. It is sometimes
important to know just how to partition a fixed total counting time, tt¼ tg þ tb,
between tg and tb in such a way that the standard deviation of the net rate has its
smallest possible value. To this end, we can express the second equality in Eq. (9.9) as
a function of either time variable alone, tg or tb, and then minimize snr by
differentiation. It is simpler, moreover, to apply this procedure to the variance,
rather than the standard deviation, thus avoiding differentiation of the square root
function. Substituting tb¼ tt� tg in Eq. (9.9), we write for minimization of the
variance

ds2
rn

dtg
¼ d

dtg

mrg

tg
þ mrb

tt � tg

� �
¼ 0; ð9:29Þ

or

� mrg

t2g
þ mrb

ðtt � tgÞ2
¼ 0: ð9:30Þ

Replacing tt� tg by tb then gives

mrg

t2g
¼ mrb

t2b
; ð9:31Þ

so that

tg
tb
¼

ffiffiffiffiffiffi
mrg

mrb

s
: ð9:32Þ

When the gross and background counting times are in the same ratio as the
square roots of the two respective rates, then the standard deviation of the net count
rate has its smallest possible value for the total counting time.
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& Example
In the next-to-last example, a total counting time of 75min was partitioned as
tb¼ 60min and tg¼ 15min. The standard deviation of the net count rate was
estimated to be 3.95 cpm.

a) What values of tb and tg, totaling 75min, would minimize the standard
deviation of the net count rate?

b) What is the estimated minimum value?

Solution
a) From Eq. (9.32) with the estimates m̂rg and m̂rb given by Eqs. (9.19)

and (9.20), one finds

tg ¼ tb

ffiffiffiffiffiffiffiffiffi
214
77:3

r
¼ 1:66tb: ð9:33Þ

Since tg þ tb¼ 75min, we have

tg ¼ 1:66ð75� tgÞ; ð9:34Þ

giving tg¼ 46.8min. It follows that tb¼ 28.2min.
b) Substitution of these two times into the second equality in Eq. (9.10) gives

min ŝrn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
214min�1

46:8min
þ 77:3min�1

28:2min

s
¼ 2:70 cpm; ð9:35Þ

as compared with 3.95 cpm found before (Eq. (9.22)) for the same total
counting time.

One can use Eqs. (9.32) and (9.9) to show that the minimum standard deviation of
the net count rate is, in general, given by (Problem 9.22)

min srn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mrg þ mrb þ 2 ffiffiffiffiffiffiffiffiffiffiffiffi

mrgmrb
p

tg þ tb

s
: ð9:36Þ

9.6
Short-Lived Radionuclides

The discussions thus far in this chapter have been based on the use of Poisson and
normal statistics to describe radioactive decay. The specific underlyingmathematical
assumptions are stated in Section 9.1. When the time t for counting a pure
radionuclide source with decay constant l is very short compared with the mean
life (¼1/l), then lt� 1. The probability p for a given atom to decay in time t is then
very small, and the distribution of the number of disintegrations during t is
nearly Poisson. When the counting time is not short compared with the mean
life, the condition lt� 1 does not hold. One must then revert to the binomial
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distribution, which describes radioactive decay exactly (Chapter 2). We show
next how the binomial distribution is compatible with the formalism employed
thus far in this chapter when lt� 1. We then examine the consequences when lt is
not small.

The expected number of atoms that decay in time t from a pure radionuclide
source, containing n atoms at time t¼ 0, is seen from Eq. (2.22) to be, exactly,

m ¼ np ¼ nð1� e�ltÞ: ð9:37Þ
When lt� 1, the exponential term is approximated well by a Taylor�s series with

only the lowest-order term retained: e�ltffi 1� lt. Equation (9.37) then gives

m ffi nlt: ð9:38Þ
The mean, or expected value, of the disintegration rate, or activity A, is

mA ¼ m

t
ffi nl; ð9:39Þ

as we have seen before (e.g., Eq. (2.3)). The standard deviation for the binomial
distribution is (Eq. (5.15))

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m e�lt

q
: ð9:40Þ

For very small lt, the exponential term is close to unity, and so

s ffi ffiffiffi
m

p
: ð9:41Þ

This important approximation from the binomial distribution when lt� 1 is exactly
true for the Poisson distribution. It enables a single measurement to provide
estimates of both the expected value of the count number and its standard deviation,
as utilized in the earlier sections of this chapter.

When lt is large, Eqs. (9.39) and (9.41), which do not depend on the time, are no
longer valid approximations for radioactive decay. On the other hand, Eqs. (9.37)
and (9.40) for the binomial distribution describe the decay exactly. They apply over
any time period.

& Example

a) Show that the expected value of the number of disintegrations of a pure
radionuclide in a time period equal to the half-life, t¼T1/2¼ (ln 2)/l, is
n/2, where n is the number of atoms initially present.

b) What is the standard deviation of this number?
c) How does this standard deviation compare with the Poisson value?Which

should be larger? Why?

Solution
a) The expected value of the number of disintegrations is given exactly by

Eq. (9.37) for all times t. For the specified time t¼ (ln 2)/l, we have
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e�lt¼ e�(ln 2)¼ 1/eln 2¼ 1/2. Equation (9.37) gives

m ¼ n 1� 1
2

� �
¼ 1

2
n: ð9:42Þ

The expected number of disintegrations in one half-life is, of course, one-
half the original number n of atoms.

b) For the standard deviation, Eq. (9.40) gives

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
n� 1

2

r
¼ 1

2

ffiffiffi
n

p
: ð9:43Þ

c) The Poisson distribution with parameter m would give for the standard
deviation sP¼ ffiffiffi

m
p ¼ ffiffiffiffiffiffiffiffi

n=2
p ¼ s

ffiffiffi
2

p
. Thus, s P is larger than the binomial

value s by the factor
ffiffiffi
2

p ¼ 1.414. The larger standard deviation for the
Poisson approximation can be understood in the following way. The
number of disintegrations represented by the binomial function spans
thefinite closed interval [0, n]. The Poissondistribution, on the other hand,
has a broader spread, spanning the infinite interval [0, 1].

An interesting situation occurs when the observation time is so long that the
original nuclide decays completely away. We assume that the background is zero.
When lt ! 1, the exact Eqs. (9.37) and (9.40) give, respectively, m¼ n and s¼ 0. In
this case, the expected number of disintegrations is thus equal to the original number
of atoms, and the standard deviation of this number is zero. If the experiment is
repeated, the result will always be the same: exactly n atoms decay.

If the counter efficiency e is less than unity, then the expected number of counts
registered from a source that decays completely away in time t will generally be less
than the number of disintegrations. Repetition of the experiment will result in a
distribution of values for the count number. Not registering every atom that
disintegrates introduces uncertainty in the knowledge of the number initially
present. A given atom might not decay, or it might decay and escape detection
when e< 1. Since the decay probability for a given atom in time t is p¼ 1� e�lt, the
probability that a given atom decays and is detected, thus registering a count, is

p	 ¼ eð1� e�ltÞ: ð9:44Þ
The probability for not registering a count when a given atom decays is, then,

q	 ¼ 1� p	 ¼ 1� eþ e e�lt: ð9:45Þ
The expected number of counts during any time t is thus

m	 ¼ np	 ¼ enð1� e�ltÞ: ð9:46Þ
For the standard deviation of the count number, one has

s	 ¼ ffiffiffiffiffiffiffiffiffiffiffi
np	q	

p ¼ ffiffiffiffiffiffiffiffiffi
m	q	

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
neð1� e�ltÞð1� eþ e e�ltÞ

q
: ð9:47Þ
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Both Eqs. (9.46) and (9.47) are exact. If a sample decays completely away
(lt ! 1), then the expected number of counts (9.46) is

m	 ¼ en ð9:48Þ
and the standard deviation (9.47) is

s	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
neð1� eÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m	ð1� eÞ

p
: ð9:49Þ

The standard deviation of the number of atoms initially present, from Eqs. (9.48)
and (4.101), is s	/e.

& Example
A short-lived radionuclide source gives 3 212 675 counts before dying away
completely. Background is zero. Determine the number of atoms initially
present in the sample and the standard deviation of this number if the counter
efficiency e is (a) 1.00 or (b) 0.24.

Solution
a) If e¼ 1.00, then there were exactly m¼ 3 212 675 atoms present initially,

and the standard deviation is s¼ 0.
b) From the single measurement, the best estimate m̂	 for m	 in Eq. (9.48) is

the observed number of counts. The estimated number of atoms originally
present is

m̂	

e
¼ 3 212 675

0:24
¼ 13 386 146: ð9:50Þ

From Eq. (9.49), the estimated standard deviation of the number of
counts is

ŝ	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂	ð1� eÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 212 675ð1� 0:24Þ

p
¼ 1563: ð9:51Þ

The estimated standard deviation of the number of atoms initially present
is ŝ	/e¼ 1563/0.24¼ 6513.

Problems

9.1 A source gives 385 gross counts in 5min.
a) Estimate the standard deviation of the gross count rate.
b) Estimate howmuch longer the samplewould have to be counted in order to

reduce the standard deviation of the gross count rate by a factor of 10.
9.2 How longwould the source in the last problemhave to be counted to obtain the

gross count rate to a precision of �2% with 90% confidence?
9.3 How many counts are needed to obtain a coefficient of variation of 1%?
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9.4 For a certain radioisotope, having a half-life of 4.12 d, the expected number of
disintegrations in 1 wk is 58.8.
a) How many atoms of the radioisotope are initially present?
b) What is the standard deviation of the number of disintegrations in 1 wk?
c) What is the standard deviation for 2 d?

9.5 a) In the last problem, at what time does the maximum value of the standard
deviation of the number of disintegrations occur?

b) What is the maximum value of the standard deviation?
c) Make a sketch of the standard deviation of the number of disintegrations as

a function of the time.
9.6 The number of decays in any time period from a radioactive source is an

integral number. Justify the fact that the expected number of 58.8 disintegra-
tions in 1 wk in the last two problems is not an integer.

9.7 Verify Eqs. 9.8–9.11.
9.8 While perhaps �obvious,� show that sA¼csrn and hence Eq. (9.11) follow

from the relation A¼ cRrn.
(Hint: Use propagation of error Eq. (8.17) for a product.)

9.9 Measurements of 10min each give gross and background count rates,
respectively, of 72 and 54 cpm, for a net count rate of 18 cpm. What are the
standard deviations of the following count rates:
a) gross?
b) background?
c) net?

9.10 The true count rate of a long-lived source is 12.0 s�1.
a) What is the standard deviation of the number of counts for a 1-min

measurement?
b) The sample is counted for 3min.What is the probability that themeasured

count rate will be within �5% of the true count rate?
9.11 A long-lived source is reported to have a count rate of 127 cpm.

a) Technician A obtains 140 counts in 1min, implying a count rate of
140 cpm. What is the probability that such a measurement would differ
from the expected value by no more than �13 cpm, if the true rate is
127 cpm? Does A�s measurement tend to confirm the reported count rate?

b) Technician B makes a 30-min measurement and obtains 4180 counts,
giving him a measured rate of 139 cpm, close to that of A. Does B�s
measurement tend to confirm the reported count rate? Give a quantitative
argument to support your conclusion.

c) Give your estimate of the true count rate and its uncertainty with some
specified confidence level.

9.12 A source registers 1050 counts in 10min. A 1-h measurement with a blank
yields 4800 background counts.
a) What are the net count rate and its standard deviation?
b) If the counter efficiency is 40%, estimate the activity of the sample and its

standard deviation?
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9.13 If the efficiency (40%) of the counter in the last problem is known with a
precision of only �1%, what is the precision of the standard deviation in the
determination of the sample activity?

9.14 In Problem 9.12, estimate the probability that a second measurement would
give 1100 or more gross counts in 10min.

9.15 Without remeasuring the background in Problem 9.12, how long would one
have to count the source in order to determine the activity towithin�10%with
a confidence of 90%?

9.16 Of two available counters, the one with the better precision for determining
net count rate is to be chosen for making a long-term measurement with a
certain source. In 15-min runs with the source present, a NaI detector gives
3277 counts and an HPGe detector gives 1213 counts. In 30-min measure-
ments of background, the NaI and HPGe instruments give, respectively, 952
and 89 counts. Calculate the coefficient of variation for the net count rate for
the
a) NaI detector.
b) HPGe detector.
c) Based on these data, which counter would you choose?

9.17 With the HPGe detector in the last problem, 1213 gross counts were obtained
in 15min and 89 background counts in 30min. Newmeasurements are to be
made with this detector, keeping the relative background and gross counting
times in the ratio 2 : 1, as before.
a) Howmuch total counting time is needed to determine the net count rate to

within �5% with 95% confidence?
b) What is the standard deviation for the new measurement of the net count

rate?
9.18 a) What would be the optimum division of the total counting time in the last

problem in order to minimize the standard deviation for the new mea-
surement of the net count rate?

b) What is the value of the minimum standard deviation?
9.19 The gross count rate with a sample is observed to be 73 cpm in a counter that

has a background rate of 58 cpm. What is the optimum division of a total
counting time of 1 h for gross and background counts in order to obtain the
minimum standard deviation of the net rate?

9.20 Abackgroundmeasurement yields 4442 counts in 1 hwith a certain counter. A
long-lived sample is then placed in the counter, and 1888 counts are registered
in 10min.
a) What is the net count rate and its standard deviation?
b) What is the minimum value of the standard deviation of the net count rate

obtainable for the total counting time of 1 h þ 10min?
c) Without redoing the background measurement, how long would the

sample have to be counted to obtain the net count rate to within �3%
of its true value with 95% confidence?

9.21 A long-lived radionuclide gives 714 counts in 5min. A 10-min background
reading yields 1270 counts. The counter has an efficiency of 45%.
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a) What is the standard deviation of the source activity in Bq?
b) How should a total counting time of 2 h be divided between gross and

background counting in order to minimize the standard deviation of the
measured activity?

9.22 Derive Eq. (9.36).
9.23 a) What is the expected value of the fraction of the atoms that decay in a pure

radionuclide source in 2.7 half-lives?
b) What is the standard deviation of this fraction?

9.24 A short-lived radioactive source produces 121 497 counts before decaying away
completely. The counter efficiency is 18%.
a) Estimate the initial number of atoms of the radionuclide in the source.
b) Calculate the standard deviation of the initial number.
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10
Statistical Performance Measures

10.1
Statistical Decisions

Chapter 7 treated random sampling, the estimation of population parameters,
estimator properties, and associated confidence intervals. We focus now on a
different, but related, aspect of statistical inference. In practice, one is frequently
called upon to use sample data to reach a specific conclusion about a population
characteristic or parameter. Is the uncertainty in results from two different gas
proportional counters the same? Will no more than 1% of dosimeters fabricated
by a particular process fail acceptance testing? Is the uncertainty in results from a
liquid scintillation counter adequately described by the statistics of radioactive decay
alone? Such questions can be approached by first forming an answer as a hypothesis,
or conjecture, and then using data from random sampling as evidence to either
support or not support the hypothesis.

10.2
Screening Samples for Radioactivity

A procedure to routinely screen samples for radioactivity affords an example of
applying statistical inference. The number of net counts from a sample, determined
under standard conditions as the difference between observed gross and background
counts, is comparedwith a preset critical value, LC. If the observed net value is equal to
or greater than LC, then the decision is made that radioactivity is present in the
specimen. Otherwise, the sample is considered as having �no significant activity.�
Calibration provides the relationship between LC and the corresponding activity AI,
which is called the minimum significant measured activity. Operationally, AI is the
smallest measured value that is interpreted as meaning that activity is present in a
sample.

We shall assume that all measured counts are Poisson distributed. Unless
otherwise stated, we also assume that count numbers are sufficiently large to be

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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adequately represented by normal distributions with mean and variance equal to the
expected number of counts.

& Example
A protocol is being assessed to screen for sample activity. It specifies taking a
gross count, Ng, for 2min and a background count, Nb, for 10min. The
detector efficiency has been determined to be c¼ 1.74 disintegrations per
count. A selected sample registers ng¼ 64 gross counts in time tg¼ 2min,
compared with nb¼ 288 background counts in time tb¼ 10min.

a) Estimate the expected value of the net count rate and its standard deviation.
b) What is the implied sample activity?
c) What is the probability that a sample with zero true activity (AT¼ 0) would

give an activity measurement exceeding that found in (b)? Is the mea-
surement in (b) consistent with AT¼ 0 for this sample?

d) Assume that AT¼ 0. What is the smallest net rate value, rrnc, over a 2-min
period that would be exceeded with a probability no greater than a¼ 0.05?
(As in Chapter 9 and elsewhere, the leading subscript �r� is used when a
quantity describes a rate.)

e) Using this value of rrnc as the critical value, what would be the minimum
significant measured activity for the protocol?

Solution
a) From the relations (9.7), the estimate of the mean net count rate based on

the sample values is, with time in minutes,

rrn ¼ ng
tg
� nb

tb
¼ 64

2
� 288

10
¼ 3:20 cpm: ð10:1Þ

The estimated standard deviation of the net count rate is, from Eq. (9.10),

srn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ng
t2g

þ nb
t2b

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64
4

þ 288
100

r
¼ 5:91 cpm: ð10:2Þ

b) Multiplying the net count rate by the counter efficiency implies a mea-
sured activity of A¼ rrnc¼ (1.74)(3.20min�1)/(60 smin�1)¼ 0.0928 s�1

¼ 0.0928Bq.
c) With assumed zero activity, the variable Z¼Rrn/srn is approximately

distributed as the standard normal distribution. By what amount is the
observed value of rrn¼ 3.20 cpm greater than zero, our assumed value?
To check this, we can calculate the probability that we would observe
Rrn� 3.20 given that mrn¼ 0. Using the normal approximation and
standardizing, we have Pr(Rrn/srn� 3.20/srn)¼Pr(Z� 3.20/5.91) ¼
Pr(Z� 0.542)¼ 0.294 (Table A.3). Therefore, the probability is 0.294 that
a sample with zero activity would show a count rate greater than or equal to
the observed 3.20 cpm in (a). This result is consistent with the true sample
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activity being zero, in which case the observed net rate rrn¼ 3.20 is due
solely to random fluctuations of the background.

d) With AT¼ 0, the value za¼ z0.05¼ 1.645 leaves the area 0.05 to its right
under the standard normal curve approximating the standardized net rate
distribution. That is, Pr(R> rrnc)¼Pr(Z> rrnc/srn)¼ 0.05 implies that
rrnc/srn¼ 1.645, or rrnc¼ 1.645srn. Now rrnc and srn are not independent
since rrnc¼ rrg� rrb and srn is a function of rrg and rrb. Since rrnc¼ rrg� rrb,
we can substitute rrg¼ rrnc þ rrb in Eq. (9.10) for srn. Therefore,

rrnc ¼ za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rrnc þ rrb

tg
þ rrb

tb

s
¼ 1:645

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rrnc þ 28:8

2
þ 28:8

10

r
: ð10:3Þ

The resulting quadratic equation, r2rnc�1:36rrnc�47:0 ¼ 0, has the solution
rrnc¼ 7.57 cpm (Problem 10.1). The required number of counts in 2min
would be 7.57� 2¼ 15.1. However, the actual count number has to be an
integer– in this case, either 15 or 16.With 15, the probability would exceed
0.05, and so the answer is 16 net counts.

e) The minimum significant measured activity corresponding to the critical
value LC¼ 16 net counts in 2min is AI¼ LCc¼ (16)(1.74 Bq)/(2min)
(60 smin�1)¼ 0.232 s�1¼ 0.232Bq.

10.3
Minimum Significant Measured Activity

This section discusses the significance and implications of using the minimum
significant measured activity as a decision tool. As seen from Eq. (10.3), the net rate
rrnc depends on the background rate, the gross and background counting times, and
the value of za. The latter, which is selected to fix LC at the desired level, determines
the probability that the measured activity of a sample will be larger than AI when the
truemean activityAT¼ 0 (see Figure 10.1).When this happens, thewrong conclusion
that the truemean activityAT> 0 is unknowingly reached. The resulting false positive
is referred to as a type I error. The value ofa represents an �acceptable� type I error rate
that is chosen as one element of a screening protocol. This error means that we are
declaring a sample as having activity when it does not. This might trigger compen-
satory responses unnecessarily, costing money and time. Thus, type I errors can be
expensive to a laboratory in terms of false alarms and consequent actions that have to
be taken. Errors will be discussed more fully as we proceed.

One canwork out the explicit dependence ofAI on the various factorsmentioned in
order to gain further insight into the decision level. Starting with the first equality in
Eq. (10.3) and solving for rrnc, one finds (Problem 10.2)

rrnc ¼ z2a
2tg

þ za
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2a
t2g

þ 4rrb
tg þ tb
tgtb

� �s
: ð10:4Þ
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When the gross and background counting times are the same, this general
expression reduces to a simpler form.With tg¼ tb¼ t, the critical net count becomes
(Problem 10.4)

LC ¼ rrnct ¼ za
ffiffiffiffiffiffiffi
2nb

p zaffiffiffiffiffiffiffi
8nb

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2a

8nb

s !
ðequal counting timesÞ: ð10:5Þ

The detector efficiency c relates LC to the minimum significant measured activity,

AI ¼ cLC
t

: ð10:6Þ

If, in addition, the number of background counts is large, so that za=
ffiffiffiffiffi
nb

p � 1,
Eq. (10.5) reduces to

LC ffi za
ffiffiffiffiffiffiffi
2nb

p
ðequal times and za=

ffiffiffiffiffi
nb

p � 1Þ: ð10:7Þ

Inmany instances, the background is stable. The number B of background counts
over an extended time can then be determined with greater precision than that
obtained from a single measurement of Ng over the prescribed time tg. With zero
activity (A¼ 0), the standard deviation of the number of net counts is simply

ffiffiffiffi
B

p
. It

follows that the minimum significant net count difference is

LC ffi za
ffiffiffi
B

p
ðbackground stable and well knownÞ: ð10:8Þ

Comparisonwith Eq. (10.7) shows that theminimumsignificantmeasured activity
is lower by approximately a factor of

ffiffiffi
2

p
when the background is stable and well

known.

α

AI

f (A)

0

Measured Activity,  A

True
Activity
AT = 0

Figure 10.1 Probability density function f(A) for measured activity when true activity is zero. The
probability of a type I error (false positive) does not exceed the area a.
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In addition to false positive (type I) errors that can occur when using LC as a
screening tool, false negative (type II) errors are also possible. This happenswhen the
measured net count is less than LC, but the true value is AT> 0. A type II error poses
potential risks of a different nature from those associated with type I. Falsely
declaring zero activity may imply an unrecognized hazard, possibly leading to
radiation exposure and the resulting health issues. We next develop a decision tool
that specifically applies when AT> 0 and thus addresses type II errors.

10.4
Minimum Detectable True Activity

Figure 10.2 shows the probability density function for the measured sample activity
when the true activity has a valueAT¼AII> 0. Also shown for comparison to its left is
the density function from Figure 10.1 for AT¼ 0 with the associated minimum
significant measured activity AI (Eq. (10.6)). With AT¼AII> 0, it is more likely than
before that the measured sample activity will be greater than AI. Applying the
decision tool A>AI or equivalently Nn> LC, for the net count, then correctly gives
the decision that the sample has activity (recall thatA¼Nc/t). However, whenAT> 0
there is also a possibility that the measured result could be Nn< LC. When this
happens, the false negative decision is reached, indicating that the sample has no
significant activity when, in fact, it does. The probability that this type II error will be
committed when the true activity is AII is equal to the area b under the distribution
centered at AII left of AI in Figure 10.2. We write this probability symbolically as
Pr(A<AI|mA¼AII)¼ b.

α

AI

f (A)

True
Activity
AT = 0

Measured Activity, A 

β

True
Activity
AT = AII

AII0

Figure 10.2 Probability density function for true activity AT¼AII> 0 and density function from
Figure 10.1 for AT¼ 0. With a chosen, setting a protocol value for b fixes AII, which is then called the
minimum detectable true activity.
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Like a, the value of b can be selected to set an �acceptable� risk, related now to type
II errors, as part of the screening protocol. Since the value of AI is fixed once a is set,
the value of b will be changed only by moving AII to the left or right. Therefore, a
particular numerical choice of b determines a particular value for the activity AII.
With b specified, this value of AII is called the minimum detectable true activity. Any
smaller mean activity AT, where 0<AT<AII, gives a type II error rate (false negative)
with probability greater than b. AII is the smallest mean activity that will be declared
undetected (Nn< LC or A<AI) with a probability no larger than b.

We next find the mean value Rrnd of the net count rate when the true value of the
sample activity is AII. With mA denoting the mean activity level, the mean rate mrnd is
related to the mean activity by the equation mA¼mrndc, where c is the detector
efficiency. Because c is a fixed constant, we can use the count rate in place of the
activity to determine if any activity is present. Since the count rate is easier to
calculate, we employ it rather than activity. Using Figure 10.3, we see that rrnd is the
count rate corresponding toAII, andwhat wewant to determine is the value of rrnd for
which Pr(Rrn< rrnc|mrnd¼ rrnd)¼ b. Oncewe determine rrnd, we can easily determine
the corresponding activity. Also, note that rrnc has been previously determined as the
critical value for whichwe declare falsely with probabilitya that there is activity when
the true mean activity is zero. It is important to note that rrnc has been previously
computed via Eq. (10.4) and it is this value that we are using in our calculations. As
long as the number of counts is sufficiently large, then Rrn will be approximately
normally distributed with mean mrnd¼ rrnd and standard deviation sm given by
Eq. (9.9).Wewant to determine the value of rrnd when PrðRrn < rrncjmrnd ¼ rrndÞ ¼ b.
Standardizing the distribution of Rrn, we find that Pr½Rrn < rrncjmrnd
¼ rrnd� ¼ Pr½ðRrn�mrndÞ=sm < ðrrnc�rrndÞ=srn�. Continuing, this probability is

rrnc

(AI)

f (rrn)

Net Rate, rrn 

β

AT = AII

rrnd

(AII)
0

Figure 10.3 Probability density function f(rrn) for net count rate with true activity AT¼AII. See
Eq. (10.10).
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Pr½Z < ðrrnc�rrndÞ=srnd� ¼ b, where Z is the standard normal random variable. The
value that cuts off the fraction b of the area to the left of the standard normal
distribution is denoted by�zb. Hence, we have ðrrnc�rrndÞ=srn ¼ �zb;which we can
solve for rrnd. The result is

rrnd ¼ rrnc þ zbsrn: ð10:9Þ

Recall that rrnc ¼ rrg�rrb has beendetermined already by Eq. (10.4).We canuse this
result to express the value of rrnd in terms of rrnc, rrb, zb, tg, and tb. Equation (10.9) can
be rewritten as

rrnd ¼ rrnc þ zb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rrnc
tg

þ rrb
tg þ tb
tgtb

� �s
: ð10:10Þ

When the counting times are equal, t¼ tg¼ tb, one finds for the minimum
detectable true net count number with activity AII,

LD ¼ rrndt ¼ LC þ zb
ffiffiffiffiffiffiffi
2nb

p
1þ z2a

4nb
þ zaffiffiffiffiffiffiffi

2nb
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2a

8nb

s !1=2

; ð10:11Þ

where LC is given by Eq. (10.5) (Problem10.8). Finally, use of the detector efficiency
c gives the minimum detectable true activity,

AII ¼ cLD
t

: ð10:12Þ

This and other related quantities are discussed in the literature under various
headings, such as the lower limit of detection (LLD) or theminimum detectable amount
(MDA) (Currie, 1968; HPS, 1996).

As beforewith LC, often za=
ffiffiffiffiffi
nb

p � 1. ThenEq. (10.11) reduces to the simple result

LD ffi LC þ zb
ffiffiffiffiffiffiffi
2nb

p
¼ ðza þ zbÞ

ffiffiffiffiffiffiffi
2nb

p
; ð10:13Þ

in which the approximation (10.7) has been substituted for LC.Whena¼b, it follows
that LD ffi 2LC.

When the background is stable and accurately known, Eq. (10.11) can be written
(Problem 10.9) as

LD ¼ ffiffiffiffiffi
nb

p
za þ

z2b
2
ffiffiffiffiffi
nb

p þ zb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zaffiffiffiffiffi

nb
p þ

z2b
4nb

s0
@

1
A: ð10:14Þ

In addition, Eq. (10.13) becomes

LD ffi ðza þ zbÞ ffiffiffiffiffi
nb

p
: ð10:15Þ
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As with the minimum significant measured activity, a well-characterized and stable
background lowers the minimum detectable true activity by approximately

ffiffiffi
2

p
. The

relationship LD ffi 2LC also holds when a¼b with a well-known background.

& Example
Measurement of a sample and background for the same length of time yields
ng¼ 333 gross and nb¼ 296 background counts. The calibration constant is
c¼ 4.08 Bq per count. The maximum risks for both type I and type II errors
are set at a¼ b¼ 0.05. Determine

a) the critical count number;
b) whether the sample has activity;
c) the measured sample activity;
d) the minimum significant measured activity;
e) the minimum detectable true activity.

Solution
a) With ka¼ 1.645 in Eq. (10.5), the critical count number is

LC ¼ 1:645
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 296

p 1:645ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 296

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:6452

8� 296

s0
@

1
A

¼ 41:4: ð10:16Þ

We round to the next larger integer, using LC¼ 42 as the smallest net count
number for declaring activity to be present, with a probability not exceed-
ing 0.05 for a false positive.

b) The net count number is

nn ¼ ng�nb ¼ 333�296 ¼ 37 < LC: ð10:17Þ

Therefore, the sample is judged as having no significant activity.
c) The measured activity is A¼ cnn¼ 4.08Bq� 37¼ 151Bq.
d) From Eqs. (10.6) and (10.16), the minimum significant measured

activity is

AI ¼ cLC ¼ 4:08 Bq� 41:4 ¼ 169 Bq: ð10:18Þ
e) The expected net count when the true activity is AII is given here by

combining Eqs. (10.11) and (10.16):

LD ¼ 41:4þ 1:645
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 296

p
1þ 1:6452

4� 296
þ 1:645ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 296
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:6452

8� 296

s0
@

1
A

1=2

¼ 82:8:

ð10:19Þ
Therefore, the minimum detectable true activity is AII¼cLD¼
4.08 Bq� 82.8¼ 338Bq.
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& Example
Pertaining to the last example, a technician subsequently finds that the
background radiation level at the facility has been extensively documented.
A large number of separate measurements, based on more than 50 000 total
counts, show the background to be stable with an estimated mean number of
290 counts for the length of timeduringwhich a sample is counted. Repeat the
previous analysis, using the improved background data.

Solution

a) With nb¼ 290, Eq. (10.8) yields LC ¼ 1:645
ffiffiffiffiffiffiffiffi
290

p ¼ 28.01. The critical net
count number, accordingly, is LC¼ 29. (Note that the single measurement
nb¼ 296 in the last example is consistent with a stable background.)

b) The measured net count is now nn¼ ng� nb¼ 333� 290¼ 43. Since it is
greater than LC, we declare the sample to have activity, that is,AT> 0. This
conclusion contradicts the previous one, based on the less certain back-
ground data.

c) The measured sample activity is A¼cnn¼ 4.08 Bq� 43¼ 175Bq.
d) The minimum significant measured activity is

AI ¼ cLC ¼ 4:08 Bq� 28:01 ¼ 115 Bq: ð10:20Þ
e) From Eqs. (10.12) and (10.14), the minimum detectable true activity is

AII ¼ cLD ¼ 4:08 Bq

�
ffiffiffiffiffiffiffiffi
290

p
1:645þ 1:645

2
ffiffiffiffiffiffiffiffi
290

p þ 1:645

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:645ffiffiffiffiffiffiffiffi

290
p þ 1:6452

4� 290

s0
@

1
A

¼ 240 Bq: ð10:21Þ

Table 10.1 summarizes the last two examples. In essence, with the smaller coefficient
of variation for the background counts compared with the single gross count, the

Table 10.1 Summary of data from examples in the text.

Quantity With single background count With extensive background count

Gross counts, ng 333 333
Background counts, nb 296 290
Net counts, nn 37 43
(a) Critical level, LC 42 29
(b) Zero true activity? Yes, AT¼ 0 No, AT> 0
(c) Measured activity, A 151Bq 175Bq
(d) AI 169Bq 115Bq
(e) AII 338Bq 240Bq
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sensitivity forAI andAII is improved by about
ffiffiffi
2

p
, as borne out by the table.Moreover,

the decision itself about the presence of activity is reversed in the two examples. It is
more likely that the conclusion in the second example with the much larger number
of total background counts is correct, and that a type II error was made in the first
example.

10.5
Hypothesis Testing

The two types of questions, whether activity is really present and the likelihood that
we will detect it at a given level, can be addressed statistically through hypothesis
testing. The usual setting involves deciding between two conjectures, or hypotheses,
concerning characteristics of one or more populations. Frequently, a hypothesis is a
claim about the value of a population parameter, such as a mean, variance, or
proportion. It might also be a general assertion, for example, that a new drug is more
effective that an existing one for curing an illness. Although our discussion will deal
primarily with statements about a single population parameter, themethodology has
general applicability.

Hypothesis testing has the following formal structure. Any stated statistical
assertion or conjecture that we wish to test about a population is called the null
hypothesis and is denoted byH0. Rejection ofH0 implies acceptance of an alternative
hypothesis, denoted byH1.Wedecidewhether to reject thenull hypothesis on the basis
of data from random sampling of the population. For example, in order to test
the assertion that a population parameter � has a particular set of values v, the
hypotheses can be stated symbolically:

H0 : � 2 v versus H1 : � 2 V�v: ð10:22Þ
HereV represents the whole space, or the set of all possible values that � can take on.
The null spacev refers to the values that � can assume under the null hypothesis. The
alternativeH1 states that � is in the remainder of the whole space, exclusive of v. In
the usual hypothesis testing model, a null hypothesis H0 and an alternative H1 are
stated. If the null and alternative hypotheses specify single values, for example,
H0: � ¼ �0 versus H1: � ¼ �1, then the hypotheses are described as simple versus
simple. If one hypothesis specifies a single value while the other gives an interval, for
example, H0: � ¼ �0 versus H1: � > �0, then they are referred to as simple versus
composite. Composite versus composite hypotheses are possible as well, for example,
H0: �� �0 versusH1: �> �0. To judge between the two hypotheses, we calculate some
suitable test statistic from a random sample from the population and base our
decision on its value. Usually, we look at extremes of the test statistic. If its value falls
in some range C, called the critical region or the rejection region, then we reject H0.
The complement of C is the acceptance region.

The screening procedure from the foregoing sections provides an example of
hypothesis testing. Themeasured activityA of a sample (grossminus background) is
compared with an a priori established minimum significant measured activity AI,
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which depends on the background and the value chosen for the parametera. The true
activity AT of a given sample is judged to be zero or greater than zero according to
how A compares with AI. There are two possibilities:

H0 : AT ¼ 0 ðnull hypothesisÞ;
H1 : AT > 0 ðalternative hypothesisÞ:

�
ð10:23Þ

The test statistic is the single measurement of A. Compared with Eq. (10.22), the
whole spaceV in Eq. (10.23) is the set of all nonnegative numbers (AT� 0), the null
space is the single value v¼AT¼ 0, and V�v is the set of values AT> 0.
Hypothesis (10.23) is an example of simple versus composite.

The general relationship between errors and the wrong decision is shown in
Table 10.2. One either accepts or rejectsH0, whileH0 is either actually true or false.
The rejection of H0 when it is true results in a type I error. On the other hand,
acceptance ofH0 when it is false (i.e.,H1 is true) is a type II error. The implications of
the two types of error can be quite different (Problem 10.11).

The probabilitya associatedwith type Ierrors in a test of hypothesis is referred to as
the size, or significance level, of the test. The probability associatedwith a type II error is
commonly referred to as b. The probability (1� b) of the complement for type II
errors is called the power of the test. Note that the power is the probability of rejecting
H0 whenH1 is true, a correct decision. Ideally, one would like to design a test with a
rejection region so as to minimize both a and b. However, this is not generally
feasible, because of their complicated relationship. The significance level a is set
beforehand to some specified value, which acts to determine the decision level for the
test statistic. Similarly, b can be arbitrarily chosen, but it enters the test procedure in a
different way. The probability of making a type II error depends additionally on the
level of the true activity AT.

The situation is represented schematically in Figure 10.4 by a so-called power curve
for the test. The probability Pr(A>AI|mA¼AT) that the measured activity A will be
greater than AI is shown plotted against the true activity AT. Starting at AT¼ 0, the
probabilitya has been assigned in the test procedure for a type I error. AsATstarts out
from zero, the probability Pr(A>AI|mA¼AT) increases gradually at first and then
climbs more steeply. When AT¼AI, Pr(A>AI|mA¼AI)ffi 0.5. (Provided the count
numbers are sufficiently large to allow the normal approximation to be valid, it is
about equally probable that A will lie on either side of AI.) When AT reaches the
particular valueAII, we have Pr(A�AI|mA¼AII)¼ b, which stipulates the probability
for a type II error at that mean activity. Thus, the complementary probability
Pr(A>AI|mA¼AII)¼ 1�b, called the power of the test, is shown in Figure 10.4.

Table 10.2 �Truth� table showing possible outcomes of hypothesis testing with
relations (10.23).

H0 is true H0 is false

Accept H0 Correct decision Type II error
Reject H0 Type I error Correct decision
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Thereafter, Pr(A>AI|mA¼AT) approaches unity as AT increases. The power of a test
can be particularly useful in assessing how sensitive some tests are in distinguishing
small differences in numerical values of population parameters.

In optimizing the test procedure, if we reduce a, then we move AI to the right and
cause b to increase (e.g., see Figure 10.2). The classical approach to designing a test
procedure is to first fix a, usually at some standard level (e.g., a¼ 0.05 or 0.01), and
then look for a test that minimizes b. If the smallest possible value of b for that a is
unacceptably large, then we should increase a, increase the sample size, or try
another test. Additional discussion on optimization of the test procedure is given in
Section 10.8.

It should be apparent that acceptance of a statistical hypothesis usually means that
the sample data are not sufficiently strong to refute the hypothesis. Rejection, on the
other hand, implies that the sample data would result only with a small probability if
the hypothesis were true. There is thus a strong qualitative difference between
acceptance and rejection of the null hypothesis. Generally, the null hypothesis H0

expresses the status quo, while the alternativeH1 requires a burden of proof. The test
statistic is the random variable whose numerical value determines the decision.

& Example
When first received from the manufacturer, the response of a thermoluni-
nescence dosimeter (TLD) to a 5-mGy dose from 137Cs photons is measured
several times. In terms of the charge Q measured by the reader for this
exposure, an acceptable dosimeter should show a normal distribution with
mean m¼ 117.2 nC and standard deviation s¼ 1.5 nC. If a new dosimeter
checks out, it is assigned to a radiationworker. After issuance, the dosimeter is
periodically retrieved and checked by criteria specified below to see whether
the response has changed. If so, the unit is removed from service.

a) To check the response of a retrieved dosimeter, it is decided to test the
hypothesis that m¼ 117.2 nC, the standard setting, versus the alternative

True Activity, AT 

0

P
r(

A
>A

I|µ
=

A
T
)

0.0

0.5

1.0

α

1 − β

ΑΙ ΙΙΑ

β

Figure 10.4 Power curve showing the relationship of the relevant quantities. The power, 1� b, is
the probability of correctly stating that the true activity is greater than zero when AT¼AII.
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that m> 117.2 nC. Formally stateH0 andH1 and whether the hypothesis is
simple or composite.

b) What are the values of v and V as defined by Eq. (10.22)?
c) The value a¼ 0.05 is chosen as the significance level of the test. Assume

that the reading is normally distributed with the mean and standard
deviation given above. Obtain the critical value that defines the test of size
a¼ 0.05.

d) What is the acceptance region for this test?
e) Suppose that the alternative hypothesis is H1: m¼ 122.0 nC. What is the

probability b of a type II error?
f) What is the power for this alternative hypothesis?

Solution
a) The null hypothesis states that the mean equals the standard setting.

Hence, H0: m¼ 117.2 nC. The alternative is simply that the mean has
shifted to some larger value. Thus, we write H1: m> 117.2 nC. The null
hypothesis, referring to a single value, is a simple hypothesis. The
alternative, which involves an interval of values, is composite.

b) v¼ 117.2 nC and V¼ [117.2, 1).
c) Recall that a¼Pr(reject H0|H0 is true). That is, a equals the probability

that we rejectH0 given thatH0 is true. Letting Y denote the reading from
the retrieved dosimeter and YC the critical value, we write

PrðY > YCjH0 is trueÞ ¼ a ¼ 0:05: ð10:24Þ
Under H0, m¼ 117.2 nC, and we are given s¼ 1.5 nC. Converting to the
standard normal distribution, we write

Pr
Y�m

s
>

YC�117:2
1:5

� �
¼ 0:05: ð10:25Þ

Thus, with Z¼ (Y� m)/s�N(0, 1),

Pr Z >
YC�117:2

15

� �
¼ 0:05: ð10:26Þ

FromTable 6.1 or from Table A.3, we find Pr(Z> 1.645)¼ 0.05. Therefore,

YC�117:2
1:5

¼ 1:645; ð10:27Þ

giving YC¼ 119.7 nC.With this critical value, a type I error (rejection ofH0

when it is true) can be expected 5% of the time.
d) The acceptance region is the complement of the critical, or rejection,

region C. The latter is the set of all values equal to or greater than the
critical value: C¼ [YC¼ 119.7 nC,1). Therefore, the acceptance region is
C 0 ¼ [0, 119.7 nC). Note that, sinceH1:m> 117.2 nC,wewill rejectH0 only
when we observe larger values of the response. Also, because negative
readings do not occur, the lower bound of the acceptance region is zero.
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e) A type II error occurs when H0 is accepted when H1 is true. With the
critical value YC we write, analogous to Eq. (10.24),

PrðY < YCjH1 : m ¼ 122:0 is trueÞ ¼ b: ð10:28Þ

Applying the standard normal variable Z¼ (Y�m)/s with m¼ 122.0,
YC¼ 119.7, and s¼ 1.5 gives

Pr
Y�m

s
<

119:7�122:0
1:5

� �
¼ PrðZ < �1:53Þ ¼ b: ð10:29Þ

From Table A.3, b¼ 0.063.
f) The power is the probability 1�b¼ 0.937 (the complement for a type II

error) that we rejectH0 given thatH1 is true. So if the dosimeter has shifted
to a higher mean value of 122.0 nC, we would have a 93.7% chance of
detecting this change and rejecting the null hypothesis. We can calculate a
power curve by choosing different values of m forH1. Table 10.3 gives some
values and their corresponding powers in the test above in which the
critical value is YC¼ 119.7 nC. The resulting power curve is shown in
Figure 10.5.

Table 10.3 Power curve, (1� b) versus m, for example in the text.

m (nC) 118 119 120 121 122 123
b 0.8715 0.6796 0.4207 0.1931 0.0626 0.0139
1�b 0.1285 0.3204 0.5793 0.8069 0.9374 0.9861

µ (nC)
124122120118116

P
ow

er

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.5 Power curve from the quantity (1� b) for different values of m in Table 10.3
(example in the text).
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The discussion until now has dealt only with a one-sided, or one-tailed, alternative
hypothesis. The critical region for rejection then lies in the right or left tail of the
distribution for the test statistic, depending onwhether the alternative is greater than
or less than the null hypothesis, respectively. Hypothesis tests can be two-tailed. A
simple null hypothesis will always be stated as an equality to a single value. The
alternative can then be either one- or two-tailed. For example,

One-tailed test Two-tailed test
H0 : � ¼ �0 H0 : � ¼ �0
H1 : � > �0 H1 : � 6¼ �0

In a two-tailed test, we might reject H0 if our test statistic is either too small or
too large. The significance level a then must be split to account for either of these
errors if H0 is true. Generally, there is no reason to suspect that one error might
occur more often than the other. One then simply uses a/2 for each. Table 10.4
lists the critical values za and za/2, respectively, for one- and two-tailed tests for
different levels of significance a for the standard normal distribution. One-tailed
tests are used to establish performance measures to evaluate radioactivity and
radiation dose, for which results giving less than background have no physical
significance.

& Example
Consider again the definition of an acceptable thermoluminescence dosimeter
in the last example. We shall now use different criteria, involving a two-tailed
test, to judge whether the response of a retrieved dosimeter has changed.
Specifically, a dosimeter will be discarded if it reads too far above or below the
mean, m¼ 117.2 nC, at a significance level a¼ 0.05.

a) Determine the acceptance region for the response of a retrieved
dosimeter.

b) State the null and alternative hypotheses for the dosimeter test.
c) If the acceptance region is within	4% of themean, what is the probability

of a false positive?

Table 10.4 Critical values za and za/2 for one- and two-tailed tests, respectively, for
different levels of significance a with the standard normal distribution.

a One-tailed, za Two-tailed, za/2

0.100 1.282 1.645
0.050 1.645 1.960
0.010 2.326 2.576
0.005 2.576 2.810
0.002 2.880 3.080
0.001 3.080 3.295
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Solution

a) With a significance level a¼ 0.05, the acceptance region in this two-tailed
test is the interval within za/2¼ z0.025¼ 1.960 standard deviations on
either side of the mean (Table 10.4). Inserting the given values of m and
s, we find that the acceptance region, m	 1.960s, spans the interval
(114.3 nC, 120.1 nC).

b) The null hypothesis states that the response of a retrieved dosimeter has
not changed. That is, the measured chargeQ has mean equal to 117.2 nC,
so thatH0: m¼ 117.2 nC. The alternative hypothesis is thatQ has changed,
or H1: m 6¼ 117.2 nC. The hypothesis test, which is two-tailed, is conve-
niently stated in terms of the standard normal test statistic,Z¼ (Q�m)/s.
The acceptance and rejection regions are, respectively, given by

Zj j < 1:960 and Zj j � 1:960: ð10:30Þ

This is an example of a simple versus a composite test.
c) WithQ ¼ m	 0:04m ¼ mð1	 0:04Þ, the standard normal variable has the

values

Z ¼ m�m 1	 0:04ð Þ
s

¼ 	 0:04m
s

¼ 	 0:04� 117:2 nC
1:5 nC

¼ 	3:1: ð10:31Þ

The probability of a false positive is the probability that we reject H0

given that H0 is true. That is, PrðZ < �3:1ÞþPrðZ > 3:1Þ ¼
0:001þ 0:001 ¼ 0:002.

& Example
The activity concentration of uranium in soil around a proposed munitions
plant has a mean m¼ 1.017 pCi g�1 and standard deviation s¼ 0.108 pCi g�1.
The plant will manufacture depleted uranium armor penetrators. When in
operation, soil samples will be taken periodically around the site to monitor
the efficacy of practices for the containment of the uranium. The goal is to
maintain a state of �no detectable uranium above background� in the
environment. What measured level of uranium concentration in soil would
indicate a failure of the containment controls, given an acceptable probability
a¼ 0.01 of a false positive?

Solution
This is a one-tailed test of hypothesis, since we are interested only in results
that exceed the mean background. From Table A.3, for a¼ 0.01 one has
z0.01¼ 2.326. The critical level for the soil concentration X is thus

LC ¼ mþ zas ¼ 1:017þ 2:326ð0:108Þ ¼ 1:268 pCi g�1: ð10:32Þ

246j 10 Statistical Performance Measures



The null hypothesis states that there is no activity concentration of uranium
above that of background. The alternative hypothesis is that there is increased
activity. Symbolically,

H0 : m ¼ 1:017 pCi g�1 versus H1 : m > 1:017 pCi g�1: ð10:33Þ
A measurement in excess of the amount LC given by (10.32) is the basis for
rejection of the null hypothesis. It is to be considered as indicative that
uranium levels have exceeded background, presumably because of inade-
quate containment at the plant.

In many applications we do not know the population variance, and so we must
estimate it from sampled observations. Unless the number of observations is large
(usually n> 30), our test statistic will be the Student�s t-distribution (Section 6.9)
rather than the normal. When n> 30, the normal distribution provides an adequate
approximation to the t-distribution, and so it can be used.

& Example
In the last example, calculate the critical level if the given values,
�x ¼ 1:107 pCi g�1 and s¼ 0.108 pCi g�1, are estimates of m and s obtained
from

a) n¼ 4 measurements and
b) n¼ 10 measurements.
c) Plot the probability density functions for the uranium activity concentra-

tions in the last example and in parts (a) and (b) here.

Solution
a) In this case we do not know the true population mean and standard

deviation, for which we have only the sample estimates. Rather than the
normal distribution, we employ Student�s t-distribution (Section 6.9).
Instead of za we use tn;a ¼ t3;0:01 ¼ 4:541 from Table A.5 for n¼ n� 1¼ 3
degrees of freedom. In place of Eq. (10.32) we write

LC ¼ �xþ t3;0:01s ¼ 1:017þ 4:541ð0:108Þ ¼ 1:507 pCi g�1: ð10:34Þ

b) With the same estimates from the larger sample, tn;a ¼ t9;0:01 ¼ 2:821, and
the critical level is

LC ¼ �xþ t9;0:01s ¼ 1:017þ 2:821ð0:108Þ ¼ 1:322 pCi g�1: ð10:35Þ

c) Figure 10.6 shows the three probability density functions, f(x) – the
Student�s t-distributions for n¼ 3 and n¼ 9 degrees of freedom – and
the standard normal distributionN(0, 1), which is the limit approached by
the t-distribution as n!1. Note that the critical level (10.34) is largest for
the broadest distribution (n¼ 3) and becomes progressively smaller as the
number of measurements for the estimates of m and s increases.
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10.6
Criteria for Radiobioassay, HPS N13.30-1996

The analysis described in Sections 10.3 and 10.4 for radiobioassay largely follows that
given by Altshuler and Pasternack (1963) and discussed further by Turner (2007).
This section reviews guidance furnished by the American National Standard, HPS
N13.30 (HPS, 1996), building on original work by Currie and others. Unless
otherwise stated, it will be assumed that count numbers are Poisson distributed
and sufficiently large to be represented by a normal distributionwith equalmean and
variance.

The American National Standard, HPS N13.30-1996, Performance Criteria for
Radiobioassay, (HPS, 1996) is in widespread use today. It presents a protocol that
defines a decision level (LC) and minimum detectable amount for measurements of a
radioactive analyte in a sample or a person. These quantities play the same role as their
related namesakes in our previous discussions, but differ from the former in the way
�background� is assessed.1) The critical level formalized in Section 10.3 is applied to
the net count above background measured with a subject under analysis. The
background count is typically made with the subject replaced by an appropriate blank,
radiometrically identical with the subject, but containing no added radioactivity.2)We
denote the standard deviation of the count number nB0 from the appropriate blank

1) The same symbol, LC, which we have employed in this chapter for the critical level, is used in N13.30
for the so-called decision level.

2) Examples of appropriate blanks include synthetic urine for in vitro radiobioassay and anthropo-
morphic phantoms for in vivo analysis (body counting).

x
-5 -4 -3 -2 -1 0 1 2 3 4 5

f (x)

N (0,1) 
f (x), ν = 9
f (x), ν = 3

0.1

0.2

0.3

0.4

Figure 10.6 Three probability density functions f(x) for example in the text: Student�s
t-distributions for n¼ 3 and n¼ 9 degrees of freedom and the standard normal
distribution N(0, 1).
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over a time tb by sB0 ¼ ffiffiffiffiffiffiffi
nB0

p
. An additional quantity is required by N13.30 – namely,

�. . . the count nB1 of a subject, by the routine measurement procedure, where the
subject contains no actual analyte activity above that of an appropriate blank.� The
standard deviation sB1 ¼ ffiffiffiffiffiffiffi

nB1
p

of this count number is applied to the gross time, tg,
used to count the subject. Rather than comparing the subject count with a single
background count over the same time tg, as in Eq. (10.7), N13.30 compares the subject
count with the equivalent net count over time tg derived from nB1 and nB0 as follows.
According to Eq. (9.10), the standard deviation of this net rate is

sr0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nB1
t2g

þ nB0
t2b

s
: ð10:36Þ

The standard deviation in thenumber of net counts during the time tg that a subject
is counted is

s0 ¼ sr0tg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nB1 þ

tg
tb

� �2

nB0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2B1 þ

tg
tb

� �2

s2B0

s
: ð10:37Þ

Whereas the subject count time tg for the procedure isfixed at some standard value,
the time tb for the appropriate blank can have any value. Letting r¼ tb/tg be the ratio
of the two times, we have

s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2B1 þ

1
r2

s2B0

s
: ð10:38Þ

When the counting times are the same (r¼ 1), the two standard deviations in
Eq. (10.38) are approximately equal. Then s0 ffi

ffiffiffiffiffiffiffiffi
2s2B0

p ¼ ffiffiffiffiffiffiffi
2nb

p
, which is essentially

the same as Eq. (10.7).
For the type I error probabilitya, the decision level LC inN13.30 is defined with the

help of Eq. (10.38) as

LC ¼ DBBþ zas0: ð10:39Þ
Here,B (¼nB0) is the total count of the appropriate blank (standard deviation¼ sB0).

The factor DB equals the �maximum expected fractional systematic uncertainties
bound in the appropriate blank B.DB is the maximum fractional difference between
the background of the subject being counted and the background for the subject
estimated from the appropriate blank.� As further described in N13.30, the use of
Eq. (10.39) assumes that any systematic bias, such as background radiation atten-
uation by the samplematrix, is relatively constant for the two counts and is accounted
for by the term DBB. Because DB is a measure of the systematic uncertainty in the
appropriate blank, it cannot be reduced by replicate measurements. Using an
appropriate blank that is not radiometrically identical to the uncontaminated sample
will also bias the mean of the net background and, with it, the decision level.
Systematic error can be minimized only by repeated calibrations, by background
and quality assurance measurements, and by adding to blanks known amounts
of radionuclides that do not interfere with the measurement, but that provide
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information about chemical recoveries and detector efficiencies. In good laborato-
ries, DB in Eq. (10.39) will be close to zero. N13.30 recommends neglecting the first
term in Eq. (10.32) when it does not exceed one-tenth of the value of the second term.
We shall not consider systematic errors further, assuming for the decision level,
LC¼ zas0.

Theminimumdetectable true activity described inSection10.4 is similar toCurrie�s
detection limit and theminimum detectable amount in N13.30. That is, the mean of the
distribution of net results from replicate analyses of a sample with the MDA level of
added radioactivity is such that the fraction b of the net distribution lies below the
critical level, in the same way as depicted in Figure 10.2. However, the net count in
N13.30 refers to that between a subject under analysis and the net count that defines s0
(Eq. (10.38)). For simplicity,weassume that systematicuncertainties arenegligible.We
also choose equal counting times and selecta¼b¼ 0.05 (za¼ zb¼ 1.645). In place of
Eq. (10.13), N13.30 then employs for the paired blank

LD ¼ ðza þ zbÞs0 ¼ 3:29 s0 ¼ 3:29
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2B1 þ s2B0

q
¼ 4:65 sB: ð10:40Þ

Here sB 
 sB0 ffi sB1 is introduced to reflect the near equality of the two terms under
the radical that represent the background counts.We can reduce the component of the
variance given by a well-known blank if we take a sample of background measure-
ments and average them, rather than using a single sample. As we know from Eq.
(8.24), the variance of the mean ofm observations that are independently distributed
with constant variance s2B0 is s

2
B0=m. Hence, for the mean ofm independent samples,

with similar assumptions as before, we have

LD ¼ 3:29sB

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

m

r
: ð10:41Þ

The expressions (10.39) and (10.41) provide the appropriate operational count
numbers that determine the critical level and the MDA, according to the explicit
criteria set out by the protocol. They establish the requiredmeasurement time through
the estimate of the number of background counts required. Of more relevance for
exposure monitoring than the numbers per se is their expression in some appropriate
units. For example, the MDA is usually expressed in derived units, such as nCi of
uranium in the lung, dpmperday urinary excretionof 241Am, and so on, rather than in
units of the actualmeasurement (counts). In general, count numbers are converted to
the appropriate derived analytical units by dividing by KT, where K is a calibration
factor (e.g., expressing count rate per unit analytical amount) and T is the counting
time for analysis. The quantity K may be a combination of factors, such as counting
efficiency, chemical recovery, andurinary excretion rate.Thus, for the pairedblank, the
minimum detectable amount in appropriate analytical units is, from Eq. (10.40),

MDA ¼ 4:65sB
KT

: ð10:42Þ

In applying derived units, it should be remembered that LC andMDA are restricted to
integral values by definition.
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These expressions from N13.30 for LC and MDAwere derived under the assump-
tion that total counts are large enough to be adequately approximated by normal
distributions.While this condition ismet inmany types of radiobioassay (e.g., whole-
body counts for 137Cs against a 40K background in body tissues), some modern
applications entail very small count numbers, which are not well approximated by the
normal distribution. The background in a well-maintained alpha spectroscopy
counting chamber might be only one or two counts over several days. N13.30 does
not deal with this situation at length, but adds a semi-empirical term to LD in
Eqs. (10.40) and (10.41) in order to assure thatb� 0.05 in very lowbackgrounds.With
a Poisson distribution, an MDA of three counts satisfies this condition. The N13.30
MDA (10.42) for the paired blank then becomes

MDA ¼ 4:65sB þ 3
KT

: ð10:43Þ

For the mean of m samples of a well-known blank (see Eq. (10.41)),

MDA ¼ 3:29sB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð1=mÞp þ 3
KT

: ð10:44Þ

A well-maintained alpha-particle spectrometer might register on average a single
event in the energy range of interest for a 1000-min count, even though the detection
chamber contains a blank sample with no activity. The Poisson distribution for the
number of counts with a mean background mB¼ 1 over the counting interval is
shown in Figure 10.7. The probability of observing zero counts is Pr(X¼ 0)¼ 0.368,
the same as that for a single count. Although there is no radioactivity in the sample,
the probability for registering one or more counts is Pr(X� 1)¼ 0.632.

Setting a critical level for the measurement of samples with the spectrometer
from Figure 10.7 can be approached in the following way. We relate the probability

x
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Figure 10.7 Poisson distribution Pr(X¼ x) for count number Xwith mean background mB¼ 1 over
the counting interval.
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a associated with a type I error to the Poisson distribution with parameter m by
writing

a ¼ PrðX > LCÞ ¼ 1�PrðX � LCÞ ¼ 1�
XLC
x¼0

pðx; mÞ ¼ 1�PðLC; mÞ: ð10:45Þ

Here P(X; m) is the cumulative distribution of the Poisson probability p(x; m)
tabulated in Table A.2 in the Appendix. In contrast to using LC¼ zas0 as before,
under the assumption of normal statistics, we deal nowwitha having noncontinuous
values. If we wanted to set a¼ 0.05, for example, we see from Table A.2 with m¼ 1 for
our spectrometer that Pr(X� 2)¼ 0.920 andPr(X� 3)¼ 0.981. Thus, choosing LC¼ 2
or 3, respectively, gives a¼ 0.080 or 0.019. In order to assure that the type I error
probability is no greater than 0.05, we need LC¼ 3, for which a¼ 0.019. A measure-
ment that yields four or more counts in the 1000-min interval with the spectrometer
fromFigure 10.7 is to be interpreted asmeaning that there is activity in the sample. In
this case, we reject H0 with actual significance level a¼ 0.019.

The MDA and LD for the spectrometer depend on LC and the value selected for the
probability b for a type II error.We choose theMDA as the smallest mean activity level
above background that results in three or fewer counts in 1000min with a probability
b¼ 0.05. The LD is themean Poisson count for which Pr(X� 3|m¼ LD)¼b¼ 0.05. In
Table A.2 we look for the value of m¼ LD for which P(3, m)¼ 0.05, that is, for which the
cumulativePoissonprobability is0.05 forX¼ 3counts.Wesee that thisoccursbetween
m¼ 7.5 and m¼ 8.0. Iterative calculation on m gives b¼ 0.05 when m¼ LD¼ 7.75.
(Simple linear interpolation gives m¼ 7.76.) Figure 10.8 shows the distributions for a
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Figure 10.8 A detection level LD¼ 7.75 counts
gives a probability of false negative b¼ 0.05 for
an alpha-particle spectrometer with background
mean of 1 count in the counting interval and the
probability of false positive, a� 0.05. This
means that replicatemeasurements of a sample
containing activity at the detection level would

yield a distributionof results (gray bars) that, 5%
of the time, lie below the critical level (LC¼ 3)
defined by the background distribution (black
bars) and the value of a. The Poisson
distribution is assumed for count results
obtained for both background and sample with
activity.
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backgroundwithmean m¼ 1 count and for a samplewith amean at the detection level
LD¼ 7.75 counts. By convention, the critical level LC is expressed in the actual units of
the measurement (in this case, counts). The detection level and MDA are typically
expressed in derived units (in this case, activity). For this reason,we have not restricted
LD to be an integer.

& Example
A radiobioassay laboratory evaluates 241Am in urine with a procedure that
involves chemical separation and electroplating, followed by alpha spectrom-
etry. A total of m¼ 21 reagent blanks (having everything that would be in an
appropriate blank except real or artificial urine) were obtained and counted to
characterize the background distribution. The count numbers x varied from
zero to a maximum of five. The numbers of blanks nx with x counts were
distributed as follows:

Count number, x 0 1 2 3 4 5
Occurrence, nx 3 7 5 3 1 2

Conversion of the measured count number into derived units of disin-
tegrations per second (dps, or Bq) is made with the calibration factor K¼ 0.27
counts per disintegration and a counting time T¼ 60 000 s.

a) What are the mean and standard deviation for the number of counts?
b) What is the HPS N13.30 critical level?
c) Estimate the MDA from HPS N13.30 and show graphically the resulting

b probability for a false negative.

Solution
a) The mean count number is

�x ¼
X5
x¼0

xnx
m

¼ 1:905; ð10:46Þ

and the standard deviation is

sB0 ¼
X5
x¼0

nxðx��xÞ2
m�1

" #1=2
¼ 1:480: ð10:47Þ

Note that, for the Poisson distribution, the mean and the variance should
be equal.However, we found the two to have different values in Eqs. (10.46)
and (10.47). The difference is due to the fact thatwe have used two different
estimations in Eqs. (10.46) and (10.47) for the same quantity. This
condition is described as overdispersion (the variance estimate is larger
than the sample mean) or underdispersion (the variance estimate is smaller
than the sample mean). The theory surrounding this circumstance is
beyond the scope of this text. We suggest using the sample mean if the

10.6 Criteria for Radiobioassay, HPS N13.30-1996 j253



difference between the estimators is not too great. If the difference is quite
large, then the population from which the sample is taken might not be
Poisson distributed. Figure 10.9 shows the distribution of the reagent
results, together with a superimposed Poisson distribution with the same
mean, m¼ 1.905, for comparison.

b) We assume the default value a¼ 0.05 with sB0¼ 1.38. With DB ¼ 0,
Eq. (10.39) and Eq. (10.41) withm¼ 21 then give the HPS N13.30 critical
count number for the well-known blank,

LC ¼ 1:645sB0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

m

r
¼ 1:645ð1:38Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

21

r
¼ 2:3: ð10:48Þ

As discussed in connectionwith Eq. (10.45), one needs to adjust LC to be an
integer, thus changing the attainable value of a. In this case, LC¼ 3.

c) The MDA for low background and well-known blank, Eq. (10.44), should
be used. Substituting the given information yields

MDA ¼ 3:29ð1:38Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð1=21Þp þ 3

ð0:27Þð60 000 sÞ ¼ 4:7� 10�4: ð10:49Þ

Figure 10.10 shows the relationship between the MDA determined in this
way (converted to counts) and the critical level, with the distributions being
represented as normal. Note the result, bffi 0. This is an artifact of adding
3/KT to the MDA in going from Eq. (10.41) to Eq. (10.44) to ensure that
b. 0.05 even for very low backgrounds.
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Figure 10.9 Distribution of alpha-spectrometer results (counts) in the 241Am region of
interest from reagent blanks (gray bars) in the example of Section 10.6, together with a
superimposed Poisson distribution with the same mean, m¼ 1.905 (black bars), for
comparison.
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The formulas provided in N13.30 are intended to be used as guidance in the absence
of other information. Radiobioassay laboratoriesmay be required to use the formulas
in some cases – in intercomparison studies with other laboratories or as part of the
quality control criteria of regulatory agencies. A better picture of an installation�s
performance is usually obtained by carefully controlled studies, using appropriate
blanks, designed to provide empirically derivedmeasures. Spiked test samples can be
used to estimate standard deviations and biases.

Low-level counting has received additional attention since N13.30 was published.
The reader is referred to an evaluation of eight decision rules for low-level radio-
activity counting carried out by Strom and MacLellan (2001).

10.7
Thermoluminescence Dosimetry

Performance measures for external dosimetry, which utilizes integrating devices
such as thermoluminescence dosimeters (TLDs) and radiosensitive film to measure
radiation doses from sources outside the body, have been developed in the United
States by the Department of Energy for their Laboratory Accreditation Program
(DOELAP) for personnel dosimetry (DOE, 1986). A statistical model developed by
Roberson and Carlson (1992) derives the formulas used for estimating a critical level
and a lower limit of detectability. We describe this model and its parameters.

TLDs and film provide data that are continuously distributed, namely, light output
from a TLD and light transmission through a film, respectively. Although we shall
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Figure 10.10 Normal approximation to
the distribution of net background in the
example of Section 10.6, showing the
critical level LC, MDA, and probabilities of

false positive (a) and false negative (b).
Note the artificially small value of b, a
coincidental (in this case) result of the 3/
KT term in the HPS N13.30MDA formula.
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concentrate on TLDmeasurements in the discussions that follow, much of the work
applies also to film dosimeters.

Some crystalline materials are thermoluminescent, absorbing and storing
energy from incident radiation by the promotion of valence electrons to higher
quantum states with relatively long lifetimes. When an exposed thermolumines-
cent crystal is later heated under controlled conditions in a reader, the promoted
electrons make transitions back to the lower energy states, releasing their stored
energy in the form of light. The light thus emitted is detected and registers an
amount of electric charge, which ideally is proportional to the radiation energy that
was absorbed in the crystal. Calibration of the equipment enables measurement of
the charge to be converted into absorbed dose. The reading process also �zeroes
out� the stored energy and restores the dosimeter to its approximate original state
for use again (unlike a film dosimeter).

A personnel TLD usually comprises several elements, each consisting of a
separate thermoluminescent crystal, or �chip.� Chips can be fabricated from
different materials. Some chips might be provided with different filters to help
identify the type of radiation in mixed fields and to provide crude spectral
information. For instance, chips made of pure 6LiF or pure 7LiF have the same
response to gamma radiation, but respond differently to neutrons, which are
absorbed by 6Li but not by 7Li. Comparing the response of these two isotopically
different LiFchips in the same dosimeter gives an indication of the separate gamma
and neutron doses to the wearer. TLDs can be calibrated to provide information on
deep dose, shallow beta and low-energy photon doses, and other information.
Individual dose components from a multi-element TLD are determined by means
of unfolding algorithms that analyze and interpret combinations of the responses
from the individual chips.

We shall assume that normal statistics can by employed to describe the response of
a single TLD chip exposed repeatedly to a given radiation dose and then read under
fixed conditions and, similarly, to describe the response of a collection of identical
chips.However, the results unfolded from the combination of outputs from the same
multichip TLD might not be normally distributed. The discussions below pertain to
the response of an individual chip.We generally follow the approach of Roberson and
Carlson (1992) and Currie (1968).

For personnelmonitoring of external exposure, one is interested in a net dosimeter
reading, XH ¼ XT��XB, which is the difference between a total dosimeter reading
XT and average background �XB. The latter is the mean value determined from i¼ 1,
2, . . ., n dosimeter measurements XBi, each having variance s2

B:

�XB ¼ 1
n

Xn
i¼1

XBi: ð10:50Þ

The respective net, total, and background variances satisfy the relation (see Eq. (8.24))

s2
H ¼ s2

T þ
1
n
s2
B: ð10:51Þ
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If the true net signal is zero, then mH¼ 0, andwe can assume that sT¼ sB.We denote
the standard deviation of this net signal as sH¼s0, with variance

s2
0 ¼ s2

B 1þ 1
n

� �
: ð10:52Þ

Like Eq. (10.39) with DB ¼ 0, the critical level is given by

LC ¼ zas0: ð10:53Þ
As before, measurements due only to background fluctuations that exceed LC cause
type I errors (false positive) when the null hypothesis is (incorrectly) rejected.

& Example
The penetrating radiation background for a calendar quarter was measured
with 100 single-chip TLDs. Randomly distributed in the geographical area of
interest, their mean value with standard error was 15.0	 5.0 mrem.

a) What is the critical level for net results obtained with this background, if
one accepts a¼ 0.05 for the probability of a false positive in deciding
whether there is added dose?

b) What is the probability of a false positive in part (a) if LC¼ 5.0 mrem?
c) What is the critical level in part (a) when a single background dosimeter is

used with the same background as stated above (paired blank)?

Solution
a) Combining Eqs. (10.52) and (10.53) with n¼ 100, za¼ 1.645, and the

sample estimate ŝ ¼ 5:0 mrem gives

LC ¼ zaŝB

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
¼ 1:645ð5:0mremÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

100

r
¼ 8:3mrem: ð10:54Þ

b) Setting LC¼ 5.0 mrem in the last equation, we can solve for za:

za ¼ LC
ŝB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð1=nÞp ¼ 5:0mrem

ð5:0mremÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð1=100Þp ¼ 0:995

¼ 1:0; ð10:55Þ

or one standard deviation. From Table A.3, 1�a¼ 0.84, and so a¼ 0.16.
Alternatively, this part of the example can be solved by starting with
Pr(X> LC|mn¼ 0) (see Problem 10.25).

c) In this case we repeat the calculation of part (a) with n¼ 1. The result is
12 mrem.

When we have to estimate the variance and the sample size is <30, then we should
use Student�s t-distribution rather than the normal. This is accomplished by repla-
cing in Eq. (10.54) za with ta,n, where n¼ n� 1, the number of degrees of freedom.
For part (a) of the last example, ta,n¼ t0.05,99, giving again LC¼ 8.3. Comparison with
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Eq. (10.54) shows that the normal distribution is a good approximation for this
sample size (n¼ 100). For n¼ 10, on the other hand, the result from Student�s
t-distribution is LC¼ 9.2, while for n¼ 3, LC¼ 15 (Problem 10.26). Student�s
t-distribution is not applicable in the case of a paired blank (n¼ 1), because the
variance cannot be estimated.

The detection level is given by

LD ¼ LC þ tb;n�1sD: ð10:56Þ
Here sD is the standard deviation of the signal at the exposure level LD and b is the
probability that the reading will be less than LC. Thus, LD is theminimummean dose
forwhich the probability of a type II error (incorrectly accepting thenull hypothesis) is
no greater than b (cf. Figure 10.2), where LD corresponds to AII. Our task next is to
find how LD can be determined from the measured parameters.

The average background �XB in Eq. (10.50) is contributed by all signals not due to
the radiation exposure XH being evaluated. These include background radiation,
reader noise, and any other factors thatmight arise from treatment or handling of the
dosimeters (e.g., fogging of film, fading of TLDs). We can single out the part XN

(having standard deviation sN) of �XB that is due to reader noise, which is not
attributable to the dosimeter. The total dosimeter reading, XT, is equal to the sum of
the net dosimeter reading, XH, and the average background reading, �XB. Hence,

XT ¼ XH þ �XB ¼ ðXH þ �XB�XNÞþXN ¼ ðXT�XNÞþXN; ð10:57Þ

in which the expression in parentheses describes the dosimeter signal alone. The
standard deviation of the dosimeter signal is assumed to be a constant fraction k of the
signal XT�XN itself. Equation (10.57) then implies for the variance that

s2
T ¼ k2ðmT�mNÞ2 þ s2

N; ð10:58Þ

in which k is the relative standard deviation of the dosimeter reading. Similarly, for
the background,

s2
B ¼ k2ðmB�mNÞ2 þ s2

N: ð10:59Þ
Substitution of Eq. (10.58) into Eq. (10.51) gives

s2
H ¼ k2ðmT�mNÞ2 þ s2

N þ 1
n
s2
B: ð10:60Þ

Taking expectations in Eq. (10.57), we find that mT ¼ mH�mB. Using this and s2
N

from Eq. (10.59) and collecting terms leads to the following (Problem 10.22):

s2
H ¼ k2 m2H þ 2mHðmB�mNÞ

� �þ s2
B 1þ 1

n

� �
: ð10:61Þ

At the detection level, mH ¼ LD, and so the variance is s2
H ¼ s2

D, where the latter is
defined by Eq. (10.56). Introducing the notation mB0 ¼ mB�mN for the background
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mean, excluding system noise, and remembering Eq. (10.52), we obtain (Problem
10.23)

s2
D ¼ k2ðL2D þ 2LDmB0 Þ þ s2

0: ð10:62Þ

On the left, s2
D depends on LD. Using Eq. (10.56) for LD and substituting Eq. (10.53)

for LC (assuming n is large so that tb,n�1� zb) gives

sD ¼ LD�zas0

zb
: ð10:63Þ

Employing this in Eq. (10.62) and rearranging terms gives the following quadratic
equation for LD:

ð1�z2bk
2ÞL2D�2ðzas0 þ z2bk

2mB0 ÞLD þðz2a�z2bÞs2
0 ¼ 0: ð10:64Þ

With za¼ zb¼ z, the detection level is given by (Problem 10.24)

LD ¼ 2ðzs0 þ z2k2mB0 Þ
1�z2k2

: ð10:65Þ

This final expression shows the explicit dependence of the detection level on the
various components of the measurement. The dominant factor is almost always the
term zs0 in the numerator. The second term in the numerator gives the contribution
of background. When the background and relative standard deviation are small,
LDffi 2zs0ffi 2LC.

System noise must be determined in some way, since it has to be subtracted from
background in order to obtain mB0 . In one method, a plot is made of background
accumulation in a set of TLDs as a function of time. This plot should, if there is no
system error, yield a straight line with its intercept at the origin. The value of a
nonzero intercept is taken as the measure of the system noise. In a study at one site,
TLDs were distributed to 50 employees, each of whom stored the dosimeters in a
suitable location at home. A subset of the dosimeters was retrieved from each
employee atmonthly intervals and read, and the accumulated background signal thus
determined over the course of a year. As shown in Figure 10.11, the resulting
regression curve (Chapter 14) has an intercept at 12 mrem, which can be used as an
estimator for mN, introduced in Eq. (10.57).

In applications of Eq. (10.65), Student�s t-values replace the values of z, and sample
standard deviations can replace the s values. In accordance with Eqs. (10.52)
and (10.53), the first value of z in the numerator of Eq. (10.65) should be replaced
by tn�1;a, since there are n background dosimeter readings.We replace the z2 terms in
the numerator and denominator. The estimated relative standard deviation,
k ¼ ŝ0=�x, is determined by m dosimeter readings at large dose compared with
background, and since a¼b, the replacement is tm�1;a. Finally, mB0 is replaced by

10.7 Thermoluminescence Dosimetry j259



�HB0 ¼ �HB��N (average background signal with system noise removed). With these
substitutions, the detection level becomes

LD ffi 2ðtn�1;aŝ0 þ t2m�1;ak
2 �HB0 Þ

1�t2m�1;ak
2

ð10:66Þ

As pointed out already, the formulas developed here apply to the response of a
single TLD element. They can be used for the dose response of multiple elements
combined in such a way that the response algorithm is a function of the element
readings without discontinuities, as long as both background dosimeters and field
dosimeters (measuring possible added dose) are analyzed in identical ways. The
formulas are not suitable for mixed fields when the dosimetric ratios of the field
components (e.g., beta/gamma) are not known.

In practice, the assumption of normally distributed responses should be checked.
Figure 10.12 shows the distributions of responses for each of the four elements that
comprise the TLDs used to determine system noise in Figure 10.11. The bars
represent the empirical data (number of dosimeters giving a particular dose response
in steps of 1 mrem), and the continuous curves are the normal distributions with
means and standard deviations equivalent to those of the actual distributions. At best,
the data appear to be only very roughly normally distributed. Although formulas
developed above probably give reasonable approximations of LC and LD for many
purposes, a more rigorous treatment should be considered for critical applications.

Care should also be taken in the way LC and LD are used. The critical level, by
definition, determines whether a result is significantly different from background.
The detection level should not be considered as the limit for reporting net dose as
either �zero� or �positive.� As employed in personnel dosimetry programs, the
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Figure 10.11 Regression method for estimating system noise (Sonder and Ahmed, 1991). HB is
the time-dependent accumulated background signal plus system noise (corresponding to �HB in the
discussion leading to Eq. (10.66)).
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detection level is most useful as a standard measure by which the performance of
different dosimetry laboratories may be compared. The value of the critical level is
best determined empirically, rather than by the ideal represented by the standard
formulas. In radiation protection programs, the presence or absence of added doses
at low levels can have significant impacts on operations in addition to potential
implications for worker health. Values selected for a and b may be based on any
reasonable criteria, such as program costs and regulatory requirements. The gen-
erally accepted assignment a¼ b¼ 0.05 is useful when there are no other imposing
considerations. Using b¼ 0.05 can impose a large sample size, and inmany practical
situations using b¼ 0.10 is acceptable.

Element 1

0 10 20 30 40

N
um

be
r 

of
 O

cc
ur

re
nc

es

0

2

4

6

8

10

12
Element 2

0 10 20 30 40
0

2

4

6

8

10

12

Element 3

H (0) (mrem)
0 10 20 30 40

N
um

be
r 

of
 O

cc
ur

re
nc

es

0

2

4

6

8

10
Element 4

H (0) (mrem)
0 10 20 30 40

0

2

4

6

8

10

Figure 10.12 Typical distributions of
environmental background signals (bars)
recorded in the vicinity of a nuclear laboratory.
Each graph is for a single element of a four-
element thermoluminescence dosimeter. A
normal distribution with the same mean and
standard deviation as the bar graph is

superimposed in each case. The figure shows
that assuming a normal distribution for these
results is problematic and illustrates the
importance of verifying assumptions about the
type of distribution in establishing a well-
characterized personnel dosimetry program.
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10.8
Neyman–Pearson Lemma

In Section 10.5, we touched on optimization of hypothesis testing. As ordinarily
practiced, a is set at some agreed upon level and b is independently chosen. The test
thatminimizes b for fixeda is called themost powerful test, or best test, of sizea. In this
section, we describe the Neyman–Pearson lemma, which allows one to find such a
best test.

Neyman–Pearson Lemma
Let X1, X2, . . ., Xn form a random sample from a distribution with probability density
function f(x, �).Wewish to carry out the following test of hypothesis regarding the numerical
value of the parameter �:

H0 : � ¼ �0 versus H1 : � ¼ �1: ð10:67Þ
If L(�) is the likelihood function, then the best test of size a of H0 versus H1 has a critical

(or rejection) region of the form

Lð�1Þ
Lð�0Þ � A ð10:68Þ

for some positive constant A.

We shall not present a proof of the lemma, which is given, for example, in Hogg
and Tanis (1993). We show here how it can be used to derive the best test for a simple
versus composite example.

& Example
Let X1 X2, . . ., Xn be a random sample from a normal population with known
variance s2 and unknown mean m. We wish to test

H0 : m ¼ m0 versus H1 : m ¼ m1; with m1 > m0: ð10:69Þ
Use the Neyman–Pearson lemma to find the best test of size a.

Solution
We know that �X is a useful estimator of m. The likelihood function for
the normal distribution has been given earlier by Eq. (7.109). Since here we
treat m as the only unknown parameter, we write

LðmÞ ¼ ð2ps2Þ�ðn=2Þ e�ð1=2s2Þ
P

ðXi�mÞ2 ; ð10:70Þ
inwhich the sum is carried out over i¼ 1, 2, . . ., n. By taking the logarithms on
both sides of Eq. (10.68), theNeyman–Pearson lemma implies that best test of
H0 versus H1 has a critical region of the form (A> 0)

ln
Lðm1Þ
Lðm0Þ
� �

� ln A: ð10:71Þ
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Combining the last two relations and taking logarithms, one finds

Xn
i¼1

½2Xiðm1�m0Þþ m20�m21� � 2s2 lnA: ð10:72Þ

With m1 > m0, this is equivalent to

�X � s2 ln A
nðm1�m0Þ

þ m0 þ m1
2


 B; ð10:73Þ

whereB is a positive constant (Problem10.28).Hence, by virtue of the lemma,
we find that the best test is a function of the sample mean �X . We can readily
determine the critical region by knowing that �X � Nðm; s= ffiffiffi

n
p Þ and that we

want the probability of a type I error to be a. That is, we stipulate

a ¼ PrðrejectH0jH0 is trueÞ ¼ Prð�X > BjH0 is trueÞ: ð10:74Þ
Now, under H0, �X � Nðm0; s=

ffiffiffi
n

p Þ and so we can write in place of the last
equality

a ¼ Pr
�X�m0
s=

ffiffiffi
n

p >
B�m0
s=

ffiffiffi
n

p
� �

: ð10:75Þ

Since the function ð�X�m0Þ=ðs=
ffiffiffi
n

p Þ � Nð0; 1Þ, the quantity
ðB�m0Þ=ðs=

ffiffiffi
n

p Þ must be equal to the value of za that cuts off the fraction
a to the right of the standard normal distribution. It follows, therefore, that the
critical value is

B ¼ m0 þ
zasffiffiffi
n

p ; ð10:76Þ

and the critical region (Section 10.5) is

C ¼ ðX1;X2; . . . ;XnÞ : �X > B ¼ m0 þ
zasffiffiffi
n

p
	 �

: ð10:77Þ

This methodology can be applied to any hypothesis testing situation. The inter-
ested reader is referred to Hogg and Tanis (1993) or Garthwaite, Jolliffe, and Jones
(2002).

10.9
Treating Outliers – Chauvenet�s Criterion

Data from a sampled populationmight contain one ormore values that do not appear
to be consistent with the others in the sample as a whole. The question then arises
whether to exclude such outliers from the analysis of the data, as not belonging to the
population. Chauvenet�s criterion, described in the next paragraph, can be used as an
aid in considering such a decision, especially when there appear to be no objective
reasons for rejecting the outlier.
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For a random variable X, having a sample mean �x and standard deviation s, we
consider a value X¼ x, typical of an outlier. Multiplying the probability that X� x by
the number of measurements n, including the suspect points, used in determining
the sample mean and standard deviation, one forms the product

g ¼ n PrðX � xÞ: ð10:78Þ

Chauvenet�s criterion states that a result may be considered for rejection if the
expected number g of such results in the sample is less than 0.5. Consider, for
example, a set of normally distributed data with n¼ 1000 measurements, a mean
�x ¼ 10, and a standard deviation s¼ 1. We can use the criterion to decide whether to
consider for exclusion an individualmeasurement result of x¼ 13, for example. This
value is three standard deviations beyond the mean. We find from Table A.3
that, in a random sample of this size, one would expect to observe about
g¼ (1000)(0.0013)¼ 1.3 instances in which a value x� 13 occurred. Finding a result
of x¼ 13 in this size population is not an unusual event, and Chauvenet�s criterion
indicates that there is no justification to reject it as an outlier.With the samemean and
standard deviation, but with a sample size of n¼ 100, onefinds g¼ 0.13. This value is
considerably less than 0.5 as specified by the criterion, and so the number of such
examples expected in this smaller sample is significantly less than unity. The sample
member x¼ 13 can thus be considered for exclusion as an outlier, with a new mean
and standard deviation estimated by using the remaining data.

The expression for g with normally distributed data, having mean m and standard
deviation s, is

g ¼ n

 
1ffiffiffiffiffiffi
2p

p
ð1
z

e�ð1=2Þt2 dt

!
¼ n

 
1� 1ffiffiffiffiffiffi

2p
p

ðz
�1

e�ð1=2Þt2 dt

!
; ð10:79Þ

where z ¼ jx�mj=s is the standard normal variable tabulated in Table A.3. The
evaluation of normally distributed results for sample sizes n. 30 should be carried
out by using Student�s t-distributionwith appropriate degrees of freedom (Table A.5).

& Example
The dose rate from a certain source of beta radiation has beenmeasured with
the following results (mrad h�1): xi¼ 179, 181, 180, 176, 181, 182, and 180.

a) Should the result, 176mrad h�1, be considered for exclusion as an outlier?
b) If this result is excluded, what is the effect on the estimated mean and

standard deviation?

Solution
a) With n¼ 7, the mean of the original data set is

�x ¼ 1
n

Xn
i¼1

xi ¼ 179:9: ð10:80Þ
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The standard deviation is

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn

i¼1 x
2
i �
 Pn

i¼1 xi

!2

nðn�1Þ

vuuuut ¼ 1:95: ð10:81Þ

We use Student�s t-distribution to calculate g, since the sample is small
with n¼ 7< 30. The percentile t, which expresses the difference between
the datum under consideration and the estimated mean divided by the
estimated standard deviation, is

t ¼ jx��xj
s

¼ j176�179:9j
1:95

¼ 2:00: ð10:82Þ

This value corresponds to an area of approximately 0.05 to either the left
of �x�ts or the right of �xþ ts. (From Table A.5, t¼ 1.943 with n� 1 ¼
6 degrees of freedom.) The number of such observations expected for this
sample size is

g ¼ n Prðt � 2:0Þ � 7ð0:05Þ ¼ 0:35: ð10:83Þ

Thus, wemay consider rejecting themeasurement 176mrad h�1 from this
sample on the basis of Chauvenet�s criterion, since g< 0.5.

b) If thismeasurement is excluded from the sample, then thenewestimate of
the mean is �x ¼ 180:5mrad h�1 (a change of only 0.3%), and the
new (unbiased) estimate of the standard deviation is s¼ 1.05mrad h�1

(a change of almost 50%). Removing an outlying datum usually does not
alter the samplemean verymuch, but tends instead to significantly reduce
the estimate of variability in the remaining data.

More than a single suspect datummight exist in a data set, inwhich case there are
at least two applicable strategies for usingChauvenet�s criterion. One approach is to
evaluate g for the suspect datum closest to the mean and consider rejecting it and
other further outlying data if g< 0.5. Another is to use multiples of 0.5 as the
rejection criterion if all the suspect data lie close together. Rejection may be
considered for two suspect data lying about the same distance from the mean,
for example, if g< 2(0.5)¼ 1. Chauvenet�s criterion is not an absolute indicator for
rejecting even a single suspect result, however, and justification for rejecting
multiple measurement results becomes rapidly more problematic and less desir-
able as a strategy for statistical decision making. There is virtually no support for
using Chauvenet�s criterion a second time to evaluate data that remain after one or
more have been rejected and a new estimate of the mean and standard deviation
determined.
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The decision to exclude data from a sample should be made with care. The
presence of outliersmight be a signal that something unsuspected and important is
going on. Also, reducing sample size increases uncertainty in estimates of
population parameters. Additional measurements should be made, if possible,
to support decisions about retaining or rejecting outliers. Besides that of Chau-
venet, other outlier rejection criteria can be found in the literature (e.g., Barnett
and Lewis, 1994).

Problems

10.1 Show that Eq. (10.3) yields the quadratic equation, r2rnc�1:36rrnc�47:0 ¼ 0:
10.2 Show that thefirst equality in Eq. (10.3) leads to the solution given by Eq. (10.4)

for rrnc.
10.3 Find the solution yielded by Eq. (10.4) when tb !1.
10.4 For equal gross and background counting times, show that the critical level is

given by Eq. (10.5).
10.5 Samples will be counted for 5min in a screening facility and compared with a

background count of 10min. The background rate is 33 cpm, and the
calibration constant is 3.44 disintegrations per count.
a) If the maximum risk for a type I error is to be 0.05, what is the minimum

significant measured activity?
b) If the gross counting time is increased to 10min, what is the value of the

minimum significant measured activity?
10.6 The quarterly penetrating background is determined to be 12.0	 5.0mrem

for a particular geographical area by employing seven dosimeters.
a) What is the critical level, given that a�2.5% probability of a false positive is

acceptable? (Use Student�s t-distribution for small sample size.)
b) A personnel dosimeter from this area indicates a response of 24.5 rem.

What dose should be reported for the employee?
c) What would have been the fractional change in the critical level if the same

background had been determined by using 60 dosimeters?
10.7 Determine in each part below which of the two changes proposed would have

the greater impact on the critical level in the last problem.
a) Doubling the background standard deviation or using only 2 dosimeters to

measure background.
b) Halving the background standard deviation or using 120 dosimeters to

measure background.
10.8 Use Eq. (10.10) to show that Eq. (10.11) follows when tg¼ tb¼ t.
10.9 Show that Eq. (10.14) applies when the background is stable and accurately

known.
10.10 Derive an expression from Eq. (10.64) for the detection level, LD, when

za 6¼ zb.
10.11 Describe and contrast the implications making type I and type II errors in

radiation protection measurements.
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10.12 Assume the conditions of Altshuler and Pasternack (1963). Two counting
systems are being considered for routine use. The calibration constant for
counter 1 is 0.0124 nCi per count, and the background B1¼ 7928 counts is
accurately known. The corresponding data for counter 2 are 0.00795 nCi per
count and B2¼ 15160 counts, also accurately known. Counting times are the
same for evaluating both systems.
a) At a given level of risk for a type I error, what is the ratio of the minimum

significant measured activities for the two counters?
b) Additional shielding can by placed around counter 1 to reduce its back-

ground. It is decided that the acceptable risks for type 1 and type 2 errors are
both to be 10%. If only the shielding of counter 1 is changed, what number
of background counts B1 would then be required to achieve a minimum
detectable true activity of 1.0 nCi?

c) What factors determine the value of the calibration constant?
10.13 A4-minbackground count and a 16-mingross count are takenwith specimens

being assessed for activity. The calibration constant is 2.36 Bq per net count.
A selected sample registers 120 background and 584 gross counts.
a) Estimate the expected value of the net count rate and its standard deviation.
b) What is the implied sample activity?
c) What is the probability that a sample with zero true activity (AT¼ 0) would

give an activity measurement exceeding that found in (b)? Is the measure-
ment in (b) consistent with zero true activity for this sample?

d) Assume that AT¼ 0. What are the smallest net count numbers, LC, over a
4-min period that would be exceeded with a probability no greater than
0.05 or 0.10?

e) With these values of LC, what would be theminimumsignificantmeasured
activities?

10.14 Measurements of a sample and background, taken over the same length of
time, yield, respectively, 395 and 285 counts. The calibration constant is
3.15 Bq per net count. If the maximum risks for both type I and type II errors
are 0.05, determine
a) the critical count number;
b) whether the sample has activity;
c) the measured sample activity;
d) the minimum significant measured activity;
e) the minimum detectable true activity.

10.15 Ten randomly selected dosimeters give the following readings (in mrem):
4.70, 4.89, 5.18, 4.57, 5.41, 5.11, 4.28, 4.90, 5.19, and 5.42.
a) Calculate the sample mean and standard deviation.
b) Determine a 95% confidence interval for the true mean value.
c) An acceptable reading for dosimeters from this population is 5.1 mrem.

Use the t-test to determine whether the mean response from this group
differs significantly from the acceptable value with a¼ 0.05. (Recall from
Section 6.9 that t ¼ ð�x�mÞ=ðs= ffiffiffi

n
p Þ ffi tn�1.)
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d) By considering the confidence interval, could one infer that this sample
differed significantly from the acceptable value?

10.16 State the (a) null and (b) alternate hypotheses, both symbolically and in words,
for deciding whether a net bioassay result indicates the presence of radio-
activity in a subject. Are these hypotheses simple or composite? One-tailed or
two-tailed, and why?

10.17 The activity concentration of uranium in soil around a processing plant has a
mean m¼ 3.2 pCi g�1 and standard deviation s¼ 0.2 pCi g�1. Soil samples are
collected monthly to monitor for possible contamination. The goal is to
maintain a state of �no detectable uranium above background� in the soil.
a) What measured level of uranium in soil would indicate a failure of the

containment controls, given an acceptable probability a¼ 0.01 of a false
positive?

b) Suppose that we use LC¼ 3.7 pCi g�1 as the critical value for our test. That
is, we will reject H0: m¼ 3.2 pCi g�1 if a sample shows a concentration
greater than LC.What is the probability that wewill acceptH0when the true
value is 3.2 pCi g�1 (a type II error, b)?

c) Repeat (b) for m¼ 3.4, 3.6, 3.8, 4.0, and 4.1 pCi g�1.
d) Plot the values obtained in (b) and (c), showing m as the abscissa and (1�b)

as the ordinate.
e) From your plot, determine the power when m¼ 3.2 pCi g�1.

10.18 Suppose we estimate m and s in the last problem from a sample of size n.
Answer the following questions using the corresponding average and sample
standard deviation.
a) Assume H0: m¼m0 and show that the expression for the critical value LC,

using �X with a significance level of a is LC ¼ m0 þðs= ffiffiffi
n

p Þtn�1;a.
b) Calculate LC if s¼ 0.2, a¼ 0.05, and n¼ 10 using the expression in (a).
c) Calculate b using the critical value from (b) when the true mean is

m¼ 3.4 pCi g�1.
d) For fixed a, the text mentioned that b can be reduced by increasing the

sample size. With everything else remaining the same, consider a sample
size of 15. Given m¼ 3.4 pCi g�1, calculate b. (Note that you need to
recalculate LC in order to do this.)

10.19 Analysis of a uranium worker�s lung count results shows that there are
118� 103 counts in the region of interest for 235U. The worker�s background
in the region of interest was established by three lung counts prior to his
beginning work with uranium. The results were 45� 103, 65� 103, and
80� 103 counts. All lung counts were performed for a standard 20-min count
time. Activity of 235U in the lung for this body counter is determined by using
the conversion factor K¼ 10 s�1 nCi�1. Answer the following questions,
stating all assumptions.
a) Does the analytical result indicate that there is 235U activity in the worker�s

lung?
b) What is the best estimate of 235U activity in the worker�s lung?
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c) What is the N13.30 MDA for 235U in the worker�s lung, treating the pre-
uranium-work background counts as measurements of a well-known
blank? How does this MDA compare with the 235U activity estimate in
part (b)?

d) What would you do next to assess this worker�s exposure?
10.20 The ANSI N13.30 formula for calculating MDA contains a semi-empirical

term, 3/KT, for assurance that the b� 0.05 probability of a type II error is
assured, even under low-background conditions when the assumption of a
normal distribution of results may not be valid. To illustrate this, consider an
alpha spectrometer, used for measuring actinides in excreta for a radio-
bioassay program, that registers no counts (over equal time intervals) from
either background or a paired blank. Ignore the conversion factor, 1/KT, in the
ANSI MDA formula and answer the questions below, considering only the
counts recorded in an appropriate region of interest.
a) What is the critical level for an a� 0.05 probability of a type I error?
b) What is the ANSI N13.30 detection level, LD (in counts), using Eq. (10.43)?
c) Use the critical level from (a) and assume that counting results in any

particular region of interest are Poisson distributed to calculate the
probability of a type II error for LD¼ 2, for LD¼ 3, and for LD¼ 4.

d) What would be the value of LD using the ANSIN13.30 formula without the
semi-empirical term (i.e., MDA¼ 4.65sB)?

e) Explain why the 3/KT term is included in the ANSI N13.30 formula,
considering the answers to (c) and (d).

10.21 Twenty dosimeters receive a calibrated dose of 10 000mGy. The response
mean and standard deviation are 10 100	 500mGy. Assume that any differ-
ence between the mean response and the known delivered dose is due to
system noise. Estimate the relative standard deviation k of the dosimetric
response with noise removed.

10.22 Verify Eq. (10.61).
10.23 Verify Eq. (10.62).
10.24 Show that LD is given by Eq. (10.65) when za¼ zb¼ z.
10.25 Starting with PrðX > LCjmn ¼ 0Þ after Eq. (10.55), solve part (b) of the

example.
10.26 When the Student�s t-distribution is used in the example considered in the last

problem, show that, for n¼ 10, LC¼ 9.2 and, for n¼ 3, LC¼ 15.
10.27 A personnel dosimetry program retrieves dosimeters from its radiation

workers every 90 days. The average background accumulation (including
system noise) over the 90-day period, determined using five dosimeters from
this population, is �HB ¼ 22:0	 5:5mrem, and a regression of the background
accumulation with time shows an intercept atHB,t¼0¼ 10.0mrem. Calibrated
irradiations of three dosimeters drawn from this population show that the
uncertainty (one standard deviation) in response to a 500-mremdelivered dose
is 	35 mrem.
a) Estimate the critical level at the end of the 90-day assignment period.
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b) Estimate the detection level, LD, at the end of the assignment period, using
Eq. (10.66).

c) What are the critical level and decision level near the beginning of the
assignment period, if �HB ¼ 11:2	 5:5mrem and all other parameters are
unchanged?

d) What are the critical level and decision level if 35 dosimeters drawn from
this population show the uncertainty in response to a 500-mrem delivered
dose to be 	35mrem?

e) What are the critical level and decision level at the end of the assignment
period if the uncertainty in �HB is	2.5mrem, but all other parameters are
unchanged?

10.28 Verify Eq. (10.73).
10.29 a) A sample of n observations is taken from a Poisson population with

parameter m. Use the Neyman–Pearson lemma to show that the critical
region for testing H0: m¼ m0 versus H1: m¼m1 (<m0) is given by

Xn
i¼1

xi � log Aþ nðm1�m0Þ
log m1�log m0

:

In the Neyman–Pearson lemma, the best critical region is such that the
ratio of the two likelihoods, one under the alternative hypothesis and the
other under the null hypothesis, is less than some constant, which we refer
to here as A.
(Hint: f ðx; mÞ ¼ e�m mx=x! and LðmiÞ ¼

Qn
j¼1 e

mi m
xj
i =xj!; i ¼ 0; 1.)

b) Ifm0¼ 10,m1¼ 8, and the sample size isn¼ 5,find the value ofA that yields
a significance level a closest to 0.05. (Recall that Y ¼PXi is a Poisson
random variable with mean nm. Use the normal approximation to find k
such that Pr(Y� k)¼ 0.05, then use this result to solve for A.)

10.30 A laboratory calibrates ion chambers by recording their responses to a well-
characterized source of radiation under the same measurement conditions
each day for 5 d. The ionization responses (nC) from one such instrument are
5.224, 5.535, 5.339, 4.980, and 4.516.
a) Which result lies furthest from the mean, and by what amount?
b) What is the expected number of results g lying at least as far from themean

as the one in part (a)?
c) Can the value lying furthest from the mean be excluded, and a new mean

and variance calculated by using Chauvenet�s criterion?
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11
Instrument Response

11.1
Introduction

Detection and quantitative measurements are basic to assessment, control, and
protection practices in dealing with ionizing radiation. It is essential, therefore, that
instrument readings be understood fully and interpreted correctly. Acounter can give
a misleading result due to the malfunction of a component or due to an incorrect
setting. In addition, the responses of many devices also reflect random errors
inherent in the atomic processes being monitored. As distinct from systematic
errors, such as awrong setting, effects of purely statistical fluctuations on instrument
readings will be the focus of this chapter. We thus deal with certain irreducible limits
imposed on precision by the fluctuations in quantum physics, apart from any other
sources of uncertainty.

Only a few topics from this rather broad aspect of instrument response will be
addressed here. We consider the energy resolution attainable from pulse height
measurements with scintillation counters and ionization devices, chi-square testing
to check proper functioning of a count ratemeter, anddead time corrections for count
rate measurements.

11.2
Energy Resolution

A variety of instruments are available for measuring the energy spectra of alpha
particles, gamma photons, and other types of radiation. Many devices depend on the
collection of a number of charge carriers1) that result from the complete absorption of
a single incident particle or photon in the detector. In a scintillation counter, the
energy of the absorbed particle is partially converted into a burst of low-energy

1) For example, electrons or, in the case of semiconductors, electron–hole pairs.

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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(scintillation) photons, some of which liberate photoelectrons that are collected from
the cathode of a photomultiplier tube. Ideally, the total charge of the electrons
collected in a pulse from the photomultiplier tube – the pulse height – is proportional
to the initial energy of the particle absorbed in the scintillator. Depending on the
amount of charge collected, the pulse height is registered in the proper energy
channel, as determined by independent calibration of the instrument. In a gas
proportional counter, electrons liberated directly by absorption of the incident
particle are accelerated to produce additional ionizations. Gas multiplication thus
occurs, providing a pulse of size dependent on the particle energy.

In all of these �energy proportional� detectors, repeated pulse height measure-
ments with the absorption of single, monoenergetic particles or photons will result
in a distribution of recorded energies. The distribution is called the response
function of the detector. A hypothetical example is shown in Figure 11.1. The
response function is characterized by a peak centered about amean value Eo, which
is the energy of themonoenergetic radiation emitted by the source. Thewidth of the
peak reflects the extent of statistical variations in the energy measurement. The
narrower the peak, the better the resolution of the counter – that is, its ability to
distinguish radiation of one energy in the presence of another. The peak can be
characterized quantitatively by its full width at half its maximum height (FWHM).
The energy resolution of the detector at energy Eo is then defined as the dimen-
sionless ratio

R ¼ FWHM
Eo

; ð11:1Þ

E

p(E)

0
E0

p(E0)

p(E0) FWHM1
2

Figure 11.1 Response function for detector
absorbing monoenergetic particles or photons
with energy Eo. The quantity p(E)dE represents
the probability that a given pulse falls within the

interval from E to E þ dE. For a normal
distribution, the full width of the peak at one-half
the maximum value is equal to 2.35 standard
deviations: FWHM¼ 2.35s.
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often expressed as a percentage. As we shall assume throughout this chapter, the
response function in Figure 11.1 can often be approximated by a normal curve, for
which FWHM¼ 2.35s in terms of the standard deviation s (Problem 11.1). The
resolution can then be written as

R ¼ 2:35s
Eo

: ð11:2Þ

In many detectors, the energy of an absorbed particle or photon is registered
according to the amount of charge, or number of charge carriers (e.g., electrons),
collected in a pulse. This number is a discrete random variable. Other factors being
the same, resolution can be associated with the average energy needed to produce
an electron that is collected in the pulse. When this energy is small, numerically
large samples of charge carriers per pulse result from the absorption radiation,
characteristic of good resolution.We shall see belowhow the average energy needed
to produce a charge carrier compares for different detector types.

Some insight into energy resolution can be gained by assuming initially that
fluctuations in the number of collected charge carriers are described by Poisson
statistics when monoenergetic radiation is absorbed. For detectors with a linear
energy response (i.e., a linear conversion of pulse height into channel number for a
pulse of any size), themean pulse amplitudeEo is proportional to themeannumberm
of charge carriers. We write Eo¼ km, where k, the constant of proportionality, is the
mean energy needed to produce a collected charge carrier. For a Poisson distribution,
the standard deviation in the pulse height is then given by s ¼ k

ffiffiffi
m

p
. Applying

Eq. (11.2), we write for the resolution with Poisson statistics

RP ¼ 2:35k
ffiffiffi
m

p
km

¼ 2:35ffiffiffi
m

p : ð11:3Þ

The estimator for m is the average number of charge carriers �n. Substituting �n for m
in Eq. (11.3) gives the estimate for RP that can be determined by measurement. In
this approximation, one sees that the resolution of a detector improves as the
reciprocal of the square root of the average number of charge carriers collected
from the absorption of a particle or photon. Therefore, the resolution improves as the
reciprocal of the square root of the energy of the particle or photon.

Measurements show that a number of radiation detector types have considerably
better resolution than that implied by the Poisson value (11.3). Therefore, the
processes that produce the individual charge carriers that are collected are not
independent in such detectors. The departure of the response of an instrument from
Poisson statistics is quantitatively expressed by means of the Fano factor, defined as
the ratio of the actual, or observed, variance s2

o in the number of charge carriers and
the Poisson variance s2

P:

F ¼ s2
o

s2
P
: ð11:4Þ
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Substitution of the sample variance s2o as the estimator fors2
o gives the estimator forF,

which can be determined by measurement. The observed resolution Ro is related to
the Fano factor as follows. Using Eqs. (11.2) and (11.4), one can write

Ro ¼ 2:35so

Eo
¼ 2:35sP

ffiffiffi
F

p

Eo
: ð11:5Þ

Since Eo¼ km and sP ¼ k
ffiffiffi
m

p
, one obtains

Ro ¼ 2:35

ffiffiffi
F
m

s
¼ RP

ffiffiffi
F

p
; ð11:6Þ

where Eq. (11.3) has been used for the last equality. Reported values of the Fano factor
are in the range from about 0.05 to 0.14 for semiconductors and about 0.05 to 0.20 for
gases. The Fano factor is close to unity for many scintillation counters.

& Example
a) Interpret the physical meaning for the two limiting values of the Fano

factor, F¼ 0 and F¼ 1, applied to a gas proportional counter.
b) Give a physical reason, based on energy conservation, to explain why gas

ionization cannot strictly be a Poisson process.
c) How is energy expended in a gas by a charged particle without producing

ionization?

Solution
a) According to the definition (11.4) of the Fano factor,F¼ 0wouldmean that

there are no fluctuations observed in the number of electrons collected for
a given amount of absorbed energy. The resolution would be precise, and
the response function (Figure 11.1) would be a delta function at the energy
Eo, the FWHMbeing zero. The valueF¼ 1, on the other hand,wouldmean
that the distribution of the number of electrons is consistent with Poisson
statistics.

b) A minimum amount of energy, called the ionization potential, is always
required to free an electron from an atom or a molecule in the gas. This
minimum is equal to the binding energy Emin of the most loosely bound
electron. Theoretically, because of energy conservation, the maximum
number of ion pairs that could be produced by absorption of a particle of
energy Eo is Eo/Emin. Thus, energy conservation and electron binding
prevent gas ionization from rigorously obeying Poisson statistics. The
latter implies that there is a nonzero probability for the formation of any
number of ions.

c) As just described, energy is spent in overcoming the binding energy of
electrons. In addition, gas atoms and molecules undergo transitions to
discrete, bound, excited states by absorbing energy from incident radiation
without ionization. The excited states can then relax (i.e., lose their excess
energy) by photon emission, molecular dissociation, or collisions with
other molecules.
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The discussions in this section have addressed principally effects that the statistical
nature of radiation interaction has on resolution when energy measurements are
made. A number of additional factors can also affect the overall resolution of a
detector. In a gas proportional counter, for example, electronic stability, geometrical
nonuniformity in structural parts and in the sensitive volume, and gas purity play a
role. Each of these independent sources of error, which add in quadrature, can
affect resolution. For most gas and scintillation counters, the principal limitation
on resolution arises from the statistical fluctuations. For semiconductors, the same
is true at high energies; at low energies, other phenomena can become more
important.

11.3
Resolution and Average Energy Expended per Charge Carrier

A charged particle, passing through a gas, loses energy by ionizing and exciting the
atoms ormolecules of the gas. Some of the secondary electrons it liberates through
ionization have enough kinetic energy themselves to cause additional ionizations
and excitations in the gas. The total number of electrons thus produced can be
collected and measured for different particles of known initial energy that stop in
the gas. The average energy spent to produce an ion pair (i.e., a free electron and a
positive gas ion) when a particle stops in a gas is called the W value and is usually
expressed in eV per ion pair (eV ip�1). Examples of measured W values for alpha
and beta particles in several gases are shown in Table 11.1. The values of W
are numerically the same, whether expressed in eV ip�1 or J C�1 (Problem 11.3).
W values for alpha particles and other heavy charged particles in polyatomic gases
are generally in the range of 30–35 eV ip�1. They are essentially independent of the
initial particle energy above several hundred keV, but can be considerably larger for
particles of lower initial energy. For a given gas, the W value for beta particles is
somewhat smaller than that for alpha particles, and it remains constant down to
very low energies. The fact that W values are practically independent of the initial
energy of energetic particles has important implications for the use of ionization to
measure radiation dose.

Table 11.1 Average energies,Wa andWb, needed to produce and
ion pair (eV ip�1) for alpha and beta particles in several gases.a

Gas Wa (eV ip�1) Wb (eV ip�1)

He 43 42
H2 36 36
CO2 36 32
CH4 29 27
Air 36 34

Note: 1 eV ip�1¼ 1 J.
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& Example
What is the average number of ion pairs produced when a 5-MeV alpha
particle stops in air? Does the alpha particle itself produce all of the ion pairs?

Solution
According to Table 11.1, an alpha particle expends an average of 36 eV to
produce an ion pair in air. The average number of ionizations is, therefore,

5:00� 106 eV
36 eV

¼ 1:39� 105: ð11:7Þ

The alpha particle does not produce all of these ion pairs by itself. Some of its
ionizing collisions provide secondary electrons with enough energy to ionize
additional airmolecules. A typical energy loss by an energetic alpha particle in
a single ionizing collision is at most a few tens of eV.

For ionization in semiconductors, theW values for producing an electron–hole pair
(at 77 K) are 3.76 eV for Si and 2.96 eV for Ge. Compared with a gas, the absorption of
a given amount of energy in a semiconductor produces about 10 times as many
charge carriers initially, thus providing for inherently better resolution. As we shall
see in the next section, the average energy required to produce an electron at the
photocathode in a scintillation detector is several hundred eV. For comparison, the
energy resolution for 662-keV gamma rays from 137Cs is about 0.3% for high-purity
germanium (HPGe), in the neighborhood of 2% for a gas proportional counter, and
in the range of 6–10% for the best resolution with a NaI scintillation counter.

11.4
Scintillation Spectrometers

Radiation detectors utilize both organic and inorganic scintillating materials in a
number of varied applications. Figure 11.2 shows an example of a pulse height
spectrummeasured with a sodium iodide crystal scintillator exposed to the 662-keV
gamma photons from 137Cs. Various features of the measured spectrum are inter-
preted as follows. An incident photon that does not escape from the crystal gives rise
to an event with an energy registered under the total energy peak (light shading),
which is also called the photopeak. Such a photon undergoes complete absorption in
the crystal, either producing a photoelectron directly or after one or more Compton
scatterings in the crystal. Scintillation photons associatedwith these processes aswell
as with any subsequent Auger electrons, characteristic X-rays, or bremsstrahlung
rapidly combine and give rise to a single pulse in the region of the total energy peak,
centered at 662 keV. The resolution of this particular counter is seen to be about 8%.

Other incident gamma photons, not photoelectrically absorbed, undergo single or
multiple Compton scatterings before escaping from the crystal. Such photons
produce an event that is registered under the continuous Compton distribution
(dark shading) in Figure 11.2. The Compton edge at 478 keV marks the maximum
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energy that a 662-keV gamma ray can transfer to an electron by a single Compton
scattering. Some gamma rays from the source enter the crystal only after being
scattered into it from surrounding objects. Many of these are reflected in the
backward direction from objects beyond the crystal, giving rise to the backscatter
peak (unshaded). Since most are not reflected at exactly 180�, their average energy is
somewhat larger than the minimum possible after Compton scattering, namely,
larger than 662� 478¼ 184 keV.

As mentioned in the last section, the Fano factor is close to unity for many
scintillator systems. We shall assume for analysis here that the resolution of the
detector in Figure 11.2 is determined solely by the distribution of charge carriers
produced by the Poisson process. A charge carrier in this case is a photoelectron
liberated from the cathode at the first stage of the photomultiplier tube. Electron
multiplication in the tube is assumed to add negligible variance to that associated
with the distribution of the number of photoelectrons that initiate a pulse. The
following example illustrates how the inherent resolution of a scintillator arises from
the underlying statistical processes.

& Example
A scintillation crystal, like that used for Figure 11.2, is exposed to mono-
energetic, 420-keV, gamma rays. The crystal has an efficiency of 8.1% for the
conversion of absorbed radiation energy into scintillation photons, which
have an average energy of 2.83 eV. An average of 52% of the scintillation
photons produced by the absorption of a gamma ray reach the cathode of the
photomultiplier, where the efficiency for producing a photoelectron in the
initiating pulse is 13%.

a) Calculate the average number of photoelectrons produced per pulse.
b) Calculate the resolution (Poisson) for the 420-keV gamma rays.

Figure 11.2 Pulse height spectrum from a 2 in.� 2 in. NaI(Tl) scintillation counter exposed to
662-keV gamma photons from 137Cs. The resolution under the total energy peak is �8%.
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c) What is the average energy needed to produce a charge carrier (electron)
collected from the cathode of the photomultiplier tube?

d) If the relationship between light yield and absorbed energy is independent
of the gamma-ray energy, the detector is said to have a linear response.
With assumed linearity, what would be the resolution of the detector for
750-keV gamma rays?

Solution
a) Given the absorption of a 420-keV gamma ray, we trace the various

processes sequentially to find the average number �n of photoelectrons
produced. The total energy of the scintillation photons, created with
an efficiency of 8.1% when a gamma photon is absorbed, is 4.20 �
105 eV� 0.081¼ 3.40� 104 eV. With an average energy of 2.83 eV, the
average number of scintillation photons is (3.40� 104 eV)/(2.83 eV)¼
1.20� 104. Of these, the average number that reach the photocathode is
(1.20� 104)� 0.52¼ 6.25� 103. The average number of photoelectrons
produced per pulse is thus �n¼ (6.25� 103)� 0.13¼ 813.

b) The resolution, assumed to be determined by Poisson statistics, is found
from Eq. (11.3):

RP ¼ 2:35ffiffiffi
�n

p ¼ 2:35ffiffiffiffiffiffiffiffi
813

p ¼ 0:082; ð11:8Þ

or 8.2%.
c) The average energy needed to produce a single photoelectron from the

cathode of the photomultiplier tube in the detector is

420 000 eV
813

¼ 517 eV: ð11:9Þ

d) Under the assumption of a linear energy response for the detector, the
above conversion efficiencies are the same for absorption of a 750-keV
gamma photon as for a 420-keV photon. It follows from Eq. (11.9) that a
750-keV gamma ray will produce an average of

�n0 ¼ 750 000 eV
517 eV

¼ 1:45� 103 ð11:10Þ

photoelectrons. In place of Eq. (11.8), we have for the resolution at the
higher energy

R0
P ¼ 2:35ffiffiffiffi

�n0
p ¼ 2:35ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:45� 103
p ¼ 0:062; ð11:11Þ

or 6.2%. The collection of a larger number of electrons in a pulse at the
higher gamma-ray energy results in improved resolution. One can see that
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the resolution improves as the inverse square root of the incident photon
energy. As an alternative way of solution, one finds directly from Eq. (11.8)
that

R0
P ¼ RP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
420 keV
750 keV

r
¼ 0:082

ffiffiffiffiffiffiffiffi
420
750

r
¼ 0:061; ð11:12Þ

which agrees with Eq. (11.11) to within roundoff.

11.5
Gas Proportional Counters

Weconsider next the effects of statisticalfluctuations in energy loss and ionization on
the resolution of a gas proportional counter. The pulse of charge collected following
the energy lost by a charged particle or photon results from two independent
processes. First, the radiation interacts directly with the gas to produce an initial
number of secondary electrons, this number being a discrete random variable. These
electrons are produced before charge collection begins. For a given amount of energy
deposited, this initial number will be distributed about somemean value, �n. When a
charged particle of energy E stops in the gas, �n ¼ E=W , as illustrated by the last
example. Second, the initial electrons are accelerated by a strong collecting field and
can acquire enough energy to produce additional ionizations, which in turn can
produce still more, leading to an avalanche. Gas multiplication of the initial charge
thus occurs. Under proper, ideal operating conditions, the number of electrons
collected in the pulse will be proportional to the original number of secondary
electrons producedby the radiation andhence proportional to the energy deposited in
the gas.

In an oversimplified picture of what actually takes place, each initial secondary
electron produces an avalanchewith its own number of additional electrons, which is
another discrete random variable. If �m is the average multiplication factor for an
initial electron, then the average charge collected in pulses from the deposition of a
given amount of energy in the gas is

�Q ¼ e�n �m; ð11:13Þ
where e is themagnitude of the charge of the electron. The distribution of the charge
from otherwise identical events is shown directly by the response function of the
detector, as in Figure 11.1.

Statistical fluctuations embodied in the response function of a gas proportional
counter are due to variations from pulse to pulse in both the initial number of
electrons and the individual electron multiplication factors. One can apply error
propagation analysis to study the relative contribution of each to the variance of
the charge collected (pulse amplitude). Investigations show that fluctuations in
gas multiplication typically contribute much more to the spread of the pulse
size distribution than fluctuations in the initial number of electrons. To a good
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approximation, with linearity the resolution for different radiation energies is still
inversely proportional to the square root of the energy.

11.6
Semiconductors

Semiconductors, particularly high-purity germanium, give the best energy resolu-
tion of any detector. As pointed out in Section 11.3, their excellent resolution is
associated with a high yield in the number of charge carriers per unit of energy
expended in them. At high energies, the resolution is governed primarily by the
statistical fluctuations in the number of charge carriers (electron–hole pairs) pro-
duced. Incomplete charge collection, which occurs at all energies, becomes more
important at low energies, where the number of charge carriers is relatively small.

Figure 11.3 shows a comparison of measurements made on the same source of
93%enricheduraniumusing scintillation detectors of thallium-doped sodium iodide
(NaI(Tl)) and cerium-activated lanthanumbromide (LaBr3(Ce)), and also using solid-
state detectors of cadmium zinc telluride (CdZnTe) and high-purity germanium. The
absolute scintillation efficiency of NaI(Tl) is around 13%, whereas that for cerium-
activated lanthanum bromide is around 21% (160% as efficient as NaI(Tl)). The
greater scintillation efficiency of LaBr3(Ce) results in better resolution than that

Figure 11.3 Comparison of gamma spectra
from 93% enriched uranium measured with a
NaI(Tl) scintillation counter, LaBr3(Ce)
scintillator, a CdZnTe wide-bandgap
semiconductor detector, and a high-purity
germanium semiconductor detector. The
improved resolution of LaBr3(Ce), compared

with NaI(Tl), is due to its superior light output,
and that of high-purity germanium, compared
with CdZnTe, because of the creation of larger
numbers of electron–hole pairs per unit energy
absorbed. (Spectral data courtesy of Steven E.
Smith, Oak Ridge National Laboratory, U.S.
Department of Energy.)
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obtained using NaI(Tl), as seen in Figure 11.3. High-purity germanium has superior
energy resolution because of the ease of ion-pair formation (�3 eV ip�1) in the
semiconductor crystal. CdZnTe is a semiconductor detectormaterial that can be used
at room temperature because of its wide bandgap (HPGe must be cooled to around
77K), but about 4.6 eV is required to produce an ion pair, so the energy resolution is
not as good as with HPGe.

Most of the closely spaced photopeaks, evident in the HPGe spectrum, cannot be
resolved at all by theNaI(Tl) and can only be inferred by the presence of asymmetry in
the primary photopeaks centered around 98 and 186 keV. CdZnTe and LaBr3(Ce)
exhibit better resolution than NaI(Tl), but not as good as that of HPGe.

11.7
Chi-Square Test of Counter Operation

As discussed in Sections 6.6–6.8, chi-square tests are designed to see howwell a set of
values fits an assumed statistical distribution or model. An important example of
their application in radiationprotection and innuclear physics is provided by a quality
control procedure used to check whether a counting system is operating properly. A
series of repeated counts aremade over time intervals offixed duration. If the counter
is functioning as it should, the observed fluctuations in the number of counts are
expected to be random and consistent with Poisson statistics. The observance of
abnormally large or small fluctuations would indicate the possible malfunction of
some component of the counting system. The chi-square test provides a numerical
measure for comparison of the observed and expected fluctuations. An example will
illustrate this test.

& Example
A GM counter is to be checked for proper operation. Twenty independent,
1-min readings are taken with the counter under identical conditions. The
observed count numbers, ni (i¼ 1, 2, . . . , 20), are shown in the first two
columns of Table 11.2.

a) Compute the value of x2 for these data.
b) What conclusion can be drawn about how the counter appears to be

functioning?

Solution
a) To determine x2 (Eq. (6.93)), we need to compute themean count number,

which will serve as our estimate of the mean m, and the sum of the
squares of the deviations from the mean. The number of degrees of
freedom is 19. From the data in column 2 of Table 11.2,we find that

�n ¼ 1
20

X20
n¼1

ni ¼ 192
20

¼ 9:60: ð11:14Þ
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From columns 3 and 4,

X20
i¼1

ðni � �nÞ2 ¼ 202:80: ð11:15Þ

(The estimated variance of the sample is thus

s2 ¼ 1
19

X20
i¼1

ðni � �nÞ2 ¼ 202:80
19

¼ 10:67: ð11:16Þ

This value is close to the sample mean, �n ¼ 9:60, consistent with the
Poisson distribution.) It follows that

x2 ¼
X20
i¼1

ðni � �nÞ2=�n ¼ 202:80
9:60

¼ 21:13: ð11:17Þ

b) Using Table A.3, we find that the probability of observing a x219 value as
large as 21.13 or larger is at least 0.3. Thus, this event is not rare or

Table 11.2 Count numbers ni observed in 1-min intervals from example in the text.

i ni ni � �n ðni � �nÞ2

1 11 1.40 1.96
2 12 2.40 5.76
3 5 �4.60 21.16
4 13 3.40 11.56
5 10 0.40 0.16
6 11 1.40 1.96
7 7 �2.60 6.76
8 13 3.40 11.56
9 3 �6.60 43.56
10 12 2.40 5.76
11 6 �3.60 12.96
12 11 1.40 1.96
13 9 �0.60 0.36
14 13 3.40 11.56
15 9 �0.60 0.36
16 5 �4.60 21.16
17 6 �3.60 12.96
18 13 3.40 11.56
19 14 4.40 19.36
20 9 �0.60 0.36
Total 192 0.00 202.80
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significant, and we may conclude that the counter is operating properly.
Figure 11.4 shows a plot of the sample frequency distribution of the ni
compiled from Table 11.3 and the Poisson distribution with the same
mean, �n ¼ 9:60.

ni

181614121086420

f(ni)

0.00

0.05

0.10

0.15

0.20

Figure 11.4 Plot of probability distribution
f(ni), shown by bars, and Poisson
distribution (filled circles) for 20 values
of ni given in Table 11.3. See example in

the text. Both distributions have the
mean �n ¼ 9:60. The filled circles are
connected by a dotted line for ease
of visualization.

Table 11.3 Data analysis for example in the text.

n f (n) nf (n) n� �n ðn� �nÞ2f ðnÞ

3 0.05 0.15 �6.60 2.18
4 0 0 �5.60 0
5 0.10 0.50 �4.60 2.12
6 0.10 0.60 �3.60 1.30
7 0.05 0.35 �2.60 0.34
8 0 0 �1.60 0
9 0.15 1.35 �0.60 0.50
10 0.05 0.50 0.40 0.01
11 0.15 1.65 1.40 0.29
12 0.10 1.20 2.40 0.58
13 0.20 2.60 3.40 2.31
14 0.05 0.70 4.40 0.97
Total 1.00 9.60 0.00 10.14
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11.8

Dead Time Corrections for Count Rate Measurements

A count rate meter registers an individual particle or photon that interacts with it.
However, immediately following an event, the counter needs a certain minimum
length of time, called the dead time, in order to recover and thus be able to record the
next event. Another particle or photon, interacting during this dead interval, will not
be registered. When counting a radioactive sample, it is important, therefore, to be
aware of any dead time corrections that should be made to the observed count rate,
especially with an intense source. The count rate indicated by the detector might be
substantially smaller than the rate of events taking place in the detector, which is the
relevant quantity.

Two idealized models can be used to approximate the behavior of counters. A
nonparalyzable detector is inert for a fixed time t following an event, irrespective of
any other events that occur during t. A paralyzable detector, on the other hand, is
unable to respond again until a time t has passed following any event, even when the
event occurs during a dead interval. Whereas the nonparalyzable counter simply
ignores events that happen during the downtime t, the start of the recovery period t is
reset in the paralyzable counter each time an event happens, irrespective of whether
that event is registered.

The behavior of the twomodels is illustrated in Figure 11.5. The top line shows the
occurrence of nine events, distributed in time according to the position shown along
the horizontal line. The middle and bottom lines indicate how the two types of
detectorswould respond, given the samedead time t. Both counters register events 1,

Time

Events

Nonparalyzable

Detector

Paralyzable
Detector

Events
Recorded:  1, 2, 3, 5, 6, 8
Missed:  4, 7, 9

Events
Recorded:  1, 2, 3, 6
Missed:  4, 5, 7, 8, 9

1 32 4 65 7 8

ττ τ τττ

τ τ τ τ

9

Figure 11.5 Example of events registered by nonparalyzable and paralyzable counter models. See
the text.
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2, and 3, but miss event 4, which occurs in a time less than t after event 3. The
nonparalyzable counter just ignores event 4. The paralyzable instrument needs at
least a time t following event 4 in order to be able to respond again. Event 5, which
follows 3 by a time greater than t and 4 by less than t, is registered by the
nonparalyzable, but not the paralyzable, counter. As seen fromFigure 11.5, the four
events 6, 7, 8, and 9 give two counts and one count, respectively, with the two
detectors. The events recorded andmissed are shown on the right in Figure 11.5. In
this example, the nonparalyzable instrument would register 2/3 and the paralyz-
able counter only 4/9 of the actual events. Most real counting systems exhibit
behavior intermediate to these two models. It is interesting to note, as Figure 11.5
illustrates, that radiation counters actually count the number of intervals that occur
between the events they respond to, rather than the number of events themselves.
That is, they register the number of time periods during which the instrument is
not responding.

To analyze the response of the two types of counters to radiation fields of different
fluence rates, we let rt be themean event rate and rc themean count rate as registered
by the instrument. Both rates are assumed to be constant in time. When the true
event rate rt is small, both detector types in Figure 11.5 will register almost the same
count rate rc. Even though a few events might bemissed by both counters, rc ffi rt. As
the event rate increases somewhat, the count rate fromboth instruments goes up. For
the nonparalyzable detector, the count rate will be a little higher than that for the
paralyzable detector. For both instruments, though, rc< rt because of dead time. If the
event rate becomes very large, the nonparalyzable counter will be triggered almost
immediately after each recovery time t. Its count rate will approach the limiting value
1/t, which is the maximum reading that such an instrument is capable of giving.
With the paralyzable counter, on the other hand, one can see from Figure 11.5 that
increasing rt to ever larger values will eventually cause the count rate to decrease. In
the limiting case of very large rt, the paralyzable counter never has a chance to recover,
and so the count rate approaches zero.

It is straightforward to work out relationships between rt, rc, and t for themodels,
which enable one to make dead time corrections in order to convert an observed
count rate into an estimated true event rate. If a measurement is made over a long
time t with a nonparalyzable counter, having a dead time t, then the number of
counts registered, rct, implies that the counter was unresponsive for a total length of
time rctt. The amount of time during which it was responsive, therefore, was
t� rctt¼ (1� rct)t. Thus, the fraction of the time t that it was �alive� is 1� rct, which
is the fraction of the true events that are registered:

1� rct ¼ rc
rt
: ð11:18Þ

Solving for the true event rate, we obtain

rt ¼ rc
1� rct

ðnonparalyzableÞ: ð11:19Þ
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When rt gets very large, then rct ! 1 in these equations, and so rc ! 1/t, as
pointed out in the last paragraph. When the event rate is small, rct� 1, Eq. (11.19)
gives, for low event rates,

rt ffi rcð1þ rctÞ; ð11:20Þ
where we have used the approximation (1� x)�1ffi 1 þ x for small x.

The analysis for the paralyzable counter is a little more involved. We can see from
the third line in Figure 11.5 that this counter registers only the number of time
intervals that are of length t or greater between successive events. To see the effect of
the dead time, we need to consider the distribution of such time intervals that occur at
a mean event rate rt. Since these events are random, they obey Poisson statistics. The
mean number of events that take place in a time t is rtt. Therefore, the probability
that no event occurs in a time interval between 0 and t is given by Eq. (5.27) with
m¼ rtt and x¼ 0:

po ¼ e�rtt: ð11:21Þ
The probability that an event does occur in the time interval between t and t þ dt is
equal to rt dt. Thus, the probability that the duration of a particular time interval, void
of any event, will end between t and t þ dt is

pðtÞdt ¼ port dt ¼ e�rtt rt dt: ð11:22Þ
That is, the probability is the product of (1) the probability e�rtt that no event has
occurred in t and (2) the independent probability rt dt that an event will occur in
dt (Eq. (3.50)). The probability that a time interval T longer than t will occur without
an event happening is

PrðT > tÞ ¼
ð1
t

pðtÞdt ¼ rt

ð1
t

e�rtt dt ¼ �e�rttj1t ¼ e�rtt: ð11:23Þ

(The exponential distribution was discussed in Section 6.7.) The observed count rate
rc is the product of the true event rate and the probability (11.23):

rc ¼ rt e
�rtt ðparalyzableÞ: ð11:24Þ

Unlike Eq. (11.19), this transcendental equation cannot be solved in closed form for rt
as a function of rc. The dead time corrections must be dealt with numerically. For
small event rates and rtt� 1, we can use the exponential series approximation,
ex ¼ 1þ xþðx2=2!Þþ � � � with Eq. (11.24) to show

rc � rtð1� rttÞ: ð11:25Þ

Additionally, when rct� 1, this equation also leads, after some manipulation, to the
same Eq. (11.20) for both models (Problem 11.19).

The relationships between count rates rc and event rates rt for the paralyzable and
nonparalyzable models are shown graphically in Figure 11.6. If there were no dead
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time (t¼ 0), then rc¼ rt, and the response of both counters would be identical and
linear, as illustrated. When t 6¼ 0, the count rate for the nonparalyzable detector
increases with increasing rt and tends toward its maximum value of 1/t. The count
rate for the paralyzable detector also rises, but then passes through amaximumat the
value 1/t, after which it decreases toward zero at large rt, as explained earlier. The
value of rt that makes rc a maximum and the resulting maximum value of rc can be
found by differentiation from Eq. (11.24):

drc
drt

¼ ð1� rttÞe�rtt ¼ 0: ð11:26Þ

It follows that the maximum count rate occurs when the event rate is rt¼ 1/t. (Note
that this event rate is numerically the same as the maximum count rate for the
nonparalyzable counter.) From Eq. (11.24), the maximum count rate for the paralyz-
able counter is then

max rc ¼ 1
t
e�1 ¼ 1

et
: ð11:27Þ

Wenote in Figure 11.6 for the paralyzable counter that, except at themaximum, there
are always two values of rt that correspond to a given instrument reading rc. A low
count rate found with a paralyzable system could be the response to a very intense
radiation field.

& Example
Anonparalyzable counter, having a dead time of 1.40 ms, shows a count rate of
1.10� 105 s�1.

a) What fraction of the true events is being counted?
b) What is the maximum count rate that the instrument can register?

rt

rc

rc = rt

Nonparalyzable

Paralyzable

τ-1

τ-1

(eτ)-1

Figure 11.6 Behavior of observed count rate rc as a function of the true event rate rt for paralyzable
and nonparalyzable counters with dead time t.
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Solution
a) The true event rate can be found from Eq. (11.19) with rc¼ 1.10� 105 s�1

and t¼ 1.40� 10�6 s:

rt ¼ 1:10� 105 s�1

1� ð1:10� 105 s�1Þ � ð1:40� 10�6 sÞ
¼ 1:30� 105 s�1: ð11:28Þ

The fraction of events being counted is thus

rc
rt
¼ 1:10� 105 s�1

1:30� 105 s�1
¼ 0:846; ð11:29Þ

or about 85%. (A more direct solution is obtained from Eq. (11.18).)
b) The maximum count rate that the instrument can record is

1
t
¼ 1

1:40� 10�6 s
¼ 7:14� 105 s�1: ð11:30Þ

& Example
Apply the data given in the last example (t¼ 1.40 ms and rc¼ 1.10� 105 s�1) to
a paralyzable counter.

a) Find the true event rate.
b) At what event rate will the instrument show its maximum count rate?
c) What is the maximum reading that the counter will give?

Solution
a) Substitution of the given information into Eq. (11.24) gives

1:10� 105 ¼ rt e
�1:40�10�6rt ; ð11:31Þ

in which the time unit, s, is implied. As pointed out after Eq. (11.27), we
expect two solutions for rt. These have to be found numerically, as can be
accomplished by trial and error. To this end, rather than using Eq. (11.31)
with its exponential term, we take the natural logarithm of both sides and
write

1:40� 10�6rt ¼ ln
rt

1:10� 105
: ð11:32Þ

This form is handier to work with than Eq. (11.31). As a first attempt at
solution, we try the result rt¼ 1.30� 105 s�1 found previously for the
nonparalyzable counter in the last example. Substitution of this value into
Eq. (11.32) gives 0.182 on the left-hand side, compared with the smaller
value, 0.167, on the right. This is apparently close to the actual solution, for
which rt should be somewhat larger (see Figure 11.6). Accordingly, we try
1.35� 105 s�1, which gives 0.189 on the left and 0.205 on the right in
Eq. (11.32). Since the value on the right is now the larger of the two, the
solutionmust lie between these two trial values of rt. The actual solution is
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rt¼ 1.32� 105 s�1, as can be verified by substitution. To locate the second
solution, we arbitrarily try order-of-magnitude steps in the direction of
larger rt. Starting with rt¼ 106 s�1, we find that the left-hand side of
Eq. (11.32) has the smaller value, 1.40, compared with 2.21 on the right-
hand side. With rt¼ 107 s�1, the two sides have the respective values 14.0
and 4.51, the left now being the larger of the two. Therefore, the equation
has a root in the interval, 106< rt< 107. Closer inspection shows that
rt¼ 3.45� 106 s�1 satisfies Eq. (11.32) and is the desired solution. In this
example, the paralyzable counter gives the same reading in one radiation
field as in another where the true event rate is more than 25 times greater.

b) From Eq. (11.26), the maximum count rate occurs when the event rate is

rt ¼ 1
t
¼ 1

1:40� 10�6 s
¼ 7:14� 105 s�1: ð11:33Þ

c) The maximum count rate is, from Eq. (11.27),

1
et

¼ 1

2:72� 1:40� 10�6 s
¼ 2:63� 105 s�1: ð11:34Þ

We have dealt with the random occurrence of true events as a Poisson process with
constant mean rate rt per unit time. Equation (11.22) gives the probability that the
duration of a particular time interval between two successive events will lie between t
and t þ dt. The quantity

pðtÞ ¼ rt e
�rtt ð11:35Þ

gives the probability density for the length of time t between successive randomly
spaced events, commonly called the exponential distribution (Section 6.7). This
function plays a role in a number of Poisson counting processes. For a large number
N of intervals observed over a long time t, the number n that have a length between t1
and t2 is

n ¼ N
ðt2
t1

pðt0Þdt0 ¼ Nrt

ðt2
t1

e�rtt0 dt0 ¼ Nðe�rtt1 � e�rtt2Þ: ð11:36Þ

For the response of a paralyzable counter with dead time t, n is simply the number of
intervals for which t1¼ t and t2 ! 1:

n ¼ N e�rtt: ð11:37Þ
Dividing both sides by the observation time t, we canmake the replacements n/t¼ rc
and N/t¼ rt, from which Eq. (11.24) follows.

Are the intervals between the successive n counts generated by a Poisson process?
One sees fromEq. (11.35) that short time intervals have a higher probability than long
intervals between randomly distributed true events. It follows that the counts
registered by a paralyzable counter are not a randomsubset of the Poisson distributed
true events, since the shorter intervals are selectively suppressed by the locking
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mechanism of the instrument. The subset of events registered as counts by a
nonparalyzable counter, on the other hand, is Poisson distributed. The distribution
of interval lengths between successive counts is exponentially distributed, like
Eq. (11.35), with probability density

pcðtÞ ¼ rc e
�rct: ð11:38Þ

For a large number of counts, a given event is registered with a fixed probability rc/rt.
In random time intervals of fixed length t, the mean number of events is rtt, and the
mean number of counts is rct.

Most gas proportional counters, self-quenchingGM instruments, and scintillation
counters are of the nonparalyzable type. Dead times forGM tubes and other gas-filled
detectors are in the range of 50–250 ms. Scintillation counters aremuch faster, having
dead times on the order of 1–5 ms. Charge collection in semiconductor detectors is
extremely fast, and system dead time typically depends on factors such as the
preamplifier rise time.

Commercial spectral software packages commonly report dead time in terms of
the fractional difference (as a percent) between real elapsed time and the system live
time during a measurement. The corresponding system response time t, as pre-
sented in this section, is related to this fractional difference by noting that the
apparent count rate rc is the ratio of the total number of events recorded by the
detector system and the elapsed time, whereas the true count rate rt is approximately
the ratio of events to the system live time. The relationship can be expressed as

t � f
Rc

; ð11:39Þ

where f¼ (real time� live time)/real time. Care should beused, however, in inferring
the detector dead time t from system dead time f, which may depend on several
factors.

Problems

11.1 Show that FWHM¼ 2.35s for the normal distribution (Figure 11.1).
11.2 The resolution of a certain proportional counter, having a linear energy

response, is 9.10% for 600-keV photons. What is the resolution for 1.50-MeV
photons?

11.3 For the average energy needed to produce an ion pair, show that
1 eV ip�1¼ 1 JC�1.

11.4 Calculate the Poisson energy resolution (FWHM in keV) for the absorption of
a 5.61-MeV alpha particle in an HPGe detector (W¼ 2.96 J C�1).

11.5 What is the energy resolution of the detector in the last problem if the Fano
factor is 0.07?

11.6 If the resolution of a gamma scintillation spectrometer is 10.5% at 750 keV,
what is the FWHM in keV at this energy?

290j 11 Instrument Response



11.7 What percentage energy resolution is needed for a gamma-ray spectrometer to
resolve two peaks of comparable intensity at 621 and 678 keV?

11.8 With a certain NaI gamma spectrometer, an average of 726 eV is needed to
produce an electron collected from the cathode of the photomultiplier tube. If
other sources of error are negligible, determine the energy resolution in keV
for the total energy peak of the 1.461-MeV gamma ray from 40K.

11.9 Can the instrument in the last problem resolve the two 60Co photons, emitted
with 100% frequency at energies of 1.173 and 1.332MeV?

11.10 A thick sodium iodide crystal with an efficiency of 12% is used in a
spectrometer exposed to 580-keVgamma rays. The scintillation photons have
an average wavelength of 4130A

�
, and 8.2% of them produce a photoelectron

that is collected from the cathode of the photomultiplier tube. Calculate the
energy resolution in percent for the total energy peak of the spectrometer at
580 keV. Assume that the resolution is determined solely by random fluctua-
tions in the number of photoelectrons produced following the complete
absorption of a photon.

11.11 Absorption of a 500-keV beta particle in an organic scintillator produces, on
average, 12 400 photons of wavelength 4500A

�
. What is the efficiency of the

scintillator?
11.12 A series of ten 1-min background readings with a GM counter under identical

conditions give the following numbers of counts: 21, 19, 26, 21, 26, 20, 21, 19,
24, 23.
a) Calculate the mean and its standard deviation.
b) Compute x2.
c) Interpret the result found in (b).

11.13 Repeat the last problem for test results that give the following numbers of
counts: 21, 17, 30, 24, 29, 16, 18, 17, 31, 26.

11.14 Apply the x2 test to determine whether the following set of independent count
numbers, obtained under identical conditions, shows fluctuations consistent
with Poisson statistics: 114, 129, 122, 122, 130, 134, 127, 141.

11.15 A nonparalyzable counter has a dead time of 12 ms.
a) What is the true event rate when it registers 22 300 cps?
b) What is the maximum count rate that this instrument can give?

11.16 Repeat the last problem for a paralyzable counter.
11.17 A nonparalyzable counter has a dead time of 27ms. What count rate will it

register when the true event rate is
a) 20 000 s�1?
b) 60 000 s�1?
c) 600 000 s�1?

11.18 Repeat the last problem for a paralyzable counter.
11.19 Show that Eq. (11.24) for the paralyzable counter leads to the same approx-

imate expression, Eq. (11.20), that holds for the nonparalyzable counter, when
the event rate is small.

11.20 A point source gives a count rate of 21 200 s�1 with a nonparalyzable counter.
With a second, identical point source added to the first, the count rate is
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38 700 s�1. What is the dead time of the counter? Background and self-
absorption are negligible.

11.21 A nonparalyzable counter, having a dead time of 12.7ms, shows a reading of
24 500 cps.
a) Calculate the true event rate.
b) What fraction of the events is not being registered?

11.22 In the last problem, what is the count rate if 10% of the true events are not
being registered?

11.23 A paralyzable counter has a dead time of 2.4 ms. If the instrument shows a
reading of 1.27� 105 cps, what are the two possible values of the true event
rate?

11.24 A thin source of a long-lived radionuclide is plated onto a disk. This source is
placed in a counter, and 224 622 counts are registered in 10 s. A second such
disk source of the radionuclide is made, having an activity exactly 1.42 times
that of the first disk. When the first source is replaced by the second, 461 610
counts are registered in 15 s. If the counter is of the nonparalyzable type, what
is its dead time? (Background and self-absorption of radiation in the sources
are negligible.)

11.25 As a paralyzable counter is brought nearer to a source, its reading increases to a
maximum of 62 000 cps and decreases thereafter as the source is approached
even closer. What is the dead time of the instrument?

11.26 A series of gamma photons randomly traverse the sensitive volume of a GM
counter at an average rate of 620 s�1.
a) What is the probability that no photonswill traverse the sensitive volume in

1ms?
b) What is the probability that a time equal to or greater than 0.010ms will

pass without a photon traversal?
11.27 A series of events occur randomly in time at a constant mean rate of

6.10min�1 as the result of a Poisson process.
a) What is the probability that no events will occur during a randomly chosen

interval of 1min?
b) What is the probability that no events will occur during a randomly chosen

interval of 12 s?
c) What is the relative number of intervals between successive events that

have a duration between 20 and 30 s?
d) What is the median length of time between successive events?
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12
Monte Carlo Methods and Applications in Dosimetry

12.1
Introduction

A Monte Carlo procedure is a method of numerical analysis that uses random
numbers to construct the solution to a physical or mathematical problem. Its very
name and its dependence on random numbers indicate a close association with
statistics. The use of sampling from randomprocesses to solve deterministic or other
problems was begun by Metropolis and Ulam (1949). Von Neumann and Ulam
coined the phrase �Monte Carlo� to refer to techniques employing this idea. It was so
named because of the element of chance in choosing random numbers in order to
play suitable games for analysis. Monte Carlo procedures provide an extremely
powerful and useful approach to all manner of problems – particularly ones that are
not amenable to accurate analytical solution. Such statistical techniques are
employed in a number of areas in radiation physics and dosimetry, as will be brought
out in this chapter.

In the next section we discuss the generation of randomnumbers, which are at the
foundation of any Monte Carlo calculation. In Section 12.3, we illustrate the use of
statistical algorithms and random numbers to determine the known numerical
answers to two specific problems. The remainder of the chapter deals with applica-
tions in radiation physics and dosimetry, including photon and neutron transport.
Monte Carlo transport calculations are widely used to determine dose, dose equiv-
alent, and shielding properties. Random sampling is used to simulate a series of
physical events as they might occur statistically in nature at the atomic level. Monte
Carlo models and computer codes are thus used to calculate radiation penetration
throughmatter. They provide computer-generated histories for a number of charged
particles, photons, or neutrons incident on a target. Individual particle histories are
generated by a fixed algorithm, enabling the random selection of flight distances,
energy losses, scattering angles, and so on to be made as each particle and its
secondaries are transported. With the help of a sequence of random numbers,
selections for all of these events are made one after another from statistical
distributions provided as input to the computer programs. Ideally, the input
distributions themselves are obtained directly from experimental measurements or

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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reliability theory. A large set of particle histories can then be analyzed to compile any
information desired, such as the absorbed dose and LET distributions in various
volume elements in the target. In a shielding calculation, the relative number, type,
and energy spectrum of particles that escape from the target, as well as possible
induced radioactivity in it, are of interest. The number of histories that need to be
generated for such computationswill depend on the specific informationwanted and
the statistical precision desired, as well as the computer time required.

12.2
Random Numbers and Random Number Generators

Early generators relied on physical methods, such as tossing a die or drawing
numbered beads from a bag, to produce a series of �random� numbers. Before the
era of electronic computers, tables of randomnumberswere published in book form.
Today, random number generators are available on pocket calculators, personal
computers, and sophisticated mainframe machines. Typically, an arbitrary random
number �seed� is used to produce a second number, which, in turn, acts as the seed
for the next number, and so on. The sequence of randomnumbers ri thus produced is
designed to span uniformly the semiclosed interval 0� ri< 1, or [0, 1).

An example of a random number generator is provided by the equation1

ri ¼ FRAC½ðpþ ri�1Þ5�: ð12:1Þ
Here FRAC[x] is the remainder of x, after the integer portion of the number is

truncated (e.g., FRAC[26.127]¼ 0.127). To illustrate how Eq. (12.1) works, we use an
arbitrary seed number, ro¼ 0.534, and generate the first five numbers, rounding off
each to three significant figures before calculating the next riþ 1. To begin, we have

r1 ¼ FRAC½ðpþ 0:534Þ5� ¼ FRAC½670:868� ¼ 0:868: ð12:2Þ
The next numbers are

r2 ¼ 0:338;
r3 ¼ 0:084;
r4 ¼ 0:179;
r5 ¼ 0:718:

ð12:3Þ

One can see that such a computer-generated random number sequence will only
go a finite number of steps without repeating itself, commencing when one of the
numbers appears for the second time. Since there are only 103¼ 1000 different
numerical entries possible in the three-place sequence exemplified by Eq. (12.2), no
such sequence can have a period greater than 1000 entries before repeating itself.
Also, since there are only 1000 possible seed numbers, there can be no more than

1) This generator was utilized with the Hewlett-Packard model HP-25 hand calculator.
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1000 independent randomnumber sequences.While hand calculators and electronic
computers, especially with double precision, carry manymore than three significant
figures, their precision is neverthelessfinite, and such generators can pose a practical
limitation in some Monte Carlo studies. Other types of generators are based on
different algorithms, such as use of some aspect of the computer�s internal clock
reading at various times during program execution. Whereas the sequences thus
generated are not periodic in the sense of Eq. (12.1), there are still only a finite
number of different entries that the sequences in a computer can contain. Because of
these and other considerations, when speaking about random numbers and random
number generators in Monte Carlo work, one should perhaps apply the more
accurate terminology, �pseudorandom.�

Various tests are possible to determine how well a given sequence of pseudoran-
dom numbers approaches randomness. The distribution of truly random numbers
is uniform over the interval 0 � ri < 1. Their mean, or expected value, is, therefore,
E(ri)¼ 1/2, exactly. Since different entries in a random number sequence are
completely uncorrelated, the expected value of the product of two different entries
is EðrirjÞ ¼ 1=4; i 6¼ j. On the other hand, Eðr2i Þ ¼ 1=3.

Given a series of numbers in the semiclosed interval [0, 1), how can one test for
randomness?There are a number of both simple and sophisticated criteria. Any set of
pseudorandom numbers can be expected to pass some tests and fail others. The ri
should be uniformly distributed over the interval. Thus, the fraction of the numbers
that lie in any subinterval within [0, 1] should be proportional to the width of that
subinterval. The average value of a large set of random numbers, 0 � ri < 1, should
be exactly 1/2. The numbers should also be completely independent of one another.
Since the mean value of each ri is 1/2, the mean of the product rirj, with i 6¼ j, of the
series should be

EðrirjÞ ¼ EðriÞEðrjÞ ¼ 1
2
� 1
2
¼ 1

4
: ð12:4Þ

On the other hand,

EðririÞ ¼ Eðr2i Þ ¼
1
3
: ð12:5Þ

Many other tests for randomness have been developed. To mention only one,
groups of five numbers are used to select poker hands. The resulting frequencies of
the various hands are then compared with the known probabilities for randomly
drawing them.

For additional information on Monte Carlo techniques, random numbers, and
randomnumber generators, the reader is referred to the following publications in the
Bibliography at the end of the book: Atkinson (1980), Carter and Cashwell (1975),
Kalos andWhitlock (1986), Kennedy andGentle (1980), Knuth (1980),Metropolis and
Ulam (1949), Newman and Barkema (1999), and Ulam (1983). The paper by Turner,
Wright, and Hamm (1985) is a Monte Carlo primer written especially for health
physicists.
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12.3
Examples of Numerical Solutions by Monte Carlo Techniques

In this sectionwe obtain the numerical solutions to two problems by the use ofMonte
Carlo techniques. For both problems, the Monte Carlo results can be compared with
the exact solutions, which are known.

12.3.1
Evaluation of p¼ 3.14159265. . .

In Figure 12.1, a quadrant of a circle of unit radius is inscribed in a unit square. The
area of the circular quadrant is p/4, which is also just the fraction of the area of the
square inside the quadrant. If one randomly selects a large number of points
uniformly throughout the square, then the fraction of points that are found to lie
within the circular quadrant would have the expected value p/4. An estimate of p can
thus be obtained from a random sample of a large number of points in the square.
Statistically, one would expect that the precise value of p would be approached ever
more closely by using more and more points in the sample.

A simple computer program can perform the needed computations. Pairs of
random numbers, 0 � xi < 1 and 0 � yi < 1, determine the coordinates (x, y) of
points in the square, as shown in Figure 12.1. A numerical check is made for each

X
10

Y

0

1

(xi , yi)

Figure 12.1 Quadrant of circle inscribed in unit square has area p/4, which is the expected value of
the fraction of randomly chosen points (xi, yi) in the square that fall within the quadrant. Inside the
circle, x2i þ y2i � 1. See Table 12.1.
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point to see whether x2i þ y2i � 1. When this condition holds, the point is tallied;
otherwise, it is not tallied. After selecting a large number of points, the ratio of the
number of tallied points and the total number of points used gives the estimated
value of p/4.

Numerical results calculated in this way are shown in Table 12.1 for samples with
sizes ranging from 10 to 109 points. In a sample of just 1000 random points, for
example, 783 were found to lie within the circular quadrant, implying that
p̂ ¼ 4� ð783=1000Þ ¼ 3:13200. This estimate differs from the true value by 0.305%.

One sees from the table that using more points does not always give a more
accurate computed value of p̂, although there is general improvement as one goes
down in Table 12.1. One must remember that the numbers of tallied points in
column 2 of Table 12.1 are themselves random variables. With a different sample of
1000 points, chosen with a different set of random numbers, one would probably
not obtain exactly 783 tallies again. The expected number of tallies for a sample of
1000 is, in fact, (p/4)(1000)¼ 785.3982. The number of tallies is a binomial random
variable with p¼p/4¼ 0.7854. ForN¼ 1000, we know that its coefficient of variation
(Section 7.3) is s=m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� pð Þ=Npp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2146=785:4

p ¼ 0:0165, or about 1.65%.
The particular sample used for Table 12.1 had very nearly the expected value of tallies,
and the actual error in the calculated value of p, shown in the last column of
Table 12.1, is only 0.3%. One sees from the last column of the table that the percent
error decreases with sample size, but not monotonically, because of random
fluctuations.

12.3.2
Particle in a Box

Figure 4.3 shows the quantum-mechanical probability density (Eqs. (4.15) and (4.16))
for a particle confined to a one-dimensional box in its state of lowest energy (ground
state). As determined analytically by Eq. (4.24), the probability of finding the particle
between X¼ 0 and X¼ a/4 is 0.409.We now evaluate this probability in two different
ways by means of Monte Carlo algorithms.

Table 12.1 Value of p (¼3.14159265. . .) obtained by Monte Carlo procedure.

Total number of points Number of points within circle Estimated value of p Percent error

10 5 2.000000 36.3
102 75 3.000000 4.51
103 783 3.132000 0.305
104 7 927 3.170800 0.930
105 78 477 3.139080 0.0800
106 785 429 3.141716 0.00393
107 7 855 702 3.142281 0.0219
108 78 544 278 3.141771 0.00568
109 785 385 950 3.141544 0.00155

12.3 Examples of Numerical Solutions by Monte Carlo Techniques j297



x

f(x) = 2 cos2 (πx) 

0 1/2–1/2

2

(xi , yi )

1/4

Area = A

Figure 12.2 Probability of finding particle in the box in a location between x¼ 0 and x¼ 1/4 is equal
to the shaded area A under the curve f(x).

Method 1
As indicated in Figure 12.2, the desired probability is equal to the area A within the
heavy border under the curve f(x), definedbyEq. (4.15). (Since thewidth a of the box is
arbitrary, we have set a¼ 1 in Figure 12.2. Alternatively, if one carries a explicitly
through the computations, it drops out identically later.) As we did to find the value of
p in the last problem,we can use pairs of randomnumbers to select a large number of
points (xi, yi) uniformly within the rectangle completed with the dotted lines in
Figure 12.2. The expected value of the fraction F of points in a large sample that fall
under the curve f(x) is equal to the ratio of (1) the areaA, being sought, and (2) the area
of the rectangle, which is 2� 1=4 ¼ 1=2. Thus, F¼ 2A, and so A¼F/2. Finding the
fraction by choosing random points thus determines the magnitude of A. (Both this
and the last problem are examples of doing numerical integration by Monte Carlo
methods.) One random number 0 � ri < 1 provides a value xi ¼ ri=4 between x¼ 0
and x¼ 1/4, as desired. A second randomnumber r 0i picks yi ¼ 2r 0 i between 0 and 2.
For each point chosen in the rectangle, we test the inequality

yi < 2 cos2 pxi: ð12:6Þ

When a point with coordinates (xi, yi) satisfies Eq. (12.6), it is under the curve f(x) in
Figure 12.2, and is, therefore, tallied.Otherwise, the point is not tallied.At the end of a
calculation, the fraction F of the points that are tallied provides the estimate of the
area: A¼F/2. This procedure was carried out for samples ranging in size from 10 to
109 points, and the results for this method are shown in column 2 of Table 12.2. They
are in good agreement with the known value of the area, which is, from Eq. (4.24),
A¼ 0.409155.
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Table 12.2 Value of area (A¼ 0.409155) under curve in Figure 12.2 calculated by two Monte Carlo
methods.

Total number of points Area by method 1 Area by method 2

10 0.350000 0.361441
102 0.400000 0.400124
103 0.410500 0.406790
104 0.413400 0.410627
105 0.408445 0.409148
106 0.409145 0.409473
107 0.409259 0.413869
108 0.409170 0.083886
109 0.409141 0.008389

Method 2
In this method of solution, random values of xi, 0 � xi < 1=4, are selected, just as in
the firstmethod. Now, however, for each xi one computes the value of the ordinate on
the curve, yi ¼ 2 cos2 pxi. The average value �y of the ordinate is then evaluated for a
large number of points N:

�y ¼ 1
N

XN
i¼1

yi: ð12:7Þ

The areaA in Figure 12.2 is given by the product of the average value �y of y and the
width 1/4 of the interval:A ¼ �y=4. Results for calculated area are presented in the last
column of Table 12.2. The estimated area at first improves as more points are used,
but then becomes progressively worse when more and more points are used. This
failure of method 2 occurs because of the limited numerical precision of the
computer. The problem is one of roundoff. A real (floating point) number like �y
in Eq. (12.7) is stored in a register with a fixed number of bytes, giving its sign,
decimal point location (exponent), and a certain number of significant figures. The
computer cannot add a small number to a very large number beyond the precision
that this system imposes. For instance, with a precision of six significant figures, the
following sum would be thus evaluated: 4:29846� 109 þ 12:7 ¼ 4:29846� 109.
Roundoff occurs. In the present problem, as seen from Figure 12.2, the largest
value of yi that can contribute to the sum in Eq. (12.7) is 2.0, and so roundoff occurs
once the accumulated sum reaches a certain size, which is beyond this precision. We
see from the last two entries in the last column of Table 12.2 that the sum in Eq. (12.7)
is the same for N¼ 109 points as for 108. (The terminal value of the sum, with the
computer used for these computations, turns out to be 3:355443� 107.) Roundoff
error can be made to occur later in such a calculation (i.e., for larger N) when the
computations are performed in double precision, as is often done in Monte Carlo
work. In contrast to method 2 for solving the same numerical problem, method 1
calculates the area as the ratio of two integers, which are stored with greater precision
as binary sequences in the computer. Thus, knowledge of how the computer stores
numbers and performs numerical analysis is very important in the proper use of
Monte Carlo methods.
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12.4
Calculation of Uniform, Isotropic Chord Length Distribution in a Sphere

Spherical, tissue-equivalent, gas proportional counters find widespread applications
in dosimetry and microdosimetry. Often called Rossi counters, after the pioneering
work of Harald H. Rossi and coworkers, they were used early on for the task of
determining LET spectra from energy proportional pulse height measurements. In
an idealized concept, a charged particle (produced in the wall of a Bragg–Gray
chamber) traverses the sensitive volume of a proportional counter with constant LET,
L, along a chord of lengthg.With energy-loss straggling ignored (in reality, it is large),
the energy registered by the counter would be e ¼ Lg. A pulse of a given amplitude e
could be due to either a particle of relatively high LET traversing a short chord or a
particle of low LET traversing a long chord. If the radiation is isotropic, then, since the
distribution of isotropic chord lengths in a spherical cavity is known (see the next
section), one can assign a statistical probability for chord length to each pulse. This
assignment, in turn, implies a statistical probability for the LET of the particle that
produced it. Mathematically, the unfolding of the LET spectrum from an observed
pulse height spectrum and a known chord length distribution is equivalent to solving
a convolution integral equation. Technically, the experimental procedure presents
formidable difficulties, but it has led to important and useful information on LET
spectra. Today, spherical, tissue-equivalent proportional counters are employed in a
number of different ways in research and routine monitoring. In addition, with
proper selection of sphere size and gas pressure, one can employ such chambers to
simulate unit density spheres that have relevant biological sizes, for example, that of a
cell, cell nucleus, or othermicroscopic structure. The subject ofmicrodosimetry deals
with the distribution of physical events on a scale ofmicrons and smaller and the use
of such distributions to interpret and understand the biological effects of radiation
(Rossi and Zaider, 1996).

Monte Carlo calculations can be performed to find the distribution of chord
lengths, having any spatial arrangement in a cavity of any shape. To show somedetails
of this kind of a Monte Carlo calculation, we now compute the isotropic chord length
distribution for a sphere.

Figure 12.3a shows schematically a sphere of radius R traversed by a parallel,
uniform beam of tracks. The distribution of chord lengths in the sphere with this
geometry is the same as that for a sphere immersed in a uniform, isotropic field of
tracks. Because of spherical symmetry, the relative orientation of the sphere and
the tracks does not matter, as long as the tracks are uniform in space. To obtain the
desired chord length distribution by Monte Carlo means, we can select a large
number of incident tracks at random from the parallel beam, compute the resulting
chord length for each, and compile the results. The randomselection of the tracks can
be made with reference to Figure 12.3b, which is a view at right angles to that in
Figure 12.3a, along the direction of the tracks. The projection of the sphere presents a
circle of radiusR to the beam. The intersection of the tracks is uniform over the plane
of the circle. We can select a random point of intersection (xi, yi) by choosing two
random numbers, as we did in the computation of p (Figure 12.1). If the point is
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outside the circle of radius R, then we simply ignore it here and choose the next one.
If the point is inside the circle, then its displacement from the center is

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

q
; ð12:8Þ

and so the resulting chord length is

gi ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2i

q
: ð12:9Þ

Because of the symmetry in this problem, no generality is lost by always choosing
the random point (xi, yi) in the first quadrant of the circle in Figure 12.3b.

It is convenient to express the chord lengths as dimensionless fractions of the
longest chord, whose length is equal to the sphere diameter, 2R. Dividing both sides
of Eq. (12.9) by 2R, we write

gi
2R

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

R2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

ri
2R

� �2r
: ð12:10Þ

Letting g0i ¼ gi=2R and r0i ¼ r=2R denote the dimensionless quantities, we have

g0 i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4r02i

q
: ð12:11Þ

Since, in units of 2R, xi and yi vary in magnitude between 0 and 1/2, their random
values can be selected by writing

xi ¼ 0:5ri and yi ¼ 0:5r 0i ; ð12:12Þ

where 0 � ri < 1 and 0 � r 0i < 1 are random numbers from the uniform
distribution.

0

Rρ i

ηi

(ηi / 2)2 = R 2 –ρ i
2

0 R

ρi

(xi , yi )

X

Y

ρi
2 = xi

2 + yi
2

Figure 12.3 (a) Broad, uniform, parallel beamof tracks traversing sphere of radiusR centered atO.
Chord length distribution in sphere is same as for uniform, isotropic tracks. (b) Randompoint (xi, yi)
in circle of radius R can be used to select random chord, having length gi in sphere.
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To show some details involved in obtaining such a distribution by Monte Carlo
means, we produce and analyze a small sample of 25 chords. Table 12.3 shows the
lengths of 25 chords obtained with the help of a random number generator and
Eq. (12.12). The values of xi, yi, r0i, and the 25 chord lengths g

0
i are given explicitly. It is

convenient to display such Monte Carlo results in the form of a histogram, showing
how many times the random values g0i of the chord lengths fall within different
�bins,� or specified ranges of g0i. We arbitrarily choose 10 bins of equal width,
Dg0i ¼ 0:10, for an initial display. Tabulation by bin of the sample of 25 chords from
Table 12.3 is presented in the first two columns of Table 12.4. The relative frequency
with which chords occur in each bin (the number in column 2 divided by 25) is given
in column 3. The last column shows the relative frequency per unit bin width, which
is obtained by dividing each of the numbers in column3 by thewidth of its bin, which
in this example is 0.10 for each. (It is not necessary for the bins to have the same size.
In any case, plotting the relative frequency per unit bin width forces the area of the
histogram to be unity.) The histogram thus obtained from the first and last columns
of Table 12.4 is displayed in Figure 12.4. Since its area has been made to equal unity,
the histogram gives directly our sample�s approximation to the actual probability
density function, pðg0iÞ, which we seek to find by Monte Carlo means. The actual
probability density is a function of the continuous random variable g0 such that

Table 12.3 Data for 25 random chords in sphere (see the text).

i xi yi r0 i g0i

1 0.2172 0.2272 0.3143 0.7778
2 0.0495 0.1633 0.1707 0.9399
3 0.3518 0.1144 0.3699 0.6728
4 0.3088 0.0398 0.3114 0.7824
5 0.3359 0.1289 0.3598 0.6944
6 0.1692 0.2132 0.2722 0.8389
7 0.0585 0.1762 0.1856 0.9285
8 0.2657 0.2890 0.3926 0.6193
9 0.4330 0.0067 0.4331 0.4998
10 0.4394 0.0561 0.4430 0.4636
11 0.2194 0.4386 0.4904 0.1945
12 0.3115 0.1170 0.3328 0.7463
13 0.2503 0.1046 0.2713 0.8400
14 0.1618 0.0334 0.1652 0.9438
15 0.1374 0.0667 0.1528 0.9522
16 0.3379 0.3452 0.4831 0.2580
17 0.0366 0.3832 0.3850 0.6381
18 0.1966 0.3598 0.4100 0.5724
19 0.1612 0.4135 0.4438 0.4607
20 0.4017 0.2500 0.4731 0.3235
21 0.0570 0.0663 0.0874 0.9846
22 0.1483 0.2940 0.3293 0.7525
23 0.2448 0.3278 0.4091 0.5749
24 0.0220 0.2917 0.2925 0.8111
25 0.2408 0.1282 0.2728 0.8380
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pðg0Þdg0 gives the probability that the length of a random isotropic chord g0 falls
between g0 and g0 þ dg0 (Eqs. (4.6, 4.7, 4.8)). Since chord lengths in Figure 12.4 are
represented as fractions of the sphere diameter, the distribution is numerically the
same as that for chord lengths in a sphere of unit diameter.

The histogram in Figure 12.4, although the result of a sample of limited size,
suggests that the chord length distribution is a monotonically increasing function of
g0, as can be surmised from inspection of Figure 12.3. There is some scatter in the
results, reflecting the fact that each bin has only a few (�5) representatives. Statistical
scatter can generally be reduced inMonte Carlo histograms of a fixed sample size by
using larger bins. In so doing, however, one suppresses some information by

Table 12.4 Tabulation of chords from Table 12.3 into 10 bins of width 0.10 (see the text).

Chord length, g0i Number of chords Relative frequency Probability density, pðg0iÞ

0.0000–0.1000 0 0.0000 0.0000
0.1000–0.2000 1 0.0400 0.4000
0.2000–0.3000 1 0.0400 0.4000
0.3000–0.4000 1 0.0400 0.4000
0.4000–0.5000 3 0.1200 1.2000
0.5000–0.6000 2 0.0800 0.8000
0.6000–0.7000 4 0.1600 1.6000
0.7000–0.8000 4 0.1600 1.6000
0.8000–0.9000 4 0.1600 1.6000
0.9000–1.0000 5 0.2000 2.0000

η
i
′

0.0 0.5 1.0

p(η
i
′)

0

1

2

Figure 12.4 Sample approximation to probability density function pðg0iÞ for isotropic chord length
distribution in sphere of unit diameter. The histogram is formed by sorting the 25 chord lengths in
the sample into 10 equal bins of width Dg0i ¼ 0:10. See Table 12.4.
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lowering the resolution with which the independent variable, in this case g0, is
portrayed. Using five bins of equal width, Dg0i ¼ 0:20, for our sample of 25 chords
presents the data shown in Table 12.5 and plotted in Figure 12.5. The new
presentation of the same sample of chord lengths conveys a different impression
of how the probability density distribution might look. The monotonic behavior of
pðg0iÞ ismore evident here than in the previousfigure. In fact, drawing a smooth curve
from the origin through the midpoints at the top of each bin gives a good
approximation to the actual continuous distribution function (see Figure 12.10).
Since there is no requirement that bins be of equal size, it is sometimes advantageous
to combine small bins into larger ones along the abscissa only in regions where the
number of events is small. In any case, the height of the histogram for a given bin
must show the relative number of events there divided by the width of that bin in
order that normalization be preserved to represent the probability density function
for the continuous random variable.

Table 12.5 Tabulation of chords from Table 12.3 into five bins of width 0.20 (see the text).

Chord length, g0i Number of events Relative frequency Probability density, pðg0iÞ

0.0000–0.2000 1 0.0400 0.2000
0.2000–0.4000 2 0.0800 0.4000
0.4000–0.6000 5 0.2000 1.0000
0.6000–0.8000 8 0.3200 1.6000
0.8000–1.0000 9 0.3600 1.8000

0.15.00.0
0

1

2

η
i

′

p(η
i

′)

Figure 12.5 Same sample as in Figure 12.4 with histogram constructed by using five bins of equal
width Dg0i ¼ 0:20. See Table 12.5.
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A more definitive representation of the probability density function for the
isotropic chord length distribution can be generated with a large sample.
As examples, Figures 12.6 and 12.7 show, respectively, results from tallying
103 random chords in 10 uniform bins and 105 chords in 100 uniform bins.

0.15.00.0
0

1

2

η
i
′

p(η
i
′)

Figure 12.6 Probability density function pðg0iÞ for isotropic chord length distribution obtained from
103 random chords, sorted into 10 equal bins of width Dg0i ¼ 0:10, in sphere of unit diameter.

0.15.00.0
0

1

2

η
i
′

p(η
i
′)

Figure 12.7 Probability density function pðg0iÞ for isotropic chord length distribution obtained from
105 random chords sorted into 100 equal bins of width Dg0i ¼ 0:01, in sphere of unit diameter.
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One sees that the chord length distribution is linear, as we shall show analytically in
Section 12.5.

12.5
Some Special Monte Carlo Features

Some special devices can be employed to improve the efficiency of Monte Carlo
computations and to assess their statistical uncertainties. We brieflymention several
here.

12.5.1
Smoothing Techniques

Figures 12.4 and 12.5 exemplify how the same set of raw data can have a different
appearance and possibly even convey more than one impression when presented in
different ways. We mentioned that, in general, grouping data into fewer, but larger,
bins gives �better statistics� in the sense of a smoother looking histogram, but at the
expense of poorer resolution of any structure in the probability density function for
the independent variable. Smoothing routines are sometimes employed to reduce
fluctuations. Instead of plotting the individual values of the probability density as the
ordinate of each bin, one plots a weighted average of that density and the densities
from several (e.g., two, four, or more) adjacent bins. The resulting histogram will
generally show less fluctuation than the original raw numbers. As an example, the
data for the 25 chords were smoothed as follows. We arbitrarily modified the
numbers in the last column of Table 12.4 by weighted averages. Except for the two
endbins, each value of pðg0iÞ in the last columnwas replaced by the average comprised
of 1/2 times that value plus 1/4 times the sum of the values in the adjacent bins on
either side. For instance, between g0i ¼ 0:4000 and g0i ¼ 0:5000, the probability
density 1.200 was replaced by the smoothed value (1/2)(1.200) þ (1/4)
(0.4000 þ 0.8000)¼ 0.9000. For the two end bins, the original value in Table 12.4
was weighted by 3/4 and added to 1/4 the value from the single adjacent bin. The
smoothed data are shown by the histogram in Figure 12.8. In this instance, we obtain
a much closer resemblance to Figure 12.7 than that afforded by Figure 12.4, even
though both are based on the same sample of 25 events.

12.5.2
Monitoring Statistical Error

Monte Carlo calculations that produce data likewe have been considering here can be
repeated exactly, except with a different set of random numbers. For each indepen-
dent computation, the number of events that occur in any given bin and its
distribution can be compiled. Generation of this number satisfies the criteria for
Bernoulli trials. The number in each bin of the Monte Carlo histogram is, then, a
binomial random variable (Sections 5.3 and 5.4). For large samples, such as those
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used for Figures 12.6 and 12.7, the number of events in each bin can also be described
byPoisson statistics. The standard deviation of the number in each bin can, therefore,
be estimated as the square root of the number obtained in the calculation. To
illustrate, Table 12.6 gives the number of events, the estimated standard deviation,
and the coefficient of variation, or relative error (Section 7.3), for the first and last
three bins plotted in Figure 12.7 from the sample of 105 isotropic chords. The
coefficients of variation are, of course, largest (15–30%) in the first bins, where there
are the fewest events. Combining the first three bins, which contain a total of
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Figure 12.8 Re-plot of Figure 12.4 after simple smoothing of raw data for the 25 chords, as
described in the text.

Table 12.6 Estimated coefficients of variation for first and last three bins of histogram in
Figure 12.7.

Chord length Number of events Estimated standard deviation Coefficient of variation

0.0000–0.0100 11 3.32 0.30
0.0100–0.0200 39 6.24 0.16
0.0200–0.0300 42 6.48 0.15
. . .

0.9700–0.9800 1973 44.4 0.023
0.9800–0.9900 1964 44.3 0.026
0.9900–1.0000 2054 45.3 0.022
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92 chords, into a single bin reduces its coefficient of variation to 1=
ffiffiffiffiffi
92

p ¼ 0:10. As a
rule inMonte Carlo work, depending on the information desired, onemakes a trade-
off between the resolution needed, the amount of random fluctuation that can be
tolerated, and the computer time available. In any case, statistical uncertainties in
Monte Carlo results can be estimated from the data generated.

12.5.3
Stratified Sampling

Variances in the estimated values of p given in Table 12.1 are due to both limited
sample sizes and the randomnature of the selection of points (xi, yi). As for the latter,
at the end of a calculation, the values of the xi and yi in the sample would, ideally, be
found to be uniformly distributed over the semiclosed interval [0, 1). The variance in
the values estimated for p can, in principle, be reduced without bias by simply
choosing one of the independent variables systematically before selecting the other
randomly. For example, the following algorithm selects N values, spaced systemat-
ically andwith a uniform separation of 1/N, along theX-axis between x¼ 0 and x¼ 1:

xi ¼ 2i� 1
2N

; i ¼ 1; 2; . . . ;N: ð12:13Þ

For each of these xi, taken sequentially, yi can be chosen at random, as before, to
determine the randompoint (xi, yi). By thus reducing the variance of the xi, the overall
variance in the results is reduced. Such a technique of selecting a random variable
with minimum variance is called stratified sampling.

& Example

a) The algorithm (12.12) was used with a randomnumber generator to select
the 25 random chords described in Table 12.3.Would you expect thatmore
than 25 random number pairs are needed to produce the 25 chord lengths
by means of this algorithm?

b) In place of xi¼ 0.5ri in Eq. (12.12), write an algorithm that selects 25 values
of xi uniformly by stratified sampling over the proper interval.

c) With the stratified sample of values of xi in (b), the random selection of yi
for a given xi could give r0i > 0:5. Should one then select another random
value of yi for that xi, or should one skip that value of xi altogether and
proceed to xiþ 1?

Solution
a) The point (xi, yi) in Figure 12.3b must be within the circle to be used.

Therefore, we would expect that more than 25 random points selected by
the algorithm (12.12) would be needed in order for 25 to be inside. In
connectionwith Figure 12.1 andTable 12.1,we found that the probability is
0.785 for a randomly chosen point to fall inside. The probability that 25
successive points are all within the circle is (0.785)25¼ 0.00235.
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b) A stratified sample of values between zero and unity is given by Eq. (12.13)
with N¼ 25. The chord lengths in Eq. (12.12) are expressed in units of
their maximum, which is 2R. Since we require that the xi be distributed
uniformly between 0.0 and 0.5, we write in place of Eq. (12.13), with
N¼ 25,

xi ¼ 2i� 1
4N

¼ 2i� 1
100

; i ¼ 1; 2; . . . ; 25: ð12:14Þ

The values of the xi are 1/100, 3/100, . . ., 49/100.
c) As noted in (a), it is unlikely that 25 randomly chosen points will fall inside

the circle when the yi are randomly selected. Previously, when r0i > 0:5, we
simply ignored such a point and kept randomly sampling for both xi and yi
in pairs until we obtained 25 points inside the circle. Now, however, we can
use each xi only once in the unbiased stratified sample. If a point is not in
the circle, we drop it and go to the next value, xiþ 1. In contrast to the
algorithm (12.12), the algorithm (12.14) will probably furnish fewer than
25 actual chords.

12.5.4
Importance Sampling

As Figure 12.7 strongly suggests, the chord length distribution pðg0iÞ passes through
the origin (0, 0). Onemight wish to focus on the detailed structure of the distribution
in this region. The calculation as we have presented it has the fewest events and thus
the largest coefficient of variation in the first few bins in this region. To improve the
statistical uncertainty there, one could simplymake calculations with a larger sample
of chords.However, this procedure would be very inefficient –we see fromTable 12.6
that only 11 chords fell within the first bin out of 105 selected randomly. Much more
efficient is a technique of importance sampling, in which the chord selection process is
forced to sample repeatedly from the range of g0i values of particular interest, in order
to reduce the variance there. Special bin sizes can also be utilized to such an end.
Results obtained by importance sampling must then be given proper statistical
weighting when combined with the rest of the probability density function.

Some other special techniques, used to increase the efficiency of Monte Carlo
calculations of radiation transport, will be pointed out in Section 12.11.

12.6
Analytical Calculation of Isotropic Chord Length Distribution in a Sphere

In the last section, we reasoned that the distribution of uniform, isotropic chords in a
sphere is the same as that for the parallel, uniform beam shown in Figure 12.3. We
nowpresent an analytical solution for that distribution, whichwas foundnumerically
to a good approximation by Monte Carlo means, as shown by Figure 12.7.
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Figure 12.9 shows the same view of the sphere as in Figure 12.3b, looking in the
direction of the beam.TheprobabilitywðrÞdr that a given chordwill pass at a distance
between r and rþ dr from the center of the circle that the sphere presents is equal to
the ratio of the differential annular area 2prdr and the total area pR2 of the circle:

wðrÞdr ¼ 2pr dr
pR2

¼ 2r
R2

dr: ð12:15Þ

Transforming to the variable g and using Eq. (4.124), we write for the probability
density function pðgÞ for the chord lengths,

pðgÞ ¼ w rðgÞ½ � drðgÞ
dg

���� ����: ð12:16Þ

From Eq. (12.9),

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ g2

4

r
: ð12:17Þ

Using Eqs. (12.15) and (12.17), we obtain in place of Eq. (12.16),

pðgÞdg ¼ g

2R2
dg: ð12:18Þ

The probability density function for isotropic chord lengths in a sphere is, therefore,

pðgÞ ¼ g

2R2
ð12:19Þ

when 0 � g < 2R, and pðgÞ ¼ 0, otherwise. The function is shown in Figure 12.10.
Its normalization to unit area is easily checked (Problem 12.13).

Comparison of Figures 12.7 and 12.10 illustrates the power of the Monte Carlo
technique. The former figure gives an accurate numerical solution for the isotropic
chord lengths, in this case also known analytically for the sphere, as shown in the

0 R

ρ

(xi , yi )

X

Y

dρ

Figure 12.9 Same circle as in Figure 12.3b, looking in the direction of the beam. The probability
that a chord will have a length in the interval dr is equal to the ratio of the areas of the annular ring,
2pr dr, and the circle, pR2.
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latter figure. Monte Carlo techniques have been used to compute accurate chord
length distributions in other geometries, such as cylinders and spheroids, for which
no analytical solutions are known. Part of the beauty thatMonte Carlo possesses is its
complete generality.

& Example
The Cauchy theorem states that, for any convex body, the mean value mg of the
lengths of uniform, isotropic chords is given by

mg ¼ 4V
S

; ð12:20Þ

whereV is the volume and S is the surface area of the body. To test the theorem
for a sphere, use the probability density function (12.19) to compute mg and
then compare the result with that obtained from Eq. (12.20).

Solution
With the help of the probability density function (12.19), we find that

mg ¼
ð2R
0

gpðgÞdg ¼ 1
2R2

ð2R
0

g2 dg ¼ 1
2R2

� 1
3
g3j2R0 ¼ 4

3
R: ð12:21Þ

The Cauchy theorem (12.20) gives

mg ¼ 4� ð4=3ÞpR3

4pR2
¼ 4

3
R: ð12:22Þ

η

1/R

0 2R

p (η)

R

Figure 12.10 Analytical probability density function, p(g)¼g/(2R2), for isotropic chord lengths
g in a sphere of radius R.
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The mean isotropic chord length in a �square� cylinder, having both diameter and
height equal to 2R, is also4R/3 (Problem12.17). Thus, themean isotropic chord length
in a �square� cylinder is identical with that in its inscribed sphere, although the two
distributions are different. The Cauchy theorem, Eq. (12.20), is a remarkable finding.

12.7
Generation of a Statistical Sample from a Known Frequency Distribution

Many Monte Carlo applications begin with a random sample taken from a known
probability distribution. For example, one might wish to generate a number of
transport histories for individual fission neutrons released in a target. The initial
neutron energies for the computations need to be selected at random from the known
fission neutron energy spectrum. Given such a frequency distribution, which can be
expressed either numerically or analytically, we now show how to generate a random
sample from it by Monte Carlo techniques.

The upper curve in Figure 12.11 shows a hypothetical probability density function
f(x) for a continuous random variable x. Given f(x), it is desired to generate a random
sample of values of xhaving this frequency distribution. The curve right below shows
the corresponding cumulative function F(x), which, when differentiated, yields f(x)
(Eq. (4.14)). The probability that an event occurs with a value of x in a small interval
dx, as indicated on the upper curve, is given by f(x)dx. In terms of the cumulative

x

F(x)
x

f (x)

0

0

dx

F(x+dx)

F(x)

1

Figure 12.11 Example of a hypothetical probability density function f(x) and cumulative
distribution F(x). A series of random numbers 0� r< 1, chosen along the ordinate of F(x),
determine values of x distributed as f(x).

312j 12 Monte Carlo Methods and Applications in Dosimetry



distribution, this probability is also given by the difference Fðxþ dxÞ � FðxÞ shown
on the bottom curve. This difference, in turn, is just the fraction of the line interval
between 0 and 1 that is determined by dx. The difference represents, therefore, the
probability that a random number, 0 � r < 1, would fall within the interval corre-
sponding to dx. The random number, set equal to the value of the cumulative function
F(x), thus selects a value of x, which in turn determines f(x) with its appropriate statistical
probability density.

In this way, a random sample of values of x can be generated from the known
distribution f(x) by choosing random numbers. We note from the equality

f ðxÞdx ¼ Fðxþ dxÞ � FðxÞ ð12:23Þ
that, in the limit dx! 0, f(x)¼ dF(x)/dx. This relationship is just that given by
Eq. (4.14).

As we have seen, data are often generated and treated in the form of histograms in
Monte Carlo work. As stated in Section 4.1 (footnote 2), the probability that a
continuous random variable has exactly the value x is zero. One deals, instead, with
the probability that x has values within specified finite intervals. In generating a
sample as just described, one can compile a histogram, showing the relative
frequency with which values of x fall within various ranges.

& Example
The probability density function for isotropic chord lengths in a sphere of
radius R is given by Eq. (12.19). Using this function, derive an algorithm that
gives the length gi of a random chord as a function of a random number,
0 � ri < 1.Write the algorithm for the chord length also expressed in units of
the sphere diameter.

Solution
According to the procedure just developed, one equates a random number to
the cumulative probability distribution function. Using Eq. (12.19) with the
dummy variable of integration l, we obtain for the cumulative function

PðgÞ ¼
ðg
0

pðlÞdl ¼ 1
2R2

ðg
0

l dl ¼ g2

4R2
: ð12:24Þ

The cumulative function for g � 0 is shown in Figure 12.12; PðgÞ ¼ 0 for
g < 0. As indicated in Figure 12.12, a random number, 0 � ri < 1, deter-
mines a value gi of the chord length. With PðgiÞ ¼ ri, Eq. (12.24) can be
conveniently rewritten in the form

gi ¼ 2R
ffiffiffiffiffiffiffiffiffiffiffi
PðgiÞ

p
¼ 2R

ffiffiffi
ri

p
: ð12:25Þ

If we express the chord length in units of the sphere diameter, g0 ¼ g=ð2RÞ,
which is the length of the longest chord, then Eq. (12.25) becomes

g0i ¼
ffiffiffi
ri

p
: ð12:26Þ
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Figure 12.13 shows a sample of 1000 values obtained by Eq. (12.26) and sorted into
20 bins of equal size, Dg0 ¼ 0:05. The average chord length found for this sample is
0.6767; the true mean, Eq. (12.21), is 2/3.

In many problems, stratified sampling can improve the statistical precision of the
results. Intheexamplejustpresented,choosing1000pointsuniformlyalongtheordinate

η
ηi

F (η)

1

R 2R

ri

0

Figure 12.12 Cumulative analytical distribution for isotropic chord lengths g in a sphere of
radius R.
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   = 0.6767

1

η

Figure 12.13 Sample of 1000 isotropic chord lengths chosen by using the algorithm g0i ¼
ffiffiffi
ri

p
(Eq. (12.26)) for a sphere of unit diameter. Uniform bin width is 0.05. Average value of chord length
in sample is 0.6767, compared with expected value of 2/3.
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in the interval [0, 1) should reduce the scatter in Figure 12.13. On the other hand, if we
wanted to simulate examples of individual particle tracks in a proportional counter, then
the �unstratified� algorithm in the last example would be more appropriate.

12.8
Decay Time Sampling from Exponential Distribution

The exponential function (Section 6.7) plays an important role in radiation pro-
tection. It is fundamental to radioactive decay and, as we shall see later in this chapter,
to radiation transport inmatter. As another application, we useMonte Carlomethods
to showhowone can generate a sample of decay times for a radionuclide and calculate
themean life and standard deviation. To this end, we begin by finding the cumulative
distribution function for exponential decay.

Starting at time t¼ 0, we let Tdenote the time of decay of an atom. As discussed in
Section 2.4, the probability of survival of a given atom past time t is PrðT > tÞ ¼ e�lt,
where l is the decay constant. The cumulative probability of decay at time t is

FðtÞ ¼ PrðT � tÞ ¼ 1� PrðT > tÞ ¼ 1� e�lt; ð12:27Þ

and the corresponding probability density function is (Eq. (4.14))

f ðtÞ ¼ dFðtÞ
dt

¼ l e�lt: ð12:28Þ

The function (12.27) is shown in Figure 12.14. A random number, 0 � ri < 1,
chosen along the ordinate for F(t) determines a value ti for the decay time of an atom.

t

F(t)

0

1

F(t) = 1 – e–λt

Figure 12.14 Cumulative probability F(t) for decay time t of a given atom in a radionuclide source
(Eq. (12.27)).
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With FðtiÞ ¼ ri in Eq. (12.27), it follows that

ti ¼ � 1
l
lnð1� riÞ: ð12:29Þ

Equation (12.29)was usedwith a randomnumber generator to produce samples t1,
t2, . . ., tN of decay times for 42K atoms. The decay constant of this nuclide is
l ¼ 0:05608 h�1, and the mean life is t ¼ 1=l ¼ 17:83 h. Data for samples of
different sizes N were analyzed. For each sample, the estimator, t̂, of the mean life
was taken to be the sample average, �t:

t̂ ¼ 1
N

XN
i¼1

ti ¼ �t: ð12:30Þ

The estimator ŝ for the standard deviation was the sample standard deviation s,
given by

ŝ ¼ s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðti ��tÞ2:
vuut ð12:31Þ

To carry out the actual computations, the variance for each sample was evaluated
according to Eq. (4.48) in place of Eq. (12.31):

ŝ2 ¼ 1
N � 1

XN
i¼1

t2i �
N�t2

N � 1
: ð12:32Þ

Table 12.7 shows some results of calculations of the mean life (column 2) for
sample sizes N ranging from 10 to 106 random decay times. Columns 3 and 4
give the calculated standard deviations and coefficients of variation, and column 5
shows the standard error of the estimator t̂. The variance of the estimator is
obtained from Eq. (7.6),

Varðt̂Þ ¼ Var
1
N

XN
i¼1

Ti

 !
¼ 1

N2

XN
i¼1

VarðTiÞ: ð12:33Þ

Table 12.7 Results ofMonte Carlo calculations for decay of 42K atoms in samples of different sizes.

Number of
decays, N

Mean life, t̂ (h) Standard devi-
ation, ŝ (h)

Coefficient of
variation, ŝ=t̂

Standard error,
ŝ=

ffiffiffiffi
N

p
, in t̂

10 18.33 13.40 0.7312 4.237
102 16.01 14.21 0.8871 1.421
103 19.01 18.83 0.9907 0.5955
104 17.55 17.72 1.010 0.1772
105 17.85 17.95 1.005 0.0568
106 17.85 17.86 1.001 0.0179
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Because the decay times are observations of independent and identically distrib-
uted exponential random variables (Eq. (12.28)), they each have the same variance,
1=l2. Thus, Eq. (12.33) yields

Varðt̂Þ ¼ 1
N2

N
1

l2

� �
¼ 1

Nl2
: ð12:34Þ

Since ŝ2 is an unbiased estimator for 1=l2 (Problem 12.28), we can substitute it in
Eq. (12.34) to obtain an estimate for the Varðt̂Þ. Thus,ffiffiffiffiffiffiffiffiffiffiffiffiffidVarðt̂Þq

¼ ŝffiffiffiffi
N

p ð12:35Þ

is the standard error associated with t̂. Notice that the estimate of the standard
deviation ŝ in Table 12.7 converges to 1=l ¼ 17:83 h, as it should, while the standard
error of our estimate gets smaller as the sample size increases.

12.9
Photon Transport

Monte Carlo procedures are used extensively to calculate the transport of photons
and other kinds of radiation throughmatter. Such calculations permit assessments
of doses and shielding under a variety of conditions. In principle, all manner of
complicated target materials, geometrical configurations, and radiation fields can
be handled byMonte Carlomethods.However, in very complex situations, involved
statistical alternatives and algorithms become necessary, and computer capacity
and computing time can become excessive. Detailed results can require an
inordinately large number of particle histories. We shall describe the basics of
photon and neutron transport, interaction, and dose calculation in these last
sections of this chapter.

The linear attenuation coefficient, ormacroscopic cross section, is the numerical
parameter that statistically determines the distribution of flight distances that
photons of a given energy travel in a specifiedmaterial before having an interaction.
This quantity can be measured experimentally under conditions of �good
geometry,� as shown in Figure 12.15 (Turner, 1995, pp. 186–187). A pencil beam
of monoenergetic photons is directed normally onto a slab of the material, having
variable thickness x. A count rate detector is located some distance behind the slab.
It is far enough removed so that any photon, scattered in the slab, has a negligible
chance of reaching it and being counted. Under these �good geometry� conditions,
only uncollided photons – that is, only those that pass through the slab without
interacting – are detected. The ratio of count rates, _D with the slab present and _Do

with the slab absent, is observed to decrease exponentially with the slab thickness x.
As indicated in Figure 12.15, the best fit to measurements of _D= _Do versus x
furnishes the measured value of the linear attenuation coefficient m, having the
dimensions of inverse length:
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_D
_Do

¼ e�mx: ð12:36Þ

Themass attenuation coefficient, m=r, where r is the density of thematerial, is the
quantity more often given in tables and graphs. Whereas m depends upon temper-
ature and pressure, especially for a gas, m=r does not.

Equation (12.36) gives the relative number of photons that traverse a slab of
thickness x without interacting. The quantity e�mx on the right-hand side is,
therefore, the probability that a given photon, normally incident on the slab, will
pass through it without interacting. More generally, if we let X be the depth at which
an incident photon has its first interaction in a uniform, infinitely thick target, then
e�lx is the probability that the photon will travel at least a distance x without
interacting:

PrðX > xÞ ¼ e�mx: ð12:37Þ

Conversely, the probability than an interaction occurs at a depth less than or equal
to x is

PrðX � xÞ ¼ 1� PrðX > xÞ ¼ 1� e�mx: ð12:38Þ

Like Eq. (12.27), this last expression gives the usual cumulative distribution
function, in this case for the depth of penetration for a photon�s first interaction.
It follows from Eq. (12.37) that the probability for the interaction to occur at a depth
between x1 and x2 (with x2 > x1) is
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Figure 12.15 Attenuation coefficient m is measured under conditions of �good geometry� with a
pencil beam of normally incident, monoenergetic photons. Relative count rate is given by
_D= _Do ¼ e�mx for different slab thicknesses x.
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Prðx1 � X < x2Þ ¼ PrðX > x1Þ � PrðX > x2Þ ¼ e�mx1 � e�mx2 : ð12:39Þ
In analogy with the decay constant l discussed in Section 2.2 as the probability per

unit time that an atomwill decay, m represents the probability per unit distance that a
photon will interact. Also, just as 1=l is the mean life in Eqs. (2.7) and (4.36), 1=m,
called the mean free path, is the average distance that a photon travels before it
interacts.

Until a photon interacts, it penetrates a target �without memory.� That is, the
probability that the photon will interact in its next segment of travel is always
independent of whether the photon has already traveled a long distance in the target
or is only just starting out. This property can be formulated in terms of a conditional
probability (Section 3.5). Given that a photon has reached a depth x, the probability
that it will travel at least an additional distance swithout interaction is (Problem12.32)

PrðX > xþ sjX > xÞ ¼ PrðX > sÞ: ð12:40Þ
The following example shows how the penetration of photons in matter is

determined statistically by the linear attenuation coefficient.

& Example
Aparallel beam of 200-keVgamma rays is normally incident on a thick slab of
soft tissue. The linear attenuation coefficient is 0.137 cm�1.

a) What is the probability that an incident photonwill reach a depth of at least
1 cm without interacting? What is the probability for 5 cm?

b) What is the probability that an incident photon will have its initial
interaction at a depth between 4 and 5 cm?

c) What is the probability that an incident photon, having reached a depth of
10 cm without interacting, will travel at least an additional 1 cm without
interacting?

Solution

a) With m ¼ 0:137 cm�1, the probability that a 200-keV gamma ray will
penetrate to a depth of at least x¼ 1 cm without interacting is, from
Eq. (12.37),

PrðX > 1Þ ¼ e�0:137�1 ¼ 0:872: ð12:41Þ
Distances in this example will be expressed in cm, without writing the unit
explicitly. Note that the same length unit has to be employed for both m and
x, because the exponent must be dimensionless. The probability of
penetrating at least 5 cm without interacting is

PrðX > 5Þ ¼ e�0:137�5 ¼ 0:504: ð12:42Þ

Alternatively, one can regard Eq. (12.42) as giving the probability of
traversing each of the five 1-cm distances consecutively. Thus,
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PrðX > 5Þ ¼ ½PrðX > 1Þ�5 ¼ ð0:872Þ5 ¼ 0:504; ð12:43Þ
which is the sameasEq. (12.42). The equivalence ofEqs. (12.42) and (12.43)
is due to the special property of the exponential distribution, called
independent increments. Exponents are added in multiplication. As
expressed by Eq. (12.40), a photon penetrates a target without memory,
the probability of interaction being independent from one interval to the
next.

b) As with part (a), there are different ways of answering. The difference
between PrðX > 4Þ and PrðX > 5Þ, according to Eq. (12.39), is the
probability that a given incident photon will have its first interaction at
a depth between 4 and 5 cm. Thus,

Prð4 < X < 5Þ ¼ e�0:137�4 � e�0:137�5 ¼ 0:578� 0:504
¼ 0:0740 ð12:44Þ

is the desired probability. We can also consider the probability that an
incident photonwill reach at least a depth of 4 cm, but will travel atmost an
additional 1 cm without interaction. Since, from Eq. (12.38), the latter
probability is PrðX � 1Þ ¼ 1� 0:872 ¼ 0:128, we have for the probability
of interacting between 4 and 5 cm,

Prð4 < X < 5Þ ¼ PrðX > 4ÞPrðX � 1Þ ¼ 0:578� 0:128
¼ 0:0740; ð12:45Þ

as before. The last solution applies the property of independent incre-
ments, mentioned after Eq. (12.43).

c) As an uncollided gamma photon penetrates a uniform target, its interac-
tion probability per unit distance of travel remains equal to the linear
attenuation coefficient m, regardless of how deep the photon may have
already penetrated. Applying Eq. (12.40) with x¼ 10 and s¼ 1, we write

PrðX > 10þ 1jX > 10Þ ¼ PrðX > 1Þ ¼ 0:872: ð12:46Þ

The attenuation of X-rays and gamma rays inmatter occurs bymeans of fourmajor
processes: the photoelectric effect, Compton scattering, pair production, and pho-
tonuclear reactions. Each contributes additively to the numerical value of the
attenuation coefficient. In the modeling of photon transport, the specific types of
interaction can be determined statistically, as the next example illustrates.

& Example
A parallel beam of 400-keV gamma rays is normally incident on a crystal of
sodium iodide (density, r ¼ 3:67 g cm�3). The mass attenuation coefficients
for the photoelectric effect and for Compton scattering (the only significant
physical interaction mechanisms) are, respectively, t=r ¼ 0:028 cm2 g�1 and
s=r ¼ 0:080 cm2 g�1.
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a) Calculate the probability that a normally incident, 400-keVgamma ray will
produce a photoelectron at a depth between 2.4 and 2.6 cm in the crystal.

b) How thick a crystal is needed in order to be 90%efficient in detecting these
photons?

Solution
a) The answer is given by the product of (1) the probability that there is an

interaction in the specified depth interval and (2) the (independent)
probability that the interaction is photoelectric absorption, rather than
Compton scattering. In terms of conditional and independent probabil-
ities, discussed in Section 3.5, we let A be the event that an interaction
occurs in the interval and B the event that the interaction (given A) is
photoelectric. Then, by Eq. (3.31), the probability that both independent
events happen is

PðA \ BÞ ¼ PðAÞPðBjAÞ; ð12:47Þ
as just stated. To express P(A), we must use the linear attenuation
coefficient. With the given values of m=r and r, we have

m ¼ m

r

� �
� r ¼ ð0:108 cm2 g�1Þ � ð3:67 g cm�3Þ

¼ 0:396 cm�1: ð12:48Þ
The probability that an incident photon has its first encounter between 2.4
and 2.6 cm is, therefore, by Eq. (12.39),

PðAÞ ¼ Prð2:4 < X < 2:6Þ ¼ e�0:396�2:4 � e�0:396�2:6

¼ 0:3866� 0:3572 ¼ 0:0294: ð12:49Þ

Given that the interaction takes place, the probability for a photoelectric,
rather thanCompton, event is equal to the photoelectric fraction of the total
mass (or linear) attenuation coefficient. Thus,

PðBjAÞ ¼ t=r

m=r
¼ 0:028 cm2 g�1

0:108 cm2 g�1
¼ 0:259: ð12:50Þ

It follows from Eqs. (12.47), (12.49), and (12.50) that the probability for an
incident photon to undergo photoelectric absorption at a depth between
2.4 and 2.6 cm is

PðAÞPðBjAÞ ¼ 0:0294� 0:259 ¼ 0:00761: ð12:51Þ
b) When a 400-keV gamma ray interacts in the crystal by either process, it

produces a secondary electron, which in turn produces scintillation
photons that are detected electronically. (Multiple Compton events from
a single incident gamma ray are detected in a single pulse.) To detect 90%
of the normally incident, 400-keV gamma rays, the thickness x must be
such that only 10% of the incident photons are still uncollided as they
reach this depth. Thus,

PrðX > xÞ ¼ e�mx ¼ e�0:396x ¼ 0:100; ð12:52Þ
giving x¼ 5.81 cm for the required thickness.
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Monte Carlo computations can be made to simulate photon transport and to
generate individual histories for a number of photons incident on a target and any
secondary particles that the photons produce. The accumulated statistical data from a
number of histories can be compiled to assess the information desired, such as the
dose at various locations in a target or the radiation leakage through a shield. The
random selection of flight distances to the sites of interaction for the photons is
central to these computations. The cumulative distribution for random flight
distances, which is governed by Eq. (12.38), ismathematically the same as Eq. (12.27)
for the survival probability for radioactive decay, treated in the last section. The use of
a random number ri to select a flight distance xi to the site of interaction for a photon
can be made in complete analogy with Eq. (12.29):

xi ¼ � 1
m
lnð1� riÞ: ð12:53Þ

In aMonte Carlo simulation of photon transport and interaction inmatter, the fates
of each photon and any secondary particles they produce are determined by random
numbers.Thesimulationcanbecarriedoutinanydesireddetail.Thefollowingexample
shows some of the elements of a Monte Carlo transport calculation for photons.

& Example
Abroad, uniformbeamof 40-keVphotons is normally incident on a soft tissue
slab, 12 cm thick, as shown in Figure 12.16. The linear attenuation coefficient,
m ¼ 0:241 cm�1, is the sum of the coefficients t ¼ 0:048 cm�1 for the
photoelectric effect and s ¼ 0:193 cm�1 for the Compton effect. (Other
processes occur to a negligible extent.) For an incident photon, use one
random number to select a flight distance to the site of its first interaction.
(The photon might, of course, traverse the slab completely without interact-
ing.) Let a second random number decide whether the interaction is

12 cm

Tissue
  Slab

Figure 12.16 Uniform, broad beam of 40-keV photons incident normally on a 12-cm soft
tissue slab. See the text for description of Monte Carlo calculation of dose per unit fluence
as a function of depth in slab.
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photoelectric or Compton. To this end, we partition the relative interaction
probabilities along the unit interval according to their magnitudes. We have
t=m ¼ 0:048=0:241 ¼ 0:199 and s=m ¼ 0:193=0:241 ¼ 0:801. If the second
random number r falls in the interval 0 � r < 0:199, the interaction is
photoelectric absorption; if 0:199 � r < 1:000, the photon is Compton scat-
tered. Use sequentially the random numbers from Eqs. (12.2) and (12.3) in
Section 12.2 to determine the depth of the first collision and the type of
interaction that takes place for two incident photons.

Solution
The flight distance of an incident photon is selected by means of Eq. (12.53).
With the given value of m and r1 ¼ 0:868 from Eq. (12.2), we obtain

x1 ¼ � 1
0:241

lnð1� 0:868Þ ¼ 8:40 cm ð12:54Þ

for the depth at which the first photon interacts. The second random number
r2 ¼ 0:338 from Eq. (12.3) determines, according to the specified algorithm,
that the photon is Compton scattered at this depth. The flight distance for the
second photon is, with the help of r3 from Eq. (12.3),

x2 ¼ � 1
0:241

lnð1� 0:084Þ ¼ 0:364 cm: ð12:55Þ

With r4 ¼ 0:179 from Eq. (12.3), this photon undergoes photoelectric
absorption.

12.10
Dose Calculations

Using the two photon histories started in the last example as illustrations, we show
how absorbed dose in the tissue slab can be calculated. Specifically, we outline a
procedure for determining the absorbed dose per unit fluence from a uniform, broad
beamas a functionof depth in the slab. For analysis of theMonteCarlo generated data,
we divide the slab into 12 subslabs of thickness 1 cm, as shown in Figure 12.17. (The
number and thicknesses of the subslabs, which are used for accumulating energy
deposition, are arbitrary.) We let the first photon enter the slab at some arbitrary point
P. It travels to the point Q1 at a depth of 8.40 cm in the ninth subslab, as shown in
Figure 12.17, where it is Compton scattered. For the dose calculation, one needs to
select a value of the energy deposited in the subslab from this collision, based on the
known probability density function for Compton scattering. There are various ways to
compute this quantity with the help of random numbers. One way is to randomly
select a scattering angle �, which thenuniquely determines the energy of theCompton
electron. The cumulative probability function for Compton scattering at an angle �

with respect to the incident direction is known for photons of all energies from the
Klein–Nishina formula. This function can be stored numerically in the computer as a
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function of photon energy as part of the input data of the code for the dose calculation.
A new random number thus selects � from the cumulative distribution (just as ri
determined gi in Figure 12.11) and, with it, the energy of the Compton electron. The
physical ranges of the secondary electrons that can be produced by the photons are
much shorter than the 1-cm dimension of the subslabs. Therefore, the energy lost by
the photon in this collision is tallied as energy deposited in the ninth subslab.

The Compton scattered photon must also be tracked through the slab from the
collision point Q1. Its direction of travel is fixed by the polar angle � and a second,
azimuthal, angle w distributed uniformly over the interval 0� � w < 360� about the
original line of travel. An additional random number r is used to pick the azimuthal
angle: w ¼ 360r. The scattered photon has an energy equal to the original photon
energy minus the energy lost to the Compton electron. The linear attenuation
coefficient for soft tissue at the new photon energy is found from data stored as
input to the dose code. One now starts the scattered photon from Q1 along the new
direction of travel at the reduced energy and chooses a flight distance by means of
Eq. (12.53), thus continuing the transport and interaction simulation as before.
Eventually, each incident photon will disappear from the slab either by photoelectric
absorption or by escaping through its surface. In this example, we have shown
another Compton scattering at a point Q2 in the 12th subslab in Figure 12.17, after
which the scattered photon escapes the slab. The collision at Q2 is handled as before,
and the energy absorbed is tallied in that subslab.

We let the second photon (from the last example) be incident at the same point P
on the slab as the first photon. Its track is shown schematically in Figure 12.17
somewhat below that of the first photon for clarity. This photon disappears by

12 cm

Q1

Q2

Q3

Figure 12.17 Schematic histories of two photons. First photon is Compton scattered at Q1 and
then atQ2 before escaping fromslab. Secondphotonundergoes photoelectric absorption atQ3. See
the text.
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photoelectric absorption at a point Q3 at a depth of 0.364 cm. The entire photon
energy, 40 keV, is tallied as absorbed in the first subslab. The calculation of the
complete histories for two photons and the energy absorbed at different depths in the
slab have now been completed by Monte Carlo techniques.2) The histories of a large
number of additional photons, incident at P, can be similarly generated, until the
absorbed energy in the various subslabs, plotted as a histogram, shows acceptably
small statistical scatter. The number of histories needed to obtain a smooth
representation of the absorbed energy throughout the slab will depend on various
factors, principally the number of subslabs into which the slab is divided for analysis
and the statistical precision with which the absorbed dose is needed.

The first stage of the dose computation thus consists of statistically generating the
histories of a large number N of photons, normally incident at a point P on the slab,
and then compiling the total energies Ei absorbed in each subslab. It remains to
convert this information into the absorbed dose in each subslab froma broad beamof
unit fluence. It is evident from Figure 12.17 that the total absorbed dose in a given
subslab is distributed very nonuniformly in lateral directions away from the per-
pendicular line of incidence through P. The absorbed dose will generally get smaller
as one moves away from this line. On the other hand, the lateral distribution of the
absorbed dose in each subslab will be constant for the uniform, broad beam in which
we are interested. Instead of N photons incident at the single point P, consider a
fluence, N/A, of photons uniformly incident over the entire (infinite) surface of the
slab. (The area A over which the N photons are spread can have any size.) Then the
absorbed energy in each volume element with lateral area A perpendicular to the
beam direction in the ith subslabmust be equal to the total energy Ei absorbed in that
subslab as a result ofN photons incident at the single point P. If the slab density is r,
then the mass of the lateral element is Mi ¼ rADzi, where Dzi is the subslab
thickness (¼1 cm in Figure 12.17). Dividing the total absorbed energy Ei by themass,
we obtain for the absorbed dose in the ith subslab

Di ¼ Ei

rADzi
: ð12:56Þ

Since this is the dose for a fluence N/A, we find for the absorbed dose per unit
fluence in the ith subslab

D̂ ¼ Di

N=A
¼ Ei

NrDzi
: ð12:57Þ

2) In a more careful analysis, a distinction is to be made between the energy lost by a photon and the
energy absorbed locally in a subslab. In both photoelectric absorption and Compton scattering, the
initial kinetic energy of the struck electron is somewhat less than the energy lost by the photon
because of the energy spent in overcoming the binding of the electron. The binding energy is
regained when the parent ion is neutralized, but partly in the form of fluorescence radiation, which
can escape from the immediate vicinity of the collision site. In addition, the struck electron can
produce some bremsstrahlung, also taking energy away from the site. These differences are
embodied in the contrasting definitions of the attenuation, energy transfer, and energy absorption
coefficients. In the present computation of a depth–dose curve for 40-keV photons over 1-cm
subslabs, the distinction is of no practical importance.
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Note that the units in Eq. (12.57) are those of dose times area. In SI units, the dose
per unit fluence is thus expressed in Gy per photon per m2, or Gy ðm�2Þ�1 ¼ Gym2,
and in CGS units, rad cm2.

& Example
With the geometry shown in Figure 12.17, histories are generated by Monte
Carlomeans for 2500 photons normally incident on a soft tissue slab at P with
an energy of 1MeV. The accumulated energy absorbed in the third subslab,
having a thickness of 1 cm, is 15.9MeV. What is the absorbed dose at this
depth per unit fluence for a uniform, broad beam of incident 1-MeVphotons?
Express the answer in both SI and CGS units.

Solution
Using the second equality in (12.57) with E3 ¼ 15:9MeV, N ¼ 2500,
r ¼ 1 g cm�3, and Dz3 ¼ 1 cm, we obtain for the dose per unit fluence in
the third subslab

D̂3 ¼ 15:9MeV
2500� 1 g cm�3 � 1 cm

¼ 9:36� 10�3 MeV g�1 cm2: ð12:58Þ

Since 1MeV ¼ 1:60� 10�6 erg and 1 rad ¼ 100 erg g�1, we write

D̂3 ¼ 9:36� 10�3 MeV cm2

g
� 1:6� 10�6 erg

MeV
� 1
100

rad
erg g�1

; ð12:59Þ

giving

D̂3 ¼ 1:02� 10�10 rad cm2 ð12:60Þ

in CGS units. Since 1 rad¼ 0.01 Gy and 1 cm2 ¼ 10�4 m2, we have, in
SI units,

D̂3 ¼ 1:02� 10�16 Gym2: ð12:61Þ

Although we have dealt with relatively simple problems, having a high degree of
symmetry, it should be apparent that Monte Carlo methods can be undertaken with
complete generality. In the dose calculation just described, the incident photons in a
Monte Carlo simulation need not be monoenergetic or incident from a single
direction. They can be accompanied by neutrons and other kinds and energies of
radiation. The target might contain regions of different tissues, such as bone and
lung, and can be of finite extent. Monte Carlo calculations of dose and shielding
provide an extremely valuable tool for radiation protection, inwhich statistics plays an
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important role. In another application, the formalism developed by the Medical
Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine for
internal emitters utilizes the concept of �absorbed fraction.� This quantity is defined
as the fraction of the energy emitted as a specific radiation type from a given body
tissue or organ, called the source organ, that is absorbed in a target tissue or organ
(whichmay be the same as the source). For example, the thyroid (target organ) will be
irradiated by gamma rays from an emitter lodged in the lung (source organ).
Absorbed fractions for numerous organ pairs, photon energies, and radionuclide
spectra have been calculated for anthropomorphic phantoms by Monte Carlo
methods. They are an essential part of the basis for risk assessment through internal
dosimetry. Dose and committed dose models have been developed for determining
annual limits of intake and derived air concentrations. Used by regulatory agencies,
many of these related quantities have been enacted into law.

12.11
Neutron Transport and Dose Computation

Monte Carlo calculations of neutron transport and dose have many similarities with
computations for photons. They can proceed in analogous fashion. A flight distance
to the site of first interaction for an incident neutron can be selected with a random
number from an equation identical with Eq. 12.29. The quantity m for neutrons is
usually referred to as the macroscopic cross section (a term used for photons, too)
and is also the inverse of themean free path. Its numerical value is determined by the
atomic composition of the target and the values of the energy-dependent neutron
cross sections for the elements therein. Neutrons interact with matter through the
short-range strong force,which is exerted by nucleons. Thenuclear interaction canbe
either elastic or inelastic. When an interaction occurs, additional random numbers
can be used to determine the type of nucleus struck, the type of interaction, and the
energy deposited. A scattered neutron is transported, just as one transports a
Compton scattered photon. If one is computing dose equivalent, then the linear
energy transfer (LET) of the struck recoil nucleus can be inferred from its identity and
energy for the assignment of a quality factor with which to multiply the absorbed
energy from the event. Except for neutrons at high energies, the recoil nuclei have
ranges that are short on a scale of 1 cm in condensed matter, and so one can usually
treat their energy as locally absorbed in a dose calculation.

Fast neutrons deposit most of their energy in soft tissue through elastic scattering,
principally with hydrogen. For neutron energies up to about 10 MeV, the elastic
scattering with hydrogen is isotropic in the center-of-mass coordinate system. This
fact has the interesting consequence that the energy-loss spectrum for neutron
collisions with hydrogen is uniform in the laboratory system. Any energy loss
between zero and the full energy of the neutron is equally probable. A neutron
thus loses one-half of its energy, on average, in a hydrogen collision. Hydrogen is
unique for neutrons in having the samemass. It is only with hydrogen that a neutron
canhave ahead-on, billiard-ball-like collision and lose its entire energy. If the collision
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is not head-on, then, because of their equalmasses, the neutron and recoil proton are
scattered at right angles to one another. Slow and thermal neutrons, on the other
hand, have a high probability of capture by hydrogen or nitrogen in tissue. Thermal
neutron capture by hydrogen results in the release of a 2.22-MeV gamma ray, which
should also be transported in a dose calculation. These basic aspects of neutron
physics, as they affect dosimetry, are discussed in Chapter 9 of Turner (2007).

& Example

a) What is the probability that a 6-MeV neutron will lose more than 1.2 MeV
in an elastic collision with hydrogen?

b) What is the probability that it will lose between 100 keV and 1.0 MeV in
such a collision?

c) What is the average energy lost by a 6-MeV neutron in a collision with
hydrogen?

Solution
a) We let X denote the energy loss of the neutron. It has the uniform

distribution p(x) shown in Figure 12.18. The probability that the energy
loss will be greater than 1.2 MeV is equal to the fraction of the rectangular
area above this energy:

PrðX > 1:2Þ ¼
ð6:0
1:2

1
6
dx ¼ 6:0� 1:2

6
¼ 0:80: ð12:62Þ

x (MeV)
50

p 
( x

) 
 (

M
eV

–1
)

1/6

p (x) = 1/6   ,   0 ≤ x ≤ 6

p (x) = 0      ,   elsewhere

Figure 12.18 Probability density function p(x) for energy loss x by a 6-MeV neutron in a
collision with hydrogen. See example in the text.
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b) The probability is equal to the fraction of the spectral area between the two
given values:

Prð0:10 < X < 1:0Þ ¼
ð1:0
0:1

1
6
dx ¼ 1:0� 0:1

6
¼ 0:15: ð12:63Þ

c) The average energy lost is at the midpoint of the flat spectrum in
Figure 12.18,

EðXÞ ¼
ð6
0

xpðxÞdx ¼ x2

12
j60 ¼ 3:0MeV: ð12:64Þ

Some different aspects of Monte Carlo calculations, not yet discussed, are
important in many shielding calculations, particularly for thick shields. A fast
neutron in a thick target can have a very large number of collisions before becoming
thermalized or escaping. By its nature, a shielding calculation places primary
importance on the relatively few neutrons that do get through – their relative number
and their energy and angular distributions. The size of the sample in which one is
interested gets increasingly small with depth. Doing neutron transport in the
straightforward manner we have been describing would be inefficient for determin-
ing the properties of a thick shield. Onewouldfind that a large fraction of the incident
neutrons are absorbed before they come out of the other side, after much computer
time is spent on their transport. In addition, other neutrons would tend to be
scattered away from the back surface after penetrating to a considerable depth.
(Collisions with heavy nuclei can scatter neutrons backward.) We mention two
techniques that improve computational efficiency for deep penetration problems.

First, there is splitting and Russian roulette. As in Figure 12.17, one specifies a series
of imaginary boundaries zi at different depths inside a target. A statistical weight is
assigned to each incident neutron. Every time a neutron crosses a boundary zi, it is
split into vi identical neutrons, each being given a reduced statistical weight wi=vi;
where wi is the weight assigned to a neutron that crosses zi. Weight is preserved
thereby, and a larger sample of neutrons with reduced weight is obtained. Splitting
itself is made more efficient by playing Russian roulette with neutrons that wander
into less desirable parts of a target, like those that tend to return toward the surface of
incidence.WhenRussian roulette is played, a neutron is given a random chance with
probability p of continuing to survive or (1� p) of being killed at that point in the
calculation. If it survives, its weight is increased by 1/p. This technique decreases
the number of less desirable histories that would otherwise be continued in the
computations.

Second, exponential transformations can be performed in the selection of flight
distances. One artificially decreases themacroscopic cross section m in regions of the
target that are of less interest and increases it in regions where greater sampling is
desired. The appropriate weighting factors can be calculated and used to compensate
for the biases thus introduced.
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Problems

12.1 a) Devise a (pseudo-)random number generator.
b) How well do its numbers fit the criteria (12.4) and (12.5)?
c) Specify at least one additional criterion and use it to test the generator.

12.2 Consider a random number generator, such as that given by Eq. (12.1).
Starting with a given seed, it generates a sequence, 0 � ri < 1, in which each
successive number ri acts as the seed for the next number.
a) With roundoff to three significant figures at each step, what is the longest

possible sequence of numbers that can be generated before the sequence
begins to repeat itself?

b) Howmany independent, three-digit sequences can be constructed without
repetition of one of the numbers in a sequence?

12.3 Prove Eqs. (12.4) and (12.5).
12.4 Evaluate the integral

ð2
0

e�0:5x dx

by using a Monte Carlo technique. Compare your result with that obtained by
analytical evaluation.

12.5 a) Use a Monte Carlo technique to calculate the area of a regular octagon,
having a side of length b.

b) What is the analytical formula for the area as a function of b?
12.6 When the computations for Table 12.1 are repeated with a different

sequence of randomnumbers, the values in the second column are generally
different from those given there. The numbers in column 2 are themselves
random variables, which show fluctuations with repeated, independent
samples.
a) What kind of statistics do the numbers in column 2 of Table 12.1 obey?
b) When the total number of points is 105, what is the expected value of the

number in column 2?
c) What is its standard deviation?

12.7 In applying method 2 for finding the area, is it possible for the sum in
Eq. (12.7) not to be exact even after adding only the first two terms? Explain.

12.8 The 25 random chord lengths g0i in Table 12.3 were tabulated into 10 bins of
uniform size in Table 12.4.
a) Redo the tabulation, using bins with the following boundaries: 0.00, 0.15,

0.30, 0.45, 0.60, 0.70, 0.85, 0.95, 1.00.
b) Show that the new probability density, pðg0iÞ, is normalized.
c) Plot the new histogram and compare with Figures 12.4 and 12.5.

12.9 What is the expected value of the total number of points ðxi; yiÞ that one would
have to sample in order to obtain 25 chords, as in Table 12.3, that entered the
sphere?
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12.10 In a certain experiment, the times between successive counts registered by an
instrument are recorded. Table 12.8 shows the data for 240 observations, with
the times tabulated into six bins.
a) Plot the data from the table directly as a histogram.
b) Use the smoothing technique described in Section 12.5 and plot the

resulting histogram.
12.11 Estimate the coefficient of variation for each of the six entries in Table 12.8.

12.12 AMonte Carlo analysis requires the selection of randomangles, �i, distributed
uniformly over the interval 0 � �i < 90�.
a) Write an algorithm that determines an angle �i from the value of a random

number, 0 � ri < 1.
b) A calculation using 1000 random angles �i is to be made. In place of the

algorithm in (a), write a formula, like Eq. (12.13), that selects the 1000
angles by stratified sampling.

12.13 Show that the probability density function for isotropic chord lengths,
Eq. (12.19), is normalized.

12.14 A spherical proportional counter, having a radius of 2.20 cm, is traversed
uniformly by isotropic chords.
a) What is the probability that a randomly chosen chord has a length between

2.90 and 3.10 cm?
b) What is the expected value of the chord length?
c) Write the cumulative probability function for the chord length.

12.15 In the last problem, what is the probability that a random chord will pass the
center of the sphere at a distance between 1.5 and 2.0 cm? (See Figure 12.9.)

12.16 Isotropic chords uniformly traverse a sphere of diameter 50 cm.
a) What is the mean chord length?
b) What is the mean square chord length?

12.17 Use the Cauchy theorem, Eq. (12.20), to show that the mean isotropic chord
length for a �square� cylinder (diameter¼height) is the same as that for the
sphere inscribed in the cylinder.

Table 12.8 Data for Problem 12.10.

Time (s) Number of observations

0–5 61
5–10 43
10–15 72
15–20 28
20–25 36
25–30 0
Total 240

Problems j331



12.18 Use the Cauchy theorem to find the mean isotropic chord length in
a) a parallelepiped, having edges of length a, b, and c;
b) a cube with edges of length a.

12.19 What is the median chord length in Problem 12.14?

12.20 In a Monte Carlo calculation, a neutron, incident along the Z-axis in
Figure 12.19, is scattered at the origin of the XYZ axes. The neutron has an
equal likelihood of being scattered in any forward direction (i.e., isotropically)
within a 60� cone, as indicated in Figure 12.19. The probability of being
scattered outside the cone is zero.
a) Write equations for computing the polar and azimuthal scattering angles

ð�;wÞwithin the cone from the values of two random numbers, 0 � r < 1.
b) Given the �random� numbers 0.88422 and 0.01731, calculate a pair of

angles, � and w, in either order, according to your algorithm in (a).

12.21 A fast neutron (n) is scattered from a proton (p) at an angle �with respect to its
original direction of travel (Figure 12.20). The probability density for scattering
at the angle � (in three dimensions) is pð�Þ ¼ 2 sin � cos �, corresponding to
isotropic scattering in the center-of-mass reference system.
a) What is the cumulative probability function Pð�Þ for scattering at an

angle �?
b) Plot Pð�Þ versus �.
c) Write a formula that determines a randomscattering angle � from the value

of a random number 0 � r < 1.
d) What is the scattering angle � when r¼ 0.21298?

12.22 Give an algorithm that uses a randomnumber, 0 � r < 1, to select a value of z
from the standard normal distribution.

Scattered
Neutron

X

Z

Y

60o θ

φ

Incident
Neutron

Figure 12.19 See Problem 12.20.
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12.23 One can use Monte Carlo techniques to simulate the decay of a radioactive
source. Apply the algorithm given in Section 12.8 to a sample of 32P (beta
emitter, half-life¼ 14.3 d).
a) What two numerical random number choices determine whether a given

atom will decay during the time period between t¼ 0 d and t¼ 2 d?
b) From these choices, determine Prð0 � T < 2 dÞ.

12.24 Repeat the last problem for the time period between t¼ 20 d and t¼ 22 d.

12.25 Why is the probability for the decay of an atom over a 2-day period different in
the last two problems?

12.26 Show that the random numbers found in Problem 12.24 satisfy the condi-
tional probability

Prð0 d � T < 2 dÞ ¼ PrðT < 22 djT > 20 dÞ:

12.27 Verify the entries in the last two columns of Table 12.7.

12.28 Show that ŝ2 is an unbiased estimator of l2 in Eq. (12.34).

12.29 The mass attenuation coefficient for 2-MeV photons in iron (density¼ 7.86
g cm�3) is 0.0425 cm2 g�1.
a) What is the probability that a 2-MeV photon will travel at least 2.14 cm in

iron without interacting?
b) What is the probability that it will have its first interaction after traveling

between 2.14 and 3.09 cm?
c) What is the mean free path of a 2-MeV photon in iron?

12.30 Repeat the last problem for a 2-MeV photon in air at 20 �C and 752 Torr
pressure (density¼ 1.293 kgm�3 at 0 �C and 760 Torr). The mass attenuation
coefficient for air is 0.0445 cm2 g�1.

12.31 The linear attenuation coefficient for an 80-keV X-ray in soft tissue is
0.179 cm�1.
a) What is the probability that a normally incident, 80-keV photon will reach a

depth of at least 10 cm in soft tissue without having an interaction?

θ
n

n

p

Figure 12.20 See Problem 12.21.
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b) What is the probability that a normally incident photon will first interact in
the tissue at a depth between 10 and 11 cm?

c) If a photon reaches a depth of 10 cm without interacting, what is the
probability that it will continue to a depth of at least 11 cm without
interacting?

12.32 Prove Eq. (12.40).

12.33 A pencil beam of 500-keV photons is normally incident on a 3.5-cm thick
aluminum slab, which is followed immediately by a 1.6-cm lead slab.
The linear attenuation coefficient for Al is 0.227 cm�1 and that for Pb is
1.76 cm�1.
a) Give a Monte Carlo procedure to determine the first collision depth of

successive photons, based on a random number sequence.
b) What is the probability that an incident photon will traverse both slabs

without interacting?
c) Use the random number sequence (12.2)–(12.3) in Section 12.2 to deter-

mine the first collision depths for two photons.

12.34 a) In the last problem, what is the median depth of travel of a photon before
the first interaction?

b) Of the photons that do not penetrate both slabs, what is the average
distance of travel to the depth of the first collision?

c) What is the mean free path of the incident photons?

12.35 Histories are generated in a Monte Carlo calculation for 50 000 photons,
normally incident on a broad slab, having a density of 0.94 g cm�3. For
analysis, the target is divided uniformly into subslabs of 0.50-cm thickness,
similar to the slab in Figure 12.17. From the histories it is found that a total of
78.4MeVwas deposited in one of the subslabs. From these data, determine the
average absorbed dose in this subslab per unit fluence from a uniform, broad
beam of these photons.

12.36 Neutrons of 5MeV are scattered by hydrogen.
a) What is the average energy lost by a neutron in a single collision?
b) What is the probability that a neutron will losemore than 4MeV in a single

collision?
c) What is the probability that a neutronwill lose between 1.0 and 1.5MeV in a

single collision?

12.37 a) For the last problem, write the probability density function for neutron
energy loss.

b) Write the cumulative energy-loss probability function.
c) Sketch both functions from (a) and (b).

12.38 For the scattering of a neutron of energy E by a proton (hydrogen nucleus), as
illustrated in Figure 12.20, the conservation of energy and momentum
requires that x ¼ E sin2 �, where x is the energy lost by the neutron.
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a) From the uniform energy-loss distribution, as illustrated in Figure 12.18,
show that the probability density wð�Þ for scattering at the angle � is
wð�Þ ¼ sin 2�.

b) The angular scattering probability density function is thus independent of
the neutron energy. How is this result related to fact that the scattering is
isotropic in the center-of-mass coordinate system?
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13
Dose–Response Relationships and Biological Modeling

13.1
Deterministic and Stochastic Effects of Radiation

Radiation damages the cells of living tissue. If the damage is not sufficiently repaired,
a cell might die or be unable to reproduce. On the other hand, it might survive as a
viable cell, altered by the radiation. The two alternatives can have very different
implications for an individual who is exposed to radiation. The distinction is
manifested in the description of biological effects due to radiation as either stochastic
or deterministic (also previously called nonstochastic). We consider deterministic
effects first.

At relatively small doses of radiation, the body can typically tolerate the loss of a
number of cells that are killed or inactivated, without showing any effect. A certain
minimum, or threshold, dose is necessary before there is a noticeable response,
which is then characterized as a deterministic effect. Reddening of the skin and the
induction of cataracts are examples of deterministic effects of radiation. In addition to
there being a threshold, there is also a direct cause and effect relationship between the
severity of a deterministic effect and the dose that produced it. The larger the dose to
the skin, for instance, the greater the damage, other conditions being the same.

Stochastic effects, on the other hand, arise from cells that survive and reproduce,
but also carry changes inducedby the radiation exposure. Leukemia, bone cancer, and
teratogenic effects in irradiated fetuses are but a few examples of such effects. They
are associated with alterations of somatic cells, and are manifested in the irradiated
individual. Genetic changes due to radiation represent another important example of
stochastic effects. Alterations of the germ cells of an irradiated individual manifest
themselves in his or her descendents. All somatic and genetic stochastic effects
known to be caused by radiation also occur with natural incidence. In principle, since
a single energy-loss event by radiation in a cell can produce a molecular change, the
argument is oftenmade that there is no threshold dose needed to produce stochastic
effects. Presumably, even at very small doses, the probability for a stochastic effect is
not zero, in contrast to a deterministic effect. The probability for producing a
stochastic disease, such as cancer, increases with dose. However, the severity of the

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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disease in an individual does not appear to be dose related, also in contrast to the
response for deterministic effects.

The problem of recognizing and quantitatively assessing the probabilities for
radiation-induced stochastic effects, especially at low doses, is complicated by the fact
that, as already pointed out, these effects also occur statistically at natural, or
spontaneous, rates of incidence. In a population that has received a high radiation
dose, such as those among the survivors of the atomic bombs at Hiroshima and
Nagasaki, the excess incidence of a number of maladies is evident. While the
probability for a person in the population to develop leukemia, for example, might
be increased by the radiation exposure, one cannot determine whether a given case
would have occurred spontaneously in the absence of the radiation. At low doses, any
real or presumed added incidence of a stochastic effect due to radiation cannot be
distinguished from fluctuations in the normal incidence. The estimation of radiation
risks for stochastic effects at low doses – at levels in the range of those used as limits
for the protection ofworkers and the public – remains an important and controversial
unresolved issue in radiation protection today.

Modeling of biological effects on a wide variety of systems is carried out to try to
understand the mechanisms of radiation action and to make quantitative predic-
tions of results from radiation exposures. In this chapter, we examine the role of
statistics in some simple aspects of biological modeling for stochastic effects. The
discussions are limited to just a few specific examples to introduce and illustrate
this important subject.

13.2
Dose–Response Relationships for Stochastic Effects

Biological responses can be conveniently represented in the form of dose–response
curves.

Figure 13.1 is adapted from a report in the literature on a study of the incidence of
breast cancer in women (Boise et al., 1979).

The data serve to illustrate the general nature of many dose–response relation-
ships – what can be learned and what problems and uncertainties accompany their
interpretation, especially at low doses.

A higher-than-normal incidence of breast cancer was observed in 1047 women
with tuberculosis who were examined fluoroscopically over a number of years
between 1930 and 1954 in Massachusetts. The average number of examinations
per patientwas 102,with an accompanyingX-ray dose estimated to be, on the average,
0.015Gy to each breast per exam. Figure 13.1a shows a plot of the observed incidence
of breast cancer versus the estimated total dose to the breasts. The incidence is
expressed as the number of cases per 100 000 woman years (WY) at risk, averaged
over all ages of the women and all exposure regimes. The sense of this unit is such
that it applies, for example, to a group of 1000 women over 10 years or to 10 000
women over 1 year. The error bars represent the 90% confidence interval. Results
froma different study inNewYork are shown in Figure 13.1b. In this case, irradiation

338j 13 Dose–Response Relationships and Biological Modeling



Fluoroscopy

Dose (Gy)
6543210

In
ci

de
nc

e 
(1

05  W
Y

)-1

0

100

200

300

400

500

600

700 (a)

Mastitis

Dose (Gy)

6543210

In
ci

de
nc

e 
(1

05  W
Y

)-1

0

200

400

600

800

1000

1200 (b)

Figure 13.1 Examples of dose–response
relationships for breast cancer: (a) fluoroscopic
examinations in a Massachusetts study; (b)
treatment of mastitis in a New York study.

The observed incidence of breast cancer per 105

WY (women years, see the text) is shown as a
function of the dose to the breasts.
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of the breasts by X-rays occurred in 571 females who were treated for mastitis. As in
Figure 13.1a, the error bars denote the 90% confidence level. The data points in
Figure 13.1a and b are arbitrarily connected by straight lines to form continuous
curves. Ideally, the resulting dose–response functions should at least approximately
represent the risk for breast cancer as a function of dose for X-rays.

It is instructive to examine the data sets in some detail. The two curves in
Figure 13.1 leave little doubt that substantial doses of X-rays increase the risk of
breast cancer in women. As with any stochastic effect, the numbers of cases found in
various dose groups are subject to statistical fluctuations. The ranges of the expected
variations are shown by the error bars.

As is typical, the shape of the dose–response function for breast cancer based on
Figure 13.1 is not clearly established by the available data. In Figure 13.1a, the data
appear to be compatible with a straight line drawn from the point at the highest dose
to the intercept at the ordinate. One might assume this linear response as a working
hypothesis in considering, for example, the establishment of risk and acceptable
radiation limits needed for workers and for the general public. Thus, a most
important aspect of any dose–response function is its shape at low doses. The
annual whole-body occupational limit for X-rays is 0.050 Gy, for instance. One sees
from Figure 13.1 that, under the linear hypothesis, any increased incidence of breast
cancer at such a level of dose to the breasts is small compared with random
fluctuations in both the irradiation data and the normal incidence at zero dose. The
data, in fact, do not rule out the existence of a threshold dose for causing breast cancer.
The situation encountered here illustrates the uncertainty inherent in estimating the
risk for any stochastic effect at low dose levels.

A critical factor in these and similar studies is the assignment of specific values
to the doses that individuals might have received. The exposure of the breasts in
the fluoroscopic examinations was not the primary focus of attention, but was
incidental to the main procedure being carried out. Reconstructed doses for
Figure 13.1a were based on medical records, interviews with physicians and
patients, later laboratory measurements with similar equipment, and even Monte
Carlo calculations. In Figure 13.1b, calibrated therapy units were used, and the
doses are well documented. Generally, there can be considerable uncertainty in
doses assigned retrospectively to individuals in such studies. Moreover, even
given the total dose that a person received, the response is known to depend
markedly on the way it was distributed in fractions during the time of the
repeated examinations.

Several other points about dose–response relationships can be noted. The appear-
ance of the plotted data can be affected to some extent by the particular groupings of
the raw numbers into specific cohort groups. We met this circumstance in dealing
withMonteCarlo histograms in the previous chapter. The rawdata are represented by
grouping numbers of cases into selected dose intervals. Also, the control group,
representing unexposed individuals for comparison, should be the same in all other
respects except for the radiation. This ideal is not often attainable. Still another
concern in the example shown in Figure 13.1b is whether the condition of mastitis
predisposes one to breast cancer in the first place.
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In the paper from which Figure 13.1 is adapted, the authors discuss these matters
as well as others that we shall not attempt to address here. The paper is highly
recommended to the reader interested in statistics and dose–response relationships.

13.3
Modeling Cell Survival to Radiation

One type of dose–response relationship that lends itself to statistical modeling and
interpretation is that for killing cells of a specified type irradiated in vitro. The data are
usually represented by means of a cell survival curve, showing the fraction of a
population of cells that survives a given dose of radiation. When plotted in semilog
fashion, the survival curve for a single, acute dose often closely approximates one of
two general shapes, shown in Figure 13.2. It can either be linear, as is typical for the
response to high-LET radiation, or have a shoulder at low doses before becoming
linear at high doses, characteristic of the response to low-LETradiation. (On a linear,
rather than semilog, plot, the two types of survival curves are exponential and
sigmoidal.) In Figure 13.2, S represents the number of cells from an original
irradiated population of So that survive a dose D. The ratio S/So, plotted as the
ordinate, can be interpreted as the survival probability for a given cell in the irradiated
population as a function of the dose D, given by the abscissa.

Before discussing statistical models as a basis for interpreting observed cell
survival curves, we describe briefly what is meant by �cell killing� in the present
context. For some nonproliferating cells, like nerve and muscle, irradiation can lead
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Figure 13.2 Twogeneral classes of cell survival
curves are common. Linear survival on a
semilog plot is characteristic of the response to
high-LET radiation, such as neutrons and alpha

particles. A response with a shoulder at low
doses is characteristic of low-LET radiation,
such as gamma rays and beta particles.
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to loss of function, which can be considered as �death� for them. For proliferating
cells, the relevant end point is �reproductive death� – that is, loss of the ability of a cell
to divide indefinitely and thus produce a large colony, or clone. An irradiated cell
might continue to �live,� in the sense of having metabolic activity and even
undergoing mitosis a few times. But if it cannot produce a large colony, the cell
is considered to be �dead,� by definition. A surviving cell must be clonogenic, as
measured by specific techniques that involve further handling, incubation, and
comparison with similarly treated unirradiated controls.

13.4
Single-Target, Single-Hit Model

We consider first a single-target, single-hit model for cell killing by radiation. The
irradiated sample is considered to consist of So identical, independent, cells sus-
pended in solution. According to themodel, there is only onemechanism for killing a
cell. Each cell contains a single critical target that, when acted upon, or �hit,� by
radiation, leads to cell death. The interaction of the radiation with the target is
described in terms of a cross section, s, which has the dimensions of area and is
defined like that for other processes of radiation interaction. That is, when So targets
are traversed by amonoenergetic, uniform, parallel beamof radiation, havingfluence
w, then the expectednumber of hits in targets iswsSo. In general,swill dependon the
type of radiation employed and its energy. The absorbed dose is proportional to w. It
follows that the average number of hits per target in the population is

m ¼ wsSo
So

¼ ws: ð13:1Þ

The hits are assumed to be randomly distributed in the targets of the cell population
according to Poisson statistics. Therefore, if X represents the number of hits in the
target of a given cell, then the probability that exactly n hits occur there is

PrðX ¼ nÞ ¼ mne�m

n!
: ð13:2Þ

The survival probability S/So for a given cell, under the assumptions of the model, is
the probability that there are no hits in its target:

S
So

¼ PrðX ¼ 0Þ ¼ e�m ¼ e�ws; ð13:3Þ

where Eq. (13.1) has been used to write the last equality. Since the fluence w and dose
D are proportional, we may write

D ¼ kw; ð13:4Þ
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where k is the constant of proportionality. Thus, Eq. (13.3) can also be written as

S
So

¼ e�Ds=k ¼ e�D=Do ; ð13:5Þ

where the constant

Do ¼ k
s
: ð13:6Þ

has been introduced in place of k. Comparison with Eq. (13.3) shows that

m ¼ D
Do

ð13:7Þ

gives the mean number of hits per target in terms of Do.
The survival curve obtained with the single-target, single-hit model, Eq. (13.5), is

exponential. As Figure 13.2 indicates, this type of response is often found for densely
ionizing radiations. The slope of the response curve on the semilog plot is �1/Do.
When the dose D is equal to Do, Eq. (13.5) gives for the survival

S
So

¼ e�1 ¼ 0:37: ð13:8Þ

For this reason, Do is often referred to as the �D37� dose. Also, in analogy with the
mean life of a radionuclide (Eq. (4.38)) and the mean free path for radiation
interaction (Section 12.9), Do in Eq. (13.5) represents the average dose for killing
a cell (Problem 13.3). Do is thus also called the �mean lethal dose.�

Equation (13.6) shows the formal relationship in the model between the target
�size�s and themean lethal dose.When the target is small,Do is large, and vice versa,
as one would expect. The quantity k¼D/w, introduced in Eq. (13.4), represents the
absorbed dose per unit fluence for the radiation. This quantity can be measured or
calculated for the radiation used in an experiment. Knowledge of k, coupled with
Eq. (13.6) and the observed slope of the cell survival curve, 1/Do, allows numerical
evaluation of the target cross section w. To the extent that such a model might be
realistic, one could, in principle, associate the area s with the size of a critical cellular
component, for example, the cell nucleus, a nucleosome, a gene, or DNA.

& Example
A uniform, parallel beam of 4-MeV protons is used for irradiation in a cell
survival experiment. The data for the survival fractions found at several dose
levels are given in Table 13.1. The fluence-to-dose conversion factor for the
protons is 1.53� 10�12 Gym2.

a) Show that the survival decreases exponentially with dose. What is the
mean lethal dose?

b) What is the LD50 for the cells?
c) What is the proton fluence for 22% survival of the cells?
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d) What is the target size for radiation lethality, based on a single-target,
single-hit survival model?

Solution
a) Exponential survival means that the data satisfy an equation of the form

Eq. (13.5). The relation between survival and dose would then be

ln
S
So

� �
¼ � D

Do
; ð13:9Þ

which can be written as

Do ¼ �D
lnðS=SoÞ : ð13:10Þ

Using the first and last data points from Table 13.1, we find, respectively,
that

Do ¼ �0:2 Gy
ln 0:72

¼ 0:609 Gy ð13:11Þ

and

Do ¼ �2:0 Gy
ln 0:04

¼ 0:621 Gy: ð13:12Þ

The other three points in Table 13.1 give similar results, showing that the
survival is exponential. We take the mean lethal dose to be Do¼ 0.63 Gy,
which is the average for the five values from Table 13.1.

b) The LD50 is the dose that kills one-half of the cells. Applying Eq. (13.5) with
the mean lethal dose just found, we write

S
So

¼ 0:50 ¼ e�D=0:63; ð13:13Þ

giving D¼ 0.44 Gy for the LD50. Note that the relationship between the
LD50 and the mean lethal dose is like that between the half-life and the
mean life of a radionuclide: 0.44/0.63¼ ln 2 (to within roundoff).

c) The fluence-to-dose conversion factor was introduced in Eq. (13.4). We
are given k¼ 1.53� 10�12 Gy m2. That is, the dose conversion is

Table 13.1 Survival fraction S/So at different doses D for example in the text.

D (Gy) S/So

0.2 0.72
0.5 0.45
1.0 0.22
1.5 0.088
2.0 0.040

344j 13 Dose–Response Relationships and Biological Modeling



1.53� 10�12 Gy per unit fluence (i.e., Gy per protonm�2). FromTable 13.1
and Eq. (13.4), the fluence for 22% survival (1.0 Gy) is

w ¼ D
k
¼ 1:0 Gy

1:53� 10�12 Gym2
¼ 6:54� 1011 m�2; ð13:14Þ

or 6.54� 107 cm�2.
d) According to Eq. (13.6), the target size is

s ¼ k
Do

¼ 1:53� 10�12 Gym2

0:63 Gy
¼ 2:4� 10�12 m2: ð13:15Þ

On a more convenient distance scale (1mm¼ 10�6m) for cellular dimen-
sions, s¼ 2.4mm2. A circle with this area has a radius of 0.87mm, which is
of subnuclear size for many cells.

While useful and instructive, such target models for cell killing are, at best, idealized
approximations to reality. For one thing, the individual cells in a population are not
identical. In addition to variations in size and shape, they are generally in different
phases of the mitotic cycle, in which the radiosensitivity is different. (Synchroniza-
tion can be achieved to some extent.) Also, no account is taken in the model of
possible cell repairmechanisms that come into play in response to the radiation. The
�target� itself within the cell is purely phenomenological. Experiments demonstrate
clearly, though, that the cell nucleus is much more sensitive than the cytoplasm for
radiation-induced cell lethality. Evidence indicates that chromosomal DNA and the
nuclear membrane are probably the primary targets for cell killing. The reader is
referred to the textbook by Hall (1994) in the Bibliography for more detailed
information and references.

13.5
Multi-Target, Single-Hit Model

We treat next a somewhat more general model, which leads to a survival curve with a
shoulder at low doses (Figure 13.2). In the multi-target, single-hit model, each cell is
assumed to possess n identical targets of cross section s. Death results when all n
targets of a cell are struck at least once. As before (Eqs. (13.1) and (13.7)), the average
number of hits in a given cell target at a dose level D is

m ¼ ws ¼ D
Do

: ð13:16Þ

The probability that a given target receives no hits is expressed by Eq. (13.3), and so
the probability that it is hit at least once is

PrðX � 1Þ ¼ 1� PrðX ¼ 0Þ ¼ 1� e�D=Do : ð13:17Þ
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The probability that all n targets of a given cell are struck at least once is

½PrðX � 1Þ�n ¼ ð1� e�D=Do Þn; ð13:18Þ
which is the probability that the cell is killed. The probability that the cell survives is,
therefore,

S
So

¼ 1� ð1� e�D=Do Þn; ð13:19Þ

according to the multi-target, single-hit model.
With n¼ 1, Eq. (13.19) becomes identical with Eq. (13.5), describing the expo-

nential survival of single-target, single-hit theory. Otherwise, the survival probability
curve has a shoulder at low doses. The solid curve in Figure 13.3 shows a plot of
Eq. (13.19) for Do¼ 0.90 Gy and n¼ 3. Each cell has three targets, which must all be
hit in order to cause its death. Most cells survive low doses, since it is unlikely that a
given cell will havemultiple struck targets. As the dose is increased, cells accumulate
targets that are hit, and the killing becomes more efficient. The survival curve then
bends downward, becoming steeper with the increased efficiency, and then straight-
ens out on the semilog plot. For the straight portion, most surviving cells have only
the one remaining unstruck target. The response of the remaining population to
additional radiation thenbecomes that of single-target, single-hit survival. The overall
survival curve thus begins with zero slope at zero dose (Problem 13.10), bends over
through a shoulder, and then becomes a straight line with slope�1/Do at high doses.

The dashed line in Figure 13.3 is extrapolated from the straight portion of the
survival curve from high dose back to low dose. It intersects the ordinate at the value
n¼ 3, which is the number of targets in a cell. This result can be predicted from the

D (Gy)

3210

S/S0

0.01

0.1

1

3

Figure 13.3 Plot (solid curve) of multi-target, single-hit model, Eq. (13.19), for Do¼ 0.90 Gy and
n¼ 3.
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equation that describes themodel. At high doses, the exponential term in Eq. (13.19)
is small compared with unity. Using the binomial expansion, (1� x)nffi 1� nx, for
small x, we write in place of Eq. (13.19) with D large

S
So

ffi 1� ð1� n e�D=DoÞ ¼ n e�D=Do : ð13:20Þ

This relation describes a straight line with slope�1/Do on the semilog plot. AtD¼ 0,
the line represented by Eq. (13.20) intersects the ordinate at S/So¼ n, which is called
the extrapolation number. The extrapolation number is thus equal to the number of
targets in themulti-target, single-hit model. It provides a measure of the width of the
shoulder of the survival curve. As a rule, reflecting the phenomenological nature of
themodel, observed extrapolation numbers are usually not integral. In themodel, the
existence of the shoulder is explained by the accumulation of hits in a cell before it is
killed. A shoulder could also be explained by the action of repair processes set up in
the cell in response to the radiation – as well as by other mechanisms not considered
in the model.

A number of different target models for cell survival have been investigated. For
instance, cell death can be attributed to striking any m of n targets in a cell (m� n),
either once or a specified larger number of times. The different targets within a cell
can also have different cross sections, s. A variety of multi-target, multi-hit models
provide cell survival curves with different detailed structures.

We have dealt with statistical aspects of cell survival only in terms of the random
interaction of radiationwith targets. Statistics is also important for the practicalmatters
of experimental data collectionand evaluation. The observed survival values at different
doses, such as those in column 2 of Table 13.1, have associated error bars, which we
have not discussed. These arise from various sources. A number of individual cells
from a stock culture are counted for irradiation and controls, and then seeded into
dishes for incubation and cloning. The ratio of the number of colonies and the initial
number of cells, called the plating efficiency, is observed. This number is subject to
experimental errors from cell counting as well as fluctuations in the conditions of
handling and treating the cell colonies. Different samples are prepared for irradiation
at different dose levels. The optimum seeding of the number of cells per dish to be
irradiated is done in such a way as to result in countable numbers of colonies for good
statistical reliability, but not somany as to cause amerging of subsequent colonies into
one another. Irradiations at different doses can also be repeated several times to gain
added statistical significance. The reader is again referred to the excellent book byHall
(1994) in the Bibliography for additional information.

13.6
The Linear–Quadratic Model

One is not limited to purely phenomenological modeling of cell killing. For example,
a relationship is known to exist between certain kinds of radiation-induced chro-
mosome changes and cell killing. Cells that undergo exchange-type aberrations do
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not survive. Such alterations require two separate chromosome breaks. When the
dose is relatively small, the two breaks, if they occur, are likely to be caused by the
same particle, such as a single secondary electron produced by the radiation. The
probability of an exchange-type aberration is then proportional to the number of
tracks per unit volume, and hence to the dose. The resulting survival curve is
essentially linear on a semilog plot. At high doses, the two breaks can, in addition, be
caused by two different, independent particles. The probability for this mode is
proportional to the square of the dose, and its effect is to bend the survival curve
downward. The expression for cell survival in this linear–quadratic model is then

S
So

¼ e�aD�bD2
; ð13:21Þ

where a and b are constants, which depend on the radiation and type of cells. When
compared with Figure 13.2, it is apparent that individual particles of high-LET
radiation, with its linear response at low dose, have a high probability of producing
both chromosome breaks. This happens to a much lesser extent with low-LET
radiation, which is characterized by a shoulder in the survival curve at low dose.
The second chromosome break usually requires a second particle.

The two components of cell killing in the linear–quadratic model are consistent
with evidence from quantitative studies of chromosome aberrations. The dose at
which the linear and quadratic components contribute equally to cell killing occurs
when aD¼ bD2, or when D¼a/b. Unlike the single-hit target models, which
produce linear survival curves at large doses, the linear–quadratic model survival
curve continues to bend downward.

Problems

13.1 Is the production of chromosome aberrations a deterministic or a stochastic
effect of radiation? Explain.

13.2 What are some reasons for the uncertainties in risk estimates for stochastic
effects of radiation at low doses?

13.3 a) Show that Do in Eq. (13.5) is the average dose needed to kill a cell.
b) Show that the ratio of Do and LD50 is ln 2.

13.4 The fraction of surviving cells in a certain experiment is given by S/So¼
e�0.75D, where D is the dose in Gy.
a) What is the mean lethal dose?
b) What is the survival probability for a dose of 1.0 Gy?
c) What dose leaves a surviving fraction of 0.0010?
d) What is the LD50 for the cells?

13.5 In an experiment in which cell survival is exponential, the survival fraction
from a dose of 1.55Gy is 0.050.
a) What is the mean lethal dose?
b) Write an equation giving the survival fraction as a function of dose.
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13.6 Cell survival data are fit with a multi-target, single-hit model, having Do¼
1.4 Gy and an extrapolation number n¼ 4. What fraction of the cells survive
a dose of
a) 1.0 Gy?
b) 5.0 Gy?
c) 10 Gy?
d) Make a semilog plot of the surviving fraction as a function of dose.

13.7 a) What dose in the last problem results in 25% survival?
b) What is the LD50?

13.8 Repeat Problem 13.6 for Do¼ 1.4 Gy and n¼ 2. Why are the survival levels
lower than before at the same doses?

13.9 Repeat Problem 13.6 for Do¼ 2.2 Gy and n¼ 4. Why are the survival levels
higher than before at the same doses?

13.10 Show that the slope of the survival curve (13.19) is zero at zero dose.
13.11 Plot the survival data shown in Table 13.2. Based on a multi-target, single-hit

model, write an equation that describes the data.
13.12 In a certain study, cell survival is found to be described by a single-target,

single-hit model, S/So¼ e�1.3D, where D is in Gy. At a dose of 2.0Gy, what is
the probability that, in a given cell, there are exactly
a) no hits?
b) 4 hits?
c) 10 hits?
d) What is the most likely number of hits?

13.13 Fit a multi-target, single-hit model to the cell survival data in Table 13.3.
a) Find the slope at high doses.
b) What is the extrapolation number?
c) Write an equation that describes the specific data in Table 13.3.

13.14 The survival of cells exposed to photons in an experiment is described by the
multi-target, single-hit function

S
So

¼ 1� ð1� e�1:35DÞ2:8;

where D is in Gy. The dose per unit fluence is 4.72� 10�16 Gym2.
a) Calculate the surviving fraction for a dose of 1.5 Gy.

Table 13.2 Data for problems in the text.

D (Gy) S/So

1.0 0.648
2.0 0.269
3.0 0.0955
4.0 0.0308
5.0 0.0106
6.0 0.0036
7.0 0.0012
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b) What is the LD50 for the cells?
c) What photon fluence is required for a dose of 2.0 Gy?
d) What is the diameter of a cellular target, assumed to be circular?
e) Give one or more reasons why the extrapolation number is not necessarily

an integer.
13.15 a) In Problem 13.6, what fraction of cells survive a dose of 0.60 Gy?

b) What is the average number of hits in a given cell target at 0.60 Gy?
c) What is the average number of struck targets in a given cell at 0.60 Gy?
d) What fraction of the cells have exactly three struck targets at 0.60 Gy?

13.16 Repeat the last problem for a dose of 1.5 Gy.
13.17 a) For the model in Problem 13.6, find the distribution of the number of hits

in a given cell target at a dose of 1.0 Gy.
b) Find the distribution of the number of struck targets per cell at 1.0 Gy.
c) From (b), determine the cell survival fraction at 1.0 Gy and compare with

that calculated from Eq. (13.19).
13.18 In a single-target, multi-hit model of cell survival, each cell contains a single

target that, when struckm or more times, produces cell killing. Show that the
survival of cells as a function of dose D is given by

S
So

¼ e�D=Do
Xm�1

n¼0

1
n!

D
Do

� �n

;

where Do is defined by Eq. (13.6).
13.19 a) Make a semilog plot of the survival curve in the last problem for

Do¼ 0.92 Gy and m¼ 4.
b) What is the survival fraction for a dose of 1.15 Gy?
c) Find the LD50.
d) Is this model tantamount to the multi-target, single-hit survival model?

Explain.
13.20 Acell population receives a total ofNhits. Letr be the �hit� probability – that is,

the probability that a given cell receives a given hit, all hits in all cells being
equally probable. The probability that a given cell gets exactly h of theN hits is
which of the following?

Table 13.3 Data for problems in the text.

Dose (Gy) Surviving fraction

0.10 0.992
0.25 0.934
0.50 0.727
1.00 0.329
2.00 0.0460
3.00 0.00575
4.00 0.00071
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a) rh N!
h!ðN�hÞ!;

b) rhð1� rÞN�h 1
N!;

c) e�h=N ;
d) rhð1� rÞN�h;
e) rhð1� rÞN�h N!

h!ðN�hÞ!.

13.21 When exposed to neutrons, the cell line in Problem 13.14 is found to have
exponential survival, described by

S
So

¼ e�1:82D;

with D in Gy. The relative biological effectiveness (RBE) of the neutrons (relative
to the photons) is defined as the ratio of the photon and neutron doses that
result in the same degree of cell killing.
a) Calculate the photon and neutron doses that result in a survival level

S/So¼ 0.0010.
b) What is the RBE for S/So¼ 0.0010?
c) Does the RBE depend upon the dose?

13.22 a) In the last problem, calculate the photon and neutron doses that result in
90% survival.

b) What is the RBE for 90% survival?
c) Suggest a hypothesis to explainwhy the neutronRBE should be larger at the

higher level of survival, as in this problem, than in the last problem?
13.23 As a general rule, illustrated by the last two problems, the RBE for densely

ionizing radiation (e.g., neutrons and alpha particles) increases as the dose
gets smaller.
a) Discuss the implications of such a finding for radiation protection, where

one needs to assess the potential risks of low levels of radiation to workers
and to members of the public.

b) Is the larger RBE at smaller doses only an artifact – due to the shoulder of
the photon response curve approaching zero slope as the dose approaches
zero?

13.24 A linear–quadratic model is used to fit cell survival data with a¼ 0.080 Gy�1

and b¼ 0.025 Gy�2.
a) Make a semilog sketch of the survival curve out to a dose of 12 Gy.
b) At what dose are the linear and quadratic components of cell killing equal?

13.25 Fit the survival data in Table 13.2 to a linear–quadratic function.
a) What are the numerical values of a and b?
b) At what dose are the linear and quadratic contributions to cell killing the

same?
13.26 Repeat the last problem for the data in Table 13.3.
13.27 How is the ratio a/b in Eq. (13.21) expected to behave with increasing LET?
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14
Regression Analysis

14.1
Introduction

In many situations, a correlation might exist between two or more variables under
study. For example, the weight of a male over 20 years of age presumably depends to
some extent on his height. To consider the relationship more precisely, one could
randomly sample a population of suchmen and, on the basis of the sample data, try to
arrive at a mathematical expression for estimating weight based on height. To treat
this formally, one can designate the weight Yas the response variable and the height X
as the independent variable. Amodel, such as the following, can then be considered to
relate the two quantities mathematically:

Y ¼ b0 þ b1X þ e: ð14:1Þ

Hereb0 andb1 are unknownparameters, to be determined from the sample data. The
term e is the error due to a number of possible factors, such as the choice of themodel
and uncertainties in the measurements.

In this chapter we shall principally explore simple linear regression models
like Eq. (14.1), which are linear in both the response and independent variables
and the b parameters. While more complicated functions can be employed, the
linear model expressed by Eq. (14.1) is often adequate to relate the two variables
over some limited range of values. Our goal will include estimating the b

parameters and their variances. We shall also determine for the response
variable the variance of a predicted value, a mean value, and a future value.
Regression analysis refers to the study of how one or more independent variables
(X1, X2, . . .) relate to and enable the prediction of a dependent variable (Y). We
will examine goodness of fit and also the inverse regression of obtaining the
value of X when given Y.

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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14.2
Estimation of Parameters b0 and b1

We assume in the following discussion that we have pairs of variables (Xi, Yi),
i¼ 1, 2, . . . , n. Each pair is independently obtained, and the value of Xi is measured
without error or has such small error, compared to that of the response variable Yi,
that it is negligible. We also assume the following model:

Yi ¼ b0 þ b1Xi þ ei; ð14:2Þ
where ei has mean zero, constant variance s2, and Cov(ei, ej)¼ 0 for i 6¼ j, that is, the
errors ei are independent. If we plot the pairs (Xi, Yi), we would want to select the
straight line (Eq. (14.2)) that minimizes the errors. Figure 14.1 shows a hypothetical
situation where (Xi, Yi) are plotted, a straight line is drawn, and the errors are shown.
A convenient way to define the error in Eq. (14.2) is to write

ei ¼ Yi�ðb0 þ b1XiÞ; ð14:3Þ
and then, if the model (Eq. (14.2)) fits exactly, all ei¼ 0.

It is better to reduce the squared errors, e2i , since errors can be either positive or
negative. This method is called the least squares method of estimation. Thus, we want
to find values b0 and b1 such that the sum of squared errors is minimized, that is, b0
and b1 are the values of b0 and b1 that minimize

S ¼
Xn
i¼1

e2i ¼
Xn
i¼1

½Yi�ðb0 þ b1XiÞ�2: ð14:4Þ

We can determine b0 and b1 by differentiating with respect to b0 and b1, setting the
derivatives equal to zero, and solving

X

Y

X1 X2 X3 X4

Y1

Y3

Y

ε2

ε1

ε3

ε4

4

Y2

Figure 14.1 Plot of data pairs (Xi, Yi) showing a straight line drawn through the data so that the
errors ei are minimized.
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@S
@b0

¼ @

@b0

Xn
i¼1

½Yi�ðb0 þ b1XiÞ�2 ¼ �2
Xn
i¼1

½Yi�ðb0 þ b1XiÞ� ¼ 0 ð14:5Þ

and

@S
@b1

¼ @

@b1

Xn
i¼1

½Yi�ðb0 þ b1XiÞ�2 ¼ �2
Xn
i¼1

½Yi�ðb0 þ b1XiÞ�Xi ¼ 0: ð14:6Þ

Now b0 and b1 may be substituted directly for b0 and b1 since the sum of squared
errors is minimized, and Eqs. (14.5) and (14.6) can be rewritten as the so-called
normal equations

Xn
i¼1

Yi ¼ b0nþ b1
Xn
i¼1

Xi ð14:7Þ

and

Xn
i¼1

XiYi ¼ b0
Xn
i¼1

Xi þ b1
Xn
i¼1

X2
i : ð14:8Þ

The solutions for the intercept b0 and the slope b1 are then (Problem 14.3)

b0 ¼ 1
n

Xn
i¼1

Yi�b1
Xn
i¼1

Xi

 !
¼ �Y�b1 �X ; ð14:9Þ

where �Y and �X are the sample means, and

b1 ¼
Pn

i¼1 XiYi�ð1=nÞPn
i¼1 Xi

Pn
i¼1 YiPn

i¼1 X
2
i �ð1=nÞ Pn

i¼1 Xi
� �2 : ð14:10Þ

The quantities in Eq. (14.10) have names used inmany software programs. The termPn
i¼1 X

2
i is called the uncorrected sum of squares, and the term ð1=nÞ Pn

i¼1 Xi
� �2

is the
correction for the mean of the Xi�s. The final term,

Xn
i¼1

X 2
i �

1
n

Xn
i¼1

Xi

 !2

; ð14:11Þ

is the corrected sum of squares or SXX. Similarly,
Pn

i¼1 XiYi is referred to as the
uncorrected sum of cross-products, ð1=nÞPn

i¼1 Xi
Pn

i¼1 Yi is the correction for the means,
and

Xn
i¼1

XiYi� 1
n

Xn
i¼1

Xi

Xn
i¼1

Yi ð14:12Þ

is the corrected sum of cross-products of X and Yor SXY. Another term, analogous to SXX,
is
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SYY ¼
Xn
i¼1

Y2
i �

1
n

Xn
i¼1

Yi

 !2

; ð14:13Þ

which will be used later. These expressions are handy when using a calculator.
Table 14.1 summarizes equivalent ways of computing SXY, SXX, and SYY. Using these
expressions, we can now write that

b1 ¼ SXY
SXX

: ð14:14Þ

We can also write our estimated equation as

Ŷ ¼ b0 þ b1X ð14:15Þ

and, since b0 ¼ �Y�b1 �X ,

Ŷ ¼ �Y þ b1ðX��XÞ: ð14:16Þ

Note that, if we set X ¼ �X , then Ŷ ¼ �Y , which means the point ð�X ; �YÞ falls on the
regression line.

& Example
Known amounts of uraniumweremeasured using aGeiger–Mueller counter,
resulting in the data givenbelow. Sources of randomerror other than counting
statistics are assumed to be negligible, and the variability is considered
constant over the range of the data.

X (g U) 15 20 30 40 50 60
Y (net counts) 1305 1457 2380 3074 3615 4420

a) Use the least squares formulas to obtain the estimates b0 and b1. Plot the
corresponding line and the data points on a graph.

Table 14.1 Equivalent computing formulas for SXY, SXX, and SYY.

SXY SXX SYY

Pn
i¼1

ðXi��XÞðYi��YÞ Pn
i¼1

ðXi��XÞ2 Pn
i¼1

ðYi��YÞ2

Pn
i¼1

ðXi��XÞYi
Pn
i¼1

XiðXi��XÞ Pn
i¼1

YiðYi��YÞ
Pn
i¼1

XiðYi��YÞ Pn
i¼1

X2
i �

1
n

Xn
i¼1

Xi

 !2 Pn
i¼1

Y2
i �

1
n

Xn
i¼1

Yi

 !2

Pn
i¼1

XiYi� 1
n

Xn
i¼1

Xi

Xn
i¼1

Yi
Pn
i¼1

X2
i �n�X2 Pn

i¼1
Y2
i �n�Y2

Pn
i¼i

XiYi�n�X �Y
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b) Suppose a new sample of 45 gUwere counted.Whatwould you predict the
number of counts to be? Would you have confidence in this predicted
value? Why or why not?

c) Suppose a new sample of 75 gUwere counted.Whatwould you predict the
number of counts to be? Would you have confidence in this predicted
value? Why or why not?

Solution

a) The least squares formulas give us b1 ¼ SXY=SXX (recall Eq. (14.14) and the
formulas for SXY and SXX given by Eqs. (14.12) and (14.11), respectively)
and b0 ¼ �Y � b1 �X . The values of the terms in SXY and SXX are com-
puted to be

Pn
i¼1 XiYi ¼ 689 025,

Pn
i¼1 Xi ¼ 215,

Pn
i¼1 Yi ¼ 16 251, andPn

i¼1 X
2
i ¼ 9225, giving SXY¼ 68 9025� (215)(16 251)/6¼ 106 697.5

and SXX¼ 9225� (215)2/6¼ 1520.8333. Therefore, b1¼ 1520.8333/
106 697.5¼ 70.157 and b0¼ (16 251/6)� (70.157)(215)/6¼ 194.532.
Hence, the least squares regression line is given by

Ŷ ¼ 194:532þ 70:157 X : ð14:17Þ
The predicted values of Y for each value of X are

X 15 20 30 40 50 60
Ŷ 1247 1598 2299 3001 3702 4404

Note that we carrymore significant digits in themodel and round after the
calculations. Plotting the pairs (X, Ŷ ) and connecting the points gives the
predicted line. Note that, since this is a linear fit to the data, we can simply
plot the two extreme points and connect them using a straight line.
Figure 14.2 shows the data and fitted regression line.
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Figure 14.2 Data and fitted regression line from the example.
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b) Using Eq. (14.17), Ŷ ¼ 194.532 þ 70.157(45)¼ 3352 counts.One could be
confident of this predicted value, since the value X¼ 45 is internal to the
empirical data set.

c) Again using Eq. (14.17), Ŷ ¼ 194.532 þ 70.157(75)¼ 5456. This time, the
value of X is outside the set of empirical data, and so one might have less
confidence in this predicted value. Our confidence in the predicted value is
diminished, since we do not know the behavior of Y beyond X¼ 60 g,
unless we are certain that the assumed linear properties of ourmodel hold.

14.3
Some Properties of the Regression Estimators

Wemay write ei ¼ Yi�Ŷ i for i¼ 1, 2, . . . , n and note that
Pn

i¼1 ei ¼ 0 by referring to
the first normal equation given in Eq. (14.5). This is one way to check our arithmetic,
since this sum should always equal zero. Using the data in the previous example,
we have

Xi 15 20 30 40 50 60
Yi 1305 1457 2380 3074 3615 4420

Ŷ i 1247 1598 2299 3001 3702 4404

ei ¼ Yi�Ŷ i 58 �141 81 73 �87 16

We see that
P6

i¼1 ei ¼
P6

i¼1ðYi � Ŷ iÞ ¼ 0. The ei�s are called residuals, and
Pn

i¼1 e
2
i

is theminimum sum of squared residuals, as required by the least squares principle.We
can rewrite Eq. (14.5) as

Xn
i¼1

ðYi�b0�b1XiÞ ¼
Xn
i¼1

ei ¼ 0 ð14:18Þ

and Eq. (14.6) as

Xn
i¼1

ðYi�b0�b1XiÞXi ¼
Xn
i¼1

eiXi ¼ 0; ð14:19Þ

which provides some useful identities.
The residuals can be used to estimate the variance s2 mentioned with the

assumptions in Eq. (14.2). Some things to note from Eq. (14.2) and the assumptions
stated there are that

EðYiÞ ¼ Eðb0 þ b1Xi þ eiÞ ¼ b0 þ b1Xi þ EðeiÞ ¼ b0 þ b1Xi: ð14:20Þ
Therefore, the mean value of the distribution of Yi for a corresponding Xi is
b0 þ b1Xi. Also,

VarðYiÞ ¼ E½ðYi�b0�b1XiÞ2� ¼ E½ðeiÞ2� ¼ s2: ð14:21Þ

358j 14 Regression Analysis



Hence, the variance of Yi is constant, regardless of the value of Xi. Also,

Ef½Yi�EðYiÞ�½Yj�EðYjÞ�g ¼ EðeiejÞ ¼ 0; ð14:22Þ

by our assumption of zero covariance of the random errors, and, hence, the Yi�s have
zero covariance as well. Note that, so far, we have not stated any distributional
assumptions regarding the error ei. Later on, when we want to make inferences, we
will assume that the errors are normally distributed. The normal distribution with
zero covariance implies that the errors ei and the observations Yi are independent.

There is a very famous theorem called the Gauss–Markov theorem, which states
some important properties of the estimators b0 and b1.

Gauss–Markov Theorem
Under the conditions of model (14.2), the least squares estimators b0 and b1 given by
Eqs. (14.9) and (14.10) are unbiased and have minimum variance among all unbiased
linear estimators.

Thus, E(b0)¼b0 and E(b1)¼b1 and, among all linear estimators, these have the
smallest variance. Note that b0 and b1 are linear estimators – that is, they are linear
combinations of the Yi. To show this, consider the equation

b1 ¼
Pn

i¼1ðXi��XÞðYi��YÞPn
i¼1 ðXi��XÞ2 ; ð14:23Þ

which we can write as (Problem 14.5)

b1 ¼
Pn

i¼1ðXi��XÞYiPn
i¼1 ðXi��XÞ2 ¼

Xn
i¼1

aiYi; ð14:24Þ

where ai ¼ ðXi��XÞ=Pn
i¼1 ðXi��XÞ2.

Similarly, using Eq. (14.9), it is easy to show that b0 is also a linear function of the
Yi�s (Problem 14.6). The residuals are a natural moment estimator for s2. Recall the
assumption that Eðe2i Þ ¼ s2 and the function we minimized was S ¼Pn

i¼1 e
2
i ¼Pn

i¼1 ½Yi�ðb0 þb1XiÞ�2. Replacing b0 and b1 by the estimators b0 and b1, we have
S0 ¼Pn

i¼1 e
2
i ¼

Pn
i¼1 ðYi�b0 þ b1XiÞ2. Most texts refer to S0 by SSE, which stands for

sum of squares for error. We note that EðSÞ ¼ ns2; hence, SSE is a natural estimator for
s2 and, in fact, EðSSEÞ ¼ ðn�2Þs2. Thus, MSE¼ SSE/(n� 2) is an unbiased esti-
mator ofs2.MSE stands formean square error, since it is a formof average (ormean) of
the squared error terms. We shall not prove that EðSSEÞ ¼ ðn�2Þs2, but simply
comment that the form of the multiplier (n� 2) is due to the fact that we have two
constraints on the residuals,

Pn
i¼1 ei ¼ 0 and

Pn
i¼1 eiXi ¼ 0. The term (n� 2) is often

referred to as the degrees of freedom.
Next we shall determine the variance of our estimators b0 and b1. Using the

assumption of independence of the Yi�s and recalling that we showed b1 to be a linear
function of Yi�s, we find

Varðb1Þ ¼
Xn
i¼1

a2i VarðYiÞ ¼
Xn
i¼1

a2i s
2 ¼ s2

Xn
i¼1

a2i ; ð14:25Þ
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where ai ¼ ðXi��XÞ=SXX . It can be shown (Problem 14.7) that
Pn

i¼1 a
2
i ¼ 1=SXX , so

that

Varðb1Þ ¼ s2

SXX
¼ s2Pn

i¼1 ðXi��XÞ2 : ð14:26Þ

Since b0 ¼ �Y�b1 �X is a linear function of the Yi�s, it can be shown (Problem 14.8) that

Varðb0Þ ¼ s2Pn
i¼1 X

2
i

nSXX
: ð14:27Þ

Normally s2 is unknown and we replace s2 with MSE in Eqs. (14.26) and (14.27) to
obtain estimates for Var(b1) and Var(b0).

& Example
Calculate the following quantities using the data from the previous example:

a) SSE;
b) MSE;
c) dVarðb0Þ and standard error;
d) dVarðb1Þ and standard error.

Solution
(It is important to keep a number of digits until the final result and then round
accordingly.)

a)

SSE ¼
Xn
i¼1

ðYi�b0�b1XiÞ2

¼
Xn
i¼1

Y2
i �b0

Xn
i¼1

Yi�b1
Xn
i¼1

XiYi ð14:28Þ

or

SSE ¼ SYY�SXY=SXX : ð14:29Þ

Either equation can be used, but if b0 and b1 have not been calculated, the
second equation is more direct. We shall use both and see how they
compare. Using Eq. (14.28) gives

SSE ¼ 51 544 375�ð194:53145Þð16 251Þ�ð70:157262Þð679 025Þ
¼ 42 936:924:

ð14:30Þ
Using Eq. (14.29) gives

SSE ¼ 7 528 541:5�ð106 697:5Þ2=1520:8333
¼ 42 935:5812: ð14:31Þ
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The relative percent difference, (1.3428/42 935.5812)� 100%¼ 0.0031%,
is small, but still indicates the need for carrying many digits. We will use
SSE¼ 42 935.5812.

b) MSE ¼ SSE=ðn�2Þ ¼ 42 935:5812=ð6�2Þ ¼ 10 733:8953. So ŝ2 ¼
10 733:8953 and ŝ ¼ 103:6045

c) dVar ðb0Þ¼ ŝ2P x2i =nSxx¼10 733:8953ð9225Þ=6ð1520:8333Þ ¼ 10

851:52705 and the standard error is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðb0Þq

¼ 104:170663.

d) dVarðb1Þ ¼ ŝ2=Sxx ¼ 10 733:8953=1520:8333 ¼ 7:057904 and the stan-

dard error is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðb1Þq

¼ 2:656672.

14.4
Inferences for the Regression Model

Up to this point we have not assumed any distribution for ei or, equivalently, Yi. Now
we shall assume that the ei � N(0, s2) and, consequently, that Yi �N(b0 þ b1Xi, s

2).
We shall derive the maximum likelihood estimators in place of the least squares
estimators. The likelihood is simply the joint density of the observations, but treated
as a function of the unknownparameters b0, b1, and s

2. Thus, the likelihood function
is given by

Lðb0; b1; s2Þ ¼
Yn
i¼1

f ðYijb0; b1; s2Þ ð14:32Þ

¼
Yn
i¼1

1

s
ffiffiffiffiffiffi
2p

p e�ð1=2s2ÞðYi�b0�b1XiÞ2 ð14:33Þ

¼ 1

ðs2Þn=2ð2pÞn=2
e�ð1=2s2Þ

Pn

i¼1
ðYi�b0�b1XiÞ2 : ð14:34Þ

Recall that we want to find the values of b0, b1, and s2 that maximize the likelihood
function. Maximizing the likelihood function is equivalent to maximizing the log
(natural) likelihood, so

ln Lðb0; b1; s2Þ� � ¼ � n
2
ln 2pð Þ� n

2
ln s2� 1

2s2

Xn
i¼1

ðYi�b0�b1XiÞ2: ð14:35Þ

Note that, with respect to b0 and b1, we want to find the values thatminimize the sum
of squares, but this is identical to what we did using least squares and hence the
normal assumption leads to equivalent estimators betweenmaximum likelihood and
least squares. Thus, the maximum likelihood estimators b̂0 ¼ b0 and b̂1 ¼ b1. The
unbiased and minimum variance properties carry over to the normal distribution
situation. The estimators have the same variances and since these estimators are
linear functions of the Yi and theYi are normally distributed then so are b0 and b1.We
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can write

b0 � N b0; s
2=n

X
X2
i =Sxx

� �
ð14:36Þ

and

b1 � Nðb1; s2=SxxÞ ð14:37Þ

The MLE for s2 is easily obtained by differentiating Eq. (14.35) with respect to s2,
setting the result equal to zero, and solving. Doing so we find

ŝ2 ¼ 1
n

Xn
i¼1

ðYi�b0�b1XiÞ2 ¼ SSE
n

: ð14:38Þ

It can be shown that SSE=s2, under the normality assumption, is x2ðn�2Þ (i.e., chi-
squared with (n� 2) degrees of freedom). Recalling that the expected value of a chi-
square random variable is equal to its degrees of freedom, we see

E
nŝ2

s2

" #
¼ E

SSE
s2

� 	
¼ ðn�2Þ ð14:39Þ

or

Eŝ2 ¼ ðn�2Þ
n

s2: ð14:40Þ

Thus, the maximum likelihood estimator for s2 is biased, but ½n=ðn�2Þ�ŝ2 ¼
SSE=ðn�2Þ ¼ MSE is unbiased for s2.

In most situations, s2 will be unknown and Eqs. (14.36) and (14.37) will not be
useful. In this case, we use the following Student�s t-statistics to make inferences
regarding b0 and b1:

b0�b0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMSE=nÞ PX2

i =Sxx
� �q � tn�2 ð14:41Þ

and

b1�b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=Sxx

p � tn�2: ð14:42Þ

& Example
Using the previous example and data obtain the following:

a) A 95% confidence interval for b0.
b) A 95% confidence interval for b1.
c) Test the hypothesis thatH0: b1¼ 0 versusH1: b1 6¼ 0 at thea¼ 0.05 level of

significance.
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Solution

a) Using the results from the previous examples and Eq. (14.41) we have that

Pr �tn�2;a=2 <
b0�b0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðMSE=nÞ P x2i =Sxx
� �q < tn�2;a=2

0B@
1CA ¼ 1�a:

Using Table A.5, we have t4;0:025 ¼ 2:776; the standard error isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE
n

P
x2i

Sxx


 �s
¼ 104:1707

and we have

Pr b0�tn�2;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE
n

P
x2i

Sxx


 �s
< b0 < b0þ tn�2;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE
n

P
x2i

Sxx


 �s !
¼ 1�a:

Substituting we find Pr½194:532�2:776ð104:1707Þ<b0 < 194:532þ
2:776ð104:1707Þ�¼ 0:95, or Pr(�94.6458<b0< 483.7098)¼ 0.95. Thus, the
95% confidence interval for b0 is (�94.6, 483.7).

b) Using Eq. (14.42) and our previous results, we have Pr[70.157� 2.776
(7.0579) < b1 < 70.157 þ 2.776(7.0579)] ¼ 0.95, or Pr(50.5643 < b1 <

89.7497) ¼ 0.95.
c) The hypothesisH0: b1¼ 0 versusH1: b1 6¼ 0 is a two-sided test, and so we

will compare the result of Eq. (14.42) to t4,0.025¼ 2.776. Using Eq. (14.42),
we find t ¼ ðb1�b1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=Sxx

p ¼ ð70:157�0Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:0579

p ¼ 26:4079.
Since this is greater than t4;0:025 ¼ 2:776, we reject H0 at the 5% level of
significance.

Next we shall look at predicted values and their associated variability. The prediction
equation is

Ŷ ¼ b0 þ b1X ; ð14:43Þ

where b0 and b1 are unbiased estimators.We know thatEðŶÞ ¼ b0 þb1X , which is an
unbiased estimator of the value ofYat the given value ofX. It can be shown that �Y and
b1 are independently distributed (Problem 14.10). Since Eq. (14.43) implies that
Ŷ ¼ �Y þ b1ðX��XÞ, then

VarðŶÞ ¼ Varð�YÞþ ðX��XÞ2 Varðb1Þ ð14:44Þ

¼ s2

n
þ s2ðX��XÞ2

SXX
¼ s2 1

n
þ ðX��XÞ2

SXX

 !
: ð14:45Þ

14.4 Inferences for the Regression Model j363



We know that a linear combination of normal random variables is itself normally
distributed. Because �Y and b1 are normally distributed, Ŷ is also. Hence, Ŷ hasmean
b0 þ b1x and variance given by Eq. (14.45). Thus, if we want to place a confidence on
the mean predicted value, we can use normal theory to write

Pr �z1�a=2 <
Ŷ�ðb0 þ b1XÞffiffiffiffiffiffiffiffi

s2j
p < z1�a=2

" #
¼ 1�a ð14:46Þ

and

Pr½Ŷ�z1�a=2

ffiffiffiffiffiffiffiffi
s2j

p
< b0 þ b1X < Ŷ þ z1�a=2

ffiffiffiffiffiffiffiffi
s2j

p
� ¼ 1�a; ð14:47Þ

where j ¼ ½1=nþðX��XÞ2=SXX �. We will not know s2 in most cases and must
estimate this value using the mean square error (MSE). The Student�s t-distribution
must be utilized in this case, resulting in a very similar looking confidence interval,
namely,

Pr½Ŷ�tn�2;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE j

p
< b0 þ b1X < Ŷ þ tn�2;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE j

p
� ¼ 1�a: ð14:48Þ

Beforemoving to an example, wemention that predicting values within the region of
our observed Xi�s is called interpolation, while predicting values outside the region is
called extrapolation. Interpolation is generally safe to do, in that we can see how well
the observations follow our assumption of linearity. We have little knowledge of how
the relationship between Y and X may vary, once we move outside this region. Our
prediction should be satisfactory if we are reasonably sure that linearity can be
assumed, but we will have no proof that the linear model is correct beyond what we
have observed. Note also that the variance of our predicted value is a function of
ðX��XÞ2, and we can see that the variance increases greatly as we extrapolate further
outside the experimental region.

& Example
Using the previous data, obtain the following when X¼ 30, 36, and 65:

a) the predicted value, and
b) the estimated variance of the predicted value.

Solution

a) The prediction equation is given by Ŷ ¼ 194:532þ 70:157X, so we find

X ¼ 30 36 65
Ŷ ¼ 2299:2 2720:2 4754:7

b) Using MSE to estimate s2 and Eq. (14.45), we have

dVarðŶÞ ¼ 10 733:8953
1
6
þ ðX�35:83333Þ2

1520:83333

" #
; ð14:49Þ
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giving

X ¼ 30 36 65dVarðŶÞ ¼ 2029:1 1789:2 7793:1

Note that the variance of the predicted value becomes larger as wemove further from
�X . The value X¼ 65 is outside the range of the data on which we built our regression
model. A prediction in this region is an extrapolation, which may be inaccurate,
unless we are confident that the linear relationship holds in this region.

Predicting future observations is different from predicting expected values of Y for a
given X, as we just did. Let Ydenote the new observation and Ŷ denote our predicted
value at some given value ofX.Wewere predicting E(Y)¼b0 þ b1X previously, using
Ŷ ¼ b0 þ b1X. Now we wish to predict Y, a new random variable. This new Y should
come from a distribution withmean b0 þ b1X, if ourmodel holds.We know that Ŷ is
unbiased and, hence, this would be our best estimate of Yas well. We can, therefore,
use Ŷ to estimate both the future value of a random variable and its mean value.
EstimatingY by Ŷ incurs an error, e ¼ Y�Ŷ .We can see that the expected value of e is
zero, that is,

EðeÞ ¼ EðY�ŶÞ ¼ EðYÞ�EðŶÞ ¼ ðb0 þ b1XÞ�ðb0 þ b1XÞ ¼ 0: ð14:50Þ
The variance of e is

VarðeÞ ¼ VarðY�ŶÞ ¼ VarðYÞþVarðŶÞ�2CovðY ; ŶÞ: ð14:51Þ
The variance of a future observation is simply s2 (recall Eq. (14.21)) and the variance
of Ŷ iss2j (Eq. (14.45)). The covariance term is zero, since the newY is not involved in
the determination Ŷ . We find that

VarðeÞ ¼ s2 þ s2j ¼ s2ð1þ jÞ: ð14:52Þ
Thus, the variability in predicting a future observation is considerably larger than the
variability in predicting the mean value. We can carry the logic one step further by
considering an estimation of themean of k future observations ofY.We represent the
mean of k future values by �Yk, and we can see that �Yk comes from a distribution with
mean value b0 þ b1x and variance s2=k. We see, following the arguments given
above, that Ŷ is still the best predictor, and now the variance of the error is

VarðekÞ ¼ s2 1
k
þ j


 �
: ð14:53Þ

Note that Var(ek) approaches VarðŶÞ as the number of observations k, used in
determining �Yk, increases (Problem 14.20).

& Example
Using the previous example, obtain the following when X¼ 30, 36, and 65:

a) the predicted value of Y, and
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b) the estimated variance of the predicted value.

Solution

a) The predicted future observation is given by Ŷ, as in the previous example,
so that

X ¼ 30 36 65
Ynew ¼ 2299:2 2720:2 4754:7

b) The variance of the prediction of a future observation is given by
Eq. (14.52). Replacing s2 by MSE we find

X ¼ 30 36 65dVarðeÞ ¼ 12 763:0 12 523:1 18 527:0

The variance for the prediction of a new value at a given X is considerably larger than
the variance for the expected value at a given X. It is clear that the distribution for a
future predicted value is normal with mean (b0 þ b1x) and variance given by
Eq. (14.53), where k¼ 1. A (1�a)100% confidence interval is given by

Ŷ � z1�a=2s
1
k
þ j


 �1=2

ð14:54Þ

for the mean of k future values at x.
Similarly, if s2 is unknown, then we must estimate it using MSE and Student�s t-

distribution. The corresponding confidence interval is

Ŷ � tn�2;a=2 MSE
1
k
þ j


 �� 	1=2
: ð14:55Þ

We state the following without proof, but refer the interested reader to R.G. Miller�s
text, Simultaneous Statistical Inference (Miller, 1981). To obtain simultaneous
confidence curves for the whole regression function over its entire range, replace
tn�2;a=2 with ð2F2;n�2;1�a=2Þ1=2 in Eq. (14.55) for the mean of k future observations, or
in Eq. (14.48) for a predicted value.

14.5
Goodness of the Regression Equation

In this section, we will take a different approach to examining the regression
equation. This alternative approach is not so important for simple linear regression,
but is helpful for more complex regression models. It consists of partitioning the
variabilityweobserve inYamong the various components of the regressionmodel. To
this end, consider the following identity:

ðYi�Ŷ iÞ ¼ ðYi��YÞ�ðŶ i��YÞ: ð14:56Þ
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The residual ei ¼ ðYi�Ŷ iÞ can, as suggested by this identity, be partitioned into two
parts: (1) the deviation of Yi from the mean and (2) the deviation of the predicted Ŷ i

from the mean. We can rewrite (14.56) as

Xn
i¼1

ðYi��YÞ2 ¼
Xn
i¼1

ðYi�Ŷ iÞ2 þ
Xn
i¼1

ðŶ i��YÞ2 þ 2
Xn
i¼1

ðYi�Ŷ iÞðŶ i��YÞ: ð14:57Þ

The termon the left-hand side of Eq. (14.57) is called the total sum of squares (TSS); the
first term on the right, the sum of squared deviations or the sum of squares for error (SSE)
(can you see why?); the second term on the right, the sum of squares due to regression
(SSR). The cross-product term is zero (Problem 14.13). In the abbreviated nomen-
clature, we have

TSS ¼ SSEþ SSR: ð14:58Þ
Each of these sums of squares has associated degrees of freedom. The term TSS, for
instance, has (n� 1) degrees of freedom. One way of seeing this is that, even though
there are n terms in the sum, there are only (n� 1) independent terms, sincePn

i¼1ðYi��YÞ ¼ 0. The SSR has only one degree of freedom. To see this, recall that
Ŷ i ¼ �Y þ b1ðXi��XÞ, so that1) Ŷ i��Y ¼ b1ðXi��XÞ is a function of only one parameter,
b1. The degrees of freedom on the left-hand side of the equationmust equal those on
the right; hence, the degrees of freedom associated with SSE are (n� 2) due to two
constraints, namely,

Pn
i¼1ðYi�Ŷ iÞ ¼ 0 and

Pn
i¼1 XiðYi�Ŷ iÞ ¼ 0. These sums of

squares and degrees of freedom are usually presented in what is called an analysis
of variance (ANOVA) table, which is usually constructed as shown in Table 14.2. The
column MS shows the sum of squares divided by its degrees of freedom. The last
column indicates that E(MSR) is a function of s2 and b21, and that E(MSE) is equal to
s2 alone. One can show that SSR and SSE are distributed as x2 random variables, the
ratio of which, divided by their respective degrees of freedom, has an F distribution
(Eq. (6.98)). We can see that the ratio F¼MSR/MSE can be used to test whether
H0 : b1 ¼ 0 versusH1 : b1 6¼ 0. If b1¼ 0, then the expected mean squares are both
equal tos2 and their ratio should beunity. Ifb1 6¼ 0, then theMSRwill be inflated and
the ratio should be greater than unity.Hence, we can use theF1;n�2 distribution to test
the null hypothesis above, which we reject if F > F1,n�2,1�a.

Table 14.2 Typical ANOVA table for the simple linear regression model.

Source of variation df SS MS E(MS)a F p-value

Regression 1 SSR SSR/1 s2 þ b21Sxx MSR/MSE Pr(F1,n�2 > F)
Error n� 2 SSE SSE/(n� 2) s2

Total n� 1 TSS

a) Expected value of mean squares is not typically given in the ANOVA table. It is shown here to see
why the F ratio is a test of b1¼ 0.

1) The Xi are fixed and have no uncertainty.
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& Example
Complete the ANOVA table using data from the previous example.

Solution
DetermineSSR,SSE,andTSSandput themin theANOVAtableusing the form
given in Table 14.2. The TSS is simply

Pn
i¼1 ðYi��YÞ2 ¼Pn

i¼1 Y
2
i �n�Y2 ¼ 51 544 375�44 015 834 ¼ 7 528 541: The SSR is calculated

as
Pn

i¼1 ðŶ i��YÞ2 ¼ b21Sxx ¼ ð70:1573Þ2 ð1520:8333Þ ¼ 7 485 612: The SSE is
obtainedbysubtraction,SSE¼TSS� SSR¼ 7528541� 7485612¼ 42929.Of
course, SSE ¼Pn

i¼1 ðYi�Ŷ iÞ2 ¼ (58.10959)2 þ (�140.67671)2 þ (80.75068)2

þ (73.17808)2 þ (�87.39452)2 þ (16.03288)2¼ 42 937.22027. (Although the
two methods used to obtain SSE do not agree exactly, there is only a 0.02%
difference.) The ANOVA table can now be filled in.

ANOVA for simple linear regression example:

Source of variation df SS MS Fa p-valueb

Regression 1 7 485 612 7 485 612 697.49 1.222 � 10�5

Error 4 42 929 10 732.25
Total 5 7 528 541

a F¼MSR/MSE has the F distribution with degrees of freedom equal to
regression and error, respectively. In this case, F�F1,4.
b p-value¼Pr(F1,4> F)¼Pr(F1,4> 697.49)¼ 0.00001222.

The p-value is very small in this case, indicating a highly significant linear
regression coefficient. In the case where we have a single dependent
variable, the above F test is equivalent to testing H0 : b1 ¼ 0 versus
H1 : b1 6¼ 0. Eq. (14.42) shows that b1, suitably normalized, has the
Student�s t-distribution. Recall that a Student�s t random variable is defined
as the ratio of a standard normal random variable and the square root of a x2

random variable divided by its degrees of freedom. The square of a Student�s
t random variable, then, is the ratio of the square of a standard normal
random variable (which has a x2 distribution with one degree of freedom)
and a x2 random variable divided by its degrees of freedom. This is exactly
the definition of an F random variable. We earlier used the t-distribution to
test H0 : b1 ¼ 0 versus H1 : b1 6¼ 0 and obtained t� 26.408, so that t2

¼ 697.38�nearly the same as our F value, with the difference accredited
to rounding. Thus, the F value is equivalent to testing H0 : b1 ¼ 0 versus
H1 : b1 6¼ 0 in the single-variable regression. We note that, when there are
several independent variables (X1, X2, . . ., Xk), one can calculate an F value
that is then equivalent to testing the hypothesis that each bi ¼ 0 for all i¼ 1,
2, . . ., k simultaneously. The alternative hypothesis in this case is that at least
one bi is not zero.
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Another statistic often used in regression analysis is calledR2, and it represents the
percent of variation in the dependent variable Y that is explained by the independent
variable X. The definition of R2 is

R2 ¼ SSR
TSS

¼
Pn

i¼1 ðŶ i��YÞ2Pn
i¼1 ðYi��YÞ2 : ð14:59Þ

This is often expressed as a percentage by multiplying by 100%. We have, from the
ANOVA table in the last example, R2¼ 7 485 612/7 528 541¼ 0.9943, or R2

¼ 99.43%. This says that the independent variable X explains 99.43% of the variation
that occurs in Y. This indicates a very strong linear relationship between X and Y. The
values of R2 range from 0 to 1, where 1 implies a perfect linear relationship between
the dependent and independent variables, that is, Y¼b0 þ b1Xwith no error. If one
took repeat observations, then R2 must be less than 1, unless all the repeat
measurements yielded equivalent results at a given value of X. This would occur
very infrequently, if at all, in any real experimental situation.

14.6
Bias, Pure Error, and Lack of Fit

The simple linear regressionmodel is somethingwe have assumed in our analysis so
far, but it is an assumption that we can examine. Recall that the residuals, ei ¼ Yi�Ŷ i,
reflect the adequacy of the linear model to describe the data. It is common, if not
imperative, to plot the residuals to see if they appear random. Recall that, in our
assumed linear model Yi ¼ b0 þb1Xi þ ei, the ei are assumed independent and have
constant variance s2 with mean zero. The residuals should mimic these character-
istics. We know that �e ¼ 0 by the normal equations, and this implies that the ei are
correlated. The correlation imposed by this constraint will not be that important in
our examination of the residuals, where we are looking for discrepancies from the
assumed model. Figure 14.3 shows some plots that would generally be used in the
regression analysis. There are no obvious patterns in the above plots, and nothing to
make us suspect there is any violation of our assumptions. Figure 14.3a is frequency
plot of the residuals from a very large data set.Wewould expect the distribution of the
values of residuals from a good regression fit to be symmetrically distributed about
zero, with most of the values close around zero, and to have fewer points at the
extremes, as we see in the figure. Figure 14.3b is a scatter plot of the residuals against
the independent variable from the first example. These residuals are fairly randomly
distributed around zero, indicating a good regression fit. We would suspect some
possible issues if the residuals increased in magnitude as X increased (nonconstant
variance), or if the residuals were negative at the low and high values of X but positive
for the middle values of X (possibly indicating a quadratic model in X). Figure 14.3c
is a plot of the residuals against the predicted values of the dependent variable in the
first example. Again, we see that the distribution of residual values is fairly random
about zero, indicating a good regression fit.
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Figure 14.3 Plots of residuals from data fitted
by linear regression: (a) frequency distribution
of residuals froma large data set; (b) scatter plot
of residuals as a function of uraniummass from

the data in the first example; (c) scatter plot of
residuals as a function of the predicted values
for net counts in the first example.
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Recall that, by the normal equations,
Pn

i¼1 eiŶ i ¼ 0, so that the residuals and the
predicted values are uncorrelated. This may not be the case with the actual observa-
tions, and so plotting the residuals against the observationsmight yield a nonrandom
pattern, but that would still not be a violation of assumptions. We would suspect a
nonconstant variance if the plot of the residuals against the predicted values shows an
increase or decrease as Ŷ increases.Wemight suspect that a quadratic or higher order
model might be more appropriate if the pattern were curved. Figure 14.4 shows the
general patterns that would cause concern, with (a) showing a nonconstant variance,
(b) showing an inadequate model (using, in this case, a linear model to fit an
exponential function), and (c) showing the pattern that would be considered
acceptable. Figure 14.4d shows a situation where we know the time order in which
the datawere collected. Patterns such as those here (i.e., alternating groups of positive
and negative residuals) suggest that theremight be some learning effect or change in
the process over time. This would imply a need to adjust the model for time, or for
whatever factor might be changing with time. For example, temperature might be
confounded with time, and beginning measurements might have been taken under
cooler conditions. Training or learning is often confounded with time, chemicals can
degrade over time, and so on. If the underlying cause for a time effect can be
determined, then a new model incorporating this can be fit.

Another issue is that of systematic bias in the regression results. Let mi ¼ EðYiÞ
denote the value given by the �true� model, whatever it is, when X¼Xi. Then we can
write

Yi�Ŷ i ¼ ðYi�Ŷ iÞ�EðYi�Ŷ iÞþEðYi�Ŷ iÞ ð14:60Þ

¼ ðYi�Ŷ iÞ�½mi�EðŶ iÞ� þ ½mi�EðŶ iÞ� ð14:61Þ

¼ ri þBi; ð14:62Þ
where ri ¼ ðYi�Ŷ iÞ�½mi�EðŶ iÞ� and Bi ¼ mi�EðŶ iÞ. The quantity Bi is the bias at
X¼Xi. If themodel is correct, then EðŶ iÞ ¼ mi and Bi¼ 0. If themodel is not correct,
then EðŶ iÞ 6¼ mi andBi takes on a nonzero value that depends on both the truemodel
and the value of X. The quantity ri is a random variable whose mean is zero, since
EðriÞ ¼ EðYiÞ�EðŶ iÞ�mi þEðŶ iÞ ¼ 0. It can be shown that E

Pn
i¼1 r

2
i

� � ¼ ðn�2Þs2,
based on the assumption that the Yi�s have constant s2 and that they are independent
of each other. Then it can be shown that the expected value of the sum of squares for
error is (Problem 14.14)

EðSSEÞ ¼ E
Xn
i¼1

ðYi�Ŷ iÞ2
" #

¼ ðn�2Þs2 þ
Xn
i¼1

B2
i ; ð14:63Þ

and, since MSE ¼ SSE=ðn�2Þ,

EðMSEÞ ¼ s2 þ
Pn

i¼1 B
2
i

ðn�2Þ : ð14:64Þ
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Figure 14.4 Plots of residuals showing patterns that might cause concern: (a) nonconstant
variance that increases with X; (b) residuals from an inappropriate model, in this case a linear fit to
data from exponential decay; (c) an acceptable pattern; (d) variance that changes with time.
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Thus, the expected value of theMSE is inflated if themodel is not correct. The bias, if
large enough, will tend to increase our estimate of the population variance, and this
will affect confidence intervals and tests of hypothesis accordingly. This increase in
our estimate of the true variance leads to what is called a loss of power in a test of
hypothesis. The loss of power is a reduction in the probability (ð1�bÞ, where b is the
probability of a type II error) of detecting a true effect when one exists.

This can often be seen in a plot of the residuals versus the independent variableX in
the case of a single predictor variable, but is more difficult to detect when there are
multiple independent variables. One way of testing formodel inadequacy is by using
a prior estimate of s2 obtained by previous experiments. One can then compare the
estimate of s2 obtained from the current model to that obtained in the past. If the
current estimate is large compared to the past, then one might conclude that the
current model is somehow inadequate and investigate possible reasons, amending
the model accordingly. This can be done in another way if there are repeat observa-
tions taken at the same value of X. The variability we observe at each of these repeat
points are estimates of the true variance, since the model, whatever it is, does not
change at that given value of X. Thus, the variation at these repeat points is termed
pure error, since it estimates only the random variation. It is important to understand
what is meant by repeat observations. Repeat observations come by replicating
the experiment at the same setting of X. For example, suppose we are interested
in the amount of potassium in a human as a function of the weight of the person. A
true repeat observation is obtained bymeasurement of [K] in two persons of the same
weight. (Measuring the potassium concentration [K] in the tissue of one person at two
points in time is a reconfirmation, which provides information about the variability in
ourmeasurement system, but not about variation in the values of [K] between people
of the same weight.)

To analyze such data we need to use subscripts that identify particular values of X
and a second subscript identifying the number of repeats at that value of X. For
example, let i¼ 1, 2, . . .,m represent the number of distinctX values, and j¼ 1, 2, . . .,
mi be the number of repeat points at X¼Xi. The contribution to the sum of squares
pure error at the value X¼Xi is given by

Xmi

j¼1

ðYij��YiÞ2 ¼
Xmi

j¼1

Y2
ij�mi �Y

2
i : ð14:65Þ

Pooling the sum of squares across all the repeat points gives the sum of squares pure
error,

SSpe ¼
Xm
i¼1

Xmi

j¼1

ðYij��YiÞ2 ð14:66Þ

with associated degrees of freedom given by

df pe ¼
Xm
i¼1

ðmi�1Þ: ð14:67Þ
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Then the pure error mean square is given by

MSpe ¼ SSpe
df pe

; ð14:68Þ

and this is an estimate ofs2, regardless ofwhether themodel is correct or not.Nextwe
show that the SSE can be partitioned into two separate sums of squares, one being the
sum of squares pure error and the other, what wewill call the sum of squares lack of fit.We
begin with an identity,

Xm
i¼1

Xmi

j¼1

ðYij�Ŷ iÞ2 �
Xm
i¼1

Xmi

j¼1

½ðYij��YiÞþ ð�Yi�Ŷ iÞ�2: ð14:69Þ

Then it follows that Eq. (14.69) can be written as

Xm
i¼1

Xmi

j¼1

ðYij�Ŷ jÞ2 �
Xm
i¼1

Xmi

j¼1

ðYij��YiÞ2 þ
Xm
i¼1

miðŶ i��YiÞ2

þ 2
Xm
i¼1

Xmi

j¼1

½ðYij��YiÞð�Yi�Ŷ iÞ�:
ð14:70Þ

Note that the cross-product term vanishes (Problem 14.15). We can express
Eq. (14.70) as

SSE ¼ SSpe þ SSlof ; ð14:71Þ

where �pe� stands for �pure error� and �lof� for �lack of fit.� Let n denote the total
number of observations so that n ¼Pm

i¼1 mi, then we note that SSE has (n� 2)
degrees of freedom associated with it, that SSpe has

Pm
i¼1ðmi�1Þ degrees of freedom

associated with it, and we find by subtraction that the SSlof has
ðn�2Þ�Pm

i¼1ðmi�1Þ ¼ m�2 degrees of freedom. One may consider that there are
mdistinct points inXonwhich to build themodel, and that twoof these are lost for the
terms in our model, thus yielding (m� 2) degrees of freedom for lack of fit. The
model�s lack of fit can be tested by computing

F ¼ SSlof=ðm�2Þ
SSpe=

Pm
i¼1ðmi�1Þ ; ð14:72Þ

which has an F distribution with (m� 2) and
Pm

i¼1ðmi�1Þ degrees of freedom.

& Example
Suppose in the example examining weight and counts of 235U we obtained
three additional ingots that weighed 20, 40, and 60 g. The counts for these
ingots are 1225, 3208, and 4480, respectively.

a) Repeat the regression analysis using these additional points.
b) Determine SSE, SSpe, and SSlof.
c) Test whether there is significant lack of fit in the model.
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Solution

a) b1 ¼ SXY=SXX ¼ 175 707:2222=2355:5556 ¼ 74:593;

b0 ¼ �Y�b1 �X ¼ 2784:889�74:593ð37:222Þ ¼ 8:373;

TSS ¼
Xn
i¼1

Y2
i �

1
n

Xn
i¼1

�Y

 !2

¼ 83 171 664� 1
9
ð25 064Þ2

¼ 13 371 208:89;

SSR ¼ b1SXY ¼ 74:593ð175 707:2222Þ ¼ 13 106 528:83;

SSE ¼ TSS�SSR ¼ 264 680:06:

We can now fill in the ANOVA table:

Source of variation df SS MS F p-value

Regression 1 13 106 528.83 13 106 528.83 346.63 3.2� 10�7

Error 7 264 680.06 37 811.44
Total 8 13 371 208.89

b) SSE¼ 264680.06.
We calculate the pure error contribution at each repeat point. If there are
only two repeats, then

Pmi
j¼1 ðYij��YiÞ2 ¼ ð1=2ÞðYi1�Yi2Þ2. Hence, we find

SSpe¼ (1/2)(1457� 1125)2 þ (1/2)(3074� 3208)2 þ (1/2)(4420� 4480)2

¼ 65 890, with (9 � 6) ¼ 3 degrees of freedom. Then SSlof follows by
subtraction: SSlof¼ SSE� SSpe¼ 264 680.06� 65 890¼ 198 790.06, with
(m � 2) ¼ (6 � 2) ¼ 4 degrees of freedom.

c) To test for lack offit, we computeF ¼ ½SSlof=ðm�2Þ�= SSpe=
Pm

i¼1ðmi�1Þ� �
¼ ð198 790:06=4Þ=ð65 890=3Þ ¼ 2:263. We compare this to the upper 5%
point on the F4,3 distribution, which is F4,3,0.05¼ 6.59, exceeding our
calculated F, from which we conclude that there is no lack of fit with the
linear model.

14.7
Regression through the Origin

The regression line may be known to pass through the origin in some situations. For
example, the amount of precipitate Y resulting at a concentration X of a chemical
reactant must be zero if X is zero, since there is no chemical reaction and, therefore,
no precipitate. We would also expect the number of counts from a radiation detector
to be zero if the amount of radioactive material is zero (but only in an environment
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with no background radiation). The model is the same in this situation, except that
b0 � 0, so that the model is given by

Yi ¼ b1Xi þ ei; ð14:73Þ
where bi is an unknown parameter, Xi is a known value of the independent variable,
and ei is the random error term, which we assume to be normally distributed with
mean 0 and variance s2. We assume, as before, that ei and ej are independent
(implying that Yi and Yj are also independent).

The least squares or maximum likelihood estimation for b1 is obtained by
minimizing

Q ¼
Xn
i¼1

ðYi�b1XiÞ2 ð14:74Þ

with respect to b1. This leads to the following estimator:

bi ¼
Pn

i¼1 XiYiPn
i¼1 X

2
i

: ð14:75Þ

An unbiased estimator of E(Y)¼b1X is given by

Ŷ ¼ b1X : ð14:76Þ
It can be shown, using the same arguments as those in Section 14.5, that an unbiased
estimator for s2 is

MSE ¼
Pn

i¼1 ðYi�Ŷ iÞ2
n�1

¼
Pn

i¼1 ðYi�b1XiÞ2
n�1

: ð14:77Þ

Note that, in this case, the denominator is (n� 1), rather than (n� 2), since we are
only estimating one parameter, b1, thereby losing only one degree of freedom.

We can obtain the estimated variance and confidence interval for b1,E(Y), and a new
observation Ynew using the techniques of Section 14.4. These are given in Table 14.3.

Table 14.3 Estimated variance and confidence interval for b1, E(Y), and a new observation, Ynew.

Parameter Estimator Variance of estimator Estimated variance Confidence intervala

b1 bi ¼
Pn

i¼1 XiYiPn
i¼1 X

2
i

s2Pn

i¼1
X 2
i

s2b1 ¼
MSEPn
i¼1 X

2
i

b1�tsb1 � b1 � b1
þ tsb1

E(Y) Ŷ ¼ b1X
s2X2Pn
i¼1 X

2
i

s2
Ŷ
¼ X2 MSEPn

i¼1 X
2
i

Ŷ�tsŶ � EðYÞ
� Ŷ þ tsŶ

Ynew Ŷnew ¼ b1X s2 1þ X2Pn
i¼1 X

2
i


 �
sŶnew

2 ¼ MSE 1þ X2Pn
i¼1 X

2
i

� 	
Ŷnew�tsŶnew

� Ynew

� Ŷnew þ tsŶnew

a) Where t¼ tn�1,a/2.
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& Example
Varying amounts of a sample are analyzed to determine its activity concen-
tration (in kBq g�1). The following table relates the measured activity for a
specified weight.

X¼ sample weight (g) 2.0 2.0 5.0 6.0 8.0 8.0
Y¼activity (kBq) 42.8 45.1 109.4 129.4 176.3 175.1

a) Estimate b1 and interpret what it represents, assuming Y¼ b1X þ e.
b) Estimate MSE for this model.
c) Obtain an estimate of Ynew and a 95% confidence interval when X¼ 5.0 g.

Solution
a) We find that

Pn
i¼1 XiYi ¼ 4309:4 and

Pn
i¼1 X

2
i ¼ 19:7, so that b1¼ 4309.4/

19.7¼ 21.87513 kBq g�1.
b) MSE ¼Pn

i¼1 ðYi�Ŷ iÞ2=ðn�1Þ ¼ 1:576 kBq2:
c) When X¼ 5.0 g, Ŷnew ¼ b1X¼ (21.87513 kBq g�1)(5.0 g)¼ 109.376 kBq.

We see from Table 14.3 that s2
Ŷnew

¼ MSE 1þX 2=
Pn

i¼1 X
2
i

� �¼ 1.776 kBq2.
The 95% confidence interval for Ynew, also from Table 14.3, is
Ŷnew�tsŶnew

� Ynew � Ŷnew þ tsŶnew
, which evaluates (using t5,0.025¼ 2.571

from the Student�s t-distribution table in Appendix A.5) to
109:376�2:571

ffiffiffiffiffiffiffiffiffiffiffi
1:776

p � Ynew � 109:376þ 2:571
ffiffiffiffiffiffiffiffiffiffiffi
1:776

p
or 105.949�

Ynew� 112.803 (in units of kBq).

Note that the assumption b0¼ 0 is a strong one. Fitting the full model,
Y ¼ b0 þ b1X þ e, is preferable in many situations where we cannot investigate the
response near X¼ 0.

14.8
Inverse Regression

One might be interested in the value of X corresponding to a value of Y in some
situations. For example, one might want to know the frequency of chromosome
aberrations in blood cells corresponding to a whole-body dose above which radiation
accident victims are referred for medical treatment, based on chromosome dicentric
formation rate determined as a function of dose. The regression equation should be
significant (i.e., b1 6¼ 0) for the inverse regression to be reasonable. A simple plot of
the regression equation and its associated (1�a)� 100% confidence interval for the
truemean value illustrates the problem graphically. Assume that we are interested in
the value of X corresponding to Y¼Y0. We represent Y¼Y0 by the horizontal line in
Figure 14.5. It intersects the regression line at

Y ¼ Y0 ¼ b0 þ b1X̂ 0; ð14:78Þ
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giving a solution for X̂0,

X̂0 ¼ ðY0�b0Þ=b1: ð14:79Þ
The line Y¼Y0 also intersects the 95% confidence band at

Y ¼ YXL þ ts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ ðXL��XÞ2

SXX

" #vuut ; ð14:80Þ

where YXL ¼ b0 þ b1XL, t ¼ tn�2;a=2, and s ¼ ffiffiffiffiffiffiffiffiffiffi
MSE

p
. Setting Eqs. (14.78) and (14.80)

equal, canceling b0 and rearranging the terms so that the square root is on one side
only, squaring, and collecting terms yields a quadratic equation in XL,

AX2
L þ 2BXL þC ¼ 0; ð14:81Þ

where

A ¼ b21�
t2s2

SXX
; ð14:82Þ

B ¼ t2s2 �X
SXX

�b21X̂ 0; ð14:83Þ

and

C ¼ b21X̂
2
0�

t2s2

n
� t2s2 �X

SXX
: ð14:84Þ

X

Y

Y = Y0

XL XU

Lower confidence bound

Upper confidence bound

X̂0

Figure 14.5 Graphical determination of fiducial limitsXL andXU for the value ofX corresponding to
Y¼ Y0.
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We get exactly the same equation for XU, so that XL and XU are the roots of the
quadratic equation. Solving the equation and collecting terms, we find that

XU ;XL ¼ X̂0 þ
ðX̂ 0��XÞg � ðts=b1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX̂0��XÞ2=SXX þð1�gÞ=n

q
1�g

; ð14:85Þ

where

g ¼ t2s2

b21SXX
: ð14:86Þ

The values XL and XU are called fiducial limits. Small values of g indicate a significant
regression coefficient b1.

& Example
Find the value of X and calculate the upper and lower 95% fiducial limits XL

and XU when Y¼ 2500 counts using the initial example in Section 14.2 of
detector response with mass of 235U.

Solution
Using Eq. (14.1), X̂ 0 ¼ (2500� 194.532)/70.157¼ 32.86 g. The value of g is
calculated as ð2:776Þ2ð42 935:5812Þ2=ð70:157Þ21520:8333 ¼ 0:044. The solu-
tion for XL and XU is given by Eq. (14.85),

XU;XL ¼ 32:86

þ
ð32:86�35:83Þ0:044� ½ð2:776Þð207:21Þ=70:157�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð32:86�35:83Þ2=1520:8333þð1�0:044Þ=6

q
1�0:044

¼ 32:86� 0:13068
0:956

� 3:33178
0:956

0@ 1A ¼ 36:208; 29:238:

In this example, b1 is highly significant and g is small. This allows inverse
regression to be well determined. Figure 14.6 shows an example where the method
given in Eq. (14.85) would give spurious results due to the regression not being
significant. Plotting the graph and its confidence bands is a good practice and can be
useful in avoiding issues evident in Figure 14.6. The inverse regression problem is
also referred to as the calibration problem.

14.9
Correlation

Correlation is strongly related to regression, as we shall see. Correlation is appro-
priate when bothX and Yare random variables. Correlation is ameasure of the linear
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relationship between X and Y. The correlation coefficient, usually denoted by r, is
defined by

r ¼ CovðX ;YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞVarðYÞp ; ð14:87Þ

where Cov(X, Y) is the covariance between X and Y. It can be shown that�1�r� 1,
where r¼� 1 indicates a perfect linear relationship between X and Y. If we have a

Y = Y0

(a)

Y = Y0

(b)

Figure 14.6 Spurious solutions for the upper
and lower limits in the inverse regression
problem: (a) the solution for XU, XL given by
Eq. (14.85) has complex roots and line Y¼Y0

does not intersect the confidence intervals;
(b) the solution for XU, XL has real roots, but
both are on the same side of the regression line.
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randomsample (X1,Y1), (X2,Y2), . . ., (Xn,Yn) from the joint distribution fX,Y(x, y), then
the quantity

r ¼
Pn

i¼1ðXi��XÞðYi��YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðXi��XÞ2Pn

i¼1 ðYi��YÞ2
q ¼ SXYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SXXSYY
p ð14:88Þ

is called the sample correlation coefficient. Like r, the sample correlation coefficient
satisfies�1�r� 1. If we compare the equation for b1 (Eq. (14.14)) and Eq. (14.88), it
can be shown that (Problem 14.19)

b1 ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðYi��YÞ2Pn
i¼1 ðXi��XÞ2

s
¼ r

ffiffiffiffiffiffiffiffi
SYY
SXX

r
: ð14:89Þ

R.A. Fisher showed that the following transformation on r has an approximately
normal distribution, namely,

z ¼ 1
2
ln

1þ r
1�r


 �
¼ tanh�1ðrÞ � N tanh�1 r;

1
n�3


 �
; ð14:90Þ

where tanh�1 is the inverse hyperbolic tangent. Equation (14.90) can be used
to obtain confidence intervals on r or to test the hypothesis that H0: r¼r0 versus
H1: r 6¼ r0. For example, 100(1�a)% confidence intervals on r are obtained
by solving

1
2
ln

1þ r
1�r


 �
� z1�a=2

ffiffiffiffiffiffiffiffiffi
1

n�3

r
¼ 1

2
ln

1þ r

1�r


 �
: ð14:91Þ

Similarly, for testing H0: r¼r0 versus H1: r 6¼ r0, we can compute

z ¼ 1
2
ln

1þ r
1�r


 �
� 1
2
ln

1þ r0
1�r0


 �� 	 ffiffiffiffiffiffiffiffiffi
n�3

p
ð14:92Þ

and compare |z| to z1�a/2 for a size a test. Of course, one can test one-sided
hypotheses as well (e.g., H1: r< r0 or H1: r>r0).

& Example
Suppose that a sample of size n¼ 28 is obtained on pairs (X,Y) and the sample
correlation obtained is r¼ 0.43.

a) Obtain a 90% confidence interval on r.
b) Test the hypothesis thatH0: r¼ 0.60 versusH1: r< 0.60, using a¼ 0.05.
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Solution
a) Equation (14.91) yields

1
2
ln

1:43
0:57

0@ 1A� 1:645

ffiffiffiffiffi
1
25

vuut ¼ 1
2
ln

1þ r

1�r

0@ 1A
ð0:1309; 0:7889Þ ¼ 1

2
ln

1þ r

1�r

0@ 1A;

ð14:93Þ

therefore, 0.1302< r< 0.6578.
b) Using Eq. (14.92), we have

z ¼ 1
2
ln

1:43
0:57


 �
� 1
2
ln

1:60
0:40


 �� 	 ffiffiffiffiffi
25

p
¼ �1:1663: ð14:94Þ

We compare to z0.05¼�1.645, since this is a one-sided test, and reject if
z < z0.05¼�1.645. Hence, we do not reject H0.

The field of regression analysis is quite large and this chapter has explored some of
the concepts for the simple linear regression case, that is, a single independent
variable X. The extension to the multiple regression scenario, where we have p
independent variables, X1, X2, . . . , Xp, is straightforward (although the mathematics
gets messy without the use of matrix theory). Those wanting a more thorough
discussion of regression analysis should consult Draper and Smith (1998), Ryan
(2009), or Neter et al. (2004).

Problems

14.1 Achemical engineer observes the following process yields at 10 corresponding
temperatures:

Temp, 	F (X) 100 110 120 130 140 150 160 170 180 190

Yield, g (Y) 52.0 58.6 60.0 62.6 65.4 64.1 72.6 72.4 82.4 83.8

a) Plot the data.
b) Fit the model, Yield¼ b0 þ b1 Temp þ e, and obtain estimates for b0 and

b1.
c) Use the fitted model to plot a straight line through the data.
d) Test the hypothesis H0: b1¼ 0 versus H1: b1 6¼ 0 at the a¼ 0.05 level of

significance.
14.2 It was conjectured that the growth of pine trees was dependent on the amount

of rainfall. A botanist studied the growth of seven pine trees, each initially 2
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feet tall, for a 3-month period, where the trees were given different amounts of
water ranging from 10 to 70mm per month. Results were as shown:

Water (mm month�1) 10 20 30 40 50 60 70

Growth (cm) 2.72 2.85 2.41 2.68 2.98 3.36 3.09

a. Plot the data.
b. Fit a linear model to these data.
c. Obtain a 95% confidence interval on the slope, b1.
d. Test H0: b1¼ 0 versus H1: b1 6¼ 0 at the a¼ 0.05 level of significance.

14.3 Refer to Eqs. (14.7) and (14.8) and prove that the solution for b0 and b1 is given
by Eqs. (14.9) and (14.10), respectively.

14.4 Show that
Pn

i¼1ðXi��XÞðYi��YÞ ¼Pn
i¼1ðXi��XÞYi, where �X ¼ ð1=nÞPn

i¼1 Xi

and �Y ¼ ð1=nÞPn
i¼1 Yi.

14.5 Use Problem 14.4 to show that Eq. (14.23) can be written as Eq. (14.24).
14.6 Recall that b0 ¼ �Y�b1 �X . Use this relationship and that of Eq. (14.24) to show

that b0 is a linear function of the Yi�s. That is, show that b0 ¼
Pn

i¼1 aiYi for
some choice of ai.

14.7 Show that if ai ¼ ðXi��XÞ=SXX , then
Pn

i¼1 a
2
i ¼ 1=SXX .

14.8 Use Problem 14.6, where ai ¼ ½SXX�n�XðXi��XÞ�=nSXX , to show that
Eq. (14.27) is true.
(Hint: Note that SXX þ n�X2 ¼Pn

i¼1 X
2
i .)

14.9 The strengthYof concrete used for radiochemical storage tanks is related to the
amount X of potash used in the blend. An experiment is performed to
determine the strength of various amounts of potash. The data are given below.

X (%) 1.0 1.0 1.5 2.0 2.0 2.5 3.0 3.0
Y (ft lb) 103 104 103 111 110 118 119 113

a) Fit a linear model to these data with the amount of potash as the
independent variable.

b) Construct the ANOVA table. Is the regression significant? (Test using
a¼ 0.05.)

c) Since there are repeat values of the independent variable, calculate the sum
of squares pure error and the sum of squares lack of fit and test for lack of
fit. (Test using a¼ 0.05.)

d) Plot the data, the fitted line, and a 95% confidence interval for the mean
value of the regression line using Eq. (14.48).

14.10 Consider reparameterizing the linear model to Yi ¼ a0 þ b1ðXi��XÞþ ei for
i¼ 1, 2, . . . , n.
a) Obtain the relationship between a0 and b0, where b0 is the intercept in our

original model (Eq. (14.1)).
b) Show that Cov(â0; b1)¼ 0.
(Hint: Since a0 and b1 are linear functions of the Y�s, that is, â0 ¼

P
iaiYi and

b1 ¼
P

iciYi, then all one needs to show is that
P

iaici ¼ 0.)
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c) Obtain a test for the hypothesis H0: a0¼a versus H1: a0 6¼ a.
14.11 A teacher conjectured that a student�s initial exam score might be a good

predictor of the score on a second exam. The table below shows scores of 15
students on the two exams.

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Exam 1 95 88 76 77 78 85 78 80 76 83 81 87 76 83 82

Exam 2 94 91 86 87 87 86 86 84 86 88 89 88 86 88 90

a) Determine the correlation between the two exam scores.
b) Use Eq. (14.10) to determine the slope b1, if Exam 2 scores are regressed as

a function of scores from Exam 1.
c) Obtain a 95% confidence interval for the correlation coefficient r.

14.12 The coating of a component for use in orbital satellites was tested to determine
its degradation in the presence of energetic protons encountered in near-earth
orbit. The coating integrity I, expressed as a dimensionless number between 0
and 1, is shown in the table below as a function of time t (in days) in the space
environment.

t I t I t I t I

10 0.998 60 0.994 110 0.987 160 0.983
20 0.998 70 0.991 120 0.985 170 0.982
30 0.996 80 0.991 130 0.988 180 0.982
40 0.997 90 0.988 140 0.985 190 0.981
50 0.994 100 0.989 150 0.984 200 0.978

a) Fit the linear model, I ¼ b0 þb1tþ e:

b) The coating�s effectiveness is compromised when its integrity drops below
0.985. Estimate the time in orbit before this occurs.

c) Obtain the 95% confidence interval on the time estimate of part (b).
14.13 Show that the cross-product term in the total sum of squares, Eq. (14.57), is

zero, that is,

2
Xn
i¼1

ðYi�Ŷ iÞðŶ i��YÞ ¼ 0;

so that we can write TSS¼ SSE þ SSR, as given in Eq. (14.58).
14.14 Use the identity given in Eq. (14.62) and the fact thatE

Pn
i¼1 r

2
i

� � ¼ ðn�2Þs2 to
show that EðSSEÞ ¼ ðn�2Þs2 þ Pn

i¼1 B
2
i ; as given by Eq. (14.63).

14.15 Show that the cross-product term in Eq. (14.70),
Pm

i¼1

Pmi
j¼1ðYij��YiÞð�Yi�Ŷ iÞ,

equals zero, so that Eq. (14.71) holds.
14.16 Show that the variance for the estimator b1, when the regression is through the

origin, is given by Varðb1Þ ¼ s2=
Pn

i¼1 X
2
i .

384j 14 Regression Analysis



14.17 Show that the variance of the estimator for E(Y), when X is the value of the
independent variable and regression is through the origin, is given by
X2s2=

Pn
i¼1 X

2
i .

14.18 Show that the variance for the estimator of a new observation at X¼Xi, when
regression is through the origin, is given by VarðeÞ ¼ VarðYnew�ŶÞ ¼
s2 1þX 2

i =
Pn

i¼1 X
2
i

� �
.

14.19 Show that the slope b1 can be expressed in terms of the sample correlation
coefficient r, as indicated in Eq. (14.89).

14.20 Show that, from Eq. (14.53), limk!1½VarðekÞ� ¼ VarðŶÞ.
14.21 The response Q of an ion chamber is tested as a function of pressure P in a

hyperbaric chamber by taking 10 readings of a standard gamma source over a
fixed time, with the results shown:

P (mmHg) 100 110 120 130 140 150 160 170 180 190

Q (nC) 52.0 58.6 60.0 62.6 65.4 64.1 72.6 72.4 82.4 83.8

a) Plot the data, with the response (Q) as the dependent variable.
b) Fit the model Q ¼ b0 þb1Pþ e and obtain estimates for b0 and b1.
c) Use the fitted model to plot a straight line through the data.
d) Test at the a¼ 0.05 level the hypothesis H0: b1¼ 0 versus H1: b1 6¼ 0.
e) Calculate the residuals and plot them against P. Do the residuals appear

random? Comment on any observations that raise issues with the assump-
tion of randomness in the residuals.

14.22 The production of a particular mouse protein in response to a given radiation
dose is postulated to be dependent on the dose rate _D. Irradiation of groups of
mice of a particular strain with the same delivered dose, but at different dose
rates, gave the following results:

_D (rad h�1) 100 110 120 130 140 150 160

C (nmol l�1) 4.02 4.68 5.02 4.92 5.84 5.42 6.17

a) Plot the data, fit the model C ¼ b0 þb1 _Dþ e, and plot the line.
b) Obtain a 95% confidence interval for the slope parameter b1.
c) A concentration of C¼ 5.39 nmol l�1 is of particular interest in assessing

the mouse�s metabolic response to ionizing radiation. Determine the dose
rate _D at which this protein concentration is expected and obtain the 95%
confidence interval for this dose rate.

Problems j385



15
Introduction to Bayesian Analysis

15.1
Methods of Statistical Inference

Classical statistics defines the probability of an event as the limiting relative
frequency of its occurrence in an increasingly large number of repeated trials. This
�frequentist� approach to making statistical inferences was developed extensively in
Chapter 7 under the heading of parameter and interval estimation. As an example,
one might make measurements for the purpose of determining the true, but
unknown, numerical value of the decay constant l of a long-lived pure radionuclide.
The true value can be estimated by repeatedly observing the number of disintegra-
tions X in a fixed amount of time. The variability in the estimate of l is evident from
one set of measurements of the random variable X to another. Following classical
procedures, the frequentist can provide an interval within which the true value of l
might lie with, for example, 95% confidence. The inference to bemade is that 95% of
the intervals so constructed by repeated sampling can be expected to contain the true
value of l. This is not to say, however, that the probability is 95% that any particular
interval contains the true value. Such a probability statement would relate to a
random variable, which the true value is not. This formal procedure for ascertaining
the value of l is embodied in the maximum likelihood estimation described in
Section 7.9.

A different approach to statistical inference stems from the work of Thomas Bayes
(1702–1761), whose theoremon conditional probability was presented in Section 3.5.
The unknown quantity l is assigned a prior probability distribution, based on one�s
belief about its true value. This assignment does not mean that l is random, but only
represents a statement of the analyst�s belief about its true value. One can think of the
true value of the parameter l as being the realization of random variable L with a
known distribution (which we call the prior distribution). This distribution is
normally not the product of some realizable experiment on L, but rather is thought
of as the belief of the experimenter�s disposition to the true value before any data are
collected. Observed data X are considered to be fixed information, which can be used
to revise the probability distribution on l. Given the data, what is the probability that
the true value lies within a specified interval? The inference expresses subjectively a

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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degree of belief in this probability. Furthermore, this probability is always condi-
tional, depending on the information one has.

As an example to contrast the frequentist and Bayesian viewpoints, consider the
experiment of tossing a fair coin 20 times and observing the number of heads.
The interpretation of �fair� implies that the probability of heads occurring on any toss
is 1/2. Suppose that the experiment ended with all 20 tosses resulting in heads. The
classical statistician, if assuming the coin to be fair, would still consider the
probability of heads to be 1/2. The Bayesian, on the other hand, would now consider
that his belief about the true value of the probability for heads has shifted to some
larger value.

In this chapter, we introduce theBayesian approach. It is rapidlyfinding increasing
use and importance today in a wide range of applications, including radiation
protection (Martz, 2000).

15.2
Classical Analysis of a Problem

We begin by treating a specific problem by classical methods in this section and then
analyzing the same problem by Bayesian methods in the next section.

We associate a randomvariableXwith a large population of events that can result in
one of only two possible outcomes: X¼ 1 (which we term �success�) or X¼ 0
(�failure�). Our objective is to sample the population randomly in order to determine
the probability pof success for the population. The frequentist considers the value of p
to be fixed, but unknown. A random sample of size n is drawn from the population,
and the number of successes Y is recorded:

Y ¼
Xn
i¼1

Xi: ð15:1Þ

Since p is constant from draw to draw, Y has the binomial probability distribution,

PrðY ¼ yÞ ¼ n
y

� �
pyð1� pÞn�y: ð15:2Þ

Here y ¼P xi, with the summation understood to run from i¼ 1 to i¼ n. We
can interpret this function as the probability f(y|p) – that is, the probability for y
successes given p. Showing the dependence on the xi explicitly, we write in place
of Eq. (15.2)

f ðyjpÞ ¼ f
X

xijp
� �

¼
Xn

xi

 !
p
P

xið1� pÞn�
P

xi : ð15:3Þ

Regarding Eq (15.3) as a function of p for a given set of the xi, we define the likelihood
function (Section 7.9),

L pj
X

xi
� �

¼
Xn

xi

 !
p
P

xið1� pÞn�
P

xi : ð15:4Þ
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In the frequentist�s view, this function tells us the likelihood of obtaining a sample
with the value y ¼P xi for different values of p.

& Example
A random sample of n¼ 10 events, drawn from a binomial population with
unknown probability of success p, yields

P
xi ¼ 4:

a) Obtain the likelihood function.
b) Calculate the values of the function for p¼ 0.0, 0.1, . . ., 1.0.
c) Plot the likelihood function and find the value of p that maximizes it.
d) What is the significance of the maximizing value of p?

Solution
a) With n¼ 10 and

P
xi ¼ 4; the likelihood function (15.4) becomes

L pj
X

xi ¼ 4
� �

¼ 10!
4!ð10� 4Þ! p

4ð1� pÞ10�4

¼ 210p4ð1� pÞ6: ð15:5Þ
b) Values of this function for the specified values of p are presented in

Table 15.1. The largest value in the table occurs for p¼ 0.4.
c) The likelihood function (15.5) is plotted in Figure 15.1. To find its

maximum, we differentiate L with respect to p and set the result equal
to zero:

dL
dp

¼ 210 4p3ð1� pÞ6 � 6p4ð1� pÞ5
h i

¼ 0: ð15:6Þ

The solution is p¼ pmax¼ 2/5 (¼0.4, exactly, which coincidently is one of
the values assigned for Table 15.1).

d) This value, p¼ pmax, is the value most likely to have produced the set of
observations.

Table 15.1 Values of likelihood function, L, calculated as function of p
from Eq. (14.5).

p L

0.0 0.0000
0.1 0.0112
0.2 0.0881
0.3 0.2001
0.4 0.2508
0.5 0.2051
0.6 0.1115
0.7 0.0368
0.8 0.0055
0.9 0.0001
1.0 0.0000
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The problem of determining p in this example has thus been treated in classical
fashion by the method of maximum likelihood. As described in Section 7.9, the
maximum likelihood estimator (MLE) has many desirable properties and is widely
employed in statistics.

15.3
Bayesian Analysis of the Problem

The frequentist and Bayesian paradigms are quite different. In the Bayesian
procedure, the unknown quantity p is the realization of the random variable P
with an initial (prior) probability distribution, g(p), of its own. This prior distribution
for P is chosen on some basis (subjective) before a sample is drawn from the
population. When the sample is taken, the data xi are treated as fixed information.
They are then used to make revisions and produce a posterior distribution on P. The
end result is to provide a probability statement that the numerical value of P
actually lies within a certain, specified interval. In contrast to the frequentist, the
Bayesian analyst thus expresses a degree of �belief� in what the actual value of the
parameter is.

To express these ideas formally, we set out to determine the probability function
f pjP xið Þ; the posterior distribution on P given the sample

P
xi: Applying Bayes�

theorem, Eq. (4.137), with the prior distribution g(p), we write for the posterior
distribution

f pj
X

xi
� �

¼ f p;
P

xið Þ
f
P

xið Þ ¼ f
P

xijpð ÞgðpÞ
f
P

xið Þ : ð15:7Þ

p
1.00.80.60.40.20.0

L
( p

| Σ
x i
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4)
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Figure 15.1 Plot of the likelihood function, Eq. (15.5).
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& Example
Treat the last example, in which n¼ 10 and

P
xi ¼ 4; by Bayesian method-

ology. In the absence of other information, let the prior distribution be
uniform, namely,

gðpÞ ¼ 1; 0 � p � 1;
0; otherwise:

�
ð15:8Þ

a) Obtain the posterior distribution on p.
b) Plot the distribution.
c) Determine the mean of p based on the posterior distribution.
d) What is the significance of this mean?

Solution
a) As before, Eqs. (15.1)–(15.3) apply. Using Bayes� theorem (15.7) with the

uniform prior g(p)¼ 1, we write for the posterior distribution

f ðpjyÞ ¼ f ðyjpÞgðpÞ
f ðyÞ ¼

n
y

� �
pyð1� pÞn�y � ð1Þð1

0

n
y

� �
pyð1� pÞn�y dp

: ð15:9Þ

Note that the denominator, in which the integration is carried out over the
range of p, is simply the marginal distribution (Section 4.4) on y. The
binomial factor, which does not depend on p, cancels in the numerator and
denominator. The remainder of the integral in the denominator can be
evaluated through its relationship with the beta distribution. The proba-
bility density function for a random variable P, having the beta distribution
with parameters a> 0 and b> 0, is given by Eq. (6.111):

uðp;a; bÞ ¼
Cðaþ bÞ
CðaÞCðbÞ p

a�1ð1� pÞb�1; 0 � p � 1;

0; elsewhere:

8><
>: ð15:10Þ

From Eq. (6.112), the mean and variance of P are

EðPÞ ¼ a

aþ b
ð15:11Þ

and

VarðPÞ ¼ ab

ðaþ bþ 1Þðaþ bÞ2 : ð15:12Þ
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Normalization of the beta probability density function (15.10) implies thatð1
0

pa�1ð1� pÞb�1 dp ¼ CðaÞCðbÞ
Cðaþ bÞ : ð15:13Þ

Comparison with the integral in Eq (15.9) shows that we can set
(Problem 15.1)

a ¼ y þ 1 and b ¼ n� y þ 1 ð15:14Þ
and write in place of Eq. (15.13)

ð1
0

pyð1� pÞn�y dp ¼ Cðy þ 1ÞCðn� y þ 1Þ
Cðnþ 2Þ : ð15:15Þ

It follows from Eq. (15.9) that the posterior distribution on p given y is

f ðpjyÞ ¼
Cðnþ 2Þ

Cðy þ 1ÞCðn� y þ 1Þ p
yð1� pÞn�y; 0 � p � 1;

0; elsewhere:

8><
>:

ð15:16Þ
The posterior distribution is thus the beta distribution with parameters a
and b given by Eq (15.14). As in the last section, n¼ 10 and y¼ 4, and so the
posterior distribution (15.16) becomes

f ðpjyÞ ¼
Cð12Þ

Cð5ÞCð7Þ p
4ð1� pÞ6 ¼ 11!

4!6!
p4ð1� pÞ6 ¼ 2310p4ð1� pÞ6; 0 � p � 1;

0; elsewhere:

8><
>:

ð15:17Þ

b) The distribution (15.17) is plotted in Figure 15.2. One sees that the shape
of the posterior density on P is nearly the same as the shape of the
likelihood function, indicating that the data have influenced our prior
belief substantially, moving it from a uniform prior distribution to a beta
distribution.

c) It follows from Eqs (15.14) and (15.11) that the mean is

EðPjy ¼ 4Þ ¼ 5
5þ 7

¼ 0:4167: ð15:18Þ

d) Themean value given by Eq. (15.18) is now aweighted average of our prior
belief (mean¼ 0.5) and the data (mean¼ 0.4). It will be shown later that
the mean of the posterior distribution has a nice property with respect to
estimators using a mean-square error criterion. It is also one way of
comparing back to the classical estimator, which in this case is
p̂ ¼ y=n ¼ 0:40:
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The beauty of the Bayesian paradigm is that, once we have the posterior
distribution, we know all that one needs to know about P, under the assumptions
made. We can display the distribution, calculate its mean and variance, and
compute any other quantities that are pertinent. We can calculate exact probability
intervals for P, rather than confidence intervals that rely on repeated realizations of
the sampling scheme. Thus, Bayesian statistics offers many features that the
frequentist�s does not.

15.4
Choice of a Prior Distribution

The major issue in the Bayesian methodology is the choice of the prior distribution.
Its selection is necessary in order to apply Bayes� theorem and obtain the posterior
distribution on the parameter, or parameters in a multivariate setting. The multi-
parameter situation entails some additional concepts with respect to distribution
theory, but follows the same procedures that are employed for a single parameter.We
shall investigate the single-parameter case only. The multivariate problem is dis-
cussed in other texts, for example, Press (1989).

To establish notation, we shall be interested in a random variable H, which has a
prior distribution g(h) and is a parameter in the sampling distribution f(y|h). The joint
distribution on (y, h) can be expressed as

f ðy; hÞ ¼ f ðyjhÞgðhÞ: ð15:19Þ
Suppose that we have drawn a sample that is characterized by h, and that we have a
prior distribution on h that is independent of our sample. We can then use Bayes�
theorem, Eq. (4.137), to derive a posterior distribution,

p
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Figure 15.2 Plots of the prior, likelihood, and posterior densities.
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f ðhjyÞ ¼ f ðh; yÞ
f ðyÞ ¼ f ðyjhÞgðhÞ

f ðyÞ : ð15:20Þ

The marginal distribution f(y) is obtained by integrating the joint distribution f(h, y)
over h, and so

f ðhjyÞ ¼ f ðyjhÞgðhÞÐ
f ðyjhÞgðhÞdh : ð15:21Þ

The function f(y) does not depend on h, and thus acts like amultiplicative constant in
Eq. (15.20), specifying f(h|y). Therefore, we may write the proportionality

f ðhjyÞ / f ðyjhÞgðhÞ; ð15:22Þ
which is sufficient to describe general properties, as we shall see. This important
form of Bayes� theorem states that the posterior distribution is proportional to the
product of the sampling and prior distributions. The statement (15.22) turns things
around with respect to the conditioning symbol. It relates f(h|y) to f(y|h). The quantity
f(h|y) is of interest as expressing the probability distribution of h given y (the data).
The sampling distribution f(y|h) expresses the likelihood of observing the data y given
the value h. As will become clearer in examples that follow, if we draw a random
sample of size n from the population, then f(y|h) is simply the likelihood function.
The prior distribution g(h), representing our knowledge or ignorance about the value
of h, is modified by the likelihood function to produce the posterior distribution.
Thus, f(h|y) in Eq (15.22) represents our state of knowledge abouth in light of the data.

As pointed out at the beginning of this section, the choice of the prior distribution
is crucial. Yet, in most situations, nothing is known about this distribution, and so it
must be selected subjectively. There are two basic ways to look at prior distributions.
The �population� interpretation states that the prior distribution represents a
population of possible parameter values from which the h of current interest has
been drawn. On the other hand, the �state of knowledge� interpretation says that we
must express our knowledge about h as if its value could be thought of as a random
realization from the prior distribution. Usually, there is no relevant population of h�s
from which the current h has been drawn. This situation appears to present a
dilemma, because the prior should reflect some things about h. For example, it should
include all possible values ofh. The principle of insufficient reason,first used by Laplace,
states that if nothing is known about h, then a uniform specification is appropriate.
(We made this assumption in the last example by using Eq. (15.8).) As we shall see,
however, the prior information is often outweighed by the information about h that is
contained in the sample. Since the prior distribution is a subjective choice, the
domination of the sample information is desirable because it moves the inference
from the subjective to the empirical.

& Example
Return to the specific problem introduced through Eqs. (15.1)–(15.3) in
Section 15.2, involving the binomial probability distribution. Choose the beta
distribution with parameters a and b as the prior distribution on P.
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a) Determine the posterior distribution on P.
b) Comment on how the parameters a and b can be interpreted.
c) What happens if a¼b¼ 1?
d) Find the mean of the posterior distribution.

Solution
a) We write for the sampling distribution from Eqs. (15.2) and (15.3)

f ðyjpÞ ¼ n
y

� �
pyð1� pÞn�y: ð15:23Þ

The prior is given as the beta distribution, which from Eq (15.10) we
write as

gðpÞ ¼
Cðaþ bÞ
CðaÞCðbÞ p

a�1ð1� pÞb�1; 0 � p � 1;

0; elsewhere:

8><
>: ð15:24Þ

Applying Bayes� theorem in the form of the proportionality (15.22), we
write for the posterior distribution

f ðpjyÞ / f ðyjpÞgðpÞ ¼ n
y

� �
pyð1� pÞn�y Cðaþ bÞ

CðaÞCðbÞ p
a�1ð1� pÞb�1

/ pyþa�1ð1� pÞn�yþb�1; ð15:25Þ
where we have dropped all the multiplicative constant terms in the last
step. Comparison with Eq (15.10) shows that the posterior distribution
also has the form of a beta distribution with parameters (y þ a) and
(n� y þ b).

b) The dependence of the sampling distribution (15.23) on P is contained in
the factors pyð1� pÞn�y; where y is the number of successes and (n� y) is
the number of failures. The prior, pa�1ð1� pÞb�1, given by Eq (15.24), is
similar in form. It follows that (a� 1) and (b� 1) may be thought of as the
number of successes and failures, respectively, prior to sampling.

c) Ifa¼ b¼ 1, then the (prior) beta distribution (15.24) becomes the uniform
distribution. The posterior distribution (15.25) is beta, with parameters
(y þ 1) and (n� y þ 1).

d) As shown in (a), the posterior is a beta distribution with parameters
(y þ a) and (n� y þ b). The mean is, by Eq. (15.11),

EðPjyÞ ¼ aþ y
aþ bþ n

: ð15:26Þ

This example shows how one can select a rich prior distribution and can also
choose values for the parameters of that prior distribution (called hyperparameters)
to investigate special cases. In the example we saw thata and b can be interpreted as
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the prior number of successes and failures. Choosing a¼ b¼ 1 yielded a uniform
prior on p, which satisfies the principle of insufficient reason. One can also look at
other choices of a and b to evaluate their effects on the posterior distribution and
can get a good sense of how different choices can affect the posterior. The value of
the posterior mean (15.26) lies between the sample proportion y/n and the prior
mean a/(a þ b) (Problem 15.5). For fixed a and b, y and (n� y) both become larger
as the sample size increases, and E(P|y)ffi y/n. Thus, if the sample size is large
enough, the choice of the hyperparameters will have little influence on the
posterior. Conversely, if our sample is small, then the hyperparameters might
make a considerable impact.

15.5
Conjugate Priors

The property that the posterior distribution follows the same parametric form as
the prior distribution is called conjugacy. In the last example, the beta prior
distribution for different values of a and b leads to a conjugate family for the
binomial sampling distribution (or the binomial likelihood). Without discussing
conjugate priors in any detail, we present several in Table 15.2 for specific
sampling distributions.

& Example
Use the Poisson distribution to model the number of disintegrations X in a
specified time t from a long-lived radioactive source.

a) Obtain the posterior distribution by using the natural conjugate prior.
b) Obtain the expected value of the posterior distribution.

Table 15.2 Natural conjugate priors.

Sampling distribution Natural conjugate prior distribution

Binomial: f ðyjpÞ / pyð1� pÞn�y Beta: gðpÞ / pa�1ð1� pÞb�1

Negative binomial: f ðyjpÞ / prð1� pÞy Beta: gðpÞ / pa�1ð1� pÞb�1

Poisson: f ðyjlÞ / e�l ly Gamma: gðlÞ / la�1 e�lb

Exponential: f ðyjlÞ / l e�ly Gamma: gðlÞ / la�1 e�lb

Normal with known s2 and unknown m:
f ðyjmÞ / e�ðy�mÞ2=2s2

Normal: gðmÞ / e�ðm�hÞ2=2t2

Normal with known m and unknown s2:
f ðyjs2Þ / e�y2=s2

=ðs2Þ1=2
Inverse gamma:a gðs2Þ / e�b=s2

=ðs2Þaþ1

aThe inverse gamma is simply the distribution ofY¼ 1/X, whereXhas the gammadistribution. If the
gamma distribution is f ðx;a; bÞ ¼ baxa�1 e�bx=CðaÞ; then Y¼ 1/X has the inverse gamma
distribution with density given by f ðy;a; bÞ ¼ ba e�b=y=CðaÞyaþ1.
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Solution
a) Letting l denote the decay constant, we write

f ðxjlÞ ¼ ðltÞx e�lt

x!
: ð15:27Þ

From Table 15.2, the conjugate prior is the gamma distribution, which we
write here as1)

gðlÞ / la�1 e�lb: ð15:28Þ

From Bayes� theorem it follows that the (unnormalized) posterior distri-
bution is

f ðljxÞ / f ðxjlÞf ðlÞ / lxþa�1 e�lðtþbÞ; ð15:29Þ

which we can identify as a gamma distribution with parameters a0 ¼
(x þ a) and b0 ¼ (t þ b).

b) The expected value of a gamma random variable with parametersa0 and b0

isa0/b0 (Eq. (6.69)). Hence, the expected value of the posterior distribution
is

EðlÞ ¼ x þ a

tþ b
: ð15:30Þ

(Note that the classical estimator of l is l̂ ¼ x=t.)

It appears that one may interpret the parameter b as a prior timescale over which
we observe the process and the parameter a is the number of occurrences observed
prior to the sample. We note that if we choose a¼ 0 and b¼ 0, then the posterior
mean (15.30) converges to the classical estimator. This choice of parameter values is
similar to having very little information about the process. Such priors are called non-
informative and agree with the principle of insufficient reason.

15.6
Non-Informative Priors

We have already seen the application of a non-informative prior in our study of the
binomial parameter P when we chose the uniform prior. Such distributions are also
called reference prior distributions. The name non-informative, or vague, implies that
the prior distribution adds little to the posterior distribution about information on the
parameter. It lets the data set speak for itself. The idea is that no particular value of the

1) The following substitutions have beenmade inwriting Eq. (15.28) fromEq. (6.68): x ! l, l ! b, and
k ! a.
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prior distribution is favored over any other. For example, ifH is discrete and takes on
values hi, i¼ 1, 2, . . ., n, then the discrete uniform distribution,

gðhiÞ ¼ 1
n
; i ¼ 1; 2; . . . ; n; ð15:31Þ

does not favor any particular hi over another. We say that g(hi) is a non-informative
prior. Similarly, in the continuous case, ifH is bounded, say h2 [a, b], thenwe call the
distribution,

gðhÞ ¼ 1
b� a

; a � h � b; ð15:32Þ

non-informative.
If the parameter space is infinite, for example, h 2 (�1,1), then the situation is

less clear. We could write the non-informative prior as constant everywhere, g(h)¼ c,
but this function (called an improper distribution) has an infinite integral and
therefore cannot be a valid density function. However, Bayesian inference is still
possible, provided the integral over h of the likelihood f(x|h) exists. As seen from
Eq. (15.21), g(h)¼ c cancels in the numerator and denominator. If the integral exists,
then f(h|x) is a proper posterior density.

A thorough discussion of non-informative prior distributions is beyond the scope
of this text. Interested readers are referred to Carlin and Louis (1996), Box and Tiao
(1973), Press (1989), and Martz and Waller (1982). Non-informative priors can be
proscribed by attributes of the sampling distribution. If the sampling distribution is
such that f(x|h)¼ f(x�h), for instance, so that the density involves h only through the
term (x� h), thenh is called a location parameter. In this case, if h belongs to thewhole
real line, then the non-informative prior for a location parameter is

gðhÞ ¼ 1; �1 < h < 1: ð15:33Þ
If the sampling distribution is such that f ðxjhÞ ¼ ð1=hÞf ðx=hÞ, whereh> 0, then h is
called a scale parameter. Thus, the non-informative prior for a scale parameter is
given by

gðhÞ ¼ 1
h
; h > 0: ð15:34Þ

One can also work with g(h2)¼ 1/h2 as well as Eq. (15.34) and use
f ðxjhÞ ¼ ð1=hÞf ðx=hÞ. Both of the prior distributions described by Eqs. (15.33)
and (15.34) are improper priors, since the integrals of the densities are infinite.
However, this fact is not as serious as itmay seem if the sampling distribution and the
prior combine in a form that is integrable.

& Example
The random variable X has the exponential distribution with parameter l,
where 0< l<1.

a) Show that h¼ 1/l is the scale parameter.
b) Obtain the posterior distribution on l by using the non-informative prior.
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c) Obtain the posterior distribution on l by using the gamma prior with
parameters a and b (i.e., the conjugate prior in Table 15.2).

d) Compare the posterior distributions provided by (b) and (c).

Solution
a) The sampling distribution is given by

f ðxjlÞ ¼ l e�lx ¼ 1
1=l

e�x=ð1=lÞ: ð15:35Þ

The distribution has the form ð1=hÞf ðx=hÞ, where h¼ 1/l is the scale
parameter.

b) The non-informative prior for a scale parameter is, from Eq. (15.34),

gðlÞ ¼ 1
1=l

¼ l; l > 0: ð15:36Þ

From Eq (15.22), we can write for the posterior density

f ðljxÞ / f ðxjlÞgðlÞ ¼ l e�lxl ¼ l2 e�lx: ð15:37Þ
This function has the form of a gamma density with a0 ¼ 3 and b0 ¼ x.2) In
this case, even though the prior density is improper, the resulting posterior
density is proper.

c) Given that the prior is gamma with parameters a and b, we have

f ðljxÞ / f ðxjlÞgðlÞ ¼ l e�lxla�1 e�lb ¼ la e�lðxþbÞ; ð15:38Þ
which has the form of a gamma density with parameters (Problem 15.8)

a0 ¼ aþ 1;
b0 ¼ x þ b:

ð15:39Þ

d) Comparing the two posterior distributions, we see that choosinga¼ 2 and
b¼ 0 is equivalent to selecting a non-informative prior. In this case, the
gamma distribution contains the non-informative distribution as well as
many others, thus presenting a rich variety of priors.

Consider next a normal population with unknown mean m and known standard
deviation s. The sampling distribution is given by

f ðxjmÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�ð1=2s2Þðx�mÞ2 ; �1 < x < 1; ð15:40Þ

where we have omitted writing s in the conditional part, since it is known. It is
apparent that m is a location parameter, because f(x|m) depends on m only through the

2) In the definition (6.68) of the gamma density, we can interchange the roles of x and l, writing
f ðl; k; xÞ / xklk�1 e�lx . Dropping the scale factor xk, we write this as proportional to the gamma
density on l with parameters a0 and b0: f ðl;a0; b0Þ / la

0�1 e�lb0 . Comparison with Eq. (6.68) shows
that the parameters in Eq. (15.37) are a0 ¼ 3 and b0 ¼ x.
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term (x�m). In this situation, if we want to use a non-informative prior on m, we
would use

gðmÞ ¼ 1; �1 < m < 1: ð15:41Þ

& Example
Let X1, X2, . . ., Xn denote a random sample from a normal population with
unknown mean m and known standard deviation s.

a) Assuming a non-informative prior, determine the posterior distribution
on m.

b) Choose the natural conjugate prior and determine the posterior distribu-
tion on m.

c) Compare the two posterior distributions obtained in (a) and (b) when the
uncertainty in the unknown mean is very large. If the uncertainty in the
mean is not large, what is the effect of a large sample on the posterior
distribution?

Solution
a) The posterior distribution is proportional to the product of the sampling

distribution and the prior. Assuming a non-informative prior on m, we use
Eqs. (15.40) and (15.41) to write

f ðmjx1; x2; . . . ; xnÞ / e�ð1=2s2Þ
Pn

i¼1
ðxi�mÞ2 : ð15:42Þ

To obtain the distribution on m, we first add and subtract x within
the quadratic term. We then express the sum from i¼ 1 to i¼ n in the
exponent as

X
ðxi � mÞ2 ¼

X
ðxi � x þ x � mÞ2 ð15:43Þ

¼
X

ðxi � xÞ2 þ 2
X

ðxi � xÞðx � mÞ þ
X

ðx � mÞ2

¼
X

ðxi � xÞ2 þ nðx � mÞ2; ð15:44Þ

since
Pðxi � xÞ ¼ 0: Thus, the posterior distribution (15.42) becomes

f ðmjx1; x2; . . . ; xnÞ / e�ð1=2s2Þ
P

ðxi�xÞ2 e�½1=ð2s2=nÞ�ðm�xÞ2

/ e½1=ð2s
2=nÞ�ðm�xÞ2 : ð15:45Þ

The first exponential term that appears here is a constant with respect to m
and can, therefore, be ignored in determining the proportional posterior
distribution on m. The remaining exponential term shows that the poste-
rior on m is normal with mean x and variance s2/n.
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b) Table 15.2 shows that the natural conjugate prior is normal with mean h

and variance t2. Thus, the posterior is proportional to the product

f ðmjx1; x2; . . . ; xnÞ / e�ð1=2s2Þ
P

ðxi�mÞ2 e�ð1=2t2Þðm�hÞ2 : ð15:46Þ

As before, adding and subtracting x in the exponent of the first term on the
right, we find that

f ðmjx1; x2; . . . ; xnÞ / e�½1=ð2s2=nÞ�ðm�xÞ2 e�ð1=2t2Þðm�hÞ2 : ð15:47Þ

We can expand and collect terms in the exponents. By completing the
square and omittingmultiplicative factors that do not depend on m, we find
that (Problem 15.9)

f ðmjx1; x2; . . . ; xnÞ / e�ð1=2t21Þðm�h1Þ2 ; ð15:48Þ
where

h1 ¼ ð1=t2Þhþ ðn=s2Þx
ð1=t2Þ þ ðn=s2Þ ð15:49Þ

and

1
t21

¼ 1
t2

þ n
s2

: ð15:50Þ

This result shows that the posterior distribution on m is normal withmean
h1 and variance t21.

c) To compare the results from (a) and (b), we first consider the case of very
large t2, implying great prior uncertainty about the value of m. Then, from
Eqs (15.49) and (15.50),

h1 ffi x and
1
t21

ffi n
s2

: ð15:51Þ

This limiting case, t2 ! 1, yields the same posterior (15.45) as the non-
informative prior.On the other hand, if t2 is not large, but n is large, then n/
s2 dominates and again the posterior density is close to that obtained by
using the non-informative prior. In this instance, when we collect a large
sample, it would be expected that the sample dominates the posterior, as
it does.

15.7
Other Prior Distributions

There aremany prior distributions that can be used in doing Bayesian analysis. Press
(1989) discusses vague, data-based, and g-priors. Carlin and Louis (1996) discuss
elicited priors, where the distribution matches a person�s prior beliefs. We note that
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prior distributions simply serve as a weighting function and, as such, one can
imagine a large variety of them.

Prior distributions should satisfy certain criteria. The principle of insufficient
reason would suggest a uniform or non-informative prior. On the other hand,
selecting the natural conjugate argues that the selection of the sampling distribution
is as subjective as the selection of the prior. Box and Tiao (1973) argue that the choice
of the prior is not important as long as the information from the sample dominates
the information contained in the prior. As we have pointed out, themain objection to
the Bayesian analysis is the selection of the prior distribution. Much consideration
and thought should go into its choice.

15.8
Hyperparameters

The prior distribution itself often depends on certain parameters that are conve-
niently referred to as hyperparameters. For example, the beta prior (15.24) is a function
of pwith hyperparametersa andb. Once a functional form for a prior distributionhas
been chosen, the values of its hyperparameters need to be selected (unless the prior is
non-informative). To illustrate one method for determining the values of the
hyperparameters, we consider the screening for radioactivity of a collection of soil
samples from a retired production site. Random samples are taken and counted
under uniform conditions. A given sample is classified as �high� or �low,� depending
on the magnitude of an observed count rate. We expect the sampling for �high� or
�low� to follow the binomialmodel, and hence we chose the beta prior distribution as
we didwith Eq. (15.10).While we donot know the values ofa and b directly, wemight
have a practical feel for the mean and standard deviation of the prior distribution.
This information can be used to determine a and b. For instance, let us estimate that
the prior mean is 0.040 and that the standard deviation is 0.025 in appropriate units
(e.g., counts per second). This choice of distributional characteristics reflects a guess
about the magnitude of mean, with uncertainty reflected in the relatively large value
of the standard deviation. The assumed mean and variance satisfy Eqs. (15.11)
and (15.12). In this case, then,

EðPÞ ¼ a

aþ b
¼ 0:040 ð15:52Þ

and

VarðPÞ ¼ ab

ðaþ bþ 1Þðaþ bÞ2 ¼ ð0:025Þ2: ð15:53Þ

Solution for the two unknowns gives a¼ 2.42 and b¼ 58.0. In practical terms, our
prior is saying that, if we checked about 60 soil samples, we would expect to see 2 or 3
with �high� readings. Use of Eqs. (15.52) and (15.53) provides a way to determine
values for the hyperparameters a and b.
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In the next section, we discuss how one can use Bayesian analysis to make
inferences. Additional sections will address applications of the inference method to
the binomial probability, the Poisson rate, and themean of a normal population with
known variance.

15.9
Bayesian Inference

The Bayesian inference is embodied in the posterior distribution. All that one needs
to know formally about the randomvariable is contained in the posterior density or its
cumulative distribution. Knowledge of either or both is sufficient for answeringmost
questions, but using them leaves comparison with frequentist methods somewhat
unclear. Bayesians have been adept at finding good comparative measures, and we
shall discuss these for point estimators, interval estimators, and hypothesis testing.

To consider a point estimate for a random variable H, we look at any summary
entity, such as the mean, median, or mode of the posterior density. The mode is the
value thatmaximizes the posterior density, which is proportional to the product of the
sampling distribution and the prior. If we choose a flat prior, then the maximization
of the posterior is equivalent to maximizing the sampling distribution or the
likelihood function. Hence, the mode and the maximum likelihood estimator will
be the same when the prior is flat. Because of this fact, the mode is often called the
generalizedmaximum likelihood estimator. Themode ismost appropriate if the density
is two-tailed. In the case of a single-tail distribution, like the exponential, the mode
may be the leftmost point, which is not very appropriate or informative.

Themean is often used tomeasure central tendency. Themean of the posterior can
thus serve as a measure of centrality as well. Based on the posterior distribution, we
can evaluate the accuracy of an estimator, ĥðyÞ, by looking at its variance
Ehjy½ðH� ĥðyÞÞ2�, where the subscript indicates that the expectation is taken with
respect to the posterior distribution onH. Letting m ¼ Ehjy½H� represent the posterior
mean, we can write

Ehjy½ðH� ĥðyÞÞ2� ¼ Ehjy½ðH� mþ m� ĥðyÞÞ2� ð15:54Þ

¼ Ehjy½ðH� mÞ2� þ 2ðm� ĥðyÞÞEhjy½H� m� þ ðm� ĥðyÞÞ2
¼ Ehjy½ðH� mÞ2� þ ðm� ĥðyÞÞ2: ð15:55Þ

We see that the posterior variance of ĥðyÞ is equal to the variance of the posterior
distribution plus the square of the difference between the estimator and the posterior
mean. Therefore, to minimize the posterior variance of ĥðyÞ, we should choose ĥðyÞ
such that the last term in Eq (15.55) vanishes, that is, choose ĥ ¼ m. Thus, m
minimizes the posterior variance of all estimators. The mean is a commonmeasure
of centrality. However, we note that highly skewed distributions will tend to have
mean values that are large, due to the influence of long tails, and thus can vary
significantly from the middle of the distribution.
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Themedian is the value ~h for which PrhjyðH � ~hÞ � 1=2 and PrhjyðH � ~hÞ � 1=2.
(For continuous densities, the median is unique. For discrete distributions, it can
take on infinitely many values.) Also, ~h minimizes EHjyðjH� ~hjÞ. Simply put, the
median is the value that splits the distribution in half. The major issue with the
median is the fact that finding an analytical representation for it is usually difficult.
For a unimodal, symmetric distribution (such as the normal), themean,median, and
mode all coincide.

The Bayesian�s version of the frequentist�s confidence interval is the credible
interval. Credible intervals are simply probabilistic intervals taken directly from the
posterior distribution. If Fh|y(h) is the cumulative distribution function of the
posterior distribution, then we can find values a and b such that

Prða < H < bjyÞ ¼ FhjyðbÞ � FhjyðaÞ ¼ 1� a: ð15:56Þ

The interval (a, b) is a 100(1�a)% �credibility interval� forh. The values of a and b are
not unique. That is, there are many possible choices that will yield a 100(1�a)%
credibility interval. The usual way to determine their values is to specify equal
probabilities to the left and right of a and b, respectively. We choose a such that
Prh|y(H< a)¼a/2 and b such that Prh|y(H> b)¼a/2. This partitioning can always be
done whenH is continuous. IfH is discrete, however, one cannot always find values
of a and b that capture exactly 100(1�a)% of the distribution.

The symmetric form for determining a and b will not always yield the shortest
interval. The highest posterior density (HPD) method seeks to avoid this defect. The
HPD credible set C can be defined by writing

C ¼ fh 2 H : f ðhjyÞ � kðaÞg; ð15:57Þ
where k(a) is the largest constant that satisfies Pr(C|y)� 1�a. This statementmeans
that C contains all the values of h for which the posterior density is greater than or
equal to some constant k(a), where this constant is dependent upon the choice of a.
Figure 15.3 indicates the idea behind theHPD credibility interval. The value k(a) cuts
the posterior density function in two places, where h¼ a and h¼ b. Wemove k(a) up

θ

p(θ|y)

k(α)

ba

p(θ|y) ≥ k(α) 

Figure 15.3 Graphical representation of the HPD credible interval of size (1�a).
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anddownuntil the integral over the interval from a to b is equal to (1�a). The interval
(a, b) is then the HPD interval.

Formost well-behaved posterior densities, themethod works well. However, if the
density is single-tailed ormultimodal, one can obtain some strange credible intervals.
For example, if the posterior density is U shaped, Figure 15.4 shows that the HPD
method would give two disjoint intervals. Again, we move k(a) up or down until the
area under the posterior density function equals (1�a). For the posterior density
plotted in Figure 15.4, we see that the end points c1 and c4 must be included and, in
addition, the line f(h|y)¼ k(a) cuts the graph at the points c2 and c3. Thus, there are
two disjoint intervals (c1, c2) and (c3, c4) that make up theHPD interval. Although this
problem is not common, the HPD interval is normally solved by numerical
techniques on a computer. This procedure is computationally more intensive than
using the symmetric form.We use the symmetric form throughout, but note that the
HPD interval will, in general, be shorter than the symmetric interval.

The last inferential area to be discussed is hypothesis testing, which is notably
different in the frequentist and Bayesian settings. The Bayesian paradigm allows for
different hypotheses or models in a very natural way. In the usual hypothesis testing
model, a null hypothesis H0 and an alternative H1 are stated. If the null and
alternative hypotheses specify single values, for example, H0: h¼ h0 versus H1:
h¼h1, then the hypotheses are described as simple versus simple. If one hypothesis
specifies a single value while the other gives an interval, for example, H0: h¼h0
versusH1: h>h1, then they are referred to as simple versus composite.Composite versus
composite hypotheses are possible as well, for example,H0: h�h0 versusH1: h>h1.
Initially, we shall consider simple versus simple hypotheses. One can think of these
equally well as two competing models, but we shall keep the hypothesis testing
format. We let T(y1,y2, . . ., yn) denote some appropriate test statistic based on a
random sample of size n. By Bayes� theorem (3.44), the posterior probability of H0

given the observed data T is

PrðH0jTÞ ¼ PrðT jH0ÞPrðH0Þ
PrðT jH0ÞPrðH0Þ þ PrðT jH1ÞPrðH1Þ ; ð15:58Þ

θ

p(θ|y)

k(α)

c1 c2
c3 c4

Figure 15.4 Graphical representation of example in which HPD credible interval method can yield
two disjoint intervals.
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where PrðH0Þ þ PrðH1Þ ¼ 1 is the sum of the prior probabilities for H0 and H1.
Similar posterior probability of H1 is

PrðH1jTÞ ¼ PrðT jH1ÞPrðH1Þ
PrðT jH0ÞPrðH0Þ þ PrðT jH1ÞPrðH1Þ : ð15:59Þ

The posterior odds of H0 (compared with H1) are given by the ratio of these
quantities:

PrðH0jTÞ
PrðH1jTÞ ¼

PrðT jH0Þ
PrðT jH1Þ
� �

PrðH0Þ
PrðH1Þ
� �

; ð15:60Þ

which is just the product of the likelihood odds and the prior odds of H0. If the
ratio (15.60) is greater than unity, then we acceptH0 overH1; otherwise, we rejectH0

in favor of H1.
TheBayes factor is defined as the ratio of the posterior odds ofH0 and the prior odds

of H0. Thus, with the help of Eq (15.60) we have

Bayes factor ¼ ½PrðH0jTÞ=PrðH1jTÞ�
½PrðH0Þ=PrðH1Þ� ¼ PrðT jH0Þ

PrðT jH1Þ ; ð15:61Þ

which depends only on the data. When testing a simple versus simple hypothesis, we
see that the last expression is the ratio of the likelihood obtained from the two
competing parameters h0 and h1. Equation (15.60) shows that, if the hypotheses are
simple and the prior probabilities are equal, then theBayes factor equals the posterior
odds of H0, which equal the likelihood odds of H0.

With the simple versus composite hypothesis (e.g.,H0: h¼h0 versusH1: h 6¼h0), we
need to define prior densities on h0 and h. UnderH0, the prior density is degenerate
with all its mass at the point h0. That is,

PrH0ðH ¼ h0Þ ¼ 1: ð15:62Þ

Under H1, the prior on H can be any other prior, such as a conjugate or non-
informative. We can then write for the probability

PrðT jHiÞ ¼
ð
f ðT jhi;HiÞgiðhiÞdhi; i ¼ 0; 1: ð15:63Þ

Under H0, the integral is simply the function f(T|h0, H0). Under H1, the integral
represents the average likelihood over the prior density. Note that if the prior is non-
informative and improper, then the integral might not exist, and so care must be
taken. This circumstance furnishes one argument against using improper priors.
Given that Pr(T|H0) and Pr(T|H1) are defined, the posterior odds and the Bayes factor
can be calculated. The results given earlier follow for this simple versus composite
situation.
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Table 15.3 compares the frequentist and Bayesian inference methods just dis-
cussed. In the next three sections, we shall apply the Bayesian method to the
binomial, Poisson, and normal mean parameters.

15.10
Binomial Probability

We return to the drawing of a random sample of size n from a Bernoulli population
where the probability of success is p. When the prior is the beta distribution with
parameters a and b, the posterior on P is given by Eq. (15.25). We can determine the
mode by differentiatingwith respect to p in Eq (15.25), setting the result equal to zero,
and solving for p (Problem 15.13). We find that

Mode of P ¼ y þ a� 1
nþ aþ b� 2

: ð15:64Þ

In part (c) of the example in Section 15.4, we showed that, when a¼b¼ 1, the prior
is equal to the uniform distribution. Because the prior is flat, themode should then
equal the maximum likelihood estimator, y/n. This result is borne out by
Eq. (15.64).

The median is difficult to use in a straightforward manner, because there is no
simple algebraic form that describes it. One needs actual numerical values for the
terms n, y, a, and b. Using these and tables of the cumulative binomial distribution,
one can determine the median.

The mean of the posterior was shown through Eq. (15.55) to be an optimal
estimator in that it minimizes the squared error. With a0 ¼ y þ a and b0 ¼ n� y þ b

in Eq. (15.25), the mean is

EðPÞ ¼ m ¼ y þ a

nþ aþ b
: ð15:65Þ

Recall that we can think of the prior as telling us the number of successes a and
failures b in a sample of size (a þ b). The mean simply incorporates the prior and
data in a natural way in Eq. (15.65), giving an estimator that is the ratio of the total
number of successes and the total sample size.

Table 15.3 Comparison of frequentist and Bayesian inference methods.

Inference Frequentist Bayesian

Point estimate Maximum likelihood
estimate

Mean, median, or mode of posterior
distribution

Interval estimate Confidence interval Credible, or highest posterior density, interval
Hypothesis testing Likelihood ratio test Ratio of posterior odds, or Bayes factor
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& Example
A collection of air monitor filters from a building is to be checked for large
particulates, defined for control purposes as having dimensions that exceed a
certain control value. Assume that the number Y of such filters that check
positive for large particles in a sample of size n from the total filter population
has the binomial distribution with probability p of selection.

a) In a random sample of n¼ 120 filters, y¼ 4 are found to check positively.
Using a uniform prior on p, find the posterior distribution. Obtain its
mode, mean, and median.

b) Past history suggests that the average value of p is 0.010 with a standard
deviation of 0.007. Find the prior on p that would yield these values,
assuming a beta prior. Obtain the posterior distribution and its mode,
mean, and median.

c) It is hypothesized that p¼ 0.010 is the historical value for p. Compare with
the alternative hypothesis that p¼ 0.040 by using the posterior odds and
the Bayes factor. Due to a lack of knowledge about the likelihood of one
hypothesis over the other, we shall assume that Pr(H0: p¼ 0.01)¼Pr(H1:
p¼ 0.04)¼ 1/2.

Solution
a) From our previous examples, the posterior distribution is given by

Eq. (15.25), with a¼b¼ 1 for the uniform prior. With n¼ 120 and
y¼ 4, the mode (15.64) is

Mode of P ¼ 4þ 1� 1
120þ 1þ 1� 2

¼ 0:033: ð15:66Þ

The mean of the posterior distribution is, from Eq. (15.65),

EðPÞ ¼ 4þ 1
120þ 1þ 1

¼ 0:041: ð15:67Þ

The median ~p is defined by writing

Cð122Þ
Cð5ÞCð117Þ

ð~p
0

p4ð1� pÞ116 dp ¼ 1
2
: ð15:68Þ

The factor outside the integral is Cðnþ aþ bÞ=½Cðy þ aÞCðn� y þ bÞ�:
Numerical solution of Eq. (15.68) gives the result ~p ¼ 0:038:

b) Past history suggests the mean m¼ 0.010 and standard deviation
s¼ 0.007. From Eqs. (15.11) and (15.12),

m ¼ a

aþ b
¼ 0:010 ð15:69Þ

and

s2 ¼ ab

ðaþ bþ 1Þðaþ bÞ2 ¼ ð0:007Þ2: ð15:70Þ
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Solving for a and b, we finda¼ 2.01 and b¼ 199. Combining these values
(rounded to the nearest integer) with the data yields a beta posterior with
parametersa0 ¼ y þ a¼ 4 þ 2¼ 6 andb0 ¼ n� y þ b¼ 120� 4 þ 199¼
315. The mode (15.64) of the posterior is

Mode of P ¼ 4þ 2� 1
120þ 2þ 199� 2

¼ 5
319

¼ 0:016: ð15:71Þ

The mean of the posterior is

EðPÞ ¼ a0

a0 þ b0
¼ 6

6þ 315
¼ 0:019; ð15:72Þ

and the median is

~p ¼ 0:018: ð15:73Þ
c) In the simple versus simple hypothesis, the posterior odds are given by the

product of the likelihood odds ofH0 and the prior odds ofH0, as expressed
by Eq. (15.60). The test statistic T in that equation is the binomial variable y
here:

f ðyjpÞ ¼ n
y

� �
pyð1� pÞn�y: ð15:74Þ

Under H0

PrðyjH0Þ ¼ Prðyjp ¼ 0:01Þ ¼ 120
4

� �
ð0:01Þ4ð0:99Þ116; ð15:75Þ

and under H1

PrðyjH1Þ ¼ Prðyjp ¼ 0:04Þ ¼ 120
4

� �
ð0:04Þ4ð0:96Þ116: ð15:76Þ

We are given Pr(H0)¼Pr(H1)¼ 1/2, and so

PrðH0jyÞ
PrðH1jyÞ ¼

ð0:01Þ4ð0:99Þ116
ð0:04Þ4ð0:96Þ116 ¼ 0:139: ð15:77Þ

Since the ratio is less than unity, we would acceptH1 in favor ofH0. Since
Pr(H0)¼Pr(H1)¼ 1/2, the posterior odds are equal to the Bayes factor, and
both are equal to the likelihood ratio. In the above case, we see that the odds
are roughly 6 to 1 in favor of the alternative hypothesis that p¼ 0.04.

15.11
Poisson Rate Parameter

We next consider the Bayesian method applied to the important Poisson rate
parameter l. We assume that, during a given time t, a number of events x occur
from some process. In addition, we assume that the natural conjugate prior
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distribution for l is the gamma distribution. Making the replacements, x ! l,
k ! a, and l ! b in Eq. (6.68), we write for the prior

gðlÞ ¼ ba

CðaÞ l
a�1 e�lb; l > 0; a; b > 0: ð15:78Þ

With the application of Bayes� theorem from Eq (15.22), we can express the posterior
distribution as proportional to the product of the likelihood function and the
prior. Thus,

f ðljxÞ / lxþa�1 e�lðtþbÞ: ð15:79Þ
We see that the posterior is of the gamma family. The parameters a and b can be
interpreted as the number of prior events a in a time period b. Thus, the posterior
density on l is given by

f ðljxÞ ¼ ðtþ bÞxþa

Cðx þ aÞ lxþa�1 e�lðtþbÞ: ð15:80Þ

It can be shown (Problem 15.14) that the mode of f(l|x) is

Mode of l ¼ x þ a� 1
tþ b

ð15:81Þ

and the mean is

EðlÞ ¼ x þ a

tþ b
: ð15:82Þ

One sees that if (t þ b) is large, then themean andmode have nearly the same value.
The Bayesian inference for the Poisson parameter l has been illustrated nicely by

Martz (2000) in a study of scrams that occur at nuclear power stations. A scram
produces a rapid decrease in the reactivity of a reactor in order tomake it subcritical in
response to some transient event, unplanned or otherwise, that could lead to loss of
control. The frequency, or rate, of unplanned scrams is an importantmeasure of how
well a facility performs. The Nuclear Regulatory Commission has published for 66
licensed power reactors in theUnited States the numberXi of unplanned scrams and
the total number of hours Ti that a reactor i was critical during the year 1984. The
objective of the study is to determine the (unknown) scram rates li (number of
unplanned scramsper 1000 h of operation) from the published data.We shall assume
that the Xi are described by Poisson distributions with parameters liTi (Problem
15.15). If the rates appear to be different from reactor to reactor, then the limight be
considered as independent, to be estimated individually for each plant. On the other
hand, the scram rates might have a commonality among different reactors by virtue
of the standard operating and regulatory conditions under which all of the facilities
are constrained. Estimations that reflect any such common aspects would, of course,
be desirable.

Martz chooses a special type of gamma prior distribution with a¼ 1/2 and b¼ 0,
called the Jeffreys non-informative prior (Box and Tiao, 1973). Although this is an
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improper prior, the posterior is a proper gamma distribution with parameters
a0 ¼ xi þ 1/2 and b0 ¼ ti. Martz also considers an empirical gamma prior, suggested
by the data collected on all 66 plants in the Commission report, with a¼ 1.39 and
b¼ 1.21.

& Example
Data for two of the reactor facilities in Martz�s study are given in Table 15.4,
showing the numbers of unplanned scrams and the operating times in 103 h.
Use both the Jeffreys (a¼ 1/2, b¼ 0) and the empirical gamma (a¼ 1.39,
b¼ 1.21) priors.

a) Obtain the resulting two posterior densities for each facility.
b) Determine the mode and mean estimates for the four posteriors and

compare them with the MLE.
c) Obtain a 95% confidence interval on the rates and symmetric 95% credible

intervals from the posterior densities for reactor 1.

Solution
a) With a Poisson distribution for the Xi in time Ti with rate li and a gamma

prior with parameters a and b, we showed by Eq. (15.29) that the posterior
density is also gamma with parameters a0 ¼ xi þ a and b0 ¼ ti þ b. For
reactor 1 and the Jeffreys prior, we find a0 ¼ 6 þ 1/2¼ 6.5 and b0 ¼ 5.5556
þ 0¼ 5.5556. This result, togetherwith the parameters for the other three
posterior gamma distributions, is shown in Table 15.5 (Problem 15.16).

b) The posterior mode for l is (a0 � 1)/b0 (Eq. (15.81)), and the mean is a0/b0

(Eq. (15.82)). The MLE, obtained by maximizing the likelihood with
respect to l, is given by lMLE ¼ xi=ti: Using these estimates, we obtain
the results summarized in Table 15.6 (Problem 15.17).

Table 15.4 Unplanned scram data for two reactors in 1984 (Martz, 2000).

Reactor, i Number of scrams, xi Operating time, ti (�103 h)

1 6 5.5556
2 9 7.3770

Table 15.5 Parameters a0 and b0 for the gamma posterior densities for example in the text.

Reactor, i Jeffreys prior (a¼ 1/2,
b¼ 0)

Empirical prior (a¼ 1.39,
b¼ 1.21)

a0 b0 a0 b0

1 6.5 5.5556 7.39 6.7656
2 9.5 7.3770 10.39 8.5870
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c) To obtain a 95% confidence interval on the rate parameter, one can employ
techniques described elsewhere (e.g., Miller and Freund, 1965). The MLE
is xi/ti, and the (1�a)100% confidence interval on l is

lL; lU½ � ¼
x22x1;a=2

2t1
;
x22x1þ2;1�a=2

2t1

" #
; ð15:83Þ

where x2v;h is thehpercentile of the chi-square distributionwith vdegrees of
freedom. Using the reactor 1 data from Table 15.4, we find that

lL; lU½ � ¼ x212;0:025
2ð5:5556Þ ;

x214;0:975
2ð5:5556Þ

" #
¼ 4:404

11:11
;
26:117
11:11

� �
¼ 0:396; 2:351½ �: ð15:84Þ

The Bayesian symmetric credible interval is obtained from the posterior
distribution on l, and is such that Pr(lL� l� lU|x)¼ 1�a. If we impose
symmetry, then Pr(l� lU)¼Pr(l� lL)¼ 1�a/2. It can be shown (Prob-
lem 15.20) that the posterior distribution of the transformed random
variable 2Tl given x is a chi-square distribution with (2x þ 1) degrees of
freedom. Thus, the corresponding symmetric 100(1�a)% two-sided
Bayesian credible interval on l is given by

lL; lU½ � ¼
x22xþ1;a=2

2t1
;
x22xþ1;1�a=2

2t1

" #
: ð15:85Þ

Thus,

lL; lU½ � ¼ x213;0:025
2ð5:5556Þ ;

x213;0:975
2ð5:5556Þ

" #
¼ 5:009

11:11
;
24:736
11:11

� �
¼ 0:451; 2:226½ �: ð15:86Þ

Comparing the lengths of the frequentist (Eq. (15.84)) and Bayesian
(Eq. (15.86)) intervals, we see that the Bayesian interval is shorter by
[(1.955 – 1.775)/1.995]� 100%¼ 9.02%.

For the Bayesian, there is little point in considering hypothesis testing. Having the
posterior distribution, one can compute probability statements for the values that the

Table 15.6 Mode, mean, and MLE for example in the text.

Reactor, i Jeffreys prior Empirical prior MLE

Mode Mean Mode Mean

1 0.99 1.71 0.94 1.09 1.08
2 1.15 1.29 1.09 1.21 1.22
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parameters take on. To complete the comparison with the classical approach, we
consider the simple versus simple hypothesis thatH0: l¼ 2 versusH1: l¼ 1 for the
reactor 1 plant. Recall fromEq. (15.60) that the posterior odds are equal to the product
of the likelihood and prior odds ofH0. If we assume thatH0 is just as likely to occur as
H1, then the prior probabilities are the same and the posterior odds equal the
likelihood odds. Thus, Eq. (15.60) yields

PrðH0jTÞ
PrðH1jT ¼ PrðT jH0Þ

PrðT jH1Þ ¼
ðl0tÞx e�l0t=x!
ðl1tÞx e�l1t=x!

¼ l0
l1

� �x

e�ðl0�l1Þt: ð15:87Þ

Substitution of the numerical values gives for the posterior odds ratio

2
1

� �6

e�2ð2�1Þð5:5556Þ ¼ 0:247: ð15:88Þ

Since the ratio is less than unity, we rejectH0 in favor ofH1. We note that, since the
prior odds are equal, the posterior odds and the Bayes factor are equal. Here we see
that the posterior odds in favor of H1 are roughly 3 to 1.

The more common hypothesis testing is the simple versus composite, where H0

specifies the value and H1 is of the form >, <, or 6¼. In this case, the ratio of the
posterior density of H0 compared with that of H1 is

PrðH0jTÞ
PrðH1jTÞ ¼

PrðT jH0Þ
PrðT jH1Þ

PrðH0Þ
PrðH1Þ ¼

PrðH0Þ
PrðH1Þ

PrðT jH0; l0ÞÐ
f ðT jH1l1Þgðl1Þdl1 ; ð15:89Þ

where g(l1) denotes the prior density of l1 underH1. ConsiderH0: l¼ 2 versusH1:
l 6¼ 2, and assume that Pr(H0)¼Pr(H1)¼ 1/2. The likelihood for reactor 1 underH0

is Poisson with l¼ 2, t¼ 5.5556, and x¼ 6. We take the Jeffreys prior for g(l1) (i.e.,
gamma density with a¼ 1/2 and b¼ 0). Thus,

ð1
0

f ðT jH1; l1Þgðl1Þdl1 ¼
ð1
0

ðl1tÞx e�l1t

x!
l
�1=2
1

Cð1=2Þ dl1

¼ tx

x!Cð1=2Þ
ð1
0

l
x�1=2
1 e�l1t dl1 ð15:90Þ

¼ tx

x!Cð1=2Þ
Cðx þ 1=2Þ

txþ1=2
¼ Cðx þ 1=2Þ

x!Cð1=2Þt1=2 : ð15:91Þ

The last integral in Eq (15.90) is a gamma function, which can be evaluated with the
help of Eq. (6.70) (Problem 15.22). Given x¼ 6 and t¼ 5.5556, we find from
Eqs. (15.89) and (15.91) that (Problem 15.23)

PrðH0jtÞ
PrðH1jTÞ ¼

1=2
1=2

� ð2� 5:5556Þ6 e�2ð5:5556Þ=6!

Cð6þ 1=2Þ=½6!Cð1=2Þð5:5556Þ1=2�
¼ 0:408: ð15:92Þ

Again, wewould rejectH0 in favor ofH1. In this case, we had to determine aweighted
average value for Pr(T|H1) since l was not specified in H1 and we used Jeffreys
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non-informative prior. One can see the added complexity by not specifying the
alternative hypothesis and having a simple versus simple comparison.

15.12
Normal Mean Parameter

The normal distribution plays a central role in statistics and no less a role in Bayesian
analysis. The distribution is characterized by its mean m and variance s2. In our
analysis, we shall be concerned with the mean value alone, assuming that we have a
good idea of the variance. (Generally, both m and s2 should be considered; see Press
(1989).) To simplify matters further, we initially treat the case in which a single data
point is observed.

We let x denote a single observation from a normal distribution parameterized by
an unknown mean h and known variance s2. We write the likelihood function as

f ðxjhÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�ð1=2s2Þðx�hÞ2 : ð15:93Þ

We select the prior distribution onH to be the conjugate prior, which fromTable 15.2
we can write as a normal distribution with mean m0 and variance t0. We also assume
that these twohyperparameters are known.By combining the likelihood and the prior
and using Eq. (15.22), it follows that the proportional posterior distribution on h is

f ðhjyÞ / e�ð1=2Þ½ðx�hÞ2=s2þðh�m0Þ2=t20�: ð15:94Þ
The exponent can be rewritten with the help of the identity

Aðh� aÞ2 þ Bðh� bÞ2 ¼ ðAþ BÞðh� h0Þ2
þ ðA�1 þ B�1Þ�1ða� bÞ2; ð15:95Þ

in whichA,B, a, and b are constants and h0¼ (A þ B)�1(Aa þ Bb). (The identity can
be shown by expanding and collecting terms on the left and then completing the
square for terms involving h2 and h (Problem 15.24).) Substituting A¼ 1/s2, a¼ x,
B ¼ t20, and b¼m0 into Eq. (15.95), we find that the exponent in Eq (15.94) becomes
(Problem 15.25)

� 1
2

ðx � hÞ2
s2

þ ðh� m0Þ2
t20

" #
¼ � 1

2
1
s2

þ 1
t20

� �
ðh� h0Þ2 þ ðs2 þ t20Þ�1ðx � m0Þ2

� �
;

ð15:96Þ
in which

h0 ¼ 1
s2

þ 1
t20

� ��1 x
s2

þ m0
t20

� �
: ð15:97Þ

The second term in brackets on the right-hand side of Eq. (15.96) does not depend on
h, and so it can be dropped from the exponential term of the proportional posterior
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expression (15.94). We are left with

f ðhjyÞ / e�ð1=2Þð1=s2þ1=t20Þðh�h0Þ2 ; ð15:98Þ
showing that the posterior distribution on h is normal with mean h0 and variance

t21 ¼
1
s2

þ 1
t20

� ��1

: ð15:99Þ

The results can be summarized in somemeaningful ways. First, the reciprocal of the
variance is often called the precision. Thus, we see from Eq (15.99) that the posterior
precision, 1=t21, is equal to the sum of the prior precision 1=t20 and the data precision
1/s2. Second, the posterior mean value (15.97) is the weighted average of the prior
mean,m0, and the datamean, x (single value sincen¼ 1), withweights proportional to
the respective precisions. Another way to express the relationship is to say that h0 is
equal to the prior mean adjusted toward the observed x. That is, we can rewrite
Eq (15.97) in the form

h0 ¼ m0 þ ðx � m0Þ
t20

s2 þ t20
: ð15:100Þ

We can also rewrite Eq (15.97) as an expression of the data shrunk toward the prior
mean,

h0 ¼ x � ðx � m0Þ
s2

s2 þ t20
: ð15:101Þ

These descriptions provide simple ways to think of how the prior mean and the data
mean combine to yield the posterior mean.

We next take a random sample X1, X2, . . ., Xn of size n from a normal population
with unknownmeanh and known variance s2. As before, we choose the normal prior
with mean m0 and variance t20, and assume that these hyperparameters are known.
The posterior density satisfies

f ðhjx1; x2; . . . ; xnÞ / gðhÞf ðx1; x2; . . . xnjhÞ ¼ gðhÞ
Yn
i¼1

f ðxijhÞ ð15:102Þ

/ e�ð1=2t20Þðh�m0Þ2
Yn
i¼1

e�ð1=2s2Þðxi�hÞ ¼ e�ð1=2Þ ð1=t20Þðh�m0Þ2þð1=s2Þ
Pn

i¼1
ðxi�hÞ2½ �: ð15:103Þ

Earlier we used the technique of adding and subtracting x ¼P xi=n within each
squared term in the summation on the right. The reason for introducing x is that it is
sufficient for h, the mean value. That is, the sample mean carries all of the
information about the populationmean.Aswedidwith Eqs. (15.43)–(15.44), wewrite

Xn
i¼1

ðxi � hÞ2 ¼
Xn
i¼1

ðxi � x þ x � hÞ2 ¼
Xn
i¼1

ðxi � xÞ2 þ nðx � hÞ2: ð15:104Þ
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The summation on the far right does not involve h, and hence can be dropped from
the proportional density (15.103). We are left with

f ðhjx1x2; . . . xnÞ / e�ð1=2Þ½ð1=t20Þðh�m0Þ2þðn=s2Þðx�hÞ2 �: ð15:105Þ

Again, like Eqs. (15.94)–(15.97), we can write here

1
t20

ðh� m0Þ2 þ
n
s2

ðx � hÞ2 ¼ 1
t20

þ n
s2

� �
ðh� h2Þ2 þ t20 þ

s2

n

� ��1

ðx � m0Þ2; ð15:106Þ

where

h0 ¼ 1
t20

þ n
s2

� ��1 m0
t20

þ nx
s2

� �
: ð15:107Þ

Neglecting the terms that do not involve h, we see that the posterior distribu-
tion (15.105) is normal with mean h0 and variance t2 ¼ ð1=t20 þ n=s2Þ�1.

Often it is desired to analyze frequency data, such as numbers of counts, by using
standard normal theory procedures. When the count numbers are large, the normal
can give a good approximation to the Poisson distribution. In applying the normal
theory procedures, the variance needs to be constant. It turns out that, by analyzing
the square root of the counts rather than the counts themselves, the variance is
stabilized and is approximated by the value 0.25. This result is discussed in Box,
Hunter, and Hunter (1978). We use it in the following example.

& Example
Repeatedcountsaremadein1-minintervalswithalong-livedradioactivesource.
The results for n¼ 100 1-min readings yield a sample with a mean of 848.37
countsandavarianceof631.41.ForPoissondata, thesquareroottransformation
is a variance stabilizing transformation (recall that Var(X)¼ l¼E(X)). There-
fore, as the mean changes, the variance also changes. In fact, the square root
transformationyields anewrandomvariablewhose variance is approximately a
constant equal to 1/4. A Poisson distribution with a mean this large is well
approximated by a normal, and so the square root transformation actually
improves the approximation. The mean and variance of the transformed data
(replacing each count by its square root value) are x¼ 29.1200 and s2¼ 0.1862.
Use the transformed data and assume that s2¼ 1/4. Assume that the prior
distributionfor themean(onthesquarerootdata)hasmean30andvariance1/2.

a) What is the posterior density on the mean?
b) Determine the mean, median, and mode for the posterior distribution.
c) Obtain a 95% symmetric credible interval on the mean.

Solution
a) The sample values are n¼ 100, s2¼ 1/4, and x ¼ 29:1200, and the prior

distribution has m0¼ 30 and t20 ¼ 1=2: Recalling Eq. (15.107) and the
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sentence following it, we know that the posterior density on h, themean of
the transformed data, is normal with mean

h0 ¼ 1
1=2

þ 100
1=4

� ��1 30
1=2

þ 100ð29:12Þ
1=4

� �
¼ 29:1244 ð15:108Þ

and variance

t2 ¼ 1
1=2

þ 100
1=4

� ��1

¼ 0:0024876: ð15:109Þ

We see that the posterior mean is numerically the same as the data mean.
(The posteriormean is actually shifted a little to the right of the datamean.)
As mentioned earlier, with increasing sample size, the data should have
increasing influence, as comes out clearly in this example.

Also, the posterior variance is nearly the same as that (s2/n¼ 0.0025) of
the samplemean. The effect of the prior variance is slight, as expected for a
large sample.

b) For the normal density, the mean, median, and mode are identical,
namely, 29.1244.

c) For the symmetric 95%credible interval for the normal posterior, wewrite,
therefore,

Pr �1:96 � H� h0
t

� 1:96

� �
¼ 0:95: ð15:110Þ

Prð29:0266Þ � H � 29:2221Þ ¼ 0:95: ð15:111Þ
We note that the credible interval is on the square root of the mean of the
original data. If we square each term inside the probability state-
ment (15.111), the probability will not change. We then find that the
credible interval in the original units is (842.54, 853.93). The original
sample was generated randomly from a Poisson distribution with mean
850. The back-transformed estimate of the mean is (29.1244)2¼ 849.25,
close to the true mean value.

To complete this section, we consider the simple versus composite hypothesis,
H0: h ¼ h0 versus H1: h¼h1 6¼h0, with Pr(H0)¼Pr(H1)¼ 0.5. Taking a random
sampleX1,X2, . . .,Xn of sizen, assume thatX|h�N(h, 1).We know thatX is sufficient
for the mean, h, and that X jh � Nðh; 1= ffiffiffi

n
p Þ: Thus, the two sampling distributions

can be written as

f0ðxjH0; h0Þ ¼
�

n
2p

�1=2

e�ðn=2Þðx�h0Þ2 ð15:112Þ

and

f1ðxjH1; h1Þ ¼
�

n
2p

�1=2

e�ðn=2Þðx�h1Þ2 : ð15:113Þ
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UnderH0, the prior density on h is a point distribution at h¼h0. UnderH1, we take
the prior density on h to be N(h�, 1). The posterior odds ratio (see Eqs. (15.60)
and (15.63)) becomes

PrðH0jXÞ
PrðH1jXÞ

¼ e�ðn=2Þðx�h0Þ2

ð1= ffiffiffiffiffiffi
2p

p Þe�ð2=nþ2Þ�1ðx�h*Þ2 Ð1
�1 e�ðn=2þ1=2Þðh�mÞ2 dh

; ð15:114Þ

where

m ¼
�
n
2
þ 1
2

��
nx
2

þ h*

2

�
: ð15:115Þ

The integrand is identical to the normal density except for the factor [(n þ 1)/2p]1/2.
Thus, the integral is equal to the reciprocal of this factor, and so the posterior odds
ratio (15.114) is

PrðH0jXÞ
PrðH1jXÞ

¼ e�ðn=2Þðx�h0Þ2

ð1= ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p Þe�ð1=2Þ½ðnþ1Þ=n�ðx�h*Þ2 : ð15:116Þ

Since the prior odds are equal, the Bayes factor reduces to the posterior odds.

& Example
Ten film dosimeters are checked for possible exposure to radiation in a
laboratory experiment. Calibration shows that the background densitometer
reading for unexposed films should be h0¼ 0.25 (relative units). The mean
reading for the n¼ 10 films is x ¼ 0:65: Assume that the prior for the film
darkening is a normal distribution with mean h� ¼ 0.45 and standard devi-
ation s¼ 1. LetH0: h¼h0¼ 0.25 andH1: h 6¼h0 be the hypotheses we wish to
test and, for simplicity, let Pr(H0)¼Pr(H1)¼ 1/2.

a) Find the posterior odds ratio.
b) Obtain the Bayes factor.
c) Which hypothesis should we accept?

Solution
a) Substituting the given information into Eq. (15.116), we compute

PrðH0jxÞ
PrðH1jxÞ ¼

e�5ð0:65�0:25Þ2

ð11Þ�1=2 e�1:1ð0:65�0:45Þ2=2 ¼ 1:523: ð15:117Þ

b) Since Pr(H0)¼Pr(H1)¼ 1/2, the Bayes factor and the posterior odds ratio
are equal.

c) Because the posterior odds are greater thanunity, we acceptH0:h¼ 0.25 in
favor of H1: h 6¼ 0.25.

We have only scratched the surface concerning Bayesian analysis. For further
reading, one can consult several books mentioned throughout this chapter and, in
addition, the excellent introductory texts by Barry (1996) and by Sivia (1996).
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Problems

15.1 Verify the relations (5.14).
15.2 Surface swipes are collected and counted at a nuclear facility in order to check

for removable activity on various surfaces. A swipe sample result is declared to
be �high� when the number of counts it produces exceeds an established
control value. Random swipe samples are to be collected throughout the
facility to determine the probability p that a given one will be �high.� From a
random sample of 450 swipe samples tested, 18 �high� ones were found.
a) Write down the likelihood function for p.
b) Sketch the likelihood function over the range 0� p� 0.15.
c) Obtain the maximum likelihood estimate.
d) Obtain the posterior distribution on p using the uniform prior.
e) Find the mean of the posterior distribution and compare it to the

maximum likelihood estimate. Are you surprised? Why or why not?
15.3 Refer to the last problem.

a) Obtain the posterior distribution by using the beta prior with a¼ 10
and b¼ 290.

b) Calculate the mean value for this posterior distribution.
15.4 Suppose that T has an exponential distribution with parameter l> 0 and

0<T<1. Let l have a prior distribution that is exponential with parameter
c> 0. Obtain the posterior density on l.

15.5 Show that the expected value (15.26) lies between the sample proportion y/n
and the prior mean a/(a þ b).

15.6 Provide a conjugate prior distribution for the unknown parameter.
a) X � binomial (n, p), n known.
b) X � negative binomial (r, p), r known.
c) X � normal (m, s), s known.

15.7 State whether the following is a location family or a scale family.
a) X � uniform (h� a, h þ a).
b) X � gamma (a, b), a known.
c) X � N(m, s), m known.

15.8 Verify (15.39).
15.9 Show that Eqs. (15.48)–(15.50) follow from Eq. (15.47).

15.10 The negative binomial distribution was given by Eq. (5.70). Let Y1, Y2, . . ., Yn
be independent, identically distributed binomial variables with parameters (r,
h), with r known and h having a beta (a, b) prior distribution. In this instance,
Y is the number of failures that precede the rth success, and the probability
function given by Eq (5.70) can be written as

pðyjr; hÞ ¼
�
y þ r � 1

y

�
hrð1� hÞy:

The mean and variance are E(Y)¼ r(1�h)/h and Var(Y)¼ r(1�h)/h2.
a) Show that the posterior distribution on h is beta

�
nr þ a;

Pn
i¼1 yi þ b

�
:
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b) Show that the expected value of the posterior distribution is

Eðhjy1; y2; . . . ; ynÞ ¼ nr þ a

nr þ aþP yi þ b
:

c) Interpret the parameters a and b in the prior distribution on h.
d) Write the likelihood function and show that the MLE for h is

ĥ ¼ nr
nr þP yi

¼ r
r þ y

:

e) Compare the MLE and the mean of the posterior distribution as the
number of experiments n gets larger.

f) Show that theMLE and themaximum of the posterior density on h are the
same when a¼b¼ 1 (and the prior is the uniform distribution).

15.11 In the last problem, n¼ 10 experiments were run with r¼ 5, and
P

yi ¼ 40
was observed (i¼ 1, 2, . . ., 10).
a) Assume that the prior is beta with a¼ 2 and b¼ 2. Calculate the posterior

mean and the MLE for h.
b) Write down the integral equations that need to be solved in order to obtain

the 95% symmetric credible interval for h.
c) Determine the Bayes factor for the simple versus composite hypothesis

thatH0: h¼h0¼ 0.5 versusH1: h 6¼ h0. Assume that both hypotheses are
equally likely to occur and that the prior on h under H1 is uniform (0, 1),
that is, beta with a¼b¼ 1. Which hypothesis do you accept?

(Hint: Since Pr(H0)¼Pr(H1)¼ 1/2, the Bayes factor is equal to the posterior
odds ratio. Show that, in general, the posterior odds ratio is

PrðH0jy1; y2; . . . ; ynÞ
PrðH1jy1; y2; . . . ; ynÞ ¼ ð1� hÞ

P
yihnr0

Cðnr þ 1ÞC
�P

yi þ 1

�

C

�
nr þP yi þ 2

�
2
664

3
775
�1

;

then substitute the given data.)
15.12 Additional data for Problem 15.2 suggest that the prior is a beta distribution

with mean 0.033 and standard deviation 0.010. Use this information to
calculate the values of the hyperparameters, a and b, using Eqs. (15.11)
and (15.12).

15.13 Show that the mode of the density,

gðpÞ ¼ Cðnþ aþ bÞ
Cðy þ aÞCðn� y þ bÞ p

yþa�1ð1� pÞn�yþb�1;

is given by Eq. (15.64).
15.14 Show that the mode of the density,

f ðlÞ ¼ bala�1 e�lb

CðaÞ ;

is given by (a� 1)/b. Use the result to show that Eq. (15.81) is correct.
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15.15 Justify using the Poisson distribution as an appropriate model to describe the
sampling of variability in the numbersXi of unplanned reactor scrams among
the different facilities, i, in Section 15.11.

15.16 Determine the values of the parameters a0 and b0 shown for the two reactor
facilities and two priors in Table 15.5.

15.17 Calculate the entries in Table 15.6 for the two reactor facilities.
15.18 The random variable U has the density

hðuÞ ¼ ua e�u

a!
; u;a > 0;

where a is an integer.
a) If Y¼ 2U, show that the density on Y is given by

f ðyÞ ¼ ya e�y=2

2aþ1a!
; y;a > 0:

b) Show hat Y has a chi-square density with degrees of freedom v¼ 2a þ 2
by equating parameters in the density in part (a) to the chi-square density
with v degrees of freedom given by

f ðxÞ ¼ xv=2�1 e�x=2

Cðv=2Þ2v=2 :

15.19 Show that

ð1
lT

uN e�u

N!
du ¼

XN
k¼0

e�lT ðlTÞk
k!

:

15.20 Let X be a Poisson random variable with rate parameter l and measurement
time T. Then

PrðX � NjlÞ ¼
XN
k¼0

e�lT ðlTÞk
k!

:

Using the results from the last two problems, show that

PrðX � NjlÞ ¼ Prðx22ðNþ1Þ > 2lT jlÞ;

where x22ðNþ1Þ is interpreted as a random variable that is chi-square with
2(N þ 1) degrees of freedom.

15.21 The confidence interval given by Eq. (15.84) can be obtained in the following
way. Suppose we are concerned about the mean m¼ lT of a Poisson process.
Consider the hypothesis test ofH0: m¼m0¼ l0 versusH1: m>m0. We observe
the randomvariableX andfindX¼ n.We can determine the exact significance
level of the test corresponding to the observed value n by computing

PrðX � njm ¼ m0 ¼ l0TÞ ¼
X1
k¼n

ðl0TÞk e�l0T

k!
:
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If we select l0 such that this probability is equal to a/2, then this value of l0 is
the smallest for whichwewould rejectH0 with probabilitya/2. Thus, this value
of l0 is lL. Similarly, if we turn the hypothesis around so thatH0: m¼m0¼ l0
versusH1: m<m0, then the exact significance level of the test corresponding to
an observed value n is given by

PrðX � njm ¼ m0 ¼ l0TÞ ¼
Xn
k¼0

ðl0TÞk e�l0T

k!
:

If we select l0 such that the value of this sum is equal to a/2, then this value of
l0 is the largest for which we would rejectH0 forH1 with probability a/2. This
value of l0 is lU. The interval (lL, lU) thus forms a (1�a)100% confidence
interval for l0.
a) Verify Eq. (15.84) by showing that

X1
k¼n

ðlLTÞk e�lLT

k!
¼ a

2

leads to the expression lL ¼ x22n;a=2=2T .
b) Verify Eq. (15.84) by showing that

Xn
k¼0

ðlnTÞk e�lnT

k!
¼ a

2

leads to the expression lU ¼ x22nþ2;1�a=2=2T .
15.22 Show that Eq. (15.92) follows from (15.91).
15.23 Verify that Eq. (15.92) is correct.
15.24 Prove the identity (15.95).
15.25 Show that Eqs. (15.96) and (15.97) follow from Eq. (15.95).
15.26 A random sample of size n¼ 10 is drawn from a normal population with

unknownmean m and standard deviation s¼ 2. The sample mean is x ¼ 1:2;
and

P10
i¼1 ðxi � xÞ2 ¼ 0:90.

a) Write down the proportional likelihood function (ignoring the factor
ð1= ffiffiffiffiffiffiffiffiffi

2ps
p Þ10).

b) Calculate the likelihood function for m¼� 1.0,�0.5, 0.0, 0.5, 1.0, 2.0, and
3.0.

c) Sketch the likelihood function.
d) Obtain the value of the maximum likelihood estimator analytically.
e) Determine the value of the proportional likelihood function at its

maximum.
15.27 Assume in the last problem that the prior distribution on m is N(0, 1).

a) Show that the posterior distribution on m is normal with mean 6/7 and
variance 2/7.

b) Sketch the prior and posterior densities.
c) Obtain a 95% credibility interval on m using the posterior density.
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Appendix

Table A.1 Cumulative binomial distribution.

n r p

0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5 0 0.590 0.328 0.237 0.168 0.078 0.031 0.010 0.002 0.000 0.000
5 1 0.919 0.737 0.633 0.528 0.337 0.188 0.087 0.031 0.007 0.000
5 2 0.991 0.942 0.896 0.837 0.683 0.500 0.317 0.163 0.058 0.009
5 3 1.000 0.993 0.984 0.969 0.913 0.813 0.663 0.472 0.263 0.081
5 4 1.000 1.000 0.999 0.998 0.990 0.969 0.922 0.832 0.672 0.410
5 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 0 0.349 0.107 0.056 0.028 0.006 0.001 0.000 0.000 0.000 0.000
10 1 0.736 0.376 0.244 0.149 0.046 0.011 0.002 0.000 0.000 0.000
10 2 0.930 0.678 0.526 0.383 0.167 0.055 0.012 0.002 0.000 0.000
10 3 0.987 0.879 0.776 0.650 0.382 0.172 0.055 0.011 0.001 0.000
10 4 0.998 0.967 0.922 0.850 0.633 0.377 0.166 0.047 0.006 0.000
10 5 1.000 0.994 0.980 0.953 0.834 0.623 0.367 0.150 0.033 0.002
10 6 1.000 0.999 0.996 0.989 0.945 0.828 0.618 0.350 0.121 0.013
10 7 1.000 1.000 1.000 0.998 0.988 0.945 0.833 0.617 0.322 0.070
10 8 1.000 1.000 1.000 1.000 0.998 0.989 0.954 0.851 0.624 0.264
10 9 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.972 0.893 0.651
10 10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 0 0.206 0.035 0.013 0.005 0.000 0.000 0.000 0.000 0.000 0.000
15 1 0.549 0.167 0.080 0.035 0.005 0.000 0.000 0.000 0.000 0.000
15 2 0.816 0.398 0.236 0.127 0.027 0.004 0.000 0.000 0.000 0.000
15 3 0.944 0.648 0.461 0.297 0.091 0.018 0.002 0.000 0.000 0.000
15 4 0.987 0.836 0.686 0.515 0.217 0.059 0.009 0.001 0.000 0.000
15 5 0.998 0.939 0.852 0.722 0.403 0.151 0.034 0.004 0.000 0.000
15 6 1.000 0.982 0.943 0.869 0.610 0.304 0.095 0.015 0.001 0.000
15 7 1.000 0.996 0.983 0.950 0.787 0.500 0.213 0.050 0.004 0.000
15 8 1.000 0.999 0.996 0.985 0.905 0.696 0.390 0.131 0.018 0.000
15 9 1.000 1.000 0.999 0.996 0.966 0.849 0.597 0.278 0.061 0.002
15 10 1.000 1.000 1.000 0.999 0.991 0.941 0.783 0.485 0.164 0.013
15 11 1.000 1.000 1.000 1.000 0.998 0.982 0.909 0.703 0.352 0.056

(Continued)

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Table A.1 (Continued )

n r p

0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9

15 12 1.000 1.000 1.000 1.000 1.000 0.996 0.973 0.873 0.602 0.184
15 13 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.833 0.451
15 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.794
15 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 0 0.122 0.012 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000
20 1 0.392 0.069 0.024 0.008 0.001 0.000 0.000 0.000 0.000 0.000
20 2 0.677 0.206 0.091 0.035 0.004 0.000 0.000 0.000 0.000 0.000
20 3 0.867 0.411 0.225 0.107 0.016 0.001 0.000 0.000 0.000 0.000
20 4 0.957 0.630 0.415 0.238 0.051 0.006 0.000 0.000 0.000 0.000
20 5 0.989 0.804 0.617 0.416 0.126 0.021 0.002 0.000 0.000 0.000
20 6 0.998 0.913 0.786 0.608 0.250 0.058 0.006 0.000 0.000 0.000
20 7 1.000 0.968 0.898 0.772 0.416 0.132 0.021 0.001 0.000 0.000
20 8 1.000 0.990 0.959 0.887 0.596 0.252 0.057 0.005 0.000 0.000
20 9 1.000 0.997 0.986 0.952 0.755 0.412 0.128 0.017 0.001 0.000
20 10 1.000 0.999 0.996 0.983 0.872 0.588 0.245 0.048 0.003 0.000
20 11 1.000 1.000 0.999 0.995 0.943 0.748 0.404 0.113 0.010 0.000
20 12 1.000 1.000 1.000 0.999 0.979 0.868 0.584 0.228 0.032 0.000
20 13 1.000 1.000 1.000 1.000 0.994 0.942 0.750 0.392 0.087 0.002
20 14 1.000 1.000 1.000 1.000 0.998 0.979 0.874 0.584 0.196 0.011
20 15 1.000 1.000 1.000 1.000 1.000 0.994 0.949 0.762 0.370 0.043
20 16 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.893 0.589 0.133
20 17 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.965 0.794 0.323
20 18 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.992 0.931 0.608
20 19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.988 0.878
20 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Tabulated values are Bðr; n; pÞ ¼ Pr
x¼0 bðr; n; pÞ ¼

Pr
x¼0

n
x

� �
pxð1�pÞn�x ¼ PrðX � rÞ. Refer to

Eq. (5.9).

Table A.2 Cumulative Poisson distribution.

r m

0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0 0.990 0.951 0.905 0.819 0.741 0.670 0.607 0.549 0.497 0.449 0.407 0.368
1 1.000 0.999 0.995 0.982 0.963 0.938 0.910 0.878 0.844 0.809 0.772 0.736
2 1.000 1.000 1.000 0.999 0.996 0.992 0.986 0.977 0.966 0.953 0.937 0.920
3 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.997 0.994 0.991 0.987 0.981
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.996
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
�6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table A.2 (Continued)

(Continued)

r m

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

0 0.333 0.301 0.273 0.247 0.223 0.202 0.183 0.165 0.150 0.135 0.122 0.111
1 0.699 0.663 0.627 0.592 0.558 0.525 0.493 0.463 0.434 0.406 0.380 0.355
2 0.900 0.879 0.857 0.833 0.809 0.783 0.757 0.731 0.704 0.677 0.650 0.623
3 0.974 0.966 0.957 0.946 0.934 0.921 0.907 0.891 0.875 0.857 0.839 0.819
4 0.995 0.992 0.989 0.986 0.981 0.976 0.970 0.964 0.956 0.947 0.938 0.928
5 0.999 0.998 0.998 0.997 0.996 0.994 0.992 0.990 0.987 0.983 0.980 0.975
6 1.000 1.000 1.000 0.999 0.999 0.999 0.998 0.997 0.997 0.995 0.994 0.993
7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.999 0.998
�8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
r m

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.5 4.0 4.5 5.0

0 0.100 0.091 0.082 0.074 0.067 0.061 0.055 0.050 0.030 0.018 0.011 0.007
1 0.331 0.308 0.287 0.267 0.249 0.231 0.215 0.199 0.136 0.092 0.061 0.040
2 0.596 0.570 0.544 0.518 0.494 0.469 0.446 0.423 0.321 0.238 0.174 0.125
3 0.799 0.779 0.758 0.736 0.714 0.692 0.670 0.647 0.537 0.433 0.342 0.265
4 0.916 0.904 0.891 0.877 0.863 0.848 0.832 0.815 0.725 0.629 0.532 0.440
5 0.970 0.964 0.958 0.951 0.943 0.935 0.926 0.916 0.858 0.785 0.703 0.616
6 0.991 0.988 0.986 0.983 0.979 0.976 0.971 0.966 0.935 0.889 0.831 0.762
7 0.997 0.997 0.996 0.995 0.993 0.992 0.990 0.988 0.973 0.949 0.913 0.867
8 0.999 0.999 0.999 0.999 0.998 0.998 0.997 0.996 0.990 0.979 0.960 0.932
9 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.999 0.997 0.992 0.983 0.968
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.993 0.986
11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.995
12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998
13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
�14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
r m

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 15.0 20.0

0 0.004 0.002 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.027 0.017 0.011 0.007 0.005 0.003 0.002 0.001 0.001 0.000 0.000 0.000
2 0.088 0.062 0.043 0.030 0.020 0.014 0.009 0.006 0.004 0.003 0.000 0.000
3 0.202 0.151 0.112 0.082 0.059 0.042 0.030 0.021 0.015 0.010 0.000 0.000
4 0.358 0.285 0.224 0.173 0.132 0.100 0.074 0.055 0.040 0.029 0.001 0.000
5 0.529 0.446 0.369 0.301 0.241 0.191 0.150 0.116 0.089 0.067 0.003 0.000
6 0.686 0.606 0.527 0.450 0.378 0.313 0.256 0.207 0.165 0.130 0.008 0.000
7 0.809 0.744 0.673 0.599 0.525 0.453 0.386 0.324 0.269 0.220 0.018 0.001
8 0.894 0.847 0.792 0.729 0.662 0.593 0.523 0.456 0.392 0.333 0.037 0.002
9 0.946 0.916 0.877 0.830 0.776 0.717 0.653 0.587 0.522 0.458 0.070 0.005
10 0.975 0.957 0.933 0.901 0.862 0.816 0.763 0.706 0.645 0.583 0.118 0.011
11 0.989 0.980 0.966 0.947 0.921 0.888 0.849 0.803 0.752 0.697 0.185 0.021
12 0.996 0.991 0.984 0.973 0.957 0.936 0.909 0.876 0.836 0.792 0.268 0.039
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Table A.2 (Continued)

r m

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 15.0 20.0

Table A.3 Cumulative normal distribution.

0 z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

�3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
�3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
�3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
�3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
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13 0.998 0.996 0.993 0.987 0.978 0.966 0.949 0.926 0.898 0.864 0.363 0.066
14 0.999 0.999 0.997 0.994 0.990 0.983 0.973 0.959 0.940 0.917 0.466 0.105
15 1.000 0.999 0.999 0.998 0.995 0.992 0.986 0.978 0.967 0.951 0.568 0.157
16 1.000 1.000 1.000 0.999 0.998 0.996 0.993 0.989 0.982 0.973 0.664 0.221
17 1.000 1.000 1.000 1.000 0.999 0.998 0.997 0.995 0.991 0.986 0.749 0.297
18 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.996 0.993 0.819 0.381
19 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.875 0.470
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.917 0.559
21 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.947 0.644
22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.967 0.721
23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.981 0.787
24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.989 0.843
25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.888
26 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.922
27 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.948
28 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.966
29 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.978
30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987
31 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.992
32 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995
33 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997
34 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999

Tabulated values are Pðr; mÞ ¼ Pr
x¼0 pðx; mÞ ¼

Pr
x¼0 m

x e�m=x! ¼ PrðX � rÞ. Refer to Eq. (5.27).



Table A.3 (Continued )

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

�2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
�2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
�2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
�2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
�2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
�2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
�2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
�2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
�2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
�2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
�1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
�1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
�1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
�1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
�1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
�1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
�1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
�1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
�1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
�1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
�0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
�0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
�0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
�0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
�0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
�0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
�0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
�0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
�0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
�0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

(Continued)
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Table A.3 (Continued )

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

Tabulated values are PrðZ < zÞ ¼ FðzÞ ¼ ð1= ffiffiffiffiffiffi
2p

p Þ Ð z�1 e�ð1=2Þt2 dt, as represented by the shaded
area of the figure. Refer to Eq. (6.20).
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Table A.5 Quantiles tv,a that cut off area a to the right for Student�s t-distribution with v degrees of
freedom.

0 tν,α

α

v a

0.100 0.050 0.025 0.010 0.005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
1 1.282 1.645 1.960 2.326 2.576

Refer to Eq. (6.96).
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Table A.6 Quantiles f0.95(v1, v2) for the F distribution.

0 f0.95(ν1,ν2)
α = 0.95

v2 v1

1 2 3 4 5 6 7 8 9 10 11 12

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.0 243.9
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.39 19.40 19.41 19.41
3 10.13 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812 8.786 8.763 8.745
4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964 5.936 5.912
5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772 4.735 4.704 4.678
6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060 4.027 4.000
7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637 3.603 3.575
8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388 3.347 3.313 3.284
9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137 3.102 3.073
10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978 2.943 2.913
11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854 2.818 2.788
12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753 2.717 2.687
13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671 2.635 2.604
14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602 2.565 2.534
15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.588 2.544 2.507 2.475
16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494 2.456 2.425
17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494 2.450 2.413 2.381
18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2.412 2.374 2.342
19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2.378 2.340 2.308
20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348 2.310 2.278
21 4.325 3.467 3.072 2.840 2.685 2.573 2.488 2.420 2.366 2.321 2.283 2.250
22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.342 2.297 2.259 2.226
23 4.279 3.422 3.028 2.796 2.640 2.528 2.442 2.375 2.320 2.275 2.236 2.204
24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355 2.300 2.255 2.216 2.183
25 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2.337 2.282 2.236 2.198 2.165
26 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321 2.265 2.220 2.181 2.148
27 4.210 3.354 2.960 2.728 2.572 2.459 2.373 2.305 2.250 2.204 2.166 2.132
28 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291 2.236 2.190 2.151 2.118
29 4.183 3.328 2.934 2.701 2.545 2.432 2.346 2.278 2.223 2.177 2.138 2.104
30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266 2.211 2.165 2.126 2.092
40 4.085 3.232 2.839 2.606 2.449 2.336 2.249 2.180 2.124 2.077 2.038 2.003
60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 2.040 1.993 1.952 1.917
120 3.920 3.072 2.680 2.447 2.290 2.175 2.087 2.016 1.959 1.910 1.869 1.834
1 3.841 2.996 2.605 2.372 2.214 2.099 2.010 1.938 1.880 1.831 1.789 1.752
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v2 v1

13 14 15 16 17 18 19 20 21 22 23 24

1 244.7 245.4 246.0 246.5 246.9 247.3 247.7 248.0 248.3 248.6 248.8 249.1
2 19.42 19.42 19.43 19.43 19.44 19.44 19.44 19.45 19.45 19.45 19.45 19.45
3 8.729 8.715 8.703 8.692 8.683 8.675 8.667 8.660 8.654 8.648 8.643 8.639
4 5.891 5.873 5.858 5.844 5.832 5.821 5.811 5.803 5.795 5.787 5.781 5.774
5 4.655 4.636 4.619 4.604 4.590 4.579 4.568 4.558 4.549 4.541 4.534 4.527
6 3.976 3.956 3.938 3.922 3.908 3.896 3.884 3.874 3.865 3.856 3.849 3.841
7 3.550 3.529 3.511 3.494 3.480 3.467 3.455 3.445 3.435 3.426 3.418 3.410
8 3.259 3.237 3.218 3.202 3.187 3.173 3.161 3.150 3.140 3.131 3.123 3.115
9 3.048 3.025 3.006 2.989 2.974 2.960 2.948 2.936 2.926 2.917 2.908 2.900
10 2.887 2.865 2.845 2.828 2.812 2.798 2.785 2.774 2.764 2.754 2.745 2.737
11 2.761 2.739 2.719 2.701 2.685 2.671 2.658 2.646 2.636 2.626 2.617 2.609
12 2.660 2.637 2.617 2.599 2.583 2.568 2.555 2.544 2.533 2.523 2.514 2.505
13 2.577 2.554 2.533 2.515 2.499 2.484 2.471 2.459 2.448 2.438 2.429 2.420
14 2.507 2.484 2.463 2.445 2.428 2.413 2.400 2.388 2.377 2.367 2.357 2.349
15 2.448 2.424 2.403 2.385 2.368 2.353 2.340 2.328 2.316 2.306 2.297 2.288
16 2.397 2.373 2.352 2.333 2.317 2.302 2.288 2.276 2.264 2.254 2.244 2.235
17 2.353 2.329 2.308 2.289 2.272 2.257 2.243 2.230 2.219 2.208 2.199 2.190
18 2.314 2.290 2.269 2.250 2.233 2.217 2.203 2.191 2.179 2.168 2.159 2.150
19 2.280 2.256 2.234 2.215 2.198 2.182 2.168 2.155 2.144 2.133 2.123 2.114
20 2.250 2.225 2.203 2.184 2.167 2.151 2.137 2.124 2.112 2.102 2.092 2.082
21 2.222 2.197 2.176 2.156 2.139 2.123 2.109 2.096 2.084 2.073 2.063 2.054
22 2.198 2.173 2.151 2.131 2.114 2.098 2.084 2.071 2.059 2.048 2.038 2.028
23 2.175 2.150 2.128 2.109 2.091 2.075 2.061 2.048 2.036 2.025 2.014 2.005
24 2.155 2.130 2.108 2.088 2.070 2.054 2.040 2.027 2.015 2.003 1.993 1.984
25 2.136 2.111 2.089 2.069 2.051 2.035 2.021 2.007 1.995 1.984 1.974 1.964
26 2.119 2.094 2.072 2.052 2.034 2.018 2.003 1.990 1.978 1.966 1.956 1.946
27 2.103 2.078 2.056 2.036 2.018 2.002 1.987 1.974 1.961 1.950 1.940 1.930
28 2.089 2.064 2.041 2.021 2.003 1.987 1.972 1.959 1.946 1.935 1.924 1.915
29 2.075 2.050 2.027 2.007 1.989 1.973 1.958 1.945 1.932 1.921 1.910 1.901
30 2.063 2.037 2.015 1.995 1.976 1.960 1.945 1.932 1.919 1.908 1.897 1.887
40 1.974 1.948 1.924 1.904 1.885 1.868 1.853 1.839 1.826 1.814 1.803 1.793
60 1.887 1.860 1.836 1.815 1.796 1.778 1.763 1.748 1.735 1.722 1.711 1.700
120 1.803 1.775 1.750 1.728 1.709 1.690 1.674 1.659 1.645 1.632 1.620 1.608
1 1.720 1.692 1.666 1.644 1.623 1.604 1.587 1.571 1.556 1.542 1.529 1.517
v2 v1

25 26 27 28 29 30 40 60 120 1

1 249.3 249.5 249.6 249.8 250.0 250.1 251.1 252.2 253.3 254.3
2 19.46 19.46 19.46 19.46 19.46 19.46 19.47 19.48 19.49 19.50
3 8.634 8.630 8.626 8.623 8.620 8.617 8.594 8.572 8.549 8.526
4 5.769 5.763 5.759 5.754 5.750 5.746 5.717 5.688 5.658 5.628
5 4.521 4.515 4.510 4.505 4.500 4.496 4.464 4.431 4.398 4.365
6 3.835 3.829 3.823 3.818 3.813 3.808 3.774 3.740 3.705 3.669
7 3.404 3.397 3.391 3.386 3.381 3.376 3.340 3.304 3.267 3.230
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8 3.108 3.102 3.095 3.090 3.084 3.079 3.043 3.005 2.967 2.928
9 2.893 2.886 2.880 2.874 2.869 2.864 2.826 2.787 2.748 2.707
10 2.730 2.723 2.716 2.710 2.705 2.700 2.661 2.621 2.580 2.538
11 2.601 2.594 2.588 2.582 2.576 2.570 2.531 2.490 2.448 2.404
12 2.498 2.491 2.484 2.478 2.472 2.466 2.426 2.384 2.341 2.296
13 2.412 2.405 2.398 2.392 2.386 2.380 2.339 2.297 2.252 2.206
14 2.341 2.333 2.326 2.320 2.314 2.308 2.266 2.223 2.178 2.131
15 2.280 2.272 2.265 2.259 2.253 2.247 2.204 2.160 2.114 2.066
16 2.227 2.220 2.212 2.206 2.200 2.194 2.151 2.106 2.059 2.010
17 2.181 2.174 2.167 2.160 2.154 2.148 2.104 2.058 2.011 1.960
18 2.141 2.134 2.126 2.119 2.113 2.107 2.063 2.017 1.968 1.917
19 2.106 2.098 2.090 2.084 2.077 2.071 2.026 1.980 1.930 1.878
20 2.074 2.066 2.059 2.052 2.045 2.039 1.994 1.946 1.896 1.843
21 2.045 2.037 2.030 2.023 2.016 2.010 1.965 1.916 1.866 1.812
22 2.020 2.012 2.004 1.997 1.990 1.984 1.938 1.889 1.838 1.783
23 1.996 1.988 1.981 1.973 1.967 1.961 1.914 1.865 1.813 1.757
24 1.975 1.967 1.959 1.952 1.945 1.939 1.892 1.842 1.790 1.733
25 1.955 1.947 1.939 1.932 1.926 1.919 1.872 1.822 1.768 1.711
26 1.938 1.929 1.921 1.914 1.907 1.901 1.853 1.803 1.749 1.691
27 1.921 1.913 1.905 1.898 1.891 1.884 1.836 1.785 1.731 1.672
28 1.906 1.897 1.889 1.882 1.875 1.869 1.820 1.769 1.714 1.654
29 1.891 1.883 1.875 1.868 1.861 1.854 1.806 1.754 1.698 1.638
30 1.878 1.870 1.862 1.854 1.847 1.841 1.792 1.740 1.683 1.622
40 1.783 1.775 1.766 1.759 1.751 1.744 1.693 1.637 1.577 1.509
60 1.690 1.681 1.672 1.664 1.656 1.649 1.594 1.534 1.467 1.389
120 1.598 1.588 1.579 1.570 1.562 1.554 1.495 1.429 1.352 1.254
1 1.506 1.496 1.486 1.476 1.467 1.459 1.394 1.318 1.221 1.000

Refer to Eq. (6.100). v1: degrees of freedom in numerator; v2: degrees of freedom in denominator.

Table A.6 (Continued)

v2 v1

25 26 27 28 29 30 40 60 120 1

434j Appendix



Ta
bl
e
A
.7

Q
ua
nt
ile
s
f 0
.9
9
(v

1
,v

2
)
fo
r
th
e
F
di
st
ri
bu

tio
n.

0
f 0.
99
(ν

1,ν
2)

α
=

0.
99

v 2
v 1

1
2

3
4

5
6

7
8

9
10

11
12

1
40

52
50

00
54

03
56

25
57

64
58

59
59

28
59

81
60

22
60

56
60

83
61

06
2

98
.5
0

99
.0
0

99
.1
7

99
.2
5

99
.3
0

99
.3
3

99
.3
6

99
.3
7

99
.3
9

99
.4
0

99
.4
1

99
.4
2

3
34

.1
2

30
.8
2

29
.4
6

28
.7
1

28
.2
4

27
.9
1

27
.6
7

27
.4
9

27
.3
4

27
.2
3

27
.1
3

27
.0
5

4
21

.2
0

18
.0
0

16
.6
9

15
.9
8

15
.5
2

15
.2
1

14
.9
8

14
.8
0

14
.6
6

14
.5
5

14
.4
5

14
.3
7

5
16

.2
6

13
.2
7

12
.0
6

11
.3
9

10
.9
7

10
.6
7

10
.4
6

10
.2
9

10
.1
6

10
.0
5

9.
96

3
9.
88
8

6
13

.7
4

10
.9
2

9.
78

0
9.
14
8

8.
74
6

8.
46
6

8.
26

0
8.
10
2

7.
97
6

7.
87
4

7.
79

0
7.
71
8

7
12

.2
5

9.
54
7

8.
45

1
7.
84
7

7.
46
0

7.
19
1

6.
99

3
6.
84
0

6.
71
9

6.
62
0

6.
53

8
6.
46
9

8
11

.2
6

8.
64
9

7.
59

1
7.
00
6

6.
63
2

6.
37
1

6.
17

8
6.
02
9

5.
91
1

5.
81
4

5.
73

4
5.
66
7

9
10

.5
6

8.
02
2

6.
99

2
6.
42
2

6.
05
7

5.
80
2

5.
61

3
5.
46
7

5.
35
1

5.
25
7

5.
17

8
5.
11
1

10
10

.0
4

7.
55
9

6.
55

2
5.
99
4

5.
63
6

5.
38
6

5.
20

0
5.
05
7

4.
94
2

4.
84
9

4.
77

2
4.
70
6

11
9.
64
6

7.
20
6

6.
21

7
5.
66
8

5.
31
6

5.
06
9

4.
88

6
4.
74
4

4.
63
2

4.
53
9

4.
46

2
4.
39
7

12
9.
33
0

6.
92
7

5.
95

3
5.
41
2

5.
06
4

4.
82
1

4.
64

0
4.
49
9

4.
38
8

4.
29
6

4.
22

0
4.
15
5

13
9.
07
4

6.
70
1

5.
73

9
5.
20
5

4.
86
2

4.
62
0

4.
44

1
4.
30
2

4.
19
1

4.
10
0

4.
02

5
3.
96
0

14
8.
86
2

6.
51
5

5.
56

4
5.
03
5

4.
69
5

4.
45
6

4.
27

8
4.
14
0

4.
03
0

3.
93
9

3.
86

4
3.
80
0

15
8.
68
3

6.
35
9

5.
41

7
4.
89
3

4.
55
6

4.
31
8

4.
14

2
4.
00
4

3.
89
5

3.
80
5

3.
73

0
3.
66
6

16
8.
53
1

6.
22
6

5.
29

2
4.
77
3

4.
43
7

4.
20
2

4.
02

6
3.
89
0

3.
78
0

3.
69
1

3.
61

6
3.
55
3

Appendix j435

(C
on
ti
nu

ed
)



17
8.
40
0

6.
11

2
5.
18
5

4.
66
9

4.
33
6

4.
10

2
3.
92
7

3.
79
1

3.
68
2

3.
59

3
3.
51
9

3.
45
5

18
8.
28
5

6.
01

3
5.
09
2

4.
57
9

4.
24
8

4.
01

5
3.
84
1

3.
70
5

3.
59
7

3.
50

8
3.
43
4

3.
37
1

19
8.
18
5

5.
92

6
5.
01
0

4.
50
0

4.
17
1

3.
93

9
3.
76
5

3.
63
1

3.
52
3

3.
43

4
3.
36
0

3.
29
7

20
8.
09
6

5.
84

9
4.
93
8

4.
43
1

4.
10
3

3.
87

1
3.
69
9

3.
56
4

3.
45
7

3.
36

8
3.
29
4

3.
23
1

21
8.
01
7

5.
78

0
4.
87
4

4.
36
9

4.
04
2

3.
81

2
3.
64
0

3.
50
6

3.
39
8

3.
31

0
3.
23
6

3.
17
3

22
7.
94
5

5.
71

9
4.
81
7

4.
31
3

3.
98
8

3.
75

8
3.
58
7

3.
45
3

3.
34
6

3.
25

8
3.
18
4

3.
12
1

23
7.
88
1

5.
66

4
4.
76
5

4.
26
4

3.
93
9

3.
71

0
3.
53
9

3.
40
6

3.
29
9

3.
21

1
3.
13
7

3.
07
4

24
7.
82
3

5.
61

4
4.
71
8

4.
21
8

3.
89
5

3.
66

7
3.
49
6

3.
36
3

3.
25
6

3.
16

8
3.
09
4

3.
03
2

25
7.
77
0

5.
56

8
4.
67
5

4.
17
7

3.
85
5

3.
62

7
3.
45
7

3.
32
4

3.
21
7

3.
12

9
3.
05
6

2.
99
3

26
7.
72
1

5.
52

6
4.
63
7

4.
14
0

3.
81
8

3.
59

1
3.
42
1

3.
28
8

3.
18
2

3.
09

4
3.
02
1

2.
95
8

27
7.
67
7

5.
48

8
4.
60
1

4.
10
6

3.
78
5

3.
55

8
3.
38
8

3.
25
6

3.
14
9

3.
06

2
2.
98
8

2.
92
6

28
7.
63
6

5.
45

3
4.
56
8

4.
07
4

3.
75
4

3.
52

8
3.
35
8

3.
22
6

3.
12
0

3.
03

2
2.
95
9

2.
89
6

29
7.
59
8

5.
42

0
4.
53
8

4.
04
5

3.
72
5

3.
49

9
3.
33
0

3.
19
8

3.
09
2

3.
00

5
2.
93
1

2.
86
8

30
7.
56
2

5.
39

0
4.
51
0

4.
01
8

3.
69
9

3.
47

3
3.
30
4

3.
17
3

3.
06
7

2.
97

9
2.
90
6

2.
84
3

40
7.
31
4

5.
17

9
4.
31
3

3.
82
8

3.
51
4

3.
29

1
3.
12
4

2.
99
3

2.
88
8

2.
80

1
2.
72
7

2.
66
5

60
7.
07
7

4.
97

7
4.
12
6

3.
64
9

3.
33
9

3.
11

9
2.
95
3

2.
82
3

2.
71
8

2.
63

2
2.
55
9

2.
49
6

12
0

6.
85
1

4.
78

7
3.
94
9

3.
48
0

3.
17
4

2.
95

6
2.
79
2

2.
66
3

2.
55
9

2.
47

2
2.
39
9

2.
33
6

1
6.
63
5

4.
60

5
3.
78
2

3.
32
4

3.
01
8

2.
80

2
2.
63
9

2.
51
1

2.
40
7

2.
32

1
2.
24
8

2.
18
5

Ta
bl
e
A
.7

(C
on
tin

ue
d)

v 2
v 1

1
2

3
4

5
6

7
8

9
10

11
12

436j Appendix



1
61

26
61

43
61

57
61

70
61

81
61

92
62

01
62

09
62

16
62

23
62

29
62

35
2

99
.4
2

99
.4
3

99
.4
3

99
.4
4

99
.4
4

99
.4
4

99
.4
5

99
.4
5

99
.4
5

99
.4
5

99
.4
6

99
.4
6

3
26

.9
8

26
.9
2

26
.8
7

26
.8
3

26
.7
9

26
.7
5

26
.7
2

26
.6
9

26
.6
6

26
.6
4

26
.6
2

26
.6
0

4
14

.3
1

14
.2
5

14
.2
0

14
.1
5

14
.1
2

14
.0
8

14
.0
5

14
.0
2

13
.9
9

13
.9
7

13
.9
5

13
.9
3

5
9.
82
5

9.
77
0

9.
72

2
9.
68
0

9.
64
3

9.
61

0
9.
58

0
9.
55
3

9.
52
8

9.
50

6
9.
48
5

9.
46
6

6
7.
65
7

7.
60
5

7.
55

9
7.
51
9

7.
48
3

7.
45

1
7.
42

2
7.
39
6

7.
37
2

7.
35

1
7.
33
1

7.
31
3

7
6.
41
0

6.
35
9

6.
31

4
6.
27
5

6.
24
0

6.
20

9
6.
18

1
6.
15
5

6.
13
2

6.
11

1
6.
09
2

6.
07
4

8
5.
60
9

5.
55
9

5.
51

5
5.
47
7

5.
44
2

5.
41

2
5.
38

4
5.
35
9

5.
33
6

5.
31

6
5.
29
7

5.
27
9

9
5.
05
5

5.
00
5

4.
96

2
4.
92
4

4.
89
0

4.
86

0
4.
83

3
4.
80
8

4.
78
6

4.
76

5
4.
74
6

4.
72
9

10
4.
65
0

4.
60
1

4.
55

8
4.
52
0

4.
48
7

4.
45

7
4.
43

0
4.
40
5

4.
38
3

4.
36

3
4.
34
4

4.
32
7

11
4.
34
2

4.
29
3

4.
25

1
4.
21
3

4.
18
0

4.
15

0
4.
12

3
4.
09
9

4.
07
7

4.
05

7
4.
03
8

4.
02
1

12
4.
10
0

4.
05
2

4.
01

0
3.
97
2

3.
93
9

3.
90

9
3.
88

3
3.
85
8

3.
83
6

3.
81

6
3.
79
8

3.
78
0

13
3.
90
5

3.
85
7

3.
81

5
3.
77
8

3.
74
5

3.
71

6
3.
68

9
3.
66
5

3.
64
3

3.
62

2
3.
60
4

3.
58
7

14
3.
74
5

3.
69
8

3.
65

6
3.
61
9

3.
58
6

3.
55

6
3.
52

9
3.
50
5

3.
48
3

3.
46

3
3.
44
4

3.
42
7

15
3.
61
2

3.
56
4

3.
52

2
3.
48
5

3.
45
2

3.
42

3
3.
39

6
3.
37
2

3.
35
0

3.
33

0
3.
31
1

3.
29
4

16
3.
49
8

3.
45
1

3.
40

9
3.
37
2

3.
33
9

3.
31

0
3.
28

3
3.
25
9

3.
23
7

3.
21

6
3.
19
8

3.
18
1

17
3.
40
1

3.
35
3

3.
31

2
3.
27
5

3.
24
2

3.
21

2
3.
18

6
3.
16
2

3.
13
9

3.
11

9
3.
10
1

3.
08
4

18
3.
31
6

3.
26
9

3.
22

7
3.
19
0

3.
15
8

3.
12

8
3.
10

1
3.
07
7

3.
05
5

3.
03

5
3.
01
6

2.
99
9

19
3.
24
2

3.
19
5

3.
15

3
3.
11
6

3.
08
4

3.
05

4
3.
02

7
3.
00
3

2.
98
1

2.
96

1
2.
94
2

2.
92
5

20
3.
17
7

3.
13
0

3.
08

8
3.
05
1

3.
01
8

2.
98

9
2.
96

2
2.
93
8

2.
91
6

2.
89

5
2.
87
7

2.
85
9

21
3.
11
9

3.
07
2

3.
03

0
2.
99
3

2.
96
0

2.
93

1
2.
90

4
2.
88
0

2.
85
7

2.
83

7
2.
81
8

2.
80
1

22
3.
06
7

3.
01
9

2.
97

8
2.
94
1

2.
90
8

2.
87

9
2.
85

2
2.
82
7

2.
80
5

2.
78

5
2.
76
6

2.
74
9

23
3.
02
0

2.
97
3

2.
93

1
2.
89
4

2.
86
1

2.
83

2
2.
80

5
2.
78
1

2.
75
8

2.
73

8
2.
71
9

2.
70
2

24
2.
97
7

2.
93
0

2.
88

9
2.
85
2

2.
81
9

2.
78

9
2.
76

2
2.
73
8

2.
71
6

2.
69

5
2.
67
6

2.
65
9

Appendix j437
Ta
bl
e
A
.7

(C
on
tin

ue
d)

v 2
v 1

13
14

15
16

17
18

19
20

21
22

23
24

(C
on
ti
nu

ed
)



25
2.
93
9

2.
89
2

2.
85

0
2.
81

3
2.
78
0

2.
75
1

2.
72

4
2.
69

9
2.
67
7

2.
65
7

2.
63

8
2.
62
0

26
2.
90
4

2.
85
7

2.
81

5
2.
77

8
2.
74
5

2.
71
5

2.
68

8
2.
66

4
2.
64
2

2.
62
1

2.
60

2
2.
58
5

27
2.
87
1

2.
82
4

2.
78

3
2.
74

6
2.
71
3

2.
68
3

2.
65

6
2.
63

2
2.
60
9

2.
58
9

2.
57

0
2.
55
2

28
2.
84
2

2.
79
5

2.
75

3
2.
71

6
2.
68
3

2.
65
3

2.
62

6
2.
60

2
2.
57
9

2.
55
9

2.
54

0
2.
52
2

29
2.
81
4

2.
76
7

2.
72

6
2.
68

9
2.
65
6

2.
62
6

2.
59

9
2.
57

4
2.
55
2

2.
53
1

2.
51

2
2.
49
5

30
2.
78
9

2.
74
2

2.
70

0
2.
66

3
2.
63
0

2.
60
0

2.
57

3
2.
54

9
2.
52
6

2.
50
6

2.
48

7
2.
46
9

40
2.
61
1

2.
56
3

2.
52

2
2.
48

4
2.
45
1

2.
42
1

2.
39

4
2.
36

9
2.
34
6

2.
32
5

2.
30

6
2.
28
8

60
2.
44
2

2.
39
4

2.
35

2
2.
31

5
2.
28
1

2.
25
1

2.
22

3
2.
19

8
2.
17
5

2.
15
3

2.
13

4
2.
11
5

12
0

2.
28
2

2.
23
4

2.
19

2
2.
15

4
2.
11
9

2.
08
9

2.
06

0
2.
03

5
2.
01
1

1.
98
9

1.
96

9
1.
95
0

1
2.
13
0

2.
08
2

2.
03

9
2.
00

0
1.
96
5

1.
93
4

1.
90

5
1.
87

8
1.
85
4

1.
83
1

1.
81

0
1.
79
1

v 2
v 1

25
26

27
28

29
30

40
60

12
0

1

1
62

40
62

45
62

49
62

53
62

57
62

61
62

87
63

13
63

39
63

66
2

99
.4
6

99
.4
6

99
.4
6

99
.4
6

99
.4
6

99
.4
7

99
.4
7

99
.4
8

99
.4
9

99
.5
0

3
26

.5
8

26
.5
6

26
.5
5

26
.5
3

26
.5
2

26
.5
0

26
.4
1

26
.3
2

26
.2
2

26
.1
2

4
13

.9
1

13
.8
9

13
.8
8

13
.8
6

13
.8
5

13
.8
4

13
.7
4

13
.6
5

13
.5
6

13
.4
6

5
9.
44
9

9.
43
3

9.
41

8
9.
40

4
9.
39
1

9.
37
9

9.
29

1
9.
20

2
9.
11
2

9.
02
0

6
7.
29
6

7.
28
0

7.
26

6
7.
25

3
7.
24
0

7.
22
9

7.
14

3
7.
05

7
6.
96
9

6.
88
0

7
6.
05
8

6.
04
3

6.
02

9
6.
01

6
6.
00
3

5.
99
2

5.
90

8
5.
82

4
5.
73
7

5.
65
0

8
5.
26
3

5.
24
8

5.
23

4
5.
22

1
5.
20
9

5.
19
8

5.
11

6
5.
03

2
4.
94
6

4.
85
9

9
4.
71
3

4.
69
8

4.
68

5
4.
67

2
4.
66
0

4.
64
9

4.
56

7
4.
48

3
4.
39
8

4.
31
1

10
4.
31
1

4.
29
6

4.
28

3
4.
27

0
4.
25
8

4.
24
7

4.
16

5
4.
08

2
3.
99
6

3.
90
9

Ta
bl
e
A
.7

(C
on
tin

ue
d)

v 2
v 1

13
14

15
16

17
18

19
20

21
22

23
24

438j Appendix



11
4.
00

5
3.
99
0

3.
97
7

3.
96
4

3.
95

2
3.
94
1

3.
86

3.
77
6

3.
69

3.
60
2

12
3.
76

5
3.
75
0

3.
73
6

3.
72
4

3.
71

2
3.
70
1

3.
61
9

3.
53
5

3.
44

9
3.
36
1

13
3.
57

1
3.
55
6

3.
54
3

3.
53
0

3.
51

8
3.
50
7

3.
42
5

3.
34
1

3.
25

5
3.
16
5

14
3.
41

2
3.
39
7

3.
38
3

3.
37
1

3.
35

9
3.
34
8

3.
26
6

3.
18
1

3.
09

4
3.
00
4

15
3.
27

8
3.
26
4

3.
25
0

3.
23
7

3.
22

5
3.
21
4

3.
13
2

3.
04
7

2.
95

9
2.
86
8

16
3.
16

5
3.
15
0

3.
13
7

3.
12
4

3.
11

2
3.
10
1

3.
01
8

2.
93
3

2.
84

5
2.
75
3

17
3.
06

8
3.
05
3

3.
03
9

3.
02
6

3.
01

4
3.
00
3

2.
92

2.
83
5

2.
74

6
2.
65
3

18
2.
98

3
2.
96
8

2.
95
5

2.
94
2

2.
93

0
2.
91
9

2.
83
5

2.
74
9

2.
66

2.
56
6

19
2.
90

9
2.
89
4

2.
88
0

2.
86
8

2.
85

5
2.
84
4

2.
76
1

2.
67
4

2.
58

4
2.
48
9

20
2.
84

3
2.
82
9

2.
81
5

2.
80
2

2.
79

0
2.
77
8

2.
69
5

2.
60
8

2.
51

7
2.
42
1

21
2.
78

5
2.
77
0

2.
75
6

2.
74
3

2.
73

1
2.
72
0

2.
63
6

2.
54
8

2.
45

7
2.
36
0

22
2.
73

3
2.
71
8

2.
70
4

2.
69
1

2.
67

9
2.
66
7

2.
58
3

2.
49
5

2.
40

3
2.
30
5

23
2.
68

6
2.
67
1

2.
65
7

2.
64
4

2.
63

2
2.
62
0

2.
53
5

2.
44
7

2.
35

4
2.
25
6

24
2.
64

3
2.
62
8

2.
61
4

2.
60
1

2.
58

9
2.
57
7

2.
49
2

2.
40
3

2.
31

2.
21
1

25
2.
60

4
2.
58
9

2.
57
5

2.
56
2

2.
55

0
2.
53
8

2.
45
3

2.
36
4

2.
27

2.
16
9

26
2.
56

9
2.
55
4

2.
54
0

2.
52
6

2.
51

4
2.
50
3

2.
41
7

2.
32
7

2.
23

3
2.
13
1

27
2.
53

6
2.
52
1

2.
50
7

2.
49
4

2.
48

1
2.
47
0

2.
38
4

2.
29
4

2.
19

8
2.
09
7

28
2.
50

6
2.
49
1

2.
47
7

2.
46
4

2.
45

1
2.
44
0

2.
35
4

2.
26
3

2.
16

7
2.
06
4

29
2.
47

8
2.
46
3

2.
44
9

2.
43
6

2.
42

3
2.
41
2

2.
32
5

2.
23
4

2.
13

8
2.
03
4

30
2.
45

3
2.
43
7

2.
42
3

2.
41
0

2.
39

8
2.
38
6

2.
29
9

2.
20
8

2.
11

1
2.
00
6

40
2.
27

1
2.
25
6

2.
24
1

2.
22
8

2.
21

5
2.
20
3

2.
11
4

2.
01
9

1.
91

7
1.
80
5

60
2.
09

8
2.
08
3

2.
06
8

2.
05
4

2.
04

1
2.
02
8

1.
93
6

1.
83
6

1.
72

6
1.
60
1

12
0

1.
93

2
1.
91
6

1.
90
1

1.
88
6

1.
87

3
1.
86
0

1.
76
3

1.
65
6

1.
53

3
1.
38
1

1
1.
77

3
1.
75
5

1.
73
9

1.
72
4

1.
71

0
1.
69
6

1.
59
2

1.
47
3

1.
32

5
1.
00
0

R
ef
er

to
E
q.

(6
.1
00
).
v 1
:d

eg
re
es

of
fr
ee
do

m
in

n
u
m
er
at
or
;v

2
:d

eg
re
es

of
fr
ee
do

m
in

de
n
om

in
at
or
.

Appendix j439
Ta
bl
e
A
.7

(C
on
tin

ue
d)

v 2
v 1

25
26

27
28

29
30

40
60

12
0

1



References

Altshuler, B. and Pasternack, B. (1963)
Statistical measures of the lower limit of
detection of a radioactive counter. Health
Phys., 9, 293–298.

Anderson, V.L. and McLean, R.A. (1974)
Design of Experiments: A Realistic Approach,
Marcel Dekker, Inc., New York, NY.

Atkinson,A.C. (1980) Tests of pseudo-random
numbers. Appl. Stat., 29 (2), 164–177.

Barnett, V. and Lewis, T. (1994) Outliers in
Statistical Data, 3rd edn, John Wiley &
Sons, Ltd, Chichester, UK.

Barry, D.A. (1996) Statistics: A Bayesian
Perspective, Duxbury Press, New York, NY.

Bickel, P.J. and Doksum, K.A. (1977)
Mathematical Statistics: Basic Ideas and
Selected Topics, Holden-Day, Inc., San
Francisco, CA.

Bishop, Y.M.M., Fienberg, S.E., and Holland,
P.W. (1975) Discrete Multivariate Analysis:
Theory and Practice, MIT Press, Cambridge,
MA.

Boise, J.D., Land, C.E., Shore, R.E., Norman,
J.E., and Tokunaga, M. (1979) Risk of breast
cancer following low-dose radiation
exposure. Radiology 131, 589–597.

Box, G.E.P. and Tiao, G.C. (1973) Bayesian
Inference in Statistical Analysis, Addison-
Wesley, Reading, MA.

Box, G.E.P., Hunter, W.G., and Hunter, J.S.
(1978) Statistics for Experimenters: An
Introduction to Design, Data Analysis, and
Model Building, John Wiley & Sons, Inc.,
New York, NY.

Carlin, B.P. and Louis, T.A. (1996)
Bayes and Empirical Bayes Methods

for Data Analysis, Chapman & Hall,
New York, NY.

Carter, L.L. and Cashwell, E.D. (1975) Particle-
Transport Simulation with the Monte Carlo
Method. TID-26607, Technical Information
Service, U.S. Department of Commerce,
Springfield, VA.

Cember, H. (1996) Introduction to Health
Physics, 3rd edn, McGraw-Hill, New York,
NY.

Currie, L.A. (1968) Limits for qualitative
detection and quantitative determination.
Anal. Chem., 40, 586–593.

Currie, L.A. (1984) Lower Limit of Detection:
Definition and Elaboration of a Proposed
Position for Radiological Effluent and
Environmental Measurements. NUREG/
CR-4007, U.S. Nuclear Regulatory
Commission, Washington, DC.

DOE (1986) DOE/EH-0027: Department of
Energy Standard for the Performance Testing
of Personnel Dosimetry Systems, U.S.
Department of Energy, Washington,
DC.

DOE (2001) ANSI/HPS N13.11-2001:
Personnel Dosimetry Performance – Criteria
for Testing, Health Physics Society, McLean,
VA.

Draper, N.R. and Smith, H. (1998) Applied
Regression Analysis, 3rd edn, John Wiley &
Sons, Inc., New York, NY.

Edwards,A.W.F. (1972)Likelihood, Cambridge
University Press, London, UK.

Garthwaite, P.H., Jolliffe, I.T., and Jones,
B. (2002) Statistical Inference, Oxford
University Press, Oxford, UK.

j441

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.



Hall, E.J. (1994) Radiobiology for the
Radiologist, 4th edn, J.B. Lippincott,
Philadelphia, PA.

Hogg, R.V. and Craig, A.T. (1978) Introduction
to Mathematical Statistics, 4th edn,
Macmillan Publishing Company,
New York, NY.

Hogg, R.V. and Tanis, E.A. (1993) Probability
and Statistical Inference, 4th edn, Macmillan
Publishing Company, New York, NY.

HPS (1996) HPS N13.30-1996: Performance
Criteria for Radiobioassay: An American
National Standard, Health Physics Society,
McLean, VA.

Johnson, Norman L., Kotz, Samuel, and
Balakrishnan, N. (1994) Continuous
Univariate Distributions, Vol. 1, 2nd Edition,
John Wiley and Sons, Hoboken,
N.J.

Johnson,NormanL., Kemp,AdrienneW., and
Kotz, Samuel (2005) Univariate Discrete
Distributions, John Wiley and Sons,
Hoboken, N.J.

Kalos, M. andWhitlock, P. (1986)Monte Carlo
Methods, Wiley–Interscience, New York,
NY.

Kennedy, W.J., Jr. and Gentle, J.E. (1980)
Statistical Computing, Marcel Dekker, Inc.,
New York, NY.

Knuth, D.E. (1980) The Art of Computer
Programming, vol. 2: Seminumerical
Algorithms, 2nd edn, Addison-Wesley,
Reading, MA.

Martz,H.F. (2000) Chapter 2: An introduction
to Bayes, hierarchical Bayes, and empirical
Bayes statistical methods in health physics,
in Applications of Probability and Statistics in
Health Physics: Health Physics Society 2000
Summer School (ed. T.B. Borak), Medical
Physics Publishing, Madison, WI,
pp. 55–84.

Martz, H.F. and Waller, R.A. (1982) Bayesian
Reliability Analysis, JohnWiley & Sons, Inc.,
New York, NY.

Metropolis, N. and Ulam, S.M. (1949) The
Monte Carlomethod. J. Am. Stat. Assoc., 44,
335–341.

Miller, Rupert G., Jr. (1981) Simultaneous
Statistical Inference, 2nd ed, Springer,
New York, NY.

Miller, I. and Freund, J.E. (1965) Probability
and Statistics for Engineers, Prentice Hall,
Inc., Englewood Cliffs, NJ.

Neter, J., Kutner, M.H., Nachtsheim, C.J.,
Christopher, J., and Li, W. (2004) Applied
Linear Statistical Models, 5th edn, McGraw-
Hill, New York, NY.

Newman, M.E.J. and Barkema, G.T. (1999)
Monte Carlo Methods in Statistical
Physics, Oxford University Press,
New York, NY.

Parzen, E. (1960) Modern Probability Theory
and Its Applications, John Wiley & Sons,
Inc., New York, NY.

Press, S.J. (1989)Bayesian Statistics: Principles,
Models, and Applications, John Wiley &
Sons, Inc., New York, NY.

Roberson, P.L. and Carlson, R.D. (1992)
Determining the lower limit of detection for
personnel dosimeter systems.Health Phys.,
62, 2–9.

Rossi, H.H. and Zaider, M. (1996)
Microdosimetry and Its Applications,
Springer Verlag, New York, NY.

Ryan, T.P. (2009) Modern Regression Methods,
John Wiley & Sons, Inc., New York, NY.

Satterthwaite, F.G. (1946) An approximate
distribution of estimates of variance
components. Biometrics, 2, 110–112.

Scheaffer, R.L. and McClane, J.T. (1982)
Statistics for Engineers, Duxbury Press,
Boston, MA.

Sivia, D.S. (1996) Data Analysis: A Bayesian
Tutorial, Oxford University Press,
New York, NY.

Sonder, E. and Ahmed, A.B. (1991)
Background Radiation Accumulation and
Lower Limit of Detection in
Thermoluminescent Beta-Gamma
Dosimeters Used by the Centralized
External Dosimetry System. ORNL/TM-
11995, Oak Ridge National Laboratory,
Oak Ridge, TN.

Strom, D.J. and MacLellan, J.A. (2001)
Evaluation of eight decision rules for
low-level radioactivity counting. Health
Phys., 81, 27–34.

Taylor, L.D. (1974) Probability and
Mathematical Statistics, Harper & Row,
New York, NY.

442j References



Turner, J.E. (1995) Atoms, Radiation, and
Radiation Protection, 2nd edn, John Wiley
& Sons, Inc., New York, NY.

Turner, J.E. (2007) Atoms, Radiation, and
Radiation Protection, 3rd edn, Wiley-VCH
Verlag GmbH, Weinheim, Germany.

Turner, J.E., Wright, H.A., and Hamm, R.N.
(1985) A Monte Carlo primer for health
physicists. Health Phys., 48, 717–733.

Turner, J.E., Bogard, J.S., Hunt, J.B., and
Rhea, T.A. (1988) Problems and Solutions in

Radiation Protection, Pergamon Press,
Elmsford, NY. Available from McGraw-
Hill, Health Professions Division, New
York, NY.

Ulam, S.M. (1983) Adventures of a
Mathematician, Charles Scribner�s Sons,
New York, NY.

Walpole, R.E. and Myers, R.H. (1989)
Probability and Statistics for Engineers and
Scientists, 4th edn, Macmillan Publishing
Company, New York, NY.

References j443



Index

a
�absorbed fraction� 327
activity 15ff, 26ff, 85, 157ff, 177, 195, 199,

205ff, 213ff, 227ff, 231ff, 246f, 251ff, 266ff,
377, 402, 419

– becquerel (Bq) 16
– curie (Ci) 16, 19
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– specific 18, 19, 27, 213, 214
– TRUE 206, 217, 232, 234
– mean 217, 236
alpha decay 9
– alpha particle 4, 9, 144ff, 251ff, 276
– spectrum, alpha particle 9
analysis of variance (ANOVA) table 367
annual limits on intake 327
ANSI/HPS N13.30 248
anthropomorphic phantom 248, 327
atomic theory, semiclassical 3ff
attenuation coefficient 214, 317ff
– linear 214, 317, 319ff, 324, 334
– mass 318, 320, 321, 333
attenuation processes 320
– Compton scattering 3,5,12, 276, 277, 320,

321, 323ff
– pair production 3, 320
– photoelectric absorption 3, 12, 321, 323ff
– photoelectric effect 5, 320, 322
– photonuclear reaction 320
Auger electrons 276
avalanche 279
average life 17, 60
average, weighted 306, 392, 413, 415
Avogadro�s number 18

b
Bayes factor 406ff, 409, 413, 418, 420
Bayes' Theorem 43
Bayesian statistics 393

Becquerel 4, 16
Bernoulli 22, 92, 172, 186, 192, 306, 407
– process 22, 92
– trial 92, 94, 112, 114, 186
Bernoulli distribution 92, 93, 192
beta decay 9, 12
– antineutrino 9
– beta particle 9, 12, 17, 77, 291
– spectrum, beta particle 9
beta distribution 154
bias, systematic 249, 371
binding energy 274, 325
binomial 93
– approximation to hypergeometric 107
– cumulative distribution 94, 96, 407
– distribution 15, 16, 22ff, 29, 78, 85, 91, 93ff,

99, 100, 104, 106, 114ff, 135, 136, 139ff, 159,
164, 216, 224, 407, 408

– normal approximation 135, 136
– Poisson approximation 100, 141
binomial distribution 15ff, 22ff
binomial series 24
blank, appropriate 248, 249, 253, 255
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Bragg-Gray chamber 300
bremsstrahlung 276, 325

c
calibration 164, 216ff, 231, 238, 249ff, 253,

272, 380, 418
calibration problem 380
Cauchy distribution 89, 123, 150, 157, 161,
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cell killing 341ff
cell survival 341ff
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central limit theorem 124, 132, 160, 162, 172,
175, 181, 210, 216ff

Chadwick 8
characteristic function 192
characteristic X-ray 9, 276
Chauvenet�s criterion 263ff
Chebyshev�s inequality 76ff, 87ff, 96,

128, 158
chi-square distribution 142, 145ff, 160, 164,

168, 183, 184, 412
– additivity, property of 148, 149
– degrees of freedom 146ff
– normal approximation 147
– quantiles 146
– relation to gamma distribution 146
– relation to standard normal

distribution 148
chi-square testing 145, 271, 281
chord length 300ff
– Cauchy theorem 311
– distribution, isotropic 300ff
classical laws 1ff
– of electromagnetism 2
– of gravitation 2
– of mechanics 2
– of motion 1ff
– Newtonian mechanics 2
– of physics 2
– of thermodynamics 2
– �ultraviolet catastrophe� 2
classical statistics 387
coefficient of variation (CV) 164
Compton 3, 5, 12, 276ff, 320ff, 327
– distribution 276
– edge 276
– scattering 3, 5, 12, 276ff, 320ff
Compton scattering 3, 5, 12, 276, 277, 320,

321, 323ff, 327
– attenuation processes 320
– Klein-Nishina formula 324
conditional probability 21, 38ff, 44, 69ff, 87,

145, 319, 333, 387
– Bayes� Theorem 43
– definition 39
confidence interval 169
– for difference in means 176ff, 196
– for difference in proportions 181
– for means 168
– for Poisson rate 175
– probable error 170, 195
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– for ratio of variances 184
– standard error 169
– for variance 183

conjugate prior distribution 396ff, 399ff, 414,
419, 423

continuity correction factor 137ff, 141, 159
correlation 71, 353, 369, 381ff
– coefficient 381
– coeffcient, sample 381
correlation, coefficient of 71ff, 381ff
count 106, 144, 169, 176, 195, 199, 202ff, 210,

214ff, 231ff, 248ff, 266ff, 271, 281, 284ff, 317,
322, 402, 416

– background 215ff
– gross 204, 215, 216, 218, 219, 222, 226, 228,

232, 239, 267
counter 102, 144, 228ff, 231, 267, 271ff, 300,

314, 331
– gas proportional 272, 274ff, 279
– operation, chi-square testing of 281
– scintillation 271
counter, gas proportional 272, 274ff, 279, 293,

300
– dosimetry, applications in 300
– microdosimetry, applications in 300
– Rossi 300
– spherical 300
– tissue-equivalent 300
covariance 71ff, 87, 90, 200, 359, 365, 381
credible interval 404
critical value, LC 231ff, 236, 243, 263, 268
cross section, macroscopic 317, 327, 329
– mean free path, inverse 319, 327
– neutron 327
cumulative distribution function 53ff, 57ff,

66, 84ff, 88, 121ff, 318, 404
cumulative normal distribution 125, 126,

128, 140, 147, 148

d
Davisson-Germer 5
de Broglie 5ff
– momentum 7
– wavelength 8
de Moivre, Abraham 132
dead time 284ff
dead time correction 271, 284ff
decay 1, 4, 7ff
– constant 15, 17, 21, 23, 26ff, 60, 61, 143,

144, 161, 176, 205, 21, 223, 315, 319, 387
– disintegration 12, 15ff, 46, 106, 198, 224,

253
– exponential 15ff, 26, 315, 372
– radioactive 1, 4, 7ff, 15ff, 22, 26, 29, 61, 99,

102, 140, 143ff, 214, 216, 223, 224, 231, 315,
322

– rate 16, 17, 102

446j Index



decay probability 16, 23, 225
decay time sampling 315
decision level, LC 233, 241, 248ff, 270
delta theorem 210
derived air concentrations 327
derived quantity 199, 201, 202
detector 228, 232, 234, 236, 237, 250, 271ff,

275ff, 284, 285, 287, 290, 317, 322, 376
– �energy proportional� 272
– Fano Factor 273, 274, 277, 290
– linear response 278
– nonparalyzable 284ff, 290ff
– observed resolution of 274
– paralyzable 284ff, 291, 292
– resolution of 271ff, 290, 291
– response function of 272ff, 279
– scintillation 276ff, 280, 290, 291, 321
– semiconductor 274, 276, 280, 281, 290
– sodium iodide crystal scintillator 276, 277,

280, 281, 291, 320
discrete uniformdistribution 91, 92, 167, 398
distribution 15ff, 51ff, 65ff
– Bernoulli 92, 93, 192
– beta 154ff, 161, 391, 392, 394, 395, 407, 420
– binomial 15, 16, 22ff, 29, 78, 85, 91, 93ff, 99,

100, 104, 106, 114ff, 135, 136, 139ff, 159, 164,
216, 224, 407, 408

– Cauchy 89, 123, 150, 157, 161, 192
– chi-square 142, 145ff, 160, 164, 168, 183,

184, 412
– conditional 70
– cumulative 53ff, 57ff, 66, 84ff, 88, 121ff, 318,

404
– discrete uniform 91
– exponential 142ff
– F 151ff
– gamma 142ff, 155, 159, 396, 397, 399,
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– Gaussian 124, 132
– geometric 110
– hypergeometric 106ff
– independence 66
– joint 65ff
– lognormal 153ff
– multivariate hypergeometric 109
– negative binomial 112
– normal 3, 15, 26, 89, 102, 124ff, 133, 135,

136, 139, 140, 147ff, 154, 157, 161, 164, 168,
169, 171, 173, 177, 189, 190, 215, 216, 221,
232, 242, 247, 248, 251, 258, 260ff, 269, 272,
290, 359, 361, 381, 414, 418

– Poisson 15, 26, 98ff, 114ff, 141, 143, 144,
160, 164, 166, 167, 176, 187, 191, 193ff, 204,
215, 216, 223ff, 231, 248, 251ff, 269, 273, 282,

283, 289, 290, 396, 410, 411, 416,
417, 421

– posterior 84, 390ff, 403ff, 422
– prior 84, 387, 390ff, 397ff, 406ff
– standard normal 124ff, 128, 131, 148ff, 157,

169, 173, 177, 201, 218, 232, 237, 243, 245,
247, 248, 263, 332

– Student�s t 89, 123, 149ff, 161, 170, 171,
179ff, 183, 195, 247, 248, 257, 258, 264ff, 269,
364, 366, 368, 377

– uniform 91ff, 119ff, 156, 160, 167, 194, 295,
301, 308, 324, 328, 331, 335, 391, 392, 395ff,
402, 407, 408, 419, 420

– of values 15
distribution, probability 8, 51ff, 91, 92, 94,

109, 111ff, 119, 121, 122, 124, 137, 148,
165, 186, 283, 312, 313, 387, 388,
390, 394

– discrete 52, 67, 72, 91ff, 167, 398, 404
– cumulative 54, 55ff, 61, 62, 65, 66, 84, 85,

88, 94, 96, 97, 100, 102, 119ff, 136, 137, 148,
252, 313ff, 324, 331, 332, 334, 407

DOE Laboratory Accreditation Program
(DOELAP) 255

dose 1, 242, 245, 255ff, 264, 266, 269, 270,
275, 293, 294, 317, 322ff, 334, 337ff,
378, 385

– absorbed, per unit fluence 322, 323, 325,
326, 334, 343, 345, 349

– committed 327
– LD50 343, 344, 348ff
– mean lethal 343, 344, 348
– minimum 337
– model 327
– threshold 337
dose-response 1, 260, 337ff
– curve 338ff
– function 340ff
– relationship 338ff
dosimeter, thermoluminescence (TLD) 114,

159, 242, 255ff
dosimetry 122, 255, 260, 261, 269, 293, 300,

327, 328
– internal 327
– using gas-proportional counter 300

e
effects, biological 337
– deterministic 337
– and exposure, radiation 337
– genetic 337
– germ cells 337
– radiation induced 338
– severity and dose 337
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– somatic cells 337
– stochastic 337
efficiency, counter 106, 210, 213, 214, 217,

219, 222, 225ff, 232, 234, 236, 237, 250, 277,
278, 291

Einstein 2, 5, 9, 11
– �God does not play dice.� 11
– special theory of relativity 2
electron-hole pair 271, 276, 280
energy resolution 271ff, 276, 280, 281,

290, 291
error 163
– estimated 173, 174
– mean square, MSE 359ff, 366ff, 371,

373, 376ff
– random 163
– standard 168
– sum of squares for, SSE 359ff, 367, 368,

371, 374ff, 384
– systematic 163, 164, 193, 199, 249, 271
error in an estimation 174
error propagation 199
– analysis 279
– in confidence interval of mean 201
– in derived quantity 201
– in mean 201
– in standard error 201
error propagation formulas 202
– exponentials 203
– products and powers 202
– sums and differences 202
– variance of mean 203
error, systematic 164, 193, 249
estimate, interval 168, 169, 407
estimate, point 165, 168, 170, 177, 186,

403, 407
estimated error 173
estimation 145, 163ff, 231, 253, 354ff, 358ff,

365, 376, 387
– least squares method 354
estimator 165
– consistent 166
– efficient 166
– generalized maximum likelihood 403
– maximum likelihood 186ff, 197, 361, 362,

390, 403, 407, 422
– minimum variance unbiased 166
– pooled, for variance 178
– standard error 173
– unbiased 165
event 33
– complement 34
– exhaustive 41ff
– independent 21ff, 38ff, 322

– intersection of 34
– mutually exclusive 34ff, 41ff, 46, 47
– probability 36
– simple 33
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marginal 66ff, 72, 84, 86, 87, 89, 391, 394
– density 66, 67, 69, 70, 84, 86, 87, 89
– distribution 67, 68, 72, 86, 391, 394
maximum likelihood estimator (MLE) 186ff,

197, 361, 362, 390, 403, 407, 422
Maxwell 4
mean 59ff
mean square error, MSE 359, 364, 392
mean, correction for 355
median 62ff, 86, 89, 161, 165, 292, 332, 334,

403, 404, 407ff, 416, 417
Medical Internal Radiation Dose (MIRD)

Committee 327
memory 99, 145, 319, 320
microscope, scanning tunneling 10
Millikan 4
minimum detectable amount, MDA 237,

248, 250ff, 269
minimum detectable true activity, AII 235ff,

241, 242, 258, 267
minimum detectable true net count

number, LD 237
minimum significant measured

activity, AI 231ff, 238ff, 266, 267
minimum variance unbiased estimator

(MVUE) 166ff, 188, 189, 194
mode 403, 404, 407ff, 416, 417, 420
modeling, biological 338
– cross section 342
– extrapolation number 347, 349, 350
– for stochastic effects 338
– hits per target, average number of 342
– linear quadratic 347
– multi-target, multi-hit 347
– multi-target, single-hit 345, 346
– single-target, single hit 342
moment 189

Index j449



– generating function about point b 192
– generating function for a sum of random

variables 193
– generating function 191
– jth 190
– jth, of the sample 190
– method of 189
momentum 4ff, 11, 77, 335
Monte Carlo method 122, 293ff, 340
– to determine absorbed dose 294, 323, 325,

326, 334
– to determine dose equivalent 293
– to determine dose 293
– to determine LET distribution 294
– to determine shielding properties 293
– in dosimetry 293
– in energy losses 293
– in flight distances 293
– in neutron transport 293
– in photon transport 317, 319ff
– in radiation penetration 293
– in radiation physics 293
– Russian roulette 329
– in scattering angles 293
– splitting 329
multiplicative rule 44
multivariate hypergeometric distribution 109

n
negative binomial distribution 112, 113, 115,

117, 396, 419
net dosimeter reading 256
Newton 1
Neyman-Pearson Lemma 262
noninformative prior distribution 397ff, 410,

414
– Jeffreys 410ff
– location parameter 398
– reference 397
– scale parameter 398
– vague 397
nonparalyzable detector 284ff, 290ff
normal equations 355, 369, 371
normalize 61

o
outlier 263
overdispersion 253

p
pair production 3, 320
paralyzable detector 284, 285, 287
parameter 164
partitioning of counting times, optimum 222

permutation 23ff
photoelectric absorption 3, 12, 321, 323ff
photopeak 276
pivotal quantity 171
Planck 2
– constant 4, 6, 8, 9, 11
– quantum of action 2
Poisson 98
– cumulative distribution 100
– distribution 98
– process 99
precision 163ff
– double 295, 299
– limiting 221
– numerical, of the computer 299
– as reciprocal of variance 415
– roundoff, function of 299
predicting 364ff
– future observations 365
– mean of k future observations 365
– mean value 365
prior distribution 84, 387, 390ff, 397ff, 406ff
– conjugate 396ff, 399ff, 414, 419, 423
– data-based 401
– elicited 401
– empirical gamma 411
– g-priors 401
– hyperparameters 395, 396, 402, 414,

415, 420
– noninformative 397ff, 410, 414
– population 394
– principle of insufficient reason 394
– state of knowledge 394
probability 2, 36ff
– axioms of 37
– conditional 38ff
probability density function 55ff
– posterior 84ff
– prior 84ff
protection, radiation 338
pulse height 271ff, 276, 277, 300
pure error 369, 371, 373ff, 383
– mean square 374
– sum of squares 374
pure error mean square 374

q
quantum mechanics 5ff, 52, 53, 56

r
radiation, isotropic 89, 117, 122, 157, 300
radioactive decay 1, 4, 7ff, 15ff, 22, 26, 29, 61,

99, 102, 140, 143ff, 214, 216, 223, 224, 231,
315, 322

450j Index



radiobioassay 248ff, 255, 269
radionuclides, short-lived 223
random number 293ff
– generator 92, 122, 294, 295, 302, 308,

316, 330
– seed 294
– sequence 295
randomness, test for 295
rate, count 106, 144, 204, 205, 210, 215ff,

226ff, 232, 236, 250, 267, 271, 284ff, 317, 318,
322, 402

– background 216, 217, 227
– gross 204, 205, 216, 218, 219, 222, 226, 228
– net 215, 217, 220ff, 227, 228, 232, 233, 236,

249, 267
rate, event 285
ratio of variances estimator 184
reconfirmation 373
region 240
– acceptance 240
– critical 240
– rejection 240
regression 259, 260, 269, 353ff
– inverse 353, 378ff
– linear 353ff
– through origin 376
regression analysis 353ff
relation between gamma and beta

distributions 154
relative error 106
relativity, special theory of 2
repeat observations 373
residual 358
residual, minimum sum of squared 358
response variable 353ff
risk 327ff
– and acceptable radiation limits 340
– assessment 327
– estimation 338
Roentgen 3
Rule of Elimination 41
Rutherford 4

s
sample size estimation 174
sample space 29ff, 51, 82
– continuous 32, 33, 37
– discrete 32, 33, 36, 37, 51
– element, individual 29
– outcome 29
sampling 107
– decay times, from exponential

distribution 315
– from known distribution 313

– importance 309
– stratified 308
– with replacement 107
– without replacement 107
sampling distribution 132ff, 149, 158, 159,

166, 168, 169, 171, 173, 194, 393ff, 398ff, 402,
403, 417

Satterthwaite�s approximation 180
Schrödinger 5
scintillation 271
– counter 271
– photon 272
scintillation detector 276ff, 280, 290, 291, 321
– lanthanum bromide, cerium activated [LaBr

(Ce)] 280
– sodium iodide, thallium-doped [NaI

(Tl)] 228, 276, 277, 280, 281, 291, 320
scram 410
semiclassical physics 4
semiconductor detector 274, 276, 280,

281, 290
– cadmium zinc telluride [CdZnTe] 280, 281
– high-purity germanium (HPGe) 228, 276,

280, 281, 290
set 33
– empty 33
– null 33
smoothing techniques 306
specific activity 18, 19, 27, 213, 214
spectrometer, alpha particle 251ff
standard deviation 63ff, 95ff, 106, 124ff, 132ff,

144, 154, 156ff, 164, 168ff, 173, 193ff, 202,
210ff, 216ff, 222ff, 232ff, 242ff, 249, 264ff, 273,
291, 307, 315ff, 330, 402,
420, 422

– net count rate 217
standard error 168
standard error of the mean 133, 195
standard normal distribution 124ff, 128, 131,

148ff, 157, 169, 173, 177, 201, 218, 232, 237,
243, 245, 247, 248, 263, 332

statistic 165
– sufficient 415
– test 240
statistical inference, methods 387
– Bayesian 387ff, 398, 403ff, 410
– classical 387
– frequentist 387ff, 393, 403ff, 407, 412
stratified sampling 308
strong force, short range 327
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– lack of fit 374, 383
– pure error 374, 383
– uncorrected 355
sum of squares due to regression, SSR

367
sum of squares for error, SSE 359
sum of squares lack of fit 374
sum of squares pure error 374
sum of squares, corrected 355
sum of squares, uncorrected 355
support 80
survival probability 16, 20, 21, 23, 26, 143,

322, 341, 342, 346, 348

t
Taylor series expansion 199
test 241
– most powerful 262
– one-sided 245
– one-tailed 245, 246
– power curve for 241
– power of 241, 242, 373
– significance level of 241
– size 241
– two-tailed 245, 246
test statistic 240
Theorem of Total Probability 41ff
Thomson 4
time 290
– dead 271, 284ff, 289ff
– real elapsed 290
– system live 290
transformations of random variables 77ff
transformation, radioactive 9, 16
transmutation 4
transport, photon 317
– linear attenuation coefficient 317
– mass attenuation coefficient 318
– Monte Carlo 122, 293ff, 340
– in shielding calculation 317ff
– under good geometry 52, 317, 318
tunneling 9

type I error 233ff, 241, 243, 249, 252, 257, 263,
266, 267, 269

u
unbiased estimator 165
uncertainty, systematic 249
underdispersion 253
uniform distribution 91ff, 119ff, 156, 160,

167, 194, 295, 301, 308, 324, 328, 331, 335,
391, 392, 395ff, 402, 407, 408, 419, 420

uniqueness property 192

v
variable, random 36
– continuous 36
– discrete 36
– expected value 27, 59ff, 63, 69, 72, 74, 85, 89,

92, 95, 99, 105, 165, 166, 189, 190, 192, 198,
200, 209, 224, 227, 229, 232, 267, 295ff, 314,
330, 331, 362, 365ff, 371, 373, 396, 397, 419,
420

– independent 304, 306, 308, 353, 368, 369,
373, 376, 382, 383, 385

– mean 59ff
– mode 403
– response 353ff
variance 63ff, 71ff, 84, 87, 89, 92, 94ff, 105,

107, 110, 113ff, 120, 135, 142, 145, 146, 151,
154ff, 159ff, 164ff, 170ff, 183ff, 189, 194ff,
208ff, 217, 222, 232, 240, 247, 248, 250, 253,
256ff, 262, 270, 273, 274, 282, 308, 309, 316,
317, 353, 354, 358, 359, 361, 364ff, 369, 371ff,
376, 377, 385, 391, 393, 400ff, 414ff,
419, 422

– interval estimate 183
– of a linear combination of variables 74
– pooled estimator for 178
Venn diagram 35
von Laue 5

w
wavelength 2, 4ff, 11, 291
wavelengths, distribution of 2
wave-particle duality 5
– photoelectric effect 5
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