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Preface

Statistical Methods in Radiation Physics began as an effort to help clarify, for our
students and colleagues, implications of the probabilistic nature of radioactive decay
for measuring its observable consequences. Every radiological control technician
knows that the uncertainty in the number of counts detected from a long-lived
radioisotope is taken to be the square root of that number. But why is that so? And how
is the corresponding uncertainty estimated for counts from a short-lived species, for
which the countrate dies away even as the measurement is made? One of us (JET) had
already been presented with these types of questions while teaching courses in the
Oak Ridge Resident Graduate Program of the University of Tennessee’s Evening
School. A movement began in the late 1980s in the United States to codify
occupational radiation protection and monitoring program requirements into Fed-
eral Regulations, and to include performance testing of programs and laboratories
that provide the supporting external dosimetry and radiobioassay services. The
authors’ initial effort at a textbook consequently addressed statistics associated with
radioactive decay and measurement, and also statistics used in the development of
performance criteria and reporting of monitoring results.

What began as a short textbook grew eventually to 15 chapters, corresponding with
the authors’ growing realization that there did not appear to be a comparable text
available. The book’s scope consequently broadened from a textbook for health
physicists to one useful to a wide variety of radiation scientists.

This is a statistics textbook, but the radiological focus is immediately emphasized
in the first two chapters and continues throughout the book. Chapter 1 traces the
evolution of deterministic classical physics at the end of the nineteenth century into
the modern understanding of the wave—particle duality of nature, statistical limita-
tions on precision of observables, and the development of quantum mechanics and
its probabilistic view of nature. Chapter 2 begins with the familiar (to radiological
physicists) exponential decay equation, a continuous, differentiable equation de-
scribing the behavior of large numbers of radioactive atoms, and concludes with the
application of the binomial distribution to describe observations of small, discrete
numbers of radioactive atoms. With the reader now on somewhat familiar ground,
the next six chapters introduce probability, probability distributions, parameter and
interval estimations, and error (uncertainty) propagation in derived quantities. These
statistical tools are then applied in the remaining chapters to practical problems of
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measuring radioactivity, establishing performance measures for laboratories, instru-
ment response, Monte Carlo modeling, dose response, and regression analysis. The
final chapter introduces Bayesian analysis, which has seen increasing application in
health physics in the past decade. The book is written at the senior or beginning
graduate level as a text for a 1-year course in a curriculum of physics, health physics,
nuclear engineering, environmental engineering, or an allied discipline. A large
number of examples are worked in the text, with additional problems at the end of
each chapter. SI units are emphasized, although traditional units are also used in
some examples. SIabbreviations are used throughout. Statistical Methods in Radiation
Physics is also intended as a reference for professionals in various fields of radiation
physics and contains supporting tables, figures, appendices, and numerous
equations.

We are indebted to our students and colleagues who first stimulated our interest in
beginning such a textbook, and then who later contributed in many ways to its
evolution and kept encouraging us to finish the manuscript. Some individual and
institutional contributions are acknowledged in figure captions. We would like to
thank Daniel Strom, in particular, for his encouragement and assistance in adding a
chapter introducing Bayesian analysis.

The professional staff at Wiley-VCH has been most supportive and patient, for
which we are extremely thankful. It has been a pleasure to work with Anja
Tshcoertner, in particular, who regularly encouraged us to complete the manuscript.
We also owe a debt of gratitude to Maike Peterson and the technical staff for their help
in typesetting many equations.

We must acknowledge with great sorrow that James E. (Jim) Turner died on
December 29, 2008, and did not see the publication of Statistical Methods in Radiation
Physics. Jim conceived the idea that a statistics book applied to problems of
radiological measurements would be useful, and provided the inspiration for this
textbook. He was instrumental in choosing the topic areas and helped develop a large
portion of the material. It was our privilege to have worked with Jim on this book, and
we dedicate it to the memory of this man who professionally and personally enriched
our lives and the lives of so many of our colleagues.



1
The Statistical Nature of Radiation, Emission, and Interaction

1.1
Introduction and Scope

This book is about statistics, with emphasis on its role in radiation physics, measure-
ments, and radiation protection. That this subject is essential for understanding in
these areas stems directly from the statistical nature of the submicroscopic, atomic
world, as we briefly discuss in the next section. The principal aspects of atomic physics
with which we shall be concerned are radioactive decay, radiation transport, and
radiation interaction. Knowledge of these phenomena is necessary for success in many
practical applications, which include dose assessment, shielding design, and the
interpretation of instrument readings. Statistical topics will be further developed for
establishing criteria to measure and characterize radioactive decay, assigning confi-
dence limits for measured quantities, and formulating statistical measures of perfor-
mance and compliance with regulations. An introduction to biological dose-response
relations and to modeling the biological effects of radiation will also be included.

1.2
Classical and Modern Physics — Determinism and Probabilities

A principal objective of physical science is to discover laws and regularities that
provide a quantitative description of nature as verified by observation. A desirable and
useful outcome to be derived from such laws is the ability to make valid predictions of
future conditions from a knowledge of the present state of a system. Newton’s
classical laws of motion, for example, determine completely the future motion of a
system of objects if their positions and velocities at some instant of time and the
forces acting between them are known. On the scale of the very large, the motion of
the planets and moons can thus be calculated forward (and backward) in time, so that
eclipses and other astronomical phenomena can be predicted with great accuracy. On
the scale of everyday common life, Newton’s laws describe all manner of diverse
experience involving motion and statics. However, in the early twentieth century, the
seemingly inviolate tenets of traditional physics were found to fail on the small scale

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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of atoms. In place of a deterministic world of classical physics, it was discovered that
atoms and radiation are governed by definite, but statistical, laws of quantum physics.
Given the present state of an atomic system, one can predict its future, but only in
statistical terms. What is the probability that a radioactive sample will undergo a
certain number of disintegrations in the next minute? What is the probability that a
given 100-keV gamma photon will penetrate a 0.5-cm layer of soft tissue? According
to modern quantum theory, these questions can be answered as fully as possible only
by giving the complete set of probabilities for obtaining any possible result of a
measurement or observation.

By the close of the nineteenth century, the classical laws of mechanics, electro-
magnetism, thermodynamics, and gravitation were firmly established in physics.
There were, however, some outstanding problems — evidence that all was not quite
right. Two examples illustrate the growing difficulties. First, in the so-called
“ultraviolet catastrophe,” classical physics incorrectly predicted the distribution of
wavelengths in the spectrum of electromagnetic radiation emitted from hot bodies,
such as the sun. Second, sensitive measurements of the relative speed of light in
different directions on earth — expected to reveal the magnitude of the velocity of the
earth through space — gave a null result (no difference!). Planck found that the first
problem could be resolved by proposing a nonclassical, quantum hypothesis related
to the emission and absorption of radiation by matter. The now famous quantum of
action, h = 6.6261 x 10 **J s, was thus introduced into physics. The second dilemma
was resolved by Einstein in 1905 with the revolutionary special theory of relativity. He
postulated that the speed of light has the same numerical value for all observers in
uniform translational motion with respect to one another, a situation wholly in
conflict with velocity addition in Newtonian mechanics. Special relativity further
predicts that energy and mass are equivalent and that the speed of light in a vacuum is
the upper limit for the speed that any object can have. The classical concepts of
absolute space and absolute time, which had been accepted as axiomatic tenets for
Newton’s laws of motion, were found to be untenable experimentally.

W Example

In a certain experiment, 1000 monoenergetic photons are normally incident
on a shield. Exactly 276 photons are observed to interact in the shield, while
724 photons pass through without interacting.

a) What is the probability that the next incident photon, under the same
conditions, will not interact in the shield?
b) What is the probability that the next photon will interact?

Solution
a) Based on the given data, we estimate that the probability for a given photon
to traverse the shield with no interaction is equal to the observed fraction
that did notinteract. Thus, the “best value” for the probability Pr(no) that the
next photon will pass through without interacting is
724

Pr(no) = 1000 — 0.724. (1.1)
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b) By the same token, the estimated probability Pr(yes) that the next photon
will interact is

276
Pr(yes) — %00 — 0.276, (1.2)

based on the observation that 276 out of 1000 interacted.

This example suggests several aspects of statistical theory that we shall see often
throughout this book. The sum of the probabilities for all possible outcomes
considered in an experiment must add up to unity. Since only two possible alter-
natives were regarded in the example — either a photon interacted in the shield or it
did not—we had Pr(no) + Pr(yes) = 1. We might have considered further whether an
interaction was photoelectric absorption, Compton scattering, or pair production. We
could assign separate probabilities for these processes and then ask, for example,
what the probability is for the next interacting photon to be Compton scattered in the
shield. In general, whatever number and variety of possible outcomes we wish to
consider, the sum of their probabilities must be unity. This condition thus requires
that there be some outcome for each incident photon.

It is evident, too, that a larger data sample will generally enable more reliable
statistical predictions to be made. Knowing the fate of 1000 photons in the example
gives more confidence in assigning values to the probabilities Pr(no) and Pr(yes) than
would knowing the fate of, say, only 10 photons. Having data for 10® photons would be
even more informative.

Indeed, the general question arises, “How can one ever know the actual, true
numerical values for many of the statistical quantities that we must deal with?” Using
appropriate samples and protocols that we shall develop later, one can often obtain
rather precise values, but always within well-defined statistical limitations. A typical
result expresses a “best” numerical value that lies within a given range with a
specified degree of confidence. For instance, from the data given in the example
above, we can express the “measured” probability of no interaction as

Pr(no) = 0.724 £ 0.053  (95% confidence level). (1.3)

(The stated uncertainty, +0.053, is £1.96 standard deviations from an estimated
mean of 0.724, based on the single experiment, as we shall discuss later in connection
with the normal distribution.) Given the result (1.3), there is still no guarantee that the
“true” value is actually in the stated range. Many such probabilities can also be
accurately calculated from first principles by using quantum mechanics. In all known
instances, the theoretical results are in agreement with measurements. Confirmation
by observation is, of course, the final criterion for establishing the validity of the
properties we ascribe to nature.

1.3
Semiclassical Atomic Theory

Following the unexpected discovery of X-rays by Roentgen in 1895, a whole series
of new findings ushered in the rapidly developing field of atomic and radiation
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physics. Over the span of the next two decades, it became increasingly clear that
classical science did not give a correct picture of the world as new physics unfolded.
Becquerel discovered radioactivity in 1896, and Thomson measured the charge-to-
mass ratio of the electron in 1897. Millikan succeeded in precisely measuring the
charge of the electron in 1909. By 1910, a number of radioactive materials had been
investigated, and the existence of isotopes and the transmutation of elements by
radioactive decay were recognized. In 1911, Rutherford discovered the atomic
nucleus — a small, massive dot at the center of the atom, containing all of the positive
charge of the neutral atom and virtually all of its mass. The interpretation of his
experiments on alpha-particle scattering from thin layers of gold pointed to a
planetary structure for an atom, akin to a miniature solar system. The atom
was pictured as consisting of a number of negatively charged electrons traversing
most of its volume in rapid orbital motion about a tiny, massive, positively charged
nucleus.

The advance made with the discovery of the nuclear atom posed another quandary
for classical physics. The same successful classical theory (Maxwell’s equations) that
predicted many phenomena, including the existence of electromagnetic radiation,
required the emission of energy by an accelerated electric charge. An electron in orbit
about a nucleus should thus radiate energy and quickly spiral into the nucleus. The
nuclear atom could not be stable. To circumvent this dilemma, Bohrin 1913 proposed
anew, semiclassical nuclear model for the hydrogen atom. The single electron in this
system moved in classical fashion about the nucleus (a proton). However, in
nonclassical fashion Bohr postulated that the electron could occupy only certain
circular orbits in which its angular momentum about the nucleus was quantized.
(The quantum condition specified that the angular momentum was an integral
multiple of Planck’s constant divided by 27.) In place of the continuum of unstable
orbits allowed by classical mechanics, the possible orbits for the electron in Bohr’s
model were discrete. Bohr further postulated that the electron emitted radiation only
when it went from one orbit to another of lower energy, closer to the nucleus. The
radiation was then emitted in the form of a photon, having an energy equal to the
difference in the energy the electron had in the two orbits. The atom could absorb a
photon of the same energy when the electron made the reverse transition between
orbits. These criteria for the emission and absorption of atomic radiation replaced the
classical ideas. They also implied the recognized fact that the chemical elements emit
and absorb radiation at the same wavelengths and that different elements would have
their own individual, discrete, characteristic spectra. Bohr’s theory for the hydrogen
atom accounted in essential detail for the observed optical spectrum of this element.
When applied to other atomic systems, however, the extension of Bohr’s ideas often
led to incorrect results.

An intensive period of semiclassical physics then followed into the 1920s. The
structure and motion of atomic systems was first described by the equations of
motion of classical physics, and then quantum conditions were superimposed, as
Bohr had done for hydrogen. The quantized character of many variables, such as
energy and angular momentum, previously assumed to be continuous, became
increasingly evident experimentally.
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Furthermore, nature showed a puzzling wave—particle duality in its fundamental
makeup. Electromagnetic radiation, originally conceived as a purely wave phenom-
enon, exhibited properties of both waves and particles. The diffraction and inter-
ference of X-rays was demonstrated experimentally by von Laue in 1912, establishing
their wave character. Einstein’s explanation of the photoelectric effect in 1905
described electromagnetic radiation of frequency v as consisting of packets, or
photons, having energy E = hv. The massless photon carries an amount of momen-
tum that is given by the relation

_E_Ww

p=_=" (1.4)

where ¢=2.9979 x 10*ms ™" is the speed of light in a vacuum. This particle-like
property of momentum is exhibited experimentally, for example, by the Compton
scattering of photons from electrons (1922). The wavelength 4 of the radiation is
given by A=c/v. It follows from Eq. (1.4) that the relationship between the
wavelength and momentum of a photon is given by

A P (1.5)
In 1924, de Broglie postulated that this relationship applies not only to photons, but
also to other fundamental atomic particles. Electron diffraction was demonstrated
experimentally by Davisson and Germer in 1927, with the electron wavelength being
correctly given by Eq. (1.5). (Electron microscopes have much shorter wavelengths
and hence much greater resolving power than their optical counterparts.)

There was no classical analogue to these revolutionary quantization rules and
the wave—particle duality thus introduced into physics. Yet they appeared to work. The
semiclassical procedures had some notable successes, but they also led to some
unequivocally wrong predictions for other systems. There seemed to be elements of
truth in quantizing atomic properties, but nature’s secrets remained hidden in the
early 1920s.

1.4
Quantum Mechanics and the Uncertainty Principle

Heisenberg reasoned that the root of the difficulties might lie in the use of
nonobservable quantities to describe atomic constituents — attributes that the
constituents might not even possess. Only those properties should be ascribed to
an object that have an operational definition through an experiment that can be
carried out to observe or measure them. What does it mean, for example, to ask
whether an electron is blue or red, or even to ask whether an electron has a color?
Such questions must be capable of being answered by experiment, at least in
principle, or else they have no meaning in physics. Using only observable atomic
quantities, such as those associated with the frequencies of the radiation emitted by
an atom, Heisenberg in 1924 developed a new, matrix theory of quantum mechanics.
Atalmost the same time, Schrodinger formulated his wave equation from an entirely
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different standpoint. He soon was able to show that his formulation and
Heisenberg’s were completely equivalent. The new quantum mechanics was born.

In the Newtonian mechanics employed by Bohr and others in the semiclassical
theories, it was assumed that an atomic electron possesses a definite position and
velocity at every instant of time. Heisenberg’s reasoning required that, in order to
have any meaning or validity, the very concept of the “position and velocity of the
electron” should be defined operationally by means of an experiment that would
determine it. He showed that the act of measuring the position of an electron ever
more precisely would, in fact, make the simultaneous determination of its momen-
tum (and hence velocity) more and more uncertain. In principle, the position of an
electron could be observed experimentally by scattering a photon from it. The
measured position would then be localized to within a distance comparable to the
wavelength of the photon used, which limits its spatial resolving power. The scattered
photon would, in turn, impart momentum to the electron being observed. Because of
the finite aperture of any apparatus used to detect the scattered photon, its direction of
scatter and hence its effect on the struck electron’s momentum would not be known
exactly. To measure the position of the electron precisely, one would need to use
photons of very short wavelength. These, however, would have large energy and
momentum, and the act of scattering would be coupled with large uncertainty in the
simultaneous knowledge of the electron’s momentum. Heisenberg showed that the
product of the uncertainties in the position Ax in any direction in space and
the component of momentum Ap, in that direction must be at least as large as
Planck’s constant divided by 27 (f = h/2m = 1.0546 x 10 >* ] s):

AxApy > . (1.6)

It is thus impossible to assign both position and momentum simultaneously with
unlimited precision. (The equality applies only under optimum conditions.) The
inequality (1.6) expresses one form of Heisenberg’s uncertainty principle. A similar
relationship exists between certain other pairs of variables, such as energy E and
time t:

AEAt > h. (1.7)

The energy of a system cannot be determined with unlimited precision within a short
interval of time.

These limits imposed by the uncertainty principle are not due to any shortcomings
in our measurement techniques. They simply reflect the way in which the act of
observation itself limits simultaneous knowledge of certain pairs of variables. To
speculate whether an electron “really does have” an exact position and velocity at every
instant of time, although we cannot know them together, apparently has no
operational meaning. As we shall see in an example below, the limits have no
practical effect on massive objects, such as those experienced in everyday life. In
contrast, however, on the atomic scale the limits reflect an essential need to define
carefully and operationally the concepts that are to have meaning and validity.

The subsequent development of quantum mechanics has provided an enormously
successful quantitative description of many phenomena: atomic and nuclear struc-
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ture, radioactive decay, lasers, semiconductors, antimatter, electron diffraction,
superconductivity, elementary particles, radiation emission and absorption, the
covalent chemical bond, and many others. It has revealed the dual wave-particle
nature of the constituents of matter. Photons, electrons, neutrons, protons, and other
particles have characteristics of both particles and waves. Instead of having a definite
position and velocity, they can be thought of as being “smeared out” in space, as
reflected by the uncertainty principle. They can be described in quantum mechanics
by wave packets related to a probability density for observing them in different
locations. They have both momentum p and wavelength A, which are connected by
the de Broglie relation (1.5). Endowed with such characteristics, the particles exhibit
diffraction and interference effects under proper experimental conditions. Many
quantum-mechanical properties, essential for understanding atomic and radiation
physics, simply have no classical analogue in the experience of everyday life.

W Example

The electron in the hydrogen atom is localized to within about 1 A, which is the
size of the atom. Use the equality in the uncertainty relation to estimate the
uncertainty in its momentum. Estimate the order of magnitude of the kinetic
energy that the electron (mass=m=9.1094 x 10! kg) would have in
keeping with this amount of localization in its position.

Solution
With Ax=1A=10"""m in Eq. (1.6), we estimate that the uncertainty in the
electron’s momentum is")

_h 1.05x107*]s

i 107 ** kg ms™. (1.8)
m

We assume that the electron’s momentum is about the same order of
magnitude as this uncertainty. Denoting the electron mass by m, we estimate
for its kinetic energy

;) (107 kgms)’
2m 2x9.11x10 kg

~5x 1079 ]3eV, (1.9)

since 1eV=1.60 x 107*? J. An electron confined to the dimensions of the
hydrogen atom would be expected to have a kinetic energy in the eV range. The
mean kinetic energy of the electron in the ground state of the hydrogen atom is
13.6eV.

The uncertainty principle requires that observing the position of a particle with
increased precision entails increased uncertainty in the simultaneous knowledge of its

1) Energy, which has the dimensions of force x distance, has units 1 ] = 1 N m. The newton of force has
the same units as mass x acceleration: 1 N =1kgm s ™2 Therefore, 1] sm™' =1kgms™", which are
the units of momentum (mass x velocity).
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momentum, or energy. Greater localization of a particle, therefore, is accompanied by
greater likelihood that measurement of its energy will yield a large value. Conversely,
if the energy is known with precision, then the particle must be “spread out” in space.
Particles and photons can be described mathematically by quantum-mechanical wave
packets, which, in place of classical determinism, provide probability distributions
for the possible results of any measurement. These essential features of atomic
physics are not manifested on the scale of familiar, everyday objects.

W Example
How would the answers to the last example be affected if

a) the electron were localized to nuclear dimensions (Ax ~10~"° m) or
b) the electron mass were 100 g?

Solution

a) With Ax ~ 10~ "* m, the equality in the uncertainty principle (1.6) gives, in
place of Eq (1.8), Ap=210~" kg m s, five orders of magnitude larger
than before. The corresponding electron energy would be relativistic.
Calculation shows that the energy of an electron localized to within 10~*° m
would be about 200 MeV. (The numerical solution is given in Section 2.5 in
Turner (2007), listed in the Bibliography at the end of this book.)

b) Since Axis the same as before (10 ' m), Apin Eq. (1.8) is unchanged. With
m=100g=0.1kg, the energy in place of Eq. (1.9) is now smaller by a factor
of the mass ratio (9.11 x 107>")/0.12210*°. For all practical purposes, with
the resultant extremely small value of T, the uncertainty in the velocity is
negligible. Whereas the actual electron, localized to such small dimensions,
has alarge uncertainty in its momentum, the “100-g electron” would appear
to be stationary.

Quantum-mechanical effects are generally expressed to a lesser extent with relatively
massive objects, as this example shows. By atomic standards, objects in the
macroscopic world are massive and have very large momenta. Their de Broglie
wavelengths, expressed by Eq. (1.5), are vanishingly small. Quantum mechanics
becomes important on the actual physical scale because of the small magnitude of
Planck’s constant.

1.5
Quantum Mechanics and Radioactive Decay

Before the discovery of the neutron by Chadwick in 1932, it was speculated that the
atomic nucleus must be made up of the then known elementary subatomic
particles: protons and electrons. However, according to quantum mechanics, this
assumption leads to the wrong prediction of the angular momentum for certain
nuclei. The nucleus of °Li, for example, would consist of six protons and three
electrons, representing nine particles of half-integral spin. By quantum rules for
addition of the spins of an odd number of such particles, the resulting nuclear
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angular momentum for ®Li would also have to be a half-integral multiple of Planck’s
constant, /. The measured value, however, is just . A similar circumstance occurs
for N. These two nuclei contain even numbers (6 and 14) of spin-1/2 particles
(protons and neutrons), and hence must have integral angular momentum,
as observed.

The existence of electrons in the nucleus would also have to be reconciled with the
uncertainty principle. In part (a) of the last example, we saw that an electron confined
to nuclear dimensions would have an expected kinetic energy in the range of
200 MeV. There is no experimental evidence for such large electron energies
associated with beta decay or other nuclear phenomena.

If the electron is not there initially, how is its ejection from the nucleus in
beta decay to be accounted for? Quantum mechanics explains the emission of
the beta particle through its creation, along with an antineutrino, at the
moment of the decay. Both particles are then ejected from the nucleus, causing
it to recoil (slightly, because the momentum of the ejected mass is small). The
beta particle, the antineutrino, and the recoil nucleus share the released energy,
which is equivalent to the loss of mass (E=mc”) that accompanies the
radioactive transformation. Since the three participants can share this energy
in a continuum of ways, beta particles emitted in radioactive decay have a
continuous energy spectrum, which extends out to the total energy released.
Similarly, gamma-ray or characteristic X-ray photons are not “present” in the
nucleus or atom before emission. They are created when the quantum
transition takes place. An alpha particle, on the other hand, is a tightly bound
and stable structure of two protons and two neutrons within the nucleus. Alpha
decay is treated quantum mechanically as the tunneling of the alpha particle
through the confining nuclear barrier, a process that is energetically forbidden
in classical mechanics. The emitted alpha particle and recoil nucleus, which
separate back to back, share the released energy uniquely in inverse proportion
to their masses. The resultant alpha-particle energy spectra are therefore
discrete, in contrast to the continuous beta-particle spectra. The phenomenon
of tunneling, which is utilized in a number of modern electronic and other
applications, is purely quantum mechanical. It has no classical analogue
(see Figure 1.1).

The radioactive decay of atoms and the accompanying emission of radiation are
thus described in detail by quantum mechanics. As far as is known, radioactive decay
occurs spontaneously and randomly, without influence from external factors. The
energy thus released derives from the conversion of mass into energy, in accordance
with Einstein’s celebrated equation, E = mc”.

Example

Each of 10 identical radioactive atoms is placed in a line of 10 separate
counters, having 100% counting efficiency. The question is posed, “Which
atom will decay first?” How can the question be answered, and how can the
answer be verified?
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Figure 1.1  An early scanning tunneling
microscope (left) is used to image the electron
clouds of individual carbon atoms on the surface
of a highly oriented pyrolytic graphite sample. As
a whisker tip just above the surface scans it
horizontally in two dimensions, electrons tunnel
through a classically forbidden barrier to produce
a current through the tip. This current is

Solution

W Example

decaying within the next 24 h.

Solution

extremely sensitive to the separation between
the tip and the surface. As the separation tends
to change according to the surface contours
during the scan, negative feedback keeps it
constant by moving a micrometer vertically up or
down. These actions are translated by computer
into the surface picture shown on the right.
(Courtesy of R.). Warmack.)

Since the atoms are identical and decay is spontaneous, the most one can say is
that it is equally likely for any of the atoms, 1 through 10, to decay first. The
validity of this answer, like any other, is to be decided on an objective basis by
suitable experiments or observations. To perform such an experiment, in
principle a large number of identical sources of 10 atoms could be prepared
and then observed to see how many times the first atom to decay in a source is
atom 1, atom 2, and so on. One would find a distribution, giving the relative
frequencies for each of the 10 atoms that decays first. Because the atoms are
identical, the distribution would be expected to show random fluctuations and
become relatively flatter with an increasing number of observations.

A source consists of 20 identical radioactive atoms. Each has a 90% chance of

a) What is the probability that all 20 will decay in 24 h?
b) What is the probability that none will decay in 24 h?

a) The probability that atom 1 will decay in 24 h is 0.90. The probability that
atoms 1 and 2 will both decay in 24 h is 0.90 x 0.90 = (0.90)> = 0.81. That s,
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if the experiment is repeated many times, atom 2 is expected to decay in
90% of the cases (also 90%) in which atom 1 also decays. By extension, the
probability for all atoms to decay in 24 h is

(0.90)° = 0.12. (1.10)

b) Since a given atom must either decay or not decay, the probability for not
decaying in 24h is 1 —0.90=0.10. The probability that none of the 20
atoms will decay is

(0.10)° = 1.0 x 107, (1.11)

As these examples illustrate, quantum mechanics does not generally predict a single,
definite result for a single observation. It predicts, instead, a probability for each of all
possible outcomes. Quantum mechanics thus brings into physics the idea of the
essential randomness of nature. While it is the prevalent conceptual foundation in
modern theory, as espoused by Bohr and others, this fundamental role of chance in
our universe has not been universally acceptable to all scientists. Which atom will
decay first? The contrasting viewpoint was held by Einstein, for example, summed up
in the words, “God does not play dice.”

Problems

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

The dimensions of angular momentum are those of momentum times
distance. Show that Planck’s constant, h =6.63 x 107>* J s, has the units of
angular momentum.

Einstein’s famous equation, E = mc?, where c s the speed of light in a vacuum,
gives the energy equivalence E of mass m. If m is expressed in kg and ¢ in
m s}, show that E is given in J.

According to classical theory, how are electromagnetic waves generated?
Why would the Bohr model of the atom be unstable, according to classical
physics?

Calculate the wavelength of a 2.50-eV photon of visible light.

Calculate the wavelength of an electron having an energy of 250 eV.

What is the wavelength of a 1-MeV gamma ray?

If a neutron and an alpha particle have the same speed, how do their
wavelengths compare?

If a neutron and an alpha particle have the same wavelength, how do their
energies compare?

If a proton and an electron have the same wavelength, how do their momenta
compare?

An electron moves freely along the X-axis. According to Eq. (1.6), if the
uncertainty in its position in this direction is reduced by a factor of 2, how
is the minimum uncertainty in its momentum in this direction affected?

1
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1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

Why is the uncertainty principle, so essential for understanding atomic
physics, of no practical consequence for hitting a baseball?

Decay of the nuclide 22 Ra to the ground state of 222Rn by emission of an alpha
particle releases 4.88 MeV of energy.

a) What fraction of the total mass available is thus converted into energy? (1
atomic mass unit=931.49 MeV.)
b) What is the initial energy of the ejected alpha particle?

Two conservation laws must be satisfied whenever a radioactive atom decays.
As a result of these two conditions, the energies of the alpha particle and the
recoil nucleus are uniquely determined in the two-body disintegration by
alpha-particle emission. These two laws are also satisfied in beta decay, but do
not suffice to determine uniquely the energy of any of the three decay
products. What are these two laws, which thus require alpha-particle energies
to be discrete and beta-particle energies to be continuous?

The fission of 23> U following capture of a thermal neutron releases an average
of 195 MeV. What fraction of the total mass available (neutron plus uranium
atom) is thus converted into energy? (1 atomic mass unit=931.49 MeV.)
Five gamma rays are incident on a concrete slab. Each has a 95% chance of
penetrating the slab without experiencing an interaction.

a) What is the probability that the first three photons pass through the slab
without interacting?
b) What is the probability that all five get through without interacting?

a) In the last problem, what is the probability that photons 1, 2, and 3 penetrate
the slab without interacting, while photons 4 and 5 do not?

b) What is the probability that any three of the photons penetrate without
interaction, while the other two do not?

Each photon in the last two problems has a binary fate — it either interacts in the
slab or else goes through without interaction. A more detailed fate can be
considered: 2/3 of the photons that interact do so by photoelectric absorption
and 1/3 that interact do so by Compton scattering.

a) What is the probability that an incident photon undergoes Compton
scattering in the slab?

b) What is the probability that it undergoes photoelectric absorption?

c) What is the probability that an incident photon is not photoelectrically
absorbed in the slab?

An atom of “*K (half-life = 12.4 h) has a probability of 0.894 of surviving 2 h.
For a source that consists of five atoms,

a) what is the probability that all five will decay in 2h and
b) what is the probability that none of the five atoms will decay in 2h?

What are the answers to (a) and (b) of the last problem for a source of
100 atoms?



Problems

Neutrons

L

Figure 1.2 Neutrons normally incident on a pair of slabs, 1 and 2. See Problems 1.21-1.24.

1.21 Monoenergetic neutrons are normally incident on a pair of slabs, arranged
back to back, as shown in Figure 1.2. A neutron either is absorbed in a slab or
else goes through without interacting. The probability that a neutron gets
through slab 1is 1/3. If a neutron penetrates slab 1, then the probability that it
gets through slab 2 is 1/4. What is the probability that a neutron, incident on
the pair of slabs, will

a) traverse both slabs?
b) be absorbed in slab 1?
¢) not be absorbed in slab 2?

1.22 If, in Figure 1.2, a neutron is normally incident from the right on slab 2, then
what is the probability that it will

a) be absorbed in slab 1?
b) not be absorbed in slab 2?

1.23  For the conditions of Problem 1.21, calculate the probability that a neutron,
normally incident from the left, will

a) not traverse both slabs,
b) not be absorbed in slab 1, and
¢) be absorbed in slab 2.

1.24 What is the relationship among the three answers to the last problem and the
corresponding answers to Problem 1.21?

13
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Radioactive Decay

2.1
Scope of Chapter

This chapter deals with the random nature of radioactive decay. We begin by
considering the following experiment. One prepares a source of a pure radionuclide
and measures the number of disintegrations that occur during a fixed length of time ¢
immediately thereafter. The procedure is then repeated over and over, exactly as
before, with a large number of sources that are initially identical. The number of
disintegrations that occur in the same fixed time t from the different sources will
show a distribution of values, reflecting the random nature of the decay process. The
objective of the experiment is to measure the statistical distribution of this number.

Poisson and normal statistics are often used to describe the distribution. However,
as we shall see, this description is only an approximation, though often a very good
one. The actual number of decays is described rigorously by another distribution,
called the binomial."” In many applications in health physics, the binomial, Poisson,
and normal statistics yield virtually indistinguishable results. Since the last two are
usually more convenient to deal with mathematically, it is often a great advantage to
employ one of them in place of the exact binomial formalism. This cannot always be
done without large error, however, and one must then resort to the rigorous, but
usually more cumbersome, binomial distribution. In Chapters 5 and 6, we shall
address the conditions under which the use of one or another of the three distribu-
tions is justified.

In this chapter, we discuss radioactive disintegration from the familiar standpoint
of the exponential decay of a pure radionuclide source, characterized by its half-life or,
equivalently, its decay constant. We examine the relationship between activity and the
number of atoms present and treat radioactive disintegration from the standpoint of

1) Both the Poisson and normal distributions predict a nonzero probability for the decay of an arbitrarily
large number of atoms from a source in any time ¢. In particular, the probability is not zero for the
decay of more atoms than are in the source originally. The normal distribution, in addition,
approximates the number of disintegrations as a continuous, rather than discrete, random variable.

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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the survival or decay probability in a specified time for each atom in a source. We shall
arrive at the binomial distribution, which is confirmed by experiments like that
described in the last paragraph.

2.2
Radioactive Disintegration — Exponential Decay

Exponential decay of a pure radionuclide source is a familiar concept. It is often
discussed in the following way. In a short time dt, the change d N in a large number of
atoms Nin the source is proportional to N and to dt. The constant of proportionality is
called the decay constant, 4, and one writes

dN = —ANdt. (2.1)
The negative sign indicates that N decreases as t increases. Integration gives
N =Nye ™ (22)

where the constant of integration N, represents the original number of atoms in the
source at time t=0. Rewriting Eq. (2.1) as A= —(dN/N)/dt, we see that the decay
constant gives, at any moment, the fraction of atoms, dN/ N, that decay per unit time.
It thus represents the probability per unit time that a given atom will decay. The decay
constant has the dimensions of reciprocal time (e.g., s ', h ™).

The decay rate, or activity, of the source is

dN

A:_E_

AN. (2.3)

It follows from Eq. (2.2) that the activity as a function of time is given by
A=A, e (2.4)

where A, = AN, is the initial activity. The unit of activity is the becquerel (Bq), defined
as the rate of one complete transformation of an atom per second: 1 Bq=1s"". The
older unit, curie (Ci), is now defined in terms of the becquerel: 1 Ci = 3.7 x 10'° Bq,
exactly. It is the amount of activity associated with 1g of 2%°Ra, as shown in an
example in the next section.

In addition to its decay constant, a given radionuclide can also be characterized by
its half-life. Figure 2.1 shows a plot of the relative activity A/A, = e * of a source, as
follows from Eq. (2.4). The half-life T}/, of the nuclide is defined as the time needed
for the activity (or the number of atoms) to decrease to one-half its value. Setting
A/A, = e T2 = 1/2 in Eq. (2.4) implies that

—ATy, =1n(1/2) = —~In2, (2.5)

or

In2 0.693
L i (26)
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Figure 2.1 Plot of relative activity, A/A, (=relative number of atoms, N/N,), in a pure
radionuclide source as a function of time t. The half-life T;/; is shown.

We thus obtain the relationship between the half-life and the decay constant. As can
be seen from Figure 2.1, starting at any time, the activity decreases by a constant factor
of 2 over successive half-lives.

The mean, or average, lifetime of an atom provides another way to characterize a
radionuclide. The number of disintegrations that occur in a source during a certain
time is equal to the product of the activity at the beginning of that time and the average
lifetime of the atoms that decay during the time. When a source has decayed
completely away, the total number of disintegrations will be equal to the number
of atoms N, originally present. This total number can also be regarded as the product
of the original decay rate, A,, and the average lifetime 7 that an atom had in the source:
N, = A,t. Since, as stated after Eq. (2.4), A, = AN,, it follows that the mean life is equal
to the reciprocal of the decay constant. Combining this result with Eq. (2.6), we write

No 1 Ty T

(2.7)

A, A2 In2  0.693°
The mean life is treated rigorously as a statistical average in Section 4.2.
W Example
The radionuclide **P has a half-life of 14.3 d.

a) What is the decay constant?

b) What will be the activity of a 7.6-MBq source of 32P after 1y? (The nuclide
decays by emission of a beta particle into stable *:S.)

c) What is the mean life of a 32P atom?

Solution
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a) With Ty/,=14.3 d, Eq. (2.6) gives

_0.693

1_14.3d

=0.0485d7". (2.8)

b) From Eq. (2.4), with A,=7.6 x 10° Bq, we find for the activity at time
t=1y=365d,

A=7.6x10%e 00485365 — 0 16 Bq. (2.9)

Because the exponent has to be a dimensionless number, A and ¢ in this
equation must involve the same time unit. Here we expressed A ind ™' and t
in d.

¢) The mean life is given by Eq. (2.7):

1 1
T=-=——=20.64d. 2.10
A 0.0485d7! (210)

As a check, we see that T;/,/7 =14.3/20.6 = 0.694. To within roundoff, this
ratio is equal to In 2, as required by Eq. (2.7).

23
Activity and Number of Atoms

The activity associated with a given radionuclide source depends on the number of
atoms present and the decay constant, as related by Eq. (2.3). The relative strengths of
different sources can be expressed in terms of their specific activity, defined as the
disintegration rate per unit mass of the nuclide. Examples of units for specific activity
are Bqkg 'and Cig "

The specific activity of a radionuclide can be calculated from its gram atomic
weight M and decay constant A. Since M grams of the nuclide contain Avogadro’s
number of atoms, Ny = 6.0221 x 10, the number of atoms in 1g is

Na  6.02 x 10%
N:VA:+' (2.11)

It follows that the specific activity of the radionuclide can be written as

23
SZAN:%:G.OZXIO /1.

v v (2.12)
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Since M is in g, if 1 is in s, then this expression gives Sin Bq g . Alternatively,
using Eq. (2.6) to replace A by the half-life T;/,, we write

g_Naln2 417 x 107

= = 2.13

With T/, in s and M in g, the specific activity in Eq. (2.13) is in Bq g~ ".

W Example

a) How many atoms are there in 1mg of 2?Ra? The nuclide has a half-
life of 1600 y and a gram atomic weight of 226 g.
b) Calculate the specific activity of ??°Ra in Bq g .

Solution
a) With M=226g, Eq. (2.11) gives for the number of atoms in 1mg

6.02 x 105
>< .

N=103
266

=2.66 x 108, (2.14)

b) To obtain Sin Bq g~ !, we use either Eq. (2.12) with A in s™* or Eq. (2.13)
with T3/, in s. Choosing the latter and writing T/, =1600 y x (365 d
y ) x (86 400s d ) =5.05 x 10" s, we find that

4.17 x 10%
S = 7x o~ = 3.7 X 10 Bqg!
(226 g) x (5.05 x 10" s)

=1Cig". (2.15)

As mentioned after Eq. (2.4), 1 Ci = 3.7 x 10" Bq exactly, by definition. The curie
was originally defined as the activity of 1g of **°Ra. This fact leads to a simple
formula for calculating the specific activity of other radionuclides in these units. As
seen from Eq. (2.13), specific activity is inversely proportional to the half-life T; /, and
the gram atomic weight M of aradionuclide. Comparing with 22°Ra, one can compute
the specific activity of a nuclide by writing

S— 1600 226

= x = Cig™, 2.16
Tip M 8 (2.16)

where T/, is its half-life in years.

Example

a) Calculate the specific activity of ®*Co (halflife 5.27 y) exactly from
Eq. (2.13).

b) Calculate the approximate value from Eq. (2.16) and compare the answer
with that from (a).

¢) How many atoms of ®’Co are there in a 1-Ci source?

19
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Solution

a) The gram atomic weight is M = 60 g. Expressing the half-lifein s, T/, =
5.27 yx365dy ' x86400sd ' =1.66 x 10* s, we find from (2.13)

417 x 107 417 x 107
- MTy;  60gx1.66x10°s

=419 x 10®¥ Bqg™, (2.17)

where the replacement, 1 Bq=1s"", has been made.
b) From Eq. (2.16), which requires expressing T;/, in y, we obtain

1600 226 Y
™ X0 = 1.14 x 10° Cig™". (2.18)

Converting to the same units as in part (a), we find

S~1.14 x10°Cig™?! x 3.7 x 101 Bq Ci™!
=423 x 10" Bqg™". (2.19)

Comparison with Eq. (2.17) shows that the approximate formula gives the

correct result to within about 4 parts in 400, or 1%.

¢) UsingEgs. (2.3) and (2.6), we have for the number of atoms in a 1-Ci source
(A=1Ci=3.7x10"s"")

NoA_ATyz _ (37x100s71)(1.66 x 10°s)
T 0693 0.693

= 8.86 x 108, (2.20)

2.4
Survival and Decay Probabilities of Atoms

In the experiment proposed at the beginning of this chapter, one can ask what the
probability is for a given atom in a pure radionuclide source to survive or decay in the
time t. When the number of atoms in the source is large, Eq. (2.2) gives for the
fraction of undecayed atoms at time t, N/N, = e ~*. Therefore, the probability g that a
given atom will not decay in time ¢ is just equal to this fraction:

qg=e* (survival probability). (2.21)

The probability that a given atom will decay sometime during ¢ is, then,

p=1-g=1-e* (decay probability). (2.22)
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The fact that a given atom either decays or does not decay during time t is expressed by
the requirement that p + g=1. (Probability will be formally defined in Section 3.4.)

Example
What is the probability that an atom of ®°Co will decay in 100 d?

Solution

From the value of the half-life given in the last example, we find for the decay
constant, 1 =0.693/T;/, =0.693/(5.27 y x 365dy ") =3.60 x 10~*d~". The
probability for decay in a time t=100 d is, therefore,

p=1-e =1-e360x107X10 _ g 9354, (2.23)

Example
The radionuclide 222Rn has a half-life of 3.82 d.

a) Whatis the probability that a given 222Rn atom in a source will not decay in
1 wk?

b) Ifa?22Rn atom survives for 1 wk, what is the probability that it will survive
a second week?

c) What is the probability that a given ??2Rn atom will survive for 2 wk?

d) How are the probabilities in (a)—(c) related?

e) What is the probability that a given 222Rn atom will survive the first week
and then decay during the second week?

=

Solution

a) The survival probability is given by Eq. (2.21). The decay constant is, from
Eq. (2.6),
40693 _ 0693

=——"=0.181d"". 2.24
T, 3.82d 0.181d (2.24)

It follows that the survival probability g(7) for a time t=1wk=7 d is
q(7) = e = e 01817 — 0.282. (2.25)

b) Asfarasisknown,all222Rn atoms are identical and the decay is completely
spontaneous and random. It is assumed that the survival probability into
the future for a given atom at any moment is independent of how long that
atom might have already existed. Given that the atom has survived the first
week, the probability that it will survive the second week is the same as that
for the first week: g(7)=0.282. This example illustrates conditional
probability, which is discussed in Section 3.5.

c) Like (a), the probability that a given atom will not decay in a time t=2
wk=14d is

q(14) = e7* = 701811 — ¢ (793, (2.26)

21
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d) An alternative way of answering the question asked in part (c) is the
following. The probability for a given atom to survive 2 wk is equal to the
probability that it survives for 1 wk times the probability that it survives
again for 1 wk. From (a) and (b),

q(14) = q(7)q(7) = [q(7)])* = (0.282)* = 0.0795, (2.27)

which is the same result as in Eq. (2.26) to within roundoff. The probability in

part (c) is thus equal to the product of the probabilities from parts (a) and (b).

The equality results from the independence of the events, as we shall see in

Section 3.5.

e) The probability for an atom of 222Rn to decay in a week’s time is (Eq. (2.22))
p(7)=1—q(7) = 0.718. The probability that a given atom will decay during
week 2 is equal to the probability that it survives 1 wk times the probability
that it then decays in the next week:

q(7)p(7) = 0.282 x 0.718 = 0.202. (2.28)

This last example illustrates how probabilities can be assigned to various events, or
possible alternative outcomes, for a set of observations.

25
Number of Disintegrations — The Binomial Distribution

We return once more to the experiment introduced at the beginning of this chapter.
Alarge number of identical sources of a pure radionuclide, each containing exactly N
atoms initially, are prepared. The number of disintegrations that occur in a time ¢ is
observed for each source, starting at time t = 0. One thus obtains a distribution for the
number k of atoms that decay, with the possible values k=0, 1,2, ..., N. We can think
of each source as undergoing a process in which, during the time ¢, each individual
atom represents a single one of N trials to decay or not decay. Decay of an atom can be
called a “success” and non-decay, a “failure.” The outcome of each trial is binary. Since
all of the atoms are identical and independent, each trial has the same probability of
success or failure, and its outcome is independent of the other trials.

In statistics, the process just described for radioactive decay is called a Bernoulli
process. The resulting number of disintegrations from source to source is described
by the binomial distribution, which will be discussed more completely in Chapter 5.
For now, we examine several examples to further illustrate the statistical nature of
radioactive decay.

Example
A source that consists initially of 15 atoms of ''C (halflife = 20.4 min) is
observed for 5 min.

a) Whatis the probability thatatoms 1, 2, and 7 in the source will decay in this
time?
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b) What is the probability that only these three atoms decay in this time?
¢) What s the probability that exactly three atoms (any three) decay in 5 min?

Solution

a) The survival and decay probabilities for each atom in the source are given
by Egs. (2.21) and (2.22), respectively. The decay constant is 4 =0.693/
T/, =0.693/(20.4 min) = 0.0340 min~ . The probability that a given atom
will not decay in the allotted time, t=>5min, is

g=e M =e 003405 — (844, (2.29)

The decay probability for each atom is then
p=1-q=0.156. (2.30)

The probability that the particular atoms, 1, 2, and 7, will decay in 5 min
is, therefore,

p* = (0.156)° = 3.80 x 107>. (2.31)

Since the decay of each atom is an independent event, their probabilities
multiply (Section 3.5).

Part (a) says nothing about the other atoms. If only the specified three
decay, then the other 12 survive for the time t=>5min, the probability
being q'*. Therefore, the probability that only atoms 1, 2, and 7 decay is

=x

P*q"? = (0.156)*(0.844)'> = 4.96 x 10~*. (2.32)

¢) Inthis part, we are asked for the probability that exactly three atoms decay,
and they can be any three. The answer will be p*q*? times the number of
ways that the three atoms can be chosen from among the 15, without
regard for the orderin which the three are selected. The decay of atoms 1, 2,
and 7 in that order, for example, is not to be distinguished from their decay
in the order 2, 1, and 7. Both ways are registered as three disintegrations.
To select any three, there are 15 independent choices for the first atom to
decay, 14 for the second, and 13 for the third atom. The total number of
ways in which three atoms can be chosen from 15 is, therefore, 15 x 14
x 13 =2730. Among this number, those that differ only in the order of
their selection are redundant and are not to be counted as different
outcomes. Therefore, we must divide the total number of choices by the
number of ways (permutations) that the three can be arranged, namely,
3 x 2 x 1= 3!=6. With the help of Eq. (2.32), we find for the probability
that exactly three disintegrations will occur in 5 min

15 x 14 x 13 2730
Pr(3) = X}i'qu“ - %(4.96 % 1074) = 0.226.  (2.33)
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We can generalize the results just found to calculate the probability for k disin-
tegrations in a time ¢ from a source consisting initially of N identical radioactive
atoms. For the decay of exactly k atoms we write, in analogy with Eq. (2.33),

Nx(N-1)x --- x (N=k+1 _
(N-1) ( )pqu 3

Pr(k) = .

(2.34)

where p and g are given by Eqgs. (2.22) and (2.21), respectively. The coefficient in
Eq. (2.34) represents the number of permutations of N distinct objects taken k at a
time. In more common notation, we write it in the form (read “N choose k”)

L) = . (2.35)

( N) N(N-1) --k-!(ka+1)

Multiplying the numerator and denominator by (N — k)!, we can write the alternative
expression

N\ N(N=1) .- (N=k+1) _(N-K)! _ N!
( k ) - K “(N=R) ~ K(N—R)"

(2.36)

The probability (2.34) for exactly k disintegrations then has the compact form

prek) = () Jpta™ 237)

wherek=0,1,2,..., N. This resultis the binomial distribution, which takes its name
from the series expansion for a binomial. With p + g=1,

N

(p+a)" Z( )"N" ZPr (2.38)

k=0

showing that the distribution is normalized. This distribution and its properties will
be discussed in Section 5.4.

The binomial distribution from the last example, with N=15 and p=0.156, is
represented in Figure 2.2. The bars show the probability thatk =0, 1, 2, .. ., 15 of the
original ''C atoms in the source will decay in 5min. The answer Pr(3)=0.226
(Eq. (2.33)) can be seen as the fourth bar. The function Pr(k) =0 when k < 0 and k > N.
The sum of the probabilities, represented by the total height of all the bars, is unity.

Example

a) In the last example, compute the probability that none of the original 15
11C atoms will decay in 5 min.

b) What is the probability that no atoms will decay in 5min if the source
consists of 100 atoms?

¢) 1000 atoms?



Pr(k)
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Solution
a) With the help of Egs. (2.37) and (2.36), we find that

15! 45

Pr(0) = ;P = g = (0.844)" = 0.0785. (2.39)

With 15 atoms initially present, there is thus a 7.85% chance that none will
decay in 5 min, a time equal to about one-fourth the half-life. This result can
also be seen in Figure 2.2.

b) With N=100,

Pr(0) = gV = (0.844)'% = 4.31 x 10°%, (2.40)

or about one chance in 23 million.
¢) With N=1000, the probability that none will decay in 5 min is

Pr(0) = (0.844)'°° = 2.20 x 1077*. (2.41)

Note that, with 10 times the number of atoms in part (c) compared with (b), the
probability (2.41) is the 10th power of that in Eq. (2.40), thatis, g'°*° = (4" "°.

03

Figure 2.2 Binomial distribution for example in the text, a ''C source with N =15 and p =0.156.
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The next example illustrates how calculations with the binomial distribution
rapidly get cumbersome with increasing numbers of atoms.

W Example

A source consists of 2800 atoms of 2*Na, which has a decay constant
2 =0.0462h"'. What is the probability that exactly 60 atoms will disintegrate
in 30 min?

Solution

The solution is given by Eq. (2.37) with N=2800 and k=60. For time
t=30min=0.5h, we have At=(0.0462h')(0.5h)=0.0231. The survival
and decay probabilities are g=e * =e %921 =0.9772 and p=0.0228. The
factor involving these probabilities in Eq. (2.37) is

gV = (0.0228)%°(0.9772)%*
=(2.99 x 107)(3.59 x 107%) = 1.07 x 107126 (2.42)

The binomial coefficient (2.36) involves the enormous number N!= 2800,
which is out of the range of most hand calculators. However, we can use
Eq. (2.35), which has smaller numbers. There are 60 factors approximately
equal to 2800 in the numerator. Thus, we obtain, approximately, from Eq. (2.35)

(z}\cf) _ (zsoo) (2800)(2799)(2798) - -- (2741)

60 60!
(2800)°  6.75 x 10%% -
o = =8.12 x 10", 2.43
60! 8.32 x 108 (243)

Substituting the last two factors into Eq. (2.37), we obtain

Pr(60) = 8.12 x 10'%* x 1.07 x 1071%° = 0.0869. (2.44)

Computations with the binomial distribution are not feasible for many or even most
common sources dealt with in health physics. A 1-Ci source of **Co, for instance,
contains N=28.86 x 10'® atoms of the radionuclide (Eq. (2.20)). Fortunately, conve-
nient and very good approximations to the binomial distribution exist in the form of
the Poisson and the normal distributions for making many routine calculations.
These will be discussed in Chapters 5 and 6.

2.6
Critique

The description of the exponential decay of a radionuclide presented in this chapter
often provides an accurate and useful model for radioactive decay. However, it cannot
be strictly valid. In carrying out the derivations for the number of atoms and the
activity for a source as functions of time in Section 2.2, the discrete number of atoms
N was treated as a continuous, differentiable function of the time. The analysis thus



Problems

tacitly requires that N'be very large, so that its behavior can be approximated by that of
a continuous variable. However, the number of atoms in a source and the number
that decay during any given time are discrete, rather than continuous. Furthermore,
the decay always shows fluctuations, in contrast to what is implied by Eq. (2.3). As we
did in arriving at the binomial distribution, Eq. (2.37), a rigorous description must
treat the number of disintegrations as a discrete random variable.

Problems

2.1

2.2

2.3

2.4

2.5

2.6

2.7
2.8

2.9

2.10

222Rn has a half-life of 3.82 d.

a) What is the value of the decay constant?

b) What is the mean life?

¢) How much ???Rn activity will remain from a 1.48 x 10%-Bq source after
30 d?

The halflife of 3P is 14.3 d. How long does it take for the activity of a
32P source to decay to 0.1% of its initial value?

a) Calculate the number of ®Co atoms in a 30-mCi source (halflife =5.27y).
b) Calculate the mass of ®*Co in this source (atomic weight of ®*Co = 59.934).
) What is the specific activity of ®°Co in mCi g~ *?

d) What is the specific activity in Bq kg™ '?

a) What is the decay constant of 28U (halflife = 4.47 x 10° y)?
b) What is its specific activity in Bq kg™ '?
) InCig ™

Calculate the specific activity of *H (half-life = 12.3 y) in (a) Bq kg ' and (b)
Cig™

Modify the formula (2.13) to give S in units of

a) Cikg ™}

b) Bq g ' when Ty/, is expressed in years.

What mass of 238U (half-life = 4.47 x 10°y) has the same activity as 1 g of *H?

A source is to be prepared with a radioisotope, having a mean life of 5.00 h. The

expected value of the number of disintegrations in 3.00h is to be as close as

possible to 20.4.

a) How many atoms should there be initially in the source?

b) If such a source has 100 atoms initially, what is the probability that there
would be exactly one undecayed atom left after five half-lives?

How many disintegrations occur in 24 h with a source of #Na (half-life =

15.0h), having an initial activity of 4.79 mCi?

The halflife of 32P is 14.3 d.

a) What is the probability that an atom of 32P will not decay within 3 wk?

b) What is the probability that an atom of 3P will decay during the
fourth week?

27
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2.11

2.12

2.13

2.14

2.15

2.16
2.17

2.18

c) Ifanatom hasnotdecayed in the first 3 wk, what s the probability that it will
decay during the fourth week?

A source consists of 15 atoms of #Y, having a half-life of 5.0h.
a) What is the probability that no atoms will decay in 4 h?
b) What is the probability that 10 atoms will decay in 4 h?

A source consists of 10 atoms of >*P, having a decay constant of 0.0485 d .

a) What is the probability that exactly 2 atoms will decay in 12 d?

b) If the source consists originally of 50 atoms, what is the probability that
exactly 10 atoms will decay in 12 d?

c) Why are the answers to (a) and (b) different, even though they are the
probabilities for the decay of 20% of the original atoms?

a) Whatis the probability that exactly 3 atoms of ' C (half-life = 20.4 min) will
decay in 4 min from a source that has initially 1128 atoms?

b) What is the probability that no more that 3 atoms will decay in 4 min?

c) How is the probability in (b) related to the probability that at least 4 of the
1128 atoms will decay in 4 min?

A source consists of 12 atoms of 2*Na (half-life =15.0h) and 10 atoms of

#2K (halflife = 12.4h).

a) What is the probability that exactly 2 atoms of >*Na and exactly 2 atoms of
“2K will decay in the first 5h?

b) If exactly 6 atoms of 2*Na decay in 5h, what is the probability that
exactly 2 atoms of 2K will decay during this time?

a) Inthelastproblem, whatis the probability that exactly three disintegrations
will occur in the source in the first 5h?

b) Whatis the probability that only one atom in the source remains undecayed
after 100 h?

For Figure 2.2, calculate Pr(k) for (a) k=5, (b) k=10, and (c) k=15.

The half-ife of 'C is 0.0142 d, and the decay constant is 1 =48.8 d . Since 1
represents the probability per unit time that an atom of C will decay,
how can its numerical value exceed unity.

For the last example in the text (Egs. ), write as a sum over k an exact formula
that, when evaluated, would give the probability that 50 <k < 150 atoms will
disintegrate in 30 min.



3
Sample Space, Events, and Probability

The previous chapter illustrated how the random nature of radioactive decay can be
treated mathematically by means of the binomial distribution. With the present
chapter we begin the development of a number of formal concepts needed as a
foundation for the statistical treatments of the subjects in this book.

3.1
Sample Space

The word “experiment” is used by statisticians to describe any process that generates
a set of data. An example is the experiment introduced at the beginning of Chapter 2.
The raw data from the experiment are the numbers of disintegrations from a series of
identical radioactive sources in the specified time t. Each observation gives a
nonnegative integer, 0, 1, 2, . ... The data are generated randomly in the sense that,
although we know all the possible outcomes, the result of any given observation is
governed by chance and cannot be predicted with certainty ahead of time. We define
the set of all possible outcomes of an experiment as the sample space, which we denote
by the symbol S.

Definition 3.1
The sample space S consists of all possible outcomes of an experiment.

Each of the possible outcomes is called an individual element of the sample space,
which is defined by the experiment. In the example just considered, the sample space
consists of all nonnegative integers up through the fixed number of atoms initially in
a source. The individual elements are the integers themselves.

To establish the notation that describes sample spaces, we first consider a single
radioactive atom that we observe for some stated time period to see if it decays. The
sample space S for this experiment thus consists of two individual elements, which
we denote by d or n, where d is short for decay and n is short for no decay. We describe
the sample space for the experiment by writing

S = {d,n}. (3.1)

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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We next consider two atoms present, each having the same two possible outcomes —
either d or n in the stated time — and our experiment is to observe the fate of both of
them. The sample space now consists of four possible outcomes, or individual
elements, which we denote in parentheses by writing for the sample space

S={(d,d), (d,n),(n,d),(n,n)}. (3.2)

For each individual element, enclosed in parentheses, the two symbols refer to the
fate of the first and second atoms, respectively. Thus, (d, n), for instance, indicates
the decay of the first atom and survival of the second. For a system consisting of
an arbitrary number N of atoms, we let g; denote the fate of the ith atom (d or n). We
generalize Eq. (3.2) and write for the sample space,

S={(a1,082,...,aNn)|ai=dorn, fori=1,2,... N}. (3.3)

The vertical bar stands for “such that” and this statement is read “S is the set
consisting of Nvariables (a4, ay, . . ., an) such that each g;is either d or n.” This sample
space applies to the experiment in which the fate of each atom in the stated time is
described. Since each a; represents one of two alternatives, there are 2V individual
elements in the sample space of this experiment.

Performing a different experiment will generally change the sample space, even
for the same system under study. Returning to the system of two atoms, we can
observe the number of atoms that decay in the stated time, rather than the fate of each.
The sample space S then consists of three integers,

s ={0,1,2}, (3.4)

in which the individual elements 0, 1, 2 describe all possible outcomes for the number
of atoms that can decay. Sample spaces can thus be different for experiments that
may be similar, but with outcomes recorded in different ways. We note, also, that each
individual element in the sample space (3.2) is associated uniquely with one of the
individual elements in Eq. (3.4), but the reverse is not true. Whereas (d, n) in Eq. (3.2)
corresponds to the element 1in Eq. (3.4), thelatter in Eq. (3.4) corresponds to both (d, n)
and (n,d)in Eq. (3.2). Thus, for the same system under observation, some sample spaces
can evidently contain more information than others, depending on what experiment
or observation is being made. Some examples of different sample spaces follow.

W Example

An experiment consists of flipping a coin and recording the face thatlands up,
and then tossing a die and recording the number of dots on the up face. Write
an expression for the sample space. How many individual elements are there
in the sample space?

Solution

We can represent any outcome of the experiment by writing a pair of symbols
(@1, a2), where a, denotes the result of the coin toss and a, denotes the result of
the die toss. Specifically, we let a; be either H (heads) or T (tails) and a, be an




3.1 Sample Space |31
integer from 1 to 6. Then we may write S as
S = {(H' 1)r (Hr 2)/ (H’ 3)’ (H7 4)' (H.’ S)r (H’ 6)’ (T7 1)7 (T7 2)7 (T7 3)' (T7 4)7 (T7 5)7 (T/ 6)}
(3.5)

There are thus 12 individual elements in the sample space of this experiment.

W Example
Three solder connections on a circuit board are examined to see whether each
is good (G) or defective (D). Describe the sample space.

Solution

We let the triple (a1, a,, a3) denote the outcome for each of the three solder
connections. Each g, takes on the value G or D, and the sample space S can be
written as

s={(G,G,G),(G,G,D),(GD,G),(D,G,G), (G D,D),(D,G,D),(D,D,G), (D, D, D)}
(3.6)

W Example
Describe the sample space for recording the number of defective solder
connections in the last example.

Solution

Although the system is the same as before, scoring the number of defective
connections is a different experiment from seeing whether each is good or bad.
The individual elements now are the integers 0 through 3. The sample space is

S =1{0,1,2,3}. (3.7)

W Example

Six slips of paper are numbered 1 through 6 and placed in a box. The
experiment consists of drawing a slip of paper from the box and recording
the number that appears on it. Write an expression for the sample space.

Solution
The sample space consists simply of the numbers 1 through 6:

§=1{1,2,3,4,5,6}. (3.8)

Example

With the same setup as in the last example, the experiment now consists of
drawing two slips of paper in succession and recording the numbers. The first
slip is not replaced before the second is drawn. Write an expression for the
sample space. How many individual elements are there?
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Solution

We let the pair (a4, a,) represent the individual elements of the sample space,
where a; denotes the number on the first slip drawn and a, denotes the
number on the second slip. Then we can write for the sample space,

§=1{(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,3),(2,4), (2,5), (2,6),
(3,1),(3,2),(3,4),(3,5),(3,6),(4,1),(4,2), (4,3), (4,5), (4,6),
(5,1),(5,2),(5,3),(5,4),(5,6),(6,1),(6,2),(6,3),(6,4), (6,5)}. (3.9)

There are thus 30 individual elements, or possible outcomes, for this

experiment. Note that the first slip of paper is not replaced before drawing
the second slip, and so a; # a, for all of the possible outcomes in Eq. (3.9).

W Example

We perform an experiment as in the previous example, except that the first slip
is now returned to the box before the second slip is drawn. Describe the
sample space. How many individual elements does it have?

Solution

This experiment differs from the last one, and the first slip now has a chance of
being drawn again. The individual elements with a; = a, are now to be added
to those expressed by Eq. (3.9). The new sample space is

§={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2), (2,3),(2,4), (2,5), (2, 6),

(3.1).(3,2), (3,3), (3,4). (3,5). (3.6), (4. 1), (4.2), (+.3), (4.4), (4,5, (4,
(5,1),(5,2),(5,3),(5,4), (5,5),(5,6), (6,1),(6,2), (6,3), (6, 4), (6,5), (6,

There are now 36 individual elements.

W Example
Describe the sample spaces (3.9) and (3.10) for the two experiments in a
compact form like Eq. (3.3).

Solution
In place of Eq. (3.9), for which the first slip is not returned to the box, we write

S={(m,a2)|ai=1,2,...,6, fori=1,2and a; # ay}. (3.11)

In place of Eq. (3.10),

S={(ar,m)|a =1,2,...,6, fori=1,2}. (3.12)

Thus far, we have considered only discrete sample spaces, in which all of the
possible events can be enumerated. Sample spaces can also be continuous. An
example is the continuous sample space generated by the time at which an atom
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in a radionuclide source decays. As governed by Eq. (2.22), the time of decay ¢ can
have any value in the interval 0 <t < oo. This continuous sample space can be
expressed by writing

S = {t|t € [0,00)}. (3.13)

This statement is read, “The sample space S consists of all times ¢ such that ¢ is
contained in the semiclosed interval [0, oc).” Like any continuous sample space,
Eq. (3.13) has an infinite number of subsets. Discrete sample spaces can be finite or
infinite and can also have an infinite number of subsets. For example, the energy levels
E, of the electron in the bound, negative-energy states of the hydrogen atom are
quantized and have the values E, = —13.6/n* €V, where n=1, 2, ... is any positive
integer. This set of levels is discrete and countably infinite in number, with an infinite
number of subsets. In addition, the unbound, positive-energy states of the electron
have a continuum of values over the energy interval [0, co). The sample space for all
energies that the electron can have consists of (1) a countably infinite, discrete set of
negative numbers and (2) the continuum of all nonnegative numbers.

We turn now to the concept of an event and related ideas that are used in statistics.
As we shall see, probability theory is concerned with events and the notion of the
likelihood of their occurrence.

3.2
Events

Definition 3.2
An event is any subset of a sample space.

Using this terminology, we also refer to the individual elements in a sample space as
the simple events. For an experiment where the flip of a coin will resultin heads (H) or tails
(T), the sample space is S = {H, T} and the simple events are H and T. One can observe
the decay or survival of each of the two atoms considered before, there being four simple
events, shown explicitly by Eq. (3.2). An example of an event that is not a simple event is
the decay of either atom 1 or atom 2, but not both. This event is comprised of the two
simple events (d, n) and (n, d), which is a subset of Eq. (3.2). Another event is the decay of
either one or two atoms, which is comprised of the first three simple events in Eq. (3.2).
Generally, a sample space consists of the union of all simple events.

We usually denote an event by a capital letter, for example, A, B, or C. An event can
consist of each of the simple events in the sample space, any subset of them, or none
of them. If the event consists of no elements of the sample space, itis called the empty
set or null set, and is denoted by the symbol &.

These ideas can be further illustrated by considering an ordinary deck of playing
cards. Drawing a card will produce one of a set of 52 different designations that
identify each card. This set, which cannot be subdivided further, constitutes the 52
simple events in the sample space for drawing a card. An example of an event is
drawing a queen. We can designate this event by writing

A ={QS,QH,QD,QC}, (3.14)
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where the symbols represent, respectively, the queen of spades, hearts, diamonds,
and clubs. In this case, the event that a drawn card is a queen is comprised of four
simple events.

Two events, A and B, associated with a sample space can have various relationships
with one another. The intersection of two events, denoted by AN B, is the event
consisting of all elements common to A and B. The union of two events, denoted by
AU B, is the event that contains all of the elements that belong to A or B or to both.
Two events are mutually exclusive if they have no elements in common, in which case
their intersection is the empty set and one writes AN B= . One can also consider an
event A that contains some of the elements of the sample space S. The set A’ that
consists of all of the elements in S that are not in A is called the complement of A. The
complement set is always taken with respect to the sample space S. Since, by
definition, A and A’ have no common elements, it follows that their intersection
is the empty set: AN A’ =@; and their union is the whole space: AUA’ = S.

W Example

A source consisting of four atoms of 1! C is observed for 5 min to see which, if
any, of the atoms decay during this time. Let A be the event that atoms 1 and 2
decay, B be the event that only these two atoms decay, and C the event that
exactly three atoms (any three) decay, all events within the 5 min.

a) Write the statement that designates the sample space.
b) Write expressions for the events A, B, and C.

c) What event is the intersection of A and B, AN B?

d) The union of A and B, AU B?

e) The complement B’ of B?

f) How many events are possible in the sample space?

Solution

a) The whole sample space consists of 2* = 16 simple events, corresponding
to each atom and its two possible outcomes, decay (d) or not (n). We denote
this space by writing

S={(a1,0z,03,0a4)|a; =dorn, fori =1,2,3,4}. (3.15)
Alternatively, we show the 16 simple events of the sample space explicitly
by writing

S={(d,d,d,d),(d.d,d,n),(ddnd),(dndd),(nddd),ddnn),
(d7 n’ d7 n)7 (n’ d’ d7 n)7 (d’ n7 n7 d)7 (n7 d7 n? d)’ (n7 n? d? d)’
(d7 n7 n? n)7 (n7 d7 n’ n)7 (n7 n? d7 n)7 (n7 n7 n7 d)7 (n7 n7 n7 n)}'

(3.16)

b) The event A that atoms 1 and 2 decay consists of all of the simple events in
Eq. (3.15) or Eq. (3.16) for which a; = a, = d and the other g, can be either d
or n:

A={(d,d,d,d),(d,d,d,n),(d,d nd),(ddnmn)} (3.17)
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3.2 Events

The event that only atoms 1 and 2 decay implies that the other two do not,
and so

B ={(d,d,n,n)}. (3.18)

In this case, B itself is a simple event, the fates of all four atoms being
specified. When exactly (any) three atoms decay, the event is

C={(d.d.dn),ddnd),(dndd),@nddd?}). (3.19)

The event that is the intersection of A and B consists of all events that are
common to both A and B. Since B is one of the elements of A, we see that
the intersection is just the event B itself:

ANB={(d,d,nn)}=B. (3.20)

The union of A and B consists of all of the events that are in A or B or both.
Since Bis already contained in A, the union is equivalent to A itself. Thus,

AUB={(d,d,d,d),(d,d,d,n),(ddn,d),(ddnn)}

= A (3.21)
The complement of an event is always taken with respect to the whole
space, S. Thus, event B’s complement, which is defined as the set of all
simple events in Sthatare notin B, is the union of all the simple eventsin S
except (d, d, n, n).
For a given event that is a subset of the sample space, each of the 16 simple
events in S has two possibilities: it is either part of the event or not.
Therefore, there are 2'° possible events in all.

The notion of events, intersections, and unions can be visualized graphically by the
use of Venn diagrams. Figure 3.1 illustrates a sample space S that contains two events,

Figure3.1

Example of Venn diagram. See the text. The dark shaded area is the intersection AN B of

two events, A and B, in a sample space S. The union of the three mutually exclusive regions AN B/,
ANB, and A'N B is the total space represented by the union of the two events, AU B.
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Aand B, shown as intersecting geometrical figures. The overlapping, darkly shaded
area represents the intersection, AN B, of events A and B. The union, AU B, of the
two events is all of the space occupied by the two figures together. The lightly
shaded area inside A is AN B’ —thatis, the intersection of A and the complement of
B (those elements of S not in B). Likewise, the lightly shaded portion in B is the
intersection, A'NB. The three pieces ANB, ANB, and A'N B are mutually
exclusive, and their union is A U B. Venn diagrams are often useful in representing
events and their subsets.

33
Random Variables

Definition 3.3
A random variable is a function that maps a sample space onto a set of real numbers.

The random variable thus associates a real number with each element in the
sample space. We denote a random variable by an uppercase letter, for example, X,
and the numerical values that it can have by the corresponding lowercase letter, that
is, x. For example, the number of disintegrations that can occur in a given time with a
radioactive source, initially containing N atoms, is a random variable, say X. The
values that Xcanhavearex =0, 1, .. ., N. These integers are the real numbers that the
sample space is mapped onto by the number of disintegrations X (the random
variable). We designate the probability of, say, 10 disintegrations occurring by writing
Pr(X=10). The probability for an unspecified number x of disintegrations is
designated Pr(X = x). This formalism, which we adopt from now on, replaces some
of our earlier notation, for example, Eq. (2.37).

A random variable is said to be discrete if it can take on a finite or countably infinite
number of values. It is called continuous if it can take on the infinite number of values
associated with intervals of real numbers. The number of counts from a radioactive
sample in a specified time is a discrete random variable. The time of decay of an atom
is a continuous random variable.

3.4
Probability of an Event

When performing an experiment that defines a discrete sample space, one is often
interested in the likelihood, or probability, of a given outcome. Before presenting a
formal definition of probability, we can see intuitively how it can be structured from
the concepts we have developed up to now.

To illustrate, if a sample space consists of a set of N simple events that represent
equally likely outcomes, then the probability that a random simple event will be a
particular one of the setis 1/N. Thus, the probability that the roll of an unbiased die will
yield a three is 1/6, there being six equally likely simple events. The probability for
rolling either a three or a five, for example, which is not a simple event, is the sum of the
probabilities for the two simple events: 1/6 + 1/6=1/3. The probabilities for the
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different simple events in the sample space need not be the same, but their sum mustbe
unity. If the die is biased in such a way that the likelihood of getting a three is twice that
for getting any one of the other five (equally likely) numbers, then the probability for
rolling a three can be represented by 2p, where p is the probability for any of the others.
Since the sum of the probabilities for the six simple events must be unity, we have
2p + 5p="7p=1,sothatp=1/7. The probability of rolling a three nowis 2p = 2/7. The
probability of getting a three or a five is 2p + p=3p=3/7. The total probability for
getting some number, one through six, is 2/7 + 5/7 = 1. Furthermore, the probability
for an event outside the sample space, such as rolling a seven with the die, is zero.

With this introduction, we now define probability for discrete sample spaces.
(Continuous sample spaces will be treated in Section 4.1 in terms of probability
density functions.) We consider an experiment that has an associated sample space S,
comprised of n simple events, Ey, E,, ..., E,. We note that S is the union of all of the
simple events by writing S = |J, E;.

Definition 3.4
A probability is a numerically valued function that assigns to every event A in S a real
number, Pr(A), such that the following axioms hold:

Pr(A) > 0. (3.22)
Pr(S) = 1. (3.23)

If Aand Bare mutually exclusive events in S, then Pr(AU B)
= Pr(A) + Pr(B). (3.24)

Axiom (3.22) states that the probability of every event must be nonnegative.
Axiom (3.23) corresponds to the fact that the probability of the union of all simple
events that make up the sample space must equal unity. Thus, the axiom is equivalent
to saying that at least one event must occur, that is, that the probability for an event
outside the sample space is zero: Pr(@)=0. Finally, Eq. (3.24) states that the
probability of the occurrence of any two events, having no simple events in common,
is the sum of their respective probabilities.

W Example
A source consists of three identical radioactive atoms. What is the probability
that either atom 1 or atom 3 will be the first of the three atoms to decay?

Solution

We let E; be the event that atom 1 decays first, E, the event that atom 2 decays
first, and F; the event that atom 3 decays first. Since the atoms are identical,
equal probabilities Pr(E;) = Pr(E;) =Pr(E3) =1/3 are assigned to each of
these events, their sum being unity as required by Eq. (3.23). The events
E;, E,, and E; constitute the simple events in the sample space. Let A be the
event that atom 1 or atom 3 is the first of the three to decay. We then write

A=F UE. (3.25)
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Since E; and E; are mutually exclusive, we also have

EFiNE =@ (3.26)
By axiom (3.24),
1 1 2
PI'(A) = Pl’(El U E;) = Pl’(E]) +P1‘(E3) = g + g = g (327)

Thus, the chances are two out of three that either atom 1 or atom 3 will be the
first to decay.

In the last example we see a trivial application of axiom (3.24). The important point
of this example is the fact that, once we can express the event of interest as the union
of simple events, the problem is solved if we can assign the probabilities to each of the
simple events. We note that axiom (3.24) can be extended to the case where we have n
mutually exclusive events, A;, Ay, ..., A,, in S. Then

Pr(AjUA U - UA,) = Pr(A). (3.28)
i=1

Equation (3.28) provides a way to calculate the probability of an event that is the union
of a set of simple events.

3.5
Conditional and Independent Events

Another important concept in probability theory and statistics is that of conditional
probability. The term “conditional” is used to describe the occurrence of one event A,
given that some other event B has already occurred. The notation for the conditional
probability is Pr(A|B), which is read, “the probability of A given that B has occurred.”

W Example

A radioactive source consisted initially of 20 atoms of 3! and 20 atoms of 2P.
The numbers of each that were observed to decay or not over a subsequent
5-day period are shown in Table 3.1. One of the 40 atoms is selected at random
from the table. Let A be the event that the atom is *!I and B be the event
that the atom has decayed. For such a random selection, what is the
probability, Pr(A|B), that the atom is 131, given that the atom decayed?

Solution
Table 3.1 shows that, of the 10 decayed atoms, 6 were 1B, Hence,
6
Pr(A|B) = —. 3.29
(AlB) = 1 (329)

The table summarizes the complete sample space of the 40 simple events that
describe the possible outcomes (decay or not) for all 40 atoms in the source. The
solution (3.29) is clear when we look in the table at the reduced sample space,
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Table3.1 Decay of atoms over 5 d in a source consisting initially of 20 atoms each of 'l and 32P.

Status after 5 d Number of atoms

1311 32p Total
Decayed 6 4 10
Not decayed 14 16 30
Total 20 20 40

See example in the text.

corresponding to the event B that the atom decayed. In essence, given B, the
sample space then contains only the firstrow of numbers in Table 3.1. Since our
selection is random, each of the 10 first-row atoms has the same probability of
being selected, thatis, 1/10. Since six of these correspond to decayed 13!1 atoms,
the probability (3.29) is 6/10. However, one does not need to use the reduced
sample space. Employing the complete space, we can write instead of Eq. (3.29),

pr(ajp) = & — 6/40 _Pr(AnB)

T 10 10/40 Pr(B) ’ (3:30)

where Pr(A N B) and Pr(B) are found from the original sample space. Thus, one
can use either the original sample space or the subspace resulting from the
conditional event to calculate conditional probabilities. Using a subspace, one
always assigns to the elements probabilities that are proportional to the original
probabilities and that add to unity.

The following is a formal definition of conditional probability.

Definition 3.5
The conditional probability of A given B, denoted by Pr(A|B), is defined as

Pr(AN B)

Pr(A|B) = W7

with Pr(B) > 0. (3.31)

If Pr(B) =0, then Pr(A|B) is undefined. Since the intersection AN B= BN A is the
same, it also follows from the definition (3.31) that the conditional probability of B
given A is Pr(B|A) = Pr(AN B)/Pr(A), with Pr(A) > 0.

W Example

The possible relationship between smoking and lung cancer is under inves-
tigation. In one study, 500 people were examined for lung cancer, and the
results are reported in Table 3.2. Let Sm denote the event that a person,
randomly selected in the study, is a smoker and let C denote the event that the
individual selected has lung cancer. What is the probability that this person
has lung cancer, given that he or she smokes?
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Solution
Using the definition (3.31) of conditional probability, we write

_Pr(CNSm)  25/500
Pr(CISm) =5 sm) ~ 100,500

=0.25. (3.32)

Thus, the probability that a randomly selected person in the study has lung
cancer, given that the person smokes, is 0.25

Example

A source consists of three identical radioactive atoms at time zero. At the end
of 1d, it is found that a single atom has decayed. What is the probability that
either atom 1 or atom 3 decayed?

Solution

The system here is the same as that in the last example of the last section.
However, in this setting we are interested in the fate of each atom and not the
first to decay. The statement “a single atom has decayed” describes a
conditioning event. Thus, we need to investigate the conditional probability
of either atom 1 or atom 3 decaying, given that a single atom decayed. As
before, we represent the sample space S for the decay or not of the three atoms
by writing for the eight simple events

S={(n,n,n),(d,n,n),(ndn),(nmnd),(ddn),(dnd),(ndd),(ddd}

Letting A be the event that only atom 1 or only atom 3 decayed, we wgtz: ’
A={(d,n,n), (n,n,d)}. (3.34)

The event B that a single atom decayed can be written as
B={(d,n,n),(nd,n),(nnd)}. (3.35)

The probability of A, given B, is obtained by applying Eq. (3.31). The
intersection of events A and B in the numerator of Eq. (3.31) is seen from
Egs. (3.34) and (3.35) to be the same as the union of the two simple events

Table 3.2 Conditional probability for the effect of smoking on lung cancer incidence.

Number of persons

Lung cancer No lung cancer Total
Smokers 25 75 100
Nonsmokers 5 395 400
Total 30 470 500

See example in the text.
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(n, n, d) and (d, n, n). Event B in the denominator of Eq. (3.31) is the union of
the three simple events in Eq. (3.33) that represent a single decay. Thus,

Pr(AN B) Pr{(d,n,n) U (n,n,d)]

_Pr(ANB) _
PrAB) = 5B~ i@ m,m) O (m dom) U (m,m, )]

(3.36)

Applying axiom (3.24) for the probabilities of mutually exclusive events (either
atom 1 or atom 3 decays, but not both), we have

Pr[(d, n,n)] + Pr[(n,n,d)]

Pr(A[B) = Pr[(d,n,n)] + Pr[(n,d, n)] + Pr[(n,n,d)] (3.37)

Although we do not know the numerical value, the individual probabilities
here for exactly one atom to decay are assumed to be equal, because the three
atoms are identical. Therefore, the ratio (3.37) gives Pr(A|B)=2/3. It is
interesting that this method gives the same result found earlier when we
asked for the probability that either atom 1 or atom 3 would be the first to
decay. The reduced sample space caused by the conditional event of one atom
decaying is equivalent to the sample space generated by the experiment to
observe the first atom to decay.

Conditional probability allows one to adjust the probability of the event under
consideration in the light of other information. In the last example, we had no
knowledge of what the actual probabilities were for the eight simple events in the
sample space (3.33). We did not know, for instance, the probability Pr[(d, n, n)] that
only atom 1 would decay. However, expression of the conditional probability
effectively selected a set of simple events from Eq. (3.33) for which the individual
probabilities, though unknown, were assumed to be equal. We thus were able to
obtain the numerical answer. The other simple events in Eq. (3.33) generally have
probabilities different from those in Eq. (3.37). In the preceding example on smoking
and lung cancer (Table 3.2), one would calculate Pr(C) = 30/500 = 0.060. However,
given the additional information that the person was a smoker, the probability is
adjusted to 25/100=0.25, a considerable change.

The idea of conditional probability can be extended to the case where we may
have several subevents that can occur. In the above example, the sample space was
split between smokers and nonsmokers. There are situations where we may have
several splits of the sample space, that is, events Ay, A,, ..., A, that partition the
whole sample space. These events are mutually exclusive and exhaustive, by which
we mean that

k
S=|JA and ANA =02 foralli#]. (3.38)
i=1

Since S can be partitioned completely into k disjoint sets, the following theorem
holds. It is often called the theorem of total probability, but also goes by the name of
the rule of elimination.

41



42

3 Sample Space, Events, and Probability

Theorem of Total Probability, or Rule of Elimination
If the events Aj, A,, ..., A, constitute a mutually exclusive and exhaustive partition of
the sample space S, then, for any event B in S, we have
k k
Pr(B) = Pr(BNS) = » Pr(BNA;) = Y Pr(A;)Pr(B|A;). (3.39)
=1 i—1
The proof of this theorem lies in the fact that B can be seen to be the union of k
mutually exclusive events BN A;, BNA,, ..., BNA;. By Eq. (3.28),

P(B) =Pr(BNA;)+Pr(BNAy))+ -+ +Pr(BNA). (3.40)

Next we simply apply Eq. (3.31) to each term, using it in the form of a product rather
than a ratio. We obtain

P(B) = Pr(A;)Pr(B|A;) + Pr(A;)Pr(B|A;) + -+ + Pr(A)Pr(B|A;), (3.41)

thus completing the proof.
The following example is somewhat contrived, but clearly shows the usefulness of
the theorem.

W Example

Anurn contains 5 red balls, 6 black balls, and 10 white balls. A ball is selected at
random and set aside without noting its color. If a second ball is now selected,
what is the probability that it is red?

Solution

Without knowing the color of the first ball selected, we consider three
mutually exclusive and exhaustive events for the result of the first draw.
These events are

A;=ared ball is selected on the first draw.
A, =a black ball is selected on the first draw.
Az =a white ball is selected on the first draw.

We let B be the event that a red ball is selected on the second draw, and so we
are asked to find Pr(B). Using the theorem of total probability, Eq. (3.39),
we obtain

P(B) = Pr(A;)Pr(BJ|A;) + Pr(A;)Pr(B|A;) + Pr(A;)Pr(B|A;3) (3.42)

5 4 65 105 100

2120 " 2120 T 2120~ 420

—0.238. (3.43)

This example also suggests other questions. What is the probability that a red ball
was the result of the first draw, given that red was found on the second draw? Is the
probability of getting red on the first draw related to the particular event of the second
draw? Is there cause and effect? (The earlier example concerning lung cancer and
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smoking is more appropriate in this setting, where we might ask what is the
probability that a person is a smoker given that he or she has lung cancer.) Questions
like these can be answered by the following rule, which is called Bayes’ theorem.

Bayes’ Theorem
If the events Ay, A,, ..., A, form a mutually exclusive and exhaustive partition of the
sample space S, and if B is any non-null event in S, then

pr(afp) = A 0B Pr(4)Pr(BA)
J Pr(B)  Sf, Pr(A)Pr(BA)

(3.44)

The first equality is just the definition (3.31), which also leads to the substitution
Pr(Aj| B) = Pr(A)Pr(B|4)) in the numerator of the second equality. In the denom-
inator, Pr(B) is, by the theorem of total probability (Eq. (3.39)), the same as the
denominator in the last equality of Eq. (3.44), thus proving Bayes’ theorem for
discrete events. The theorem will be extended to continuous random variables in
Section 4.8.

W Example

An urn contains five black and seven red balls. One ball is drawn out at
random. Itis then put back into the urn along with three additional balls of the
same color. A second ball is randomly drawn, and it is red. What is the
probability that the first ball drawn was black?

Solution
As always, it is important to specify events clearly. We denote the two possible
events that could occur on the first draw and their probabilities as follows:

A; =Dblack ball drawn and Pr(A;) =5/12.
A, =red ball drawn and Pr(A,) =7/12.

We note that these events are mutually exclusive and exhaustive. We let B
represent the event that the second ball drawn was red. We are asked to find Pr
(A1|B), the probability that the first ball was black (A;) given that the second
was red (B). The two conditional probabilities in Eq. (3.44) with k = 2 still need
to be assigned. The probability Pr(B|A;) that the second ball was red given
that the first was black is just 7/15, which would be the fraction of red balls in
the urn after three more black balls were added. Similarly, Pr(B|A;) =10/15
after drawing a red first and making the additions. Thus, from Eq. (3.44)
it follows that

PI'(Al)PI'(B|A1)

Pr(A|B) = Pr(A;)Pr(B|A;) + Pr(A;)Pr(B|A,)

(3.45)

(5/12)(7/15) 11
(5/12)(7/15) 4 (7/12)(10/15) ~ 1+2 3’

(3.46)
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In some cases, given additional information will cause no change in the probability
of the event occurring. Then, in symbols, Pr(A|B) = Pr(A), and so the occurrence of B
has no effect on the probability of the occurrence of A. We then say that event A is
independent of event B. The lung cancer and smoking example is one in which there
may be a dependence between the two events. In contrast, the events cancer and the
height of a person would logically be considered to be independent. The concept of
independence in statistics is defined as follows.

Definition 3.6
Two events A and B are independent if and only if

Pr(A|B) = Pr(A) (3.47)
and

Pr(B|A) = Pr(B). (3.48)

Otherwise A and B are dependent.
The definitions of independence and conditional probability can be used together
to derive the multiplicative rule.

The General Multiplicative Rule
If A and B are two events in a sample space, then

Pr(AN B) = Pr(A)Pr(B|A) = Pr(B)Pr(A|B). (3.49)
This rule is a direct consequence of the definition (3.31) of conditional probability

(Problem 3.19). The next theorem is a result of applying the definition of indepen-
dence to the conditional probability statements in Eq. (3.49).

Independence Theorem
Two events, A and B, in a sample space are independent if and only if
Pr(AN B) = Pr(A)Pz(B). (3.50)

This result can be seen by noting that, for independent events, Pr(B|A) = Pr(B) and
Pr(A|B) = Pr(A) and then applying Eq. (3.49). In general, for any set of nindependent

events, A;, i=1, 2, ..., n, it follows that (see Problem 3.20)
Pr(A; NA; N - NA,) = Pr(A;)Pr(4,) --- Pr(A,). (3.51)
Example

Two photons of a given energy are normally incident on a metal foil. The
probability that a given photon will have an interaction in the foil is 0.2.
Otherwise, it passes through without interacting. What are the probabil-
ities that neither photon, only one photon, or both photons will interact in
the foil?



Problems

Solution

The number of photons that interact in the foil is a random variable X, which
can take on the possible values 0, 1, or 2. Similar to Eq. (3.2) for the decay or not
of the two atoms in Section 3.1, there are four simple events for the sample
space for the two photons: (1, n), (1, y), (y, 1), (y, y)- Here y means “yes, there is
an interaction” and n means “no, there is not,” the pair of symbols in
parentheses denoting the respective fates of the two photons. The probability
of interaction for each photon is given as 0.2, and so the probability for its
having no interaction is 0.8. We are asked to find the probabilities for the three
possible values of X. For the probability that neither photon interacts, we write

Pr(X = 0) = Pr[(n, n)]. (3.52)

We can regard n for photon 1 and n for photon 2 as independent events, each
having a probability of 0.8. By Eq. (3.50), the probability that neither photon
interacts is, therefore,

Pr(X = 0) = 0.8 x 0.8 = 0.64. (3.53)

The probability that exactly one photon interacts is
PI’(X =1)= Pr[(Y? n) U (n7 Y)} = Pr[(Yﬁ n)] + Pr[(n, Y)]v (3'54)

in which the last equality makes use of Eq. (3.24). Since the probability of “yes”
for a photon is 0.2 and that for “no” is 0.8, we find

Pr(X =1) =02 x 0.8+0.8 x 0.2 = 0.32. (3.55)

The probability that both photons interact is

Pr(X = 2) = Pr(y,y)] = 0.2 x 0.2 = 0.04. (3.56)

This example shows how the random variable X maps the sample space of simple
events onto a set of real numbers, with a probability attached to each. It demonstrates
how important the idea of independence is in being able to work problems. We see,
in addition, that axiom (3.23) in the definition of probability is satisfied, that is,
Pr(X=0) + Pr(X=1) + Pr(X=2)=1.

Problems

3.1 Does the sample space (3.5) apply to an experiment in which the coin and/or
die is biased?

3.2 Theexperimentleading to Eq. (3.9) is modified so that only the identities of the
two numbers drawn are scored, without regard to the order in which they are
drawn. Thus, for example, (2, 5) and (5, 2) are regarded as the same individual
element, or simple event.
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33

3.4

3.5

3.6

3.7

3.8
3.9

3.10

a) Write an expression for the new sample space.

b) How many individual elements are there now?

An experiment is to be performed in which a 12-sided, unbiased die is thrown
and the number of dots on the up face is observed.

a) Write an expression that describes the sample space.

b) How is the sample space affected if the die is biased?

Using the sample space of the last problem, describe the following events:
a) A, that the up face has an even number of dots;

b) B, that the up face has an odd number of dots; and

c) C, that the number of dots on the up face is a multiple of three.

Using events A, B, and C from the last problem, find

a) ANG;

b) BNG;

c) ANB;

d) BUG;

e) AUB;

f) B.

An experiment consists of recording the times t at which identical radioactive
atoms in a source decay.

a) Describe the sample space.

b) Does the sample space change if the atoms are not identical?

In the last problem, let A be the event that the time to decay is at least 10 min
and B be the event that the disintegration time is between 5 and 20 min.

a) Write the events A and B in symbolic notation.

b) Are A and B mutually exclusive events? Why or why not?

c) Describe the event AN B.

Identify the shaded areas for the Venn diagrams in Figure 3.2.

Show by using Venn diagrams that the following rules hold:

a) (EUF)=ENF.

b) (ENFY=EUF.

(Note: The rules can be generalized to any number of events. They are
sometimes referred to as De Morgan’s laws.)

For an event A in a sample space S, verify the following statements by means of
Venn diagrams:

Q) ANA=G;

b) AUA=S;

o) §=0;

K

(a) ib) (c) (d)

Figure 3.2 See Problem 3.8. (Courtesy of Steven E. Smith.)



3.11

3.12

3.13

3.14

3.15

Problems

d) AUG=A4;

e) ANDG=0.

Draw a Venn diagram and shade in the appropriate region for each of the

following events:

a) AUB;

b) (AU BY);

c) ANB;

d) ANB;

e) (AANB)U(A'NB);

f) ANB;

g) (ANBY;

h) AUB.

a) For two mutually exclusive events, A and B in a sample space S, represent
Eq. (3.24) by means of a Venn diagram.

b) If A and B are any two events in S, draw a Venn diagram to show the
additivity rule for their union,

Pr(AU B) = Pr(A) + Pr(B)—Pr(AN B).

a) Calculate Pr(A) in place of Eq. (3.27) if atom 3 is four times as likely to be
the first to decay as atom 1 or 2, the latter pair having equal probabilities,
as before.

b) Same as (a), except that atom 2 has four times the likelihood of being first,
compared with atoms 1 and 3, having equal probabilities.

Four identical radioactive atoms are observed to see which ones decay over a

10-min time period. The probability that a given atom will decay in this time is

0.25. For the four atoms, let (x1, %2, 3, %4) represent a point in the sample

space for the experiment, where x;=nor d for i=1, 2, 3, 4 and n=no decay

and d = decay.

a) Write an expression that describes the sample space.

b) How many simple events are there in the sample space?

c) Listtheitems in the sample space that represent the decay of a single atom.

d) Determine the probability of the event (n, d, d, d) by using the concept of
independence and the given probability of decay.

e) Determine the probability of each simple event in the sample space.

f) Show that the sum of the probabilities for the sample space is unity. Which
of the axioms (3.22)—(3.24) support this result?

g) Calculate the probabilities for the events that 0, 1, 2, 3, or 4 atoms decay.

h) Graph the results from (g), letting the ordinate denote the probability and
the abscissa the number of atoms that decay.

An experiment consists of drawing a card randomly from a deck of 52 playing

cards.

a) What is the probability of drawing a black card?

b) What assumptions are necessary to determine this probability?

c) Given thatthe drawn card is red, what s the probability thatitis a diamond?
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3.18

3.19
3.20

3.21

3.22
3.23

3.24

d) When two cards are drawn from the full deck without replacing the first,
what is the probability that the second card is black?

(Hint: The first card drawn must be either black or red, B or R. Thus, Pr(B on

2nd draw) =Pr(B on 2nd|R on 1st) x Pr(R on 1st) + Pr(B on 2nd|B on

1st) x Pr(B on 1st).)

Refer to the example immediately following Bayes’ theorem (Eq. (3.44)).

Show that, if the urn originally contains b black and r red balls, and if ¢

balls of the proper color are added after the first draw, then the probability is

b/(b + 1+ c).

A ball is drawn at random from an urn that contains three white and four

black balls. The drawn ball is then placed into a second urn, which contains

five white and three black balls. A ball is then randomly selected from the

second urn.

a) What is the probability that the ball drawn from the second urn is white,
given that the ball taken from the first urn is white?

b) What is the probability that the ball drawn from the second urn is white,
given that the ball taken from the first urn is black?

c) What is the probability that the ball drawn from the second urn is
white?

d) How are the answers to (a), (b), and (c) related?

Aporch is illuminated with two identical, independent lights. If each light has

a failure probability of 0.004 on any given evening, then

a) what is the probability that both lights fail?

b) what is the probability that neither light fails?

) what is the probability that only one light fails?

d) what is the sum of these probabilities?

Prove Eq. (3.49), the general multiplicative rule.

Equation (3.50) states that, if two events A and B are independent, then the

probability of their joint occurrence (their intersection) is equal to the product

of their individual probabilities: Pr(A N B) = Pr(A)Pr(B). For three indepen-

dent events A, B, and C, prove that

Pr(AN BN C) = Pr(A)Pr(B)Pr(C).

(Hint: Consider BN C= D and apply Eq. (3.50) twice.)

With an unbiased pair of dice, what is the probability of rolling (a) 7, (b) 11, (c) 7
or 11, (d) 2, and (e) 2, 11, or 12?

Write an expression that describes the sample space in the last problem.
What is the probability of drawing from a well-shuffled, regular deck of 52
playing cards (a) a black card; (b) a red ace; (c) a face card; (d) a jack; (e) a black
king or a red ace; (f) a 5, 6, or 7?

For a certain airline flight, experience shows that the probability for all
passengers to be at the departure gate on time is 0.95, the probability for the
flight to arrive on time is 0.93, and the probability for the flight to arrive on time
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Problems

given that all passengers are at the departure gate on time is 0.97. Find the

probability that

a) The flight will arrive on time and all passengers will be at the gate on time.

b) All passengers were at the gate on time given that the flight arrived on time.

c) Write an expression for the sample space.

A gamma-ray spectrometer is used to screen a series of samples for the

presence of a certain radioisotope. The instrument will detect the isotope 99%

of the time when present. It will also give a “false positive” result 1% of the time

when the isotope is not there.

a) If 0.5% of the samples being screened contain the radioisotope, what is
the probability that a given sample contains the isotope, given that the
spectrometer indicates that it does?

(Hint: Let R denote the event that the isotope is present in the sample and E the

event that the instrument indicates that itis. Then what is asked for is Pr(R| E).)

b) Describe the sample space.

A fair coin is tossed three times.

a) What is assumed about the outcome of each toss?

b) What is the probability of obtaining three heads?

¢) What is the probability of at most two heads?

d) What is the relationship between the events in parts (b) and (c)?

e) If the first two tosses result in heads, what is the probability that the third
toss will give heads? Why?

One box contains three white and two black marbles, and a second box

contains two white and four black marbles. One of the two boxes is selected at

random, and a marble is randomly withdrawn from it.

a) What is the probability that the withdrawn marble is white?

b) Given that the withdrawn marble is white, what is the probability that box 1
was chosen?
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4
Probability Distributions and Transformations

4.1
Probability Distributions

In the previous chapter, we saw how probabilities can be associated with values thata
random variable takes on in a discrete sample space. The random variable X in the
example at the end of the previous chapter had the three possible values, x =0, 1, and
2. Corresponding to each, a probability Pr(X = x) was assigned (Egs. (3.53), (3.55),
and (3.56)). The set of ordered pairs, (x, Pr(X=x)), is an example of a probability
distribution. It associates a probability with each value of X. To simplify notation, we
shall write f{x) in place of Pr(X=x).

Definition 4.1
The set of ordered pairs (x, fix)) is called the probability distribution for the discrete
random variable X if, for each possible outcome x,

Pr(X = x) = f(x), (4.1)

fx) >0, (4.2)
and

> flx) =1 (4.3)

all x

Equation (4.1) defines the shortened notation for probability, and Eq. (4.2) requires
that probabilities be nonnegative, consistent with Eq. (3.22). The last relationship,
Eq. (4.3), states that the sum of the probabilities over all the possible events must be
unity, consistent with Eq. (3.23). Implicitin the definition is the fact that f{x) = 0 for all
values of x that are not possible values of the random variable X.

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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W Example

a) Write the ordered pairs (x, f{x)), giving the probability distribution for the
number of photons that interact in a foil when two are incident, as
considered in the last example of Chapter 3.

b) Show that condition (4.3) in the definition of a probability distribution is
satisfied.

Solution

a) The probability distribution obtained from Egs. (3.53), (3.55), and (3.56)
for the number X of photons that interact can be represented by writing the
ordered pairs (x, f{x)) as given in Table 4.1. The distribution is also shown
by the plot in Figure 4.1.

b) From Table 4.1, we have

> f(x) = 0.64+0.32+0.04 = 1.00, (4.4)

all x

showing that Eq. (4.3) is satisfied, as required of any discrete probability
distribution.

In Chapter 1, we discussed how quantum mechanics provides a probabilistic,
rather than deterministic, description of atomic and radiative phenomena. We can
relate that discussion to the last example, in which two photons are incident on a foil.
The basic physical factor used to interpret the observations is that the probability is
p=0.2thata given photon will interact in the foil (and hence the probability is 0.8 that
it will not). The numerical value of p can be determined with good precision by an
experiment in which a pencil beam of photons of a given energy is directed normally
at the foil. Under “good geometry” conditions," the measured fraction of photons
that pass through without interaction gives the value of p. Also, depending on the
photon energy and the particular material of the foil, the probability p can often be

Table 4.1 Probability distribution for the number of photons that interact
in a foil, each with probability 0.2, when two photons are incident.

x fx)
0.64

1 0.32

2 0.04

See example in the text.

1) See, for example, Section 8.7 of Turner (2007) in the Bibliography.
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Figure 4.1 Probability distribution f(x) for the number x of photons that interact in a foil when
two are incident. See example in the text.

calculated from quantum mechanics. As discussed in Chapter 1, however, knowing
the numerical value of p does not tell us what a given photon will do.

The two-photon problem illustrates how predictions are made in terms of
probability distributions. From the basic description of p=0.2, the function
fix) that we determined above gives the probabilities for x=0, 1, and 2. The
predictions can be checked experimentally by bombarding the foil with a large
number of photons in pairs and observing the fraction of pairs for which x=0, 1,
or 2.

One s often interested not only in a probability distribution function f{x), but also
in the probability that the random variable X has a value less than or equal to some
real number x. Such a probability is described by a cumulative distribution
function. We denote the cumulative distribution function F(x) for f{x) by using
a capital letter and writing F(x) = Pr(X <x) for the probability that the random
variable X has a value less than or equal to x.

Definition 4.2
The cumulative distribution function F(x) of a discrete random variable X with a
probability distribution f{x) is given by

F(x) =Pr(X <x) =Y f(t), for —oo<x< oc. (4.5)

t<x
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It is implicit in this definition that F(x) is defined over the whole real line
(—oo <x<o0). We see from Eq. (4.3) that the cumulative distribution function
increases monotonically from zero to unity as x increases. Furthermore, Eq. (4.3)
implies that the probability that X has a value greater than x is given by

Pr(X > x) =1 — F(x). (4.6)

Italso follows from Eq. (4.5) that the individual probabilities f{x) are the differences in
the values of F(x) for successive values of x:

Pr(X =) =f(x) = F(x) — Foo-1)- (4.7)

W Example
Find the cumulative probability distribution for two photons incident on the
foil in the last example.

Solution

The cumulative distribution function for the two photons is given in Table 4.2.
The values of F(x) are obtained by continually summing the values f{x) from
the probability distribution in Table 4.1, as specified in the definition (4.5).
Figure 4.2 shows the function F(x). Notice that the cumulative probability
distribution is defined for all real x (—oo < x < 00), and not just for the three
values (0, 1, 2) assumed by the discrete random variable. Figure 4.2 shows that
the probability for fewer than zero photons to interact is zero. The probability
that less than one photon (i.e., neither photon) will interact when two are
incident is 0.64. The probability that fewer than two (i.e., zero or one) will
interact when two are incident is 0.96. When two photons are incident, the
probability for interaction is unity for fewer than any number equal to or
greater than two (e.g., the probability that fewer than five photons interact
when two are incident is unity).

Thus far, we have dealt only with probability distributions for discrete random
variables. Analogous definitions apply to continuous random variables. When X is

Table4.2 Cumulative distribution function F(x) for the number of photons x
thatinteractin afoil, each with probability 0.2, when two photons are incident.

X F(x)
<0 0

0<x<1 0.64
1<x<2 0.96

>2 1.00
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Figure4.2 Cumulative probability distribution F(x) for the number of photons x that interact when
two are incident. See example in the text.

continuous, x has an uncountably infinite number of values. Consequently, the
probability of occurrence for a single value X=x;, exactly, is zero. For a continuous
random variable X, we define a probability density function, denoted by f{x). The
integral of f{x) over any interval of x then gives the probability that the random
variable X has a value in that interval.

Definition 4.3
The function f{x) is a probability density function for the continuous random variable X,
defined over the set of real numbers R, if?

b
Pria <X <b)= Jf(x)dx., (4.8)

f(x)>0 forall xeR, (4.9)

2) With regard to notation, we generally assign the probability over the semiclosed interval, a <X <b,
which includes the lower, but not the upper, boundary. Whether one includes a boundary point in the
definition makes no difference mathematically, because the probability is zero for a continuous
random variable at a single point, as mentioned in the last paragraph.
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and
Jﬂ@M:L (4.10)

Equations (4.8)—(4.10) for a continuous random variable are analogous to
Egs. (4.1)—(4.3) foradiscreterandomvariable, and can be given the same interpretation.

The corresponding cumulative distribution gives the probability that the contin-
uous random variable has a value less than a specified value.

Definition 4.4
The cumulative distribution F(x) of a continuous random variable X with density
function fix) is given by

F(x) =Pr(X <x) = J f()dt, for —oo < x < o0. (4.11)

—00

It follows from Eqs. (4.8), (4.10), and (4.11) that (Problem 4.5)
PriX >x)=1-Pr(X <x) = Jf(t)dt. (4.12)

Also, comparison of the definition (4.11) with Eq. (4.8) shows that the probability
over any interval is given by the difference in the cumulative distribution at the end
and at the beginning of the interval. Thus (Problem 4.6),

Pr(a < X < b) = F(b) — F(a). (4.13)

With the definition (4.11), the fundamental theorem of integral calculus implies
that

f) =32 (414

provided the derivative of F(x) exists everywhere except possibly at a finite number of
points. For our needs, F(x) will be a continuous function of x, and hence the
probability density function can be obtained from the cumulative distribution by
taking its first derivative.

W Example
In quantum mechanics, the probability density for the position of a particle
confined to a box in one dimension with sides at x=4a/2 is

2 ,mx a a
=Zcos? ™=, for ——<x<- 4.15
f(x) jcos”—, for 27x<2 (4.15)

and

f(x)=0, elsewhere. (4.16)
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This probability density function, which is shown in Figure 4.3, applies to the
ground state, or state of lowest energy, of the particle.

a) Calculate the cumulative distribution function for the particle’s position.
b) Show that the cumulative distribution function equals unity when x = a/2.
¢) What is the probability of finding the particle between x =0 and x = a/4?

Solution

a) The cumulative distribution is defined by Eq. (4.11). Since f(x) =0 when
x < —a/2, the cumulative distribution function is also zero in the interval
on the left, outside the box in Figure 4.3:

F(x) =0, forx< —g. (4.17)

For the interval inside the box, we can write

2 5 (T a a
=- —)dt, for —=< = 4.18
. J cos <a> , for —o<x<3 (4.18)
—a/2
S
: BOX —=
: 2/a :
-a/2 0 a/2
X

Figure 4.3  Probability density function f{x) for the position X of a quantum-mechanical particle with
lowest energy confined in a one-dimensional box with sides at x=+ a/2. See example in the text.
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Using the identity cos* a = (1 + cos 2a)/2, we find that

F(x) :% I [1—i—cos(%>}dt:l {t—o— %Sin@] (4.19)
. a/2

a a
—a,

x 1 1 27x a a
=24 4+ —sin == —Z<x<< .
a+2+2nsm P for 7<% <3, (4.20)
where sin(—m) = 0 has been used in the last equality. Finally, the particle is
always left of the right edge of the box. Therefore, the probability that the
value of X is equal to any number greater than or equal to a/2 is unity:

F(x)=1, forx>-. (4.21)

NS

Equations (4.17), (4.20), and (4.21) constitute the desired cumulative
distribution function, defined for all .

b) Since the particle cannot be outside the box, the cumulative distribution
must reach unity when x reaches or exceeds a/2. From Eq. (4.20), we find
that, indeed,

a 1 1 1 .
F(E):E—FE—O—Esmnfl, (4.22)
as required.

¢) From Eq. (4.8), the probability of finding the particle in the specified
portion of the box is the integral of the probability density f{x) from x = 0to
x=al4:

a/4
a
< - =
Pr(O <X< 4) J f(x)d, (4.23)

0

which can be evaluated directly. We have for this integral (see Eq. (4.19))

P1’<O<X<a)*1 t+ asinzm “/4714— L sinn
- 4) al 2t al, 4 2m 2
= 0.409. (4.24)

Alternatively, we can use Eq. (4.13) and the cumulative function (4.20):

Pr(o <X < 9) - F(E) — F(0) (4.25)
4 4
1 1 1 x 1
=+ 5t 5osing —5 = 0.409, (4.26)

in agreement with Eq. (4.24).
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4.2
Expected Value

Various characteristics of discrete and continuous random variables are of interest.
The mean, or average value, of the random variable is an important parameter.
Equation (2.7), for example, shows how the mean life of a radionuclide is related to its
decay constant, which represents the probability per unit time that a given atom will
disintegrate. Another name for the mean of a random variable is its expected value.

Definition 4.5
The expected value E(X) of the random variable X is defined as

E(X) =) xf(x), if Xis discrete, (4.27)
N all x

E(X) = J xf (x)dx, if Xis continuous. (4.28)

In Eq. (4.27), fix) denotes the probability distribution, and in Eq. (4.28), the
probability density function. The expected value is customarily denoted by the
symbol u.

From this definition, it follows that, if X = cis a constant, then its expected value is
the constant itself, E(X) = E(c) =c. Also, if X = X; +X; + - - is the sum of two or
more random variables, then its expected value is equal to the sum of the expected
values, E(X;)+ E(Xp) + ---.

This definition can be generalized and put in the form of a theorem. The theorem
expresses the interesting and useful result that the expected value of a function g(X) of
arandom variable X can be obtained by taking the expected value of the function with
respect to the original probability distribution function on X. For example, if E(X?) is
desired, it is not necessary (though still correct) to find the probability distribution
associated with Y=X* and then calculate E(Y). One can simply use the above
definition, replacing X with the function g(X). We state the following theorem
without proof.

Theorem 4.1
Let X be a random variable with probability distribution f(x). The mean, or expected value,
of the random variable g(X) is

x = Elg0) = Y g(x)f (%), (4.29)

all x

if X is discrete, and
Hae = Elg(X)] = j g(x)f (x)dx, (4.30)

if X is continuous.
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Equations (4.29) and (4.30) can be understood by regarding the distribution f{x) as
the weighting factor for x in determining the mean of g(X).

W Example

a) For the two-photon problem in the last section, what is the expected value
of the number of photons that interact in the foil when two are incident?

b) What is the expected value of the number of photons that traverse the foil
without interacting when two are incident?

Solution

a) The probability distribution function, f{x), for the number of photons that
interact is given in Table 4.1 and shown in Figure 4.1. Using the
definition (4.27) for the discrete random variable, we obtain for the mean,
or expected value,

1=E(X)=0x064+1x 03242 x 0.04 = 0.40. (4.31)

Thus, an average of 0.40 photons are expected to interact in the foil when
two are incident. As the example shows, the mean of a probability
distribution need not equal one of the values that the random variable
can take on. Such predictions can be tested against experiment. For
example, if we repeated this experiment with 10 pairs and added the
number of photons that interacted in each pairwise trial, the expected
value for the total number of photons interacting in the foil would be four.

b) Since Xrepresents the number of photons in a pair that interact in the foil,
Y =2 — Xis the number in a pair that traverse the foil without interacting.
Taking the expected value of Yand using Eq. (4.29) yields

E(Y) = E(2 — X) = E(2) — E(X) = 2 — 0.40 = 1.60. (4.32)

Thus, an average of 1.60 photons per pair are expected to traverse the foil
without interacting. The expectation operator E in the last equation was
applied to each of the terms in the difference 2 — X. This operation is
permitted through the distributive law for integration or summation of
terms in Egs. (4.29) and (4.30). Note, also, that the expected value of a
constant is the constant itself — in this instance, E(2) =2.

In Section 2.2, we determined that the mean, or average, life of a radionuclide is
given by the reciprocal of the decay constant: t=1/1 (Eq. (2.7)). However, the
argument presented there was more heuristic than rigorous. As mentioned earlier,
the decay time Tof a radionuclide is an example of a continuous random variable. Its
mean can be obtained analytically from the above definition, Eq. (4.28), provided one
knows the probability density function f{t) for the decay times T. We carry out this
calculation next.
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The probability that a given atom present at time ¢ = 0 in a radioactive source will
decay during a short time between t and t + dt is equal to the product of (1) the
probability that the atom has survived until time ¢ and (2) the probability that it
subsequently decays during dt. The former probability is e *', as given by Eq. (2.21).
For very small dt, the latter probability is proportional to dt and can be written as Cdt,
where Cis the constant of proportionality. Thus, the probability for an atom to decay
between t and ¢ + dtis C e * dt. The probability that the decay will occur between
arbitrary times a and b is then given by the integral

b
Pr(a< T <b)= cJe*“ dt. (4.33)

Comparison with Eq. (4.8) shows that the probability density function for the random
decay time of an atom is

f(t)=Ce ™. (4.34)

The constant C is determined by the requirement (4.10) that this function be
normalized (i.e., have unit area). Thus,

C J e Mdt=1. (4.35)
0

(Since we start at time ¢ = 0, the probability density for decay during the time t < 0 is
zero.) Integration of Eq. (4.35) gives C =4, and so the probability density function for
the random decay time T of a radionuclide is

ft)y=Ae ™ t>0, (4.36)
and
f@) =0, t<O. (4.37)

The average decay time, or mean life for radioactive decay, is usually denoted by the
special symbol 7. We find that

= E(T) = J if ()dt = J pe it df — % (4.38)
0 0

where the integration has been performed by parts (Problem 4.10). This result

confirms that expressed in Eq. (2.7).

Example

a) Usethe probability density function f{t) for the decay time of a radionuclide
to construct the cumulative distribution F(t).

b) Use F(t) to find the relationship between the decay constant A and the half-
life Ty, of a radionuclide.
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Solution

a) We first find the function F(t) and then, for part (b), we set F(t) = 1/2 with
t= Ty/,. Combining Egs. (4.36) and (4.37) with the definition (4.11) of the
cumulative distribution for a continuous random variable T, one has

F(t) =0, fort<O, (4.39)

and
t t
F(t) = J f)dt = /IJe‘” df =1—-e™, fort>0. (4.40)
—00 0
b) When t equals the half-ife, the cumulative distribution has the value
F(Ty;2) = 1/2. That is, at time T ,, the probability that the random decay

time has a value less than T, is 1/2, reflecting the condition that one-half
of the original atoms are still present. We obtain from Eq. (4.40)

1
5=1- e (4.41)

giving Ty, = (In 2)/A, in agreement with Eq. (2.6).

In addition to the expected value, or mean, another important characteristic of a
distribution is the median. For a continuous distribution, the median is defined as
that value m. such that the probability Pr(X < m.) =1/2, exactly. We write

Me

1
| rar=3. (4.42)

—00

The median divides the cumulative probability function into two equal portions.
Comparison with the cumulative function, Eq. (4.11), shows that it is equally likely
that the value of the continuous random variable X will occur on either side of the
median. If the random variable is discrete, then the median is defined in terms of the
cumulative function F(x) as the number m, such that

lim F(x) = F(me— 0) <= < F(m.+0) = lim F(x). (4.43)

1
x—mg 2 x— mg"

Here the symbol x — m_ implies that x approaches m, from below, and x — m_"
implies that the approach is from above. Since the variable is discrete, there may be an
interval of points that satisfy this equation. When this is the case, one uses the
midpoint of the interval as the median. The mean of the absolute value of the
deviation of a random variable about a given value in a distribution is a minimum at
the median of the distribution (Problem 4.12).



4.3 Variance

4.3
Variance

Another important property of a random variable is its variance, which measures the
variability, or dispersion (spread), of the probability distribution.

Definition 4.6
The variance is defined as the expected value of the square of the difference between
the random variable and its mean:

Variance(X) = Var(X) = E[(X — u)*]. (4.44)

For a discrete random variable one has

Var(X) =y (x — w)*f (x); (4.45)

all x

and for a continuous random variable,

Var(X) = J (x — w)*f (x)d. (4.46)

The variance of sums or differences of independent random variables is the sum of
their variances.

The variance, which is in squared units, is usually denoted by the symbol 0. The
positive square root of the variance is called the standard deviation, o. Taking the
square root converts the measure of variability to the original units of the random
variable. The standard deviation is very important in describing a distribution, not
only measuring its spread, but also serving as a yardstick to gauge the probability that
an observation is some distance from the mean. The mean determines a center for
the distribution, and the standard deviation tells us how far most observations range
from that center. As we shall see in future applications, for most probability
distributions it would be rare to observe outcomes that exceed three standard
deviations from the mean in either direction.

To calculate the variance, one can use the definition (4.44) or the following
expression:

Var(X) = E[(X — u)*] = E(X? = 2Xu +u?) = E(X?) — 2uE(X) +u*.  (4.47)
Since E(X) =u, one can combine the last two terms to obtain
Var(X) = E(X*) — u. (4.48)

The expression (4.48) is usually more convenient to use for computing variances than
the definition (4.44), although either may be used.
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Example
Calculate the standard deviation for the decay time of a radionuclide.

Solution

We employ Eq. (4.48). The distribution for the decay time T is given by
Egs. (4.36) and (4.37). The second term on the right-hand side of Eq. (4.48)
is the square of the mean life, given by Eq. (4.38): u = v =1/A. The first term on
the right-hand side in Eq. (4.48) is

E(T?) = J £f(t)dt = A J 2 e M dt. (4.49)
—0o0 0

Integration by parts (Problem 4.14) gives
2 . 2
EU%:—PeMO:P.

Hence, the variance of the distribution of decay times is, from Eq. (4.48),

(4.50)

1 2 1 1
The standard deviation is
a:%. (4.52)

Thus, the distribution of decay times has a mean and standard deviation both
equal to 1/4.

As already mentioned, one can use the standard deviation as a measure of distance
in the space of a probability distribution, as the next example illustrates.

Example
What is the probability of observing a nuclide decay time T that is at least two
standard deviations later than the mean?

Solution
We seek the probability

Pr(T —t > 20) = Pr(T > v+ 20). (4.53)

Substituting T =0 =1/A for the mean and standard deviation, we write

Pl‘(T*‘EZZO)ZPI’[TZ%#»Z(%)} =Pr(T2%>. (4.54)
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Applying Eq. (4.12) for the cumulative probability and using the probability density
function, Egs. (4.36) and (4.37), for the decay time T, we obtain

Pr<T > %) =1 J e Mdt = —e*“\g’jl =e® =0.0498. (4.55)
3/A

Thus, only about 5 times in 100 would we expect an atom in the original source to
decay at a time later than two standard deviations beyond the mean. Comparison of
the last equality in Eq. (4.55) with g in Eq. (2.21) shows that the probability calculated
here is, as it should be, just the same as that for an atom in the original source to
survive for a time equal to at least three mean lives.

4.4
Joint Distributions

We consider next the variation of several random variables at once and introduce
the idea of joint distributions. Just as we define probability functions for discrete
and continuous random variables, we do the same for situations in which we
observe two or more random variables simultaneously. Joint distributions can
occur when we describe outcomes by giving the values of several random variables.
For example, we might measure the weight and hardness of materials; the color,
pH, and temperature for certain chemical reactions; or the height, weight, and fat
content of different individuals. If x4, x,, . . ., x; are the values of k random variables,
we shall refer to a function, f, with values fix;, x,, ..., %) as the joint probability
density function of these variables. For simplicity, we shall usually deal with the
bivariate case, k=2. Extensions to larger k are straightforward. As with the
univariate case, described by Egs. (4.8)—(4.10), only certain functions can qualify
as joint probability functions.

Definition 4.7
A function f{x,, x,) is a joint probability density function for the continuous random
variables X; and X,, defined over the set of real numbers R, if

by by
Pr(al <X < bl,uz <X < bz) = J Jf(xl,xz)dxl de, (456)
f(Xth) >0 for all x1,% € R, (457)

and

T Tf(xl,xz)dxl dx, = 1. (4.58)
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One can similarly define joint probability functions for discrete random variables,
replacing the integrals in this definition with appropriate sums.

W Example
Let X; and X, have the joint probability density function

_Jem ™, where0 < % < occand0 < x; < 00
S 2) = {07 otherwise. (4.59)
a) Show that this probability function satisfies requirements (4.57) and (4.58)
in the above definition.
b) Determine Pr(X; + X; <5).

Solution

a) First, inspection of Eq. (4.59) shows that f{x;, x,) > 0 for all values of x; and
x; hence, condition (4.57) is satisfied. Second, we show that this function
integrates to unity:

e % dxl dX'Z

J J f xl,xz dxl de

O3 o%g
See—3

e M dx Je”‘z dx, = (1)(1) =1. (4.60)
0

b) To determine Pr(X; + X, <5), we consider the region in the x;, x, plane
that satisfies the relation x; + x, <5, as shown in Figure 4.4. We can
integrate over x; from 0 to 5 — x,, and then over x, from 0 to 5. Thus,

55
Pl’(Xl +X5 < 5 J
0

c>_,}\<
&

5
% dyy dx, = Je”‘z e P dy, (4.61)
0

5 5
= Je’xl(l — e’ t)dy, = J~(e”‘Z —e)dx, (4.62)
0 0

=[—e™ — xe %]y =1 — 6e° = 0.960. (4.63)
For random variables Xj, X;, . . ., X, we can define the joint cumulative distribution
function (or, simply, joint distribution function), F(x1, x5, . . ., %). This function gives

the probability that X; < x1, X, <x;, ..., X < %;.

An important concept in the discussion of joint distributions is that of independence
among the random variables. Independence is defined in terms of the marginal
densities of all of the individual variables. The marginal densities are obtained when a
continuous joint probability density is integrated over all but a single random
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-1 1 2 3 4 5 6 7
-1F x

Figure 4.4 Shaded area shows the region of nonnegative probability for x; + x, < 5, calculated for
example in the text (Eq. (4.63)).

variable, or a discrete joint probability distribution is summed over all but a single
variable. The following definition and examples address these ideas.

Definition 4.8

X1, X3, ..., X are independent random variables if and only if
SO, %, ) = fila)f () - fil*), (4.64)
where fi(x1), f(%2), - . ., fu(*k) are, respectively, the k marginal densities obtained by
integrating out the (k — 1) other variables in the joint probability distribution f{xy, x,,
ey xk).
W Example
The discrete random variables X; and X, have the following joint probability
function:
A% henx; =1,2andx, = 1,2,3, 4
fla, %)= 32 (4.65)
0, otherwise.

a) Find the marginal distribution on X;.
b) Find the marginal distribution on X,.
¢) Are X; and X, independent?

d) Obtain Pr(X; + X, =5).
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Solution

a) We sum over X to obtain the marginal distribution, fi(x;), on Xj:

4 X1+ %) 1
> =—[(v1+ 1)+ (%1 +2) + (%1 + 3) + (w1 +4)]

~ o320 32
X1) = 4§ 4 10 2 5
fila) atld)_Zat , whenx; =1,2
32 16
0, otherwise.

(4.66)

One should check to see whether the marginal distribution f;(x,) is a true
probability function. It is, because it is nonnegative and

;ﬁ(xl):%-i-li:l. (4.67)

b) The marginal distribution on X; is

2 x1—|—x272x2+3

=1,2,3,4
ﬁ(xz) = ; 32 32 y X2 It ] (468)
0, elsewhere.

It is straightforward to verify that f,(x,) is a true probability function
(Problem 4.15).

¢) The definition of independence states that X; and X, are independent if
and only if flx1, x3) = f1(x1)2(%2). From Egs. (4.66) and (4.68), we see that
this is not true, and so X; and X, are dependent.

d) To obtain Pr(X; + X, =15) we need to find the values of X; and X, whose
sums equal 5. Those pairs are (x;, %) =(1, 4) and (%1, %) =(2, 3).
Therefore,

1+4 243 10 5

W Example

If X; and X, have the joint probability density function

—5x; —6x;
f(xl,xz):{we T 1 >0,%>0 (4.70)

0, elsewhere,

show that they are independent random variables.
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Solution
We calculate the marginal densities for the two variables and see whether their
product is equal to the joint probability density given by Eq. (4.70). We have

__ a—06xy
30675x176x2 de _ 30e75x1 {eT]o = 5e*5xl7 x>0

filx) =
0
0, elsewhere.
(4.71)
Similarly (Problem 4.16, or by inspection of (4.71)),
_[6e™2 x>0
h(x) = {O, elsewhere. (4.72)

We see from the last three equations that f{x;)f{x,) = f{x1, %), and hence X; and
X, are independent random variables.

We next show how expected values are calculated for joint distributions. For
continuous distributions, integrations are carried out over all variables. The expected
value of a single random variable X; in a joint distribution, for example, is given by

E(X) = T T T X f (%1, %2, ..., x)dxy dxp - -+ doxg. (4.73)

For the product of two random variables,
E(XiX)) J J J xixif (x1,%,...,%)dx dx, --- dxg. (4.74)

Higher order products are obtained by extending this procedure. Similar equations
apply for discrete random variables, with the integrals replaced by appropriate sums.
In addition to products of random variables, other functions can be treated in similar
fashion.

Conditional probability is another important aspect of joint distributions. In
Chapter 3 (Eq. (3.31)), we defined the conditional probability of one event A, given
knowledge that another event B had occurred, as

Pr(AN B)

Pr(AB) =~

with P(B) > 0. (4.75)

For two discrete random variables, if A and B represent events given by X=x and
Y=y, respectively, then we may write

PrX=xY=y) f(xy) (4.76)

Pr(X =x|Y=y) = Pr(Y=y) A’
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which defines functions f{x, y) and f,(y), with f,(y) > 0. The quantity fix, y) is thus
a function of x alone when y is fixed. One can show that it satisfies all of the
properties of a probability distribution. The same conditions hold also when Xand Y
are continuous random variables. The joint probability density function is then flx, y),
and the marginal probability density on Y is f,(y).

Definition 4.9
Let X and Y be two (discrete or continuous) random variables with joint probability

density function f{x, y). The conditional distribution of X, given that Y =y, is denoted by
the symbol f(x|y) and defined as

s =L ) >0 (477)

Similarly, the symbol f (y|x) denotes the conditional distribution of Y, given that
X=x,

Flylx) = 7 filx) > 0. (4.78)

W Example
The joint density of X and Y is given by

_Jexy(2—x—y), 0<x<1l,0<y<l1
fly) = {0, elsewhere. (4.79)

Obtain the conditional probability of X, given that Y=y=1/2.

Solution
From the definition (4.77), we write

f (x\y = %) - J=ly (4.80)

: .
Lf(x7 1/2)dx

Substitution from Eq. (4.79) then gives

g )

0
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4.5
Covariance

When dealing with the joint distribution function of two random variables, X; and X,
it is useful to recognize the existence of any association that might exist between the
two. For instance, large values of X; might tend to occur when X; is large. Unless the
random variables are independent, values of X; and X, will be correlated in some way
with one another. A quantity that reflects such an association is the covariance of two
random variables.

Definition 4.10
For any pair of random variables X; and X, with means u; and u,, the covariance,
denoted by 015, is defined as

Cov(X1,X5) = 012 = E[(X1 — 1) (X2 — )] (4.82)

The covariance expresses how the random variables vary jointly about their means.
Thus, if both X; and X, tend to be relatively large or relatively small together, then the
product (X; — p1)(X; — u2) will tend to be positive. On the other hand, if large X; and
small X; are apt to occur together and vice versa, then (X; — u1) (X5 — ) will tend to be
negative. Therefore, the sign of the covariance indicates whether there is a positive or
negative relationship between two random variables. (If X; and X, are independent, it
can be shown that the covariance is zero. The converse, however, is not true.) In place
of the definition (4.82), it is often convenient to use the equivalent expression,

o1 = E(X1X3) — iy, (4.83)

for the covariance (Problem 4.23).

Although the covariance provides information on the nature of the relationship
between two random variables, it is not a quantitative measure of the strength of that
relationship. Its numerical value depends on the units chosen for X; and X,. To
overcome this limitation, one defines the following dimensionless coefficient of
correlation.

Definition 4.11
The coefficient of correlation, Corr(X;, X;), denoted by p, between any pair of random
variables X; and X;, having variances 02 and 03, is

Cov(X1,X;)  on
VVar(X)Var(X;)  /o2ol

Corr(X1,X;) =p = (4.84)

Ifthe relationship between X; and X; is notlinear, then the correlation coefficientis
a poor estimate of the dependence of the two variables on one another.
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Example
Using the discrete probability function, Eq. (4.65), and the results obtained in
that example, find

a) the expected values, u; and p,, of X; and X,;

b) the variances, 02 and 03;

) the covariance, 0y; and

d) the coefficient of correlation p between X; and X;.

Solution

a) The expected values of the single variables can be obtained from the joint
distribution by applying the prescription analogous to Eq. (4.73) for
discrete random variables. However, it is simpler to use the marginal
distributions straightaway, which we already determined through
Egs. (4.66) and (4.68). We have

22: 2x1+5 ~1(2+45)+2(4+5) 25

and
4
2 (2% +3
1y = E(X) Z :
1(243)+2(443)+3(64+3)+4(8+3) 45 (4.86)

32 T 16

b) For the variances, with i=1, 2, we calculate E(X?) and use Eq. (4.48):
07 = E(X?) — [E(X)]’. Thus,

2 x2(2%1+5)  1(2+5)+4(4+5) 43
Z( ) _12+45)+4(4+5)

2\ _ ——
E(Xy) = T T =1e- (4.87)

x=1

Using this result and that of Eq. (4.85) in Eq. (4.48), we obtain for the
variance of Xj,

43 (25\* 63
2
=2 (2) =22 4.
1716 (16) 256 (4.88)

In similar fashion, one obtains (Problem 4.24) o2 = 295/256.
¢) To determine the covariance, o1,, we use Eq. (4.83). The first term on the
right-hand side is
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4 2
E(XX;) = Z me xl+x2 =Yy T (a + %) (4.89)

=1lx1= x=1 x1=1

22 (4.90)

S 1+x2+4+2x2 2“:5x2+3x2 140 _ 35
B —~ 32 8

Combining this result with Egs. (4.85) and (4.86) for u; and u,, we find that
Eq. (4.83) gives for the covariance

35 25\ (45 5

d) It follows from the definition (4.84) of the correlation coefficient and the
results obtained thus far that

__oun _ —5/256 o
~ olah  \/(63/256)(295/256) 0-0367. (4.92)

Thus, there is a very weak, negative linear relationship between X; and X,.

The following two theorems apply to the coefficient of correlation and indicate its
usefulness in a quantitative way.

Theorem 4.2

If X; and X, are independent random variables, then the coefficient of correlation is zero.
That is,

if X; and X; are independent, then p = 0. (4.93)

The proof of this theorem is left as Problem 4.25 at the end of the chapter. (One can
use the fact that E(X;X;) = E(X;) E(X).)
Theorem 4.3
The value of the correlation coefficient p lies in the closed interval [—1, 1]; that is,
-1<p<L (4.94)

To prove this theorem, we form the following nonnegative function of an arbitrary
variable t:

H(t) = E{[(X1 — )t + (X2 — 1))} (4.95)

= E[(X; — Hl)z}tz +2E[(Xy — 1) (X2 — )]t + E[(Xz — /‘2)2]- (4.96)
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Because H(t) > 0 for all values of ¢, the discriminant associated with this quadratic
function of ¢ cannot be positive,” and so we may write

{2E[( — 1) (X — )]} = 4E[(X0 — 1| E[(X; — 1,)’] < 0. (4.97)

The expected values are the squares of the covariance and the variances. Thus
(dividing out the common factor of four),

o1, —0l05 < 0; (4.98)
and so
= T (4.99)
olo; ~

which is equivalent to Eq. (4.94).

The two theorems, (4.93) and (4.94), provide some interesting quantitative
information regarding the joint relationship between two random variables. If the
variables are independent, then the correlation coefficient will be zero. (As noted
above, however, the converse is not necessarily true.) Also, the largest magnitude that
the correlation coefficient can have is unity. The value of unity implies that the
variables have a perfect linear relationship; that is, X; =a + bX,, where a and b are
constants.

Finally, we state without proof an additional theorem, which is important for later
applications, especially when we investigate the properties of estimators.

Theorem 4.4
For a collection of n random variables X;, i =1,2, . . ., n, having means u;, variances 0%, and
covariances o;; (i # j), the variance of a linear combination of the n variables is

n n n—1 n
Var (Z a,-Xi> =Y aVar(X;)+2) Y aa; Cov(X;, X))
i=1 i=1

i=1 j=it1
n n-1 n

= Z a?o? +2 Z Z a;a;0y;, (4.100)
i=1 i=1 j=i+1

3) The quadratic function (4.96) of t is associated with the quadratic equation of the form at* + bt +
¢=0. The two roots are t = (—b & V'b* — 4ac)/(2a). If H(t) does not change sign over the infinite
domain of ¢, then the quadratic equation does not have two distinct real roots. Thus, the discriminant,
b? — 4ac, cannot be positive, and so b — 4ac<0.
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where the a; and a; are constants. Note that, for independent random variables, this

equation simplifies to (Problem 4.26)

n n n
Var (Z a,vX,v> = Zaiz Var(X;) = Z alal.
i1 i=1 ;

W Example
Let X; and X, have the joint probability density function

[ xitx, 0<x <land0<x; <1,
S 2) = {O, elsewhere.

a) Calculate uy, uy, 02, 03, and 07,.

and X,.
Solution

a) The mean of X; is

11
:JJxl %1 + x7)dx; dx;,
00

1
3
X xlxz}
=||=+— dx,
l |:3 2 x1=0

1 1
_ 1 x E?) x? 7
*,[(3+ 2>de* {3 T4, T
0
Also, the mean of X, is, by symmetry,

1
Uy = sz X1+ xz dX1 de
0

o_,._.

4 3

b) Determine the mean and variance of the average, M =

To calculate the variance, we employ Eq. (4.48). Since

(4.101)

(4.102)

(Xl —+ Xz)/z, Ole

(4.103)

(4.104)

(4.105)

11 1
4 3,71
E(x?) = ”x %1+ x)dy dy = J [x—l n M} dv,  (4.106)
00 0 “=0

(4.107)
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4.6

we obtain

5 (7)1
2 _ 2 (L) — = 4.1
TR (12) 144 (4.108)
Again, by symmetry, one finds (Problem 4.27) that 0 = ¢? = 11/144. For
the covariance, we use Eq. (4.83). Thus,

L 1

11
3 2,2
X1X2 JJ.’XZl.’XZz X1+ Xz dx1 dXZ + J |:ﬂ + ﬁ:| dXz
00 3 2 Ju=o

=}

(4.109)
} NE AW L. | R (4.110)
“J\3 " 2)7 e "6, 3 '
0
and so
1 (7\/(7 1
on=3- (%) (&) - e
b) The mean of M is
E(M) = 2B+ %) = - (4 +11,) = = (4.112)
=T &) =W i) =15 :
The variance is, with the help of Eq. (4.100),
X X
Var(M) = Valr(2 +7)
_VarXy) | Var) o (Y (M couxx) @113)
T4 4 2) )~ '
JL) 10y Leny s
T 4\144)  4\144)  2\144) 144’ ‘

Chebyshev’s Inequality

The rarity of observations that exceed several standard deviations from the mean is

confirmed by Chebyshev’s inequality, which we present without proof.

Chebyshev’s Inequality
Let the random variable X have a probability distribution with finite mean u# and
variance o°. Then, for every k >0,

Pr(|X — u| > ko) < (4.115)

kZ



4.7 Transformations of Random Variables | 77

Accordingly, the probability that a random variable has a value at least as far away
as ko from the mean, either to the right or left, is at most 1 /kz. This relationship
provides a rigorous, but often very loose, upper bound to the actual probability.
When k=2, for example, Chebyshev’s inequality states that the probability of an
observation being at least two standard deviations away from the mean does not
exceed 0.25. In the last example in Section 4.3, we found that the probability for the
random decay time to be at least two standard deviations beyond the mean was
0.0498 (Eq. (4.55)). Thus, we see how the upper bound of 0.25 from Chebyshev’s
inequality is satisfied in this instance, although it is far from the actual value of the
true probability. Nevertheless, the general applicability of Chebyshev’s inequality to
any distribution with finite mean and variance often makes it very useful.
Chebyshev’s inequality is valid for both continuous and discrete random variables,
as long as they possess finite means and variances.

4.7
Transformations of Random Variables

Change of variables is common practice in analysis. Given the kinetic energy of a beta
particle, for instance, one can transform this quantity into the particle’s velocity or
momentum for various purposes. Such a change of variable is straightforward.
Nonrelativistically, for instance, if the kinetic energy is E, then the velocity is
V = \/2E/m, where m is the electron mass, and the momentum is P = v/2mE.
Less straightforward are transformations of a function of a random variable. Given the
spectrum (i.e., the probability density function) of energies E for a source of beta
particles, one might want to describe the probability density function for the velocity
or the momentum of the emitted electrons. In this section, we show how to transform
a probability distribution, given as a function of one random variable, into a
distribution in terms of another, related variable. We treat first discrete, and then
continuous, random variables.

We let X be a discrete random variable and Y be a single-valued function of X,
which we denote by writing Y=u(X). Given a value of X, the function u(X) then
provides a unique value of the random variable Y. We restrict the inverse trans-
formation, X =w(Y), of Yinto Xto be single-valued also, so that there is a one-to-one
relation between the values of Xand Y. (For example, Y= X2 implies that X= +Y,
which is not single-valued. To make the transformation single-valued, we can select
either X= + /Y or X=—/Y, depending on the application at hand.) Given the
probability distribution on X, we wish to find the distribution on Y. The transfor-
mation is accomplished by writing, for all y,

Pr(Y = y) = Prlu(X) = y] = Pr[X = w(y)] (4.116)

An example will illustrate the performance of these operations.
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Example
A random variable X has the binomial distribution shown for x=k in
Eq. (2.37), with parameters N and p.

a) Find the distribution Pr(Y=y) on the random variable Y= X°.
b) With N=50 and p=0.70, find Pr(Y=961).

Solution

a) Since X consists of nonnegative integers, we choose X= 4 /Y (rather
than —/Y) to be the single-valued inverse w(Y) that makes the transfor-
mation one-to-one. This choice also requires X to be nonnegative, as
desired. Using Eq. (4.116), we find that the probability distribution on Yis
given by

Pr(Y =y) = Pr(X* =y) = Pr(X = /). (4.117)
Substituting k=x =,/y and g=1—p in Eq. (2.37) and applying the last
equality in (4.117) gives

pr(v =) = (00 )i -, (4.118)

VY
in which y=0,1,4, ..., N
b) When Y=961, v/Y = 31. For N=50, Eq. (4.118) yields

50

Pr(Y = 961) = ( 3

) (0.70)*'(0.30)°° " = 0.0558. (4.119)

As a check, we see that Eq. (2.37) with k = x gives the same numerical
expression as Eq. (4.119) for the probability Pr(X=31).

We next consider two continuous random variables, X and Y, with Y=u(X) and
X =w(Y) representing their functional relationship. Given the probability density f{x)

on X,

we want to determine the density g(y) on Y. We shall assume that the

transformation between X and Y is either an increasing or decreasing monotonic
function over the entire domain of X, thus assuring a one-to-one relationship between
the two random variables. To be specific, we first select an increasing function. Then

an event ¢ < Y <d, where ¢ and d are two arbitrary values of ¥, must be equivalent to
the event w(c) < X <w(d). (If the relationship is monotonically decreasing, then the
latter condition is w(d) < X < w(c).) Thus,

Pr(c <Y < d) =Priw(c) < X < w(d)). (4.120)

It follows from Eq. (4.8) that



4.7 Transformations of Random Variables | 79

d w(d)
[ser= | feax (4.121)
c w(c)

Changing variables in the integrand on the right-hand side to equivalent Y quantities,
one has

£ = fwip] and s ="y (@122)

d w(d)
sy = [ w5l ay (123)
¢ w(c)
from which it follows that
_ dw(y)
g(y) =fw(y)] & (4.124)

This expression enables one to transform a probability density function f{x) on X
to the corresponding probability density function g(y) on Y when the derivative
dw(y)/dy is positive. If the transformation between X and Y is monotonically
decreasing, then to maintain nonnegative probabilities, we use the absolute value
and write

gt =S wl| 5| (4125)

Since Eq. (4.125) is valid for both increasing and decreasing monotonic transfor-
mations, we shall henceforth always use it for transformations.

W Example
Let X be a random variable with probability density given by

3

f)y=4 47 Osw<2 (4.126)

0, elsewhere.

a) Find the probability density function g(y) for Y= X2
b) Show that g(y) integrates to unity, as required of a probability density
function (Eq. (4.10)).

Solution

a) Choosing the positive square root, X=w(Y) = + /Y, gives an increasing
monotonic function in which Y goes from 0 to 4 over the domain of X
between 0 and 2. Using Eq. (4.125), we write
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B d 1, _Ys/z y 12
80 =F (VD 3, ) =T x5
4
Loo0<y<4
_{s Y (4.127)
0, elsewhere.

b) Integration of the probability density function (4.127) yields

o0 4 4 4

1 2
J g(y)dy = Jg(y)dy = gjydy = % =1 (4.128)
—00 0 0 0

The region where the density function is nonzero is called the support of a
continuous random variable. In the last example, the support of Yis 0 < y <4 over
the domain of X.

W Example
The random variable X has the probability density function

2x, 0<x<1
flx) = {0, elsewhere. (4.129)

Find the probability density function for Y=1—2X.

Solution

The inverse function is x = (1 — y)/2, and the support of yis —1 <y < 1 over
the domain of X. This example thus involves a monotonic decreasing
transformation. From Eq. (4.125),

g(v) =f<?) d%? = (1fy)‘f%‘ :%(1—)/). (4.130)

Hence, the probability density function on Y is

1-y
o 1<y<a
g(y)—{ 2 (4.131)

0, elsewhere.

This function is normalized (Problem 4.34).
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Example

The normalized energy-loss spectrum for fast neutrons of energy E,, scattered
elastically from protons initially at rest, is shown in Figure 4.5a. For the flat
spectrum, the probability f{g)dg that the neutron loses an amount of energy
between q and g + dq is simply (Turner, 2007, Section 9.6)

1
—dg, 0<g<E,
E q, ~q

fla)dq = { (4.132)

0, elsewhere.

a) Determine the probability density function for the recoil velocity of the
proton.

b) What are the MKS units of the velocity density function?

¢) Show that the velocity density function is normalized.

d) What is the probability that a neutron of energy E, loses between 1/4 and
1/2 its energy in a collision?

e) What is the probability that a struck proton recoils with a velocity between
1/4 and 1/2 the original velocity of the neutron?

Solution

a) We can express the proton recoil energy Q by writing Q = MV ?/2, where M
and Vare the proton mass and velocity. Since the scattering is elastic, Q is
also equal to the energy lost by the neutron in the collision. Therefore, the
spectrum shown in Figure 4.5a also represents the probability density for
the proton recoil energy. We are asked to transform f{g) into the probability
density function, which we shall call g(v), for the recoil velocity V of the
proton. For the inverse transformation between Vand Q we choose the
positive square root, V=,/2Q/M, giving a monotonically increasing
relationship between the proton recoil energy and velocity. The neutron
mass is assumed to be the same as that of the proton, M. Therefore, the
proton can acquire any amount of the neutron energy E, and thus recoil
with any velocity up to a maximum of v, = \/2E,/M in a head-on, billiard-
ball-like collision. Applying the formalism of Eq. (4.125) with X=Q, Y=V,
f=1/E,, and w(y) = w(v) = Mv*/2, we find that

LE(M_VZ)fM 0<v<n
gw)={ Edv\ 2 ) E~ ° (4.133)

0, elsewhere.

This function is shown in Figure 4.5b. Whereas all proton recoil energies
up to E, are equally probable, this result shows that the probability density
for the recoil velocity of the proton increases linearly with v up to a
maximum given by v, = /2E,/M, equal to the velocity of the incident
neutron.
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b) Since g(v)dvis dimensionless (a probability) and dv has the dimensions of
velocity, it follows that the MKS units of g(v) must be the reciprocal
velocity units, (ms™')"'=m™" s. To show this result explicitly, we see
from Eq. (4.133) that the dimensions of g are those of E;'Mv. The
energy E, is in joules, where 1]J=1kgm” s ? (i.e., work=force x
distance = mass x acceleration x distance). Thus, we write

Units [E,'Mv] = (kgm?s™2) 'kgms ! =m's. (4.134)

¢) From Eq. (4.133) it follows that

[ee] Vo Vo )
Jg(v)dv: Jg(v)dv:EMJvdv:EMx%’: 1. (4.135)
—00 0 ¢ 0 ¢

The probability density function for the velocity must be normalized.

d) The probability that a neutron loses between 1/4 and 1/2 its energy E,ina
collision can be found by integrating the probability density function in
Eq. (4.132) between these two limits. However, by inspection of the flat
spectrum in Figure 4.5a one sees that this probability must be 1/4.

e) The probability that the struck proton acquires a velocity between 1/4 and
1/2 that of the original neutron, v,, can be found by integrating the
probability density function (4.133):

Vo/2

Vo Vo M M (v 3Mv?
P<—<V —):— dv=— (Yo} 2%
NZ=7<3 Eo,‘VV 2150(4 16) ~ 32E,

vo /4
3

Transformations do not alter the general conditions on probability density func-
tions. Two quick checks are often useful to see whether calculated transformations
meet these conditions. The transformed probability density must be nonnegative
everywhere, and the new density function must integrate to unity. These conditions
are readily seen in the last example.

Transformations for more than one variable can also be performed. The interested
reader can find multivariable transformations discussed in the books by Hogg and
Craig (1978) and by Taylor (1974) listed in the Bibliography.

4.8
Bayes’ Theorem

We next extend Bayes’ theorem for discrete events to continuous random variables.
In place of the discrete event B and the partitioning A; of the sample space in
Eq. (3.44), we consider a continuous random variable X, having a probability density
function f{x) that also depends on another variable ®. We denote the conditional
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@
fa)

&=

Ag —= -

(b)
gv)

Ay —= b —

V,
0 v 0

Figure4.5 Normalized probability density functions (a) f(g) for the energy loss Q by a neutron and
(b) g(v) for the recoil velocity V of the struck proton in the collision of a fast neutron with a proton.

probability density function of X given © as f{x|0) and the probability density function
of © as g(0). In analogy with Eq. (3.44), we can write Bayes’ theorem for continuous
random variables as follows. For every x such that f{x) > 0 exists, the probability
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density function of © given X=1x is

Flop =F0) _f(x10)8(0) _f(xl0)g(0)
f@) ) [f(xl0)g(0)do

The denominator is the marginal probability density function of X (Section 4.4).
The statement (4.137) for continuous random variables can be compared directly
with Eq. (3.44) for discrete events.

Chapter 15 on Bayesian analysis will show applications of Bayes’ theorem in the
form Eq. (4.137). In that context, g(0) is referred to as the prior probability density
function of ©, and g(0|x) is called the posterior probability density function of ©. In
contrast to classical methods, Bayesian analysis offers an alternative — and concep-
tually different — basis for making statistical inferences.

(4.137)

Problems

4.1 An experiment has exactly four possible outcomes: Ej, E,, E3, and E4. Check
whether the following assignments of probabilities are possible and state why
or why not:

a) Pr(E;)=0.26, Pr(E,
b) Pr(Ey)=0.27, Pr(E,
¢) Pr(E;)=0.08, Pr(E,
d) Pr(E;)=1.01, Pr(E,
4.2 Show that the function

2x
f(x)_{m7 le’zwu,n

0, elsewhere,

-

—0.24, Pr(E3) =0.17, Pr(Ey) =0.33.
=0.31, Pr(E;) =0.26, Pr(E,)=0.17.
=0.57, Pr(E;) =—0.08, Pr(E,) = 0.43.
=0.01, Pr(E5) =0.04, Pr(E,) =0.31.

- — =

satisfies Egs. (4.2) and (4.3) and hence can be called a probability distribution.
4.3 Using the probability function in the last problem, calculate its (a) mean and
(b) variance.
4.4 Use the probability function from Problem 4.2.
a) Determine the cumulative probability function for arbitrary n.
b) Plot the cumulative function for n=>5.
4.5 Verify Eq. (4.12).
4.6 Verify Eq. (4.13).
4.7 A continuous random variable X has the density function

_fex(1—-x), 0<x<1,
flx) = {0, elsewhere.

a) Determine the cumulative distribution function.
b) Plot both the density function and the cumulative distribution function.
¢) Determine Pr(0.2 < X < 0.6) by straightforward integration.



4.8

4.9

4.10
411

Problems

d) Determine Pr(0.2 < X < 0.6) by using the cumulative distribution function
and Eq. (4.13).

A continuous random variable X has the following probability density

function:

_ f4xe ™, 0<x< oo,
f) = {07 elsewhere.

a) Plot f{x).

b) Determine the cumulative distribution function, F(x), and plot it.

c) Obtain the expected value of X and locate it on the plots in parts (a) and (b).
In a sample of five urine specimens, let X denote the numbers that are found to
contain reportable activity. If we assume that the specimens are independent
and that the probability of being found radioactive is 0.05 for each, then X
follows the binomial distribution.

a) Show that the probability distribution for X is

5 x —x
Pr(X = x) — (x)(o.os) (0.95)°, forx=0,1,2,...,5;
0, elsewhere.

Graph the probability distribution.

b) What is the probability of observing at most two radioactive specimens?

¢) What is the expected value of X? Explain what this value means. Can X
have this value?

d) Plot the cumulative distribution function for X.

Verify Eq. (4.38).

The single-parameter (4 > 0) exponential distribution is often used to model

the lifetime X (or time to failure) of an item:

Fx) = {/le‘b‘, forx >0

0, elsewhere.

The expected value of the lifetime is the reciprocal of the parameter 1: E(X) =

1/4 (cf. Eq. (4.38).

a) A manufacturer claims that his light bulbs have a expected life of 2000 h.
Assuming that the exponential distribution is an adequate representation
of the length-of-life distribution for the bulbs, determine the probability
that a given bulb will last more than 2400 h.

b) Determine the lifetime that only 5% of the bulbs will exceed.

c) Whatis the probability that a light bulb will last atleast 1800 h, but not more
than 4000 h?

d) Find the cumulative distribution function for the model.

e) Check your answer to part (c) by using the cumulative distribution.

85



86| 4 Probability Distributions and Transformations

4.12

4.13

4.14
4.15
4.16

4.17

4.18

4.19

For a continuous random variable X, show that E(|X —v|) has its minimum
value when v is the median of the distribution.
(Hint: Write

E(|X —v|) = J | — v|f (x)dx

u(v)

—00

= J (v —2)f (x)dx + J(x —v)f (x)dx.

Solve du/dv = 0 for v, taking into account the fact that the variable v appears in
the limits of integration as well as in the integrands.)

In place of Eq. (4.46), one can consider the mean squared deviation from an
arbitrary value v of a continuous random variable X. Show that E[(X — 1)*] has
its minimum value when v is the mean of the distribution.

Verify Eq. (4.50).

Show that the marginal distribution (4.68) is a true probability function.
Verify that the marginal density function on X, from Eq. (4.70) is given by
Eq. (4.72).

The random variables X; and X, have the following joint probability distri-
bution:

% - 123 1231 23
% ~— 111 2223 33
11 11 15

— 0> —90 - - £ 22

o, ) 6 12 5 9 15 6 36

a) Find the marginal distribution of X;.

b) Find the marginal distribution of X,.

c) Are X; and X, independent random variables? Why or why not?

d) Find Pr(X, = 3|X, = 2).

Let X; and X, be the larger and smaller, respectively, of the two numbers
showing when a pair of fair dice is thrown.

a) Find the joint distribution of X; and X;.

b) Obtain the marginal distributions on X; and on X,.

(Hint: List all possibilities in a table and find the ones that are possible for X;
and X,, with X; < X3.)

The random variables X; and X, have the following joint probability
density:

flx1,%) = {

(¢14+2x), 0<% <1,0<x<1

S WIN

, elsewhere.



4.20

4.21

4.22

4.23
4.24
4.25
4.26

4.27
4.28

Problems

a) Find the marginal density on X;.

b) Find the marginal density on X,.

¢) Are X; and X, independent? Why or why not?

d) Calculate Pr(X; < X).

The random variables X; and X, denote the lifetimes in years of two electronic
components, having the following joint density:

2 x> 000,
floer, %) = {()7 elsewhere.

a) Determine the marginal density on X;.

b) Determine the marginal density on X.

c) Show that X; and X, are independent.

d) Use the results from (a), (b), and (c) to calculate Pr(X; > 1, X; < 2).

A company produces blended oils, each blend containing various proportions
of type A and type B oils, plus others. The proportions Xand Yof types A and B
in a blend are random variables, having the joint density function

_ J24xy, 0<x<1,0<y<1l,x+y<1
fly) = {07 elsewhere.

a) Obtain the marginal probability densities on X and Y.

b) For a given can of oil, find the probability that type A accounts for over
one-half of the blend.

c) If a given can of oil contains 3/4 of type B oil, find the probability that the
proportion of type A will be less than 1/8.

Given the joint density function

1
f(xy)_{ﬁw—x—y), 0<x<3,1<y<4

0, elsewhere.

a) Find the marginal densities on X and Y.

b) Obtain the conditional probability density of Y given X.

¢) Using the result from part (b), compute Pr(1 < Y < 3|X=2).

Show that Eq. (4.83) follows from the definition (4.82) of covariance.

After Eq. (4.88), show that 03 =295/256.

Prove the theorem (4.93).

For independent random variables, show that Eq. (4.101) follows from
Eq. (4.100).

Following Eq. (4.108), show that 02 =11/144.

If it is known that X has a mean of 25 and a variance of 16, use Chebyshev’s
inequality to obtain

a) a lower bound for Pr(17 < X< 33)
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4.29

4.30

4.31

4.32

4.33

(Hint: Chebyshev’s inequality, Eq. (4.115), states that Pr(|X — u| > ko) < 1/k%;

and so the complementary event yields Pr(|X — u| < ko) > 1—1/k%)

and

b) an upper bound for Pr(|X— 25| > 14).

If E(X) =10 and E(X?) = 136, use Chebyshev’s inequality to obtain

a) alower bound for Pr(—2 < X< 22) and

b) an upper bound for Pr(|X— 10| > 18).

Let X be uniformly distributed over the open interval (0, 1).

a) Determine the distribution of Y=X?.

b) Calculate E(Y).

c) Use Eq. (4.30) to obtain E(Y) = E(X *) directly from the density function
on X.

A continuous random variable X has a probability density function fx(x) and

cumulative distribution function Fx(x). Consider the transformation Y= X

For y < 0, the set {x: x* < y} is the empty set of real numbers. Consequently,

Fy(y)=0 for y<0. Fory > 0,

Fr(y) = Pr(Y <) = Pr(X’ <y) = Pr(—F < X < )
= Fx(v]) — Fx(—Y).

Show that the probability density for Y is given by

1
fry) = {m vy +fx(=vp)], fory>0

0, fory < 0.

A random variable X has the following density function:

fx(x) = \/Lz_nefxz/z, — 00 < x < 00.

Obtain the probability density for the random variable Y= X* by using the
result of the last problem. (Note: The random variable X has the density
function associated with a normal random variable with zero mean and unit
variance. The distribution on Y is that of a chi-squared variable with degrees
of freedom equal to unity. The chi-squared distribution is discussed in
Section 6.8.)

The distribution of temperatures X in degrees Fahrenheit of normal, healthy
persons has a density function approximated by

f(x)= Le’(l/“)("’()gmz7 — 00 < x < 00.

2ym

Find the density function for the temperature Y= 5(X— 32.0)/9, measured in
degrees centigrade.
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4.36
4.37

4.38

4.39

4.40

Problems

Show that the probability density function (4.131) integrates to unity.

For the example involving the probability density function (4.132), calculate, as
functions of E,,

a) the expected value of the proton recoil energy and

b) the variance of the proton recoil energy.

Repeat the last problem for the proton recoil velocity, rather than the energy.
With reference to the last two problems, show that the ratio of (1) the expected
value of the proton recoil velocity and (2) the velocity corresponding to the
expected value of the proton recoil energy is 2v/2/3 = 0.943. Why are the two
velocities not equal?

What is the median proton recoil velocity for the distribution given by
Eq. (4.133)?

A point source emits radiation isotropically, that is, uniformly in all directions
over the solid angle of 4 steradians. In spherical polar coordinates (6, ¢),
where 0 and ¢ are, respectively, the polar and azimuthal angles, the probability
for isotropic emission into the solid angle df de is

1
(0. 0)do 40 {Esinﬁdedqn, 0<f<mO0<op<2n
plv, @)ap =

0, elsewhere,

where p(0, ¢) is the probability density function.

a) Show that the density function for emission at a polar angle 0 <0 < 7 is
(1/2)sin 6 and zero elsewhere.

b) How is the answer to (a) related to the marginal density function on 6?

¢) Find the cumulative density function for emission at a polar angle not
exceeding 0.

d) Derive the expression given above for the probability density function
p(0, @) and show that it is normalized.

If © is uniformly distributed on (—mt/2, t/2), show that Y=tan © has the

density function

o) ==

W7 —o0 <y <.

The random variable Ysatisfies this Cauchy distribution, and has the property
that its mean as well as all higher moments are infinite. Graphically, it is
similar to the normal distribution, except that its tails are much thicker,
leading to its infinite mean. The Student’s distribution with one degree of
freedom has the Cauchy distribution (Section 6.9).
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5
Discrete Distributions

5.1
Introduction

Having laid the foundation of probability theory, essential to the application of
statistics, we now focus on specific probability distributions that are capable of
describing many practical applications. The exponential function and the binomial
distribution were employed in Chapter 2 for computations of radioactive disinte-
gration. We shall discuss other models that provide useful approximations to
observed data. As we shall see, a variety of probability distributions, characterized
by a few parameters, describe many phenomena that occur naturally. We treat
discrete probability distributions in this chapter and continuous distributions in
Chapter 6. Additional discrete distributions are discussed in Johnson et al. (2005).

5.2
Discrete Uniform Distribution

The discrete uniform distribution describes a case in which the probability is the same
for all values that a discrete random variable can take on. The gambler’s roulette
wheel provides an example. Ithas 38 identical holes, designated 1-36, 0, and 00. If the
wheel is balanced and the ball is rolled in a fair way, then all 38 holes have the same
chance of being the one in which the ball will land. The discrete uniform distribution
is then a good model for describing the probability of landing on any given number
1-36, 0, or 00. When the random variable X takes on the k values x4, x,, . . ., x; with
equal likelihood, the discrete uniform distribution is given by writing

Pr(X =x) forx = x1,%2, ..., %. (5.1)

1
=7
Other examples of the discrete uniform distribution occur in tossing a fair die,
randomly drawing a card from a deck, and randomly drawing a number from a hat.
The discrete uniform distribution is often ascribed to a random sample drawn from a

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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population, when the assumption is made that each sample point is chosen with
equal probability.

Similar ideas apply to continuous uniform random variables, as described in
Section 6.2. In principle, a computer random number generator produces a uniform
distribution of numbers 0 < r < 1. However, because of their finite precision, digital
computers generate a discrete distribution of pseudorandom numbers, ideally with
a uniform distribution.

W Example

A hat contains 50 identical pieces of paper, each marked with a different
integer from 1 to 50. Let X denote the number on a piece of paper drawn
randomly from the hat. Determine the expected value and variance of X.

Solution

The appropriate probability model for this experiment is the discrete uniform
distribution, for which X takes on the values x from 1 to 50 with probability
distribution given by

1

Pr(X = x) =50’

forx =1,2,...,50. (5.2)

The expected value for X is, from Eq. (4.27),

50 50 50
.1 1 .1 1450
E(X) :;xiPr(xi) :;l%:%;l:%XTX 50
51
==

(5.3)

The variance can be obtained by using Eq. (4.48). The sum of the squares of the
first k integers is k(k + 1)(2k + 1)/6,and so E(X*) = (k + 1)(2k + 1)/6. Thus,
from Eq. (4.48), we find

(51)(101) 7(51

2
0% = ¢ > ) = 858.50—650.25 = 208.25. (5.4)

53
Bernoulli Distribution

A statistical experiment can consist of repeated, identical, independent trials,
each trial resulting in either one or another of only two possible outcomes,
which can be labeled “success” or “failure.” When independent trials have two
possible outcomes and the probability for success or failure remains the same
from trial to trial, the experiment is termed a Bernoulli process. Each trial is called
a Bernoulli trial.

One can formally describe the probability distribution for Bernoulli trials. We let X
denote a Bernoulli random variable and arbitrarily assign the value 1 to success and



5.4 Binomial Distribution

the value 0 to failure. Then, if p is the probability of success, we write for the Bernoulli
distribution,

Pr(X =x) =p*(1-p)" %, forx=0,1. (5.5)

We see that the probability for success in a given trial is then Pr(X=1) = p, and that
for failure is Pr(X=0)=1—p.

A familiar example of Bernoulli trials is the repeated tossing of a coin. The coin toss
is considered fair if the probability of either side landing face up is exactly 1/2. In this
case, p=1/2, irrespective of whether heads or tails is regarded as success. It follows
from Eq. (5.5) that Pr(X=0) =Pr(X=1) =1/2. As long as each toss is independent
of the others and the probability of a given side landing face up is constant (not
necessarily 1/2), then repeated tosses of the coin constitute a series of independent
Bernoulli trials.

W Example

A biased coin, which turns up heads (H) with probability 0.7, is tossed
five times in succession. Determine the probability of obtaining the sequence
H, H, T, H, Tin five tosses.

Solution
The Bernoulli probability model is appropriate for this experiment. Letting X;
(1=1,2,...,5) denote the outcomes of each toss, where X; = 0 if heads appears

on the ith toss, then we desire

Pr(X; =0,X =0,X; =1,X, = 0,X = 1)
= (0.7)(0.7)(0.3)(0.7)(0.3) = (0.7)*(0.3)* = 0.0309.

(5.6)

5.4
Binomial Distribution

The binomial distribution was introduced in Section 2.5 to describe the number of
atoms that decay in a given period of time from a radioactive source with a fixed initial
number of identical atoms. This distribution is a model for statistical experiments in
which there are only two possible outcomes. In Chapter 2, the alternatives for each
atom in the source were to “decay” or “not decay,” which we described there as
“success” or “failure,” respectively. The following set of statements formalizes the
specific conditions that lead to the binomial distribution.

A binomial experiment consists of a number n of repeated Bernoulli trials made
under the following conditions:

1) The outcome of each trial is either one of two possibilities, success or failure.
2) The probability of either outcome is constant from trial to trial.

3) The number of trials n is fixed.

4) The repeated trials are independent.
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A binomial experiment of n trials can be repeated over and over. The number of
successes in a given experiment is thus itself a random variable, taking on the
discrete, integral values 0, 1, 2, .. ., n. If p represents the probability of success in an
individual trial and 1 — p the probability of failure, then the number of successes X
has the binomial distribution with parameters n and p. We write

Pr(X =x) = b(x;n,p) = <n

x)p"(lfp)"fx, forx=0,1,...,n, (5.7)

where

(%) =m0 539

With slightly different notation, Eq. (5.7) is the same as Eq. (2.37) in Chapter 2. It
represents the number of combinations of » things taken x at a time. It can also be
thought of as the number of ways we can partition »n objects into two groups, one
containing x successes and the other (n — x) failures. In the above notation, b(x; n, p)
denotes the probability that the binomial random variable takes on the value x (i.e.,
one observes x successes), when there are n trials and the probability of success on
any trial is p.

We shall use the notation B(r; n, p) to denote the cumulative binomial distribution,
thatis, the probability Pr(X < ) of observing r or fewer successes in n trials, where the
probability of success on any trial is p. We write

B(r;n,p) =Pr(X <r) = Z b(x;n,p), (5.9)
x=0

where b(x; n, p) is given by Eq. (5.7). The cumulative binomial distribution is
tabulated in Table A.1 in the Appendix for selected values of r, n, and p. One is
frequently interested in the probability Pr(X > x) that the binomial random variable
has a value greater than x. From Eq. (4.6) it follows that Pr(X >r) =1 — B(r; n, p). Also,
since the cumulative distribution gives the values for Pr(X<r), individual proba-
bilities b(x; n, p) can be obtained by subtracting values of B(r; n, p) for successive
values of . Thus, from Eq. (4.7),

Pr(X =r) = B(r;n,p)—B(r—1;n,p). (5.10)

These uses of Table A.1 are illustrated in the examples that follow and in the
problems at the end of the chapter.

Comparison of Egs. (5.7) and (5.5) shows that the binomial model becomes the
same as the Bernoulli model when the number of trials is n =1 (Problem 5.4). This
fact can be used to calculate the mean and variance of the binomial distribution, as we
show next. (The mean and variance can also be found directly by using the probability
distribution (5.7) (Problem 5.10).) Since each trial is a Bernoulli trial, we can regard
the binomial distribution as the result of summing the outcomes of n individual
Bernoulli trials. We let X;, X;, ..., X,, denote the consecutive outcomes of each
Bernoulli trial, each X; having the value 0 or 1, according to whether a failure or
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success occurred. Then, if X denotes the number of successes in » trials, we have

X = zn: X (5.11)
i=1

Since the X; are independent random variables, we may write for the mean

E(X) = E(ZX) = zn: E(X)). (5.12)
i=1 i=1

Since each X; takes on the value 0 with probability (1 — p), and the value 1 with
probability p, its expected value is E(X;) =p (Problem 5.3). Therefore, we obtain for
the mean of the binomial distribution,

EX) = i E(X;) = np. (5.13)

For the variance of each X;, we have, with the help of Eqs. (4.47) and (4.48),

Var(X;) = E[(Xi—p)’] = E(X?)—p* = (0)*(1-p) + (1)°p—p
=p(1-p). (5.14)

Thus, the variance of the binomial distribution is given by
Var(X) = Var (Z Xi> = ZVar(X,') = np(1-p). (5.15)
i1 i1

We see from Eq. (5.13) that the mean of the binomial distribution is simply the
proportion p of the total number of » trials that are successes. On the other hand,
the expression (5.15) for the variance, which is a measure of the spread of the
distribution, is not intuitively apparent.

W Example

To monitor for possible intakes of radioactive material, the urine of radiation
workers is sometimes tested by counting for high radiation content. At a
certain installation, the probability that the test procedure will falsely declare
ahigh content for an individual’s specimen when it should notis 0.10. In one
survey, specimens from a group of 20 workers are counted, and 5 are found
to score in the high range. Could this finding be a random occurrence, or is
there reason to be concerned that some individuals in the group have
elevated intakes?

Solution

The observed result of 5 high out of 20 tested appears to be rather large, if
some individuals in the group did not, in fact, experience elevated intakes.
One way to gauge this frequency is to look at how far the observed number is
from the mean, as measured by the standard deviation. The testing procedure
meets the conditions of a binomial experiment, in which n=20and p=0.10

95
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is the probability that an individual outcome is declared “high” when it should
not be, the alternative being “not high.” From Eq. (5.13), the expected value of
the number of tests declared high, when they should not be so declared, is 20
(0.10) = 2. We are asked whether the observed result, 5 — 2 = 3 more than the
mean, is too large a deviation to expect. From Eq. (5.15), the variance is 20(0.10)
(0.90) = 1.80, and so the standard deviation is 1/1.80 = 1.34. The observed
resultis thus 3/1.34 = 2.24 standard deviations beyond the mean. Chebyshev’s
inequality, Eq. (4.115), provides a rigorous upper bound to the probability for
the occurrence of this result. It follows from Eq. (4.115) that the probability is no
larger than 1/k*=1/(2.24)>=0.199. Since Chebyshev’s inequality is usually
very imprecise (it applies to any distribution), the actual probability is pre-
sumably considerably less than 20%. Based on this evidence, we should
suspect that finding 5 false high specimens is not just a random occurrence
among 20 unexposed individuals. While the application of Chebyshev’s
inequality is of some use, it is not decisive in this example. We can, however,
find the actual probability from the binomial distribution, as we do next.

We let X be the number of specimens that the procedure declares to have
high radiation content when they should not. Then Eq. (5.7) gives the
probability Pr(X=x)=>b(x; n, p) of observing exactly x high results. Our
concern is whether any result as large as 5 should occur randomly in the
absence of elevated intakes. Therefore, we evaluate the probability for X > 5.
The evaluation can be conveniently carried out with the help of the cumulative
binomial distribution function. As discussed in the paragraph following
Egs. (5.7) and (5.8), we can use Table A.1 to write

20
Pr(X >5) =Y b(x;20,0.10) = 1—B(4;20,0.10) = 1-0.957
x=5
= 0.043. (5.16)

Thus, it would be rare to find five or more high results in the group, if no
individuals had experienced elevated intakes. The evidence strongly suggests
that elevated intakes might have occurred and thus been detected. Additional
measurements are called for. Also, the analytical procedures could be checked
for possible errors.

We note in this example that the probability of finding exactly five high results is, of
itself, not as significant as finding any number as large as five. Therefore, our
judgment is based on the value of Pr(X>5) rather than Pr(X=>5).

Example
In the last example with 20 specimens,

a) What is the probability that exactly five specimens falsely show high
radiation content?
b) What is the probability that at most two specimens will falsely read high?
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¢) What is the probability that between two and five specimens will falsely
read high?

Solution
a) The first question asks for

Pr(X = 5) = b(5;20,0.10) = B(5;20,0.10)—B(4; 20, 0.10)
= 0.989—0.957 = 0.032. (5.17)

(This quantity can also be computed directly from Eq. (5.7).) Comparison
with Eq. (5.16) shows that Pr(X>5) is about half again as large as the
probability of finding exactly five high readings.

b) The probability for at most two false high readings is

Pr(X < 2) = B(2;20,0.10) = 0.667, (5.18)

where, again, we have employed Table A.1.

c) The probability that between two and five specimens are falsely
declared as high is conveniently found as the difference in the values
from Table A.1:

4
> "b(x,20,0.10) = B(4; 20,0.10)—B(2; 20,0.10) = 0.957—0.677 = 0.280.

x=3

(5.19)

Answers like (a)—(c) would be likely to occur in the absence of elevated
intakes.
W Example

Use the cumulative distribution to calculate the probability that exactly five
persons will be falsely declared high in the last examples when the
probability of that happening for an individual is 0.50 and the group
size is 20.

Solution

The solution we desire is b(5; 20, 0.5), which we are asked to evaluate from the
cumulative distribution, rather than directly from Eq. (5.7). To do this, we need
to subtract B(4; 20, 0.5) from B(5; 20, 0.5). Using Table A.1, we obtain

b(5;20,0.50) = B(5;20,0.50)— B(4; 20,0.50) = 0.021—0.006
=0.015. (5.20)

(Alternatively, Eq. (5.7) yields the result 0.014785. . ..)

Similarly, to calculate the probability that the random variable lies in any interval,
we simply subtract the two table values for that interval.
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W Example

Determine the probability that anywhere from 4 to 10 false high results would
be observed in a group of 20, when the probability is 0.10 for a single
specimen.

Solution
In this case, from Table A.1,

Pr(4 < X < 10) = B(10;20,0.10)— B(3; 20, 0.10)
= 1.000—0.867 = 0.133. (5.21)

5.5
Poisson Distribution

In his lifetime, Poisson (Figure 5.1) made a number of fundamental contributions to
mathematics and physics. One of the most remarkable statistical distributions in
these fields bears his name. The Poisson distribution describes all random processes
that occur with a probability that is both small and constant. As such, it finds an

Figure 5.1 Siméon-Denis Poisson (1781-1840), French mathematician and teacher, did
pioneering work on definite integrals, electromagnetic theory, mechanics, and probability
theory. (Courtesy of Académie des sciences Institut de France.)
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enormous variety of applications. It describes the statistical fluctuations in such
phenomena as radioactive decay for long-lived nuclides, the number of traffic
accidents per week in a city, the number of skunks per acre in a rural county on
a summer day, and the number of calvary men killed annually in an army by mule
kicks. These and many other observations have in common the counting of random
events that occur in a specified time or place at a constant average rate. The Poisson
distribution was originally worked out as an approximation to the binomial under
certain circumstances. We shall first present this derivation of the Poisson distri-
bution and, later in this section, derive it from first principles.

As with the binomial experiment in the last section, a particular set of conditions
constitutes a Poisson process.

A Poisson process has the following properties:

1) The number of successes in one interval of time or space is independent of the
number that occur in any other disjoint interval. (In other words, the Poisson
process has no memory.)

2) The probability of success in a very small interval is proportional to the size of the
interval.

3) The probability that more than one success will occur in such a small interval is
negligible.

There are similarities as well as differences between the binomial and Poisson
experiments.

We next show that the binomial distribution (5.7), in a particular limit of large n,
yields a distribution for which the conditions of the Poisson process are satisfied.
Starting with Egs. (5.7) and (5.8), we write

nn=1) - (n—x+1)

" p(1-p" " (5.22)

b(x;n,p) =

We consider an experiment in which events take place at a constant mean rate, 4,
over a time interval, ¢, of any size. An example of such an experiment is the
recording of counts from a long-lived radionuclide, in which case u =4t is the
expected value of the number of counts in time t. We divide ¢t into a large
number n of equal subintervals of length t/n. By making n very large, we assume
that the probability of recording two or more counts in an interval can be made
negligible (property 3, above). Furthermore, whether an event happens in one
subinterval is independent of whether an event has happened in any other
subinterval (property 1). The probability of registering an event in a given
subinterval is then given by p=A(t/n) =u/n (property 2). Substituting p=u/n
into Eq. (5.22) gives

bx;n,p) = n(n—1) - (n—x+1) (ﬁ)x<l_ﬁ)n—x (5.23)

x! n n

(DY (0T e
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To preserve the conditions applicable to the Poisson experiment, we evaluate
Eq. (5.24) in the limit where n — oo, p — 0, and x4 = np remains constant. All of
the (x — 1) multiplicative factors in front on the right-hand side approach unity as
n — oo. We obtain a new distribution p(x; «), which depends only upon x and u:

plx;u) = nllngo b(x;n,p) :l;—’;nllrr;c (1—%>n<1—%) - (5.25)

The limit of the last factor here is also unity. The middle factor is just the definition
of e, the base of the natural logarithms, raised to the power —u:

lim <1—/i)n =e (5.26)

n— oo n.
Therefore, Eq. (5.25) becomes

‘th e*‘u

p(x;p) = lm b(x;n,p) =— 71—, (5.27)
which is the Poisson distribution with parameter 4 = At. It describes the probability
Pr(X=x) for the number of successes x that occur over an interval t at a constant
mean rate A per unit interval. As we show explicitly later in this section, E(X) =y, as
we have already anticipated in deriving Eq. (5.27). Table A.2 in the Appendix gives
values of the cumulative Poisson distribution sums P(r; u) = Pr(X <r) for selected
values of r and u. Equations exactly analogous to Egs. (5.9) and (5.10) for the
binomial functions, b(x; n, p) and B(r; n, p), apply to the Poisson functions, p(x; u)
and P(r; u).

As we showed in Chapter 2, the decay of a radionuclide is rigorously described by
the binomial distribution. If we deal with a long-lived source, then the average rate of
decay over our observation time can be considered constant. Since only a small
fraction of the total number of atoms present decay over an observation period, and
since all of the atoms are identical and independent, the conditions of a Poisson
process are satisfied. Thus, we may use Eq. (5.27) in place of Eq. (5.7), if desired, to
describe the decay of long-lived radionuclides to a very good approximation. The
Poisson distribution is often much more convenient than the binomial for numerical
computations when n is large and p is small.

Figure 5.2 shows a comparison of the binomial and Poisson distributions, having
the same mean u = pn =10, in each panel, but with various values of p and n. The
steady merging of the binomial into the Poisson can be seen as one progresses
through larger values of n and smaller values of p. They are indistinguishable, for all
practical purposes, in the last panel.

Other comparisons in Figure 5.2 are instructive. Since the mean of the distribu-
tions stays fixed, the Poisson distribution itself is the same in each panel, while the
binomial changes. (Compare Egs. (5.27) and (5.7).) Where the distributions
are clearly different, as in the first panel, the Poisson probabilities are smaller
than the binomial around the mean and larger in the wings of the distributions.
This is understandable, because the two distributions are normalized, and the
Poisson is positive for all nonnegative integers, whereas the binomial probabilities
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Figure 5.2 Comparison of binomial
(histogram) and Poisson (solid bars)
distributions, having the same mean y, but
different values of the sample size n and
probability of success p. The ordinate in each

panel gives the probability for the number

successes shown on the abscissa. Because u is
the same in each panel, the Poisson distribution
is the same throughout.
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span only the interval 0 <x <n. (One cannot have more atoms decay than are
presentl)

In anticipation of the use of the normal distribution for radioactive decay, we note
that the two distributions in Figure 5.2 merge into a bell-shaped form. This fact is a
result of n becoming relatively large (1000) in the last panel. In contrast, in Figure 5.3,
n=100 throughout, with p changing from 0.90 to 0.01. The mean thus shifts to
smaller values as one progresses through the figure. The two distributions virtually
coincide in the last panel, but not into a bell-shaped form. The first panel also
illustrates clearly how the nonzero probabilities for the Poisson distribution can
extend well beyond the limit (n =100 in this instance) after which the binomial
probabilities are identically zero.

W Example

Along-lived radionuclide being monitored shows a steady average decay rate
of 3min~".

a) Whatis the probability of observing exactly five decays in any given minute?
b) What is the probability of observing 13 or more decays in a 5-min period?

Solution

a) Since we deal with a long-lived source, we may employ the Poisson
formula (5.27). (In fact, we cannot use the binomial formula (5.7), because
we are not given values for p and n. Only the mean decay rate, A = 3 min~ ',
is specified.) In an interval of t = 1 min, the mean number of counts would
be 4 =At=3min ' x 1 min = 3. For X=5, Eq. (5.27) then gives

35 -3
¢ _o.101. (5.28)

Pr(X =5)=p(5;3) = g =

b) For the 5-min interval, =3 min ' x 5min = 15. With the help of the
cumulative Poisson distribution in Table A.2, we find
X, 15% 1

x!

Pr(X > 13) =
x=13
=0.732. (5.29)

=1-P(12;15) = 1-0.268

This example illustrates an important aspect of the Poisson process. The 5-min
interval in part (b) can be considered as the sum of five 1-min intervals as in part (a).
The sum of identically distributed Poisson random variables is also Poisson dis-
tributed with parameter equal to the sum of the parameters for each of the individual
distributions.

Example

A certain particle counter, which locks when more than four particles enter it
in a millisecond, is used to monitor a steady radiation field. If the average
number of particles entering the counter is 1.00 ms ™", what is the probability
that the counter will become locked in any given millisecond?
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Solution

We let X denote the number of particles entering the counter in a millisecond.
For the rate of incidence A=1ms "' and time t=1ms, X has the Poisson
distribution with parameter u=At=1ms ' x 1ms=1. The counter locks
when X > 4 in this interval. With the help of Table A.2, we find

) 1k -1
r(X > 4) Z I: P(4;1) = 1-0.996 = 0.004. (5.30)
=5

We next derive the Poisson distribution function from first principles, based on the
Poisson process, rather than a limiting case of the binomial distribution. If A is the
(constant) average rate that events occur, then the average number thathappen during
atime tisu = At. Welet p,(t) denote the probability that exactly X = x events happen in
t. During a very short subsequent time At between t and t + At, the probability that
an event occurs is AAt, and the probability that no event occurs is 1 — AAt. (The
probability for more than one event to happen in At is, by the conditions of the
Poisson process, negligible.) The probability that X = x events happen over the entire
time ¢ + At is the sum of the probabilities (1) for having (x — 1) events in ¢t and one
eventin Atand (2) for having x events in t and none in At. This is expressed by writing

Px(t+ AL) = py_1(£)AAL+ p(t) (1-1AL), (5.31)
or
Px(t+At)—py(t)
o = Al ()= (). (5:32)

In the limit as At — 0, the left-hand side of this equation is the derivative, dp,(t)/dt,
and so

dpx( )

= Alpxa () —px(1)]- (5.33)

Solution of a recurrence-type differential equation can often be facilitated by use of an
exponential integrating factor. Substituting a solution of the form

px(t) = ax(t)e ™ (5.34)
reduces Eq. (5.33) to

dg.(t) _

a ;qu—l(t)' (535)
The solution is
(w7

qe(t) = o (5.36)

as can be seen by direct substitution:
X, ax—1 x—1
A4:0) AP O ). (5.37)

dt x! (x—1)!
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Combining Egs. (5.34) and (5.36) gives

(At)¥e M

o (5.38)

px(t) =
which is the Poisson distribution with parameter u = it, as derived earlier (Eq. (5.27)).
We next show that the Poisson distribution function is normalized and then obtain
the expected value and variance. For the normalization, we return to Eq. (5.27) and
sum over all nonnegative integers. Thus,

ipxpt )=e ”Z” e et =1, (5.39)
x=0

in which the sum is identically the power-series expansion of e”.
The mean of the distribution is given by

0 oo queﬁu u 0 X/,tx 7# &) qu
E(X) = Z;xp(x;/t) = Zox e ; il Z;(x—l)!’ (5.40)

where the zero contribution from x=0 has been omitted in writing the third
summation. The quantity x is a dummy integer in these summations. Letting
x=y + 1, we can transform the last summation in Eq. (5.40) in the following way
without changing the value of E(X):

x—1 Xy
—ue™ Z% (5.41)
! =y

N M
;(x—l)'

Again, as in Eq. (5.39), the summation is just &, leaving the important result that, for
the Poisson distribution,

E(X) = u. (5.42)

For the variance, Eq. (4.48), we need to evaluate E(X?):

0 0 2,,% X 2,,x
2\ _ 2 (N XU xu
oo x—1
N K
— e 4
we ;(#1 , (5.43)
Letting x =y + 1 again, we write (Problem 5.21)
Tu
E(X?) =pe™ Z(Hy *ﬂz( > pu(p+1). (5.44)
y=0 v

The last equality can be seen from the sums in Egs. (5.40) and (5.41). Equation (4.48)
then gives

Var(X) = E(X*)—u® = u(u+1)—u* = u. (5.45)

The variance of the Poisson distribution is thus identical with its mean.
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W Example

A 1.00-nCi tritium source is placed in a counter having an efficiency of 39.0%.
Tritium is a pure beta emitter with a half-life of 12.3y. If X is the number of
counts recorded in 5-s time intervals, find

a) E(X);
b) the distribution of X;
) the standard deviation of X.

Solution

a) The observation time is negligibly short compared with the half-life, and so
we may use Poisson statistics. The mean count rate u. is the product of the
mean disintegration rate A and the counter efficiency &

U, =re=(1x107°Ci) x (3.70 x 10" s71 Ci™!) x 0.390
=14.457" (5.46)

In 5-s intervals, the mean number of counts is
EX)=pu=ut=144s""x5s=722. (5.47)
b) The distribution of the number of counts in 5-s intervals is

_ 72.2%e 7?2

Pr(X = x) '
x!

(5.48)

¢) From Eq. (5.45), Var(X)=72.2, and so the standard deviation is
o, =722 =8.49.

In Chapter 7, we shall discuss the relative error, or ratio of the standard
deviation and the mean, in counting measurements. One can see from this example
how the relative error with a long-lived radionuclide decreases as a longer time
interval is used for taking a single count as an estimate of the mean. The ratio o./u
varies as V/At/(At) = 1/+/At. Thus, when counting for alonger time, the relative error
decreases as the square root of the time.

5.6
Hypergeometric Distribution

We have seen that the binomial distribution results when one counts the number of
successes from nindependent trials, having only two possible outcomes, in which the
probability of success p (or failure, 1 — p) is constant each time. If a trial consists of
randomly selecting an object from a population of finite size, then the binomial
distribution results only when one returns the selected object to the population pool
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each time before making the next selection. This method of repeated sampling
with replacement from the finite population ensures that p is constant for each
independent trial.

Sampling from a finite population without replacement is a different, but related,
procedure. The probability of success on any given trial after the first then depends on
the particular outcomes of the previous trials. The resulting frequency distribution of
the number of successes is called the hypergeometric distribution. An example is
afforded by randomly drawing successive balls without replacement from an initial
collection of three white and seven black balls. We designate drawing a white ball as
success. The probability that the second draw will be a success depends on the result
of the first draw. If the first draw was a success, then the probability of success on the
second draw will be 2/9; if the first ball was black, then 3/9 is the chance of success on
the second draw.

To describe the hypergeometric distribution formally, we let k denote the number
of elements to be regarded as successes in a population of size N. The number of
elements that are failures is then N — k. If we randomly sample » items from this
population without replacement, then the number of successes X has the hyper-
geometric distribution with probability function

Pr(X =x) <i>((1\%j§), x=0,1,2,...,min(n, k), (5.49)
n

where min(n, k) denotes the smaller of the values, n and k. (The interested reader is
referred to pp. 81-82 of Scheaffer and McClane (1982), listed in the Bibliography,
for a derivation of the hypergeometric distribution.) It can be shown (Problem 5.22)
that the mean and variance are given by

_k
N

Var(X) = n<%> (NT_"> <I§I :Z‘) (5.51)

The hypergeometric distribution is applied in quality control, acceptance testing, and
finite population sampling.

The relationship between the binomial and hypergeometric distributions can be
seen as follows. If we consider p = k/N as the proportion of successes, then Eq. (5.50)
is equivalent to the binomial mean, Eq. (5.13). The variances (5.51) and (5.15) are
equivalent except for the factor (N — n)/(N — 1), which is sometimes called the finite
population correction factor. If the population size Nis large compared with the sample
size n, then we can approximate the hypergeometric distribution with the binomial by
using n and p=Fk/N as the binomial parameters.

E(X) (5.50)

and
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Example

A large, outdoor site is to be assessed for possible pockets of radioactive
contamination. In lieu of surveying the entire site, it is divided uniformly into
a grid of 100 squares, which can be individually monitored. The survey team
randomly selects 20 of the squares for a thorough search, which will detect
contamination, if present, with certainty. Unknown to the team, 10 of the
squares, also located randomly on the site, have contamination; the other 90
are clean.

a) What is the probability that the surveyors will find exactly three contam-
inated squares?

b) What is the probability that none of the 20 squares they have chosen will
have contamination?

Solution

a) The conditions can be modeled by the hypergeometric distribution, with
N=100, k=10, and n=20. If X represents the number of contaminated
grid squares found in the survey, then from Eq. (5.49) we find

10 / 100—10
. (3 >( 20-3 > 10! 90! 20!80!
(X =3) = 100 = 3171171731 100!
(%)
— 0.209. (5.52)

b) With k=0, we obtain from Eq. (5.49)

10 100-10
0 20-0
Pr(X = 0) = =0.0951. (5.53)
100
20
Thus, the chances are about 1 in 10 that the survey protocol would not
detect any of the 10 contaminated squares that are on the site.

Example

Use the binomial approximation to the hypergeometric distribution to
obtain Pr(X=3) in the last example. Compare the approximate and exact
solutions.

Solution
We let p=k/N=10/100=0.1 and n=20. Then from Eq. (5.7) we write

20

Pr(X = 3) 2 b(3;20,0.1) = ( ;

)(0.1)3(0.9)17 =0.190. (5.54)
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The relative error in the binomial approximation is

0.209-0.190

0200 = 00909, (5.55)

and so the approximation is about 9% too low. This inaccuracy is not
surprising, however, because the finite population factor,

N—n  100-20
N—-1 100-1

= 0.808, (5.56)

differs significantly from unity.

W Example

In the last two examples, suppose the site consists of 10 000 uniform squares
and that the proportion of contaminated squares is the same as before, that
is, 10%, randomly distributed on the site. What is the probability of finding
three contaminated squares if, again, 20 randomly selected squares are
surveyed? How does the binomial approximation compare with the exact
answer in this case?

Solution
The hypergeometric distribution now has parameters k =1000, N= 10000,
and n=20. Thus, from Eq. (5.49),

( 1000 ) ( 10 000—1000 )
3 20-3
Pr(X =3) = = 0.190. (5.57)
10 000
20
The binomial approximation to the hypergeometric result s, as before, b(20, 3,

0.1) =0.190 (Eq. (5.54)). Thus, the approximation is excellent in this case,
since the finite population correction factor is nearly unity (Problem 5.29).

The hypergeometric distribution can be extended to the case where we have
m categories, rather than just two. The population N is partitioned into these
m categories, so that there are k; elements of category 1, k, of category 2, . . ., and k,,,
of category m. In this situation, we take a random sample of size n and consider
the probability that x; members of the sample are from category 1, x, are from
category 2, ..., and x,, are from category m. We can represent this multivariate
hypergeometric probability distribution by writing

(=)(5) ()
Pr(Xl :x17X2 :xz,...7Xm :xm) — *1 sz Xm 7
(%)

(5.58)

where > " ki=N and >, x =n.
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W Example

A City Beautification Committee of 4 is to be randomly selected from a group
of 10 politicians, consisting of 3 Republicans, 5 Democrats, and 2 Inde-
pendents. What is the probability that this random sample will have two
Republicans, one Democrat, and one Independent?

Solution

Using the above notation, we have k; =3, k, =5, and k3 = 2, respectively, for
the three named parties. The sample yields x; =2, x, =1, and x3=1. By
Eq. (5.58), we have

Pr(X = 2,% = 1,% = 1) = M oo (559

1)

5.7
Geometric Distribution

We have considered the frequency distribution of the number of successes in
repeated Bernoulli trials, in which the probability of success p and failure g=1—p
is constant and the trials are independent. Another aspect of this procedure is to
consider the frequency distribution of the number X of the trial in which the first
success occurs. Since the first success comes immediately after X—1 failures, it

follows that
Pr(X=x)=(1-p)* 'p, x=12,.... (5.60)

This function is called the geometric distribution. To show that it is normalized, we
substitute g =1 — p and write

= x— o xX— 1
(1-p)'p=p) 4 1:10(1+q+qz+~~~):p(1fq):1- (5.61)
x=1 x=1

The geometric progression (hence the name) is the binomial expansion of 1/(1 —
q) =1/p, and so the normalization condition follows in Eq. (5.61). The mean and
variance are

E(X) ==~ (5.62)

and

Var(X) = ? (5.63)



5.7 Geometric Distribution

Example

Apulse height analyzer is used with a high discriminator setting to monitor by
the hour random background events that deposit a relatively large amount of
energy. Itis found that one recordable event occurs on average every 114 min.

a) What is the probability that the first recordable event happens during the
first hour?

b) During the fourth hour?

¢) On the average, during which hour does the first event occur?

d) What is the probability that one must wait at least 3 h before observing the
first event?

Solution

We divide the observation time into successive 1-h intervals, starting at time
t=0. The average event rate is 1/(114min)=1/(1.9h)=0.526h"". We
let p=10.526 be the probability that an event occurs (success) in any of the
given 1-h periods and Xrepresent the number of the interval in which the first
event happens. Equation (5.60) then gives for the probability distribution of
the number of that interval

Pr(X = x) = (1-0.526)*1(0.526) = 0.526(0.474)* . (5.64)
a) The probability that the first event occurs in the first hour (x=1) is
Pr(X = 1) = 0.526(0.474)° = 0.526. (5.65)
b) Similarly,
Pr(X = 4) = 0.526(0.474)® = 0.0560. (5.66)

¢) The average number of the interval in which the first event occurs is, from
Eq. (5.62),

1 1

=053~ 1.90. (5.67)

u
Thus, on the average, the first event occurs during the second 1-h time
interval.

d) Ifone hastowaitatleast 3 h for the first event to happen, then we are asked
to find Pr(X > 4), the first event thus coming in the fourth or later interval.
This probability is equal to unity minus the probability that the first event
happens in any of the first three intervals. From Eq. (5.60),

Pr(X >4)=1-Pr(X <3)=1-[Pr(X = 1)

+Pr(X = 2) + Pr(X = 3)] (5.68)

—[(0.474)°(0.526) + (0.474)' (0.526) + (0.474)*(0.526))

=1
=1-0.894 = 0.106.

(5.69)
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5.8
Negative Binomial Distribution

With the geometric distribution we were concerned with the probability
distribution of the trial at which the first success occurred. We consider next
the probability distribution for the trial number at which the rth success occurs.
The distribution that describes this behavior is called the negative binomial
distribution.

We let X denote the number of the trial at which the rth success happens, where, as
before, each trial is an independent Bernoulli trial with constant probability p of
success. The probability function for X is then given by

Pr(X = x) = (f:;)p'(l—p)x_r, x=rr+1,... (5.70)

Since the rth success must occur on the xth trial, the preceding (r — 1) successes must
happen in the previous (x — 1) trials. The number of different ways in which this can

. x—1 1 . ..
occur is ( 1 ) . Each trial is independent; r of them result in successes, giving the

term p” in Eq. (5.70). The remaining (x — r) trials result in failure, giving the term
(1—p)* " The product of these three factors gives the negative binomial probability
distribution (5.70) on X.

W Example
The probability that a person will purchase high-test gasoline at a certain
service station is 0.20.

a) Whatis the probability that the first high-test purchase will be made by the
fifth customer of the day?

b) Whatis the probability that the third high-test purchase will be made by the
10th customer of the day?

Solution

a) This part is solved by the geometric distribution. If purchasing high-test
gasoline is considered a success, then we use p=0.20 and x=5 in
Eq. (5.60) to obtain

Pr(X = 5) = (1-0.20)° '(0.20) = (0.80)*(0.20) = 0.0819. (5.71)

b) The negative binomial distribution applies. Using p=0.20, as before,
r=13 (purchase number), and x = 10 (customer number) in Eq. (5.70), we
find

Pr(X = 10) = (]‘30:11)(0.20)3(1—0.20)1"*3

= (2) (0.20)*(0.80)” = 0.0604. (5.72)




Problems

The negative binomial distribution can result as the sum of r geometric random
variables in the following way. The geometric distribution describes the trial X at
which the first success occurs, and the negative binomial describes the trial Y
at which the rth success occurs. Assume that the probability of success, p, is the
same for both of these experiments. Also, let X; be the number of trials until the first
success, X, be the number of trials from the first until the second success occurs,
and so on with X, being the number of trials from the (r — 1)th success until the rth
success. Then

Y=X+X+ - +X, (573)

since each X; has the geometric distribution with parameter p and they are
independent. This relationship allows for simplified calculations of E(Y) and
Var(Y). Since the X; are independent and identically distributed geometric random
variables, it follows that

EY)=EX+X%+ - +X) :rlzi (5.74)
pp
and
Var(Y) = Y Var(x) = rl% - %. (5.75)
i=1

An alternative form of the negative binomial distribution is provided by the
distribution of the number of failures Y that precede the rth success:

Pr(Y = y) = < Y+Yr_1 )pr(lfp)y, y=12,... (5.76)

In this case, the factors p" and (1 — p)* account, respectively, for r successes and y
failures among the r + y independent trials. The last trial consists of the rth
success. The binomial coefficient in Eq. (5.76) then gives the number of different
ways in which y failures and the other (r — 1) successes can occur in the remaining
(y + r—1) trials.

Problems

5.1 Show that the probability distribution (5.1) is normalized.

5.2 Ten identical paper slips numbered 5, 10, ..., 50 are placed in a box. A slip
is randomly drawn and its number, X, is recorded. It is then placed back in
the box.

a) Describe a probability distribution that may be associated with X, stating
any assumptions necessary.

b) Using the distribution, obtain the mean value of X.

¢) Using the distribution, obtain the variance of X.

113



114

5 Discrete Distributions

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

Let X be a Bernoulli random variable such that X= 0 with probability (1 — p)

and X=1 with probability p. Find

a) E(X);

b) Var(X).

Show that the binomial model (5.7) is the same as the Bernoulli model with

n=1.

A neutron either penetrates a target with a probability of 0.20 or else is

deflected with a probability of 0.80. If five such neutrons are incident in

succession on the target, what is the probability that

a) the first three pass through and the last two are deflected?

b) all five pass through undeflected?

c) none pass through undeflected?

d) at least one passes through?

e) What is the relationship between the last two answers?

Tests show that 0.20% of TLD chips produced by a new process are defective.

Find the probability that a given batch of 1000 chips will contain the following

numbers of defective units:

a) zero;

b) one;

c) three;

d) five.

In the last problem, what is the probability that a batch of 1000 chips will have

no more than three defective units?

For a binomial random variable with n = 20 and p = 0.30, use either Eq. (5.7) or

Table A.1 to find

a) Pr(X < 4);

b) Pr(2<X<4);

¢) Pr(X > 9);

d) Pr(x=6).

a) For a fixed number of trials, how does the spread of the binomial
distribution vary with the probability p of success of each Bernoulli
trial?

b) For what value of p does the variance have an extremum?

c) Is the extremum a maximum or a minimum?

Use Eq. (5.7) to derive the mean, Eq. (5.13), and variance, Eq. (5.15), of the

binomial distribution.

a) Calculate b(6; 10, 0.4) from Eq. (5.7).

b) Use Table A.1 to obtain b(6; 10, 0.4).

a) Use Table A.1 to evaluate Pr(X < 12) with p=0.70 and n=20.

b) What is the value of Pr(X>12)?

Calculate the value of the first term (x =5) in the summation in Eq. (5.16) by

using

a) the binomial distribution (5.7);

b) the Poisson distribution (5.27).



5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21
5.22

5.23

5.24

Problems
a) For the binomial distribution, prove that

bx+1Linp)  p(n—x)

b(x;n,p)  (1-p)(x+1)
forx=0,1,2,...,n—1.
b) Use this recursion formula to calculate the binomial distribution for n =5

and p=0.30.
A group of 1000 persons selected at random is sampled for a rare disease,
which occurs in 0.10% of the population. What is the probability of finding in
the group
a) two persons with the disease?
b) at least two persons with the disease?
A long-lived radioisotope is being counted at a mean rate of 20 min'. Find
a) the distribution of the number of particles X recorded in half-minute
intervals;

b) E(X;
c) Var(X);
d) Pr(x>12).
An alpha-particle monitor has a steady background rate of 8.0 counts per hour.
What is the probability of observing
a) five counts in 30 min?
b) zero counts in 5 min?
) zero counts in 60 min?
a) Inthe last problem, if a 5-min interval passes with zero counts, what is the
probability that there will be no counts in the next 5 min?
b) What is the probability for having no counts in a 10-min interval?
c) What is the relationship between the two probabilities in (a) and (b)?
Show by direct substitution that the Poisson distribution function (5.38)
satisfies Eq. (5.33).
For the Poisson distribution, show that the probability of observing one fewer
than the mean is equal to the probability of observing the mean.
Verify Egs. (5.43) and (5.44).
If X has the hypergeometric distribution (5.49), show that the mean and
variance of X are given by Egs. (5.50) and (5.51), respectively.
Six squares in a uniform grid of 24 have hot spots. An inspector randomly
selects four squares for a survey. What is the probability that he or she selects
a) no squares having hot spots?
b) exactly two squares with hot spots?
c) at least two squares with hot spots?
A certain process makes parts with a defective rate of 1.0%. If 100 parts are
randomly selected from the process, find Pr(f< 0.03), where f=X/n is the
sample fraction defective, defined as the ratio of the number of defective
parts X and the sample size n.
a) Use the binomial distribution.
b) Use the Poisson approximation.
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5.25

5.26
5.27

5.28

5.29

5.30

5.31

5.32

A process makes parts with a defective rate of 1.0%. A manager is alerted if the
sample fraction defective in a random sample of 50 parts is greater than or
equal to 0.060.

a) Ifthe processisin control (i.e., the defective rate is within 1.0%), what s the
probability that the manager will be alerted?

b) If the process worsens and the defective rate increases to 5.0%, what is
the probability that the manager will not be alerted, given this higher
rate?

Solve the last problem by means of Poisson statistics.

Let X have the hypergeometric distribution (5.49). Show that the distribution

on X converges to a binomial b(x; n, p), with p=Fk/N remaining fixed while

N — o0. (As a rule of thumb, the binomial distribution may be used as an

approximation to the hypergeometric when n < N/10.)

(Hint: Begin by showing that

k N—k
Pr(xm)(m)((N”)"‘) (;)%

form=0,1,...,n,

where (r); = (r—1)(r—2) -+ (r—j + 1). Then rewrite the equation in terms of
p=k/N)
A crate contains N= 10000 bolts. If the manufacturing process is in control,
then no more than p=0.050 of the bolts will be defective. Assume that the
process is in control and that a sample of n =100 bolts is randomly selected.
Using the binomial approximation, find the probability that exactly three
defective bolts are found. (Exact treatment with the hypergeometric distribu-
tion gives the result 0.1394.)
Compute the finite population correction factor for the example involving
Eq. (5.57).
A potential customer enters a store every hour on the average. A clerk has
probability p = 0.25 of making a sale. If the clerk is determined to work until
making three sales, what is the probability that the clerk will have to work
exactly 8h?
Skiers are lifted to the top of a mountain. The probability of any skier making it
to the bottom of the run without falling is 0.050. What s the probability that the
first skier to make the run without falling is
a) the 15th skier of the day?
b) the 20th of the day?
c) either the 15th, the 16th, or the 17th?
In a match against one another, two tennis players both have an 85% chance of
successfully making their shot (including service). Any given point ends the
first time either player fails to keep the ball in play.



5.33

5.34

Problems

a) What is the probability that a given point will take exactly eight strokes,
ending on the missed eighth shot?

b) What is the probability that a point will last longer than three strokes,
including the last shot?

c) Ifthe first player serves and has a success probability of 0.85 and the second
player has a success probability of only 0.70, repeat (a).

d) Which player loses the point in (c)?

e) Repeat (b) under the conditions given in (c).

A ®°Co atom decays (99 + % of the time) by nuclear emission of a B~ particle,

followed immediately by two y photons (1.17 and 1.33 MeV) in succession.

Assume that these radiations are emitted isotropically from the nucleus

(although the two photon directions are, in fact, correlated). A small detector

is placed near a point source of *°Co.

a) What is the probability that the first five entities to strike the detector are y
photons and that the sixth is a  particle?

b) What is the probability that the first five are §~ particles and the sixth is a
photon?

c) What is the probability that the first B~ particle to strike the target is either
the fifth, sixth, or seventh entity that hits it?

In the original statement (5.70) of the negative binomial distribution, X is the

number of the trial at which the rth success occurs. In Eq. (5.76), Yrefers to

the number of failures that occur until the rth success. Thus, Y=X—r. By

using this transformation in Eq. (5.70), show that Eq. (5.76) results.

17



6
Continuous Distributions

6.1
Introduction

Conditions and constraints associated with discrete random variables usually lead to
a probability model that can be chosen with little doubt. In contrast, for continuous
data there might be several probability distributions that fita given set of observations
well. The true distribution associated with a continuous random variable is hardly
ever known. There are goodness-of-fit techniques (Chapter 14) that allow one to check
assumptions about distributions, but these are applied after data collection. A
number of continuous distributions are available to provide alternatives for modeling
empirical data. There are many situations where the physical model of the process
under study leads to a good choice of the probability distribution, as we shall see with
the exponential function in Section 6.7. In this chapter, we look at several of the most
prominent continuous distributions used in statistical analysis of data. Additional
continuous distributions are discussed in Johnson et al. (1994).

A number of useful tools, including statistical calculators, tables, and demonstra-
tions of statistical principles, are available on the World Wide Web. Values of the
probability densities and cumulative functions can be obtained for many
distributions.

6.2
Continuous Uniform Distribution

Here we derive the probability density function for the continuous uniform distribution,
corresponding to that for discrete variables in Section 5.2. We consider a random
variable X that has support, or positive probability, only over a finite closed interval
[a, b]. If the probability that X lies in any subspace A=[x;, x,] of this
interval is proportional to the ratio of (x, —x;) and (b — a), then we may write

X2 — X1

Pr(XeA)=c e

(6.1)

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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where cis the constant of proportionality. Since the probability that Xlies in [a, b] must
be unity, it follows that c=1. The cumulative probability function is

0, x < a,
X —a b

Fx)=Pr(X €ax]) ={ h_gq 4S%<PH (6.2)
1, x> b.

We find by differentiation (see Eq. (4.14)) that the probability density function for the
random variable X is

! a<x<b
f(x){b—a’ T (6.3)

0, elsewhere.

The term uniform is attached to a random variable whose probability density function
is constant over its support; thus, we say here that X has the uniform distribution.

W Example
Let X have the uniform distribution over the interval [a, b].

a) Obtain the mean of X as a function of a and b.

b) Obtain the variance of X.

¢) If a=0 and b=1, determine the numerical values of the mean and
variance.

Solution

a) Using Eq. (6.3), we find for the mean,

T x —a®> a+b
/,tI_J xf(x)dszb dx:z(bfu): B (6.4)

b) To find the variance, we use Eq. (4.48), for which we need

b
2 3 3 2 2
n_ [ * b -a’ b +ab+a
E(X)_Jb—adx_3(b—a)_ 3 (65)

a

From Eq. (4.48), then

_P+ab+a® (at+b)’ (b—a)

Var(X) 3 7 0 (6.6)
) Direct substitution into Egs. (6.4) and (6.6) gives
0+1 1
ol (6.7)

2 2



6.2 Continuous Uniform Distribution
and

(1-07> 1

Var(X) = TREEETE

(6.8)
Note that the value of u coincides with the midpoint of the support over X.

The continuous uniform distribution plays an important role in the generation of a
random sample from the probability distribution function f{x) for a given continuous
random variable X. If we make the transformation Y= F(X), where F(x) is the
cumulative distribution for X, then 0 < Y < 1 over the entire range of values of X. With
the help of Eq. (4.125), we can write the transformed probability density function g(y)
on Y, where 0 <y < 1. Substituting the inverse function x = F ' (y) = w(y) and y = F(x)
into Eq. (4.125), we obtain

dx
dy

1

dw(y)
) aF ey

gl = w] |52 =

(6.9)

Since, by Eq. (4.14), the derivative of the cumulative distribution function is equal to
the probability density function, it follows that

gy)=1, 0<y<1l (6.10)

We thus have the important result that, if Xis a continuous random variable having a
probability density function f{x) and cumulative distribution function F(x), then the
random variable Y= F(X) has a uniform distribution g(y) on [0, 1]. A random sample
drawn from the uniform distribution can then be used to generate a corresponding
random sample from any continuous distribution by use of the inverse function
x=F'(y).

W Example
Given the exponential probability density function
_ [5e7*, x>0,
flx) = {0, elsewhere, (6.11)

show how a random sample of values of X can be generated.

Solution

We know that the random variable Y = F(X) has a uniform distribution. Thus,
observing Y is equivalent to observing X from the distribution F(x), such that
y = F(x). To obtain the distribution in X, we need to find the inverse function,
x=F (). From (6.11), we obtain for the cumulative distribution function,

x
F(x) = JSe’S’ dt=—-e>f=1-e"* 0<x<o0, (6.12)
0
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and F(x) =0 elsewhere. Then, letting y = F(x) and solving for x yields

In(1 -
yo =y (6.13)
5
which is defined over the range 0 <y< 1. Random numbers Y selected
uniformly over the interval [0, 1) in Eq. (6.13) will generate values of X having

the probability density function f{x) given by Eq. (6.11).

This example illustrates how a uniform random number generator allows one to
generate random samples from any continuous distribution. The solution was simple
here, because the cumulative distribution function has an analytical form. When the
cumulative function is not known analytically, one can still use the result implied by
Eq. (6.10). However, one then has to use algorithms to compute the values of x that
satisfy the relationship y= F(x). The use of random number generators and such
numerical, rather than analytical, calculations are readily handled with digital com-
puters and with manyhand-held calculators. In Chapter 12, we shall see examples of the
generation of random samples from given probability distribution functions — samples
needed in order to solve problems by Monte Carlo techniques. Such computational
methods are extensively used in radiation protection for shielding and dosimetry.

Source

Example

Individual photons from a point source in Figure 6.1 can be directed at an
adjustable angle 0 to travel in the plane of the page toward a flat screen (shown
edgewise in Figure 6.1), placed a unit distance away. A photon thus strikes the
screen somewhere along a vertical line at a position y relative to an arbitrary
reference point O, as indicated. The source itself is located opposite the point
y=r1. If photons are emitted randomly with a uniform distribution of angles,
—1/2 <O < +m/2, find the probability density function for their arrival
coordinates Y on the screen.

/ ’

F— Unit Distance

Screen

Figure 6.1 Screen, seen edge-on, located at unit distance from an isotropic point source of
photons. See example in the text.



6.2 Continuous Uniform Distribution

Solution
The uniform probability density function f{f) on © is given by

1 T T

s Ty S 0 S 5

f0)= {“ 2 2 (6.14)
0, elsewhere.

The density on Ycan be found from the transformation procedure, Eq. (4.125).
The relationship between the random variables ® and Y is given by
tan #=y—1, the source being unit distance away from the screen. The
inverse relationship is  =tan ' (y — 7). Differentiating, one has

o__ 1 (6.15)
dy 1+(y-1)
Substitution into Eq. (4.125), with § =w(y) =tan"'(y — 1), gives
_ 1 1 1
g(y) =f[tan™" (y - 7)] ; (6.16)

1+(y—r)zzgl+(y—r) ’

with —oo <y<oo. A random variable Y having this probability density
function, shown in Figure 6.2, is called a Cauchy random variable. As
discussed below in Section 6.9, this distribution is the same as the Student’s
t-distribution with one degree of freedom. A unique characteristic of the
distribution is the fact that it has an infinite mean.

Figure 6.2 Cauchy distribution, Eq. (6.16).
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6.3
Normal Distribution

The normal, or Gaussian, distribution is the most widely used probability distribution
in statistics. Its importance is due to its general applicability in a large number of
areas and due to the fact that many sample statistics tend to follow the normal
distribution. This latter circumstance is described by the central limit theorem, which
is discussed in the next section. In addition, observations often entail a combination
of errors from several sources, thus increasing the tendency toward a Gaussian
distribution. For example, a temperature measurement might be affected by pres-
sure, vibration, and other factors, which can cause slight changes in the measuring
equipment, leading to variability in the result. It can be shown that sums of random
variables often tend to have a normal distribution. Thus, a measurement, which
includes the sum of errors induced by different factors, frequently tends to be
normally distributed.
The normal density function for a random variable X is given by

1 —1(zwy?
f(x)= ZJwe 2Ve ), —o0<x<00. (6.17)

The distribution is characterized by two independent parameters, 4 and o, the
mean and standard deviation, with —co <y <oo and o >0. The density is a
symmetric, bell-shaped curve with inflection points at 4 + o (Problem 6.11). We
introduce the symbol “~” to be read “is distributed as.” The fact that a random
variable X is normally distributed with mean u and standard deviation o can then be
conveniently indicated by using the shorthand notation, X~ N(u, 0).

One can employ the so-called standard normal distribution in place of Eq. (6.17) to
deal with many different problems having a wide range of possible values for u and o.
The standard normal is, in essence, a dimensionless form of the normal distribution,
having zero mean and unit standard deviation. We introduce the (dimensionless)
standardized variable,

X—u

zZ="—". (6.18)

The quantity Z expresses the displacement of X from the mean in multiples of the
standard deviation. To transform the distribution (6.17) from Xinto Z, we employ Eq.
(4.125). The inverse function for doing so is, from Eq. (6.18), x =w(z) = 0z + u, and
so dw/dz = 0. When we substitute into Eq. (4.125), the factor o from the derivative
cancels the factor o in the denominator of Eq. (6.17). The transformed function,
therefore, does not depend explicitly on either o or . It thus represents the normal
distribution (6.17) with zero mean and unit standard deviation (4 =0and 0 = 1), and
so we write it as

—00 < z< 00. (6.19)



6.3 Normal Distribution

The probability density function f{z) is called the standard normal distribution. Since
it is normally distributed, we may also describe it by writing Z~ N(0, 1). The

cumulative distribution is given by
z

Fz) = Pr(Z <2) = —= J e /2 g, (6.20)
The two distributions, (6.19) and (6.20), are shown in Figure 6.3. Also, numerical
values for the cumulative standard normal distribution (6.20) are given in Table A.3.
Often one is interested in the probability that a measurement lies within a given
number of standard deviations from the mean. The shaded area in Figure 6.4a, for
instance, gives the probability that Z falls within the interval one standard deviation
on either side of the mean. Numerical integration of Eq. (6.19) gives the result

Pr(—1< Z < 1) = Pr(|Z] < 1) = 0.6826. (6.21)
The probability that Z falls outside this interval is
Pr(|Z] > 1) =1 — 0.6826 = 0.3174, (6.22)

shown by the shaded regions in Figure 6.4b. This latter value is commonly referred to
asa “two-tail” area, giving the probability that Z has a value somewhere in either tail of
the distribution, outside the symmetric shaded area in Figure 6.4a. In counting
statistics, the probability for exceeding a certain number of counts is often used for
control purposes. Such a probability can be represented by a “one-tail” portion of the
standard normal curve to the right of the mean. Since the distribution is symmetric,
the one-tail probability is one-half the two-tail value. From Eq. (6.22) we have

Pr(Z > 1) = 0.1587, (6.23)

as indicated by the one-tail area in Figure 6.4c.

W Example
Use Table A.3 to verify the results given by Egs. (6.21)—(6.23) for Figure 6.4.

Solution

Table A.3 gives numerical values of the cumulative standard normal distri-
bution F(Z) defined by Eq. (6.20). The shaded area in Figure 6.4a is equal to the
difference in the cumulative function at the two boundaries (see Eq. (4.13)).
From the table,

Pr(—1 <z < 1) =F(1) — F(—1) = 0.8413 — 0.1587
= 0.6826, (6.24)

as given by Eq. (6.21), above. Using Table A.3 to evaluate the probability
outside the shaded area, we write
Pr(|Z] > 1) = F(—1) +[1 — F(1)] = 0.1587 + [1 — 0.8413]
=0.3174, (6.25)
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(a)

1.0 ~

(b)

F(2)

0.5

-4 -3 -2 -1 0 1 2 3 4

Figure 6.3 (a) Standard normal distribution, Eq. (6.19). (b) Cumulative distribution, Eq. (6.20).
as obtained before in Eq. (6.22). Finally,
Pr(Z>1)=1-F(1) =1—0.8413 = 0.1587. (6.26)

We see that the areas of the two tails are equal, and that the one-tail area in this
example is given numerically by F(—1), whether to the right or to the left of the
shaded area.
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()
N2)
Area = 0.6826
|
4
Two-tail
(b) Area=0.3174
Az)
|
2 3 4
()
One-tail
1@ Area = 0.1587

Figure 6.4 Areas under several different
portions of the standard normal distribution
determined by one standard deviation from the
mean, u = 0. (a) Area of the shaded region gives
the probability, 0.6826, that the random variable

has a value within one standard deviation
(z==£1) of the mean. (b) Two-tail shaded
area outside one standard deviation is 0.3174.
(c) One-tail area outside one standard deviation
is 0.1587.
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Table 6.1

One-tail areas under the standard normal
distribution from z to oc.

Area

0.000
0.675
1.000
1.282
1.645
1.960
2.000
2.236
2.576
3.000
3.500
4.000
4.753
5.000
6.000
7.000

0.5000
0.2500
0.1587
0.1000
0.0500
0.0250
0.0228
0.0100
0.0050
0.0013
23x107*
32x107°
1.0x10°°
29%x1077
1.0x107°
1.3x 10712

Table 6.1 lists some one-tail areas for the standard normal distribution to the right of
the mean. For instance, one finds the value given by Eq. (6.26) for z=1. This result
implies that, for any normally distributed random variable, the probability is 0.1587 that
its value exceeds the mean ¢ by one standard deviation o or more. One sees, also, that
there is a 5% chance that a randomly chosen value from a normal distribution will lie
beyond 1.6450. The probability quickly becomes very small for an observation to be
outside several standard deviations. The chances are one in a million that it will be more
than 4.7530 beyond the mean and only one in a billion that it will be beyond 6.0000.
These areas, given by 1 — F(z) (=F(—z)), are complementary to values found in Table
A3 for the cumulative normal distribution. It is interesting to compare the behavior
shown in Table 6.1 with Chebyshev’s inequality, Eq. (4.115) (see Problem 6.19).

W Example

Solution

a) Pr(0.34<Z<131);
b) Pr(—0.56 < Z < 1.10);
¢) Pr(—1.20 < Z < —0.60).

We use Table A.3 throughout:

= 0.9049 — 0.6331 = 0.2718.

Find the following probabilities for the standard normal distribution:

(a) Pr(0.34 < Z < 1.31) = F(1.31) — F(0.34)

(6.27)
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(b) Pr(—0.56 < Z < 1.10) = F(1.10) — F(—0.56)
= 0.8643 — 0.2877 = 0.5766. (6.28)

(c) Pr(—1.20 < Z < —0.60) = F(—0.60) — F(—1.20)
=0.2743 — 0.1151 = 0.1592. (6.29)

These probabilities are shown by the shaded areas in Figure 6.5.

For typical problems in practice, the mean will not be zero and the standard
deviation will not be unity. One can still use the standard normal table for numerical
work by transforming the problem into the standardized variable Z, defined by
Eq. (6.18). If X is normally distributed with mean u and standard deviation o
(indicated by the notation X~ N(u, 0)), then

Pr(u<X<b):Pr<a_M<X_H<b_M)

o o o
:Pr(“_”<z<b_—”>. (6.30)
o o

Here we have subtracted ¢ from each of the three quantities a, X, b and then divided
by o, operations that do not change the equalities in (6.30). The middle term thus
becomes the standard normal variable Z. The probability that X lies in the originally
specified interval (a, b) is thus identical with the probability that the transformed
variable Z lies in the corresponding interval shown in this equation. Both the X and
the Z distributions are normal. The respective intervals in the second equality
of (6.30) are the same, expressed by the number of standard deviations to the left
and to the right of the means of both distributions. Since Z ~ N(0, 1), one can employ
the standard normal Table A.3 to find probabilities for X. The next example illustrates
this procedure.

W Example
Given X~ N(100, 10), find Pr(80 < X < 120).

Solution

We are given the normally distributed random variable X with mean x =100
and standard deviation 0 =10. As shown by Eq. (6.30), we transform the
required probability statement into one for the standardized variable Z in
order to use Table A.3. To this end, we subtract # = 100 from each part of the
given probability statement and then divide by o = 10 in each part. Thus, with
the help of Table A.3, we find that

80 —-100 X —100 120- 100
Pr(8! X <120)="P 31
r(80 < X < 120) r( 0 < 10 < 10 ) (6.31)

= Pr(-2< Z<2) = F(2) — F(—2) = 0.9772 — 0.0228
= 0.9544. (6.32)
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Figure 6.5 See example in the text, Eqs. (6.27)—(6.29).

This probability is equal to the area of the shaded region under the given
normal curve in Figure 6.6a, which, in turn, is equal to the corresponding
shaded area under the standard normal curve in Figure 6.6b. Note the
differences in the scales of the axes in Figure 6.6a and b. Compared with
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(@

N(100,10)

60 70 80 90 100 110 120 130 140

(b)

-4 -3 -2 -1 0 1 2 3 4

Figure 6.6 In (a), X~ N(100, 10), and in (b), Z~ N(0, 1). The shaded area in (a), included in the
interval u £ 20 about the mean, is equal to the shaded area in (b) under the standard normal
distribution in the interval (—2 <z<2).

the random variable X, the scale of the abscissa for the standard normal Z is
10 times smaller and its ordinate is 10 times larger. The areas in Figure 6.6a
and b are identical in size, namely, 0.9544.

Example
The chromium content of soil samples in a particular region is observed to
follow a normal distribution with a mean of 5 ppm and a standard deviation of
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1.2 ppm. What is the probability of a particular soil sample yielding a reading
of 7.4 ppm or greater?

Solution
If X denotes the amount of chromium in a soil sample, then we are given
X~ N(5, 1.2). We are asked to make the following evaluation:

X—u_74-5
Pr(X >74)=P > .
(X >7.4) 1'( > 2713 ) (6.33)
=Pr(Z >2.0)=1-Pr(Z < 2.0) = 0.0228. (6.34)

This probability is the same as that represented by the unshaded area to the
right under the standard normal curve in Figure 6.6b.

The normal distribution is also called the Gaussian distribution or, simply, “the
Gaussian,” in honor of the German mathematician, Carl Friedrich Gauss
(1777-1855). It was, however, actually discovered in 1733 by the French mathema-
tician, Abraham de Moivre (1667-1754) who, among other things, was particularly
skilled in the application of probability theory to gambling. The numerous contribu-
tions of Gauss and his place in scientific history were also recognized in his native
country’s currency. The former German 10-Mark bill, shown in Figure 6.7, displays
his picture and the famous formula and its plot. This note was legal tender until the
beginning of 2002, when the euro replaced the traditional currencies of Germany and
most other member nations of the European Union.

6.4
Central Limit Theorem

In the last section, we mentioned the special importance of the normal distribution,
because, among other things, it describes the behavior of the sampling distribution of
many statistics, such as sample mean, median, and others.

To illustrate, we consider the distribution of average values, X = (1/n) Y1, X;,
obtained when random samples of size n are drawn from a population having finite

Figure 6.7 German 10-Mark bank note honoring Gauss and the normal distribution.
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mean x and standard deviation o. The mean uy, of this distribution, which is called
the sampling distribution of the means, is the same as the mean of the population
from which the drawing is made: u = u. We state without proof that the standard
deviation 0% of the sampling distribution is equal to o/+/n. (A proof is given later,
Eq. (8.24).) Thus, the standard deviation of the sampling distribution of the means is
smaller than that of the sampled distribution by the factor y/n. Although it is unlikely
that a given value of X will exactly equal u, values of X might be expected to be closely
distributed about u, particularly if the sample size n is large. These relationships
between the sampling distribution of X and the original population, characterized
by u and o, are summarized by writing
o

Uz =u and ogx= T (6.35)
The quantity 0%, which is called the standard error of the mean, becomes vanishingly
small as n increases without limit, and the mean X approaches the true mean u.
Whereas o reflects the uncertainty in a single measurement, o/+/n reflects the
uncertainty in the sample mean from a sample of size n.

The sampled population itself might have a normal distribution. If so, then the X;
in a sample are also normally distributed, and the sampling distribution of means will
have a normal distribution, exactly, with parameters given by Eq. (6.35). For other
population distributions, the sampling distribution of the mean will be approxi-
mately normal when # is sufficiently large, generally when n > 30. The approxima-
tion to the normal improves as the sample size increases, approaching the normal in
the limit as n — oc.

These remarkable results are formalized in the following statement, which casts
the random variable X in terms of the standard normal variable.

Central Limit Theorem
If X is the mean of a random sample of size n drawn from a population with finite
mean u and standard deviation o, then in the limit as n — oo the distribution on X
converges to the normal with mean u and standard deviation o //n. Using the symbol “~”
to be read “is approximately distributed as,” we represent the central limit theorem for means
in a compact form by writing
XyN(%Tﬁ). (6.36)

The symbol “~” is meant to imply that the distribution converges to the normal in the
limit as n increases without bound. Alternatively, we can express the central limit theorem
for the mean in terms of the standard normal variable,

X —u
z=""£
o/’

by writing

(6.37)

ZAN(0,1). (6.38)
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Proof of the central limit theorem can be found in advanced texts (e.g., Walpole and
Myers (1989), p. 216).

The power of the central limit theorem lies in the fact that it holds for any
distribution, discrete or continuous, that has a finite mean and finite standard
deviation. Furthermore, if the sampled population is normal, then the sampling
distribution will always be normal exactly, without the above-mentioned restriction,
n>30. In place of Eq. (6.38) one can then write Z~ (0, 1), where the symbol “~”
without the dots denotes an exact relationship, as defined following Eq. (6.17).

The central limit theorem can also be applied to the sum Y, = Y"1 | X; = nX ofn
independent and identically distributed random variables X; with the same mean u
and standard deviation o. If we multiply the numerator and denominator on the
right-hand side of Eq. (6.37) by n, we obtain

_annpt_Ynfn,u

z .
o o (6.39)
which still satisfies Eq. (6.38). Comparison with Eq. (6.36) implies that
Y, "N (nu, v/no). (6.40)

Returning to Eq. (6.35), we note that the second relationship applies strictly to an
infinitely large population or to a finite population that is sampled with replacement.
Ifa finite population of size n, > nis sampled without replacement, then the standard
deviation of the sample distribution of the mean is given by (Problem 6.23)

o [a,—n
= 41
% = Ji\lny =1 (6.41)
in place of that shown in Eq. (6.35). The additional factor, not present in Eq. (6.35),
is called the finite population correction factor. The relationship uy = u given by
Eq. (6.36) remains the same.

W Example

A total of 20 random air samples taken one afternoon in a large outdoor area
were analyzed for their airborne radon concentration. The mean Rn concen-
tration of the 20 samples was found to be 8.1 Bqm > and their standard
deviation, 1.6 Bgm™>. The true, underlying distribution of the airborne Rn
concentration is not known.

a) What information can one offer about the population of the means of
samples of size 20 taken from this site?

b) Estimate the probability of finding a mean greater than 8.4 Bqm > when
20 such independent, random samples are analyzed.

Solution

a) If we assume that each of the samples is independent and identically
distributed, then we can apply the central limit theorem. Although the
number of samples, n =20, is smaller than the general criterion of 30
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(5.13) and (5.15)), is a case in point. Its relationship to the normal distribution can be
described as follows.

Theorem
For a random variable X having the binomial distribution, X~ b(x; n, p),

np(1—p)

6.5 Normal Approximation to the Binomial Distribution

given for the theorem to assure a very good approximation, it is reason-
able to assume that the distribution of the sample means would be at
least approximately normal. Using the only measurements provided,
we estimate that the unknown population mean is ¥ = 8.1Bqm >
and the standard deviation is s=1.6 Bqm™>. The central limit theorem
as expressed by Eq. (6.35) then gives for the distribution of the
sample mean,

iz =i =%=81Bqm > and (Tf—i—i——lﬁ
=0.36Bqm . (6.42)

With the help of Eq. (6.36), we thus describe the distribution of the sample
mean by writing

X<N(8.1,0.36), (6.43)

with the units Bq m > implied. The central limit theorem states that the
sample mean is approximately normally distributed with a mean of
8.1Bq m~> and a standard deviation, or standard error, of 0.36 Bq m~3,
Notice how the central limit theorem provides a factor of /n smaller
uncertainty for the mean than that for the individual measurements.
Using the result (6.42) and Z~N(0, 1), as implied by Eq. (6.38), we find
from Table A.3 that

Pr(X > 8.4) = Pr(% > %) =~ Pr(Z > 0.83)

=0.2033. (6.44)

We thus estimate the probability to be about 0.20.

Normal Approximation to the Binomial Distribution

In addition to describing sample statistics, the normal distribution can often be used
to approximate another distribution. If the latter has a finite mean and variance, then,

rtain conditions, the normal will do a good job of representing it. The
distribution, Eq. (5.7), with mean u = np and variance o = np(1 — p) (Egs.

6.1

X" N0,1). (6.45)
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The theorem states that the normal distribution with parameters n and p provides
an accurate representation of the binomial when n is large. Furthermore, the

binomial distribution approaches the normal in the limit as n — oo. The degree

to which the normal approximates the binomial distribution as represented by
Eq. (6.45) depends on the values of n and p. When p = 1/2, the binomial distribution
is, like the normal, symmetric. For a given degree of accuracy in the approximation,
the restriction of large nis then less severe for pnear 1/2 than for p closertoOor 1. Asa
rule of thumb, the normal approximation to the binomial distribution is adequate for
many purposes when np and n(1 — p) are both greater than about five.

Example
Find the probability of getting from 10 to 15 (inclusively) heads with 20 tosses
of an unbiased coin by using

a) the exact binomial model and
b) the normal approximation to the binomial distribution.

Solution

a) The number of heads X is distributed according to the binomial proba-
bilities (Eq. (5.7)) b(x; n, p) with n=20 and p = 1/2. Using the cumulative
probabilities in Table A.1, we find

Pr(10 < X < 15) = B(15;20,0.5) — B(9;20,0.5)
=0.994 — 0.412 = 0.582. (6.46)

b) We employ the normal distribution with the same mean and standard
deviation as in (a), namely,

u=np=10 and o= /np(1—p)=+5. (6.47)

The histogram of b(x; 20, 0.5) and the superimposed normal distribution
N(10,+/5) are shown in Figure 6.8. The probability for each value of the
random variable X is equal to the area of the histogram bar of unit width
centered about that value of X on the abscissa. The exact probability
calculated in (a) is indicated by the shaded area of the histogram elements
between x=9.5 and x=15.5. Converting these boundaries into values of
the standard normal variable and using Table A.3, we find for the
approximate probability as included under the standard normal curve,

(6.48)

Pr(9.5 < X < 15.5) = pr(9-5 —10 M)

NI

= F(2.46) — F(—0.22) = 0.9931 — 0.4129 = 0.580.  (6.49)

Comparison of Egs. (6.49) with (6.46) shows that the normal approximation
gives a result that differs from the exact answer by about 0.3%. In this example,
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Figure 6.8 Exact binomial (histogram) and normal approximation (solid curve) for example in the
text.

np=mn(1 — p) = 10, which satisfies the rule of thumb value (>5) given above for the
general validity of the approximation. In addition, the approximation is best when
p=1/2, asis the case here. Figure 6.9 illustrates how the normal approximation to the
binomial distribution appears under two altered conditions from this example. In
Figure 6.9a, n has been changed from 20 to 40; in Figure 6.9b, n is again 20, while p
has been changed from 1/2 to 1/5. Compared with Figure 6.8, the change to larger n
in Figure 6.9a improves the approximation. The change of p away from 1/2 while
keeping n =20 in Figure 6.9b results in a poorer approximation.

In the last example, the binomial probabilities were represented by histogram bars
with heights Pr(X=x) = b(x; n, p) and unit widths, centered on integral values of x
along the abscissa. The areas of the bars are thus equal to the binomial probabilities.
As seen from Figure 6.8, when the histogram is approximated by using a continuous
probability distribution, such as the normal, some portions of the rectangular bars are
wrongly excluded from under the curve, while other portions outside the bars are
wrongly included. When calculating continuous approximations to the discrete
probabilities, one should apply the additive continuity correction factors of +1/2
to the continuous random variable. The particular factors to be applied depend on the
information sought. The following indicates some of the rules, in which the exact
binomial probabilities are approximated by using the cumulative probability, F(z), of
the continuous variable:

for Pr(X < a)use F(w) ,

. (6.50)

for Pr(X > a)usel — F(%), (6.51)
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Figure 6.9 (a) Same conditions as in Figure 6.8, except that n has been changed from 20 to 40,
improving the approximation. (b) Same as Figure 6.8, except that p has been changed from 1/2 to
1/5, showing that the approximation is not as good as when p=1/2.

for Pr(a < X < b) use F(%) - F<$) (6.52)

Other rules can be similarly formulated (Problem 6.24).

Example
If X~ b(x; 100, 0.05), use the normal approximation to determine the
following probabilities, with and without the continuity correction factors:

a) Pr(X>3);
b) Pr(10 <X<20).
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Solution

a) Ignoring the continuity correction factors, we simply use X=3 in
Eq. (6.45). The mean of the binomial distribution is np =100 x 0.05 =5,
and the standard deviation is

Vnp(1 —p) = /100 x 0.05(1 — 0.05) = 2.18. (6.53)

Therefore, from Eq. (6.45),

Pr(X >3) = Pr (z > %) =Pr(Z > —0.92) (6.54)

=1— F(—0.92) =1 —0.1788 = 0.8212. (6.55)

With the continuity correction factor, in this case Eq. (6.51),

25—
Pr(X23)%Pr<Z> >3

> ) = Pr(Z > —1.15) (6.56)

=1—F(—1.15) = 1 — 0.1251 = 0.8749. (6.57)

This value is considerably closer to the exact answer, 0.8817, than the
uncorrected result (6.55).
b) With no continuity correction factor, Eq. (6.45) implies that

10-5 205
Pr(10 < X < 20) =P <z< =Pr(2.29< Z<6. .
r(10 < X < 20) r(2.18 <z< 2.18) r(2.29< Z<6.388) (6.58)
= F(6.88) — F(2.29) = 1.000 — 0.9890 = 0.0110. (6.59)

With the correction factor (6.52), one finds

Pr(10 < X <20) 2 Pr (9'251;5 <z< 202'51; 5) =Pr(2.06<Z2<7.11) (6.60)
= F(7.11) — F(2.06) = 1.000 — 0.9803 = 0.0197. (6.61)

The exactanswer is 0.0282. The corrected result (6.61) is closer than (6.59),
but still has a relatively big error. The parameter n is large here, but p is
rather far removed from the optimum value of 1/2 for use of the
approximation. Whereas the normal approximation is always symmetric,
the binomial distribution is very skewed in this example. The nonzero
binomial probabilities, though small, extend out to x =20 in Figure 6.10.
The normal distribution extends to infinity in both directions.
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Figure 6.10 Binomial distribution, b(x; n, p) (histogram), and normal approximation (solid curve)
for example in the text, parts (a) and (b).

The normal distribution is very convenient to use as an approximating distribution
because its standard cumulative distribution is readily tabulated. The next example
illustrates its use in radioactive decay to solve a practical problem that would offer
considerable difficulty to compute by using the exact binomial formulation.

W Example

A 37-Bq (1-nCi) source of pure **K contains 2.39 x 10° atoms. The half-life is
12.36 h. Consider the probability that from 27 to 57 atoms (inclusive) will
decay in 1s.

a) Solve for the probability by using the normal approximation to the
binomial distribution.
b) Use the exact binomial model for radioactive decay to set up the solution.
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Solution

a)

A=x

We let p be the probability that a given atom will decayin 1 s. Since u = 37 is
the mean number of atoms that decay in this time from among the
n=2.39 x 10° present,

u 37
=== —0.0000155. 6.62
P T 239 % 10° (6:62)

(Note that this probability for decay in 1 s is numerically equal to the decay
constant of the nuclide in s *.) The standard deviation is

Vnp(1—p) = \/2.39 x 10°(0.0000155)(1 — 0.0000155) = 6.08.  (6.63)

Applying Eq. (6.52) with appropriate continuity correction factors, we find
for the probability that the number of disintegrations Xin 1 s will be in the
declared interval,

265 — 5—
Pr(27§X§57)%Pr< 665083732357650837)
= Pr(-1.73< Z < 3.37) (6.64)

= F(3.37) — F(—1.73) = 0.9996 — 0.0418 = 0.9578.  (6.65)

The problem is thus readily and accurately solved by using the normal
approximation.

We are asked to set up, but not solve, the problem with the exact binomial
model. One has (Egs. (5.7) and (5.8))

PHX = 2) = bsinp) = (1 =) (6.66)

Substituting the numerical values of n and p, we have for the exact answer,

Pr(27 < X <57)

57 6

2.39 x 10°)!

=) (2.39 x - ) (0.0000155)%(0.9999845)>3%10°~
5 %!1(2.39 x 10° — x)!

(6.67)

This expression involves the sum of products of some extremely large and
small numbers, necessitating the use of practical approximations. In so
doing, one is led naturally to the more readily handled Poisson approx-
imation to the binomial, which we described in Chapter 5 (Eq. (5.27)).
(This example is an extension of one given in Turner (2007), pp. 310-311.
Also, see the last example in Section 2.5 of the present book.)
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6.6
Gamma Distribution

The gamma distribution is useful in the analysis of reliability and queuing, for
example, times to the failure of a system or times between the arrivals of certain
events. Two special cases of the gamma distribution find widespread use in health
physics. These are the exponential and the chi-square distributions, discussed in the
next two sections.

The gamma distribution for a continuous random variable X has two parameters,
k>0 and A > 0. Its density function is"

w forx >0
flka) = TR ’ (6.68)
0, elsewhere.
The mean and variance are (Problem 6.30)
u :E and o? :%. (6.69)
By way of review, the gamma function is defined for k>0 as
['(k) = e dx. (6.70)
0
It satisfies the recursion relation
I(k+1) = kI(k), (6.71)

as can be shown by integration of the right-hand side of Eq. (6.70) by parts (Problem
6.31). When k is a positive integer, then repeated application of Eq. (6.71) gives

T(k+1) =k, (6.72)

the factors terminating with I'(1) =0l=1.

Gamma distributions can assume a variety of shapes, depending on the values of
the parameters k and A. Figure 6.11 shows the density functions for A =1 and several
values of k. We turn now to the density function for k=1.

6.7
Exponential Distribution

When k=1, the gamma distribution (6.68) becomes the exponential probability
density function

flwa) = {

1) Some texts use f=1/4 in place of 1 in the definition (6.68).

le ™ x>0,

0, elsewhere. (6.73)
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Figure 6.11 Gamma distributions for A =1 and different values of k from Eq. (6.68).

As we have seen, this important continuous random variable can be used to describe
the discrete process of radioactive decay. We next discuss its relationship to the
Poisson process (Section 5.5).

We showed by Eq. (5.38) that the Poisson distribution describes the probability p.(t)
for the number of events X that occur in time t when the mean number of events per
unit time is 1. We now consider the random variable T that describes the time taken
for the first event to happen. The probability that no events (X = 0) take place during
the time span from zero up to T=t is, from Eq. (5.38),

_ et

po(t) =—5—=¢e" (6.74)

Letting the random variable T be the time to the first Poisson event, we have for the
probability that no event occurs in the time interval (0, t),

Pr(T >1t) =e ™. (6.75)
Therefore,
Pr(T<t)=1-—e*, (6.76)

thus providing the cumulative distribution for the first-event times. (These same
functions describe the survival and decay probabilities, Eqs. (2.21) and (2.22), for
radioactive decay of an atom.) Differentiation of the right-hand side of Eq. (6.76) with
respect to t (see Eq. (4.14)) gives the probability density function for the arrival times
of the first Poisson event:

A e—it7

s ={5 s (6.77)

otherwise,
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in agreement with Eq. (6.73). We derived this density function in an earlier chapter
from another standpoint (Egs. (4.36) and (4.37)). We showed there that its mean and
standard deviation are both equal to 1/4 (Eqgs. (4.38) and (4.52)), which agrees with
Eq. (6.69) when k=1.

We see from Eq. (6.77) that the time to first arrival for a Poisson process has an
exponential distribution. If failures happen randomly according to a Poisson process,
then the resulting times to occurrence have an exponential distribution. In this way,
the exponential as well as the more general gamma distributions prove useful for
describing reliability and the time to failure of industrial products and components.
Applied to radioactive decay, Eq. (6.77) describes the distribution of the decay times of
a large number of identical radionuclides. (See Eq. (5.27) and the discussion
following it.) The parameter A is the decay constant, and the mean life is 1/4.

W Example
An alpha-particle counter has a steady average background rate of 30 counts
per hour.

a) What fraction of the intervals between successive counts will be longer
than 5 min?

b) What fraction will be shorter than 30s?

¢) Whatis the probability that, between two successive counts, a time interval
will occur whose length is within two standard deviations of the mean
length of the intervals?

Solution

a) The number of alpha particles counted per unit time is Poisson distrib-
uted. The probability density function for the decay events is described by
Eq. (6.77) with parameter A =30h"" and t in hours:

_ [30e3% t>0,
fo = {07 otherwise. (6.78)
The fraction of successive intervals that are longer than 5min=1/12h is
given by
1 oo
Pr(T > ﬁ) =30 J e 30 dp = e730/12 = 0,0821. (6.79)
1/12

b) The fraction of successive intervals shorter than T=30s=1/120h is
1/120
1) _ —30 34 _
Pr(T < 120) =30 J e dt = 0.221. (6.80)

¢) The count rate of 30h™" corresponds to a mean interval length of 2 min,
which is also the standard deviation for the exponential distri-
bution. The relevant time interval for this example, therefore, goes from
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t=2—4=—2minto t=2 + 4=6min, or from —1/30 to 1/10h. Using
the density function (6.78), we find (f=0 when T < 0)

1/10
1
Pr(T < E) =30 J e 3% dt = 0.950. (6.81)

Note from Table 6.1 how close this answer is to the one-tail area under the
standard normal curve within two standard deviations of the mean.

An interesting aspect of the exponential density is its “no memory” feature. If a
radionuclide has been observed not to decay for a time t, what is the chance that it will
not decay during an additional time s? In other words, what is the probability for a
random decay time T >t + s, given that T >t has been observed? If we let A denote
the event T>t + sand B the event T > t, then we ask for the conditional probability
Pr(A|B), discussed in Section 3.5. According to Eq. (3.31),

__Pr(AnB)
Pr(A|B) = Pr(B) (6.82)
The intersection of A and B is just A itself:
ANB={T>t+s}N{T >t} ={T >t+s} =A. (6.83)

Using Eq. (6.77) to describe radioactive decay, we obtain from the last two equations,

Pr(A) Pr(T >t+s) e i+

PrAB) = 5B~ T e h

=e M =Pr(T>s). (6.84)

The last term is the probability that Twill exceed s, irrespective of the fact that we have
observed T for the time t already. In other words, an “old” radioactive atom that has
already lived a time t has the same probability of living any additional time s as a newly
formed identical atom. That the older atom might have been “at risk for decay” for
some time is irrelevant. Thus, one can characterize the exponential distribution as
“having no memory.”

It can be shown that, if X;, X;, ..., X; is a random sample from the exponential
distribution with parameter /, then Y = Zf:l X; has the gamma distribution with
parameters kand 1. Since each X; has mean 1/4 and variance 1/, it follows that Yhas
mean k/4 and variance k/A% as given by Eq. (6.69).

6.8
Chi-Square Distribution

Another important continuous distribution with many applications in statistics is the
chi-square distribution. As we shall see in later chapters, “chi-square testing” is often
used to help judge whether a given hypothesis can reasonably account for observed
data. Another application is estimation of the population variance when sampling
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from a normal population. The density function for the chi-square distribution is a
special case of the gamma distribution with parameters A =1/2 and k=v/2. From
Eq. (6.68), we write it in the form

2\(v/2)=1 —»?/2
2 v 1 (X)ziev Xz 2 07
flx 55~ 2/ I'(v/2) (6.85)

0, elsewhere.

The density depends on the single parameter v, which is called the number of degrees
of freedom, or simply the degrees of freedom. Its role will become clearer in later
applications. Since the chi-square distribution is a gamma distribution, its mean and
variance are given by Eq. (6.69) (Problem 6.37):

u=v and o*=2v. (6.86)

Figure 6.12 shows some plots of the distribution for several values of v.
Letting y2, denote the value of x* with v degrees of freedom for which the
cumulative probability is a, we write

2
Xva

1 2
() e d (6.87)

a=Pr(y*<y® )——
(x ,xv.u)zv/zr(v/z)

0

Table A.4 in the Appendix gives the quantiles for y2, for v=1 to 30 degrees of
freedom and various probability values a. (A quantile, such as x; ,, refers to the value
of the variable that marks the division of the distribution into that fraction a to the left
or to the right, depending on how the quantile is defined.)

Figure 6.12 Chi-squared distribution, Eq. (6.85), for various values of the degrees of freedom .
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W Example
Answer the following with the help of Table A.4.

a) What is the value of 5 with 6 degrees of freedom below which 30% of the
distribution lies?

b) Find the value of x* with 7 degrees of freedom that cuts off 5% of the
distribution to the right.

¢) Find the probability that the value of y* with 12 degrees of freedom could
be as large as 15.0.

d) What is the probability that y* with 3 degrees of freedom will be greater
than 12.2?

Solution

a) With v=6 and a=0.300 in Table A.4, we find y2, = %¢ 43, = 3.828.

b) Inthis case, we want the value of > with 7 degrees of freedom below which
95% of the area lies. Table A.4 gives y2, = x3 .05 = 14.07.

¢) With reference to Eq. (6.87), we are asked to find a when 42, , = 15.0,
where a is the area to the left of Xzz 15.0. In Table A.4, we need to
interpolate between the two entries y3, , ;5 = 14.85 and 7, o5 = 15.81.
Linear interpolation gives X2r0758 = 15.0, and so
Pr(x* < 15.0) = a = 0.758.

d) From Table A4, %2 900 = 11.35 and 2 ; 5o = 12.84. Linear interpolation
gives 3 5093 = 12.2, or Pr(y? < 12.2) = & = 0.993. The area to the right of
12.2 is Pr(y*>12.2)=1—a =0.007.

When the degrees of freedom v > 30 are beyond the range given in Table A.4, one can
proceed as follows. It turns out that the quantity Z = (1/2y% — v/2v — 1) is then very
nearly normally distributed with zero mean and unit standard deviation. Letting xﬁ qand
z,, denote the 100ath percentiles of the chi-square and the standard normal distribu-
tions, it follows that the normal approximation to the chi-square distribution yields

1
Toa =3 (2at+ V20— 1% v>30. (6.88)

The cumulative standard normal Table A.3 can then be employed.

Often one is interested in the boundaries of an interval that cuts off equal areas of a
chi-square distribution on both ends. Unless stated otherwise, we shall assume by
convention that such an interval is always implied. As we have seen, the boundaries
for the interval are symmetric for the standard normal curve. In contrast, the chi-
square distribution is asymmetric, and therefore fixing the interval is somewhat
more involved, as the next example illustrates.

Example
A random variable has a chi-square distribution with 21 degrees of freedom.
Find the constants b; and b, such that Pr(b; < x* < b,) = 0.90.
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Solution

The interval (by, b,) is chosen to cut off 5% of the chi-square distribution on
both ends (in accordance with the convention, Pr()? < by) = Pr(y? > by)).
The relevant values of a are 0.05 and 0.95 with v=21. From Table A.4 we find
that by = y3; 05 = 11.591 and that by = y3, o5 = 32.67. Thus, the interval
(b1, by) = (11.591, 32.67) encloses the middle 90% of the distribution, as
shown in Figure 6.13, and excludes the two shaded areas of 5% on either end.

The chi-square distribution has the property of additivity, which we state here, but
do not prove. If Y, Y, .. ., Y, are independent random variables having chi-square
distributions with vy, v,, . . ., v, degrees of freedom, respectively, then Y = Y"1, Yiis
chi-square distributed with v =" ; v; degrees of freedom.

A very important relationship exists between the chi-square and normal distribu-
tions. If the random variable Z has the standard normal distribution, then Y= Z” has
the chi-square distribution with v =1 degree of freedom. To show this, we focus on
the cumulative probability distribution function G(y), writing

Gly) = Pr(Y < y) = Pr(Z2 < y) = Pr(—\F < Z < \)- (6.89)

In terms of the cumulative standard normal distribution F(z) given by Eq. (6.20), it
follows that

G(y) = F(3) — F(— 7). (6.90)

The probability density function g(y) for Yis the derivative of the cumulative function
G(y) with respect to y, as shown by Eq. (4.14). Using the chain rule, we write from
Eq. (6.90)

0.06 |-
0.04 -
S
0.02 -
b,=11.591 b,=32.67
0.00 | / | I\
0 10 20 30 40

2

X

Figure6.13 See example in the text. The values by and b, cut off 5% of the area (shaded) on the left
and right, respectively, of the chi-squared distribution with v =21 degrees of freedom.



6.9 Student’s t-Distribution

dG _ dF(yy)d(vy) _ dF(=¥) d(vy)
g(Y):Ty: dz dy  dz dy - (6.91)

The quantity dF/dz=f{z) is the standard normal density function (6.19). Also,
d(y/)/dy = (1/2)y~Y/2. Thus, with the help of Eq. (6.19), Eq. (6.91) becomes

50) = 3y U ) = L e
= \/%y‘” 2e¥/2, (6.92)

Comparison with Eq. (6.85) shows that Y= Z? has the chi-square distribution with
v=1 degree of freedom. The constant I'(1/2) = /7, and the density (6.92) is zero
when y <0.

For a normal distribution with mean u and standard deviation g, we have thus
shown that the square of the standard normal variable Z= (X—u)/o defined by
Eq. (6.18) has a chi-square distribution with one degree of freedom. Combining this
finding with the additivity property of chi-square distributions leads to a powerful
result that we shall use in later sections. If we have X;, X, . . ., X,,independent random
variables with the same normal distribution with mean u and standard deviation o,
then additivity implies that the random variable

n X — 2
v=>(*4) (6.93)
i=1

o

where the notation 2 means that Y has a chi-square distribution with n degrees of
freedom.

6.9
Student’s t-Distribution

The random variable T is defined as follows in terms of two independent random
variables Zand Ythat have, respectively, the standard normal distribution and the chi-
square distribution with v degrees of freedom:

V4
Ne7

The sampling distribution of T has Student’s t-distribution with v degrees of
freedom. Its density function is given by

T =

(6.94)

1 T((v+1)/2) AN
ht) =—=————(1+— - t 0. 6.95
(1) T TO2) + , o <t<oo, V> (6.95)
Figure 6.14 shows the t-distribution for v=1 and v=4 degrees of freedom and the
standard normal distribution. One sees that the t-distribution, which is symmetric
about zero, approaches the standard normal as v increases. The two nearly coincide
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Figure 6.14 Student’s t-distribution, Eq. (6.95), for v=1 and v=4 degrees of freedom and the
standard normal distribution N(O, 1).

when v > 30. In fact, many tables of the t-distribution simply refer to the normal
distribution after 30 degrees of freedom. At the other extreme, when v=1, h(t)
coincides with the Cauchy distribution, Eq. (6.16) with =0 (Problem 6.46).

Table A.5 in the Appendix gives the quantiles t, , of the t-distribution with v degrees
of freedom, such that the fraction a of the distribution lies to the right:

o]

4= Pr(T > 1) = J h(t)dt. (6.96)

bya

Values of « in the table range from 0.100 to 0.005. Because of the symmetry of the t-
distribution, —t, ,, is the quantile for which the fraction « of the area lies to the left.

W Example
Use Table A.5 to answer the following.

a) With 10 degrees of freedom, what value of t leaves 5% of the t-distribution
to the right?

b) What is the value of ¢t with 6 degrees of freedom that cuts off 2.5% of the
distribution to the left?

c) Find the value of t; with 21 degrees of freedom such that
Pr(—t; < T< t;) = 0.900.

d) Find Pr(—1.325 < T<2.086) for the t-distribution with 20 degrees of
freedom.

Solution
a) The quantile asked for is given directly in Table A.5, t10,0.050 = 1.812.
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b) Inthe notation of Table A.5, we are asked to find t; 9,975, which leaves 2.5%
of the distribution on its left. Using the table and the fact that the t-
distribution is symmetric, we find that t¢ 0,975 = —t50.025 = 2.447.

¢) Theinterval (—t;, t;) leaves a = 0.050 of the symmetric distribution outside
on the left and the same fraction outside on the right. With v=21, Table
A5 giVGS 11 =121,0.050 = 1.721.

d) With v=201in Table A.5, we find that £20,0.100 = 1.325and £20,0.025 = 2.026.
The value t =— 1.325 at the lower boundary of the interval excludes 0.100
of the area to the left. The value 2.086 excludes 0.025 to the right. Since the
total area outside the interval between the last two values of t is
0.100 + 0.025=0.125, it follows that

Pr(—1.325 < T < 2.086) = 1 — 0.125 = 0.875. (6.97)

The discoverer of the t-distribution in the early twentieth century was W.S. Gosset,
who published under the pseudonym “Student”; consequently, the designation
“Student’s t-distribution.” The distribution is important for comparing sample
means for a normal population when the population variance is unknown.

6.10
F Distribution

The F distribution is useful for obtaining confidence intervals or tests of hypothesis
in comparing two variances. It is also used to test whether two or more mean values
are equal. The Frandom variable is defined as the ratio of two independent chi-square
random variables, U; and U,, each divided by its respective degrees of freedom, v,
and v,:

U]/V1 _

F(v,v) = Uy Jv, Fip - (6.98)

By convention, when describing F the number of degrees of freedom v; associated
with the function U; in the numerator is always stated first, followed by v,. The
probability density function for an F random variable with v; and v, degrees of
freedom is given by

w2 (w\" g .
h(f) = F(VI/Z)F(VZ/Z) (v2> (1 4 (VZL](/VZ))(V] +v2)/2° 0 <f < 00, (6.99)
0, elsewhere.

Three examples of the density function are shown in Figure 6.15. Each depends on
the two parameters v, and v,. Quantiles for the cumulative probability,

Sa(v1,v2)
o= h(f)df, (6.100)
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Figure 6.15 Three examples of the probability density function, Eq. (6.99), for the F distribution
with degrees of freedom v; and v, shown.

are given for different values of v; and v, in Tables A.6 and A.7 in the Appendix. The
quantity f,(vq, v,) is the value of fthat includes the fraction a of the area under the
curve Fon its left and cuts off (1 — a) on its right. Tables A.6 and A.7 include only
values for a =0.95 and a = 0.99, respectively, for various combinations of v; and v,.
However, these tables can also be used to obtain values for o = 0.05 and o = 0.01 by
means of the following relation between the lower and upper quantiles of the
F distribution (Problem 6.47):

1

foelon ) = oy

(6.101)

Example
Find the F value with 5 and 10 degrees of freedom that leaves an area 0.95 to
the right.

Solution

We are asked to find f, (v1,v2) = fo.05(5, 10). Since Tables A.6 and A.7 provide
values only for = 0.95 and 0.99, we use Eq. (6.101). With a = 0.95,v; =5, and
v, =10, substitution into Eq. (6.101) gives, from Table A.6,

1 1
=~ _=0211 (6.102)

ﬂ),OS (57 10) :ﬁ.95(107 5) 4735

Example
Find values b; and b, such that Pr(b; < F < b,) =0.90, where Fis an Frandom
variable with 14 and 19 degrees of freedom.
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Solution

We follow the convention that, unless otherwise specified, intervals are
selected to cut off equal areas on both ends of the distribution. Accordingly,
we need to determine b; and b, by finding the quantiles that cut off 5% on each
end. The area between the two boundaries will then be 0.90, as required. The
right-hand boundary b, is tabulated directly in Table A.6. With a=0.95,
vy =14, and v, =19, we find b, = f,(v1,v2) = fo.95(14,19) = 2.256. The value
of b; would be given in Table A.6 by b; = fo.05(14,19), but this value is not
tabulated. We can still determine the b; boundary from the table, however,
with the help of the relation (6.101). Substituting a =0.95 into Eq. (6.101),
keeping v; and v, the same as before, and referring to Table A.6, we obtain

1 1

14,19) = -
Joos(14,19) foos(19,14)  2.400

=0.417. (6.103)

Thus, Pr(0.417 < F < 2.256) = 0.90.

6.11
Lognormal Distribution

Many population distributions are skewed with a long tail in one direction or the
other. Distributions of this kind can arise, for example, in survival analysis, envi-
ronmental measurements, and salaries earned. A frequently used model for such
data is the lognormal distribution. In this case, it is the natural logarithm Y=1In Xof a
random variable X that is normally distributed, rather than the variable X itself.

We obtain the distribution for X by transforming variables. For the normally
distributed Y with mean u, and standard deviation o,, we write from the defini-
tion (6.17)

1
B V270,

The distribution on X can be inferred from Eq. (4.125). In the present notation,
we substitute y=In x into Eq. (6.104) and then multiply by the derivative
d(ln x)/dx=1/x. Thus, the lognormal distribution is

e )20 oo <y < oo (6.104)

f)

1 2952
—(Inx—u,)"/20 _
e v v, x>0, —oo<u, <oo, gy >0,
g(x) = { V2mox ! ! (6.105)
0, elsewhere.

The two parameters u, and o, of the distribution are the true mean and standard
deviation of the transformed random variable Y=In X. Put another way, if Y is
normally distributed with mean x, and standard deviation ), then X=e" has the
lognormal distribution with density function given by Eq. (6.105).

The mean of the original variable X is

U, = ey + (1/2)05 (6106)
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and its variance is

2 2 2 2
gi — ey T20y _ 2, +0y _ Q2uy+0y (eay — 1). (6107)

W Example
If Y=In X has the normal distribution with #, =1 and 0,,= 2, determine the
mean and standard deviation for X.

Solution
From Eq. (6.106), the mean is

u, =el T2 — 3 — 2011, (6.108)
From Eq. (6.107), the variance is

Ui — 2D +22)° _ Q2(1)+(2)° _ o0 _ o6 _ eG(e4 -1

=2.16 x 10*. (6.109)

The standard deviation is

oy = Vet —1=12.16 x 10* = 147. (6.110)

6.12
Beta Distribution

The beta distribution is commonly used in modeling the reliability, X, of a system. The
distribution also arises naturally in the statistical area of Bayesian analysis, which will
be discussed in Chapter 15. The probability density function of a beta random
variable, which has two parameters a >0 and > 0, is given by
an_l(l —x)f 0<x<,
flxa,p) = T(@T(p) (6.111)

0, elsewhere.

The mean and variance are (Problem 6.53)

__a 2 _ af
Sy B A Py N

(6.112)

An important relationship exists between the gamma and beta distributions. We
consider two independent gamma random variables, X; and X,, with parameters
(a0, A) and (B, 1), respectively. Since X; and X, are independent, the random variables
Y1=X; + X;and Y, =X;/(X; + X;) are also independently distributed. The variable
Y; represents the sum of the two variables, and Y, represents the fraction of the sum
due to X;j. It can be shown that the joint probability density function for Y; is a gamma
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distribution with parameters (a + 8, 1) and that Y, has a beta distribution with
parameters (a, ) (see, for example, Hogg and Tanis (1993)).

This relationship provides an interesting result. Consider, for example, two
sources of the same radionuclide (decay constant = 1), source A having originally a
atoms and source B,  atoms. If X; and X, respectively, denote the times for each of
the two sources to decay away completely, it can be shown that X; and X, are
independent gamma variables, having parameters (@, 4) and (B, 1), respectively.
Then the above result states that, independently of the time needed for all a + j
disintegrations to occur, the proportion of the total time that comes from source A
has a beta distribution with parameters (a, (). This result is illustrated in the
next example.

W Example
Consider two sources of a radionuclide with decay constant A = 2.0 min .

Initially, source A has two atoms and source B has five atoms.

a) Describe the distribution of the total time for all atoms from both sources
to decay.

b) Calculate the mean and variance of the total time for all atoms to decay.

c) Write the density function and determine the mean and variance of the
proportion of time for source A to decay totally.

Solution

a) We let a =2 and =35, respectively, be the numbers of atoms initially
present in the two sources. The total time in minutes for both sources to
decay then has a gamma distribution with parametersa + =2 4+ 5=7
and A=2.0min" ",

b) The mean and variance for the total time are given by Eq. (6.69):

_a+f 7
A2 2.0min!

= 3.5min (6.113)

2= T 75 mint (6.114)
A (2.0min™")

¢) The density is the beta distribution (6.111) with parameters a =2 and
p=5:

Flx) = 7F(2)F(5)x(1 —x)", 0<x<1, (6.115)

0, elsewhere.

The mean and variance are, from Eq. (6.112),

a 2
= =-=0.2857 6.116
a+p 7 ( )

u
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Figure 6.16 Beta distribution, Eq. (6.115), with parameters & =2 and 8 =5. Vertical dashed line
marks position of the mean, 4 = 0.2857, for proportion of source A to decay completely. See example
in the text.

Prob|

6.1

6.2

6.3

6.4
6.5

and

a0

= —0.02551. (6.117)
2+45+1)(2+5)

Figure 6.16 shows a plot of the beta distribution (6.115) with o =2 and
B =5 for the portion of the time for source 1 to decay completely. The
dashed line marks the location of the mean (6.116).

lems

The random variable X has a uniform distribution on the interval [0, 1]. Find

a) Pr(X>0.5);

b) Pr(0.3<X<0.7);

¢) Pr(X<0.3).

If X has the uniform distribution on the interval [0, 100], determine

a) E(X);

b) Var(X).

Use the defining Eq. (4.44) for the variance in place of Eq. (4.48) to compute the

result given by Eq. (6.8).

Verify the probability density function (6.14) and show that it is normalized.

The spectrum of energy losses g for the scattering of a fast neutron of energy E,

from hydrogen, shown in Figure 4.5a, is a uniform distribution.

a) Whatis the probability thata collision of a 5.21-MeV neutron will reduce its
energy to a value between 3.37 and 3.39 MeV?
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Problems

b) What is the probability that the energy of the 5.21-MeV neutron after the
collision will lie in any energetically possible interval of width 0.020 MeV?

c) Write the cumulative energy-loss spectrum from Eq. (4.132) for —oo < g
< 00 and sketch it.

Show that the Cauchy distribution (6.16) is normalized.

Refer to Figure 6.1 and consider an unshielded source of photons that are

randomly emitted isotropically (in three dimensions) from a point source and

strike the screen over its surface in two dimensions. Let ¢ be the distance from

the intersection of the perpendicular to the screen (at 7) and the point where a

photon hits the screen.

a) Find the probability density function on g, where 0 < < co.

b) Show that this probability density function is normalized.

Show that Eq. (6.19) follows from Egs. (6.17) and (6.18).

Verify that the standard normal distribution (6.19) is normalized.

For the normal distribution, Eq. (6.17), show that E(X)=u and Var(X) =

E[(X—u)*] =0’ (Hint: Starting with Eq. (6.17), make the change of vari-

ables (6.18) and then integrate by parts, remembering that the function (6.19)

is normalized.)

Show that the normal distribution (6.17) has inflection points at x = + 0.

For the random variable Z with the standard normal distribution, determine

the following:

a) Pr(Z> 1.96);

b) Pr(—1.96 < Z< 1.96);

c) Pr(Z<1.28);

d) Pr(—1.28<Z<1.28).

The amount of coffee, X, dispensed per cup by an automatic machine has a

normal distribution with a mean of 6.00 ounces and a standard deviation of

0.25 ounce. What is the probability that the amount of coffee dispensed in a

cup will be

a) less than 5.50 ounces?

b) between 5.50 and 6.50 ounces?

¢) more than 6.25 ounces?

The average neutron fluence rate from a sealed 2**Cf source, determined

from many measurements, is normally distributed with mean 2.58 x 10'°

cm™* 57! and standard deviation 0.11 x 10'°cm™?s™'. (The change in

source strength over the measurement period is negligible.) What is

the probability that a subsequent measurement will indicate a neutron

fluence rate of

a) less than 2.36 x 10'"°cm %51

b) between 2.36 x 10'® and 2.79 x 10'°cm 25 '?

¢) greater than 2.69 x 10°cm %5~

The sealed *°*Cf source in the last problem is stored in a pool of water, which

provides a biological shield when the source is not in use. Water samples are

periodically taken from the pool and analyzed for total alpha-particle activity to

verify that the source encapsulation has not failed and that radioactive material
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6.16

6.17

6.18

6.19

6.20

6.21

is not leaking. Measurements of the net alpha-particle activity concentration

in the water have a mean of 0.0253Bql™"' and a standard deviation of

0.0128 Bq1™". (The net activity concentration is the difference between the

sample measurement and that of an otherwise identical sample known to have

no added activity.) For control purposes, net results exceeding 0.0509 Bq1™*

are taken to indicate an abnormal condition that requires additional testing.

Assume that the source is not leaking and that measurement results are from

the net background alpha-particle activity alone.

a) What is the probability that a measurement will yield a net total alpha-
particle activity concentration exceeding 0.0278 Bq1™"?

b) What proportion of measurements will yield net total alpha-particle activity
concentration between 0.0003 and 0.0509 Bq1™'?

c) What proportion of measurements will exceed the level above which
additional testing is required?

A manufacturing process produces bolts that have a length that is normally

distributed with mean 1.0000 cm and standard deviation 0.0100 cm.

a) What is the probability that a bolt’s length will exceed 1.0196 cm?

b) What proportion of bolts will have lengths between 0.9800 and 1.0200 cm?

The amount of rainfall in a year for a certain city is normally distributed with a

mean of 89 cm and standard deviation of 5 cm.

a) Determine the annual rainfall amount that will be exceeded only 5% of the
time.

b) Determine what percentage of annual rainfall amounts will qualify as a
drought year of 74 cm or less.

¢) Whatis the probability that rainfall is between 79 and 99 cm in a given year?

The time it takes a health physicist to travel daily from work to home is

normally distributed with mean 43.0 min and standard deviation 4.2 min.

a) Whatis the probability that it will take longer than 50 min to get home from
work?

b) What travel time will be exceeded in 99% of the trips?

Chebyshev’s inequality as expressed by the relation (4.115) gives a rigorous

upper bound for the two-tail probability for any random variable X.

a) Determine this upper bound when X lies outside the interval 4 + 3.20.

b) From Table 6.1, what is the exact two-tail probability for a normally
distributed random variable?

Passengers flying on a certain airline have baggage weights that are normally

distributed with mean weight 15.0kg and standard deviation 3.0kg. If 30

passengers board a flight,

a) What is the probability that the average baggage weight lies between 14.3
and 15.7 kg?

b) What is the probability that the total baggage weight exceeds 482.2 kg?

Let X be the random number of spots that show when an unbiased die is rolled.

a) Calculate the mean and standard deviation of X.

b) Determine the mean and standard deviation of the sampling distribution
for the mean number of spots X that show when the die is rolled twice.
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c) Make a plot of Pr(X).
d) Make a plot of Pr(X).

6.22 The die in the last problem is rolled 20 times.

a) What are the mean and standard deviation of the sampling distribution?
b) Make a rough sketch of Pr(X).

6.23 Verify Eq. (6.41).

6.24 Write appropriate rules, similar to Egs. (6.50)—(6.52), for
a) Pr(X<a);

b) Pr(X>a);
c) Pr(a<X<bh).

6.25 For X~ b(x; 20, 0.4), use the normal approximation to determine the follow-
ing, with and without continuity correction factors:
a) Pr(X<5);

b) Pr(6<X<13);
) Pr(6<X<13).

6.26 Compare the answers to the last problem with the exact answers found from
Table A.1.

6.27 The example involving Eq. (6.48) in the text used continuity correction factors.
a) Repeat the calculations without applying these factors.

b) What are the percentages of error made with and without the factors?

6.28 In order to see whether her new proposal will be favored by the public, a
politician performs a survey on 100 randomly selected voters.

a) Use the normal approximation to the binomial distribution to find the
probability that 60 or more of the persons sampled would say that they
favored the proposal, if the true proportion in favor were 0.50.

b) Express the exact probability by assuming that the binomial model is
correct, but do not calculate the value.

6.29 A new manufacturing process for special thermoluminescent dosimeter
(TLD) chips is said to be in control if no more than 1% of its product is
defective. A random sample of 100 specimens from the process is examined.
a) If the process is in control, what is the probability of finding at most three

defective chips?

b) Suppose that the process has slipped, and now 5% of the product is
defective. What is then the probability of finding at most three defective
chips from a random sample of 100?

6.30 Show that the mean and variance of the gamma distribution are given by
Eq. (6.69).

6.31 a) Show that the recursion relation (6.71) follows from the definition (6.70) of

the gamma function.

b) Show that 0!=1.

c) Show that T'(1/2) = /7.

6.32 Show that the exponential probability density function (6.73) is normalized.

6.33 Forarandom variable X that has the exponential distribution (6.73), show that
a) E(X)=1/4
b) Var(X)=1/2"
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6.34

6.35

6.36

6.37

6.38

6.39

6.40

6.41

6.42

6.43

The number of persons entering a store is Poisson distributed with parameter

A =20 customers per hour.

a) What is the mean time in minutes between successive customers?

b) What is the probability that the time between two successive customers is
from 1 to 5 min?

The length of time that a patron waits in queue to buy popcorn at a certain

movie theater is a random variable, having an exponential distribution with

mean y =4 min.

a) What is the probability that a patron will be served within 3 min?

b) What is the probability that exactly three of the next five persons will be
served in less than 3 min?

c) What is the probability that at least three of the next five persons will be
served in less than 3 min?

Show that Eq. (6.84) can be written as

Pr(T >s) = Pr(T > t+s|X > t).

Verify Eq. (6.86) for the mean and variance of the chi-square distribution with v

degrees of freedom.

a) With 17 degrees of freedom, what value of y* cuts off 5% of the area of the
distribution to the right?

b) Find Pr(y* < 20.00).

c) Find Pr(y*> 31.00).

d) Calculate Pr(20.00 < x> < 31.00).

a) What range of values includes 99% of the chi-square distribution with 10
degrees of freedom?

b) What is the mean value of y??

¢) What is the standard deviation?

Use Eq. (6.88) to find the upper 5% point for the chi-square distribution with

40 degrees of freedom.

a) The text states that /2y —/2v—1 is approximately distributed as
standard normal when v is large. Use this fact to approximate the upper
2.5 percentile for the chi-square distribution with v=30.

b) In addition, the central limit theorem implies that (y*> — v)/+/2v is also
approximately standard normal for large v. Work part (a) by using this
approximation.

c) Compare with the exact value in Table A.5.

Let X3, X3, . . ., X0 represent a random sample from a normal population with

zero mean and unit standard deviation. For the variable Y = z}ﬁl X2,

determine

a) Pr(Y<7.267);

b) Pr(3.940 < Y< 18.31).

The random variable X has a uniform distribution on the interval [0, 1].

a) Determine the probability density function for Y=—2In X.

b) Show that Y has a chi-square distribution with 2 degrees of freedom.
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a) For Student’s t-distribution with 5 degrees of freedom, find the value of t
below which 90% of the distribution lies.

b) Find the value of t with 8 degrees of freedom that cuts off 5% of the
distribution to the right.

a) Find the probability that the value of t in the t-distribution with 15 degrees
of freedom could be as large as 1.90. (Use linear interpolation.)

b) With 13 degrees of freedom, find the value of a such that
Pr(—a<T<a)=0.95.

Show that Eq. (6.95) with one degree of freedom leads to the Cauchy

distribution (6.16) with 7=0.

Prove Eq. (6.101).

For the Fdistribution with 4 and 12 degrees of freedom, find the value of fthat

a) leaves an area of 0.05 to the right;

b) leaves an area of 0.95 to the right.

Find values b, and b, such that Pr(b; < F < b,) = 0.90 for an Frandom variable

with 8 and 12 degrees of freedom.

The random variable Y=In X has a normal distribution with mean 1 and

variance 4.

a) Determine ¢; and ¢, such that Pr(¢; < Y < ¢;) = 0.95.

b) Use part (a) and the fact that Y=In X to determine a; and a, such that
Pr(a1 <X< az) =0.95.

Given that Y=In X is normally distributed with mean 1.5 and variance 3.0,

determine Pr(0.0954 < X < 28.4806).

If Y=1In Xhas a normal distribution with 4y =2 and oy = /3, determine the

mean and standard deviation for X.

Derive the relations (6.112) for the mean and variance of the beta distribution.

Let Y be distributed as a beta random variable with a =1 and S =3.

a) Calculate the mean and variance of Y.

b) Find the value of b for which Pr(Y > b) = 0.05.

c) Find the value of a for which Pr(Y <a)=0.05.

d) Using these values of a and b, show that Pr(a < Y < b) = 0.90.

Consider two sources of a radionuclide with decay constant A = 2.0 min ™.

Initially, source A has three atoms and source B has five atoms.

a) Describe the distribution of the total time for all atoms from both sources to
decay.

b) Calculate the mean and variance of the total time for all atoms to decay.

c) Write an equation whose solution would determine the median of the total
time for all atoms to decay.

d) Describe the distribution of the portion of the time that comes from
source A.

e) Determine the mean and variance of the proportion of the time for source A
to decay totally.
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7
Parameter and Interval Estimation

7.1
Introduction

This chapter treats the practical problem of estimating (1) the numerical value of a
parameter that characterizes alarge population from which we can sample and (2) the
uncertainty associated with that estimate. We discuss point and interval estimates,
how they can be calculated, and their interpretation. For example, what is the “best
value” to report for a population mean, estimated on the basis of a given sample of
data? What is the uncertainty in the value thus reported? What statistical distribution
is associated with the estimator itself?

The next chapter, on the propagation of errors, treats the uncertainty in a quantity
that is derived from a combination of random variables, each with its own random
error.

7.2
Random and Systematic Errors

How reliable is the numerical value assigned to a physical quantity that one measures
or observes? A practical way to answer this question is to repeat the measurement a
number of times, in exactly the same way, and examine the set of values obtained.
Experimental uncertainties that can be thus revealed are called random errors. For
example, the period of a pendulum can be measured directly by using a stopwatch to
determine the time it takes the pendulum to return to its position of maximum
displacement in one complete swing. Repeated measurements will generally yield a
distribution of the times that are obtained for different swings. An obvious source of
error in this procedure is the variability in the instant at which the watch is started or
stopped relative to the precise location of the pendulum at the beginning or end of a
swing. Without bias, the watch will sometimes be started a bit early or a bit late. From
the distribution of the timed values for a number of observations made in the same
way, one can get a reliable estimate of the random error that is thus occurring in
the determination of the pendulum’s period. In general, the precision in the

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
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determination of a quantity is reflected in the spread, or range of values, obtained
when repeated, independent measurements are made in the same way. Precision can
be expressed quantitatively in terms of the variance or standard deviation computed
from the results of the measurements.

In contrast to random errors, systematic errors are not revealed through repeated
measurements. If the stopwatch runs too fast or too slow, this condition will cause a
systematic error in the individual measurements of the period. This kind of error will
not be detected by repeated observations, and it will always affect the results in the
same way. If the watch runs too fast, for instance, the effect is to make the measured
value of the pendulum’s period too large. Systematic errors always reduce the
accuracy of the result obtained. Whereas random errors can usually be assessed
from repeated observations, systematic errors are often hard to detect or even
recognize and evaluate. However, steps can be taken to reduce them and improve
accuracy. Such steps include careful calibration of equipment, comparison with
measurements made at other laboratories, and review and analysis of one’s mea-
surement procedures. The accuracy of the stopwatch should be checked against a
certified time standard for possible corrections to its readings. Calibration is an
extremely important element of any radiation monitoring program.

In the treatment of errors and error propagation in this and the next chapter, we
shall not address systematic errors in experimental data. While this subject is
extremely important, it is outside the scope of this book. We shall deal only with
the effects and assessment of random errors.

7.3
Terminology and Notation

A parameter is a value associated with a probability distribution that helps
characterize or describe that distribution. For example, the binomial distribution
depends on two parameters, n and p, representing the number of trials and the
probability of success. If we know them both, then we can write down the distribution
explicitly and calculate probabilities. Similarly, the Poisson distribution is completely
determined by the single rate parameter, . The normal distribution has two
parameters, the mean and variance, usually denoted by 4 and o7, that identify it
completely. The single parameter, called degrees of freedom, characterizes the
chi-squared distribution. A parameter can also be a function of other parameters.
For instance, the variance of the binomial random variable with parameters nand pis
also a parameter, given by 0 = np(1 — p).

The dimensionless coefficient of variation (CV) is defined as the ratio o/u of the
standard deviation o and the mean u of a distribution. It thus represents the standard
deviation of the distribution in multiples of its mean. The coefficient of variation is
often used to compare populations with varying means or to express the relative
variation of the population as a percentage of the mean. For example, one might want
to measure the variability in the responses of two ionization chambers, having
sensitive volumes of different sizes, when exposed to X-rays under the same
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conditions. The larger chamber would tend to show the greater variation due simply
to the larger amount of charge it collects. A way of standardizing the variation for
comparing the two chambers is to use the relative response, or coefficient of
variation.

A statistic is any function of the observable random variables from a random
sample that does not depend upon any unknown parameters. An example of a
statistic is the sample mean or median. Another important example of a statistic is the
sample variance, defined as

@ Z?zlno_al—foz 7 (7.1)

where X is the sample mean and » is the number of observations. In contrast, the
quantity

g2 _ %—ﬂ)z (72)

qualifies as a statistic only when the population mean u is known.

A point estimate of a population parameter is the single value of a statistic obtained
for that parameter from data collected from the population. The statistic that one uses
is called the estimator. In general notation, for the population parameter 6 we let 0
denote the value, or point estimate, of the statistic ®. For example, the value it = & of
the statistic X obtained from a random sample X3, X,, . . ., X, is a point estimate of the
population mean u. The sample mean X is the estimator, and the sample value ¥ is
called the point estimate, or simply the estimate.

7.4
Estimator Properties

In addition to X, there are other statistics that one can use to estimate the population
mean u. For instance, the sample median or any single X; could serve as an estimator
of u. However, these estimators behave differently from X. In general, we want an
estimator to be unbiased, consistent, and have small variability. We discuss these
properties next.

The first characteristic, unbiased, means that the expected value of the estimator
equals the parameter being estimated. For the random sample Xj, X5, ... , X,, the
statistic © is said to be an unbiased estimator for the parameter 6 if

e = E(©) = 0. (7.3)

Thus, in repeated samples, if we obtain 01,0, ...,0,, thenthe average value of these
estimators should be close to the true value . In other words, © is a statistic, having
its own associated distribution; if © is unbiased for 6, then the mean of the
distribution on © is 6.
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The second property, consistency, implies that a larger sample size will provide a
more accurate estimate of a population characteristic. In a practical sense, more
sampling leads to a better estimate. Consistency is one reason why we do not use
any single observation from a sample as an estimator. Itis nota consistent estimator.
For instance, we might sample an entire population completely (a process called
a census). We would then know the population mean exactly, without error. We
could elect to use any single observation to estimate the population mean.
However, the variance associated with this estimate is the same, regardless of
how many items in the population we sample. Using all the observations in the
population and calculating the average yields u with zero variability. A much
more precise definition of consistency is found in Garthwaite, Jolliffe, and Jones
(2002).

With the third property, we want to select an estimator having the smallest
variability, restricted, however, to those that are unbiased. An unbiased estimator
with a smaller variance than any other unbiased estimator is called the minimum
variance unbiased estimator (MVUE).

Any estimator that is a function of the random sample will generally vary from
sample to sample. One does not expect an estimator to yield the exact value of the
parameter it is estimating — there will generally be some random error in the
estimation. The variability of this error in repeated sampling will be reflected in the
variability in the sampling distribution of the estimator. For two unbiased estimators
@1 and ©, for 6, if the variance 0 of @1 is smaller than the variance 0 of @2, then
one says that @1 is more eﬁﬁaent than 82

W Example

Letthe random sample X3, X5, . . ., X, of size n represent the number of counts
in a given, fixed amount of time from a long-lived radioactive source. If the
distribution of counts is Poisson with parameter 4, then it can be shown that
the MVUE is

A= —Zizl % (7.4)

a) Show that 4 is an unbiased estimator for A.
b) Find the variance of 4.
¢) Is A a consistent estimator?

Solution

a) Toprove that A is unbiased, we must show that ts expected value is A. From
Eq. (7.4) we write

_ E(%ZX) . %Z E(X)). (7.5)
i=1 i=1
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Since each X;is distributed as a Poisson random variable with parameter 4,
it follows that E(X;) = 4 for each i. Hence, the sum on the right-hand side of

Eq. (7.5) is just n4, and so the last equality gives E(1) = 4.
b) The variance of 4 is given by

3 1< 1 z
Var(A) = Var (H;Xi) = ﬁ\/ar <; Xi>. (7.6)

Since the variance of the sum of the independent random variables X; is
equal to the sum of the variances (Section 4.3), we find that

. 1 1< A
Var(1) = ﬁva(Xi) = ﬁzi == (7.7)
i=1 i=1

e

¢) The above result also shows that 1 is a consistent estimator. That is, as n
gets larger, the variance of 1 gets smaller. All of the estimators that we
discuss in this chapter are consistent.

Estimation theory is a rich and extensive field in itself, which we can only touch
upon here. Table 7.1 summarizes the estimation of parameters for several common
distributions, or populations, for a random sample X;, X;, . . . , X, of size n. In each
case, the estimator is the unique MVUE for that population. Table 7.1 lists the point
estimator for the parameter of interest.

Table 7.1 Minimum variance unbiased estimator for parameters of several distributions
(n=number of observations).

Population Parameter Estimator

Normal with mean y and variance o u a=X

FX11,0) = e 027060

n - 3\2
V2no o Pr 2i-1 (X —X)
n—1
Poisson with parameter A: A i=X
ko2
PX—k) =% ; k=0,1,2,...

R X n+1 _ X—1 n+1
Discrete uniform with values 1, 2, . . ., 6: 0 0= (max X;) - (max X )n
(max X;)" — (max X;— 1)

P(Xi:k):%forkzl,z,...ﬁ

5 -1 n-1
Exponential with parameter : A A= ﬂn I -
i—1 i
S X n nx
fx; ) =Ae™ x>0
. . . - Z?:l Xi
Binomial with parameters p and n: p p==""= where X;=1

(z)ﬁ(l -p"* if success, or X; =0 if not
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It can be shown that the statistic S* defined by Eq. (7.1) is an unbiased estimator of
the population variance 6. Consider a random sample of size n drawn from a normal
population with variance o, From Eq. (7.1) we write the following and state without
proof that

n R, 2
(n—-1)8* ) <X X) ~yi(n — 1), (7.8)

2
o = o

where the notation means that the quantities have the chi-squared distribution with
(n — 1) degrees of freedom. This statement can be compared with Eq. (6.93), in which
the population mean appears rather than X. The sum (6.93) from the normal
population has the chi-squared distribution with n degrees of freedom. Since X is
a computed quantity for the sample, the sum (7.8) is distributed as a chi-squared
random variable with (n—1) degrees of freedom. When drawn from a normal
population, the sample mean itself has a normal distribution. Thus,

X~ N(ﬂ,%). (7.9)

It can be shown that the distributions of X and S given by the two important results
embodied in Egs. (7.8) and (7.9) are independent.

7.5
Interval Estimation of Parameters

While valuable, a point estimate will rarely give the true parameter value exactly.
Often of more practical importance is knowledge of a numerical interval in which the
true parameter value lies with a high degree of confidence. Such a determination is
called an interval estimate, the subject of this section.

Each of the parameter estimators shown in the last column of Table 7.1 for
different distributions has, itself, an associated sampling distribution. For example,
we can randomly sample from a population and estimate the population mean by
using the sample mean X. If we sample the population again (for convenience,
keeping the sample size n the same), we obtain a second value for X, which is likely
different from the first value. Sampling k times produces a distribution of sample
means, X1, Xz, . . . , Xg, which form the sampling distribution. The standard deviation
of a sampling distribution is called the standard error.

7.5.1
Interval Estimation for Population Mean

We consider first the sampling distribution of the means obtained by sampling from
a population that is normally distributed with standard deviation o. Equation (7.9)
tells us that the sampling distribution of X is normal, with the same mean value as the
population from which it is derived and a standard deviation that is smaller than that
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of the original population by a factor v/n. Thus, the standard error for the mean, when
sampling from a normal population, is o/+/n. By using this information, it is possible
to obtain an interval estimate about the mean within which we are confident that the
true mean lies. We obtain this interval from Eq. (7.9) and the laws of probability theory
in the following way.

From Eq. (7.9) and Eq. (6.18), it follows that, for the sampling distribution of the
standardized mean when the population standard deviation o is known,

X -
=ori”

We can write, for the standard normal distribution,

N(0, 1). (7.10)

Pr(—zq/, < Z < 2z4p) =1-a, (7.11)

where z,,, is the quantity that cuts off an area of size a/2 to the right under the
standard normal curve. By symmetry, —z,, cuts off an area a/2 to the left. According
to Eq. (7.11), the probability that the value of Z lies between these two limits is,
therefore, 1 —2(a/2) =1 — a. Substituting for Z from Eq. (7.10) gives, in place of
Eq. (7.11),

Pr ( Zgj2 < /f<z"/2> =1-a. (7.12)

Solving the inequality for u yields (Problem 7.8)

— o = o
PI’<X*ZQ/2W<IM<X+ZQ/2W) =1—-a. (713)

Thus, the interval

(5( 2y \/_ X + 242 \;’_) (7.14)

forms what is called a 100(1 — )% confidence interval for 4. One must be careful to
understand the interpretation of such an interval. When a sample is collected, X
computed, and the interval (7.14) determined, there is no guarantee that the interval
actually contains the true value u. The interpretation is that 100(1 — @)% of the
intervals so constructed in repeated sampling are expected to contain u. Thus, for a
given sample, one can be 100(1 — a)% confident that the interval contains the true
value u.

Depending on the application at hand, different confidence intervals may be
employed. Perhaps the most common is the standard error. The width of the
symmetric interval about the estimated mean is then two standard deviations. For
the standard normal curve, the value of z,/, in Eq. (7.11) is then exactly 1, and so
a/2=0.1587 (Table 6.1 or A.3). The 100(1 — a)% confidence interval for the one
standard error is thus 100(1 — 2 x 0.1587)% = 68.3%. A measured mean count rate
and its one standard error for a long-lived source might be reported, for example, as
850 + 30 cpm. This statement implies that the true mean count rate has been found to
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be between 820 and 880 cpm, with a probability of 0.683. (As emphasized in the last
paragraph, however, there is no certainty that the true mean even lies within
the stated interval.) Another quantity, the probable error, is defined such that the
confidence interval is 50%; that is, there is a 50-50 probability that the true value lies
within the range specified, which is £0.675 standard deviations (Problem 7.9). When
a result is reported without a specific statement that defines the interval, the one
standard error is usually, but not always, implied.

W Example

The mean of potassium concentrations in body tissue from whole-body
counts of 36 randomly selected women aged 22 y is 1685 mgkg " of body
weight. State the standard error and find the 95 and 99% confidence intervals
for the mean of the entire female population of this age if the population
standard deviation is 60 mgkg .

Solution

The point estimate of the population mean x is ¥ = 1685 mgkg ', and the
population standard deviation is 0 = 60 mgkg . The standard error for the
sample mean with sample size n=36 is 6//n = 60/6 = 10. (We shall omit
writing the units for now and insert them at the end.) With the standard
normal function, the z value leaving an area of 0.025 to the right and,
therefore, an area of 0.975 to the left is 205 =1.960 (Table 6.1 or A.3).
Hence, the 95% confidence interval for u is, from (7.14),

X - 1.960-2, X + 1.960 - (7.15)
960, 960 ). .
This reduces to
(1665 mg kg~!,1705 mg kg 1). (7.16)

For the 99% confidence interval, the value that cuts off 0.005 of the area to the
right is g 005 = 2.575. One finds

- o - o
X —2575—,X+2.575— 1
( 7 N +2.57 \/ﬁ)’ (7.17)
or
(1659 mg kg™!, 1711 mg kg ™). (7.18)

We note that a higher confidence level requires a wider interval.

Determination of the interval (7.14) depends on knowing the true population
variance, 0. This quantity (as well as the true mean) is rarely known in practice. One
can then use the sample variance S to estimate o* and then proceed as described
above, using, however, the Student’s t-distribution (Section 6.9). When the sample
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comes from a normal distribution with both mean u and variance 6 unknown, we
can use X and S? to form, like Eq. (7.10),

_X-—u
TﬁS/\/ﬁ'

From Egs. (7.8), (7.9), and (6.94), one can show that the sampling distribution of T1is
the Student’s t-distribution with (n — 1) degrees of freedom (Problem 7.13). Because
T as defined by Eq. (7.19) contains u, which is unknown, it is not a statistic. The
quantity Tis called, instead, a pivotal quantity. If u is assumed known, the distribution
of Tis known, and this pivotal quantity can be used to derive confidence limits. (Some
texts do not distinguish between statistics and pivotal quantities.) We can now use
the quantiles of the Student’s t-distribution in a manner similar to that employed
for the normal distribution in the last section. That is, using the fact that the
t-distribution is symmetric about the origin, we define the confidence interval by
first writing the probability statement

(7.19)

Pr(ftn—l‘a/Z <T< tn—l‘a/Z) =1—-a. (720)

Substituting for T from Eq. (7.19) and arranging terms to get u alone between the
inequality signs, we find that

- S . S
Pr <X —th1,a/2 7ﬁ <u <X+ th—1,a/2 7%) =1-a. (721)

Thus, the 100(1 — @)% confidence interval for 4 when ¢ is unknown is given by
(Problem 7.14)

_ S - S
(X = tr1,0/2 N X+th1a W) - (7.22)

The interpretation of this interval is the same as that described for (7.14). With
repeated sampling, the true mean is expected to lie within the interval 100(1 — a)% of
the time.

W Example

Cobalt pellets are being fabricated in the shape of right circular cylinders.
The diameters in cm of nine pellets drawn at random from the production
line are 1.01, 0.97, 1.04, 1.02, 0.95, 0.99, 1.01, 1.03, and 1.03. Find a 95%
confidence interval for the mean diameter of pellets, assuming an approxi-
mately normal distribution.

Solution

The sample mean and standard deviation are X = 1.01 cm and s=0.03 cm
(Problem 7.15). Using Table A.5 with v=238, we find #5558 =2.306. From
Eq. (7.21) we obtain

7
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0.03 0.03
1.01 —2.306(— | <u<1.01+2306(—|. 7.23
<\/§) " (\@) (7.23)

The 95% confidence interval for u is, therefore, (0.987 cm, 1.033 cm).

7.5.2
Interval Estimation for the Proportion of Population

The above methods work well for determining a confidence interval for the mean of a
population. Similar methods may be applied when interest centers on the proportion
of the population that is defined by some criterion. For example, we might be
interested in estimating the proportion of people in favor of a particular political
candidate, or the proportion of cancer patients that respond favorably to some
treatment. In such instances, we can run a binomial experiment (Section 5.4) and
use the results to estimate the proportion p. For the binomial parameter p, the
estimator P is simply the proportion of successes in the sample. We let X;, X5, . . ., X,
represent a random sample of size n from a Bernoulli population such that X;=1
with probability p and X; =0 with probability (1 — p). Thus,

L1 _
P==N"x=Xx 24
”?:1 (7.24)

By the central limit theorem (Section 6.4), for sufficiently large n, P is approximately
normally distributed with mean

up = E(P) —E<1ZX> Py (7.25)

and variance

. 1< 1 =
2 _ — i [ .
03 = Var(P) = Var <ﬁ i; Xl) =3 Var(él K) . (7.26)

We recall from Section 5.4 (Eq. (5.11)) that the sum of n Bernoulli random variables is
a binomial random variable with parameters n and p. The variance of the binomial
random variable with these parameters is, by Eq. (5.15), np(1 — p). Replacing the term
in the last equality of Eq. (7.26) by this quantity, we find
1—
op = pa=p) (7.27)
n
The distribution of X is approximately normal because n is large, and so it can now be
described by writing

X< N<p, M). (7.28)

n
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We can now standardize X and use the standard normal distribution to write

p
Pr| —zy) < ——=—=< za/2> =1-a, (7.29)
( p(1—p)/n

Pr()_(—za/ﬂlp(ln_p)<p<)_(+za/2\/p(ln_p)> =1-a. (7.30)

This expression can be solved for p. However, when n is large, little error is introduced
if we substitute P for p under the radical. An approximate 100(1 — @)% confidence
interval for p is then (Problem 7.16)

(—za/ﬂ/ P+za/2\/ Pa—b ) (7.31)

W Example

A random sample of blood specimens from 100 different workers in a
manufacturing plant yielded 9 cases that were outside, either above or below,
the normal range for a certain chemical marker. Use these data to calculate a
95% confidence interval for the proportion of the worker population whose
reading will fall outside the normal range.

or

Solution
The sample proportion is P = 9/100 = 0.09. Using Eq. (7.31) and 2,025, we
have
.09(1 — 0. .09(1 - 0.
0.00 — 1961/ 221 =009 < 0.09 4 1.96 /001 = 0:09) 09(1 — 0.09) (7.32)

100 100 ’

giving the 95% confidence interval, (0.034, 0.146).

753
Estimated Error

The interval estimates we have discussed thus far are of the form

@iqa/z\/Var 0, (7.33)

where g, is the a/2 quantile associated with the sampling distribution of ©. The
quantity V Var © is the standard error of the estimator ©, that is, the standard
deviation associated with the sampling distribution on ©. In cases where the variance
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of © contains unknown parameters, we estimate them (e.g., using S* for o and P
for p). The square root of this estimated variance is then called the estimated standard
error.

The error of estimation is the difference, © — ©, between the estimate and the true
value. Using the interval estimators, we can say that we are 100(1 — a)% confident
that the error in estimation is bounded by +¢,,/, V Var ©. This condition is expressed
by writing

Pr(|® — O] < g,V Var@) =1 —a. (7.34)

W Example
In the example before last, dealing with cobalt pellets, by how much is the
estimate of the mean bounded?

Solution
We previously found s=0.03cm with a sample size n=9. Noting that
to.025.8 = 2.306, we computed

2
2306 (0.03)

=0.023. (7.35)

We may thus say that we are 95% confident that the error in estimating the
mean is bounded by £+0.023 cm.

It is often important to assure with 100(1 — a)% confidence that an error of
estimation will not exceed some fixed amount E. This can generally be accomplished
by using sufficiently large samples, as we now describe. We see from Eq. (7.34) that
the condition imposed is

E=4qu,V Var ©. (7.36)

Letting © =y and © = X, and assuming we are sampling from a normal population,
we have

2
Ee, /2\/% (7.37)

For the error not to exceed E at the stated level of confidence, it follows that the sample
size needed is

2 2
y4 20'
n= agz . (7.38)
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If © = p, and the sample size is large enough to invoke the central limit theorem, then
the same argument that led to Eq. (7.38) yields

22, p(1—p)
n=—"t——7-—.

I (7.39)

This expression involves p, which, like 6%, is unknown. We can either (1) substitute P
for p or (2) set p=1/2, thus maximizing p(1 — p) and making n as large as possible,
yielding a conservative estimate for n.

W Example

In the example before last, 9 out of 100 urine samples were found to be outside
normal range, for a proportion of 0.09. What sample size would be required to
estimate the true proportion within an error 0.02 with 95% confidence if one

a) assumes p=0.09 or
b) makes no assumption regarding the value of p?

Solution

a) Assumingp=0.09 and a 95% confidence level, we find from Eq. (7.39) that
a sample size of
(1.96)%(0.09)(1— 0.09)

n= 002 =787 (7.40)

would be needed.
b) With no knowledge about the value of p, we use p = 0.50 in Eq. (7.39), thus
maximizing n:
(1.96)%(0.50)(1— 0.50)

n= 002 = 2401. (7.41)

7.5.4
Interval Estimation for Poisson Rate Parameter

We next consider estimating the rate parameter 4 for a Poisson population. In this

case, 4 = X. By the central limit theorem, 4 for large n is approximately normally
distributed with mean

w = E() = E<12X> == 042
i=1

and variance

o = Var(1) = Var <:LZ}Q) = n = % (7.43)
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Using the same techniques as before (e.g., Egs. (7.29) and (7.30)), we find that a
100(1 — a)% confidence interval for 4 is

_ X _ X
X - Za/2 ;>X + Za/2 ; ) (744)
where \/X/n is the estimated standard error.

W Example

The number of disintegrations for a radioactive source was measured in 10
successive 1-min intervals, yielding the results: 26, 24, 26, 32, 26, 26, 27, 32,
17, and 22. Use this sample, assuming it came from a Poisson distribution, to
obtain an approximate 95% confidence interval for the rate parameter 1 in
counts per minute.

Solution

We use Eq. (7.44). The mean of the numbers in the sample is X = 25.8. Fora
95% confidence interval, zp 975 = 1.96 (Table A.3), the required interval for the
1 min count numbers is

258 25.8
(25.8 1.96\/10,25.8+1.96\/10>. (7.45)

It follows that the 95% confidence interval for A is
(22.7 min™*,28.9 min?). (7.46)

(Using a computer to randomly select the count numbers for this example,
we sampled from a Poisson distribution with a true rate (decay constant),
A =25.00 min~'. In this instance, the method did capture the true value in the
interval found.)

7.6
Parameter Differences for Two Populations

In addition to point and interval estimates of a parameter for a single population, one
is often interested in such estimates for the difference in parameters for two
populations. An example of another type is the difference in the proportion of
Democratic and Republican senators who are in favor of a certain bill before
Congress. Estimating the differences between means or proportions is straightfor-
ward, but forming confidence intervals requires some assumptions.

7.6.1
Difference in Means

Welet X, Xp, . . ., Xy, denote a random sample of size n; from a normally distributed
population with mean p,. and variance ¢2. Similarly, Y3, Yy, . .., Y, denotes a sample
of size n, from another normally distributed population with mean u, and
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variance 05. For the difference in means, u, — u,, the point estimate, which we denote
by &y, is

:ax—y = fax - ﬂy = X - ? (747)
To obtain confidence intervals for this difference, we shall consider three special
cases with respect to the population variances: (1) 07 and o} both known; (2) 02 and o2
unknown, but equal; and (3) oi and 05 unknown and not equal. Recall from the
discussion following the definition (4.44) that the variance of the sum or difference of
two independent random variables is the sum of their individual variances.

7.6.1.1 Case 1: 03 and 03 Known

For the two normal distributions, we have

o o2 9
:ux—y:fux_:uy:X_YNN Aux_:uy? n_1+n_2 . (748)

Transforming to the standard normal distribution, we write for the 100(1 — a)%
confidence interval on the mean,

X—-Y—(u, —
Pr| —z4 < W = 4) <zyp | =1-a (7.49)

(0%/m) + (07 /m)

Solving this inequality for s, — u,, we obtain
_ _ o2 o _ _ o2 o2
X—Y—zyp| 2+ - X =Y+ zynt| 2 +-L 50
Zap2\[ T < U =) < +za2\[ ot (7.50)

W Example

An experiment was performed to compare the effectiveness of two chemical
compounds, A and B, in blocking the thyroid uptake of iodine. A number of
mice of the same age, sex, and size were selected and considered to be
identical for this experiment. A fixed amount of radioactive iodine was
injected into each of n; = 10 mice (group 1) after administration of compound
A and into n, = 15 other mice (group 2) after they were given compound B, all
other conditions being the same. The mice were later monitored by observing
the activity of the iodine in the thyroid at a particular time. The average activity
for the mice in group A was X = 25 kBq, and that for group B was y = 27 kBq.
Assume that the variances in the activities for the two groups were o2 =
25kBq” and 07 = 45 kBq”. Obtain a 95% confidence interval for the difference
between the true means of the two groups. Which thyroid blocking compound

is the more effective, based on this experiment?
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Solution
Denoting the true means by u, and u, and using units of kBq, we write from
Eq (750) with Za/Z =2Z0.025 = 196,

25 45 25 45

—+— — 25-2 1. —+—. 51
1O+15</,tx sy <25—27+1.96 1 +15 (7.51)

25—-27—-1.96
Completing the arithmetic operations gives
—6.6kBq < u, —u, <2.6kBq. (7.52)

Since zero is included in this 95% confidence interval, the true means are
likely to be close to each other. The two compounds thus appear to have
comparable effects in blocking the uptake of iodine by the thyroid.

7.6.1.2 Case 2: 03 and 03 Unknown, but Equal (=0?)
In place of Eq. (7.48), we write

o < o  o?
i, ,=X—-Y~N(u, - —+—. 7.53
Hooy ( Ty m + ”2) ( )

The variance of the estimator is

Var(X — Y) = o* (nil + nlz) (7.54)

In order to find a good estimator of 0, we note that the sample variance S is the best
estimator of 07 = ¢® and, similarly, S? is the best estimator of o} = 0. Since the
variances are the same, Sfc and Si should be similar in value, and we should combine
them in some way. We could average them, using as the estimator $* = (S + $2)/2,
but this choice does not account for possibly different sample sizes. A better selection
is the pooled estimator for the variance.

2 2
52 _ (nl— 1)Sx + (nz— l)SY (7 55)
P m+ny—2 ’ ’

We see that, if ny = ny, then S3 = (S2 + S})/2, as first suggested. The weighting
factors (n1— 1) and (n, — 1) reflect the fact that S? and S% have, respectively, that
many independent pieces of information. Thus, using these factors and dividing by
(m+n,—2) in Eq. (7.55) apportions the weights appropriately. It can be shown
theoretically that, if we are sampling from a normal population,

X—Y—(u,—u)
Spy/(1/m) + (1/my)

Ntn1+n272~ (756)
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The quantity on the left-hand side has Student’s t-distribution with (n; + n, —2)
degrees of freedom. Thus, we may write

X_?_(Aux_ﬂy)

Pr{ —ty 4n-2a2 < < tpim—2.a =1—-a. 7.57
( +m-2,0/2 S/ (Um) + (Um) ) /2) ( )

Solving the inequality for u, —u, we find that, for the 100(1 — a)% confidence
interval,

- - /1 1
X-Y— Sp ;1 + ;Ztn1+n2—2,a/2 <l — /uy (758)
- - 1 1
<X-Y+ Sp n—1+n_2tn1+nz—2,a/2'

W Example

The time until first decay is measured 10 times for each of two pure, long-lived
radioisotope samples, A and B. The results are given in Table 7.2. Using these
data, obtain a 95% confidence interval for the difference in the mean first-
decay times of the two isotopes, assuming normality and equal variances.
What can one conclude about the decay rates of the two isotopes?

Solution
From the data in Table 7.2, we compute the following values (with time
expressed in seconds) for the means and variances of the samples for the two
isotopes:

X = 2.109, sa = 3.753 (7.59)

Table 7.2 Ten measurements of time in seconds to first decay of two isotopes.

Measurement Time (s)
Isotope A Isotope B

1 0.66 0.28
2 4.45 1.44
3 2.01 12.04
4 2.94 0.37
5 2.11 0.30
6 1.31 8.61
7 0.73 421
8 0.15 2.76
9 0.54 0.61
10 6.19 3.86

Data are used in several examples in the text.
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and
Xp = 3.448, s =15.911. (7.60)

Assuming that the variances are equal for the two isotopes, we pool them
according to Eq. (7.55). With n; =#n, =10, we have

2 _ 9(3.753) +9(15.911)
P 18

—9.832. (7.61)

The 0.975 quantile of the Student’s t-distribution with 18 degrees of freedom
is (Table A.5)

t18,0.025 = 2.101. (7.62)

From Eq. (7.58) we write for the 95% confidence interval for the difference in
the means of the decay times

1
(2.109 — 3.448) — 3.136 +E (2.101) < ptp — g
< (2.109 — 3.448) 4 3.136 10+10 (2.101). (7.63)

Thus, to the appropriate number of significant figures,
—4.295 < p, — tp < 1.61s. (7.64)

Since the interval includes zero, we can conclude that the two isotopes have
similar decay rates. They could even be the same radionuclide.

7.6.1.3 Case 3: 03 and 03 Unknown and Unequal

As before, Eq. (7.48) holds; however, we do not know either variance. In this case, we
use the best estimators for them, namely, S? and S?, and form the approximate
100(1 — a)% confidence interval for u,, —

o s S 2.5
X*Y*tv‘a/z n1+n—<‘l/£x [Lly<X Y+tva/2 —1+n—2 (765)

Here, t, /, is the t-value with degrees of freedom v. It can be shown (Satterthwaite,
1946) that the t-distribution in (7.65) can be approximated by a Student’s t-distri-
bution with degrees of freedom given by Satterthwaite’s approximation,

_ ((S3/m) + (5)/m2))’
(1/(m = 1))(S2/m)* + (1/ (n2 = 1))(}/ma)*

(7.66)

In most instances, v as defined by this equation will not be an integer, in which case
we round down to the nearest integer to be conservative.
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W Example
Repeat the last example for the data in Table 7.2, assuming in place of equal
variances, that 0% # 03%.

Solution

We apply Eq. (7.66) with ny =ng =10 and express times in seconds. The
sample variances were previously calculated (Egs. (7.59) and (7.60)). The
approximate degrees of freedom for the t-value are, from Eq. (7.66),

((3.753/10) + (15.911/10))

(1/(10 — 1))(3.753/10)* + (1/(10 — 1))(15.911/10)?
=13.02. (7.67)

Rounding down to v=13, we find the 0.975 quantile of the Student’s
t-distribution to be (Table A.5) t;3,9,025 = 2.160. The 95% confidence interval
for ua — ug is then, from Eq. (7.65),

3.753 15911
(2:109 — 3.448) — 2,160} /= =+~ = <y — 1y
3753 15911
< (2109 — 3.448) + 2,160/~ =+ (7.68)

It follows that
—437s < u, — g < 1.69s. (7.69)

This interval is slightly larger than that found earlier (see Eq. (7.64)). The
previous assumption of equal variances for the two samples implies more
knowledge about the populations from which we are sampling than we had in
the present example. The increased knowledge translates into a smaller
confidence interval. That the two confidence intervals are not too different
implies that the variances are not too different. In Section 7.8, we shall see how
to compare two variances.

7.6.2
Difference in Proportions

Differences in proportions present similar problems. To form confidence intervals,
we must rely on the central limit theorem. We let P; represent the proportion of
successes in a random sample of size n; from one population and P, the proportion
in arandom sample of size n, from another population. By the central limit theorem,

ﬁl—i)mN(pl —pz,,/@#%), (7.70)
n ny
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whereq; =1 — p;and g, = 1 — p,. An approximate 100(1 — @)% confidence interval is
then

by — Py — (1 —
Pr(za/2< ! :— (1 p2)<za/2>:1a. (7.71)

Vi /m + paga/ma

Solving for p; — p,, we find that

Pl—ﬁz—za/2w/@+@<p1—pz<P1—P2+Za/2 @—F@ (772)
m ny n ny

Under the radical we see that these limits require values of p; and p,, which are
unknown. As before, for the confidence interval on a single proportion, we simply
substitute our estimates P; and P, for p; and p, under the radical in Eq. (7.72).

W Example

New safety signs were proposed to replace existing ones ata plant. Workers on
two shifts were shown the new signs and asked whether they thought they
would be an improvement. Of the 75 workers queried on the first shift, 60
responded favorably toward the change; 85 out of 95 on the second shift were
also in favor. Using this information, obtain a 95% confidence interval on the
difference in the proportions of the two shifts that favor the new signs. Based
on this survey, are the proportions of favorable responses among workers on
the two shifts different?

Solution

For use in Eq. (7.72), we compute the favorable proportions for the two shifts:
Py = 60/75 = 0.80 and P, = 85/95 = 0.89. Recalling that 2o gy5 = 1.96, we
write

(0.80 — 0.89) — 1.96\/ (0'8O;§0'20) + (0'89;_&0'11) <p-m

< (0.80 — 0.89) + 1496\/ (o.so;go.zo) + (0'89;,_(;0'11). (7.73)

The solution is

~0.20 < p; — ps < 0.02. (7.74)

We see that zero is contained in the interval. We might conclude with 95%
confidence that the proportion in favor of the new signs is essentially the same
on both shifts.
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7.7
Interval Estimation for a Variance

In discussing interval estimation for a variance, we assume that we sample from a
normal population with mean x and variance ¢, both unknown. The chi-squared
distribution, discussed in Chapter 6, then plays a special role. According to Eq. (7.8),
the quantity

o= =D (7.75)

o2
has a chi-squared distribution with (n — 1) degrees of freedom. Thus,

Pr(%i—l,a/Z <Q< Xﬁfmfa/z) =l-a (7.76)

We note that y2_, , is the value that leaves the fraction a of the area to the left under
the chi-squared distribution with (n — 1) degrees of freedom (Table A.4). Unlike the
normal and Student’s i-distributions, the chi-squared distribution is not symmetric.
Choosing 2 | , /» and Xﬁ—l,l— o2 Will provide an interval that is nearly the shortest
possible, although one might do better by numerical methods. For most practical
purposes, these values will result in an acceptable interval. Using Egs. (7.75) and
(7.76), we write

n—1)s?
Pr(%fm,a/z < % < Xﬁ—l,l—a/l) =l-a (7.77)

We thus obtain the following inequality for the variance:

(n—1)s? ot (n— 1)52.

Xi—l,l—a/l Xi—La/z

(7.78)

W Example

In a previous example, we analyzed the time to the first decay of a radionu-
clide. Data for isotope A in Table 7.2 for a sample size n=10 yielded
Xa = 2.109 and s3 = 3.753, with the times in seconds (Eq. (7.59)). Obtain
a 95% confidence interval for the variance o3.

Solution

We need the 0.025 and 0.975 quantiles of the chi-squared distribution with 9
degrees of freedom (n=10). From Table A4, we find ¥3 5 = 2.70 and
X3 0075 = 19.02. Using Eq. (7.78), we find that

9(3.753) _ , _9(3.753)
19.02 270

(7.79)
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or
1.776 < ¢* < 12.51. (7.80)

The units are 2.

7.8
Estimating the Ratio of Two Variances

Just as important as the comparison of two population means is the comparison of
their variances. Usually, one is interested in the ratio of the variances, which are both
measures of the spread of the two distributions. A ratio near unity indicates near
equality of the variances. On the other hand, either a very large or a very small ratio
occurs when there is a wide difference in variation between the two populations.

We consider two normally distributed populations, having variances 62 and o%. We
select from the first a random sample of size n; and estimate the variance using S2
and, similarly, from the second a sample of size n, and estimate its variance using S%.
Recalling the chi-squared distribution from Eq. (7.75), we write

R (7.81)
i
and
ny—1)S%
Q= (20# ~ iy (7.82)

2

The ratio of two independent chi-squared random variables, divided by their
respective degrees of freedom, has the F distribution (Section 6.10). From the last
two equations and the definition (6.98), it follows, therefore, that

B 2,2
F:%: iégé ~F(m — 1,1 1). (7.83)

We express a confidence interval by writing

Pr(fup(m—1,m—1) < F<fignm—-1,m—-1))=1-a. (7.84)

Combining Eqs. (7.83) and (7.84) gives

S22
Pr(fa/z(nlf 1,m—1) < ﬁ <fimajp(m—1,m— 1)) =1—aq. (7.85)
271

The ratio of the variances thus satisfies the following inequality:

52 1 2 S 1

o1 S P S
Sshoap(m—1,m—1) " 0] ~ Sifup(m—1,n-1)

(7.86)
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Lower values of the F distribution are not usually tabulated. However, by Eq. (6.101)
we have

1

—apm—=1n—-1)=——— 7.87
fizap2(m 2—1) Foalm—Tm —1) (7.87)
and so, in place of Eq. (7.86), we can write (Problem 7.28)

s? 1 ot s

— < =< —=fi—anpmy—1,n—1). 7.88

S%fifa/z(nlanZ*l) O’% S%fl /2( 2 1 ) ( )

W Example
The times for first decay of two radioisotopes, 1 and 2, are measured in an
experiment. The following data summarize the results, with time in seconds.

Isotope, i Mean time, X; Variance, s Sample size, n;
1 6.95 13.75 8
13.75 24.39 12

Obtain a 90% confidence interval for the ratio 02/03 of the two population
variances in the time to first decay.

Solution
The interval is found from Eq. (7.88) with o = 0.10. Using Table A.6, we find
for the upper 0.95 quantile of the fdistribution withn; —1=7andn, —1=11
degrees of freedom, f 95(7, 11) = 3.603. For the lower quantile, Eq. (7.87) gives
fo95(11, 7) = 3.012. Substitution into Eq. (7.88) yields

1375 1 o> 1375

24393.012 © ol < 2439003 (7.89)

or
02
0.187 < 0—5 < 2.03. (7.90)
2

Since this interval includes unity, we can be 90% confident that these
population variances are approximately the same.

7.9
Maximum Likelihood Estimation

In the previous sections we looked at various estimators and their properties, largely
without derivations. In this section we discuss a method that allows one to derive an
estimator. We consider a random sample Xj, X5, ..., X, drawn from a population
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having unknown parameters that we wish to estimate. For example, we might select
from a large population, having a characteristic that occurs in some (unknown)
proportion p of that population. Each draw results in a Bernoulli trial with outcome X;,
i=1,2, ..., n, and probability distribution

flip) =Pr(X = x) = pi(1—p)' ™, (7.91)

with x;=0,1and 0 < p < 1. We seek a function u(Xy, X5, . . . , X,,) (the estimator) such
that the sample value u(Xy, X5, ..., X,) is a good point estimate of the population
proportion p.

We consider the joint distribution of Xj, X, ... , X, under the assumption
that this is a random sample from the same, identical distribution (so that each
draw is independent and identically distributed). We then write for the observed
values

Pr(Xs =1, X =%2,..., X = %) = Hp"i(l —p)t
=p™i(1—p)" =, (7.92)

in which the sums in the exponents go from i=1 to n. We can treat this joint
probability function as a function of p, rather than the x;, and then find the value of p
that maximizes it, this value being the one most likely to have produced the set of
observations. As a function of p, the resulting joint probability function is called the
likelihood function. In the illustration (7.91), the likelihood function is

L(p) = Pr(Xi = %1, X = %2, .., Xp = %u} D) (7.93)
=f(xi;p)f (x23p) -+~ f(oni ) (7.94)
—p™(1—p)" ™, 0<p<l. (7.95)

To find the value of p that maximizes L(p), we first differentiate:

T = (St (e ) 096)

Setting the derivative equal to zero and solving for p gives the maximum likelihood
estimator, which we denote by p. That is,

A3 _ 5 n—2x; & _ LX:X:I =
P (1 p) ( f? 17?, ) 0. (797)

The cases p = 0 and p = 1 are uninteresting in the sense that the characteristic is
either never present or always present. Hence, we treat only 0 <p<1. Then
Eq. (7.97) can be satisfied only if the term in the parentheses vanishes:

PO D DL N (7.98)

p 1-p
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Multiplying by p(1 — p) and simplifying, we find that

PRED DL (7.99)
n
The corresponding statistic, (3 X;)/n = X, which maximizes the likelihood func-
tion (Problem 7.33), is called the maximum likelihood estimator, abbreviated MLE.
Our earlier estimator, Eq. (7.24), is the same as the MLE when the random variables
are replaced by the sample values.
This maximization procedure can also be applied to the logarithm of the likelihood
function, thus often simplifying the mathematics involved. In place of Eq. (7.95), for
example, we can write

InL(p)=> xlnp+ (n— in>ln(1 -p). (7.100)

The first derivative is

dlnL(p) Sxi n—> x
= =T 7.101
dp p 1-p (7.101)

which, when set equal to zero, leads to Eq. (7.98).

W Example
Assume that one can obtain a random sample of size n for a decay process that
follows a Poisson distribution with parameter 4. Obtain the MLE for 4.

Solution
Let X1, X3, ..., X,, denote the random sample from the Poisson population
with decay parameter A. The probability function is given by

ef/uixi

Fluat) =, (7.102)

withi=1, 2, ..., nand 0 <4 < co. The likelihood function is
n e—l/‘in e—nllzxi
L(A) = = (7.103)
E x,'! H xi!

Taking natural logarithms gives

InL(2) = —ni+ > xIna fln<Hxi!>. (7.104)
Differentiating, we find that

dinL(A) >x

a - + T (7.105)
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Setting the derivative equal to zero then yields

FRPIL

=%, (7.106)

Comparison with Eq. (7.4) shows that the MLE = X is the same as the MVUE
(Section 7.4).

A population might have more than one parameter. The likelihood function is
then differentiated for each parameter, yielding coupled equations to be solved
simultaneously.

Example

A normal population is characterized by the two parameters (u, ¢%). For a
random sample of size n, determine the maximum likelihood estimators for
u and o

Solution
WeletX;, X5, . . ., X, denote the random sample from the normal population.
The probability density function is given by

1

e (sw)’/20 (7.107)
2o

flxizu,0%) =

where —00 < x;< 00 (i=1,2,...,1), —00 <u < 00,and 6> > 0. The likelihood
function is

u 1 2
Lw.o®) =] o e (mp)/20° (7.108)
i1
_ (Zn)—n/Z(GZ)—n/Z e—(l/ZJZ)Z(x,»f/A)Z7 (7109)
and its natural logarithm is
1
In L(x, 0%) = —gln(Zn) —glnaz —55 > (- (7.110)

Taking the partial derivatives with respect to u and o* and equating them to
Zero, we write

olnL(i,6*) 1 X
AnaT) S - =0 (7.111)
and
0ln L(it, 6%) n 1 2
__ " )2 =0. 7.112
067 27 T 25 2 (i) (7.112)
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The two equations yield

P D% -

===z (7.113)
and

& :Z(xT_”)Z (7.114)

Since the estimator j is ¥, we have

_\2
P m (7.115)
n
We note that the relation i = X corresponds to the estimator discussed in
Section 7.3, but that 67 is not equal to S%, our usual estimator for the variance.
Comparing Egs. (7.1) and (7.115), we see that
_ 2
o= =S (7.116)
n
It can be shown that $* is an unbiased estimator; that is, E(S*) = o This
follows from Eq. (7.8) and the fact that the expected value of a chi-squared
random variable is equal to its degrees of freedom (Problem 7.34). Hence,
n—1 n—1 2,

E(6%) = ——E($?) =

. . (7.117)

and it follows that 6 is biased. The bias diminishes with increasing sample
size, but tends to underestimate the true value of the variance for small
samples. This feature is one of the drawbacks of maximum likelihood
estimation, although the bias can usually be removed by some multiplicative
adjustment (e.g., n/(n — 1) in this example).

There are many nice properties of MLEs, also. Under some general conditions,
their asymptotic (large-sample) distributions converge to normal distributions. If a
MVUE exists, it can be shown to be a function of the MLE. For example, S is the
MVUE of 6% and the MLE of ¢ is (n — 1)S?/n. Thus, MLEs are good estimators. In
the multiparameter case, there might be no analytical solution, and iterative
numerical techniques must be applied. The interested reader can find out much
more about MLEs in the works by Hogg and Tanis (1993), Bickel and Doksum (1977),
and Edwards (1972), listed in the Bibliography.

7.10

Method of Moments

Another means of estimation is provided by the method of moments. Let X,

X5, ..

., X, be a random sample of size n from a population with distribution
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function given by f{x; 61, 65, . . ., 8,), where the 6, k=1, 2, .. ., r, are parameters of the
distribution. (For example, we might deal with the normal population f{x; x, 02), in
which case #; = u and 0, = 6>.) The jth moment of the random variable X about the
origin is defined as the expected value of the jth power,

m = EX), j=1,2,.... (7.118)

Similarly, the jth moment of the sample is defined as
mj:%Zx{l, j=1,2,.... (7.119)
i=1

To obtain estimates of the ¢ by the method of moments, we can use Eq. (7.118) to
generate a number of moments that express the m; in terms of the 6. We start with
j=1and continue until there are enough equations to provide a set that can be solved
for the 6y as functions of the m;. We then replace the m; by the sample moments #;,
thus providing the estimates for 6.

W Example

Let X;, X5, ..., X, be a random sample from a normal population with
unknown mean # and unknown variance o*. Use the method of moments to
obtain point estimates of 4 and o”.

Solution
The first two moments of the normal distribution about the origin are
(Problem 7.38)

m =EX)=u (7.120)
and
my = E(X*) = 0 + 1. (7.121)

The latter expression follows directly from Eq. (4.48). Solving Egs. (7.120)
and (7.121) for u and o”, we find

u=m (7.122)
and

0% =my —,uz =my — mf. (7.123)
The estimates of u and o” are obtained by replacing the m; by the 71;. Thus,

=i ==Y X=X (7.124)
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and

N N 1< 2 1
0=ty — g ==Y X} —X == (X — X). (7.125)

In this example, the method of moments gives the same estimators as the
maximum likelihood method. This will not be true in general. The example also
shows that the moment estimators may be biased estimators, since &7 above is biased
(Eq. (7.117)). In some cases, the moment estimators may not be unique. An example
is afforded by sampling from a Poisson distribution with parameter A. If we want
moment estimators of the mean and variance, we can proceed as in the last example
to obtain Eqgs. (7.122) and (7.123). For the Poisson distribution, 4 = 0* = 1, and so we
can estimate 1 by using either i or % On the positive side, moment estimators are
easy to obtain and they are consistent.

To use this method easily, one needs a means to calculate the moments. One way
utilizes the moment generating function, which we now define for the random
variable X. Let there be a positive number h such that, for —h <t < h, the mathe-
matical expectation E(e™) exists. If Xis continuous with density function f{x), then its
moment generating function is

M(t) = E(e™) = J e f(x)dx. (7.126)

If Xis discrete with probability function p(x), then its moment generating function is
M(t) = E(e¥) =) e p(x). (7.127)

Note that the existence of E(e") for —h <t < h (with h > 0) implies that derivatives of
M(t) to all orders exist at t =0. Thus, we may write, for instance,

dt

—M(t) = MY (1) = [ xe™ f(x)dx (7.128)
for a continuous random variable X, or

d
4 — MO — i
MO =M Z xe™ p(x) (7.129)
if X is discrete. Setting t=0 in either of the last two equations yields

MY(0) = E(X) = u. (7.130)

In general, if j is a positive integer and MY(t) denotes the jth derivative of M(t) with
respect to t, then repeated differentiation of Eq. (7.126) or Eq. (7.127) and setting
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t=0 gives
MY (0) = E(X') = m;. (7.131)

These derivatives of the moment generating function E(e™) with respect to t,
evaluated at t =0, are thus the moments defined by Eq. (7.118).

We note also that these are moments defined about the origin. One can also
investigate moments about points other than the origin. Let X denote a random
variable and j a positive integer. Then the expected value E[(X — by] is called the jth
moment of the random variable about the point b. If we replace b by y, then we
would say the jth moment about the mean. We could replace M(t) in Eq. (7.126) by
R(t) = E(e'® ~ ") with the same conditions as for M(t) and obtain a moment gener-
ating function about the point b. However, for our needs it is easier to work with M(t).

W Example

Let X be a Bernoulli random variable taking on the values 1 and 0 with
probability p and (1 — p), respectively. Determine the moment generating
function for X and use it to obtain the first two moments.

Solution
By definition,

M(t) = E(e*) =) e™p*(1—p)' = (1—p)+pe" (7.132)
x=0

Taking the first derivative of M(t) with respect to t and setting t = 0, we find for
the first moment

MY (0) = p. (7.133)

Taking the second derivative and setting t =0 gives
M) (0) = p. (7.134)

Since 0? = E(X?) — [E(X)]* = M@ (0) — [M1)(0)]%, we seethato® = p — p* =
p(1 — p) for the Bernoulli random variable.

Not all distributions have moment generating functions (e.g., the Cauchy distri-
bution). When such a function does exist, its representation is unique. As a
consequence, for example, given the moment generating function, 1/2 + (1/2)e’,
of a random variable X, we can say that X has a Bernoulli distribution with p=1/2.
(Replace p by 1/2 in Eq. (7.132).) The uniqueness property comes from the theory of
transforms in mathematics. Thus, if X; and X, have the same moment generating
function, then both have the same distribution. In more advanced texts, the moment
generating function is replaced by the characteristic function, ¢(t) = E(e"™), where
i = v/—1. The characteristic function exists for all distributions. The interested
reader can consult Parzen (1960).



7.10 Method of Moments

Table 7.3 Moment generating functions of some common distributions.

Sampling distribution Moment generating function
Bernoulli: p(x) = p(1—p)'™, x = 0,1 pel+1—p

Binomial: p(x) = (Z)p"(l -p)" 7, x=0,1,...,n (pe'+1—-p)"

Poisson: p(x) = efjdix ,x=0,1,2,... ehle-1)

Geometric: p(x) = p(1—p)* ", x =1,2,... #ﬁtwe,

Uniform over (4, b): f(x) =35, a <x <b féhb:’;

Normal: f(x) = ﬁﬁe*(l/z)[(%*ﬂ)/ﬂ]Z Qu(B?/2)

Exponential: f(x) = A e™* A=(1- %)’1

Gamma: f (x) = ﬂ“";’(;)ﬂx (1 - /i}) -

Another interesting property of the moment generating function is the following.
If Xy, X5, ..., X, are n independent random variables with moment generating
functions My (t), My(%), . . ., M(t), then the moment generating function of their sum,
Y=Xi+X;+ -+ +X,, is the product M;(t)- My(t) - - M,(t). This property is
seen by applying the definition (7.126) or (7.127):

My = E(e?) = E(ef1t¥t+)) (7.135)
= E(e™)-E(e™) --- E(e™) = Mi(t) - Ma(t) -+ My(t). (7.136)
Note that the expectation values factor because Xj, X, ..., X, are independent.
W Example
Let X have a Poisson distribution with parameter A.

a) Show that the moment generating function is e*(¢~1),

b) LetXy, X5, ..., X, beindependent, identically distributed Poisson random
variables with parameter 4. Show that Y =X; + X, + --- + X, is also
Poisson distributed, but with parameter nA.

Solution

a) For the moment generating function (7.127), we write

i N e ¥
My (t) = E(e®) = ;e x! (7.137)
0 £\ ¥ - ¢
—e' Y (/1;) et e (7.138)

=0

®

(Note that we have used the series expansion, Y .-, a*/x! = e?).
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b) With Y = X; + X, + --- + X,, we write from Egs. (7.136) and (7.138)

n

My(t) = [[ Mx(®) = [[ ") = e, (7.139)
i=1

i=1

This resultis identical with the Poisson function (7.138), but with parameter
nA. By the uniqueness property of the moment generating function, we
can conclude that Y has the Poisson distribution with parameter ni.

For reference, Table 7.3 provides a number of moment generating
functions.

Problems

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

The heights of 50 randomly selected male military recruits were measured,
and the average height was reported to be 175.2+ 7.9 cm.

a) Give an example of a systematic error that could affect this finding.

b) What sources of random error contribute to the uncertainty?

c¢) Distinguish between the accuracy and the precision of the reported result.
The following gives results of 10 observations in each of two samples. Obtain
the sample means, standard deviations, and coefficients of variation for
Sample (a): 6.6, 4.4, 6.1, 4.2, 4.0, 6.0, 6.2, 5.5, 5.7, 2.4.

Sample (b): —6.4, 25.7, —1.3, 38.3, 41.6, 37.2, 28.2, 4.9, 40., —11.6.

a) What is a statistic?

b) What is an estimator?

c) What is an unbiased estimator?

Unknown to an investigator, a population consists simply of the first five
positive integers 1, 2, 3, 4, 5. The investigator chooses to use any single
observation as an estimator for the population mean.

a) Is the estimator unbiased? Explain.

b) Calculate the variance for this estimator.

c) Is the estimator consistent? Why or why not?

A sample of n observations is drawn from a normal population with mean u
and variance o”. If we use

as the estimator for 07, is it unbiased or biased? Why or why not? If it is biased,
is there a way to make it unbiased? If so, show how it can be done.

Ten observations taken from a Poisson population with unknown parameter 1
yield the following data: X=3,2,5,5,4,4,5, 6,9, 6. Use Eq. (7.4) to obtain the
MVUE of 1.

Using Eq. (7.7) and the estimator obtained in the last problem, estimate the
variance of 1.

Show that Eq. (7.13) follows from Egs. (7.10) and (7.11).



7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16
7.17

7.18

7.19

7.20

Problems

a) Inthe notation of (7.14), what values of « determine the probable error and
the standard error?

b) How many standard deviations determine the half-widths of the inter-
vals (7.14) for the probable error and the standard error?

A random sample of 16 men yielded an average potassium concentration in

body tissues of 1895mgkg ' of body weight. Assume that the data are

normally distributed and that the population standard deviation is 80 mgkg ™.

Obtain

a) the standard error of the mean;

b) a 90% confidence interval on the true mean.

In the last problem, if the population standard deviation were not known and if

the sample standard deviation came out to be 94 mgkg ™', what would be the

answers to (a) and (b)?

Using the sample mean of 1895 mgkg ' and population standard deviation of

94mgkg ™" from the last problem, find the confidence interval for the mean

that corresponds to the probable error.

Show that the random variable T'in Eq. (7.19) has the Student’s t-distribution

with (n — 1) degrees of freedom.

Verify that (7.22) follows from Egs. (7.19) and (7.20).

In the example leading to Eq. (7.23), show that ¥ = 1.01 cm and s=0.03 cm.

Starting with Eq. (7.29), verify (7.30) and (7.31).

Swipes in a laboratory building were collected at random from 100 different

areas, known to be uncontaminated, and analyzed for total activity. It was

found that five of the swipes exceeded the maximum total activity used as a

control for posted contamination areas.

a) Estimate the proportion of swipes expected to exceed the control limit in
similarly contaminated areas.

b) Obtain an approximate 95% confidence interval on this value.

In the last problem we estimated the proportion p of smears with count

numbers that exceed the control limit. We now want to determine the true

proportion exceeding the upper limit within an error E=0.02 with 80%

confidence. What sample size is needed to do this if

a) we assume that p=0.05?

b) we do not know the value of p?

An alpha source was counted 10 times over 5-min intervals, yielding the

following count numbers: 19, 23, 29, 15, 22, 29, 28, 23, 22, 26. Assume that the

sample came from a Poisson distribution.

a) Estimate the rate parameter 4 in counts per minute.

b) Obtain an approximate 95% confidence interval for 4.

Two types of filters, A and B, were compared for their ability to reduce the

activity of a radioactive aerosol. A fixed activity of 1000 Bq was drawn through a

fresh filter, and the amount that passed through was measured. Ten type A and

eight type B filters were tested. The average activity that passed through type A

was 250 Bq, while the average for type B was 242 Bq. Assume that the variances
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7.21

7.22

7.23

7.24

7.25

7.26

7.27

7.28
7.29

in the transmitted activities for the two filter types were 0% = 25 Bq* and

0% =49 Bq’.

a) Obtaina 95% confidence interval for the difference between the true means
of the two groups.

b) Which filter type is more effective, based on these tests? Why?

Assume that the variances in the last problem are not known, but that

measurements from the experiment give the estimates, s = 25 Bq? and

st = 49 Bq®. Assume, further, that the variances are equal.

a) Determine the best estimate of the common variance.

b) Obtain a 95% confidence interval for the difference in the means, assum-
ing that the variances are equal, but unknown.

In the last problem, assume that the variances are unknown and unequal.

a) Find a 95% confidence interval for the difference in means.

b) Write down the 95% confidence intervals for the last two problems. Why
should the length of the interval get larger as one proceeds from there to the
present problem?

Two ointments are being tested for possible use in skin decontamination, in

order to see whether they produce a rash. Ointment A was applied to 200

persons, and 15 developed a rash. Ointment B was used with 250 persons, and

23 developed a rash.

a) What percentages of subjects developed a rash with each ointment?

b) Use the central limit theorem to obtain a 95% confidence interval on the
difference between the two percentages.

c) Are the proportions of rashes different for the two ointments?

For each of the following, construct a 95% confidence interval for the

population variance:

a) n=15, s> =40.1;

b) n=25, s2=25.6;

) n=11,s*=10.2.

A random sample of size 11 is taken from a normal population. The sample

mean is 12.6, and the sample standard deviation is 4.2. Find 95% confidence

intervals for the population mean and variance.

The amount of potassium in mg per kg of body weight for a random sample of

five adult males is reported to be 1740, 1820, 1795, 1910, and 1850.

a) What is the sample standard deviation?

b) Obtain a 95% confidence interval on the variance, assuming a normal
population.

Is the quantity Q given by Eq. (7.75) a statistic> Why or why not?

Starting with Eqs. (7.81) and (7.82), verify the result (7.88).

A new procedure is to be tested for performing a certain assay at a laboratory.

Ten technicians are randomly chosen and divided into two groups, A and B,

with five members each. Group A is taught the new procedure, while group B

continues to use the standard method. A test preparation is made with a

known amount of material, and each technician independently performs the

assay. The objective is to see whether the new method reduces the variability of



7.30

7.31

7.32

7.33

7.34
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results among the technicians. The results of the testing for the two groups are

as follows:

Group A: 6.12, 6.08, 6.15, 6.08, 6.10.

Group B: 5.95, 6.25, 5.80, 6.05, 6.01.

The true amount material used in the test preparation is 6.00.

a) Obtain the sample mean and sample variance for each group.

b) Obtain a 90% confidence interval for the ratio of variances (A to B).

) Is the new method better than the old? Why or why not?

d) Knowing that the true value is 6.00, what is the significance of the results
for the two procedures? Which method would you use and why?

For each of the following, construct a 90% confidence interval for the ratio of

the variances (1 to 2):

a) =20, s2 =25.6; n, =15, s = 16.8;

b) n;=10, s = 5.40; n, =25, s = 8.90.

Uniform random soil samples were collected from two sites, A and B. The

number of alpha counts measured in 5 min from the collected samples were as

follows:

Site Sample size Sample mean Sample standard deviation
A 6 3.2 2.5
B 8 4.5 4.9

a) Calculate the coefficient of variation for each site.

b) Calculate a 90% confidence interval on the ratio of the variance at site A to
the variance at site B.

c) Does the variability appear to be different at the two sites?

Let %1, %, ..., %, denote n values obtained by randomly sampling from an

exponential distribution with density

ﬂm@=%ewﬁ x>0, 0>0.

a) Show that the likelihood function for 6 is given by
u@:%gzwﬂ

where the summation goes from i=1 to n.
b) Show that the maximum likelihood estimator for @ is given by f = x.
¢) Verify that 0 is unbiased for 6; that is, E(6) = .
d) Show that the variance of @ is given by 6%/n.
Show that the value of p given by Eq. (7.99) maximizes, rather than minimizes,
L(p).
The maximum likelihood estimator for the variance when sampling from a
normal population is given by Eq. (7.115). Using this result and the fact that
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7.35

7.36

7.37

7.38

7.39

7.40

7.41

(n—1)S?/o% ~y2_,, find the expected value of the MLE for ¢”. Use this
information to adjust 6 to be unbiased.

For a random variable X, show that the second moment about the mean u is
equal to the difference between the second moment about an arbitrary point b
and the square of the first moment about b. That is, show that

E[(X — )] = E[(X — b)"] - [E(X ~ b)]".

Let Xj, X5, ..., X, be the disintegration times in seconds of n individual,
identical atoms. Assume that these random variables are independent and
identically distributed as exponential distributions with unknown parameter 4.
a) Find a method of moments estimator for A.

b) Determine the variance of the exponential and use this information to
obtain another moment estimator for A. Is the moment estimator for 4
unique?

c) Find the probability Pr(X; > 1) that the first atom will “live” at least 1s
before decaying.

d) Obtain a method of moments estimator for the probability in part (c).

Show that the moment generating function for the normal probability density

function is that given in Table 7.3.

Use the generating function from the last problem to calculate the first two

moments of the normal distribution about the origin.

Use moment generating functions to show that, if X;, X;, ..., X, are

independent, normal random variables with mean u and variance 0?, then

Y=X;+X;+ - + X, is normal with mean nu and variance no?.

If X has the moment generating function M,(t), show that Y=aX + b has the

moment generating function M, = e M, (at).

Use the results of the last two problems to show that Z=X=

(X1 +X;, + -+ + X,)/n is normal with mean u and variance o? /n.

(Hint: From the problem before last, we know the moment generating

functionof Y = X; + X; + -+ + X,. Note that Z = X = Y/n, and apply the

results of the last problem.)



8
Propagation of Error

8.1
Introduction

In addition to statistical errors associated with measurements of a random variable,
one often needs to assess the error in a quantity that is derived from a combination of
independent random variables. For example, the activity of a radioactive source can
be inferred by subtracting background counts observed in the absence of the source
from counts with the source present. Both counts are independent random variables.
Given their individual errors, how does one obtain the error for the count difference
and hence the activity of the source?

Uncertainty in a derived quantity is a combination of all errors in the component
parts. Systematic errors, if known, can be used to correct the values of the compo-
nents before calculating the derived quantity. Independent random errors, on the
other hand, act together to contribute to the overall random variation in a composite
quantity. The way in which random errors in individual variables are combined to
estimate the resulting random error in a derived quantity is commonly called error
propagation — the subject of this chapter.

8.2
Error Propagation

We consider a quantity Q(X;, X, ..., X,), which is a function of n independent
random variables X;, each, respectively, having a mean y; and variance oiz, withi=1,
2,..., n. We wish to determine how random errors in the X; propagate into the error
in the derived quantity Q. This goal is accomplished by calculating the variance of Q
in terms of the variances o?. The analysis is greatly simplified if Q is a linear function
of the X;. If Q is nonlinear, then we approximate it in linear form by using a Taylor
series expansion, keeping only the zero- and first-order terms. Nonlinear aspects will
be considered in an example presented in Section 8.4. We shall see that, when the
0; < u; for all i, the linear approximation works well.

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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We expand Q through first order in the X; about the point u = (u1, s, - . ., u,) in
n-dimensional space by writing

QU X X 2 QU+ 3 (52) (- )
i=1 v

=Q'(X1,%,...,%X). (8.1)

We thus approximate the exact function Q by the function Q*, which is linear in the X;.
The partial derivatives are understood to be evaluated at the point u. It is straight-
forward to calculate the mean and variance of the function Q. (If Q is linear to begin
with, then, of course, Q= Q*.)

The expected value of the sums in Eq. (8.1) is equal to the sum of the individual
expected values (Section 4.2), and so it follows that (Problem 8.1)

E(Q) — E[Qw)} + i (2—%) [E(XL) - E(Iui)] = Q(u) (82)
i=1 on

Since E(X;)=p;, each term in brackets in Eq. (8.2) is identically zero. Also, the
expected value of the constant Q(u), which remains, is just the constant itself.
Therefore, Eq. (8.2) shows that the expected value of Q* is just Q(u) = Q(uy, Uz, - - -,
Uy), or Q evaluated at the means of the X;.

The variance of Q is given approximately by Var(Q). Since the mean is Q(u), we
have from Eqs. (4.44) and (8.1)

Var(Q") = E{[Q"‘(Xl,xz, LX) — Q(u)}z}

- E{ [Z (§—§)<x _ u»] } (53)

Separating the squared and the cross terms in the square of the sum, one can write

var(Q) = E{i (29) w5 [Z (%), (5%) o - - uj)}

= " 21
(8.4)

) inl (S)%)iE[(XL B #i)z] ’ i#jil (Zg)u (25%)"]5[(&' — )% _“j)] '
(8.5)

In the first summation, E[(X; —u;)’] = 0?, the variance of X, In the second
summation, each term E[(X; — u;)(X; — ;)] is the covariance oy (Eq. (4.82)), which
vanishes because the X; are independent. We are left with the result (Problem 8.2),

var(@) = 3 (2§>o (5.6)

i=1 n



8.2 Error Propagation

Equations (8.2) and (8.6) give the mean and variance of the (linear) approximation Q*
to the function Q. The latter equation shows explicitly how the variance of the derived
quantity Q* depends on the standard errors 0;in the individual, independent random
variables.

In practice, the value of the derived quantity is often inferred from repeated
determinations of the random variables. If one measures a total of m; values xj, k=1,

2, ..., my, for the independent random variables X;, then useful estimates of u; and
ot are
mi
N D Xk
e L 8.7
fuL m; i ( )
and

. _ 2
.2 ZlT:l (xik - xi) 2
o] ==L T

_ 8.8
1 s (8.8)

i
in which x;;, is the value obtained in the kth measurement of X;. These estimates from
the sample are then substituted for u;and 02 in Eqs. (8.2) and (8.6) in order to estimate
the mean and standard error of QF, which approximates Q when the latter is
nonlinear.

We can use these results to calculate confidence intervals. If we assume that the
X; are normally distributed with means u; and variances o2, then the approximate
100(1 — a)% confidence interval for E(Q) in Eq. (8.2) is

where z,; is the quantity that cuts off an area of size a/2 to the right under the
standard normal distribution. If we obtain sample estimates of u; and o?, given by
Egs. (8.7) and (8.8), then an approximate 100(1 — a)% confidence interval for E(Q) is
given by

(8.10)

in which t,,/, is defined in Table A.5 and X = (%1, %z, ..., %,), where the X; are the
sample averages. The degrees of freedom are calculated by using the Satterthwaite
approximation to the degrees of freedom (Satterthwaite, 1946; Anderson and
McLean, 1974),

[xr00/0x)s]"
ST (1/(m — D)(EQ/K)

V=

(8.11)

The degrees of freedom, which are nonintegral, can be truncated to the next lowest
integer (in order to be conservative), so that Student’s t-tables can be used.
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83
Error Propagation Formulas

One can use Eq. (8.6) to compute the variance of any derived quantity Q in the linear
approximation. A number of functional forms occur frequently in practice, and we
next develop explicit formulas for estimating their variances.

8.3.1
Sums and Differences

When Q consists of sums and differences of random variables, one has the general
form

n
QXa, X, %) = D aiX;, (8.12)
i=1

where the a; are constants. In this case, Q itself is linear in the X; and, therefore,
identical with Q*. The error computation is then exact. The partial derivatives,
obtained from Eq. (8.12), are 0Q/0X; = a;. Equation (8.6) then gives

Var(Q) = Var(Q') = " d?o?. ®.13)
i=1

In the example cited in the first paragraph of this chapter, the net number of counts
from a source is the difference in the two direct count measurements: X; = source
plus background (gross counts) and X,=background alone. Comparing with
Eq. (8.9), we can write for the net number of counts Q=X; —X,, with n=2,
a1 =1, and a, = —1. Applying Eq. (8.6) shows that the variances in the two individ-
ually measured count numbers add in quadrature:

Var(Q) = a0} + a505 = 03 + 03. (8.14)

The standard deviation in the net number of counts is thus equal to the square root of
the sum of the variances in the gross and background count numbers. As mentioned,
this result is exact, because Q is a linear function of the X; in Eq. (8.12).

8.3.2
Products and Powers

For all other functions, we substitute the linear approximation Q* for Q. For a
combination of products of n random variables X; raised to any power p;, the most
general form for Q can be written as

Q=X"XP ... X", (8.15)

Taking the partial derivative of Q with respect to X; introduces a multiplicative factor
of p; and reduces the power of X; by one unit. Therefore, we may write (Problem 8.6)
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9Q _pQ
X X

(8.16)

According to Eq. (8.6), with the derivatives evaluated at the point u = (i1, Uy, - . ., i)
we obtain

f:_n iQZZ_Z npiaiz

va(@) = Y- (52) o=y (A7) (8.17)
i=1 n i=1 4

This equation can be written conveniently in dimensionless form:

Var(Q') & (o}
QX(w) ; ( 1 ) (8.18)

833
Exponentials

We consider a function of the form Q =e", where the exponent
W=X"x . XD (8.19)
is the same as Q in Eq. (8.15). The partial derivatives are

0 oe¥ ow A%
a_)% “x—oxt —ox ¢ (8:20)

With the quantities evaluated at p, we obtain from Eq. (8.6) (Problem 8.7)

n 2
var(Q) =Y (p"uﬂ) o?. (8.21)
i=1 i
In dimensionless form,
* n N\ 2
G - w3 (%) (822

8.3.4
Variance of the Mean

The formalism here can be applied to calculate the variance of the mean. Forasetofn
independent measurements X; of a random variable X, the mean is, by definition, the
linear function

"X
(X1, X, ..., %) :Z'; . (8.23)
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Here the X; can be regarded as n independent random variables, all having the same
variance 0? = ¢? as the random variable X. The function (8.23) is then a special case
of Eq. (8.12), with Q* = Q and a;=1/n for all i. Applying Eq. (8.6), we find that

n 2 2 2
var(Q) = Y% = n("—) -7 (8.24)

i=1
The result was given earlier (Eq. (6.35)) without proof.

W Example

The specific gross count rate of a source is defined as the count rate of the
sample plus background divided by the mass of the source, and it can be
expressed as N/(TM) in s~ ' g~ . An unknown source is placed in a counter,
and a total of n=jiy =1999 counts is registered in a time t=ji; = 60.00 £
0.05 s. The mass of the source is m = ji,, = 3.04 + 0.02 g. (The usual notation,
showing one standard deviation, will be used in this example.) Find

a) the specific gross count rate and
b) its standard error.

Solution
a) The specific gross count rate is given by

iy 1999 g1
Q(n,t,m) firity  (60.005)(3.04 g) St o

The given values of jiy, fir, and i, serve as estimates of the individual
means, which are to be used in accordance with Eq. (8.1). The result (8.25)
has been rounded to three significant figures, equal to the number in the
least precise measurement — that of the mass.
b) The function Qin Eq. (8.25) has the form (8.15) with each p; equal to either
+1 or —1. The variance is given by Eq. (8.18):

Var(Q") = Q* (i, iy fiy) {(ZI;)Z + <_M(;T>2 - (_/Z:/I>2} 7
(8.26)

where the quantities o are the standard deviations in the respective
quantities. The estimated errors are given for Tand M. We shall assume
that the number of counts is Poisson distributed and use as an estimate
On =2 V1999 = 44.7. Substitution of the numerical values into (8.26) gives
for the estimated variance of Q* and hence Q,

44.7\*  [=0.05\* [—0.02\’
52~ 52 — (11051 o2 | (47 —0.05 —0.02 .
0g=0g = (1105 "g7) {(1999) * (60.00) + ( 3.04 ) (827)
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=121(5.00 x 107* +6.94 x 1077 +4.33 x 107°)
=658 x102s2g2 (8.28)

The estimated standard error is, therefore, approximately, 6 = 0.257 st
g~ '. We report the specific gross count rate with its one standard error as
0=11.0+0.3s"" g, to three significant figures. We see from Eq. (8.28)
that most of the uncertainty is due to the random error in the number of
counts in this example. (Time measurements almost always have negli-
gible error compared with other factors in a counting experiment.)

Example

The activity Q of an airborne radionuclide deposited on the filter of a constant
air monitor is related to the deposition rate D (activity per unit time), the decay
constant A of the nuclide, and the collection time T. If there is initially no
activity on the filter and the deposition rate D is constant, then the activity of
the material on the filter at time T is given by the following expression
(Cember, 1996, p. 571; Turner et al., 1988, p. 32):

Q= % (1—e?7). (8.29)

Ifd=1154+7Bqh *, 1 =0.301+£0.004h*, and t =8.00 4+ 0.03 h, where the
standard errors are indicated, find

a) the activity on the filter at time ¢ and
b) its standard error.

Solution

a) The activity expressed by Eq. (8.29) is a function Q(D, A, T) of the three
variables shown. Using their given values as estimates of the means, we
find for the estimated activity

115Bqh!

o1 BTE00h)) — 348 Bq. (8.30)

0=

b

The function (8.29) is not one of the “standard” forms for variance
worked out in this section, and so we employ the general expression (8.6)
to calculate the variance. The partial derivatives are to be evaluated at the
point u determined by the means of the three variables, estimated with
the given values. The exponential term, e *=e 301800 —( 0900,
calculated in Eq. (8.30), will occur in all of the partial derivatives. We
estimate the o, in Eq. (8.6) by using the given standard deviations. Thus,
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we find that
aQ . 1— e—lt) R 1— e—0.301><8 i
— | op = Op = x 7Bgh
(aD),; ? ( A R q
=21.2Bq, (8.31)
0 . 1—e ™  pe M\,
(67%) pO‘A = d(— /‘LZ + /,{ >0’}L (832)
i
- 1— e 0301x8 (8] x e 0301%8 -
= (115Bqh™) |- + 0.004h™!
(115Bah ) { (0.301h'")? 0301h | )
= —3.52 Bq,
(8.33)
and

()5 foe)

= (115Bqh ) (e7*3#)(0.03h) = 0.310Bq.  (8.34)

Adding the squares from Egs. (8.31), (8.33), and (8.34), we obtain from
Eq. (8.6) the estimated variance,

g = (21.2)" +(~3.52)* 4 (0.310)* = 462 B’ (8.35)

The estimated standard error for the activity on the filter is, therefore,

5o = 1/462 Bq® = 21.49 Bq = 20 Bq. (8.36)

Since the standard errors for the random variables all carry only one
significant figure, in writing Eq. (8.36) we have rounded off the calculated
error in the derived activity accordingly. The filter activity together with its
one standard error can be reported as

O = 348 £ 20 Bq. (8.37)

Example

A certain nuclide has a radiological half-life Ty with estimated mean ji, =
8.0+ 0.1 d and a metabolic half-life Ty with estimated mean jiy,, =100 £54d,
where both uncertainties are one standard deviation.

a) Calculate the effective half-life, given by
TrTM
- Tr+Tyu
b) What is the standard error in the effective half-life?

Tg

(8.38)
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Solution
a) Inserting the given data into Eq. (8.38), we obtain

- (8.0d)x(100d)
Te= (8.0d)+(100d) 74d. (8.39)
b) The expression (8.38) is not one of the standard forms from earlier in this
section, and so we employ Eq. (8.6), writing

0T\ , [0Te\ ,
Tp) = ==£ —E) 52 pt
Var(Tg) <@TR)MUR + Ty MUM (8.40)
The partial derivatives are to be evaluated at the point u determined by
using the given mean estimates fi, and jir, . Similarly, the given values can
be employed to estimate og and oy Using Eq. (8.38) in Eq. (8.40) gives
(Problem 8.13)

Var(Tg) = o

1%

v\ e \*
—* )i+ ( ) o2 8.41
(TR+TM>H ROA\Tr+Tu/, M (841)

Putting in the numerical values, we find
. _ (1004d\* , (8.0d\* .,
Oy = (7108 d) (0.1d)" + T0sd (5d)
=8.10 x 1073 d*%. (8.42)

Thus, the estimated standard error in the effective half-life is 6F = 0.09d,
to the appropriate number of significant figures.

8.4
A Comparison of Linear and Exact Treatments

It is not our intent to go beyond an introductory presentation of the conditions
under which error computation by means of the linear approximation is satisfac-
tory. Suffice it to say that the formulas in the last section are sufficiently accurate for
many purposes when the standard deviations of the random variables are much
smaller than their means, that is, when o; < u; for all i. Looking back at the
three examples presented in the last section, one can see that this condition was
met. Use of the linear function Q* thus gave a good approximation to the
propagated error.

The condition o; < u; for the validity of the linear approximation can be under-
stood from Eq. (8.1), which represents the lowest order expansion of the random
variables about their means. Higher order terms are not important when the spread
of the variables about their mean values is relatively small. To illustrate, we next
present an example in which the propagated error is computed in the linear
approximation and then compared with the exact result.
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0 E

1

Figure 8.1 See Eq. (8.43) and example in Section 8.4.

Example

The distance of a fixed point P from the origin O of the orthogonal coordinate
axes in Figure 8.1 is determined by measuring the displacements X; and X, of
the projections of P along the two perpendicular axes. The square of the
distance of P from O is given by

Q(X1,X,) = X2 + X2 (8.43)

The random variables X; and X, have means u; and u, and variances o and
3. Find the mean and variance of Q

a) approximately, by using the linear approximation Q* for Q, and
b) exactly, given that X; and X, have normal distributions.

Solution
a) From Egs. (8.2) and (8.43) it follows that the mean value for the square of
the distance from O to P is, in the linear approximation,

E(Q) = E(Q") = E(w) = pf +443. (8.44)

(O(m) = Qu1, u2) is the value of Q at the point w= (41, u).) For the
variance, the partial derivatives in Eq. (8.6) are, from Eq. (8.43),



-
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9Q
<5Xi)u = 2X1|u = 2u;, (8.45)

where i=1, 2. Thus, we find from Eq. (8.6) that
Var(Q) = Var(Q") = 3 4107 — 41do? + 4o, (8.4
i=1
which is the estimate of Var(Q) in the linear approximation.
We next deal with Q exactly. The mean is
E(Q) = E(X{ +X;) = E(X]) + E(X}). (8.47)
From Eq. (4.48),

E(Q) = U2+ 0ot + 12 + 03 (8.48)

This exact result can be compared with Eq. (8.44). The error in our
estimating the mean of Q by the linear approximation is seen to amount
to neglecting 0?4+ 02 compared with u? +u3. As pointed out at the
beginning of this section, use of the linear approximation for error
propagation is accurate to the extent that the standard deviations are
negligible compared with the means of the random variables.For the exact
computation of the variance, we have

Var(Q) = Var(X? + X3). (8.49)
Using Eq. (4.48), we write in place of Eq. (8.49)
Var(Q) = E[(X] +X3)"] — [E(x +X5)]". (8.50)

The expected value in the second term is given by Egs. (8.47) and (8.48).
The expected value in the first term can be expanded:

E[(X] +X3)°] = E(X}) +2E(X]))E(X3) + E(X). (8.51)

After a lengthy, term-by-term evaluation one finds from Eq. (8.50) that
(Problem 8.21)

Var(Q) = 4uto; + 4ul05 + 207 +205. (8.52)

Comparison with Eq. (8.46) shows that the linear approximation for the
variance neglects the last two terms in the exact expression (8.52) in
comparison with the first two. As with the mean, the linear approximation
for variance is good when 0? < u? for all i.
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8.5
Delta Theorem

The results in Sections 8.1-8.3 have been presented without much distributional
underpinning. There is a theorem referred to as the delta method that proves that,
under certain conditions, the distribution of Q(X;, X5, . . ., X,,) as expressed by Eq. (8.1)
is normal with mean Q(u) and variance given by Eq. (8.6). For this to be true, one must
assume that each X; ~ N(u;, 0;). The Taylor series gives a linear approximation, and
the sum of normal random variables is normal. There are many situations where the
X; will not be normally distributed, and the question of how to handle them arises.
Generally, good estimates of the y; are needed for the Taylor approximation to work
well. In most instances, if it is possible to sample m; times from the populations X;,
then the sample means X, will be good estimators of the u;. We also know that under
rather general conditions the central limit theorem holds and, therefore,
Xim;~N(u;, 0;/+/m;). If this condition holds for each Xy, i=1, 2, ..., n, then

O(Kim s Kamps e Kom) N(Q(m, Var Q*) (8:53)

where, from Eq. (8.6),

Var(Q") = Z (2}%)1%2 (8.54)

i=1

The delta theorem is discussed by Bishop, Fienberg, and Holland (1975).

Problems

8.1 Verify Eq. (8.2).

8.2 Show that Eq. (8.6) follows from Eq. (8.3).

8.3 A technician takes a series of five 30-s counts with a long-lived source. The
results are 72, 49, 55, 63, and 51.

a) Find the mean and standard deviation of the measurements.
b) What is the standard deviation of the mean?

8.4 A student takes five 10-min measurements with a long-lived radioactive
source. The numbers of counts observed are 120, 108, 131, 117, and 137.
a) What is the mean count number?

b) What is the standard deviation of the count number?
c) What is the standard deviation of the mean count number?
d) State the value of the mean count rate + its standard error in cpm.

8.5 A %Mo generator is to be milked for the daughter *™Tc with an efficiency of
91.2 +0.8%. Before milking, the **™Tc content of the generator is 844 +8
mCi. After milking, how much *™Tc is expected? State the result with its
standard error.

8.6 Verify Eq. (8.16).



8.7

8.8

8.9

8.10

8.11

8.12

8.13
8.14

8.15

8.16

Problems

Show that Eq. (8.21) follows from Eq. (8.6) for the exponential function Q =e"

with W defined by Eq. (8.19).

a) How does the standard deviation of the measurements in Problem 8.3
compare with the square root of the mean number of counts?

b) Why are the two numbers not the same?

For two independent random variables X; and X, show that the standard

deviations of a:X; + a,X; and a,X; — a,X, are the same.

In what sense are the quantities D, 4, and t in Eq. (8.29) independent random

variables?

A fresh air monitor filter begins collecting activity of a radionuclide at a

constant rate of 97.2410.3 Bqmin~'. The decay constant of the nuclide is

given as 2.22+0.46h ™"

a) Show that the activity on the filter and its standard error when the filter is
removed after 1.25h is 2460 + 490 Bq. The time measurement has neg-
ligible error.

b) State the value of the half-life and its standard error.

In the last problem, what is the activity on the filter and its standard error

90.00 £ 0.10 min after it is removed?

Verify Eq. (8.41).

Show that the variance of the effective half-life (8.41) can be written in the

compact form

2 2
Or , 9Mm

Var(Qg) = Tj (T_}‘{ + T—&)

A pressurized ion chamber is used to determine the typical penetrating
radiation background in a green field location adjacent to an operating
radiological facility. The results of eight observations are provided below. A
series of such measurement sets is planned, each consisting of eight readings.
What numerical value would you expect the standard deviation of the averages
of these sets to have?

Background measurement results (urem)

175 163 171 182 185 170 180 173

Anion chamber is used to determine the exposure rate E (Rh ") from an X-ray
machine according to the relation

E = (IBeam - IBKg)fI .
P
With units given below, Ipeam and Igig are, respectively, the ion chamber
currents with the X-ray beam on and off, fis a conversion factor, T is the
ambient temperature, and P is the atmospheric pressure.

211



212 | 8 Propagation of Error

a) What is the exposure rate and its standard error for the following observed
values with their standard errors?

f =(1.49+40.02) x 10° RTorr minC 'K~ h™";
Igeam = (3.513 £0.165) x 107! Cmin~';

Ipg = (6.000 £ 5.000) x 10" Cmin~’;

T =243+02°C;

P =752+ 1Torr.

b) Which of the variables makes the largest contribution to the error in the
exposure rate?

8.17 Current measurements with an ion chamber, given in the table below, are used
to determine the net air kerma rate from a radiation source. A set of readings,
Is and I, were taken with the source present and background alone,
respectively. The data were taken at a temperature T=22.0 °C and pressure
P =743 Torr. The ion chamber was calibrated at standard temperature and
pressure (To=0 °C and P,=760Torr) to obtain the conversion factor
f=1(9.807 +0.098) x 10 Gy C~'. The net air kerma rate K at ambient
temperature and pressure is given by

- (3)E)

where TNet = js — TB.

Ton chamber current (C min ")

Is x 10® Iy x 10"
3.630 6.0
3.612 8.8
3.624 8.0
3.618 5.2
3.620 7.6
3.622 9.4
3.618 5.5
3.616 438
3.624 2.7
3.626 6.3

a) What is the best estimate of average net air kerma rate K from these data?
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Problems

b) If temperature and pressure in the laboratory can be measured within +0.5

°Cand +1 Torr, determine the total uncertainty in the estimate of K in part (a).
¢) What variable contributes the greatest uncertainty in the estimate of K?
A radiation worker submits a monthly urine sample, which is analyzed for the
particular radioisotope to which she is occupationally exposed. Average
background B in the counter used to determine activity in the processed
sample is obtained from several individual measurements in the standard
time t. Gross activity G in the sample is based on a single measurement for the
same time t. Daily urinary excretion Q (Bqd ') of the radioisotope is estimated
from the analytical result according to the expression

Q = f ’

where R= G — B is the net activity in the sample. The conversion factor f
includes a chemical recovery factor, counter efficiency, sample volume, and
daily urinary excretion rate. Values and associated standard errors for the
quantities described above are

f =0.3041 +0.0742d
G = 244571,

Individual background measurements (s ')

175 169
178 182
170 185
160 182

a) What is the average background and its standard error?

b) Determine the best estimate of Q and its standard error.

Californium-252 decays both by alpha emission (96.91% of transitions) and by

spontaneous fission (3.09%). A **Cf source has a total neutron emission rate

of 7.63 x 10° s}, with a standard error of 1.5%. Answer the questions below,
giving the value requested and its standard error.

a) Whatis the neutron fluence rate (cm™~%s ™) from this source ata distance of
50.0+0.3 cm?

b) The halflife of 2°2Cf is 2.645 4 0.212 y. What is the neutron fluence (cm )
in 30 d from the source under the conditions in part (a)? (Take into account
the decrease in the activity of the source during this time.)

The specific activity A of radium in soil was determined by measuring the

activity of a sample with a well counter and applying the relationship

aG-8
met
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8.21
8.22

Here,

G = number of gross counts with sample = 15 000;

B = number of background counts = 350 £ 15;

m = mass of soil =150+t1g;

¢ = counter efficiency = 0.250 £ 0.005;
t = count time = 4h (exactly).

Assume that fluctuations in G are due solely to the random nature of

radioactive decay. Find

a) the specific activity of the sample in Bq g~ ' and

b) its standard error.

Verify Eq. (8.52).

The fraction of monoenergetic, normally incident photons that traverse a

uniform shield of thickness x without collision is given by e ¥, where u is the

linear attenuation coefficient for the shield material (cf. Cember, 1996, pp.

134-138; Turner, 2007, pp. 187-190). In a certain experiment, u = 0.90 cm !

and x=2.0cm.

a) If the shield thickness is increased by 5%, differentiate and use the linear
approximation with dx/x=0.05 to determine how much the fraction of
uncollided photons will change.

b) Use the exact exponential function to answer (a).
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Measuring Radioactivity

9.1
Introduction

Analyzing samples for radioactive content plays an important role in health
physics. Procedures are needed to determine whether an unknown sample should
be treated as “radioactive” and, if so, how much activity is present. In the simplest
procedure, two measurements can be made and compared: (1) a background count
with a blank in place of a sample and (2) a gross count of the sample plus
background. The difference between the two observed count rates, called the net
count rate, can be used to infer the possible presence of radioactivity in the sample
itself. Because of statistical fluctuations in both the number of counts due to
background and the possible number of disintegrations in a source, such proce-
dures often do not yield a simple “yes” or “no” answer to the question of whether
radioactive material is present. In principle, the level of activity, if any, can be
described only in statistical terms. That is to say, measurements indicate only
that the activity of a sample probably lies in a specified range with a certain degree
of confidence.

In this chapter, we develop some concepts and descriptions that apply to the
counting and characterization of samples for radioactivity. Formal protocols and
criteria that provide decision tools for judging activity are given in the next chapter.

We first treat long-lived radionuclide sources, having negligible change in
activity over the time of observation. Short-lived sources will be dealt with in
Section 9.6. It is assumed that background radiation does not change and that it is
characterized by a Poisson distribution of counts Ny, in a fixed measurement
time t,. The number of gross counts N, obtained in a given time t, will also be
treated as Poisson distributed. Both random variables are also assumed to be
approximated well by normal distributions, having means u, and u,, respectively,
and standard deviations /i, and | /f;. Time intervals are determined with
negligible error compared with random fluctuations in the count numbers.

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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9.2
Normal Approximation to the Poisson Distribution

Section 6.5 described how the normal distribution can be used to approximate the
exact binomial distribution for radioactive decay when n is large (Eq. (6.45)). That the
normal distribution can also be used to approximate the Poisson for long counting
times (provided the change in activity is negligible) can be seen in the following way.
Let Xrepresent the number of counts observed in time ¢. Since this random variable is
Poisson distributed, we write X ~ P(t), where the rate parameter A is counts per unit
time. With A expressed in s, for example, we can think of Xas the sum of the counts
Y;ineachofthei=1,2,.. ., tseconds of the observation. The observed count rate over
time t can then be expressed as

where the right-hand side represents the average number of counts per second. We
recall from the central limit theorem (Eq. (6.36)) that averages tend to have normal
distributions. Thus,

X ~ P(At)~N(At, Vit) (9.2)

tends asymptotically with large At toward the normal distribution with mean At and
standard deviation v/At. The normal approximation to the Poisson distribution can be
generally used when At > 10.

9.3
Assessment of Sample Activity by Counting

It is important to distinguish between the number of counts and an associated count
rate. To this end, we shall begin the subscript of a symbol for a random variable that
represents a rate with the letter, lowercase “r”. Thus, with Ny counts obtained in time
to, the gross count rate is given by R,y = Ng/t,. Similarly, for the background rate
measurement, Ry, = Np/t,.

Operationally, a “measurement” of activity in a sample begins with the observation
of the numbers of gross and background counts, with and without the sample
present, made under a specified set of standard conditions. The difference, or net
value Ry, = Rig — Ry, of the resulting count rates is assumed to be proportional to the
sample activity A. Thus,

A=yRn=y(Rg— Rp) = V(ﬁ - &) (9.3)
tg ty

The constant of proportionality y is determined numerically by calibration of the
instrument. It can depend on sample preparation, self-absorption in the sample, and
other factors. In the present discussion, y in Eq. (9.3) can be considered as the
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reciprocal of the counter efficiency, € = R,/ A, which relates the net count rate (counts
per unit time, cps) and the sample activity (disintegrations per unit time, dps). More
generally, the calibration constant y can be evaluated to yield other quantities, such as
activity concentration, based on count rates or count numbers. Under the assump-
tions given in Section 9.1, the means of the gross and background count rates in
Eq. (9.3) are, respectively, t,g = ttg/ty and piy, = ty/ty. The standard deviations of the
two rates are

Vi (9.4)

and oy =
ty

Org = ~— i
g —
tg
The difference of the two functions R, and Ry, in Eq. (9.3) forms a distribution
that describes the net count rate R, and the corresponding activity A when repeated
measurements are taken. The means u of the activity and u,,, of the net count rate are
given by

Ua = Vlhen =V (teg — Hip)- (9.5)

By the central limit theorem (Section 6.4), A will be normally distributed about the
true activity 4, which is the object of the measurements. If no activity is present, then
the distribution is centered about the value u =0.

In the terminology of Section 7.3, the two sample values ng and n;, for Nyand Ny in
times t, and #, can be used to estimate the sample activity. We write for the two count
rates

A n . np
‘urg = t_gg and Uy, = E . (96)

From Eq. (9.5) the estimate for the mean activity is

~ ~ ~ ~ n, ny

fia = Vit = V(ftrg — fl,) = ?’(t—g - t—)~ (9.7)
g b

9.4

Assessment of Uncertainty in Activity

The uncertainty associated with the determination of the activity can be expressed in
terms of the standard deviation of the distribution for A in Eq. (9.3). The variance 02,
of the net rate R,,, in Eq. (9.3) is obtained (exactly) from Egs. (8.12) and (8.13) for the
linear combination (difference) of the two independent random variables. It follows

that

o} =o? Jrofb:'lg = (9.8)

Since prg = lg/ts and ury, = iy, We arrive at the alternative forms for the standard
deviation of the net count rate,

u T
Om = o 4 @ N 1 + ‘IQ (99)

2 2
2o tg b
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As before, one can use the sample count numbers and rates as estimators for the
indicated quantities. The estimates of the standard deviations are (Problem 9.7)

5 Mg , M Mg g,
_ _ 9.10
Om 2 + 2 tg o (9.10)
and
Op=V0m (9.11)

(see Problem 9.8). Either of the alternative forms in Eq. (9.10) can be used for the net
rate standard deviation. One sees, incidentally, from the last equality in Eq. (9.10) that
the standard deviation of an individual count rate decreases as the square root of the
counting time.

W Example
Measurement with a long-lived radioactive source gives 123 gross counts in
1 min.

a) Estimate the mean gross count rate and its standard deviation.

b) Based on this measurement, how long would the sample have to be
counted in order to obtain the gross count rate to a precision of 5% with
95% confidence?

Solution

a) With ny= 123 in the time t; = 1 min, the estimated mean gross count rate
is, from Eq. (9.6), f,, =123/(1 min)=123 min~'. From Eq. (9.4), the
estimated standard deviation of the gross count rate is

. Vhg V123 .
Org =y _ Y _ {1.1min . (9.12)
bg 1 min

b) We useaconfidence interval as described by (7.14) with n = 1 for the single
measurement. For 95% confidence, a = 0.050. The symmetric limits that
leave this amount of area outside their boundaries in the tails of the
standard normal distribution are zg o5 =1.96 (Table 6.1 or A.3). With
the use of the sample values, the required condition is 0.054,, = 1.960+.
The new counting time is found from the relation

123 min~!
0.05 x 123 min~" = 1.96 % (9.13)

g

giving t, = 12.5 min for the estimated time needed. One can also solve this
part of the example by first estimating the number of counts n, that would be
needed. For the count number one writes in place of Eq. (9.13)

0.05n, = 1.96, /g, (9.14)



9.4 Assessment of Uncertainty in Activity

where | /fg is the estimated standard deviation of the count number.
Solution gives ngy=1.54 x 10°, and so the counting time is

_ng  1.54x10°

=—= — = 12.5 min. (9.15)
Uy 123 min

g

It is important to emphasize that the statistical precision of the count rate is
governed solely by the number of counts that are observed, and not by the magnitude of
the rate itself. A larger number of counts increases confidence in the result obtained
for the count rate.

This example can also be treated in a probabilistic context, as we show next.

W Example
In the last example, solve part (b) by specifying that there is a 0.95 probability
that the estimated gross count rate will be within +5% of the mean.

Solution
Using the estimated mean gross rate f,, =123 min~", we want to find the
time t4 such that

(
Pr
g

g
t__/’trg

< o.osﬂrg) =0.95. (9.16)

Multiplying both sides of the inequality by t,/ /it,4tg inside the parentheses,
we may write

Ny — pigts]  0.05u,t
pr(| s el _ ”gg) =0.95. (9.17)

\/‘urgtg - \/ﬂrgtg

The term on the left-hand side of the inequality in the parentheses has the
form of the standard normal variable Z, since Ng has mean ., t; and standard
deviation , /i, fg. Therefore, the term on the right-hand side of the inequality
has the value zg g5 = 1.96, corresponding to a probability of 0.95, as reflected
on the right-hand side of Eq. (9.17). With the estimate 4,, =123 min~" from
the last example, we obtain

0.054,,
# =0.054/123 min~'t, = 1.96, (9.18)
\/:urgtg

giving t; = 12.5 min, as before.

Example
At a certain facility, a 60-min background reading gives 4638 counts. Mea-
surement with a sample yields 3217 counts in 15 min. The counter efficiency
is 18%.
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a) Estimate the mean net count rate and its standard deviation.

b) Estimate the activity of the sample and its standard deviation.

¢) How might one express numerically this measurement of activity and its
associated uncertainty?

Solution
a) Using the given data, we write for the estimated gross and background
mean count rates

_ ng 3217
- =214 1
Tt 15 min cpm (9-19)
and
o m, 4638
fop b 0min 77.3 cpm. (9.20)

The estimated mean net count rate is, therefore,
iy = flog — iy, = 214 — 77.3 = 137 cpm. (9.21)

Using the first equality in Eq. (9.10)," we find for the estimated standard
deviation of the net count rate

3217 4638
Om = + = 3.95 cpm. 9.22
" \/(15 min)® (60 min)® P 6-22)

b) With y =1/0.18, we find for the estimated activity
1 -1
iy = Vit = 3%? = 761dpm = 12.7dps = 12.7Bq. (9.23)

The estimated standard deviation is

on = yom — 50 51 9 dpm — 0366 B, (9.24)
0.18

¢) There are various ways to express the result. Using the standard error (one
standard deviation of the estimate) as a measure of the precision of the
result, one could report the estimated activity as ji, = 12.7 £ 0.4 Bq, with
an implied confidence level of 68% (Section 7.5). Alternatively, using the
probable error, 0.67564 =0.675 x 0.366 =0.2Bq, one could report the
activity as 12.7 £0.2 Bq, at a confidence level of 50%. At the 95% confi-
dence level (£1.966,), the activity could be reported as 12.7 +0.7 Bq.
Specification of a higher confidence level is accompanied by a larger

interval of uncertainty.

1) Use of the first, rather than second, equality in Eq. (9.10) is slightly preferable here to the extent that it
depends directly on the information as given. The second equality involves calculated rates.
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W Example

a) With only the single background measurement in the last example, how
long would the sample have to be counted in order to obtain the activity to
within +5% of its expected value with 95% confidence?

b) Repeat part (a) for a precision of +3% with 95% confidence.

¢) Without remeasuring background, what is the greatest precision that one
could obtain for the activity itself at the 95% confidence level?

Solution

a) Our estimate of the mean net count rate from Eq. (9.21) is j,, =137
min~". For the normal distribution, 95% confidence corresponds to the
interval +1.96 standard deviations centered about the mean. For this
interval to span +5% about the estimated mean requires that

0.054,, = 1.960,. (9.25)

Employing the second equality from Eq. (9.10), letting t, represent the new
gross counting time in minutes, and inserting the other numerical values,
we write in place of Eq. (9.25),

214 77.
4773 (9.26)

0.05 x 137 = 1.96, [~—
ty 60

The solution is t; = 19.6 min.

b) The 95% confidence interval corresponds to £1.96 standard deviations
centered about the mean. In place of Eq. (9.26) we have, for a precision
of £3%,

214 3
0.03 x 137 = 1.96, |22 1 773 (9.27)
g 60

giving the time t, = 68.8 min.

¢) Given the single background measurement that was made, greater pre-
cision in the net count rate and activity can be obtained by increasing the
gross counting time. The limiting precision is found by letting t;, — oo. If
Prepresents the limiting precision in place of 0.03 on the left-hand side of
Eq. (9.27), that is, P x 137 =1.96,/(214/t,) + (77.3/60), then when
ty — 00, we have for the 95% confidence level (1.96 standard deviations),

1.96 (214 3 1.96
lim P= lim —— —+—77 \/77 =0.016. (9.28)
tg — 00 t; —o0 137 tg 60 137 60

Since our estimate of the activity from part (b) of the last example is j1, =12.7 Bq,
the greatest precision obtainable for A at the 95% confidence level without additional
background counting is 0.016 x 12.7 = 0.203 Bq. In essence, letting t, become very
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large in Eq. (9.27) reduces the variance of the gross count rate until it is negligible
compared with the variance for background. Apart from any uncertainty in the value
of the counter efficiency, the precision in the measured activity is then limited only by
the relative magnitude of the random fluctuations in the number of background
counts during its measurement. We also see the law of diminishing returns, in that as
we reduce P we increase t,, and we see that going from a P=0.05 to a P=0.03 costs
an additional 49.2 min of counting time. Decreasing P even further requires an even
longer counting time. So the question is how much precision is necessary? One can
look at the interplay between Pand t, and pick the pair that gives us the best precision
for the cost (in time) that we can afford.

9.5
Optimum Partitioning of Counting Times

One can see from Eq. (9.9) how the standard deviation of the net count rate changes
when the gross and background counting times are changed. It is sometimes
important to know just how to partition a fixed total counting time, t, =t + t,,
between t, and t, in such a way that the standard deviation of the net rate has its
smallest possible value. To this end, we can express the second equality in Eq. (9.9) as
a function of either time variable alone, t; or #, and then minimize o, by
differentiation. It is simpler, moreover, to apply this procedure to the variance,
rather than the standard deviation, thus avoiding differentiation of the square root
function. Substituting t, =t,—t, in Eq. (9.9), we write for minimization of the
variance

2
do, _ d. (‘E n “_rb) —0, (9.29)
dtg  dtg \tg  t—tg
or
Frg b
s ) (9.30)
g (1)’

Replacing t —t, by t;, then gives

Hrg Uy
e é, (9.31)
g
so that
e (9.32)
2 Uy

When the gross and background counting times are in the same ratio as the
square roots of the two respective rates, then the standard deviation of the net count
rate has its smallest possible value for the total counting time.
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W Example

In the next-to-last example, a total counting time of 75 min was partitioned as
t, = 60 min and t; = 15 min. The standard deviation of the net count rate was
estimated to be 3.95 cpm.

a) What values of t, and t,, totaling 75 min, would minimize the standard
deviation of the net count rate?
b) What is the estimated minimum value?

Solution
a) From Eq. (9.32) with the estimates i, and /i, given by Egs. (9.19)
and (9.20), one finds

214
ty =ty 3= 1.66t;,. (9.33)

Since t; + #, =75 min, we have
ty = 1.66(75 — t,), (9.34)

giving t, = 46.8 min. It follows that , = 28.2 min.
b) Substitution of these two times into the second equality in Eq. (9.10) gives

o 214min~!'  77.3 min~!
min oy, = \/46.8min + 28 2 min 2.70 cpm, (9.35)

as compared with 3.95 cpm found before (Eq. (9.22)) for the same total
counting time.

One can use Egs. (9.32) and (9.9) to show that the minimum standard deviation of
the net count rate is, in general, given by (Problem 9.22)

T + T +2 T Tl
minam_\/ug foo T 2y gty (9.36)

ty + th

9.6
Short-Lived Radionuclides

The discussions thus far in this chapter have been based on the use of Poisson and
normal statistics to describe radioactive decay. The specific underlying mathematical
assumptions are stated in Section 9.1. When the time t for counting a pure
radionuclide source with decay constant 4 is very short compared with the mean
life (=1/4), then At < 1. The probability p for a given atom to decay in time ¢ is then
very small, and the distribution of the number of disintegrations during t is
nearly Poisson. When the counting time is not short compared with the mean
life, the condition At< 1 does not hold. One must then revert to the binomial
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distribution, which describes radioactive decay exactly (Chapter 2). We show
next how the binomial distribution is compatible with the formalism employed
thus far in this chapter when At < 1. We then examine the consequences when At is
not small.

The expected number of atoms that decay in time ¢ from a pure radionuclide
source, containing n atoms at time t=0, is seen from Eq. (2.22) to be, exactly,

w=np=n(l—e*). (9.37)

When At < 1, the exponential term is approximated well by a Taylor’s series with
only the lowest-order term retained: e **22 1 — At. Equation (9.37) then gives

U = nit. (9.38)
The mean, or expected value, of the disintegration rate, or activity A, is

pa = % = nl, (9.39)
as we have seen before (e.g., Eq. (2.3)). The standard deviation for the binomial

distribution is (Eq. (5.15))

0= +/np(l—p)=+/ue ™. (9.40)

For very small At, the exponential term is close to unity, and so

0=~ i (9.41)

This important approximation from the binomial distribution when At < 1 is exactly
true for the Poisson distribution. It enables a single measurement to provide
estimates of both the expected value of the count number and its standard deviation,
as utilized in the earlier sections of this chapter.

When At is large, Egs. (9.39) and (9.41), which do not depend on the time, are no
longer valid approximations for radioactive decay. On the other hand, Eqs. (9.37)
and (9.40) for the binomial distribution describe the decay exactly. They apply over
any time period.

W Example

a) Show that the expected value of the number of disintegrations of a pure
radionuclide in a time period equal to the halflife, t= Ty, = (In 2)/4, is
n/2, where n is the number of atoms initially present.

b) What is the standard deviation of this number?

¢) How does this standard deviation compare with the Poisson value? Which

should be larger? Why?

Solution
a) The expected value of the number of disintegrations is given exactly by
Eq. (9.37) for all times t. For the specified time t=(In 2)/A, we have
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e M=e M =1/e" 2=1/2. Equation (9.37) gives

= n(l - %) = %n. (9.42)

The expected number of disintegrations in one half-life is, of course, one-
half the original number n of atoms.
b) For the standard deviation, Eq. (9.40) gives

o= %nx%:%\/ﬁ. (9.43)
¢) The Poisson distribution with parameter x4 would give for the standard
deviation op = /i = \/m =0v/2. Thus, 0 p is larger than the binomial
value o by the factor V2 =1.414. The larger standard deviation for the
Poisson approximation can be understood in the following way. The
number of disintegrations represented by the binomial function spans
the finite closed interval [0, n]. The Poisson distribution, on the other hand,
has a broader spread, spanning the infinite interval [0, oo].

An interesting situation occurs when the observation time is so long that the
original nuclide decays completely away. We assume that the background is zero.
When At — oo, the exact Egs. (9.37) and (9.40) give, respectively, u =nand 0 =0. In
this case, the expected number of disintegrations is thus equal to the original number
of atoms, and the standard deviation of this number is zero. If the experiment is
repeated, the result will always be the same: exactly n atoms decay.

If the counter efficiency ¢ is less than unity, then the expected number of counts
registered from a source that decays completely away in time t will generally be less
than the number of disintegrations. Repetition of the experiment will result in a
distribution of values for the count number. Not registering every atom that
disintegrates introduces uncertainty in the knowledge of the number initially
present. A given atom might not decay, or it might decay and escape detection
when ¢ < 1. Since the decay probability for a given atom in time tis p=1— e, the
probability that a given atom decays and is detected, thus registering a count, is

pr=e(1—e*). (9.44)
The probability for not registering a count when a given atom decays is, then,

G =1-p' =1l—e+ee (9.45)
The expected number of counts during any time t is thus

w=np* =en(l—e*). (9.46)

For the standard deviation of the count number, one has

o' = \/nprqt = \Jurqt = \/ns(l —e M) (1 —etee ). (9.47)
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Both Egs. (9.46) and (9.47) are exact. If a sample decays completely away
(At — o0), then the expected number of counts (9.46) is

4 = en (9.48)

and the standard deviation (9.47) is

o = /ne(1—e) = /u(1—e). (9.49)

The standard deviation of the number of atoms initially present, from Eqs. (9.48)
and (4.101), is 0™ /e.

W Example

A short-lived radionuclide source gives 3 212 675 counts before dying away
completely. Background is zero. Determine the number of atoms initially
presentin the sample and the standard deviation of this number if the counter
efficiency ¢ is (a) 1.00 or (b) 0.24.

Solution

a) If e=1.00, then there were exactly u =3 212 675 atoms present initially,
and the standard deviation is 0 =0.

b) From the single measurement, the best estimate & for u* in Eq. (9.48) is
the observed number of counts. The estimated number of atoms originally
present is

i 3212
% _ 3212675 45586146, (9.50)

0.24

From Eq. (9.49), the estimated standard deviation of the number of
counts is

6 = /i(1—¢)=+/3212675(1 — 0.24) = 1563. (9.51)

The estimated standard deviation of the number of atoms initially present
is 6" [e = 1563/0.24 = 6513.

Problems

9.1 A source gives 385 gross counts in 5 min.
a) Estimate the standard deviation of the gross count rate.
b) Estimate how much longer the sample would have to be counted in order to
reduce the standard deviation of the gross count rate by a factor of 10.
9.2 Howlong would the source in the last problem have to be counted to obtain the
gross count rate to a precision of £2% with 90% confidence?
9.3 How many counts are needed to obtain a coefficient of variation of 1%?



9.4

9.5

9.6

9.7
9.8

9.9

9.10

9.11

9.12

Problems

For a certain radioisotope, having a half-life of 4.12 d, the expected number of

disintegrations in 1 wk is 58.8.

a) How many atoms of the radioisotope are initially present?

b) What is the standard deviation of the number of disintegrations in 1 wk?

¢) What is the standard deviation for 2 d?

a) In the last problem, at what time does the maximum value of the standard
deviation of the number of disintegrations occur?

b) What is the maximum value of the standard deviation?

c) Make a sketch of the standard deviation of the number of disintegrations as
a function of the time.

The number of decays in any time period from a radioactive source is an

integral number. Justify the fact that the expected number of 58.8 disintegra-

tions in 1 wk in the last two problems is not an integer.

Verify Egs. 9.8-9.11.

While perhaps “obvious,” show that o, =y0o., and hence Eq. (9.11) follow

from the relation A=yR,,.

(Hint: Use propagation of error Eq. (8.17) for a product.)

Measurements of 10min each give gross and background count rates,

respectively, of 72 and 54 cpm, for a net count rate of 18 cpm. What are the

standard deviations of the following count rates:

a) gross?

b) background?

c) net?

The true count rate of a long-lived source is 12.0s™".

a) What is the standard deviation of the number of counts for a 1-min
measurement?

b) The sample is counted for 3 min. What is the probability that the measured
count rate will be within £5% of the true count rate?

A long-lived source is reported to have a count rate of 127 cpm.

a) Technician A obtains 140 counts in 1min, implying a count rate of
140 cpm. What is the probability that such a measurement would differ
from the expected value by no more than +13 cpm, if the true rate is
127 cpm? Does A’s measurement tend to confirm the reported count rate?

b) Technician B makes a 30-min measurement and obtains 4180 counts,
giving him a measured rate of 139 cpm, close to that of A. Does B’s
measurement tend to confirm the reported count rate? Give a quantitative
argument to support your conclusion.

c) Give your estimate of the true count rate and its uncertainty with some
specified confidence level.

A source registers 1050 counts in 10 min. A 1-h measurement with a blank

yields 4800 background counts.

a) What are the net count rate and its standard deviation?

b) If the counter efficiency is 40%, estimate the activity of the sample and its
standard deviation?
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9.13

9.14

9.15

9.16

9.17

9.18

9.19

9.20

9.21

If the efficiency (40%) of the counter in the last problem is known with a
precision of only +1%, what is the precision of the standard deviation in the
determination of the sample activity?

In Problem 9.12, estimate the probability that a second measurement would

give 1100 or more gross counts in 10 min.

Without remeasuring the background in Problem 9.12, how long would one

have to count the source in order to determine the activity to within +£10% with

a confidence of 90%?

Of two available counters, the one with the better precision for determining

net count rate is to be chosen for making a long-term measurement with a

certain source. In 15-min runs with the source present, a Nal detector gives

3277 counts and an HPGe detector gives 1213 counts. In 30-min measure-

ments of background, the Nal and HPGe instruments give, respectively, 952

and 89 counts. Calculate the coefficient of variation for the net count rate for

the

a) Nal detector.

b) HPGe detector.

c) Based on these data, which counter would you choose?

With the HPGe detector in the last problem, 1213 gross counts were obtained

in 15 min and 89 background counts in 30 min. New measurements are to be

made with this detector, keeping the relative background and gross counting
times in the ratio 2:1, as before.

a) How much total counting time is needed to determine the net count rate to
within £5% with 95% confidence?

b) What is the standard deviation for the new measurement of the net count
rate?

a) What would be the optimum division of the total counting time in the last
problem in order to minimize the standard deviation for the new mea-
surement of the net count rate?

b) What is the value of the minimum standard deviation?

The gross count rate with a sample is observed to be 73 cpm in a counter that

has a background rate of 58 cpm. What is the optimum division of a total

counting time of 1h for gross and background counts in order to obtain the
minimum standard deviation of the net rate?

Abackground measurementyields 4442 counts in 1 h with a certain counter. A

long-lived sample is then placed in the counter, and 1888 counts are registered

in 10 min.

a) What is the net count rate and its standard deviation?

b) What is the minimum value of the standard deviation of the net count rate
obtainable for the total counting time of 1h + 10 min?

c) Without redoing the background measurement, how long would the
sample have to be counted to obtain the net count rate to within +3%
of its true value with 95% confidence?

A long-lived radionuclide gives 714 counts in 5 min. A 10-min background

reading yields 1270 counts. The counter has an efficiency of 45%.



Problems

a) What is the standard deviation of the source activity in Bq?

b) How should a total counting time of 2h be divided between gross and
background counting in order to minimize the standard deviation of the
measured activity?

9.22 Derive Eq. (9.36).
9.23 a) Whatis the expected value of the fraction of the atoms that decay in a pure
radionuclide source in 2.7 half-lives?

b) What is the standard deviation of this fraction?

9.24 Ashort-lived radioactive source produces 121 497 counts before decaying away

completely. The counter efficiency is 18%.

a) Estimate the initial number of atoms of the radionuclide in the source.

b) Calculate the standard deviation of the initial number.
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10
Statistical Performance Measures

10.1
Statistical Decisions

Chapter 7 treated random sampling, the estimation of population parameters,
estimator properties, and associated confidence intervals. We focus now on a
different, but related, aspect of statistical inference. In practice, one is frequently
called upon to use sample data to reach a specific conclusion about a population
characteristic or parameter. Is the uncertainty in results from two different gas
proportional counters the same? Will no more than 1% of dosimeters fabricated
by a particular process fail acceptance testing? Is the uncertainty in results from a
liquid scintillation counter adequately described by the statistics of radioactive decay
alone? Such questions can be approached by first forming an answer as a hypothesis,
or conjecture, and then using data from random sampling as evidence to either
support or not support the hypothesis.

10.2
Screening Samples for Radioactivity

A procedure to routinely screen samples for radioactivity affords an example of
applying statistical inference. The number of net counts from a sample, determined
under standard conditions as the difference between observed gross and background
counts, is compared with a preset critical value, Lc. If the observed net value is equal to
or greater than Lc, then the decision is made that radioactivity is present in the
specimen. Otherwise, the sample is considered as having “no significant activity.”
Calibration provides the relationship between Lc and the corresponding activity Ay,
which is called the minimum significant measured activity. Operationally, A; is the
smallest measured value that is interpreted as meaning that activity is present in a
sample.

We shall assume that all measured counts are Poisson distributed. Unless
otherwise stated, we also assume that count numbers are sufficiently large to be

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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adequately represented by normal distributions with mean and variance equal to the
expected number of counts.

Example

A protocol is being assessed to screen for sample activity. It specifies taking a
gross count, N,, for 2min and a background count, Ny, for 10 min. The
detector efficiency has been determined to be y =1.74 disintegrations per
count. A selected sample registers n, = 64 gross counts in time t; =2 min,
compared with n;, =288 background counts in time #, =10 min.

a) Estimate the expected value of the net count rate and its standard deviation.

b) What is the implied sample activity?

¢) What is the probability that a sample with zero true activity (Ar = 0) would
give an activity measurement exceeding that found in (b)? Is the mea-
surement in (b) consistent with Ay =0 for this sample?

d) Assume that Ay =0. What is the smallest net rate value, r,,,¢, over a 2-min
period that would be exceeded with a probability no greater than a = 0.05?
(As in Chapter 9 and elsewhere, the leading subscript “r” is used when a
quantity describes a rate.)

e) Using this value of ., as the critical value, what would be the minimum
significant measured activity for the protocol?

Solution
a) From the relations (9.7), the estimate of the mean net count rate based on
the sample values is, with time in minutes,
ng m 64 288

== =———=320 . 10.1
m t, tp 2 10 cpm (101)

The estimated standard deviation of the net count rate is, from Eq. (9.10),

ng Ny 64 288
B 27 2% 591 cpm. 10.2
S“M 22 + £ 4 " 100 i (102)

Multiplying the net count rate by the counter efficiency implies a mea-
sured activity of A= r,y = (1.74)(3.20min"")/(60 s min ') = 0.0928 s
=0.0928 Bq.

c) With assumed zero activity, the variable Z=R,,/0,, is approximately
distributed as the standard normal distribution. By what amount is the
observed value of r,;, = 3.20 cpm greater than zero, our assumed value?
To check this, we can calculate the probability that we would observe
R.n>3.20 given that u,,=0. Using the normal approximation and
standardizing, we have Pr(R,,/0, >3.20/0,,) =Pr(Z>3.20/5.91) =
Pr(Z>0.542) =0.294 (Table A.3). Therefore, the probability is 0.294 that
a sample with zero activity would show a count rate greater than or equal to
the observed 3.20 cpm in (a). This result is consistent with the true sample

=
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activity being zero, in which case the observed net rate r,, = 3.20 is due
solely to random fluctuations of the background.

With Ar=0, the value z, =z 05 = 1.645 leaves the area 0.05 to its right
under the standard normal curve approximating the standardized net rate
distribution. That is, Pr(R> rync) =Pr(Z > fyne/0m) = 0.05 implies that
Tine/Om = 1.645, or 1 = 1.6450,,. Now 1y, and oy, are not independent
Since rne = frg — Iy and 01, is a function of g and r,. Since repe = rrg — Tt
we can substitute 7,y =1y + 1 in Eq. (9.10) for s,,,. Therefore,

Trne + T'th I'th Trne + 28.8 28.8
— g [ TID | T g gy, [TmeTEOS | 20 10.
e Zam ¢ 2 + 10 ( 3)

The resulting quadratic equation, r2 _—1.367,,.—47.0 = 0, has the solution
Tine = 7.57 cpm (Problem 10.1). The required number of counts in 2 min
would be 7.57 x 2 =15.1. However, the actual count number has to be an
integer —in this case, either 15 or 16. With 15, the probability would exceed
0.05, and so the answer is 16 net counts.

e) The minimum significant measured activity corresponding to the critical
value Lc=16 net counts in 2min is A;= Lcy =(16)(1.74 Bq)/(2 min)

(60smin~')=0.232s""' =0.232 Bq.

&

10.3
Minimum Significant Measured Activity

This section discusses the significance and implications of using the minimum
significant measured activity as a decision tool. As seen from Eq. (10.3), the net rate
'mc depends on the background rate, the gross and background counting times, and
the value of z,. The latter, which is selected to fix L¢ at the desired level, determines
the probability that the measured activity of a sample will be larger than A; when the
true mean activity Ay = 0 (see Figure 10.1). When this happens, the wrong conclusion
that the true mean activity At > 0is unknowingly reached. The resulting false positive
isreferred to as a type I error. The value of a represents an “acceptable” type I error rate
that is chosen as one element of a screening protocol. This error means that we are
declaring a sample as having activity when it does not. This might trigger compen-
satory responses unnecessarily, costing money and time. Thus, type I errors can be
expensive to a laboratory in terms of false alarms and consequent actions that have to
be taken. Errors will be discussed more fully as we proceed.

One can work out the explicit dependence of A; on the various factors mentioned in
order to gain further insight into the decision level. Starting with the first equality in
Eq. (10.3) and solving for r,,,, one finds (Problem 10.2)

2 2
2y | Za |Zy tg +1p
- dr. ([ 2—2). 10.4
rnc 2 tg + 2 té + rb( tg t ( )
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f@A)

True
Activity
Ar=0

1
0 Aq
Measured Activity, A

Figure 10.1  Probability density function f(A) for measured activity when true activity is zero. The
probability of a type | error (false positive) does not exceed the area a.

When the gross and background counting times are the same, this general
expression reduces to a simpler form. With t, = #;, = ¢, the critical net count becomes
(Problem 10.4)

vV Snb 8ny,

The detector efficiency y relates L¢ to the minimum significant measured activity,

2
Lc = Tinct = 24/ 21 (Za +4/1+ Z“) (equal counting times).  (10.5)

L
A= VTC , (10.6)
If, in addition, the number of background counts is large, so that z,//m, < 1,

Eq. (10.5) reduces to
Lc 22 zgy/2m, (equal times and z,/\/mp, < 1). (10.7)

In many instances, the background is stable. The number B of background counts
over an extended time can then be determined with greater precision than that
obtained from a single measurement of N, over the prescribed time t,. With zero
activity (A = 0), the standard deviation of the number of net counts is simply /B. It
follows that the minimum significant net count difference is

Lc = z,VB (background stable and well known). (10.8)

Comparison with Eq. (10.7) shows that the minimum significant measured activity
is lower by approximately a factor of v/2 when the background is stable and well
known.



10.4 Minimum Detectable True Activity

In addition to false positive (type I) errors that can occur when using Lc as a
screening tool, false negative (type II) errors are also possible. This happens when the
measured net count is less than Lc, but the true value is Ar > 0. A type II error poses
potential risks of a different nature from those associated with type I. Falsely
declaring zero activity may imply an unrecognized hazard, possibly leading to
radiation exposure and the resulting health issues. We next develop a decision tool
that specifically applies when At > 0 and thus addresses type II errors.

10.4
Minimum Detectable True Activity

Figure 10.2 shows the probability density function for the measured sample activity
when the true activity has a value At = Ay; > 0. Also shown for comparison to its left is
the density function from Figure 10.1 for Ar=0 with the associated minimum
significant measured activity Ay (Eq. (10.6)). With Ar=Ay; > 0, it is more likely than
before that the measured sample activity will be greater than A;. Applying the
decision tool A > A; or equivalently N,, > L, for the net count, then correctly gives
the decision that the sample has activity (recall that A = Ny/t). However, when Ay > 0
there is also a possibility that the measured result could be N, < Lc. When this
happens, the false negative decision is reached, indicating that the sample has no
significant activity when, in fact, it does. The probability that this type II error will be
committed when the true activity is Ayy is equal to the area § under the distribution
centered at Ay left of Ay in Figure 10.2. We write this probability symbolically as
Pr(A < Aflua=Apn) =p.

f@)

Measured Activity, A

Figure 10.2  Probability density function for true activity Ay =A;; > 0 and density function from
Figure 10.1 for Ay =0. With o chosen, setting a protocol value for f3 fixes Ay;, which is then called the
minimum detectable true activity.
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Like a, the value of B can be selected to set an “acceptable” risk, related now to type
IT errors, as part of the screening protocol. Since the value of A; is fixed once « is set,
the value of 5 will be changed only by moving Aj; to the left or right. Therefore, a
particular numerical choice of § determines a particular value for the activity Ap;.
With f8 specified, this value of Ay is called the minimum detectable true activity. Any
smaller mean activity A, where 0 < Ar < Ayy, gives a type II error rate (false negative)
with probability greater than 8. Ay is the smallest mean activity that will be declared
undetected (N, < Lc or A < A;) with a probability no larger than g.

We next find the mean value R,,4 of the net count rate when the true value of the
sample activity is Aj. With ua denoting the mean activity level, the mean rate p,p,q is
related to the mean activity by the equation ua =gy, where y is the detector
efficiency. Because y is a fixed constant, we can use the count rate in place of the
activity to determine if any activity is present. Since the count rate is easier to
calculate, we employ it rather than activity. Using Figure 10.3, we see that r,,,q is the
count rate corresponding to Ay;, and what we want to determine is the value of 1,4 for
which Pr(R.y, < Finclthrnd = fmd) = - Once we determine r,,,4, we can easily determine
the corresponding activity. Also, note that r,,, has been previously determined as the
critical value for which we declare falsely with probability a that there is activity when
the true mean activity is zero. It is important to note that r.,,. has been previously
computed via Eq. (10.4) and it is this value that we are using in our calculations. As
long as the number of counts is sufficiently large, then R,,, will be approximately
normally distributed with mean u,,q=rnq and standard deviation oy, given by
Eq. (9.9). We want to determine the value of 1., when Pr(Ryy, < finclttng = Tmd) = B-
Standardizing the distribution of R,,, we find that Pr[Rm < incltlng
= I'tnd] = PI[(Rm—Hmq)/0m < (fnc—Tind)/Om). Continuing, this probability is

frm)

Net Rate, 7,

Figure 10.3 Probability density function f(r,,) for net count rate with true activity Ay =A,. See
Eq. (10.10).
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Pr[Z < (*mc—Tmd)/Omd] = B, where Z is the standard normal random variable. The
value that cuts off the fraction 8 of the area to the left of the standard normal
distribution is denoted by —z. Hence, we have (finc—rimd)/0m = —23, which we can
solve for .. The result is

"nd = Tmc +20m- (109)
Recall that fine = 1y —1y, has been determined already by Eq. (10.4). We can use this

result to express the value of ryng in terms of 1y, y0,, 23, tg, and t,,. Equation (10.9) can
be rewritten as

1 to +t
Fend = Tenc + 24 |25 4+ 1 ( e b>. (10.10)
te ol

When the counting times are equal, t=t,=t, one finds for the minimum
detectable true net count number with activity Ay,

1/2

22 24 22
Ip = t= L V2 14+ <« 14 <+ 10.11
D = Tmd ¢tz nb( + 4, - Ny + 8n, | ( )

where L is given by Eq. (10.5) (Problem 10.8). Finally, use of the detector efficiency
y gives the minimum detectable true activity,

This and other related quantities are discussed in the literature under various
headings, such as the lower limit of detection (LLD) or the minimum detectable amount
(MDA) (Currie, 1968; HPS, 1996).

Asbefore with L, often z, //m, < 1. Then Eq. (10.11) reduces to the simple result

Lp & Lc 42/ 2my, = (2o +28)\/ 21, (10.13)

in which the approximation (10.7) has been substituted for Lc. When o = §3, it follows
that Lp = 2Lc.

When the background is stable and accurately known, Eq. (10.11) can be written
(Problem 10.9) as

L —ﬁz+i+z 1y E T (10.14)
PV T2y, TN A | ‘

In addition, Eq. (10.13) becomes

Lp 2 (24 +28) /M. (10.15)
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As with the minimum significant measured activity, a well-characterized and stable
background lowers the minimum detectable true activity by approximately /2. The
relationship Lp 22 2L¢ also holds when a = f with a well-known background.

W Example

Measurement of a sample and background for the same length of time yields
ng =333 gross and m, = 296 background counts. The calibration constant is
y =4.08 Bq per count. The maximum risks for both type I and type II errors
are set at o =3 =0.05. Determine

a) the critical count number;

b) whether the sample has activity;

c) the measured sample activity;

d) the minimum significant measured activity;
e) the minimum detectable true activity.

Solution
a) With k,=1.645 in Eq. (10.5), the critical count number is

1.645 1.645%
Lc =1.645V2 x 296 | — +{/1+ ———
c (,/—8 <29 | 8x 296)
=414, (10.16)

We round to the next larger integer, using Lc = 42 as the smallest net count
number for declaring activity to be present, with a probability not exceed-
ing 0.05 for a false positive.

b) The net count number is

fin = ng—my, = 333—296 = 37 < Lc. (10.17)

Therefore, the sample is judged as having no significant activity.
¢) The measured activity is A= yn, =4.08 Bq x 37 =151 Bq.
d) From Egs. (10.6) and (10.16), the minimum significant measured
activity is
A; = yLc = 4.08 Bq x 41.4 = 169 Bq. (10.18)

e) The expected net count when the true activity is Ay is given here by
combining Egs. (10.11) and (10.16):

1/2
1.6452 1.645 1.645%
Ip = 41.4+1.645v2 x 296 1
D + T ax296 T a6V T 8% 29
=828.
(10.19)

Therefore, the minimum detectable true activity is Ap=vyLlp=
4.08 Bq x 82.8 = 338 Bq.
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Example

Pertaining to the last example, a technician subsequently finds that the
background radiation level at the facility has been extensively documented.
A large number of separate measurements, based on more than 50 000 total
counts, show the background to be stable with an estimated mean number of
290 counts for the length of time during which a sample is counted. Repeat the
previous analysis, using the improved background data.

Solution

a) With m, =290, Eq. (10.8) yields Lc = 1.6454/290 = 28.01. The critical net
count number, accordingly, is Lc = 29. (Note that the single measurement
n, =296 in the last example is consistent with a stable background.)

b) The measured net count is now n,, = n, — m, = 333 — 290 = 43. Since it is
greater than Lc, we declare the sample to have activity, that is, Ar > 0. This
conclusion contradicts the previous one, based on the less certain back-
ground data.

¢) The measured sample activity is A=yn,=4.08 Bq x 43 =175 Bq.

d) The minimum significant measured activity is

Ay = yLc = 4.08 Bq x 28.01 = 115 Bq. (10.20)

e) From Egs. (10.12) and (10.14), the minimum detectable true activity is

A[I = )/LD =4.08 Bq

1.64 1.64 1.6452
/290 | 1.645 4 &% +1_645\/1+ﬁ+ 65)

21/290 V290 | 4 x 290
= 240 Bq. (10.21)

239

Table 10.1 summarizes the last two examples. In essence, with the smaller coefficient
of variation for the background counts compared with the single gross count, the

Table 10.1 Summary of data from examples in the text.

Quantity With single background count ~ With extensive background count
Gross counts, g 333 333

Background counts, ny, 296 290

Net counts, n, 37 43

(a) Critical level, Lc 42 29

(b) Zero true activity? Yes, Ar=0 No, Ar>0

(c) Measured activity, A 151Bq 175Bq

(d) A 169 Bq 115Bq

(€) An 338Bq 240Bq
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sensitivity for Ajand Ay is improved by about /2, as borne out by the table. Moreover,
the decision itself about the presence of activity is reversed in the two examples. It is
more likely that the conclusion in the second example with the much larger number
of total background counts is correct, and that a type 1I error was made in the first
example.

10.5
Hypothesis Testing

The two types of questions, whether activity is really present and the likelihood that
we will detect it at a given level, can be addressed statistically through hypothesis
testing. The usual setting involves deciding between two conjectures, or hypotheses,
concerning characteristics of one or more populations. Frequently, a hypothesis is a
claim about the value of a population parameter, such as a mean, variance, or
proportion. It might also be a general assertion, for example, that a new drug is more
effective that an existing one for curing an illness. Although our discussion will deal
primarily with statements about a single population parameter, the methodology has
general applicability.

Hypothesis testing has the following formal structure. Any stated statistical
assertion or conjecture that we wish to test about a population is called the null
hypothesis and is denoted by Hy. Rejection of H, implies acceptance of an alternative
hypothesis, denoted by H;. We decide whether to reject the null hypothesis on the basis
of data from random sampling of the population. For example, in order to test
the assertion that a population parameter # has a particular set of values w, the
hypotheses can be stated symbolically:

Hy: 0cw versus H;: 0€ Q-w. (10.22)

Here Q represents the whole space, or the set of all possible values that 6 can take on.
The null space o refers to the values that 6 can assume under the null hypothesis. The
alternative H; states that 6 is in the remainder of the whole space, exclusive of w. In
the usual hypothesis testing model, a null hypothesis Hy and an alternative H; are
stated. If the null and alternative hypotheses specify single values, for example,
Hy: 0 = 6, versus Hy: 0 = 0;, then the hypotheses are described as simple versus
simple. If one hypothesis specifies a single value while the other gives an interval, for
example, Hy: 0 = 0y versus Hy: 6 > 6, then they are referred to as simple versus
composite. Composite versus composite hypotheses are possible as well, for example,
Hy: 6 <6y versus Hy: 6 > 6. To judge between the two hypotheses, we calculate some
suitable test statistic from a random sample from the population and base our
decision on its value. Usually, we look at extremes of the test statistic. If its value falls
in some range C, called the critical region or the rejection region, then we reject H,.
The complement of C is the acceptance region.

The screening procedure from the foregoing sections provides an example of
hypothesis testing. The measured activity A of a sample (gross minus background) is
compared with an a priori established minimum significant measured activity A,
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which depends on the background and the value chosen for the parameter a. The true
activity Arof a given sample is judged to be zero or greater than zero according to
how A compares with A;. There are two possibilities:

Hy: Ar =0 (null hypothesis), (10.23)
H; : Ar > 0 (alternative hypothesis). '

The test statistic is the single measurement of A. Compared with Eq. (10.22), the
whole space Q in Eq. (10.23) is the set of all nonnegative numbers (Ar > 0), the null
space is the single value w=Ar=0, and Q —w is the set of values Ar>0.
Hypothesis (10.23) is an example of simple versus composite.

The general relationship between errors and the wrong decision is shown in
Table 10.2. One either accepts or rejects Hy, while Hj is either actually true or false.
The rejection of Hy when it is true results in a type I error. On the other hand,
acceptance of Hy when itis false (i.e., H; is true) is a type Il error. The implications of
the two types of error can be quite different (Problem 10.11).

The probability a associated with type L errors in a test of hypothesis is referred to as
the size, or significance level, of the test. The probability associated with a type II error is
commonly referred to as 5. The probability (1 — ) of the complement for type II
errors is called the power of the test. Note that the power is the probability of rejecting
H, when H; is true, a correct decision. Ideally, one would like to design a test with a
rejection region so as to minimize both a and . However, this is not generally
feasible, because of their complicated relationship. The significance level a is set
beforehand to some specified value, which acts to determine the decision level for the
test statistic. Similarly, S can be arbitrarily chosen, but it enters the test procedure in a
different way. The probability of making a type II error depends additionally on the
level of the true activity Ar.

The situation is represented schematically in Figure 10.4 by a so-called power curve
for the test. The probability Pr(A > Afjua = Ar) that the measured activity A will be
greater than Aj is shown plotted against the true activity Ay Starting at Ay =0, the
probability a has been assigned in the test procedure for a type I error. As Arstarts out
from zero, the probability Pr(A > Aj|ua = Ar) increases gradually at first and then
climbs more steeply. When Ar=A;, Pr(A > Aj|us = A;) =0.5. (Provided the count
numbers are sufficiently large to allow the normal approximation to be valid, it is
about equally probable that A will lie on either side of A;.) When Ar reaches the
particular value Ay;, we have Pr(A < Afjua = Ayj) = B, which stipulates the probability
for a type II error at that mean activity. Thus, the complementary probability
Pr(A> Afjua=Ap) =1—p, called the power of the test, is shown in Figure 10.4.

Table 10.2  “Truth” table showing possible outcomes of hypothesis testing with
relations (10.23).

Hy is true Hy is false

Accept Hy Correct decision Type II error
Reject H Type I error Correct decision
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Figure 10.4 Power curve showing the relationship of the relevant quantities. The power, 1—f, is
the probability of correctly stating that the true activity is greater than zero when Ar=A,,.

Thereafter, Pr(A > Alua = Ar) approaches unity as Ar increases. The power of a test
can be particularly useful in assessing how sensitive some tests are in distinguishing
small differences in numerical values of population parameters.

In optimizing the test procedure, if we reduce a, then we move A; to the right and
cause f to increase (e.g., see Figure 10.2). The classical approach to designing a test
procedure is to first fix a, usually at some standard level (e.g., o = 0.05 or 0.01), and
then look for a test that minimizes f3. If the smallest possible value of 5 for that a is
unacceptably large, then we should increase «, increase the sample size, or try
another test. Additional discussion on optimization of the test procedure is given in
Section 10.8.

It should be apparent that acceptance of a statistical hypothesis usually means that
the sample data are not sufficiently strong to refute the hypothesis. Rejection, on the
other hand, implies that the sample data would result only with a small probability if
the hypothesis were true. There is thus a strong qualitative difference between
acceptance and rejection of the null hypothesis. Generally, the null hypothesis H,
expresses the status quo, while the alternative H; requires a burden of proof. The test
statistic is the random variable whose numerical value determines the decision.

W Example

When first received from the manufacturer, the response of a thermoluni-
nescence dosimeter (TLD) to a 5-mGy dose from '3’Cs photons is measured
several times. In terms of the charge Q measured by the reader for this
exposure, an acceptable dosimeter should show a normal distribution with
mean u=117.2nC and standard deviation 0 =1.5nC. If a new dosimeter
checks out, itis assigned to a radiation worker. After issuance, the dosimeter is
periodically retrieved and checked by criteria specified below to see whether
the response has changed. If so, the unit is removed from service.

a) To check the response of a retrieved dosimeter, it is decided to test the
hypothesis that u =117.2 nC, the standard setting, versus the alternative
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thatu > 117.2nC. Formally state Hy and H; and whether the hypothesis is
simple or composite.

b) What are the values of w and Q as defined by Eq. (10.22)?

¢) The value a =0.05 is chosen as the significance level of the test. Assume
that the reading is normally distributed with the mean and standard
deviation given above. Obtain the critical value that defines the test of size
a=0.05.

d) What is the acceptance region for this test?

€) Suppose that the alternative hypothesis is Hy: 4 =122.0nC. What is the
probability 8 of a type II error?

f) What is the power for this alternative hypothesis?

Solution

a) The null hypothesis states that the mean equals the standard setting.
Hence, Hy: #=117.2nC. The alternative is simply that the mean has
shifted to some larger value. Thus, we write Hy: 4> 117.2nC. The null
hypothesis, referring to a single value, is a simple hypothesis. The
alternative, which involves an interval of values, is composite.
w=117.2nC and Q=[117.2, c0).

Recall that a = Pr(reject Ho|Hy is true). That is, a equals the probability
that we reject Hy given that Hy is true. Letting Y denote the reading from
the retrieved dosimeter and Y the critical value, we write

o c
— =

Pr(Y > Yc|Hpis true) = a = 0.05. (10.24)

Under Hy, u=117.2nC, and we are given o = 1.5 nC. Converting to the
standard normal distribution, we write

Y-u  Yc—117.2
Pr(—= > "27) —0.05. 10.25
r(o >~ ) 0.0 (10.25)

Thus, with Z= (Y —u)/o ~ N(0, 1),

Ye—117.2
Pr (Z > %) = 0.05. (10.26)

From Table 6.1 or from Table A.3, we find Pr(Z > 1.645) = 0.05. Therefore,

Yoo 1172y s, (10.27)
1.5
giving Yc = 119.7 nC. With this critical value, a type I error (rejection of H,
when it is true) can be expected 5% of the time.

The acceptance region is the complement of the critical, or rejection,
region C. The latter is the set of all values equal to or greater than the
critical value: C=[Yc=119.7 nC, c0). Therefore, the acceptance region is
C’=10,119.7nC). Note that, since Hy: 4 > 117.2 nC, we will reject Hp only
when we observe larger values of the response. Also, because negative
readings do not occur, the lower bound of the acceptance region is zero.

&
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Table 10.3  Power curve, (1— ) versus u, for example in the text.

u (nC) 118 119 120 121 122 123
B 0.8715 0.6796 0.4207 0.1931 0.0626 0.0139
1-p 0.1285 0.3204 0.5793 0.8069 0.9374 0.9861

e) A type II error occurs when Hy is accepted when Hj is true. With the

critical value Yc we write, analogous to Eq. (10.24),
Pr(Y < Yc|Hy : u = 122.0is true) = §. (10.28)

Applying the standard normal variable Z=(Y—u)/o with u=122.0,
Yc=119.7, and 0 =1.5 gives

Y- 119.7— .
Pr u< 9.7-122.0
[ 1.5

) =Pr(Z < —1.53) = . (10.29)

From Table A.3, 8 =0.063.

f) The power is the probability 1 — 5 =0.937 (the complement for a type II

error) that we reject Hy given that H; is true. So if the dosimeter has shifted
to a higher mean value of 122.0nC, we would have a 93.7% chance of
detecting this change and rejecting the null hypothesis. We can calculate a
power curve by choosing different values of u for H;. Table 10.3 gives some
values and their corresponding powers in the test above in which the
critical value is Yc=119.7nC. The resulting power curve is shown in
Figure 10.5.
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Figure 10.5 Power curve from the quantity (1 — ) for different values of « in Table 10.3
(example in the text).
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Table 10.4 Critical values z, and z,, for one- and two-tailed tests, respectively, for
different levels of significance a with the standard normal distribution.

a One-tailed, z,, Two-tailed, z,,,
0.100 1.282 1.645
0.050 1.645 1.960
0.010 2.326 2.576
0.005 2.576 2.810
0.002 2.880 3.080
0.001 3.080 3.295

The discussion until now has dealt only with a one-sided, or one-tailed, alternative
hypothesis. The critical region for rejection then lies in the right or left tail of the
distribution for the test statistic, depending on whether the alternative is greater than
or less than the null hypothesis, respectively. Hypothesis tests can be two-tailed. A
simple null hypothesis will always be stated as an equality to a single value. The
alternative can then be either one- or two-tailed. For example,

One-tailed test Two-tailed test
H() 0= 0() H() 0= 00
H;: 0> 00 Hi: 6 # 0()

In a two-tailed test, we might reject H if our test statistic is either too small or
too large. The significance level a then must be split to account for either of these
errors if Hy is true. Generally, there is no reason to suspect that one error might
occur more often than the other. One then simply uses a/2 for each. Table 10.4
lists the critical values z, and z,,, respectively, for one- and two-tailed tests for
different levels of significance a for the standard normal distribution. One-tailed
tests are used to establish performance measures to evaluate radioactivity and
radiation dose, for which results giving less than background have no physical
significance.

W Example

Consider again the definition of an acceptable thermoluminescence dosimeter
in the last example. We shall now use different criteria, involving a two-tailed
test, to judge whether the response of a retrieved dosimeter has changed.
Specifically, a dosimeter will be discarded if it reads too far above or below the
mean, u=117.2nC, at a significance level a = 0.05.

a) Determine the acceptance region for the response of a retrieved
dosimeter.

b) State the null and alternative hypotheses for the dosimeter test.

¢) Ifthe acceptance region is within +4% of the mean, what is the probability
of a false positive?
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Solution

a) With a significance level a = 0.05, the acceptance region in this two-tailed
test is the interval within z,/, = 2025 =1.960 standard deviations on
either side of the mean (Table 10.4). Inserting the given values of 4 and
o, we find that the acceptance region, u+1.9600, spans the interval
(114.3nC, 120.1nC).

The null hypothesis states that the response of a retrieved dosimeter has
not changed. That is, the measured charge Q has mean equal to 117.2nC,
so that Hy: 4 = 117.2 nC. The alternative hypothesis is that Q has changed,
or Hy: u#117.2nC. The hypothesis test, which is two-tailed, is conve-
niently stated in terms of the standard normal test statistic, Z = (Q — u)/o.
The acceptance and rejection regions are, respectively, given by

=

|Z| < 1.960 and |Z| > 1.960. (10.30)

This is an example of a simple versus a composite test.
c) With Q = u £ 0.04u = u(1 £ 0.04), the standard normal variable has the
values

5 _Hp(1£004) 004 0.04x117.2nC

o o 1.5nC
=+3.1. (10.31)

The probability of a false positive is the probability that we reject Hy
given that H, is true. That is, Pr(Z< —-3.1)+Pr(Z>3.1)=
0.001 +0.001 = 0.002.

Example

The activity concentration of uranium in soil around a proposed munitions
plant has a mean u = 1.017 pCi g~ and standard deviation 0 =0.108 pCig .
The plant will manufacture depleted uranium armor penetrators. When in
operation, soil samples will be taken periodically around the site to monitor
the efficacy of practices for the containment of the uranium. The goal is to
maintain a state of “no detectable uranium above background” in the
environment. What measured level of uranium concentration in soil would
indicate a failure of the containment controls, given an acceptable probability
a=0.01 of a false positive?

Solution

This is a one-tailed test of hypothesis, since we are interested only in results
that exceed the mean background. From Table A.3, for ¢ =0.01 one has
Z0.01 = 2.326. The critical level for the soil concentration X is thus

Lc = u+2z,0 = 1.017 4-2.326(0.108) = 1.268 pCig". (10.32)
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The null hypothesis states that there is no activity concentration of uranium
above that of background. The alternative hypothesis is that there is increased
activity. Symbolically,

Hy: u=1.017pCig™ versus Hj: u>1.017pCig™t.  (10.33)

A measurement in excess of the amount L given by (10.32) is the basis for
rejection of the null hypothesis. It is to be considered as indicative that
uranium levels have exceeded background, presumably because of inade-
quate containment at the plant.

In many applications we do not know the population variance, and so we must
estimate it from sampled observations. Unless the number of observations is large
(usually n > 30), our test statistic will be the Student’s t-distribution (Section 6.9)
rather than the normal. When n > 30, the normal distribution provides an adequate
approximation to the t-distribution, and so it can be used.

Example

In the last example, calculate the critical level if the given values,
X =1.107 pCig™! and s=0.108 pCig ', are estimates of u and ¢ obtained
from

a) n=4 measurements and

b) n=10 measurements.

c) Plot the probability density functions for the uranium activity concentra-
tions in the last example and in parts (a) and (b) here.

Solution

a) In this case we do not know the true population mean and standard
deviation, for which we have only the sample estimates. Rather than the
normal distribution, we employ Student’s t-distribution (Section 6.9).
Instead of z,, we use t, 4 = t3001 = 4.541 from Table A5 forv=n—1=3
degrees of freedom. In place of Eq. (10.32) we write

Le =X +130015 = 1.017 4+ 4.541(0.108) = 1.507 pCig™.  (10.34)

b) With the same estimates from the larger sample, t, , = 9901 = 2.821,and
the critical level is

Le=X+1t90015 = 1.017+2.821(0.108) = 1.322pCig~*.  (10.35)

c) Figure 10.6 shows the three probability density functions, fix) — the
Student’s t-distributions for v=3 and v =19 degrees of freedom - and
the standard normal distribution N(0, 1), which is the limit approached by
the t-distribution as n — oo. Note that the critical level (10.34) is largest for
the broadest distribution (v = 3) and becomes progressively smaller as the
number of measurements for the estimates of u and ¢ increases.
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Figure 10.6 Three probability density functions f(x) for example in the text: Student’s
t-distributions for =3 and v =9 degrees of freedom and the standard normal
distribution N(0, 1).

10.6
Criteria for Radiobioassay, HPS N13.30-1996

The analysis described in Sections 10.3 and 10.4 for radiobioassay largely follows that
given by Altshuler and Pasternack (1963) and discussed further by Turner (2007).
This section reviews guidance furnished by the American National Standard, HPS
N13.30 (HPS, 1996), building on original work by Currie and others. Unless
otherwise stated, it will be assumed that count numbers are Poisson distributed
and sufficiently large to be represented by a normal distribution with equal mean and
variance.

The American National Standard, HPS N13.30-1996, Performance Criteria for
Radiobioassay, (HPS, 1996) is in widespread use today. It presents a protocol that
defines a decision level (Lc) and minimum detectable amount for measurements of a
radioactive analyte in a sample or a person. These quantities play the same role as their
related namesakes in our previous discussions, but differ from the former in the way
“background” is assessed." The critical level formalized in Section 10.3 is applied to
the net count above background measured with a subject under analysis. The
background count is typically made with the subject replaced by an appropriate blank,
radiometrically identical with the subject, but containing no added radioactivity.”?» We
denote the standard deviation of the count number ngo from the appropriate blank

1) The same symbol, Lc, which we have employed in this chapter for the critical level, is used in N13.30
for the so-called decision level.

2) Examples of appropriate blanks include synthetic urine for in vitro radiobioassay and anthropo-
morphic phantoms for in vivo analysis (body counting).
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over a time t, by sgg = /ngo. An additional quantity is required by N13.30 — namely,
“... the count ng; of a subject, by the routine measurement procedure, where the
subject contains no actual analyte activity above that of an appropriate blank.” The
standard deviation sg; = /ng; of this count number is applied to the gross time, t,,
used to count the subject. Rather than comparing the subject count with a single
background count over the same time t,, as in Eq. (10.7), N13.30 compares the subject
count with the equivalent net count over time t, derived from ng; and ng, as follows.
According to Eq. (9.10), the standard deviation of this net rate is

np1 nBo
IV
tg [

S0 = (10.36)

The standard deviation in the number of net counts during the time t, that a subject
is counted is

¢ 2 i 2
So = Srotg = \/ngl + (i) Ny = \/SZBI + (i) SZBO' (1037)

Whereas the subject count time t, for the procedure is fixed at some standard value,
the time #, for the appropriate blank can have any value. Letting ¢ = t;,/t, be the ratio
of the two times, we have

1
So = {[SB + ?Sz}w (10.38)

When the counting times are the same (0 =1), the two standard deviations in
Eq. (10.38) are approximately equal. Then sy = /253, = \/2Zn;, which is essentially
the same as Eq. (10.7).

For the type I error probability o, the decision level L in N13.30 is defined with the
help of Eq. (10.38) as

LC = ABB+ZQS(). (1039)

Here, B (=npy) is the total count of the appropriate blank (standard deviation = sgy).
The factor Ag equals the “maximum expected fractional systematic uncertainties
bound in the appropriate blank B. Ag is the maximum fractional difference between
the background of the subject being counted and the background for the subject
estimated from the appropriate blank.” As further described in N13.30, the use of
Eq. (10.39) assumes that any systematic bias, such as background radiation atten-
uation by the sample matrix, is relatively constant for the two counts and is accounted
for by the term AgB. Because Ap is a measure of the systematic uncertainty in the
appropriate blank, it cannot be reduced by replicate measurements. Using an
appropriate blank that is not radiometrically identical to the uncontaminated sample
will also bias the mean of the net background and, with it, the decision level.
Systematic error can be minimized only by repeated calibrations, by background
and quality assurance measurements, and by adding to blanks known amounts
of radionuclides that do not interfere with the measurement, but that provide
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information about chemical recoveries and detector efficiencies. In good laborato-
ries, Ag in Eq. (10.39) will be close to zero. N13.30 recommends neglecting the first
term in Eq. (10.32) when it does not exceed one-tenth of the value of the second term.
We shall not consider systematic errors further, assuming for the decision level,
Le=2z,5.

The minimum detectable true activity described in Section 10.4 is similar to Currie’s
detection limit and the minimum detectable amount in N13.30. That is, the mean of the
distribution of net results from replicate analyses of a sample with the MDA level of
added radioactivity is such that the fraction f of the net distribution lies below the
critical level, in the same way as depicted in Figure 10.2. However, the net count in
N13.30 refers to that between a subject under analysis and the net count that defines s,
(Eq. (10.38)). For simplicity, we assume that systematic uncertainties are negligible. We
also choose equal counting times and select a = = 0.05 (z,, = zg = 1.645). In place of
Eq. (10.13), N13.30 then employs for the paired blank

Lp = (24 +25)s50 = 3.29 59 = 3.29 /4, + 53, = 4.65 sp. (10.40)

Here sg = s = sp; is introduced to reflect the near equality of the two terms under
the radical that represent the background counts. We can reduce the component of the
variance given by a well-known blank if we take a sample of background measure-
ments and average them, rather than using a single sample. As we know from Eq.
(8.24), the variance of the mean of m observations that are independently distributed
with constant variance 53, is s3,/m. Hence, for the mean of m independent samples,
with similar assumptions as before, we have

1
Lp = 3.29s51/1+ —. (10.41)
m

The expressions (10.39) and (10.41) provide the appropriate operational count
numbers that determine the critical level and the MDA, according to the explicit
criteria set out by the protocol. They establish the required measurement time through
the estimate of the number of background counts required. Of more relevance for
exposure monitoring than the numbers per se is their expression in some appropriate
units. For example, the MDA is usually expressed in derived units, such as nCi of
uranium in the lung, dpm per day urinary excretion of 2! Am, and so on, rather than in
units of the actual measurement (counts). In general, count numbers are converted to
the appropriate derived analytical units by dividing by KT, where K is a calibration
factor (e.g., expressing count rate per unit analytical amount) and T is the counting
time for analysis. The quantity K may be a combination of factors, such as counting
efficiency, chemical recovery, and urinary excretion rate. Thus, for the paired blank, the
minimum detectable amount in appropriate analytical units is, from Eq. (10.40),

4.655]3

MDA =
KT

(10.42)

In applying derived units, it should be remembered that Lc and MDA are restricted to
integral values by definition.
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These expressions from N13.30 for Lc and MDA were derived under the assump-
tion that total counts are large enough to be adequately approximated by normal
distributions. While this condition is met in many types of radiobioassay (e.g., whole-
body counts for 1*’Cs against a *°K background in body tissues), some modern
applications entail very small count numbers, which are not well approximated by the
normal distribution. The background in a well-maintained alpha spectroscopy
counting chamber might be only one or two counts over several days. N13.30 does
not deal with this situation at length, but adds a semi-empirical term to Lp in
Egs. (10.40) and (10.41) in order to assure that 8 < 0.05 in very low backgrounds. With
a Poisson distribution, an MDA of three counts satisfies this condition. The N13.30
MDA (10.42) for the paired blank then becomes

4.65sp + 3
MDA = ———. 10.4
XT (10.43)
For the mean of m samples of a well-known blank (see Eq. (10.41)),
29s54/1+ (1
MDA — 2% ;’T( /m+3 (10.44)

A well-maintained alpha-particle spectrometer might register on average a single
event in the energy range of interest for a 1000-min count, even though the detection
chamber contains a blank sample with no activity. The Poisson distribution for the
number of counts with a mean background up =1 over the counting interval is
shown in Figure 10.7. The probability of observing zero counts is Pr(X= 0) = 0.368,
the same as that for a single count. Although there is no radioactivity in the sample,
the probability for registering one or more counts is Pr(X> 1) =0.632.

Setting a critical level for the measurement of samples with the spectrometer
from Figure 10.7 can be approached in the following way. We relate the probability

0.4
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Figure 10.7 Poisson distribution Pr(X=x) for count number X with mean background ug = 1 over
the counting interval.
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a associated with a type I error to the Poisson distribution with parameter u by
writing
Lc
a=Pr(X>1Lc)=1-Pr(X < Lc) =1— Zp(x;,u) =1-P(Lc;u).  (10.45)
x=0

Here P(X; u) is the cumulative distribution of the Poisson probability p(x; u)
tabulated in Table A.2 in the Appendix. In contrast to using Lc=2z,5y as before,
under the assumption of normal statistics, we deal now with a having noncontinuous
values. If we wanted to set a = 0.05, for example, we see from Table A.2 with 4 =1 for
our spectrometer that Pr(X < 2) = 0.920 and Pr(X < 3) = 0.981. Thus, choosing Lc =2
or 3, respectively, gives a =0.080 or 0.019. In order to assure that the type I error
probability is no greater than 0.05, we need Lc = 3, for which @ =0.019. A measure-
ment that yields four or more counts in the 1000-min interval with the spectrometer
from Figure 10.7 is to be interpreted as meaning that there is activity in the sample. In
this case, we reject H, with actual significance level a =0.019.

The MDA and Ly, for the spectrometer depend on L¢ and the value selected for the
probability f5 for a type II error. We choose the MDA as the smallest mean activity level
above background that results in three or fewer counts in 1000 min with a probability
B =10.05. The Lp is the mean Poisson count for which Pr(X < 3|u = Lp) = =0.05. In
Table A.2 we look for the value of 4 = Lp for which P(3, u) = 0.05, that is, for which the
cumulative Poisson probability is 0.05 for X = 3 counts. We see that this occurs between
u="7.5 and u=8.0. Iterative calculation on u gives #=0.05 when y =Ly =7.75.
(Simple linear interpolation gives u = 7.76.) Figure 10.8 shows the distributions for a

04 -

Pr (X=n)
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Number of Counts Observed, n

Figure 10.8 A detection level Lp =7.75 counts
gives a probability of false negative 5 = 0.05 for
an alpha-particle spectrometer with background
mean of 1 count in the counting interval and the
probability of false positive, a <0.05. This

means that replicate measurements of a sample
containing activity at the detection level would

yield a distribution of results (gray bars) that, 5%
of the time, lie below the critical level (Lc=3)
defined by the background distribution (black
bars) and the value of a. The Poisson
distribution is assumed for count results
obtained for both background and sample with
activity.
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background with mean ¢ = 1 count and for a sample with a mean at the detection level
Lp =7.75 counts. By convention, the critical level L is expressed in the actual units of
the measurement (in this case, counts). The detection level and MDA are typically
expressed in derived units (in this case, activity). For this reason, we have not restricted
Lp to be an integer.

Example

A radiobioassay laboratory evaluates 2! Am in urine with a procedure that
involves chemical separation and electroplating, followed by alpha spectrom-
etry. A total of m =21 reagent blanks (having everything that would be in an
appropriate blank except real or artificial urine) were obtained and counted to
characterize the background distribution. The count numbers x varied from
zero to a maximum of five. The numbers of blanks n, with x counts were
distributed as follows:

Count number, x 0 1 2 3 4 5
Occurrence, n, 3 7 5 3 1 2

Conversion of the measured count number into derived units of disin-
tegrations per second (dps, or Bq) is made with the calibration factor K=0.27
counts per disintegration and a counting time T= 60 000s.

a) What are the mean and standard deviation for the number of counts?

b) What is the HPS N13.30 critical level?

¢) Estimate the MDA from HPS N13.30 and show graphically the resulting
B probability for a false negative.

Solution
a) The mean count number is

5
=5 _ 1905, (10.46)
x=0 m

and the standard deviation is

> n,c(xfic)2 2
SB0 = LZ; T] = 1.480. (10.47)
Note that, for the Poisson distribution, the mean and the variance should
be equal. However, we found the two to have different values in Egs. (10.46)
and (10.47). The difference is due to the fact that we have used two different
estimations in Eqs. (10.46) and (10.47) for the same quantity. This
condition is described as overdispersion (the variance estimate is larger
than the sample mean) or underdispersion (the variance estimate is smaller
than the sample mean). The theory surrounding this circumstance is
beyond the scope of this text. We suggest using the sample mean if the
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Figure 10.9 Distribution of alpha-spectrometer results (counts) in the **'Am region of
interest from reagent blanks (gray bars) in the example of Section 10.6, together with a
superimposed Poisson distribution with the same mean, u=1.905 (black bars), for
comparison.

difference between the estimators is not too great. If the difference is quite
large, then the population from which the sample is taken might not be
Poisson distributed. Figure 10.9 shows the distribution of the reagent
results, together with a superimposed Poisson distribution with the same
mean, u=1.905, for comparison.

b) We assume the default value a=0.05 with spo=1.38. With Ag=0,

Eq. (10.39) and Eq. (10.41) with m = 21 then give the HPS N13.30 critical
count number for the well-known blank,

1 1
Lo = 1.645sp01/ 1+~ = 1.645(1.38) /14 o = 2.3. (10.48)

As discussed in connection with Eq. (10.45), one needs to adjust Lc to be an
integer, thus changing the attainable value of «. In this case, Lc=3.
The MDA for low background and well-known blank, Eq. (10.44), should
be used. Substituting the given information yields

-

3.29(1.38)/1+(1/21)+3 4
MDA = (027)(60 000 ) =47 x107%. (10.49)

Figure 10.10 shows the relationship between the MDA determined in this
way (converted to counts) and the critical level, with the distributions being
represented as normal. Note the result, 5 220. This is an artifact of adding
3/KT to the MDA in going from Eq. (10.41) to Eq. (10.44) to ensure that
B <0.05 even for very low backgrounds.
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03
Pr(x) 02
0.1
0.0 !
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Net Counts, x
Figure 10.10 Normal approximation to  false positive (a) and false negative ().
the distribution of net background in the  Note the artificially small value of 3, a
example of Section 10.6, showing the coincidental (in this case) result of the 3/
critical level Lc, MDA, and probabilities of KT term in the HPS N13.30 MDA formula.

The formulas provided in N13.30 are intended to be used as guidance in the absence
of other information. Radiobioassay laboratories may be required to use the formulas
in some cases - in intercomparison studies with other laboratories or as part of the
quality control criteria of regulatory agencies. A better picture of an installation’s
performance is usually obtained by carefully controlled studies, using appropriate
blanks, designed to provide empirically derived measures. Spiked test samples can be
used to estimate standard deviations and biases.

Low-level counting has received additional attention since N13.30 was published.
The reader is referred to an evaluation of eight decision rules for low-level radio-
activity counting carried out by Strom and MacLellan (2001).

10.7
Thermoluminescence Dosimetry

Performance measures for external dosimetry, which utilizes integrating devices
such as thermoluminescence dosimeters (TLDs) and radiosensitive film to measure
radiation doses from sources outside the body, have been developed in the United
States by the Department of Energy for their Laboratory Accreditation Program
(DOELAP) for personnel dosimetry (DOE, 1986). A statistical model developed by
Roberson and Carlson (1992) derives the formulas used for estimating a critical level
and a lower limit of detectability. We describe this model and its parameters.
TLDs and film provide data that are continuously distributed, namely, light output
from a TLD and light transmission through a film, respectively. Although we shall
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concentrate on TLD measurements in the discussions that follow, much of the work
applies also to film dosimeters.

Some crystalline materials are thermoluminescent, absorbing and storing
energy from incident radiation by the promotion of valence electrons to higher
quantum states with relatively long lifetimes. When an exposed thermolumines-
cent crystal is later heated under controlled conditions in a reader, the promoted
electrons make transitions back to the lower energy states, releasing their stored
energy in the form of light. The light thus emitted is detected and registers an
amount of electric charge, which ideally is proportional to the radiation energy that
was absorbed in the crystal. Calibration of the equipment enables measurement of
the charge to be converted into absorbed dose. The reading process also “zeroes
out” the stored energy and restores the dosimeter to its approximate original state
for use again (unlike a film dosimeter).

A personnel TLD usually comprises several elements, each consisting of a
separate thermoluminescent crystal, or “chip.” Chips can be fabricated from
different materials. Some chips might be provided with different filters to help
identify the type of radiation in mixed fields and to provide crude spectral
information. For instance, chips made of pure °LiF or pure ’LiF have the same
response to gamma radiation, but respond differently to neutrons, which are
absorbed by °Li but not by ’Li. Comparing the response of these two isotopically
different LiF chips in the same dosimeter gives an indication of the separate gamma
and neutron doses to the wearer. TLDs can be calibrated to provide information on
deep dose, shallow beta and low-energy photon doses, and other information.
Individual dose components from a multi-element TLD are determined by means
of unfolding algorithms that analyze and interpret combinations of the responses
from the individual chips.

We shall assume that normal statistics can by employed to describe the response of
a single TLD chip exposed repeatedly to a given radiation dose and then read under
fixed conditions and, similarly, to describe the response of a collection of identical
chips. However, the results unfolded from the combination of outputs from the same
multichip TLD might not be normally distributed. The discussions below pertain to
the response of an individual chip. We generally follow the approach of Roberson and
Carlson (1992) and Currie (1968).

For personnel monitoring of external exposure, one is interested in a net dosimeter
reading, Xy = Xr—Xg, which is the difference between a total dosimeter reading
Xrand average background Xp. The latter is the mean value determined fromi=1,

2, ..., n dosimeter measurements Xp;, each having variance o%:
_ 1<

The respective net, total, and background variances satisfy the relation (see Eq. (8.24))

1
ok =or+ ﬁoé. (10.51)
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If the true net signal is zero, then y; = 0, and we can assume that or = 0. We denote
the standard deviation of this net signal as oy = gy, with variance

1
0% = o} (1 + ;). (10.52)
Like Eq. (10.39) with Ag = 0, the critical level is given by
LC = Z400. (1053)

As before, measurements due only to background fluctuations that exceed L¢ cause
type I errors (false positive) when the null hypothesis is (incorrectly) rejected.

W Example

The penetrating radiation background for a calendar quarter was measured
with 100 single-chip TLDs. Randomly distributed in the geographical area of
interest, their mean value with standard error was 15.0 + 5.0 mrem.

a) What is the critical level for net results obtained with this background, if
one accepts a =0.05 for the probability of a false positive in deciding
whether there is added dose?

b) What is the probability of a false positive in part (a) if Lc=5.0 mrem?

c) Whatis the critical level in part (a) when a single background dosimeter is
used with the same background as stated above (paired blank)?

Solution
a) Combining Egs. (10.52) and (10.53) with n=100, z,=1.645, and the
sample estimate ¢ = 5.0 mrem gives

R 1 1
Lc = 24081/ 1+ o= 1.645(5.0 mrem)4/1+ 100

= 8.3 mrem. (10.54)

b) Setting Lc=5.0 mrem in the last equation, we can solve for z,:

. Lc _ 5.0 mrem — 0.995
“ o514+ (1/n)  (5.0mrem)/1+ (1/100)
= 1.0, (10.55)

or one standard deviation. From Table A.3, 1 — a = 0.84, and so a =0.16.
Alternatively, this part of the example can be solved by starting with
Pr(X> Lc|u, =0) (see Problem 10.25).

¢) In this case we repeat the calculation of part (a) with n=1. The result is
12 mrem.

When we have to estimate the variance and the sample size is <30, then we should
use Student’s t-distribution rather than the normal. This is accomplished by repla-
cing in Eq. (10.54) z,, with t,,, where v =n — 1, the number of degrees of freedom.
For part (a) of the last example, ¢, , = to 05 99, giving again Lc = 8.3. Comparison with
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Eq. (10.54) shows that the normal distribution is a good approximation for this
sample size (n=100). For n=10, on the other hand, the result from Student’s
t-distribution is Lc=9.2, while for n=3, Lc=15 (Problem 10.26). Student’s
t-distribution is not applicable in the case of a paired blank (n=1), because the
variance cannot be estimated.

The detection level is given by

Lp =Lc+ tpn—10D.- (1056)

Here op is the standard deviation of the signal at the exposure level Lp and £ is the
probability that the reading will be less than Lc. Thus, Lp is the minimum mean dose
for which the probability of a type I error (incorrectly accepting the null hypothesis) is
no greater than 3 (cf. Figure 10.2), where Lp, corresponds to Ap;. Our task next is to
find how Lp can be determined from the measured parameters.

The average background X3 in Eq. (10.50) is contributed by all signals not due to
the radiation exposure Xj; being evaluated. These include background radiation,
reader noise, and any other factors that might arise from treatment or handling of the
dosimeters (e.g., fogging of film, fading of TLDs). We can single out the part Xy
(having standard deviation oy) of Xp that is due to reader noise, which is not
attributable to the dosimeter. The total dosimeter reading, Xy, is equal to the sum of
the net dosimeter reading, X, and the average background reading, Xg. Hence,

Xr=Xg+ Xz = (Xu+Xp—Xn) +Xn = 3—Xn) + Xn, (10.57)

in which the expression in parentheses describes the dosimeter signal alone. The
standard deviation of the dosimeter signal is assumed to be a constant fraction k of the
signal Xy — Xy itself. Equation (10.57) then implies for the variance that

o1 = K (ur—pay)* + 0%, (10.58)

in which k is the relative standard deviation of the dosimeter reading. Similarly, for
the background,

0% = K2ty —tun)" + 02 (10.59)
Substitution of Eq. (10.58) into Eq. (10.51) gives
Gy = ¥ () + G+ 0%, (10.60)

Taking expectations in Eq. (10.57), we find that yp = py;—up. Using this and o
from Eq. (10.59) and collecting terms leads to the following (Problem 10.22):

1
of = K [ufy + 2ug (ug—uy)] + 0% (1 + ﬁ) (10.61)

At the detection level, uy; = Lp, and so the variance is 0%, = 02, where the latter is
defined by Eq. (10.56). Introducing the notation up = ug—uy for the background



10.7 Thermoluminescence Dosimetry

mean, excluding system noise, and remembering Eq. (10.52), we obtain (Problem
10.23)

0% = k(I3 + 2Lppy) + 0. (10.62)

On the left, 02 depends on L. Using Eq. (10.56) for Ly, and substituting Eq. (10.53)
for Lc (assuming n is large so that tg,, 1 ~ zp) gives

Lp—z,
op = 22290 (10.63)
24

Employing this in Eq. (10.62) and rearranging terms gives the following quadratic
equation for Lp:

(1—23k*) L} —2(2400 + 23K g ) Lp + (25, —25)05 = 0. (10.64)
With z, = zg =z, the detection level is given by (Problem 10.24)

2(z00 + 22 kPup)

This final expression shows the explicit dependence of the detection level on the
various components of the measurement. The dominant factor is almost always the
term zo, in the numerator. The second term in the numerator gives the contribution
of background. When the background and relative standard deviation are small,
Lp 2200~ 2Lc.

System noise must be determined in some way, since it has to be subtracted from
background in order to obtain uy. In one method, a plot is made of background
accumulation in a set of TLDs as a function of time. This plot should, if there is no
system error, yield a straight line with its intercept at the origin. The value of a
nonzero intercept is taken as the measure of the system noise. In a study at one site,
TLDs were distributed to 50 employees, each of whom stored the dosimeters in a
suitable location at home. A subset of the dosimeters was retrieved from each
employee at monthly intervals and read, and the accumulated background signal thus
determined over the course of a year. As shown in Figure 10.11, the resulting
regression curve (Chapter 14) has an intercept at 12 mrem, which can be used as an
estimator for uy, introduced in Eq. (10.57).

In applications of Eq. (10.65), Student’s t-values replace the values of z, and sample
standard deviations can replace the ¢ values. In accordance with Egs. (10.52)
and (10.53), the first value of z in the numerator of Eq. (10.65) should be replaced
by t—1.4, since there are n background dosimeter readings. We replace the z* terms in
the numerator and denominator. The estimated relative standard deviation,
k = 09/%, is determined by m dosimeter readings at large dose compared with
background, and since a =, the replacement is t,,_1 4. Finally, s is replaced by
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Figure 10.11 Regression method for estimating system noise (Sonder and Ahmed, 1997). Hg is
the time-dependent accumulated background signal plus system noise (corresponding to Hg in the
discussion leading to Eq. (10.66)).

Hy = Hp—N (average background signal with system noise removed). With these
substitutions, the detection level becomes
2(tw-1400 + 1t 1 K Hp)

Lp = (10.66)
1—tfn7mk2

As pointed out already, the formulas developed here apply to the response of a
single TLD element. They can be used for the dose response of multiple elements
combined in such a way that the response algorithm is a function of the element
readings without discontinuities, as long as both background dosimeters and field
dosimeters (measuring possible added dose) are analyzed in identical ways. The
formulas are not suitable for mixed fields when the dosimetric ratios of the field
components (e.g., beta/gamma) are not known.

In practice, the assumption of normally distributed responses should be checked.
Figure 10.12 shows the distributions of responses for each of the four elements that
comprise the TLDs used to determine system noise in Figure 10.11. The bars
represent the empirical data (number of dosimeters giving a particular dose response
in steps of 1 mrem), and the continuous curves are the normal distributions with
means and standard deviations equivalent to those of the actual distributions. At best,
the data appear to be only very roughly normally distributed. Although formulas
developed above probably give reasonable approximations of L¢ and Lp for many
purposes, a more rigorous treatment should be considered for critical applications.

Care should also be taken in the way Lc and Lp are used. The critical level, by
definition, determines whether a result is significantly different from background.
The detection level should not be considered as the limit for reporting net dose as
either “zero” or “positive.” As employed in personnel dosimetry programs, the



10.7 Thermoluminescence Dosimetry

Element 1 Element 2

12 12
s 10 1 10 - 1
3]
5
g 8 8 - h
=
51 |
[
O 6 6
[
5]
B
8 4r 4
i 1l -
s
Z 2+ 2

0 I I H ! 0 I I !

0 10 20 30 40 0 10 20 30 40
Element 3 Element 4

10 - 10 —
3 -
g st 8 - -
=
5) - 1
E
3 6 6
Q
O
B
5 4+ 4+ |
E ( '
Z. 2 2+

0 I I 0 I I I
0 10 20 30 40 0 10 20 30 40
H (0) (mrem) H (0) (mrem)

Figure 10.12 Typical distributions of superimposed in each case. The figure shows
environmental background signals (bars) that assuming a normal distribution for these
recorded in the vicinity of a nuclear laboratory.  results is problematic and illustrates the
Each graph is for a single element of a four- importance of verifying assumptions about the
element thermoluminescence dosimeter. A type of distribution in establishing a well-
normal distribution with the same mean and characterized personnel dosimetry program.

standard deviation as the bar graph is

detection level is most useful as a standard measure by which the performance of
different dosimetry laboratories may be compared. The value of the critical level is
best determined empirically, rather than by the ideal represented by the standard
formulas. In radiation protection programs, the presence or absence of added doses
at low levels can have significant impacts on operations in addition to potential
implications for worker health. Values selected for a and  may be based on any
reasonable criteria, such as program costs and regulatory requirements. The gen-
erally accepted assignment a = 8 = 0.05 is useful when there are no other imposing
considerations. Using # = 0.05 can impose a large sample size, and in many practical
situations using f=0.10 is acceptable.
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10.8
Neyman—Pearson Lemma

In Section 10.5, we touched on optimization of hypothesis testing. As ordinarily
practiced, a is set at some agreed upon level and f3 is independently chosen. The test
that minimizes 3 for fixed a is called the most powerful test, or best test, of size a. In this
section, we describe the Neyman—Pearson lemma, which allows one to find such a
best test.

Neyman—Pearson Lemma

Let X1, X5, ..., X, form a random sample from a distribution with probability density
function f(x, 8). Wewish to carry out the following test of hypothesis regarding the numerical
value of the parameter 0:

Hy: =6y versus H;: 60=6,. (10.67)

IfL(0) is the likelihood function, then the best test of size a of Hyversus H has a critical
(or rejection) region of the form

L(6:)
(6o)

for some positive constant A.

> A (10.68)

~

We shall not present a proof of the lemma, which is given, for example, in Hogg
and Tanis (1993). We show here how it can be used to derive the best test for a simple
versus composite example.

W Example
Let X; X3, . . ., X, be a random sample from a normal population with known
variance 0 and unknown mean u. We wish to test

Ho: u=u, versus Hiy:u=uy, withu, > pu,. (10.69)

Use the Neyman—Pearson lemma to find the best test of size a.

Solution

We know that X is a useful estimator of u. The likelihood function for
the normal distribution has been given earlier by Eq. (7.109). Since here we
treat 4 as the only unknown parameter, we write

L() = (2m0?)” ") e~ (1201 2w’ (10.70)

in which the sum is carried outoveri=1, 2, . . ., n. By taking the logarithms on
both sides of Eq. (10.68), the Neyman—Pearson lemma implies that best test of
H, versus Hj has a critical region of the form (A > 0)

L)
In L(ﬂo)} >1InA. (10.71)
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Combining the last two relations and taking logarithms, one finds

n

> [2X(uy —po) + g —3] > 20° In A, (10.72)

i=1

With p; > u,, this is equivalent to

> o’lnA +M0+M1E ,
(g —Ho) 2

where Bis a positive constant (Problem 10.28). Hence, by virtue of the lemma,
we find that the best test is a function of the sample mean X. We can readily
determine the critical region by knowing that X ~ N(u,¢/+/n) and that we
want the probability of a type I error to be a. That is, we stipulate

(10.73)

a = Pr(reject Hy|Hy is true) = Pr(X > B|Hy is true). (10.74)
Now, under Hy, X ~ N(uy,0/+/n) and so we can write in place of the last
equality
X—py _ B—py
=P . 10.75
w=m(Gim> 0t (10.73)

Since the function (X—u,)/(0//n)~ N(0,1), the quantity
(B—uy)/(0/+/n) must be equal to the value of z, that cuts off the fraction
a to the right of the standard normal distribution. It follows, therefore, that the
critical value is

ZqO

B= — 10.76
HUo + \/ﬁ ’ ( 7 )
and the critical region (Section 10.5) is
S Zq0
C:{(Xl,Xz,...,Xn):X>B:/40+W}. (10.77)

This methodology can be applied to any hypothesis testing situation. The inter-
ested reader is referred to Hogg and Tanis (1993) or Garthwaite, Jolliffe, and Jones
(2002).

10.9
Treating Outliers — Chauvenet’s Criterion

Data from a sampled population might contain one or more values that do not appear
to be consistent with the others in the sample as a whole. The question then arises
whether to exclude such outliers from the analysis of the data, as not belonging to the
population. Chauvenet’s criterion, described in the next paragraph, can be used as an
aid in considering such a decision, especially when there appear to be no objective
reasons for rejecting the outlier.
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For a random variable X, having a sample mean X and standard deviation s, we
consider a value X = x, typical of an outlier. Multiplying the probability that X > x by
the number of measurements n, including the suspect points, used in determining
the sample mean and standard deviation, one forms the product

n=nPr(X > x). (10.78)

Chauvenet’s criterion states that a result may be considered for rejection if the
expected number # of such results in the sample is less than 0.5. Consider, for
example, a set of normally distributed data with n= 1000 measurements, a mean
x = 10, and a standard deviation s = 1. We can use the criterion to decide whether to
consider for exclusion an individual measurement result of x = 13, for example. This
value is three standard deviations beyond the mean. We find from Table A.3
that, in a random sample of this size, one would expect to observe about
1 =(1000)(0.0013) = 1.3 instances in which a value x > 13 occurred. Finding a result
of x =13 in this size population is not an unusual event, and Chauvenet’s criterion
indicates that there is no justification to reject it as an outlier. With the same mean and
standard deviation, but with a sample size of n = 100, one finds 7 = 0.13. This value is
considerably less than 0.5 as specified by the criterion, and so the number of such
examples expected in this smaller sample is significantly less than unity. The sample
member x = 13 can thus be considered for exclusion as an outlier, with a new mean
and standard deviation estimated by using the remaining data.

The expression for # with normally distributed data, having mean u and standard
deviation o, is

n..n(;%zje(Unﬂdg._n<1—;%:.[e(Uaﬂd07 (10.79)
JT JT

where z = |x—u|/o is the standard normal variable tabulated in Table A.3. The
evaluation of normally distributed results for sample sizes n < 30 should be carried
out by using Student’s t-distribution with appropriate degrees of freedom (Table A.5).

W Example
The dose rate from a certain source of beta radiation has been measured with
the following results (mrad hfl): x; =179, 181, 180, 176, 181, 182, and 180.

a) Should the result, 176 mrad h™!, be considered for exclusion as an outlier?
b) If this result is excluded, what is the effect on the estimated mean and
standard deviation?

Solution
a) With n=7, the mean of the original data set is

1 n
x:ﬁ§:m:1M9. (10.80)
i=1
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The standard deviation is

2
ny xiz_ <Z?1 xi)

s= e =1.95. (10.81)

We use Student’s t-distribution to calculate #, since the sample is small
with n=7 < 30. The percentile ¢, which expresses the difference between
the datum under consideration and the estimated mean divided by the
estimated standard deviation, is

x—x|  [176-179.9]
b= = e = 2.00. (10.82)
This value corresponds to an area of approximately 0.05 to either the left
of x—ts or the right of X +ts. (From Table A.5, t=1.943 with n—1 =
6 degrees of freedom.) The number of such observations expected for this
sample size is

n = nPr(t > 2.0) ~ 7(0.05) = 0.35. (10.83)

Thus, we may consider rejecting the measurement 176 mrad h~ ' from this
sample on the basis of Chauvenet’s criterion, since 1 <0.5.

Ifthis measurementis excluded from the sample, then the new estimate of
the mean is % = 180.5mradh™' (a change of only 0.3%), and the
new (unbiased) estimate of the standard deviation is s=1.05mradh™"
(a change of almost 50%). Removing an outlying datum usually does not
alter the sample mean very much, but tends instead to significantly reduce
the estimate of variability in the remaining data.

=x

More than a single suspect datum might exist in a data set, in which case there are
atleast two applicable strategies for using Chauvenet’s criterion. One approach is to
evaluate # for the suspect datum closest to the mean and consider rejecting it and
other further outlying data if 7 <0.5. Another is to use multiples of 0.5 as the
rejection criterion if all the suspect data lie close together. Rejection may be
considered for two suspect data lying about the same distance from the mean,
for example, if 7 < 2(0.5) = 1. Chauvenet’s criterion is not an absolute indicator for
rejecting even a single suspect result, however, and justification for rejecting
multiple measurement results becomes rapidly more problematic and less desir-
able as a strategy for statistical decision making. There is virtually no support for
using Chauvenet’s criterion a second time to evaluate data that remain after one or
more have been rejected and a new estimate of the mean and standard deviation
determined.
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The decision to exclude data from a sample should be made with care. The
presence of outliers might be a signal that something unsuspected and important is
going on. Also, reducing sample size increases uncertainty in estimates of
population parameters. Additional measurements should be made, if possible,
to support decisions about retaining or rejecting outliers. Besides that of Chau-
venet, other outlier rejection criteria can be found in the literature (e.g., Barnett
and Lewis, 1994).

Problems

10.1
10.2

10.3
10.4

10.5

10.6

10.7

10.8
10.9

10.10

10.11

Show that Eq. (10.3) yields the quadratic equation, r2 —1.367,c—47.0 = 0.

Show that the first equality in Eq. (10.3) leads to the solution given by Eq. (10.4)

for rme.

Find the solution yielded by Eq. (10.4) when #, — occ.

For equal gross and background counting times, show that the critical level is

given by Eq. (10.5).

Samples will be counted for 5 min in a screening facility and compared with a

background count of 10min. The background rate is 33 cpm, and the

calibration constant is 3.44 disintegrations per count.

a) If the maximum risk for a type I error is to be 0.05, what is the minimum
significant measured activity?

b) If the gross counting time is increased to 10 min, what is the value of the
minimum significant measured activity?

The quarterly penetrating background is determined to be 12.0 £+ 5.0 mrem

for a particular geographical area by employing seven dosimeters.

a) Whatis the critical level, given thata <2.5% probability of a false positive is
acceptable? (Use Student’s t-distribution for small sample size.)

b) A personnel dosimeter from this area indicates a response of 24.5 rem.
What dose should be reported for the employee?

¢) What would have been the fractional change in the critical level if the same
background had been determined by using 60 dosimeters?

Determine in each part below which of the two changes proposed would have

the greater impact on the critical level in the last problem.

a) Doubling the background standard deviation or using only 2 dosimeters to
measure background.

b) Halving the background standard deviation or using 120 dosimeters to
measure background.

Use Eq. (10.10) to show that Eq. (10.11) follows when t; =t,=1.

Show that Eq. (10.14) applies when the background is stable and accurately

known.

Derive an expression from Eq. (10.64) for the detection level, Lp, when

Zq # 28

Describe and contrast the implications making type I and type II errors in

radiation protection measurements.



10.12

10.13

10.14

10.15

Problems

Assume the conditions of Altshuler and Pasternack (1963). Two counting
systems are being considered for routine use. The calibration constant for
counter 1 is 0.0124 nCi per count, and the background B; =7928 counts is
accurately known. The corresponding data for counter 2 are 0.00795 nCi per
count and B, = 15160 counts, also accurately known. Counting times are the
same for evaluating both systems.

a) Ata given level of risk for a type I error, what is the ratio of the minimum
significant measured activities for the two counters?

b) Additional shielding can by placed around counter 1 to reduce its back-
ground. Itis decided that the acceptable risks for type 1 and type 2 errors are
both to be 10%. If only the shielding of counter 1 is changed, what number
of background counts B; would then be required to achieve a minimum
detectable true activity of 1.0 nCi?

¢) What factors determine the value of the calibration constant?

A 4-min background count and a 16-min gross count are taken with specimens

being assessed for activity. The calibration constant is 2.36 Bq per net count.

A selected sample registers 120 background and 584 gross counts.

a) Estimate the expected value of the net count rate and its standard deviation.

b) What is the implied sample activity?

c) What is the probability that a sample with zero true activity (Ar = 0) would
give an activity measurement exceeding that found in (b)? Is the measure-
ment in (b) consistent with zero true activity for this sample?

d) Assume that Ay =0. What are the smallest net count numbers, Lc, over a
4-min period that would be exceeded with a probability no greater than
0.05 or 0.10?

e) With these values of Lc, what would be the minimum significant measured
activities?

Measurements of a sample and background, taken over the same length of

time, yield, respectively, 395 and 285 counts. The calibration constant is

3.15 Bq per net count. If the maximum risks for both type I and type II errors

are 0.05, determine

a) the critical count number;

b) whether the sample has activity;

c) the measured sample activity;

d) the minimum significant measured activity;

e) the minimum detectable true activity.

Ten randomly selected dosimeters give the following readings (in mrem):

4.70, 4.89, 5.18, 4.57, 5.41, 5.11, 4.28, 4.90, 5.19, and 5.42.

a) Calculate the sample mean and standard deviation.

b) Determine a 95% confidence interval for the true mean value.

c) An acceptable reading for dosimeters from this population is 5.1 mrem.
Use the t-test to determine whether the mean response from this group
differs significantly from the acceptable value with a = 0.05. (Recall from
Section 6.9 that t = (x—u)/(s/\/n) = t,_1.)
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10.16

10.17

10.18

10.19

d) By considering the confidence interval, could one infer that this sample
differed significantly from the acceptable value?

State the (a) null and (b) alternate hypotheses, both symbolically and in words,

for deciding whether a net bioassay result indicates the presence of radio-

activity in a subject. Are these hypotheses simple or composite? One-tailed or
two-tailed, and why?

The activity concentration of uranium in soil around a processing plant has a

mean = 3.2pCig ' and standard deviation 0 = 0.2 pCig ™. Soil samples are

collected monthly to monitor for possible contamination. The goal is to
maintain a state of “no detectable uranium above background” in the soil.

a) What measured level of uranium in soil would indicate a failure of the
containment controls, given an acceptable probability o =0.01 of a false
positive?

b) Suppose that we use L= 3.7 pCig ' as the critical value for our test. That
is, we will reject Hy: =3.2pCig " if a sample shows a concentration
greater than L. What is the probability that we will accept Hy when the true
value is 3.2pCig ™' (a type II error, f3)?

c) Repeat (b) for u=3.4, 3.6, 3.8, 4.0, and 4.1 pCi gfl.

d) Plotthe values obtained in (b) and (c), showing u as the abscissa and (1 — f3)
as the ordinate.

e) From your plot, determine the power when u=3.2pCig .

Suppose we estimate u and o in the last problem from a sample of size n.

Answer the following questions using the corresponding average and sample

standard deviation.

a) Assume Hy: u = uo and show that the expression for the critical value Lc,
using X with a significance level of a is Lc = ug + (s/v/1)tn-1.a-

b) Calculate L¢ if s=0.2, a=0.05, and n= 10 using the expression in (a).

¢) Calculate § using the critical value from (b) when the true mean is
u=34pCig "

d) For fixed a, the text mentioned that S can be reduced by increasing the
sample size. With everything else remaining the same, consider a sample
size of 15. Given u=3.4pCig ', calculate B. (Note that you need to
recalculate L in order to do this.)

Analysis of a uranium worker’s lung count results shows that there are

118 x 10° counts in the region of interest for **U. The worker’s background

in the region of interest was established by three lung counts prior to his

beginning work with uranium. The results were 45 x 10%, 65 x 10°, and

80 x 10° counts. All lung counts were performed for a standard 20-min count

time. Activity of **U in the lung for this body counter is determined by using

the conversion factor K=10s 'nCi~'. Answer the following questions,
stating all assumptions.

a) Does the analytical result indicate that there is **U activity in the worker’s
lung?

b) What is the best estimate of >>*U activity in the worker’s lung?



10.20

10.21

10.22
10.23
10.24
10.25

10.26

10.27

Problems

¢) What is the N13.30 MDA for ***U in the worker’s lung, treating the pre-
uranium-work background counts as measurements of a well-known
blank? How does this MDA compare with the ***U activity estimate in
part (b)?

d) What would you do next to assess this worker’s exposure?

The ANSI N13.30 formula for calculating MDA contains a semi-empirical

term, 3/KT, for assurance that the § <0.05 probability of a type II error is

assured, even under low-background conditions when the assumption of a

normal distribution of results may not be valid. To illustrate this, consider an

alpha spectrometer, used for measuring actinides in excreta for a radio-

bioassay program, that registers no counts (over equal time intervals) from

either background or a paired blank. Ignore the conversion factor, 1/KT, in the

ANSI MDA formula and answer the questions below, considering only the

counts recorded in an appropriate region of interest.

a) What is the critical level for an a < 0.05 probability of a type I error?

b) Whatis the ANSI N13.30 detection level, Ly, (in counts), using Eq. (10.43)?

c) Use the critical level from (a) and assume that counting results in any
particular region of interest are Poisson distributed to calculate the
probability of a type II error for Lp =2, for Lp =3, and for Lp =4.

d) What would be the value of Ly using the ANSI N13.30 formula without the
semi-empirical term (i.e., MDA = 4.65sp)?

e) Explain why the 3/KT term is included in the ANSI N13.30 formula,
considering the answers to (c) and (d).

Twenty dosimeters receive a calibrated dose of 10000 mGy. The response

mean and standard deviation are 10 100 £ 500 mGy. Assume that any differ-

ence between the mean response and the known delivered dose is due to

system noise. Estimate the relative standard deviation k of the dosimetric

response with noise removed.

Verify Eq. (10.61).

Verify Eq. (10.62).

Show that Lp is given by Eq. (10.65) when z, =z =z2.

Starting with Pr(X > Lc|lu, = 0) after Eq. (10.55), solve part (b) of the

example.

When the Student’s t-distribution is used in the example considered in the last

problem, show that, for n=10, Lc =9.2 and, for n=3, Lc=15.

A personnel dosimetry program retrieves dosimeters from its radiation

workers every 90 days. The average background accumulation (including

system noise) over the 90-day period, determined using five dosimeters from

this population, is Hg = 22.0 + 5.5 mrem, and a regression of the background

accumulation with time shows an intercept at Hy ;o = 10.0 mrem. Calibrated

irradiations of three dosimeters drawn from this population show that the

uncertainty (one standard deviation) in response to a 500-mrem delivered dose

is 35 mrem.

a) Estimate the critical level at the end of the 90-day assignment period.
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b) Estimate the detection level, Ly, at the end of the assignment period, using
Eq. (10.66).

c) What are the critical level and decision level near the beginning of the
assignment period, if Hp = 11.2 4+ 5.5 mrem and all other parameters are
unchanged?

d) What are the critical level and decision level if 35 dosimeters drawn from
this population show the uncertainty in response to a 500-mrem delivered
dose to be £35mrem?

e) What are the critical level and decision level at the end of the assignment
period if the uncertainty in Hp is £2.5 mrem, but all other parameters are
unchanged?

10.28 Verify Eq. (10.73).

10.29 a) A sample of n observations is taken from a Poisson population with
parameter u. Use the Neyman—Pearson lemma to show that the critical
region for testing Ho: u = o versus Hy: = (<to) is given by

zn:xi < log A+ n(u; —uo) )
p log u; —log g

In the Neyman—Pearson lemma, the best critical region is such that the
ratio of the two likelihoods, one under the alternative hypothesis and the
other under the null hypothesis, is less than some constant, which we refer
to here as A.

(Hint: f(x,u) = e u*/x! and L(w;) =[]\, e u /%!, i=0,1)

b) Ifuo=10,u, =8, and the sample size is n =5, find the value of A thatyields
a significance level a closest to 0.05. (Recall that Y = > X; is a Poisson
random variable with mean nu. Use the normal approximation to find k
such that Pr(Y < k) =0.05, then use this result to solve for A.)

10.30 A laboratory calibrates ion chambers by recording their responses to a well-
characterized source of radiation under the same measurement conditions
each day for 5 d. The ionization responses (nC) from one such instrument are
5.224, 5.535, 5.339, 4.980, and 4.516.

a) Which result lies furthest from the mean, and by what amount?

b) Whatis the expected number of results # lying at least as far from the mean
as the one in part (a)?

) Can the value lying furthest from the mean be excluded, and a new mean
and variance calculated by using Chauvenet’s criterion?



1
Instrument Response

11.1
Introduction

Detection and quantitative measurements are basic to assessment, control, and
protection practices in dealing with ionizing radiation. It is essential, therefore, that
instrument readings be understood fully and interpreted correctly. A counter can give
a misleading result due to the malfunction of a component or due to an incorrect
setting. In addition, the responses of many devices also reflect random errors
inherent in the atomic processes being monitored. As distinct from systematic
errors, such as a wrong setting, effects of purely statistical fluctuations on instrument
readings will be the focus of this chapter. We thus deal with certain irreducible limits
imposed on precision by the fluctuations in quantum physics, apart from any other
sources of uncertainty.

Only a few topics from this rather broad aspect of instrument response will be
addressed here. We consider the energy resolution attainable from pulse height
measurements with scintillation counters and ionization devices, chi-square testing
to check proper functioning of a count rate meter, and dead time corrections for count
rate measurements.

11.2
Energy Resolution

A variety of instruments are available for measuring the energy spectra of alpha
particles, gamma photons, and other types of radiation. Many devices depend on the
collection of a number of charge carriers" that result from the complete absorption of
a single incident particle or photon in the detector. In a scintillation counter, the
energy of the absorbed particle is partially converted into a burst of low-energy

1) For example, electrons or, in the case of semiconductors, electron—hole pairs.

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
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(scintillation) photons, some of which liberate photoelectrons that are collected from
the cathode of a photomultiplier tube. Ideally, the total charge of the electrons
collected in a pulse from the photomultiplier tube — the pulse height —is proportional
to the initial energy of the particle absorbed in the scintillator. Depending on the
amount of charge collected, the pulse height is registered in the proper energy
channel, as determined by independent calibration of the instrument. In a gas
proportional counter, electrons liberated directly by absorption of the incident
particle are accelerated to produce additional ionizations. Gas multiplication thus
occurs, providing a pulse of size dependent on the particle energy.

In all of these “energy proportional” detectors, repeated pulse height measure-
ments with the absorption of single, monoenergetic particles or photons will result
in a distribution of recorded energies. The distribution is called the response
function of the detector. A hypothetical example is shown in Figure 11.1. The
response function is characterized by a peak centered about a mean value E,, which
is the energy of the monoenergetic radiation emitted by the source. The width of the
peak reflects the extent of statistical variations in the energy measurement. The
narrower the peak, the better the resolution of the counter — that is, its ability to
distinguish radiation of one energy in the presence of another. The peak can be
characterized quantitatively by its full width at half its maximum height (FWHM).
The energy resolution of the detector at energy E, is then defined as the dimen-
sionless ratio

FWHM
R=—71— 11.1
E, (11.1)
P(E)
P(Ep)
3 p(Ey) Al
0
E
E 0
Figure 11.1 Response function for detector interval from E to E + dE. For a normal

absorbing monoenergetic particles or photons  distribution, the full width of the peak at one-half
with energy E,. The quantity p(E)dE represents  the maximum value is equal to 2.35 standard
the probability that a given pulse falls within the  deviations: FWHM =2.35¢.
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often expressed as a percentage. As we shall assume throughout this chapter, the
response function in Figure 11.1 can often be approximated by a normal curve, for
which FWHM = 2.350 in terms of the standard deviation o (Problem 11.1). The
resolution can then be written as

2.350
R= . 11.2
: (112)

In many detectors, the energy of an absorbed particle or photon is registered
according to the amount of charge, or number of charge carriers (e.g., electrons),
collected in a pulse. This number is a discrete random variable. Other factors being
the same, resolution can be associated with the average energy needed to produce
an electron that is collected in the pulse. When this energy is small, numerically
large samples of charge carriers per pulse result from the absorption radiation,
characteristic of good resolution. We shall see below how the average energy needed
to produce a charge carrier compares for different detector types.

Some insight into energy resolution can be gained by assuming initially that
fluctuations in the number of collected charge carriers are described by Poisson
statistics when monoenergetic radiation is absorbed. For detectors with a linear
energy response (i.e., a linear conversion of pulse height into channel number for a
pulse of any size), the mean pulse amplitude E, is proportional to the mean number u
of charge carriers. We write E, = ku, where k, the constant of proportionality, is the
mean energy needed to produce a collected charge carrier. For a Poisson distribution,
the standard deviation in the pulse height is then given by o = k,/u. Applying
Eq. (11.2), we write for the resolution with Poisson statistics

_235kE 235

w v (11.3)

P

The estimator for u is the average number of charge carriers 7. Substituting # for u
in Eq. (11.3) gives the estimate for Rp that can be determined by measurement. In
this approximation, one sees that the resolution of a detector improves as the
reciprocal of the square root of the average number of charge carriers collected
from the absorption of a particle or photon. Therefore, the resolution improves as the
reciprocal of the square root of the energy of the particle or photon.
Measurements show that a number of radiation detector types have considerably
better resolution than that implied by the Poisson value (11.3). Therefore, the
processes that produce the individual charge carriers that are collected are not
independent in such detectors. The departure of the response of an instrument from
Poisson statistics is quantitatively expressed by means of the Fano factor, defined as
the ratio of the actual, or observed, variance o2 in the number of charge carriers and

the Poisson variance 0%,:

2
O,
P

o
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Substitution of the sample variance s? as the estimator for o2 gives the estimator for F,
which can be determined by measurement. The observed resolution R, is related to
the Fano factor as follows. Using Egs. (11.2) and (11.4), one can write

2350, 2.350pVF
- E  E

R, (11.5)

Since E,=ku and op = k,/it, one obtains

R, = 2.35\/5 = RpVF, (11.6)

where Eq. (11.3) has been used for the last equality. Reported values of the Fano factor
are in the range from about 0.05 to 0.14 for semiconductors and about 0.05 to 0.20 for
gases. The Fano factor is close to unity for many scintillation counters.

W Example

a) Interpret the physical meaning for the two limiting values of the Fano
factor, F=0 and F=1, applied to a gas proportional counter.

b) Give a physical reason, based on energy conservation, to explain why gas
ionization cannot strictly be a Poisson process.

c) How is energy expended in a gas by a charged particle without producing
ionization?

Solution

a) According to the definition (11.4) of the Fano factor, F = 0 would mean that
there are no fluctuations observed in the number of electrons collected for
a given amount of absorbed energy. The resolution would be precise, and
the response function (Figure 11.1) would be a delta function at the energy
E,, the FWHM being zero. The value F = 1, on the other hand, would mean
that the distribution of the number of electrons is consistent with Poisson
statistics.

b) A minimum amount of energy, called the ionization potential, is always
required to free an electron from an atom or a molecule in the gas. This
minimum is equal to the binding energy E,,;, of the most loosely bound
electron. Theoretically, because of energy conservation, the maximum
number of ion pairs that could be produced by absorption of a particle of
energy E, is E,/Enyn. Thus, energy conservation and electron binding
prevent gas ionization from rigorously obeying Poisson statistics. The
latter implies that there is a nonzero probability for the formation of any
number of ions.

c) As just described, energy is spent in overcoming the binding energy of
electrons. In addition, gas atoms and molecules undergo transitions to
discrete, bound, excited states by absorbing energy from incident radiation
without ionization. The excited states can then relax (i.e., lose their excess
energy) by photon emission, molecular dissociation, or collisions with
other molecules.




11.3 Resolution and Average Energy Expended per Charge Carrier

The discussions in this section have addressed principally effects that the statistical
nature of radiation interaction has on resolution when energy measurements are
made. A number of additional factors can also affect the overall resolution of a
detector. In a gas proportional counter, for example, electronic stability, geometrical
nonuniformity in structural parts and in the sensitive volume, and gas purity play a
role. Each of these independent sources of error, which add in quadrature, can
affect resolution. For most gas and scintillation counters, the principal limitation
on resolution arises from the statistical fluctuations. For semiconductors, the same
is true at high energies; at low energies, other phenomena can become more
important.

11.3
Resolution and Average Energy Expended per Charge Carrier

A charged particle, passing through a gas, loses energy by ionizing and exciting the
atoms or molecules of the gas. Some of the secondary electrons it liberates through
ionization have enough kinetic energy themselves to cause additional ionizations
and excitations in the gas. The total number of electrons thus produced can be
collected and measured for different particles of known initial energy that stop in
the gas. The average energy spent to produce an ion pair (i.e., a free electron and a
positive gas ion) when a particle stops in a gas is called the W value and is usually
expressed in eV per ion pair (eV ip'). Examples of measured W values for alpha
and beta particles in several gases are shown in Table 11.1. The values of W
are numerically the same, whether expressed in eV ip~" or ] C™! (Problem 11.3).
W values for alpha particles and other heavy charged particles in polyatomic gases
are generally in the range of 30-35 eV ip ' They are essentially independent of the
initial particle energy above several hundred keV, but can be considerably larger for
particles of lower initial energy. For a given gas, the W value for beta particles is
somewhat smaller than that for alpha particles, and it remains constant down to
very low energies. The fact that W values are practically independent of the initial
energy of energetic particles has important implications for the use of ionization to
measure radiation dose.

Table11.1  Average energies, W, and W;, needed to produce and
ion pair (eV ip~") for alpha and beta particles in several gases.”

Gas W, (eVip™ Wg (eV ip™)
He 43 42
H, 36 36
CO, 36 32
CH,4 29 27
Air 36 34

Note: 1eVip '=1]J.
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W Example
What is the average number of ion pairs produced when a 5-MeV alpha
particle stops in air? Does the alpha particle itself produce all of the ion pairs?

Solution
According to Table 11.1, an alpha particle expends an average of 36€V to
produce an ion pair in air. The average number of ionizations is, therefore,

5.00 x 10° eV

=1.39 x 10°. 11.
36eV 9x (11.7)

The alpha particle does not produce all of these ion pairs by itself. Some of its
ionizing collisions provide secondary electrons with enough energy to ionize
additional air molecules. A typical energy loss by an energetic alpha particle in
a single ionizing collision is at most a few tens of eV.

For ionization in semiconductors, the W values for producing an electron-hole pair
(at 77 K) are 3.76 eV for Siand 2.96 eV for Ge. Compared with a gas, the absorption of
a given amount of energy in a semiconductor produces about 10 times as many
charge carriers initially, thus providing for inherently better resolution. As we shall
see in the next section, the average energy required to produce an electron at the
photocathode in a scintillation detector is several hundred eV. For comparison, the
energy resolution for 662-keV gamma rays from '*’Cs is about 0.3% for high-purity
germanium (HPGe), in the neighborhood of 2% for a gas proportional counter, and
in the range of 6-10% for the best resolution with a Nal scintillation counter.

11.4
Scintillation Spectrometers

Radiation detectors utilize both organic and inorganic scintillating materials in a
number of varied applications. Figure 11.2 shows an example of a pulse height
spectrum measured with a sodium iodide crystal scintillator exposed to the 662-keV
gamma photons from 137Cs. Various features of the measured spectrum are inter-
preted as follows. An incident photon that does not escape from the crystal gives rise
to an event with an energy registered under the total energy peak (light shading),
which is also called the photopeak. Such a photon undergoes complete absorption in
the crystal, either producing a photoelectron directly or after one or more Compton
scatterings in the crystal. Scintillation photons associated with these processes as well
as with any subsequent Auger electrons, characteristic X-rays, or bremsstrahlung
rapidly combine and give rise to a single pulse in the region of the total energy peak,
centered at 662 keV. The resolution of this particular counter is seen to be about 8%.

Other incident gamma photons, not photoelectrically absorbed, undergo single or
multiple Compton scatterings before escaping from the crystal. Such photons
produce an event that is registered under the continuous Compton distribution
(dark shading) in Figure 11.2. The Compton edge at 478 keV marks the maximum
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Figure 11.2  Pulse height spectrum from a 2 in. x 2in. Nal(Tl) scintillation counter exposed to
662-keV gamma photons from *’Cs. The resolution under the total energy peak is ~8%.

energy that a 662-keV gamma ray can transfer to an electron by a single Compton
scattering. Some gamma rays from the source enter the crystal only after being
scattered into it from surrounding objects. Many of these are reflected in the
backward direction from objects beyond the crystal, giving rise to the backscatter
peak (unshaded). Since most are not reflected at exactly 180°, their average energy is
somewhat larger than the minimum possible after Compton scattering, namely,
larger than 662 — 478 =184 keV.

As mentioned in the last section, the Fano factor is close to unity for many
scintillator systems. We shall assume for analysis here that the resolution of the
detector in Figure 11.2 is determined solely by the distribution of charge carriers
produced by the Poisson process. A charge carrier in this case is a photoelectron
liberated from the cathode at the first stage of the photomultiplier tube. Electron
multiplication in the tube is assumed to add negligible variance to that associated
with the distribution of the number of photoelectrons that initiate a pulse. The
following example illustrates how the inherent resolution of a scintillator arises from
the underlying statistical processes.

W Example

A scintillation crystal, like that used for Figure 11.2, is exposed to mono-
energetic, 420-keV, gamma rays. The crystal has an efficiency of 8.1% for the
conversion of absorbed radiation energy into scintillation photons, which
have an average energy of 2.83eV. An average of 52% of the scintillation
photons produced by the absorption of a gamma ray reach the cathode of the
photomultiplier, where the efficiency for producing a photoelectron in the
initiating pulse is 13%.

a) Calculate the average number of photoelectrons produced per pulse.
b) Calculate the resolution (Poisson) for the 420-keV gamma rays.
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¢) What is the average energy needed to produce a charge carrier (electron)
collected from the cathode of the photomultiplier tube?

d) Ifthe relationship between light yield and absorbed energy is independent
of the gamma-ray energy, the detector is said to have a linear response.
With assumed linearity, what would be the resolution of the detector for
750-keV gamma rays?

Solution

a) Given the absorption of a 420-keV gamma ray, we trace the various
processes sequentially to find the average number 7 of photoelectrons
produced. The total energy of the scintillation photons, created with
an efficiency of 8.1% when a gamma photon is absorbed, is 4.20 x
10° eV x 0.081 =3.40 x 10*eV. With an average energy of 2.83 eV, the
average number of scintillation photons is (3.40 x 10*eV)/(2.83eV) =
1.20 x 10*. Of these, the average number that reach the photocathode is
(1.20 x 10* x 0.52 = 6.25 x 10°. The average number of photoelectrons
produced per pulse is thus 7= (6.25 x 10°) x 0.13 =813.

b) The resolution, assumed to be determined by Poisson statistics, is found
from Eq. (11.3):

235 235
Rp =22 = 222 _ 0082, 11.8
P a B3 (11.8)

or 8.2%.
c) The average energy needed to produce a single photoelectron from the
cathode of the photomultiplier tube in the detector is

420000 eV

a3 = Sl7ev. (11.9)

d) Under the assumption of a linear energy response for the detector, the
above conversion efficiencies are the same for absorption of a 750-keV
gamma photon as for a 420-keV photon. It follows from Eq. (11.9) that a
750-keV gamma ray will produce an average of

750000 eV
=1 __ — 3
= Sy 1.45 x 10 (11.10)
photoelectrons. In place of Eq. (11.8), we have for the resolution at the
higher energy

2.35 2.35
=22 =0.062, (11.11)

R,==2_ 2
PUVH V145 x 10°

or 6.2%. The collection of a larger number of electrons in a pulse at the
higher gamma-ray energy results in improved resolution. One can see that
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the resolution improves as the inverse square root of the incident photon
energy. As an alternative way of solution, one finds directly from Eq. (11.8)

that
420 keV 420
R, = Rp{/oe— = 0.0824 /—— = 0.061 11.12
P TP\ 750 keV 750 ’ ( )

which agrees with Eq. (11.11) to within roundoff.

11.5
Gas Proportional Counters

We consider next the effects of statistical fluctuations in energy loss and ionization on
the resolution of a gas proportional counter. The pulse of charge collected following
the energy lost by a charged particle or photon results from two independent
processes. First, the radiation interacts directly with the gas to produce an initial
number of secondary electrons, this number being a discrete random variable. These
electrons are produced before charge collection begins. For a given amount of energy
deposited, this initial number will be distributed about some mean value, 7. When a
charged particle of energy F stops in the gas, n = E/W, as illustrated by the last
example. Second, the initial electrons are accelerated by a strong collecting field and
can acquire enough energy to produce additional ionizations, which in turn can
produce still more, leading to an avalanche. Gas multiplication of the initial charge
thus occurs. Under proper, ideal operating conditions, the number of electrons
collected in the pulse will be proportional to the original number of secondary
electrons produced by the radiation and hence proportional to the energy deposited in
the gas.

In an oversimplified picture of what actually takes place, each initial secondary
electron produces an avalanche with its own number of additional electrons, which is
another discrete random variable. If m is the average multiplication factor for an
initial electron, then the average charge collected in pulses from the deposition of a
given amount of energy in the gas is

Q = enm, (11.13)

where eis the magnitude of the charge of the electron. The distribution of the charge
from otherwise identical events is shown directly by the response function of the
detector, as in Figure 11.1.

Statistical fluctuations embodied in the response function of a gas proportional
counter are due to variations from pulse to pulse in both the initial number of
electrons and the individual electron multiplication factors. One can apply error
propagation analysis to study the relative contribution of each to the variance of
the charge collected (pulse amplitude). Investigations show that fluctuations in
gas multiplication typically contribute much more to the spread of the pulse
size distribution than fluctuations in the initial number of electrons. To a good
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approximation, with linearity the resolution for different radiation energies is still
inversely proportional to the square root of the energy.

11.6
Semiconductors

Semiconductors, particularly high-purity germanium, give the best energy resolu-
tion of any detector. As pointed out in Section 11.3, their excellent resolution is
associated with a high yield in the number of charge carriers per unit of energy
expended in them. At high energies, the resolution is governed primarily by the
statistical fluctuations in the number of charge carriers (electron-hole pairs) pro-
duced. Incomplete charge collection, which occurs at all energies, becomes more
important at low energies, where the number of charge carriers is relatively small.

Figure 11.3 shows a comparison of measurements made on the same source of
93% enriched uranium using scintillation detectors of thallium-doped sodium iodide
(NaI(Tl)) and cerium-activated lanthanum bromide (LaBr;(Ce)), and also using solid-
state detectors of cadmium zinc telluride (CdZnTe) and high-purity germanium. The
absolute scintillation efficiency of NaI(Tl) is around 13%, whereas that for cerium-
activated lanthanum bromide is around 21% (160% as efficient as Nal(Tl)). The
greater scintillation efficiency of LaBr;(Ce) results in better resolution than that

Figure 11.3 Comparison of gamma spectra
from 93% enriched uranium measured with a
Nal(Tl) scintillation counter, LaBr;(Ce)
scintillator, a CdZnTe wide-bandgap
semiconductor detector, and a high-purity
germanium semiconductor detector. The
improved resolution of LaBr;(Ce), compared

with Nal(Tl), is due to its superior light output,
and that of high-purity germanium, compared
with CdZnTe, because of the creation of larger
numbers of electron-hole pairs per unit energy
absorbed. (Spectral data courtesy of Steven E.
Smith, Oak Ridge National Laboratory, U.S.
Department of Energy.)



11.7 Chi-Square Test of Counter Operation

obtained using NaI(Tl), as seen in Figure 11.3. High-purity germanium has superior
energy resolution because of the ease of ion-pair formation (~3eVip ') in the
semiconductor crystal. CdZnTe is a semiconductor detector material that can be used
at room temperature because of its wide bandgap (HPGe must be cooled to around
77 K), but about 4.6 €V is required to produce an ion pair, so the energy resolution is
not as good as with HPGe.

Most of the closely spaced photopeaks, evident in the HPGe spectrum, cannot be
resolved at all by the NaI(T1) and can only be inferred by the presence of asymmetry in
the primary photopeaks centered around 98 and 186 keV. CdZnTe and LaBr;(Ce)
exhibit better resolution than Nal(Tl), but not as good as that of HPGe.

11.7
Chi-Square Test of Counter Operation

As discussed in Sections 6.6-6.8, chi-square tests are designed to see how well a set of
values fits an assumed statistical distribution or model. An important example of
their application in radiation protection and in nuclear physics is provided by a quality
control procedure used to check whether a counting system is operating properly. A
series of repeated counts are made over time intervals of fixed duration. If the counter
is functioning as it should, the observed fluctuations in the number of counts are
expected to be random and consistent with Poisson statistics. The observance of
abnormally large or small fluctuations would indicate the possible malfunction of
some component of the counting system. The chi-square test provides a numerical
measure for comparison of the observed and expected fluctuations. An example will
illustrate this test.

W Example

A GM counter is to be checked for proper operation. Twenty independent,
1-min readings are taken with the counter under identical conditions. The
observed count numbers, n; (i=1, 2, ..., 20), are shown in the first two
columns of Table 11.2.

a) Compute the value of x> for these data.
b) What conclusion can be drawn about how the counter appears to be
functioning?

Solution

a) To determine y* (Eq. (6.93)), we need to compute the mean count number,
which will serve as our estimate of the mean u, and the sum of the
squares of the deviations from the mean. The number of degrees of
freedom is 19. From the data in column 2 of Table 11.2,we find that

1 & 192
ﬁ:_zni:_zg.eo, (11.14)
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Table 11.2  Count numbers n; observed in 1-min intervals from example in the text.

i n; nj—n (nj — Fl)2
1 11 1.40 1.96
2 12 2.40 5.76
3 5 —4.60 21.16
4 13 3.40 11.56
5 10 0.40 0.16
6 11 1.40 1.96
7 7 —2.60 6.76
8 13 3.40 11.56
9 3 —6.60 43.56
10 12 2.40 5.76
11 6 —-3.60 12.96
12 11 1.40 1.96
13 9 —0.60 0.36
14 13 3.40 11.56
15 9 —0.60 0.36
16 5 —4.60 21.16
17 —3.60 12.96
18 13 3.40 11.56
19 14 4.40 19.36
20 9 —0.60 0.36
Total 192 0.00 202.80

From columns 3 and 4,
20
> (m — n)* = 202.80. (11.15)
=1

(The estimated variance of the sample is thus

1 202.80
2 =\2
= LS = 22806, 11.16
= > - mp =2 (11.16)

This value is close to the sample mean, n = 9.60, consistent with the
Poisson distribution.) It follows that

202.80

oo =13 (11.17)

2= (=)=

b) Using Table A.3, we find that the probability of observing a y2, value as
large as 21.13 or larger is at least 0.3. Thus, this event is not rare or
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Figure 11.4  Plot of probability distribution the text. Both distributions have the
f(n;), shown by bars, and Poisson mean n = 9.60. The filled circles are
distribution (filled circles) for 20 values connected by a dotted line for ease
of n; given in Table 11.3. See example in of visualization.

significant, and we may conclude that the counter is operating properly.
Figure 11.4 shows a plot of the sample frequency distribution of the n;
compiled from Table 11.3 and the Poisson distribution with the same
mean, n = 9.60.

Table 11.3 Data analysis for example in the text.

n fin) nf(n) n—n (n—n)’f (n)
3 0.05 0.15 —6.60 2.18
4 0 0 —5.60 0

5 0.10 0.50 —4.60 2.12
6 0.10 0.60 —3.60 1.30
7 0.05 0.35 —2.60 0.34
8 0 0 —1.60 0

9 0.15 1.35 —0.60 0.50
10 0.05 0.50 0.40 0.01
11 0.15 1.65 1.40 0.29
12 0.10 1.20 2.40 0.58
13 0.20 2.60 3.40 2.31
14 0.05 0.70 4.40 0.97

Total 1.00 9.60 0.00 10.14
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11.8

Dead Time Corrections for Count Rate Measurements

A count rate meter registers an individual particle or photon that interacts with it.
However, immediately following an event, the counter needs a certain minimum
length of time, called the dead time, in order to recover and thus be able to record the
next event. Another particle or photon, interacting during this dead interval, will not
be registered. When counting a radioactive sample, it is important, therefore, to be
aware of any dead time corrections that should be made to the observed count rate,
especially with an intense source. The count rate indicated by the detector might be
substantially smaller than the rate of events taking place in the detector, which is the
relevant quantity.

Two idealized models can be used to approximate the behavior of counters. A
nonparalyzable detector is inert for a fixed time 7 following an event, irrespective of
any other events that occur during z. A paralyzable detector, on the other hand, is
unable to respond again until a time 7 has passed following any event, even when the
event occurs during a dead interval. Whereas the nonparalyzable counter simply
ignores events that happen during the downtime 7, the start of the recovery period 7 is
reset in the paralyzable counter each time an event happens, irrespective of whether
that event is registered.

The behavior of the two models is illustrated in Figure 11.5. The top line shows the
occurrence of nine events, distributed in time according to the position shown along
the horizontal line. The middle and bottom lines indicate how the two types of
detectors would respond, given the same dead time 7. Both counters register events 1,

1 2 345 67 89
Events
Nonparalyzable L LB e [ e EZiSEZed: 1,2,3,5,6,8
Detector —I —I —I Missed: 4,7,9
Events
T T T >
Paralyzable e a1 Recorded: 1,2,3,6
Detector Missed: 4,5,7,8,9

Time —=

Figure 11.5 Example of events registered by nonparalyzable and paralyzable counter models. See
the text.
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2, and 3, but miss event 4, which occurs in a time less than 7 after event 3. The
nonparalyzable counter just ignores event 4. The paralyzable instrument needs at
least a time 7 following event 4 in order to be able to respond again. Event 5, which
follows 3 by a time greater than 7 and 4 by less than 7, is registered by the
nonparalyzable, but not the paralyzable, counter. As seen from Figure 11.5, the four
events 6, 7, 8, and 9 give two counts and one count, respectively, with the two
detectors. The events recorded and missed are shown on the right in Figure 11.5. In
this example, the nonparalyzable instrument would register 2/3 and the paralyz-
able counter only 4/9 of the actual events. Most real counting systems exhibit
behavior intermediate to these two models. It is interesting to note, as Figure 11.5
illustrates, that radiation counters actually count the number of intervals that occur
between the events they respond to, rather than the number of events themselves.
That is, they register the number of time periods during which the instrument is
not responding.

To analyze the response of the two types of counters to radiation fields of different
fluence rates, we let r, be the mean event rate and r. the mean count rate as registered
by the instrument. Both rates are assumed to be constant in time. When the true
event rate r, is small, both detector types in Figure 11.5 will register almost the same
count rate r.. Even though a few events might be missed by both counters, r, = . As
the event rate increases somewhat, the count rate from both instruments goes up. For
the nonparalyzable detector, the count rate will be a little higher than that for the
paralyzable detector. For both instruments, though, r. < r,because of dead time. If the
event rate becomes very large, the nonparalyzable counter will be triggered almost
immediately after each recovery time 7. Its count rate will approach the limiting value
1/t, which is the maximum reading that such an instrument is capable of giving.
With the paralyzable counter, on the other hand, one can see from Figure 11.5 that
increasing r, to ever larger values will eventually cause the count rate to decrease. In
the limiting case of very large r,, the paralyzable counter never has a chance to recover,
and so the count rate approaches zero.

Itis straightforward to work out relationships between r,, r, and 7 for the models,
which enable one to make dead time corrections in order to convert an observed
count rate into an estimated true event rate. If a measurement is made over a long
time ¢t with a nonparalyzable counter, having a dead time 7, then the number of
counts registered, r.t, implies that the counter was unresponsive for a total length of
time r.tr. The amount of time during which it was responsive, therefore, was
t — rebt = (1 — r.7)t. Thus, the fraction of the time ¢ that it was “alive” is 1 — r.z, which
is the fraction of the true events that are registered:

l—rr="2 (11.18)
I

Solving for the true event rate, we obtain

e

1 (nonparalyzable). (11.19)

T 1-r1
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When r, gets very large, then r.z — 1 in these equations, and so r. — 1/7, as
pointed out in the last paragraph. When the event rate is small, r.t < 1, Eq. (11.19)
gives, for low event rates,

r 2 r(1+77), (11.20)

where we have used the approximation (1 —x) ' =1 + x for small x.

The analysis for the paralyzable counter is a little more involved. We can see from
the third line in Figure 11.5 that this counter registers only the number of time
intervals that are of length 7 or greater between successive events. To see the effect of
the dead time, we need to consider the distribution of such time intervals that occur at
amean event rate r,. Since these events are random, they obey Poisson statistics. The
mean number of events that take place in a time ¢ is rit. Therefore, the probability
that no event occurs in a time interval between 0 and ¢ is given by Eq. (5.27) with
u=rtand x=0:

po=e " (11.21)

The probability that an event does occur in the time interval between ¢t and ¢ + dt is
equal to r, dt. Thus, the probability that the duration of a particular time interval, void
of any event, will end between t and t + dt is

t)dt = pory dt = e "' 1y dt. 11.22
p(t)dt =p,

That is, the probability is the product of (1) the probability e " that no event has
occurred in ¢ and (2) the independent probability r, dt that an event will occur in
dt (Eq. (3.50)). The probability that a time interval T longer than 7 will occur without
an event happening is

Pr(T > 1) = Jp(t)dt =n J e dt=—e X =e TV, (11.23)
T T

(The exponential distribution was discussed in Section 6.7.) The observed count rate
t. is the product of the true event rate and the probability (11.23):

—hT

fe=rne (paralyzable). (11.24)

Unlike Eq. (11.19), this transcendental equation cannot be solved in closed form for r;
as a function of r.. The dead time corrections must be dealt with numerically. For
small event rates and r7 < 1, we can use the exponential series approximation,
e* =1+x+(x?/2)+ --- with Eq. (11.24) to show

re = 1 (1 — ). (11.25)

Additionally, when r.7 < 1, this equation also leads, after some manipulation, to the
same Eq. (11.20) for both models (Problem 11.19).

The relationships between count rates r. and event rates r, for the paralyzable and
nonparalyzable models are shown graphically in Figure 11.6. If there were no dead
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T
r,=1r
fe /
Nonparalyzable
(en)’
Paralyzable
o
It

Figure 11.6 Behavior of observed count rate r. as a function of the true event rate r, for paralyzable
and nonparalyzable counters with dead time 7.

time (r=0), then r.=r, and the response of both counters would be identical and
linear, as illustrated. When 7#0, the count rate for the nonparalyzable detector
increases with increasing r, and tends toward its maximum value of 1/7. The count
rate for the paralyzable detector also rises, but then passes through a maximum at the
value 1/7, after which it decreases toward zero at large r, as explained earlier. The
value of r, that makes r. a maximum and the resulting maximum value of 7. can be
found by differentiation from Eq. (11.24):

dr.
—=(1-n1)e " =0. 11.26

E=-n) (11.26)
It follows that the maximum count rate occurs when the event rate is r,=1/7. (Note
that this event rate is numerically the same as the maximum count rate for the
nonparalyzable counter.) From Eq. (11.24), the maximum count rate for the paralyz-
able counter is then

1 1
maxr, =-e ! = —. (11.27)
T et

We note in Figure 11.6 for the paralyzable counter that, except at the maximum, there
are always two values of r, that correspond to a given instrument reading r.. A low
count rate found with a paralyzable system could be the response to a very intense
radiation field.

Example
A nonparalyzable counter, having a dead time of 1.40 us, shows a count rate of
1.10x10°s™".

a) What fraction of the true events is being counted?
b) What is the maximum count rate that the instrument can register?
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Solution
a) The true event rate can be found from Eq. (11.19) with r.=1.10 x 10°s ™"
and 7=1.40 x 10 °®s:

B 1.10 x 10° !
11— (1.10 x 10°s71) x (1.40 x 10 °5s)
=130x10°s7L (11.28)

Ty

The fraction of events being counted is thus

1.10 x 10° s
T 22X S o846, (11.29)
n 1.30x 10°s7!
or about 85%. (A more direct solution is obtained from Eq. (11.18).)
b) The maximum count rate that the instrument can record is

1 1

= =714x10°s"". (11.30)
T 140x107"s

Example

Apply the data given in the last example (t = 1.40 usand r. = 1.10 x 10° s %) to
a paralyzable counter.

a) Find the true event rate.
b) At what event rate will the instrument show its maximum count rate?
¢) What is the maximum reading that the counter will give?

Solution
a) Substitution of the given information into Eq. (11.24) gives

1.10 x 10° = e 140x107°r (11.31)

in which the time unit, s, is implied. As pointed out after Eq. (11.27), we
expect two solutions for . These have to be found numerically, as can be
accomplished by trial and error. To this end, rather than using Eq. (11.31)
with its exponential term, we take the natural logarithm of both sides and
write

Tt

140 x 10, =In———.
1.10 x 10

(11.32)
This form is handier to work with than Eq. (11.31). As a first attempt at
solution, we try the result r,=1.30 x 10°s~' found previously for the
nonparalyzable counter in the last example. Substitution of this value into
Eq. (11.32) gives 0.182 on the left-hand side, compared with the smaller
value, 0.167, on the right. This is apparently close to the actual solution, for
which r, should be somewhat larger (see Figure 11.6). Accordingly, we try
1.35 x 10°s ™', which gives 0.189 on the left and 0.205 on the right in
Eq. (11.32). Since the value on the right is now the larger of the two, the
solution must lie between these two trial values of .. The actual solution is
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r.=1.32 x 10° s, as can be verified by substitution. To locate the second
solution, we arbitrarily try order-of-magnitude steps in the direction of
larger . Starting with ,=10°s"", we find that the left-hand side of
Eq. (11.32) has the smaller value, 1.40, compared with 2.21 on the right-
hand side. With r, = 107 s}, the two sides have the respective values 14.0
and 4.51, the left now being the larger of the two. Therefore, the equation
has a root in the interval, 10° < r, < 10. Closer inspection shows that
r.=3.45 x 10%s ™" satisfies Eq. (11.32) and is the desired solution. In this
example, the paralyzable counter gives the same reading in one radiation
field as in another where the true event rate is more than 25 times greater.
b) From Eq. (11.26), the maximum count rate occurs when the event rate is
1 1

n=-=—— " =714x10°s"". (11.33)
T 140x107°s

¢) The maximum count rate is, from Eq. (11.27),

1 1
— = —— =263 x10°s7". (11.34)
et 2.72x140x107"s

We have dealt with the random occurrence of true events as a Poisson process with
constant mean rate r, per unit time. Equation (11.22) gives the probability that the
duration of a particular time interval between two successive events will lie between ¢
and t + dt. The quantity

p(t) =ne™ (11.35)

gives the probability density for the length of time t between successive randomly
spaced events, commonly called the exponential distribution (Section 6.7). This
function plays a role in a number of Poisson counting processes. For a large number
N ofintervals observed over a long time ¢, the number n that have a length between t,
and t, is

t t
n= NJ p(t)dY = Nr, Je*m’ df = N(e ™ —e™"th), (11.36)

ty t

For the response of a paralyzable counter with dead time 7, n is simply the number of
intervals for which t; =7 and t, — oo:

n=Ne . (11.37)

Dividing both sides by the observation time t, we can make the replacements n/t =r,
and N/t=r, from which Eq. (11.24) follows.

Are the intervals between the successive n counts generated by a Poisson process?
One sees from Eq. (11.35) that short time intervals have a higher probability than long
intervals between randomly distributed true events. It follows that the counts
registered by a paralyzable counter are not a random subset of the Poisson distributed
true events, since the shorter intervals are selectively suppressed by the locking
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mechanism of the instrument. The subset of events registered as counts by a
nonparalyzable counter, on the other hand, is Poisson distributed. The distribution
of interval lengths between successive counts is exponentially distributed, like
Eq. (11.35), with probability density

pe(t) = ree . (11.38)

For alarge number of counts, a given event is registered with a fixed probability r. /7.
In random time intervals of fixed length t, the mean number of events is rit, and the
mean number of counts is r.t.

Most gas proportional counters, self-quenching GM instruments, and scintillation
counters are of the nonparalyzable type. Dead times for GM tubes and other gas-filled
detectors are in the range of 50-250 us. Scintillation counters are much faster, having
dead times on the order of 1-5 us. Charge collection in semiconductor detectors is
extremely fast, and system dead time typically depends on factors such as the
preamplifier rise time.

Commercial spectral software packages commonly report dead time in terms of
the fractional difference (as a percent) between real elapsed time and the system live
time during a measurement. The corresponding system response time 7, as pre-
sented in this section, is related to this fractional difference by noting that the
apparent count rate r. is the ratio of the total number of events recorded by the
detector system and the elapsed time, whereas the true count rate r, is approximately
the ratio of events to the system live time. The relationship can be expressed as

f

TR,
R

(11.39)

where f= (real time — live time)/real time. Care should be used, however, in inferring
the detector dead time 7 from system dead time f, which may depend on several
factors.

Problems

11.1 Show that FWHM =2.35¢ for the normal distribution (Figure 11.1).

11.2 The resolution of a certain proportional counter, having a linear energy
response, is 9.10% for 600-keV photons. What is the resolution for 1.50-MeV
photons?

11.3 For the average energy needed to produce an ion pair, show that
leVip '=1JC L

11.4 Calculate the Poisson energy resolution (FWHM in keV) for the absorption of
a 5.61-MeV alpha particle in an HPGe detector (W=2.96]C ™).

11.5 What is the energy resolution of the detector in the last problem if the Fano
factor is 0.07°?

11.6 If the resolution of a gamma scintillation spectrometer is 10.5% at 750keV,
what is the FWHM in keV at this energy?



11.7

11.8

11.9

11.10

11.11

11.12

11.13

11.14

11.15

11.16

11.17

11.18

11.19

11.20

Problems

What percentage energy resolution is needed for a gamma-ray spectrometer to
resolve two peaks of comparable intensity at 621 and 678 keV?

With a certain Nal gamma spectrometer, an average of 726 eV is needed to
produce an electron collected from the cathode of the photomultiplier tube. If
other sources of error are negligible, determine the energy resolution in keV
for the total energy peak of the 1.461-MeV gamma ray from “°K.

Can the instrument in the last problem resolve the two ®*Co photons, emitted
with 100% frequency at energies of 1.173 and 1.332 MeV?

A thick sodium iodide crystal with an efficiency of 12% is used in a
spectrometer exposed to 580-keV gamma rays. The scintillation photons have
an average wavelength of 4130 A, and 8.2% of them produce a photoelectron
that is collected from the cathode of the photomultiplier tube. Calculate the
energy resolution in percent for the total energy peak of the spectrometer at
580keV. Assume that the resolution is determined solely by random fluctua-
tions in the number of photoelectrons produced following the complete
absorption of a photon.

Absorption of a 500-keV beta particle in an organic scintillator produces, on
average, 12400 photons of wavelength 4500 A. What is the efficiency of the
scintillator?

A series of ten 1-min background readings with a GM counter under identical
conditions give the following numbers of counts: 21, 19, 26, 21, 26, 20, 21, 19,
24, 23.

a) Calculate the mean and its standard deviation.

b) Compute y°.

¢) Interpret the result found in (b).

Repeat the last problem for test results that give the following numbers of
counts: 21, 17, 30, 24, 29, 16, 18, 17, 31, 26.

Apply the y” test to determine whether the following set of independent count
numbers, obtained under identical conditions, shows fluctuations consistent
with Poisson statistics: 114, 129, 122, 122, 130, 134, 127, 141.

A nonparalyzable counter has a dead time of 12 us.

a) What is the true event rate when it registers 22 300 cps?

b) What is the maximum count rate that this instrument can give?

Repeat the last problem for a paralyzable counter.

A nonparalyzable counter has a dead time of 27 us. What count rate will it
register when the true event rate is

a) 20000s™"?

b) 60000s '?

¢) 6000005 '?

Repeat the last problem for a paralyzable counter.

Show that Eq. (11.24) for the paralyzable counter leads to the same approx-
imate expression, Eq. (11.20), that holds for the nonparalyzable counter, when
the event rate is small.

A point source gives a count rate of 21200s ™' with a nonparalyzable counter.
With a second, identical point source added to the first, the count rate is
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11.21

11.22

11.23

11.24

11.25

11.26

11.27

387005 '. What is the dead time of the counter? Background and self-

absorption are negligible.

A nonparalyzable counter, having a dead time of 12.7 us, shows a reading of

24500 cps.

a) Calculate the true event rate.

b) What fraction of the events is not being registered?

In the last problem, what is the count rate if 10% of the true events are not

being registered?

A paralyzable counter has a dead time of 2.4 us. If the instrument shows a

reading of 1.27 x 10° cps, what are the two possible values of the true event

rate?

A thin source of a long-lived radionuclide is plated onto a disk. This source is

placed in a counter, and 224 622 counts are registered in 10s. A second such

disk source of the radionuclide is made, having an activity exactly 1.42 times

that of the first disk. When the first source is replaced by the second, 461 610

counts are registered in 15 s. If the counter is of the nonparalyzable type, what

is its dead time? (Background and self-absorption of radiation in the sources

are negligible.)

As a paralyzable counter is brought nearer to a source, its reading increases toa

maximum of 62 000 cps and decreases thereafter as the source is approached

even closer. What is the dead time of the instrument?

A series of gamma photons randomly traverse the sensitive volume of a GM

counter at an average rate of 620s™ .

a) Whatis the probability that no photons will traverse the sensitive volume in
1ms?

b) What is the probability that a time equal to or greater than 0.010 ms will
pass without a photon traversal?

A series of events occur randomly in time at a constant mean rate of

6.10 min " as the result of a Poisson process.

a) What is the probability that no events will occur during a randomly chosen
interval of 1 min?

b) What is the probability that no events will occur during a randomly chosen
interval of 12s?

c) What is the relative number of intervals between successive events that
have a duration between 20 and 305s?

d) What is the median length of time between successive events?



12
Monte Carlo Methods and Applications in Dosimetry

12.1
Introduction

A Monte Carlo procedure is a method of numerical analysis that uses random
numbers to construct the solution to a physical or mathematical problem. Its very
name and its dependence on random numbers indicate a close association with
statistics. The use of sampling from random processes to solve deterministic or other
problems was begun by Metropolis and Ulam (1949). Von Neumann and Ulam
coined the phrase “Monte Carlo” to refer to techniques employing this idea. It was so
named because of the element of chance in choosing random numbers in order to
play suitable games for analysis. Monte Carlo procedures provide an extremely
powerful and useful approach to all manner of problems — particularly ones that are
not amenable to accurate analytical solution. Such statistical techniques are
employed in a number of areas in radiation physics and dosimetry, as will be brought
out in this chapter.

In the next section we discuss the generation of random numbers, which are at the
foundation of any Monte Carlo calculation. In Section 12.3, we illustrate the use of
statistical algorithms and random numbers to determine the known numerical
answers to two specific problems. The remainder of the chapter deals with applica-
tions in radiation physics and dosimetry, including photon and neutron transport.
Monte Carlo transport calculations are widely used to determine dose, dose equiv-
alent, and shielding properties. Random sampling is used to simulate a series of
physical events as they might occur statistically in nature at the atomic level. Monte
Carlo models and computer codes are thus used to calculate radiation penetration
through matter. They provide computer-generated histories for a number of charged
particles, photons, or neutrons incident on a target. Individual particle histories are
generated Dby a fixed algorithm, enabling the random selection of flight distances,
energy losses, scattering angles, and so on to be made as each particle and its
secondaries are transported. With the help of a sequence of random numbers,
selections for all of these events are made one after another from statistical
distributions provided as input to the computer programs. Ideally, the input
distributions themselves are obtained directly from experimental measurements or

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
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reliability theory. A large set of particle histories can then be analyzed to compile any
information desired, such as the absorbed dose and LET distributions in various
volume elements in the target. In a shielding calculation, the relative number, type,
and energy spectrum of particles that escape from the target, as well as possible
induced radioactivity in it, are of interest. The number of histories that need to be
generated for such computations will depend on the specific information wanted and
the statistical precision desired, as well as the computer time required.

12.2
Random Numbers and Random Number Generators

Early generators relied on physical methods, such as tossing a die or drawing
numbered beads from a bag, to produce a series of “random” numbers. Before the
era of electronic computers, tables of random numbers were published in book form.
Today, random number generators are available on pocket calculators, personal
computers, and sophisticated mainframe machines. Typically, an arbitrary random
number “seed” is used to produce a second number, which, in turn, acts as the seed
for the next number, and so on. The sequence of random numbers r; thus produced is
designed to span uniformly the semiclosed interval 0 <r; <1, or [0, 1).
An example of a random number generator is provided by the equation®

r; = FRAC[(m+ri1)°]. (12.1)

Here FRAC[x] is the remainder of x, after the integer portion of the number is
truncated (e.g., FRAC[26.127] = 0.127). To illustrate how Eq. (12.1) works, we use an
arbitrary seed number, r, = 0.534, and generate the first five numbers, rounding off
each to three significant figures before calculating the next r;; ;. To begin, we have

r, = FRAC[(7 + 0.534)°] = FRAC[670.868] = 0.868. (12.2)

The next numbers are

r, = 0.338,
13 = 0.084,
ry = 0.179, (12.3)
s = 0.718.

One can see that such a computer-generated random number sequence will only
go a finite number of steps without repeating itself, commencing when one of the
numbers appears for the second time. Since there are only 10> =1000 different
numerical entries possible in the three-place sequence exemplified by Eq. (12.2), no
such sequence can have a period greater than 1000 entries before repeating itself.
Also, since there are only 1000 possible seed numbers, there can be no more than

1) This generator was utilized with the Hewlett-Packard model HP-25 hand calculator.
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1000 independent random number sequences. While hand calculators and electronic
computers, especially with double precision, carry many more than three significant
figures, their precision is nevertheless finite, and such generators can pose a practical
limitation in some Monte Carlo studies. Other types of generators are based on
different algorithms, such as use of some aspect of the computer’s internal clock
reading at various times during program execution. Whereas the sequences thus
generated are not periodic in the sense of Eq. (12.1), there are still only a finite
number of different entries that the sequences in a computer can contain. Because of
these and other considerations, when speaking about random numbers and random
number generators in Monte Carlo work, one should perhaps apply the more
accurate terminology, “pseudorandom.”

Various tests are possible to determine how well a given sequence of pseudoran-
dom numbers approaches randomness. The distribution of truly random numbers
is uniform over the interval 0 < r; < 1. Their mean, or expected value, is, therefore,
E(r)=1/2, exactly. Since different entries in a random number sequence are
completely uncorrelated, the expected value of the product of two different entries
is E(rirj) = 1/4, i # j. On the other hand, E(r}) = 1/3.

Given a series of numbers in the semiclosed interval [0, 1), how can one test for
randomness? There are a number of both simple and sophisticated criteria. Any set of
pseudorandom numbers can be expected to pass some tests and fail others. The r;
should be uniformly distributed over the interval. Thus, the fraction of the numbers
that lie in any subinterval within [0, 1] should be proportional to the width of that
subinterval. The average value of a large set of random numbers, 0 < r; < 1, should
be exactly 1/2. The numbers should also be completely independent of one another.
Since the mean value of each r; is 1/2, the mean of the product r;7;, with i # j, of the
series should be

1 1 1
E(rirj) = E(ri)E(ry) =5X5=7 (12.4)
On the other hand,
2 1
E(nn) = E(r) = 3. (12.5)

Many other tests for randomness have been developed. To mention only one,
groups of five numbers are used to select poker hands. The resulting frequencies of
the various hands are then compared with the known probabilities for randomly
drawing them.

For additional information on Monte Carlo techniques, random numbers, and
random number generators, the reader is referred to the following publications in the
Bibliography at the end of the book: Atkinson (1980), Carter and Cashwell (1975),
Kalos and Whitlock (1986), Kennedy and Gentle (1980), Knuth (1980), Metropolis and
Ulam (1949), Newman and Barkema (1999), and Ulam (1983). The paper by Turner,
Wright, and Hamm (1985) is a Monte Carlo primer written especially for health
physicists.
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12.3
Examples of Numerical Solutions by Monte Carlo Techniques

In this section we obtain the numerical solutions to two problems by the use of Monte
Carlo techniques. For both problems, the Monte Carlo results can be compared with
the exact solutions, which are known.

12.3.1
Evaluation of w =3.14159265. ..

In Figure 12.1, a quadrant of a circle of unit radius is inscribed in a unit square. The
area of the circular quadrant is 7t/4, which is also just the fraction of the area of the
square inside the quadrant. If one randomly selects a large number of points
uniformly throughout the square, then the fraction of points that are found to lie
within the circular quadrant would have the expected value 7/4. An estimate of 7t can
thus be obtained from a random sample of a large number of points in the square.
Statistically, one would expect that the precise value of &t would be approached ever
more closely by using more and more points in the sample.

A simple computer program can perform the needed computations. Pairs of
random numbers, 0 < x; < 1 and 0 < y; < 1, determine the coordinates (x, y) of
points in the square, as shown in Figure 12.1. A numerical check is made for each

[ ]
....................6:.....? (xl ’yl) ... o

Figure12.1 Quadrant of circle inscribed in unit square has area rt/4, which is the expected value of
the fraction of randomly chosen points (x;, y;) in the square that fall within the quadrant. Inside the
circle, x* +y? < 1. See Table 12.1.
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Table 12.1 Value of 7 (=3.14159265.. ) obtained by Monte Carlo procedure.

Total number of points  Number of points within circle  Estimated value of = Percent error

10 5 2.000000 36.3
10% 75 3.000000 451
10° 783 3.132000 0.305
10* 7927 3.170800 0.930
10° 78 477 3.139080 0.0800
10° 785 429 3.141716 0.00393
107 7 855 702 3.142281 0.0219
108 78 544 278 3.141771 0.00568
10° 785 385 950 3.141544 0.00155

point to see whether x? +y? < 1. When this condition holds, the point is tallied;
otherwise, it is not tallied. After selecting a large number of points, the ratio of the
number of tallied points and the total number of points used gives the estimated
value of mt/4.

Numerical results calculated in this way are shown in Table 12.1 for samples with
sizes ranging from 10 to 10° points. In a sample of just 1000 random points, for
example, 783 were found to lie within the circular quadrant, implying that
7t =4 x (783/1000) = 3.13200. This estimate differs from the true value by 0.305%.

One sees from the table that using more points does not always give a more
accurate computed value of 7, although there is general improvement as one goes
down in Table 12.1. One must remember that the numbers of tallied points in
column 2 of Table 12.1 are themselves random variables. With a different sample of
1000 points, chosen with a different set of random numbers, one would probably
not obtain exactly 783 tallies again. The expected number of tallies for a sample of
1000 is, in fact, (t/4)(1000) = 785.3982. The number of tallies is a binomial random
variable with p = it/4 = 0.7854. For N = 1000, we know that its coefficient of variation
(Section 7.3) is o/u = /(1 — p)/Np = /0.2146/785.4 = 0.0165, or about 1.65%.
The particular sample used for Table 12.1 had very nearly the expected value of tallies,
and the actual error in the calculated value of &, shown in the last column of
Table 12.1, is only 0.3%. One sees from the last column of the table that the percent
error decreases with sample size, but not monotonically, because of random
fluctuations.

12.3.2
Particle in a Box

Figure 4.3 shows the quantum-mechanical probability density (Egs. (4.15) and (4.16))
for a particle confined to a one-dimensional box in its state of lowest energy (ground
state). As determined analytically by Eq. (4.24), the probability of finding the particle
between X=0and X=a/4 is 0.409. We now evaluate this probability in two different
ways by means of Monte Carlo algorithms.
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f(x) =2 cos? (nx)

2

(5 yi)

Area=A

-172 0 1/4 172
X

Figure12.2 Probability of finding particle in the box in a location between x =0 and x= 1/4 is equal
to the shaded area A under the curve f(x).

Method 1

As indicated in Figure 12.2, the desired probability is equal to the area A within the
heavy border under the curve f{x), defined by Eq. (4.15). (Since the width a of the box is
arbitrary, we have set a=1 in Figure 12.2. Alternatively, if one carries a explicitly
through the computations, it drops out identically later.) As we did to find the value of
7 in the last problem, we can use pairs of random numbers to select a large number of
points (x;, y;) uniformly within the rectangle completed with the dotted lines in
Figure 12.2. The expected value of the fraction F of points in a large sample that fall
under the curve f{x) is equal to the ratio of (1) the area A, being sought, and (2) the area
of the rectangle, which is 2 x 1/4 = 1/2. Thus, F=2A, and so A= F/2. Finding the
fraction by choosing random points thus determines the magnitude of A. (Both this
and the last problem are examples of doing numerical integration by Monte Carlo
methods.) One random number 0 < r; < 1 provides a value x; = r;/4 between x =0
and x =1/4, as desired. A second random number ’; picks y; = 2+’; between 0 and 2.
For each point chosen in the rectangle, we test the inequality

¥i < 2 cos? mx;. (12.6)

When a point with coordinates (x;, y;) satisfies Eq. (12.6), it is under the curve f{x) in
Figure 12.2, and is, therefore, tallied. Otherwise, the pointis not tallied. At the end of a
calculation, the fraction F of the points that are tallied provides the estimate of the
area: A= F/2. This procedure was carried out for samples ranging in size from 10 to
10° points, and the results for this method are shown in column 2 of Table 12.2. They
are in good agreement with the known value of the area, which is, from Eq. (4.24),
A =0.409155.
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Table 12.2  Value of area (A =0.409155) under curve in Figure 12.2 calculated by two Monte Carlo
methods.

Total number of points Area by method 1 Area by method 2
10 0.350000 0.361441
10? 0.400000 0.400124
10° 0.410500 0.406790
10* 0.413400 0.410627
10° 0.408445 0.409148
10° 0.409145 0.409473
107 0.409259 0.413869
108 0.409170 0.083886
10° 0.409141 0.008389
Method 2

In this method of solution, random values of x;, 0 < x; < 1/4, are selected, justas in
the first method. Now, however, for each x; one computes the value of the ordinate on
the curve, y; = 2 cos? mx;. The average value y of the ordinate is then evaluated for a
large number of points N:

?:N;Yzﬁ (12.7)
The area A in Figure 12.2 is given by the product of the average value y of y and the
width 1/4 of the interval: A = y/4. Results for calculated area are presented in the last
column of Table 12.2. The estimated area at first improves as more points are used,
but then becomes progressively worse when more and more points are used. This
failure of method 2 occurs because of the limited numerical precision of the
computer. The problem is one of roundoff. A real (floating point) number like y
in Eq. (12.7) is stored in a register with a fixed number of bytes, giving its sign,
decimal point location (exponent), and a certain number of significant figures. The
computer cannot add a small number to a very large number beyond the precision
that this system imposes. For instance, with a precision of six significant figures, the
following sum would be thus evaluated: 4.29846 x 10° +12.7 = 4.29846 x 10°.
Roundoff occurs. In the present problem, as seen from Figure 12.2, the largest
value of y; that can contribute to the sum in Eq. (12.7) is 2.0, and so roundoff occurs
once the accumulated sum reaches a certain size, which is beyond this precision. We
see from the last two entries in the last column of Table 12.2 that the sum in Eq. (12.7)
is the same for N=10° points as for 10®. (The terminal value of the sum, with the
computer used for these computations, turns out to be 3.355443 x 10”.) Roundoff
error can be made to occur later in such a calculation (i.e., for larger N) when the
computations are performed in double precision, as is often done in Monte Carlo
work. In contrast to method 2 for solving the same numerical problem, method 1
calculates the area as the ratio of two integers, which are stored with greater precision
as binary sequences in the computer. Thus, knowledge of how the computer stores
numbers and performs numerical analysis is very important in the proper use of
Monte Carlo methods.
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12.4
Calculation of Uniform, Isotropic Chord Length Distribution in a Sphere

Spherical, tissue-equivalent, gas proportional counters find widespread applications
in dosimetry and microdosimetry. Often called Rossi counters, after the pioneering
work of Harald H. Rossi and coworkers, they were used early on for the task of
determining LET spectra from energy proportional pulse height measurements. In
an idealized concept, a charged particle (produced in the wall of a Bragg-Gray
chamber) traverses the sensitive volume of a proportional counter with constant LET,
L, along a chord of length 5. With energy-loss straggling ignored (in reality, itis large),
the energy registered by the counter would be ¢ = Ly. A pulse of a given amplitude &
could be due to either a particle of relatively high LET traversing a short chord or a
particle of low LET traversing a long chord. If the radiation is isotropic, then, since the
distribution of isotropic chord lengths in a spherical cavity is known (see the next
section), one can assign a statistical probability for chord length to each pulse. This
assignment, in turn, implies a statistical probability for the LET of the particle that
produced it. Mathematically, the unfolding of the LET spectrum from an observed
pulse height spectrum and a known chord length distribution is equivalent to solving
a convolution integral equation. Technically, the experimental procedure presents
formidable difficulties, but it has led to important and useful information on LET
spectra. Today, spherical, tissue-equivalent proportional counters are employed in a
number of different ways in research and routine monitoring. In addition, with
proper selection of sphere size and gas pressure, one can employ such chambers to
simulate unit density spheres that have relevant biological sizes, for example, thatof a
cell, cellnucleus, or other microscopic structure. The subject of microdosimetry deals
with the distribution of physical events on a scale of microns and smaller and the use
of such distributions to interpret and understand the biological effects of radiation
(Rossi and Zaider, 1996).

Monte Carlo calculations can be performed to find the distribution of chord
lengths, having any spatial arrangement in a cavity of any shape. To show some details
of this kind of a Monte Carlo calculation, we now compute the isotropic chord length
distribution for a sphere.

Figure 12.3a shows schematically a sphere of radius R traversed by a parallel,
uniform beam of tracks. The distribution of chord lengths in the sphere with this
geometry is the same as that for a sphere immersed in a uniform, isotropic field of
tracks. Because of spherical symmetry, the relative orientation of the sphere and
the tracks does not matter, as long as the tracks are uniform in space. To obtain the
desired chord length distribution by Monte Carlo means, we can select a large
number of incident tracks at random from the parallel beam, compute the resulting
chord length for each, and compile the results. The random selection of the tracks can
be made with reference to Figure 12.3b, which is a view at right angles to that in
Figure 12.3a, along the direction of the tracks. The projection of the sphere presents a
circle of radius Rto the beam. The intersection of the tracks is uniform over the plane
of the circle. We can select a random point of intersection (x;, y;) by choosing two
random numbers, as we did in the computation of 7t (Figure 12.1). If the point is
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Figure12.3 (a) Broad, uniform, parallel beam of tracks traversing sphere of radius R centered at O.
Chord length distribution in sphere is same as for uniform, isotropic tracks. (b) Random point (x;, y;)
in circle of radius R can be used to select random chord, having length #; in sphere.

outside the circle of radius R, then we simply ignore it here and choose the next one.
If the point is inside the circle, then its displacement from the center is

0; = 4 /xiz +Y;27 (128)

and so the resulting chord length is

7; = 24/R* — 02 (12.9)

Because of the symmetry in this problem, no generality is lost by always choosing
the random point (x;, y;) in the first quadrant of the circle in Figure 12.3b.

It is convenient to express the chord lengths as dimensionless fractions of the
longest chord, whose length is equal to the sphere diameter, 2R. Dividing both sides
of Eq. (12.9) by 2R, we write

2
i \/ 9 \/ %
i S 142 12.10
2R R? (ZR) ( )
Letting %} = 17;/2R and ¢} = ¢/2R denote the dimensionless quantities, we have

7y =\/1— 402 (12.11)

Since, in units of 2R, x; and y; vary in magnitude between 0 and 1/2, their random
values can be selected by writing

x;=0.5r; and y; =0.57], (12.12)

where 0<r, <1 and 0<r/ <1 are random numbers from the uniform
distribution.
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Table 12.3 Data for 25 random chords in sphere (see the text).

i X; Yi Qi 77;

1 0.2172 0.2272 0.3143 0.7778
2 0.0495 0.1633 0.1707 0.9399
3 0.3518 0.1144 0.3699 0.6728
4 0.3088 0.0398 0.3114 0.7824
5 0.3359 0.1289 0.3598 0.6944
6 0.1692 0.2132 0.2722 0.8389
7 0.0585 0.1762 0.1856 0.9285
8 0.2657 0.2890 0.3926 0.6193
9 0.4330 0.0067 0.4331 0.4998
10 0.4394 0.0561 0.4430 0.4636
11 0.2194 0.4386 0.4904 0.1945
12 0.3115 0.1170 0.3328 0.7463
13 0.2503 0.1046 0.2713 0.8400
14 0.1618 0.0334 0.1652 0.9438
15 0.1374 0.0667 0.1528 0.9522
16 0.3379 0.3452 0.4831 0.2580
17 0.0366 0.3832 0.3850 0.6381
18 0.1966 0.3598 0.4100 0.5724
19 0.1612 0.4135 0.4438 0.4607
20 0.4017 0.2500 0.4731 0.3235
21 0.0570 0.0663 0.0874 0.9846
22 0.1483 0.2940 0.3293 0.7525
23 0.2448 0.3278 0.4091 0.5749
24 0.0220 0.2917 0.2925 0.8111
25 0.2408 0.1282 0.2728 0.8380

To show some details involved in obtaining such a distribution by Monte Carlo
means, we produce and analyze a small sample of 25 chords. Table 12.3 shows the
lengths of 25 chords obtained with the help of a random number generator and
Eq. (12.12). The values of x;, y;, 0}, and the 25 chord lengths 7} are given explicitly. It is
convenient to display such Monte Carlo results in the form of a histogram, showing
how many times the random values #} of the chord lengths fall within different
“bins,” or specified ranges of #;. We arbitrarily choose 10 bins of equal width,
Ay’ = 0.10, for an initial display. Tabulation by bin of the sample of 25 chords from
Table 12.3 is presented in the first two columns of Table 12.4. The relative frequency
with which chords occur in each bin (the number in column 2 divided by 25) is given
in column 3. The last column shows the relative frequency per unit bin width, which
is obtained by dividing each of the numbers in column 3 by the width of its bin, which
in this example is 0.10 for each. (It is not necessary for the bins to have the same size.
In any case, plotting the relative frequency per unit bin width forces the area of the
histogram to be unity.) The histogram thus obtained from the first and last columns
of Table 12.4 is displayed in Figure 12.4. Since its area has been made to equal unity,
the histogram gives directly our sample’s approximation to the actual probability
density function, p(n7;), which we seek to find by Monte Carlo means. The actual
probability density is a function of the continuous random variable #' such that
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Table 12.4 Tabulation of chords from Table 12.3 into 10 bins of width 0.10 (see the text).

Chord length, 7; Number of chords Relative frequency Probability density, p(7;)
0.0000-0.1000 0 0.0000 0.0000
0.1000-0.2000 1 0.0400 0.4000
0.2000-0.3000 1 0.0400 0.4000
0.3000-0.4000 1 0.0400 0.4000
0.4000-0.5000 3 0.1200 1.2000
0.5000-0.6000 2 0.0800 0.8000
0.6000-0.7000 4 0.1600 1.6000
0.7000-0.8000 4 0.1600 1.6000
0.8000-0.9000 4 0.1600 1.6000
0.9000-1.0000 5 0.2000 2.0000

p(n")dy' gives the probability that the length of a random isotropic chord #’ falls
between 5" and ' + dn’ (Eqgs. (4.6, 4.7, 4.8)). Since chord lengths in Figure 12.4 are
represented as fractions of the sphere diameter, the distribution is numerically the
same as that for chord lengths in a sphere of unit diameter.

The histogram in Figure 12.4, although the result of a sample of limited size,
suggests that the chord length distribution is a monotonically increasing function of
7', as can be surmised from inspection of Figure 12.3. There is some scatter in the
results, reflecting the fact that each bin has only a few (<5) representatives. Statistical
scatter can generally be reduced in Monte Carlo histograms of a fixed sample size by
using larger bins. In so doing, however, one suppresses some information by

p()

0.0 0.5 1.0

Figure 12.4 Sample approximation to probability density function p(!) for isotropic chord length
distribution in sphere of unit diameter. The histogram is formed by sorting the 25 chord lengths in
the sample into 10 equal bins of width Ay} = 0.10. See Table 12.4.
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Table 12.5 Tabulation of chords from Table 12.3 into five bins of width 0.20 (see the text).

Chord length, 7; Number of events Relative frequency Probability density, p(7;)
0.0000-0.2000 1 0.0400 0.2000
0.2000-0.4000 2 0.0800 0.4000
0.4000-0.6000 5 0.2000 1.0000
0.6000-0.8000 8 0.3200 1.6000
0.8000-1.0000 9 0.3600 1.8000

lowering the resolution with which the independent variable, in this case 7/, is
portrayed. Using five bins of equal width, Az} = 0.20, for our sample of 25 chords
presents the data shown in Table 12.5 and plotted in Figure 12.5. The new
presentation of the same sample of chord lengths conveys a different impression
of how the probability density distribution might look. The monotonic behavior of
p(n;)is more evident here than in the previous figure. In fact, drawing a smooth curve
from the origin through the midpoints at the top of each bin gives a good
approximation to the actual continuous distribution function (see Figure 12.10).
Since there is no requirement that bins be of equal size, itis sometimes advantageous
to combine small bins into larger ones along the abscissa only in regions where the
number of events is small. In any case, the height of the histogram for a given bin
must show the relative number of events there divided by the width of that bin in
order that normalization be preserved to represent the probability density function
for the continuous random variable.

2k
p(n)

1k

0 )

0.0 05 1.0

Figure 12.5 Same sample as in Figure 12.4 with histogram constructed by using five bins of equal
width Az} = 0.20. See Table 12.5.
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Figure12.6 Probability density function p(1!) for isotropic chord length distribution obtained from
10° random chords, sorted into 10 equal bins of width Ay} = 0.10, in sphere of unit diameter.

A more definitive representation of the probability density function for the
isotropic chord length distribution can be generated with a large sample.
As examples, Figures 12.6 and 12.7 show, respectively, results from tallying
10 random chords in 10 uniform bins and 10° chords in 100 uniform bins.
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Figure12.7 Probability density function p(1;) for isotropic chord length distribution obtained from
10° random chords sorted into 100 equal bins of width Ayl = 0.01, in sphere of unit diameter.
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One sees that the chord length distribution is linear, as we shall show analytically in
Section 12.5.

12.5
Some Special Monte Carlo Features

Some special devices can be employed to improve the efficiency of Monte Carlo
computations and to assess their statistical uncertainties. We briefly mention several
here.

12.5.1
Smoothing Techniques

Figures 12.4 and 12.5 exemplify how the same set of raw data can have a different
appearance and possibly even convey more than one impression when presented in
different ways. We mentioned that, in general, grouping data into fewer, but larger,
bins gives “better statistics” in the sense of a smoother looking histogram, but at the
expense of poorer resolution of any structure in the probability density function for
the independent variable. Smoothing routines are sometimes employed to reduce
fluctuations. Instead of plotting the individual values of the probability density as the
ordinate of each bin, one plots a weighted average of that density and the densities
from several (e.g., two, four, or more) adjacent bins. The resulting histogram will
generally show less fluctuation than the original raw numbers. As an example, the
data for the 25 chords were smoothed as follows. We arbitrarily modified the
numbers in the last column of Table 12.4 by weighted averages. Except for the two
end bins, each value of p(#;) in the last column was replaced by the average comprised
of 1/2 times that value plus 1/4 times the sum of the values in the adjacent bins on
either side. For instance, between #} = 0.4000 and #; = 0.5000, the probability
density 1.200 was replaced by the smoothed value (1/2)(1.200) + (1/4)
(0.4000 + 0.8000) = 0.9000. For the two end bins, the original value in Table 12.4
was weighted by 3/4 and added to 1/4 the value from the single adjacent bin. The
smoothed data are shown by the histogram in Figure 12.8. In this instance, we obtain
a much closer resemblance to Figure 12.7 than that afforded by Figure 12.4, even
though both are based on the same sample of 25 events.

12.5.2
Monitoring Statistical Error

Monte Carlo calculations that produce data like we have been considering here can be
repeated exactly, except with a different set of random numbers. For each indepen-
dent computation, the number of events that occur in any given bin and its
distribution can be compiled. Generation of this number satisfies the criteria for
Bernoulli trials. The number in each bin of the Monte Carlo histogram is, then, a
binomial random variable (Sections 5.3 and 5.4). For large samples, such as those
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Figure 12.8 Re-plot of Figure 12.4 after simple smoothing of raw data for the 25 chords, as
described in the text.

used for Figures 12.6 and 12.7, the number of events in each bin can also be described
by Poisson statistics. The standard deviation of the number in each bin can, therefore,
be estimated as the square root of the number obtained in the calculation. To
illustrate, Table 12.6 gives the number of events, the estimated standard deviation,
and the coefficient of variation, or relative error (Section 7.3), for the first and last
three bins plotted in Figure 12.7 from the sample of 10° isotropic chords. The
coefficients of variation are, of course, largest (15-30%) in the first bins, where there
are the fewest events. Combining the first three bins, which contain a total of

Table 12.6 Estimated coefficients of variation for first and last three bins of histogram in

Figure 12.7.

Chord length

Number of events

Estimated standard deviation  Coefficient of variation

0.0000-0.0100
0.0100-0.0200
0.0200-0.0300

0.9700-0.9800
0.9800-0.9900
0.9900-1.0000

11
39
42

1973
1964
2054

3.32
6.24
6.48

44.4
443
453

0.30
0.16
0.15

0.023
0.026
0.022
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92 chords, into a single bin reduces its coefficient of variation to 1/1/92 = 0.10. As a
rule in Monte Carlo work, depending on the information desired, one makes a trade-
off between the resolution needed, the amount of random fluctuation that can be
tolerated, and the computer time available. In any case, statistical uncertainties in
Monte Carlo results can be estimated from the data generated.

12.5.3
Stratified Sampling

Variances in the estimated values of 7 given in Table 12.1 are due to both limited
sample sizes and the random nature of the selection of points (x;, y;). As for the latter,
at the end of a calculation, the values of the x; and y; in the sample would, ideally, be
found to be uniformly distributed over the semiclosed interval [0, 1). The variance in
the values estimated for m can, in principle, be reduced without bias by simply
choosing one of the independent variables systematically before selecting the other
randomly. For example, the following algorithm selects N values, spaced systemat-
ically and with a uniform separation of 1/ N, along the X-axis between x =0and x=1:
2i—1 .
=", =12, N, (12.13)
For each of these x;, taken sequentially, y; can be chosen at random, as before, to
determine the random point (x;, y;). By thus reducing the variance of the x;, the overall
variance in the results is reduced. Such a technique of selecting a random variable
with minimum variance is called stratified sampling.

W Example

a) The algorithm (12.12) was used with a random number generator to select
the 25 random chords described in Table 12.3. Would you expect that more
than 25 random number pairs are needed to produce the 25 chord lengths
by means of this algorithm?

b) Inplaceof x;=0.5r;in Eq. (12.12), write an algorithm that selects 25 values
of x; uniformly by stratified sampling over the proper interval.

c) With the stratified sample of values of x; in (b), the random selection of y;
for a given x; could give ¢} > 0.5. Should one then select another random
value of y; for that x;, or should one skip that value of x; altogether and
proceed to x;1?

Solution

a) The point (x;, y;) in Figure 12.3b must be within the circle to be used.
Therefore, we would expect that more than 25 random points selected by
the algorithm (12.12) would be needed in order for 25 to be inside. In
connection with Figure 12.1 and Table 12.1, we found that the probability is
0.785 for a randomly chosen point to fall inside. The probability that 25
successive points are all within the circle is (0.785)* = 0.00235.
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b) A stratified sample of values between zero and unity is given by Eq. (12.13)
with N=25. The chord lengths in Eq. (12.12) are expressed in units of
their maximum, which is 2R. Since we require that the x; be distributed
uniformly between 0.0 and 0.5, we write in place of Eq. (12.13), with
N=25,

xliZi—lizi—l
"7 4N T 100

The values of the x; are 1/100, 3/100, ..., 49/100.

Asnoted in (a), itis unlikely that 25 randomly chosen points will fall inside
the circle when the y; are randomly selected. Previously, when o} > 0.5, we
simply ignored such a point and kept randomly sampling for both x; and y;
in pairs until we obtained 25 points inside the circle. Now, however, we can
use each x; only once in the unbiased stratified sample. If a point is not in
the circle, we drop it and go to the next value, x;, ;. In contrast to the
algorithm (12.12), the algorithm (12.14) will probably furnish fewer than
25 actual chords.

i=1,2,...,25. (12.14)

(g
-~

12.5.4
Importance Sampling

As Figure 12.7 strongly suggests, the chord length distribution p(#}) passes through
the origin (0, 0). One might wish to focus on the detailed structure of the distribution
in this region. The calculation as we have presented it has the fewest events and thus
the largest coefficient of variation in the first few bins in this region. To improve the
statistical uncertainty there, one could simply make calculations with a larger sample
of chords. However, this procedure would be very inefficient — we see from Table 12.6
that only 11 chords fell within the first bin out of 10° selected randomly. Much more
efficient is a technique of importance sampling, in which the chord selection process is
forced to sample repeatedly from the range of 7} values of particular interest, in order
to reduce the variance there. Special bin sizes can also be utilized to such an end.
Results obtained by importance sampling must then be given proper statistical
weighting when combined with the rest of the probability density function.

Some other special techniques, used to increase the efficiency of Monte Carlo
calculations of radiation transport, will be pointed out in Section 12.11.

12.6
Analytical Calculation of Isotropic Chord Length Distribution in a Sphere

In the last section, we reasoned that the distribution of uniform, isotropic chords in a
sphere is the same as that for the parallel, uniform beam shown in Figure 12.3. We
now present an analytical solution for that distribution, which was found numerically
to a good approximation by Monte Carlo means, as shown by Figure 12.7.
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Figure 12.9 Same circle as in Figure 12.3b, looking in the direction of the beam. The probability
that a chord will have a length in the interval do is equal to the ratio of the areas of the annular ring,
27o do, and the circle, niR>.

Figure 12.9 shows the same view of the sphere as in Figure 12.3D, looking in the
direction of the beam. The probability w(¢)dg thata given chord will pass at a distance
between g and ¢ + do from the center of the circle that the sphere presents is equal to
the ratio of the differential annular area 2modg and the total area TR of the circle:
_2mpdo 20

w(p)do = —R? —ﬁdg. (12.15)

Transforming to the variable 5 and using Eq. (4.124), we write for the probability
density function p(n) for the chord lengths,

v = wlon 42 (1216)

From Eq. (12.9),

2
0=1/R+ ’77. (12.17)

Using Egs. (12.15) and (12.17), we obtain in place of Eq. (12.16),

p(1)dn = 57 dy. (12.18)

The probability density function for isotropic chord lengths in a sphere is, therefore,

Ui

=@ (12.19)

p(n)

when 0 < 7 < 2R, and p(n) = 0, otherwise. The function is shown in Figure 12.10.
Its normalization to unit area is easily checked (Problem 12.13).

Comparison of Figures 12.7 and 12.10 illustrates the power of the Monte Carlo
technique. The former figure gives an accurate numerical solution for the isotropic
chord lengths, in this case also known analytically for the sphere, as shown in the
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R 2R
n

Figure 12.10 Analytical probability density function, p(7) =#/(2R?), for isotropic chord lengths
7 in a sphere of radius R.

latter figure. Monte Carlo techniques have been used to compute accurate chord
length distributions in other geometries, such as cylinders and spheroids, for which
no analytical solutions are known. Part of the beauty that Monte Carlo possesses is its
complete generality.

Example
The Cauchy theorem states that, for any convex body, the mean value u,, of the
lengths of uniform, isotropic chords is given by

4V

=g (12.20)

where Vis the volume and S is the surface area of the body. To test the theorem
for a sphere, use the probability density function (12.19) to compute u, and
then compare the result with that obtained from Eq. (12.20).

Solution
With the help of the probability density function (12.19), we find that

2R 2R
1 5 1T 1 50r_4
_ __1 s 2R 12.21
Hy an(n)dn ZRZJn dp =53l =3 (12.21)
0 0

The Cauchy theorem (12.20) gives

4% (4/3)nR> 4
=——1" =_R 12.22
Hy 47t R? 3 ( )

3N
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The mean isotropic chord length in a “square” cylinder, having both diameter and
heightequalto 2R, isalso 4R/3 (Problem 12.17). Thus, the mean isotropic chord length
in a “square” cylinder is identical with that in its inscribed sphere, although the two
distributions are different. The Cauchy theorem, Eq. (12.20), is a remarkable finding.

12.7
Generation of a Statistical Sample from a Known Frequency Distribution

Many Monte Carlo applications begin with a random sample taken from a known
probability distribution. For example, one might wish to generate a number of
transport histories for individual fission neutrons released in a target. The initial
neutron energies for the computations need to be selected at random from the known
fission neutron energy spectrum. Given such a frequency distribution, which can be
expressed either numerically or analytically, we now show how to generate a random
sample from it by Monte Carlo techniques.

The upper curve in Figure 12.11 shows a hypothetical probability density function
flx) for a continuous random variable x. Given f{x), it is desired to generate a random
sample of values of x having this frequency distribution. The curve right below shows
the corresponding cumulative function F(x), which, when differentiated, yields f{x)
(Eq. (4.14)). The probability that an event occurs with a value of x in a small interval
dx, as indicated on the upper curve, is given by fix)dx. In terms of the cumulative

f&)
0 A A A A ']
X
F(x) —=—dx
1
F(x+dx)
F(x)
o [l A A A A ]
X
Figure 12.11 Example of a hypothetical probability density function f(x) and cumulative

distribution F(x). A series of random numbers 0 <r< 1, chosen along the ordinate of F(x),
determine values of x distributed as f{x).
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distribution, this probability is also given by the difference F(x + dx) — F(x) shown
on the bottom curve. This difference, in turn, is just the fraction of the line interval
between 0 and 1 that is determined by dx. The difference represents, therefore, the
probability that a random number, 0 < r < 1, would fall within the interval corre-
sponding to dx. The random number, set equal to the value of the cumulative function
F(x), thus selects a value of x, which in turn determines f(x) with its appropriate statistical
probability density.

In this way, a random sample of values of x can be generated from the known
distribution f{x) by choosing random numbers. We note from the equality

f(x)dx = F(x+dx) — F(x) (12.23)

that, in the limit dx — 0, fix) =dF(x)/dx. This relationship is just that given by
Eq. (4.14).

As we have seen, data are often generated and treated in the form of histograms in
Monte Carlo work. As stated in Section 4.1 (footnote 2), the probability that a
continuous random variable has exactly the value x is zero. One deals, instead, with
the probability that x has values within specified finite intervals. In generating a
sample as just described, one can compile a histogram, showing the relative
frequency with which values of x fall within various ranges.

W Example

The probability density function for isotropic chord lengths in a sphere of
radius R is given by Eq. (12.19). Using this function, derive an algorithm that
gives the length #; of a random chord as a function of a random number,
0 < r; < 1. Write the algorithm for the chord length also expressed in units of
the sphere diameter.

Solution

According to the procedure just developed, one equates a random number to
the cumulative probability distribution function. Using Eq. (12.19) with the
dummy variable of integration 4, we obtain for the cumulative function

n
P(y) = Jp(l)d/l - 7J/1d/1 =T (12.24)
0

The cumulative function for 7 > 0 is shown in Figure 12.12; P(y) = 0 for
7 < 0. As indicated in Figure 12.12, a random number, 0 < r; < 1, deter-
mines a value #; of the chord length. With P(#;) = r;, Eq. (12.24) can be
conveniently rewritten in the form

1n; = 2R\/P(1;) = 2R/mi. (12.25)

If we express the chord length in units of the sphere diameter, ' = /(2R),
which is the length of the longest chord, then Eq. (12.25) becomes

n = . (12.26)
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F(m)

1

R n; 2R
n

Figure 12.12 Cumulative analytical distribution for isotropic chord lengths 7 in a sphere of
radius R.

Figure 12.13 shows a sample of 1000 values obtained by Eq. (12.26) and sorted into
20 bins of equal size, Ay’ = 0.05. The average chord length found for this sample is
0.6767; the true mean, Eq. (12.21), is 2/3.

In many problems, stratified sampling can improve the statistical precision of the
results. Inthe example just presented, choosing 1000 points uniformly along the ordinate

2= __
, n=06767 | |
p(m)
1= ||
0
n !

Figure 12.13  Sample of 1000 isotropic chord lengths chosen by using the algorithm 7} = /1
(Eq. (12.26)) for a sphere of unit diameter. Uniform bin width is 0.05. Average value of chord length
in sample is 0.6767, compared with expected value of 2/3.
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in the interval [0, 1) should reduce the scatter in Figure 12.13. On the other hand, if we
wanted to simulate examples of individual particle tracks in a proportional counter, then
the “unstratified” algorithm in the last example would be more appropriate.

12.8
Decay Time Sampling from Exponential Distribution

The exponential function (Section 6.7) plays an important role in radiation pro-
tection. Itis fundamental to radioactive decay and, as we shall see later in this chapter,
to radiation transport in matter. As another application, we use Monte Carlo methods
to show how one can generate a sample of decay times for a radionuclide and calculate
the mean life and standard deviation. To this end, we begin by finding the cumulative
distribution function for exponential decay.

Starting at time t = 0, we let Tdenote the time of decay of an atom. As discussed in
Section 2.4, the probability of survival of a given atom past time tis Pr(T > t) = e,
where 4 is the decay constant. The cumulative probability of decay at time ¢t is

Ft) =Pr(T<t)=1-Pr(T>t)=1—e*, (12.27)
and the corresponding probability density function is (Eq. (4.14))
f) = ? =Ae ™, (12.28)

The function (12.27) is shown in Figure 12.14. A random number, 0 <r; < 1,
chosen along the ordinate for F(t) determines a value ; for the decay time of an atom.

F(@)

t

Figure 12.14 Cumulative probability F(t) for decay time t of a given atom in a radionuclide source
(Eq. (12.27)).
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With F(t;) = r; in Eq. (12.27), it follows that

b= —%hl(l - I’i). (12‘29)

Equation (12.29) was used with a random number generator to produce samples ¢,

ty, ..., ty of decay times for “*K atoms. The decay constant of this nuclide is

4 =0.05608h"!, and the mean life is 7 =1/4 = 17.83h. Data for samples of

different sizes N were analyzed. For each sample, the estimator, 7, of the mean life
was taken to be the sample average, &:

. _
7= NZti =1 (12.30)

The estimator ¢ for the standard deviation was the sample standard deviation s,
given by

6=s= mZ(t-—f)z. (12.31)

To carry out the actual computations, the variance for each sample was evaluated
according to Eq. (4.48) in place of Eq. (12.31):

N

X 1 N#
ozziztf—N_l. (12.32)

i=1

Table 12.7 shows some results of calculations of the mean life (column 2) for
sample sizes N ranging from 10 to 10° random decay times. Columns 3 and 4
give the calculated standard deviations and coefficients of variation, and column 5
shows the standard error of the estimator 7. The variance of the estimator is
obtained from Eq. (7.6),

Var (7 Var( ZT) NZZVar (12.33)

Table12.7 Results of Monte Carlo calculations for decay of *2K atoms in samples of different sizes.

Number of Mean life, 7 (h) Standard devi- Coefficient of Standard error,
decays, N ation, ¢ (h) variation, 6/7 6/VN,in &

10 18.33 13.40 0.7312 4.237

10? 16.01 14.21 0.8871 1.421

10° 19.01 18.83 0.9907 0.5955

10* 17.55 17.72 1.010 0.1772

10° 17.85 17.95 1.005 0.0568

10° 17.85 17.86 1.001 0.0179
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Because the decay times are observations of independent and identically distrib-
uted exponential random variables (Eq. (12.28)), they each have the same variance,
1/A%. Thus, Eq. (12.33) yields

N 1 1 1

Since 67 is an unbiased estimator for 1/4* (Problem 12.28), we can substitute it in
Eq. (12.34) to obtain an estimate for the Var(7). Thus,

VN
is the standard error associated with 7. Notice that the estimate of the standard

deviation ¢ in Table 12.7 converges to 1/4 = 17.83 h, as it should, while the standard
error of our estimate gets smaller as the sample size increases.

Var(z) = (12.35)

12.9
Photon Transport

Monte Carlo procedures are used extensively to calculate the transport of photons
and other kinds of radiation through matter. Such calculations permit assessments
of doses and shielding under a variety of conditions. In principle, all manner of
complicated target materials, geometrical configurations, and radiation fields can
be handled by Monte Carlo methods. However, in very complex situations, involved
statistical alternatives and algorithms become necessary, and computer capacity
and computing time can become excessive. Detailed results can require an
inordinately large number of particle histories. We shall describe the basics of
photon and neutron transport, interaction, and dose calculation in these last
sections of this chapter.

The linear attenuation coefficient, or macroscopic cross section, is the numerical
parameter that statistically determines the distribution of flight distances that
photons of a given energy travel in a specified material before having an interaction.
This quantity can be measured experimentally under conditions of “good
geometry,” as shown in Figure 12.15 (Turner, 1995, pp. 186-187). A pencil beam
of monoenergetic photons is directed normally onto a slab of the material, having
variable thickness x. A count rate detector is located some distance behind the slab.
It is far enough removed so that any photon, scattered in the slab, has a negligible
chance of reaching it and being counted. Under these “good geometry” conditions,
only uncollided photons — that is, only those that pass through the slab without
interacting — are detected. The ratio of count rates, D with the slab present and D,
with the slab absent, is observed to decrease exponentially with the slab thickness x.
As indicated in Figure 12.15, the best fit to measurements of D/ D, versus x
furnishes the measured value of the linear attenuation coefficient x, having the
dimensions of inverse length:
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Count-Rate

1k Pencil
Detector

Beam

- :
I~

Relative Count Rate, D/ I)0

Figure 12.15 Attenuation coefficient 4 is measured under conditions of “good geometry” with a
pencil beam of normally incident, monoenergetic photons. Relative count rate is given by
D/D, = e for different slab thicknesses x.

D ux
hoe (12.36)

The mass attenuation coefficient, u /o, where g is the density of the material, is the
quantity more often given in tables and graphs. Whereas x depends upon temper-
ature and pressure, especially for a gas, /o does not.

Equation (12.36) gives the relative number of photons that traverse a slab of
thickness x without interacting. The quantity e™* on the right-hand side is,
therefore, the probability that a given photon, normally incident on the slab, will
pass through it without interacting. More generally, if we let X be the depth at which
an incident photon has its first interaction in a uniform, infinitely thick target, then
e ** is the probability that the photon will travel at least a distance x without
interacting:

Pr(X > x) = e, (12.37)

Conversely, the probability than an interaction occurs at a depth less than or equal

to x is
Pr(X <x)=1-Pr(X >x)=1—e " (12.38)

Like Eq. (12.27), this last expression gives the usual cumulative distribution
function, in this case for the depth of penetration for a photon’s first interaction.
It follows from Eq. (12.37) that the probability for the interaction to occur at a depth
between x; and x, (with x, > x) is
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Pr(x; <X <x) =Pr(X > %) — Pr(X > x) = e ¥ — 2, (12.39)

In analogy with the decay constant A discussed in Section 2.2 as the probability per
unit time that an atom will decay, u represents the probability per unit distance thata
photon will interact. Also, just as 1/ is the mean life in Eqgs. (2.7) and (4.36), 1/u,
called the mean free path, is the average distance that a photon travels before it
interacts.

Until a photon interacts, it penetrates a target “without memory.” That is, the
probability that the photon will interact in its next segment of travel is always
independent of whether the photon has already traveled a long distance in the target
or is only just starting out. This property can be formulated in terms of a conditional
probability (Section 3.5). Given that a photon has reached a depth x, the probability
thatit will travel atleast an additional distance s without interaction is (Problem 12.32)

Pr(X > x+s|X > x) = Pr(X > s). (12.40)

The following example shows how the penetration of photons in matter is
determined statistically by the linear attenuation coefficient.

W Example
A parallel beam of 200-keV gamma rays is normally incident on a thick slab of

soft tissue. The linear attenuation coefficient is 0.137 cm ™%

a) Whatis the probability that an incident photon will reach a depth of at least
1 cm without interacting? What is the probability for 5 cm?

b) What is the probability that an incident photon will have its initial
interaction at a depth between 4 and 5 cm?

¢) What is the probability that an incident photon, having reached a depth of
10 cm without interacting, will travel at least an additional 1 cm without
interacting?

Solution

a) With u=0.137cm™!, the probability that a 200-keV gamma ray will
penetrate to a depth of at least x=1cm without interacting is, from
Eq. (12.37),

Pr(X > 1) = e *137%1 = 0.872. (12.41)

Distances in this example will be expressed in cm, without writing the unit
explicitly. Note that the same length unit has to be employed for both # and
x, because the exponent must be dimensionless. The probability of
penetrating at least 5 cm without interacting is

Pr(X > 5) = e *137%% = 0.504. (12.42)

Alternatively, one can regard Eq. (12.42) as giving the probability of
traversing each of the five 1-cm distances consecutively. Thus,

319



320

12 Monte Carlo Methods and Applications in Dosimetry

Pr(X > 5) = [Pr(X > 1))’ = (0.872)° = 0.504, (12.43)

which is the same as Eq. (12.42). The equivalence of Egs. (12.42) and (12.43)
is due to the special property of the exponential distribution, called
independent increments. Exponents are added in multiplication. As
expressed by Eq. (12.40), a photon penetrates a target without memory,
the probability of interaction being independent from one interval to the
next.

As with part (a), there are different ways of answering. The difference
between Pr(X >4) and Pr(X >5), according to Eq. (12.39), is the
probability that a given incident photon will have its first interaction at
a depth between 4 and 5 cm. Thus,

=

Pr(4 < X < 5) = e 01374 _ o705 — 578 _ 0.504
=0.0740 (12.44)

is the desired probability. We can also consider the probability that an
incident photon will reach atleast a depth of 4 cm, but will travel at most an
additional 1cm without interaction. Since, from Eq. (12.38), the latter
probability is Pr(X < 1) = 1 — 0.872 = 0.128, we have for the probability
of interacting between 4 and 5 cm,

Pr(4 < X < 5) = Pr(X > 4)Pr(X < 1) = 0.578 x 0.128
= 0.0740, (12.45)

as before. The last solution applies the property of independent incre-
ments, mentioned after Eq. (12.43).

¢) As an uncollided gamma photon penetrates a uniform target, its interac-
tion probability per unit distance of travel remains equal to the linear
attenuation coefficient u, regardless of how deep the photon may have
already penetrated. Applying Eq. (12.40) with x =10 and s=1, we write

Pr(X > 104 1]X > 10) = Pr(X > 1) = 0.872. (12.46)

The attenuation of X-rays and gamma rays in matter occurs by means of four major
processes: the photoelectric effect, Compton scattering, pair production, and pho-
tonuclear reactions. Each contributes additively to the numerical value of the
attenuation coefficient. In the modeling of photon transport, the specific types of
interaction can be determined statistically, as the next example illustrates.

Example

A parallel beam of 400-keV gamma rays is normally incident on a crystal of
sodium iodide (density, 0 = 3.67 g cm~3). The mass attenuation coefficients
for the photoelectric effect and for Compton scattering (the only significant
physical interaction mechanisms) are, respectively, 7/0 = 0.028 cm? g~! and
o/o=0.080cm? g1.



a)

b)

12.9 Photon Transport

Calculate the probability that a normally incident, 400-keV gamma ray will
produce a photoelectron at a depth between 2.4 and 2.6 cm in the crystal.
How thicka crystal is needed in order to be 90% efficient in detecting these
photons?

Solution

a)

=

The answer is given by the product of (1) the probability that there is an
interaction in the specified depth interval and (2) the (independent)
probability that the interaction is photoelectric absorption, rather than
Compton scattering. In terms of conditional and independent probabil-
ities, discussed in Section 3.5, we let A be the event that an interaction
occurs in the interval and B the event that the interaction (given A) is
photoelectric. Then, by Eq. (3.31), the probability that both independent
events happen is

P(AN B) = P(A)P(B|A), (12.47)

as just stated. To express P(A), we must use the linear attenuation
coefficient. With the given values of u/¢ and g, we have

n= (g) x 0= (0108 cm’ g™") x (3.67 g cm™)
=0.396cm ™. (12.48)

The probability that an incident photon has its first encounter between 2.4
and 2.6 cm is, therefore, by Eq. (12.39),

P(A) = Pr(2.4 < X < 2.6) = e 0024 _ ¢70396x26
=0.3866 — 0.3572 = 0.0294. (12.49)

Given that the interaction takes place, the probability for a photoelectric,
rather than Compton, eventis equal to the photoelectric fraction of the total
mass (or linear) attenuation coefficient. Thus,

_ /o _0.028cm’g!
P(B|A) = o~ 01087 g1~ 025 (12.50)
It follows from Egs. (12.47), (12.49), and (12.50) that the probability for an
incident photon to undergo photoelectric absorption at a depth between

2.4 and 2.6 cm is
P(A)P(B|A) = 0.0294 x 0.259 = 0.00761. (12.51)

When a 400-keV gamma ray interacts in the crystal by either process, it
produces a secondary electron, which in turn produces scintillation
photons that are detected electronically. (Multiple Compton events from
a single incident gamma ray are detected in a single pulse.) To detect 90%
of the normally incident, 400-keV gamma rays, the thickness x must be
such that only 10% of the incident photons are still uncollided as they
reach this depth. Thus,

Pr(X > x) = e ™ = %39 = 0.100, (12.52)

giving x=5.81 cm for the required thickness.
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Monte Carlo computations can be made to simulate photon transport and to
generate individual histories for a number of photons incident on a target and any
secondary particles that the photons produce. The accumulated statistical data from a
number of histories can be compiled to assess the information desired, such as the
dose at various locations in a target or the radiation leakage through a shield. The
random selection of flight distances to the sites of interaction for the photons is
central to these computations. The cumulative distribution for random flight
distances, which is governed by Eq. (12.38), is mathematically the same as Eq. (12.27)
for the survival probability for radioactive decay, treated in the last section. The use of
arandom number r; to select a flight distance x; to the site of interaction for a photon
can be made in complete analogy with Eq. (12.29):

X = —%ln(l —r). (12.53)

In a Monte Carlo simulation of photon transport and interaction in matter, the fates
of each photon and any secondary particles they produce are determined by random
numbers. The simulation can be carried outin any desired detail. The following example
shows some of the elements of a Monte Carlo transport calculation for photons.

W Example

Abroad, uniform beam of 40-keV photons is normally incident on a soft tissue
slab, 12 cm thick, as shown in Figure 12.16. The linear attenuation coefficient,
u=0241cm™, is the sum of the coefficients 7= 0.048cm™! for the
photoelectric effect and 0 =0.193cm™' for the Compton effect. (Other
processes occur to a negligible extent.) For an incident photon, use one
random number to select a flight distance to the site of its first interaction.
(The photon might, of course, traverse the slab completely without interact-
ing.) Let a second random number decide whether the interaction is

............... - Slab

f———102m —

Figure12.16 Uniform, broad beam of 40-keV photons incident normally on a 12-cm soft
tissue slab. See the text for description of Monte Carlo calculation of dose per unit fluence
as a function of depth in slab.
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photoelectric or Compton. To this end, we partition the relative interaction
probabilities along the unit interval according to their magnitudes. We have
7/u = 0.048/0.241 = 0.199 and o/u = 0.193/0.241 = 0.801. If the second
random number r falls in the interval 0 <r < 0.199, the interaction is
photoelectric absorption; if 0.199 < r < 1.000, the photon is Compton scat-
tered. Use sequentially the random numbers from Egs. (12.2) and (12.3) in
Section 12.2 to determine the depth of the first collision and the type of
interaction that takes place for two incident photons.

Solution
The flight distance of an incident photon is selected by means of Eq. (12.53).
With the given value of u and r; = 0.868 from Eq. (12.2), we obtain

X = In(1 — 0.868) = 8.40 cm (12.54)

0.241
for the depth at which the first photon interacts. The second random number
r; = 0.338 from Eq. (12.3) determines, according to the specified algorithm,
that the photon is Compton scattered at this depth. The flight distance for the
second photon is, with the help of r; from Eq. (12.3),

X, = In(1 — 0.084) = 0.364 cm. (12.55)

b
0.241

With r, =0.179 from Eq. (12.3), this photon undergoes photoelectric
absorption.

12.10
Dose Calculations

Using the two photon histories started in the last example as illustrations, we show
how absorbed dose in the tissue slab can be calculated. Specifically, we outline a
procedure for determining the absorbed dose per unit fluence from a uniform, broad
beam as a function of depth in the slab. For analysis of the Monte Carlo generated data,
we divide the slab into 12 subslabs of thickness 1 cm, as shown in Figure 12.17. (The
number and thicknesses of the subslabs, which are used for accumulating energy
deposition, are arbitrary.) We let the first photon enter the slab at some arbitrary point
D. It travels to the point Q; at a depth of 8.40 cm in the ninth subslab, as shown in
Figure 12.17, where it is Compton scattered. For the dose calculation, one needs to
select a value of the energy deposited in the subslab from this collision, based on the
known probability density function for Compton scattering. There are various ways to
compute this quantity with the help of random numbers. One way is to randomly
select a scattering angle 6, which then uniquely determines the energy of the Compton
electron. The cumulative probability function for Compton scattering at an angle ¢
with respect to the incident direction is known for photons of all energies from the
Klein—Nishina formula. This function can be stored numerically in the computer as a
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Figure 12.17  Schematic histories of two photons. First photon is Compton scattered at Q4 and
then at Q, before escaping from slab. Second photon undergoes photoelectric absorption at Qs. See
the text.

function of photon energy as part of the input data of the code for the dose calculation.
A new random number thus selects 6 from the cumulative distribution (just as r;
determined #; in Figure 12.11) and, with it, the energy of the Compton electron. The
physical ranges of the secondary electrons that can be produced by the photons are
much shorter than the 1-cm dimension of the subslabs. Therefore, the energy lost by
the photon in this collision is tallied as energy deposited in the ninth subslab.

The Compton scattered photon must also be tracked through the slab from the
collision point Q;. Its direction of travel is fixed by the polar angle 6 and a second,
azimuthal, angle ¢ distributed uniformly over the interval 0° < ¢ < 360° about the
original line of travel. An additional random number r is used to pick the azimuthal
angle: ¢ = 360r. The scattered photon has an energy equal to the original photon
energy minus the energy lost to the Compton electron. The linear attenuation
coefficient for soft tissue at the new photon energy is found from data stored as
input to the dose code. One now starts the scattered photon from Q, along the new
direction of travel at the reduced energy and chooses a flight distance by means of
Eq. (12.53), thus continuing the transport and interaction simulation as before.
Eventually, each incident photon will disappear from the slab either by photoelectric
absorption or by escaping through its surface. In this example, we have shown
another Compton scattering at a point Q, in the 12th subslab in Figure 12.17, after
which the scattered photon escapes the slab. The collision at Q, is handled as before,
and the energy absorbed is tallied in that subslab.

We let the second photon (from the last example) be incident at the same point P
on the slab as the first photon. Its track is shown schematically in Figure 12.17
somewhat below that of the first photon for clarity. This photon disappears by
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photoelectric absorption at a point Q; at a depth of 0.364 cm. The entire photon
energy, 40keV, is tallied as absorbed in the first subslab. The calculation of the
complete histories for two photons and the energy absorbed at different depths in the
slab have now been completed by Monte Carlo techniques.? The histories of a large
number of additional photons, incident at P, can be similarly generated, until the
absorbed energy in the various subslabs, plotted as a histogram, shows acceptably
small statistical scatter. The number of histories needed to obtain a smooth
representation of the absorbed energy throughout the slab will depend on various
factors, principally the number of subslabs into which the slab is divided for analysis
and the statistical precision with which the absorbed dose is needed.

The first stage of the dose computation thus consists of statistically generating the
histories of a large number N of photons, normally incident at a point P on the slab,
and then compiling the total energies E; absorbed in each subslab. It remains to
convert this information into the absorbed dose in each subslab from a broad beam of
unit fluence. It is evident from Figure 12.17 that the total absorbed dose in a given
subslab is distributed very nonuniformly in lateral directions away from the per-
pendicular line of incidence through P. The absorbed dose will generally get smaller
as one moves away from this line. On the other hand, the lateral distribution of the
absorbed dose in each subslab will be constant for the uniform, broad beam in which
we are interested. Instead of N photons incident at the single point P, consider a
fluence, N/A, of photons uniformly incident over the entire (infinite) surface of the
slab. (The area A over which the N photons are spread can have any size.) Then the
absorbed energy in each volume element with lateral area A perpendicular to the
beam direction in the ith subslab must be equal to the total energy E; absorbed in that
subslab as a result of N photons incident at the single point P. If the slab density is o,
then the mass of the lateral element is M; = 9AAz;, where Az; is the subslab
thickness (=1 cm in Figure 12.17). Dividing the total absorbed energy E; by the mass,
we obtain for the absorbed dose in the ith subslab

— Ei
T 0AAz’

; (12.56)
Since this is the dose for a fluence N/A, we find for the absorbed dose per unit
fluence in the ith subslab

D; E;

D= = :
N/A NoAz

(12.57)

2) In a more careful analysis, a distinction is to be made between the energy lost by a photon and the
energy absorbed locally in a subslab. In both photoelectric absorption and Compton scattering, the
initial kinetic energy of the struck electron is somewhat less than the energy lost by the photon
because of the energy spent in overcoming the binding of the electron. The binding energy is
regained when the parent ion is neutralized, but partly in the form of fluorescence radiation, which
can escape from the immediate vicinity of the collision site. In addition, the struck electron can
produce some bremsstrahlung, also taking energy away from the site. These differences are
embodied in the contrasting definitions of the attenuation, energy transfer, and energy absorption
coefficients. In the present computation of a depth—-dose curve for 40-keV photons over 1-cm
subslabs, the distinction is of no practical importance.
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Note that the units in Eq. (12.57) are those of dose times area. In SI units, the dose
per unit fluence is thus expressed in Gy per photon per m2, or Gy (m~2) "' = Gym?,
and in CGS units, rad cm?.

Example

With the geometry shown in Figure 12.17, histories are generated by Monte
Carlo means for 2500 photons normally incident on a soft tissue slab at P with
an energy of 1 MeV. The accumulated energy absorbed in the third subslab,
having a thickness of 1cm, is 15.9 MeV. What is the absorbed dose at this
depth per unit fluence for a uniform, broad beam of incident 1-MeV photons?
Express the answer in both SI and CGS units.

Solution

Using the second equality in (12.57) with E3; =15.9MeV, N = 2500,
0 =1gcm3, and Az; = 1 cm, we obtain for the dose per unit fluence in
the third subslab

. 15.9 MeV
D3 = —
2500 x 1gem™ x 1cm

=936x10°MeVg'cm?  (12.58)

Since 1MeV = 1.60 x 10~ ® erg and 1rad = 100 erg g—', we write

; MeV cm? erg 1 rad

1.6x10°° —
A MeV = 100ergg!’

D; =9.36 x 10~

(12.59)

giving
Ds =1.02 x 107 rad cm? (12.60)

in CGS units. Since 1rad=0.01 Gy and 1cm? = 107*m?, we have, in
ST units,

D3 =1.02 x 1071 Gym?. (12.61)

Although we have dealt with relatively simple problems, having a high degree of
symmetry, it should be apparent that Monte Carlo methods can be undertaken with
complete generality. In the dose calculation just described, the incident photons in a
Monte Carlo simulation need not be monoenergetic or incident from a single
direction. They can be accompanied by neutrons and other kinds and energies of
radiation. The target might contain regions of different tissues, such as bone and
lung, and can be of finite extent. Monte Carlo calculations of dose and shielding
provide an extremely valuable tool for radiation protection, in which statistics plays an
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important role. In another application, the formalism developed by the Medical
Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine for
internal emitters utilizes the concept of “absorbed fraction.” This quantity is defined
as the fraction of the energy emitted as a specific radiation type from a given body
tissue or organ, called the source organ, that is absorbed in a target tissue or organ
(which may be the same as the source). For example, the thyroid (target organ) will be
irradiated by gamma rays from an emitter lodged in the lung (source organ).
Absorbed fractions for numerous organ pairs, photon energies, and radionuclide
spectra have been calculated for anthropomorphic phantoms by Monte Carlo
methods. They are an essential part of the basis for risk assessment through internal
dosimetry. Dose and committed dose models have been developed for determining
annual limits of intake and derived air concentrations. Used by regulatory agencies,
many of these related quantities have been enacted into law.

12.11
Neutron Transport and Dose Computation

Monte Carlo calculations of neutron transport and dose have many similarities with
computations for photons. They can proceed in analogous fashion. A flight distance
to the site of first interaction for an incident neutron can be selected with a random
number from an equation identical with Eq. 12.29. The quantity x4 for neutrons is
usually referred to as the macroscopic cross section (a term used for photons, too)
and is also the inverse of the mean free path. Its numerical value is determined by the
atomic composition of the target and the values of the energy-dependent neutron
cross sections for the elements therein. Neutrons interact with matter through the
short-range strong force, which is exerted by nucleons. The nuclear interaction can be
either elastic or inelastic. When an interaction occurs, additional random numbers
can be used to determine the type of nucleus struck, the type of interaction, and the
energy deposited. A scattered neutron is transported, just as one transports a
Compton scattered photon. If one is computing dose equivalent, then the linear
energy transfer (LET) of the struck recoil nucleus can be inferred from its identity and
energy for the assignment of a quality factor with which to multiply the absorbed
energy from the event. Except for neutrons at high energies, the recoil nuclei have
ranges that are short on a scale of 1 cm in condensed matter, and so one can usually
treat their energy as locally absorbed in a dose calculation.

Fast neutrons deposit most of their energy in soft tissue through elastic scattering,
principally with hydrogen. For neutron energies up to about 10 MeV, the elastic
scattering with hydrogen is isotropic in the center-of‘mass coordinate system. This
fact has the interesting consequence that the energy-loss spectrum for neutron
collisions with hydrogen is uniform in the laboratory system. Any energy loss
between zero and the full energy of the neutron is equally probable. A neutron
thus loses one-half of its energy, on average, in a hydrogen collision. Hydrogen is
unique for neutrons in having the same mass. It is only with hydrogen that a neutron
can have a head-on, billiard-ball-like collision and lose its entire energy. If the collision
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is not head-on, then, because of their equal masses, the neutron and recoil proton are
scattered at right angles to one another. Slow and thermal neutrons, on the other
hand, have a high probability of capture by hydrogen or nitrogen in tissue. Thermal
neutron capture by hydrogen results in the release of a 2.22-MeV gamma ray, which
should also be transported in a dose calculation. These basic aspects of neutron
physics, as they affect dosimetry, are discussed in Chapter 9 of Turner (2007).

W Example

a) What is the probability that a 6-MeV neutron will lose more than 1.2 MeV
in an elastic collision with hydrogen?

b) What is the probability that it will lose between 100 keV and 1.0 MeV in
such a collision?

¢) What is the average energy lost by a 6-MeV neutron in a collision with
hydrogen?

Solution

a) We let X denote the energy loss of the neutron. It has the uniform
distribution p(x) shown in Figure 12.18. The probability that the energy
loss will be greater than 1.2 MeV is equal to the fraction of the rectangular
area above this energy:

6.0
1 6.0—1.2
Pr(X >12) = J gdv == —==080. (12.62)
1.2
p(x)=1/6 , 0<x<6
=0 p(x)=0 , elsewhere
U
>
D
=
2 e
(59
. . , , \ ‘
0 5

x (MeV)

Figure 12.18 Probability density function p(x) for energy loss x by a 6-MeV neutron in a
collision with hydrogen. See example in the text.
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b) The probability is equal to the fraction of the spectral area between the two
given values:

1.0
1 1.0-0.1
Pr(0.10 < X < 1.0) = J Sdx ==

=0.15. 12.63
€ 5 (12.63)

0.1

c) The average energy lost is at the midpoint of the flat spectrum in
Figure 12.18,

6
2
E(X) = pr(x)dx - ’1% 5 = 3.0 MeV. (12.64)
0

Some different aspects of Monte Carlo calculations, not yet discussed, are
important in many shielding calculations, particularly for thick shields. A fast
neutron in a thick target can have a very large number of collisions before becoming
thermalized or escaping. By its nature, a shielding calculation places primary
importance on the relatively few neutrons that do get through — their relative number
and their energy and angular distributions. The size of the sample in which one is
interested gets increasingly small with depth. Doing neutron transport in the
straightforward manner we have been describing would be inefficient for determin-
ing the properties of a thick shield. One would find that a large fraction of the incident
neutrons are absorbed before they come out of the other side, after much computer
time is spent on their transport. In addition, other neutrons would tend to be
scattered away from the back surface after penetrating to a considerable depth.
(Collisions with heavy nuclei can scatter neutrons backward.) We mention two
techniques that improve computational efficiency for deep penetration problems.

First, there is splitting and Russian roulette. As in Figure 12.17, one specifies a series
of imaginary boundaries z; at different depths inside a target. A statistical weight is
assigned to each incident neutron. Every time a neutron crosses a boundary z;, it is
split into v; identical neutrons, each being given a reduced statistical weight w;/v;,
where w; is the weight assigned to a neutron that crosses z;. Weight is preserved
thereby, and a larger sample of neutrons with reduced weight is obtained. Splitting
itself is made more efficient by playing Russian roulette with neutrons that wander
into less desirable parts of a target, like those that tend to return toward the surface of
incidence. When Russian roulette is played, a neutron is given a random chance with
probability p of continuing to survive or (1 — p) of being killed at that point in the
calculation. If it survives, its weight is increased by 1/p. This technique decreases
the number of less desirable histories that would otherwise be continued in the
computations.

Second, exponential transformations can be performed in the selection of flight
distances. One artificially decreases the macroscopic cross section ¢ in regions of the
target that are of less interest and increases it in regions where greater sampling is
desired. The appropriate weighting factors can be calculated and used to compensate
for the biases thus introduced.
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Problems

12.1

12.2

12.3
12.4

12.5

12.6

12.7

12.8

12.9

a) Devise a (pseudo-)random number generator.

b) How well do its numbers fit the criteria (12.4) and (12.5)?

c) Specify at least one additional criterion and use it to test the generator.

Consider a random number generator, such as that given by Eq. (12.1).

Starting with a given seed, it generates a sequence, 0 < r; < 1, in which each

successive number r; acts as the seed for the next number.

a) With roundoff to three significant figures at each step, what is the longest
possible sequence of numbers that can be generated before the sequence
begins to repeat itself?

b) How many independent, three-digit sequences can be constructed without
repetition of one of the numbers in a sequence?

Prove Egs. (12.4) and (12.5).

Evaluate the integral

2
Je’o's" dx
0

by using a Monte Carlo technique. Compare your result with that obtained by

analytical evaluation.

a) Use a Monte Carlo technique to calculate the area of a regular octagon,
having a side of length b.

b) What is the analytical formula for the area as a function of b?

When the computations for Table 12.1 are repeated with a different

sequence of random numbers, the values in the second column are generally

different from those given there. The numbers in column 2 are themselves

random variables, which show fluctuations with repeated, independent

samples.

a) What kind of statistics do the numbers in column 2 of Table 12.1 obey?

b) When the total number of points is 10°, what is the expected value of the
number in column 2?

c) What is its standard deviation?

In applying method 2 for finding the area, is it possible for the sum in

Eq. (12.7) not to be exact even after adding only the first two terms? Explain.

The 25 random chord lengths #; in Table 12.3 were tabulated into 10 bins of

uniform size in Table 12.4.

a) Redo the tabulation, using bins with the following boundaries: 0.00, 0.15,
0.30, 0.45, 0.60, 0.70, 0.85, 0.95, 1.00.

b) Show that the new probability density, p(1}), is normalized.

c) Plot the new histogram and compare with Figures 12.4 and 12.5.

What is the expected value of the total number of points (x;, y;) that one would

have to sample in order to obtain 25 chords, as in Table 12.3, that entered the

sphere?
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Table 12.8 Data for Problem 12.10.

Time (s) Number of observations
0-5 61

5-10 43

10-15 72

15-20 28

20-25 36

25-30 0

Total 240

12.10 In a certain experiment, the times between successive counts registered by an
instrument are recorded. Table 12.8 shows the data for 240 observations, with
the times tabulated into six bins.

a) Plot the data from the table directly as a histogram.
b) Use the smoothing technique described in Section 12.5 and plot the
resulting histogram.

12.11 Estimate the coefficient of variation for each of the six entries in Table 12.8.

12.12 A Monte Carlo analysis requires the selection of random angles, 6;, distributed
uniformly over the interval 0 < 6; < 90°.

a) Write an algorithm that determines an angle 6, from the value of a random
number, 0 < r; < 1.

b) A calculation using 1000 random angles 6; is to be made. In place of the
algorithm in (a), write a formula, like Eq. (12.13), that selects the 1000
angles by stratified sampling.

12.13 Show that the probability density function for isotropic chord lengths,

Eq. (12.19), is normalized.

12.14 A spherical proportional counter, having a radius of 2.20cm, is traversed
uniformly by isotropic chords.

a) What is the probability that a randomly chosen chord has a length between
2.90 and 3.10 cm?

b) What is the expected value of the chord length?

c) Write the cumulative probability function for the chord length.

12.15 In the last problem, what is the probability that a random chord will pass the

center of the sphere at a distance between 1.5 and 2.0 cm? (See Figure 12.9.)

12.16 Isotropic chords uniformly traverse a sphere of diameter 50 cm.

a) What is the mean chord length?

b) What is the mean square chord length?

12.17 Use the Cauchy theorem, Eq. (12.20), to show that the mean isotropic chord
length for a “square” cylinder (diameter = height) is the same as that for the
sphere inscribed in the cylinder.
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Figure 12.19 See Problem 12.20.

12.18

12.19
12.20

12.21

12.22

Use the Cauchy theorem to find the mean isotropic chord length in

a) a parallelepiped, having edges of length a, b, and ¢;

b) a cube with edges of length a.

What is the median chord length in Problem 12.14?

In a Monte Carlo calculation, a neutron, incident along the Z-axis in

Figure 12.19, is scattered at the origin of the XYZ axes. The neutron has an

equal likelihood of being scattered in any forward direction (i.e., isotropically)

within a 60° cone, as indicated in Figure 12.19. The probability of being

scattered outside the cone is zero.

a) Write equations for computing the polar and azimuthal scattering angles
(0, ¢) within the cone from the values of two random numbers, 0 < r < 1.

b) Given the “random” numbers 0.88422 and 0.01731, calculate a pair of
angles, 0 and ¢, in either order, according to your algorithm in (a).

A fast neutron (n) is scattered from a proton (p) at an angle 6 with respect to its

original direction of travel (Figure 12.20). The probability density for scattering

at the angle 0 (in three dimensions) is p(f) = 2 sin 6 cos 0, corresponding to

isotropic scattering in the center-of-mass reference system.

a) What is the cumulative probability function P(f) for scattering at an
angle 6?

b) Plot P(6) versus 6.

c) Write a formula that determines a random scattering angle 6 from the value
of a random number 0 < r < 1.

d) What is the scattering angle § when r=0.21298?

Give an algorithm that uses a random number, 0 < r < 1, to select a value of z

from the standard normal distribution.
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Figure 12.20 See Problem 12.21.

12.23

12.24
12.25

12.26

12.27
12.28
12.29

12.30

12.31

One can use Monte Carlo techniques to simulate the decay of a radioactive

source. Apply the algorithm given in Section 12.8 to a sample of *’P (beta

emitter, half-life = 14.3 d).

a) What two numerical random number choices determine whether a given
atom will decay during the time period between t=0d and t=2 d>?

b) From these choices, determine Pr(0 < T < 2d).

Repeat the last problem for the time period between t =20 d and t=22 d.

Why is the probability for the decay of an atom over a 2-day period different in
the last two problems?

Show that the random numbers found in Problem 12.24 satisfy the condi-
tional probability

Pr(0d < T < 2d) = Pr(T < 22d|T > 204).

Verify the entries in the last two columns of Table 12.7.
Show that 6” is an unbiased estimator of A% in Eq. (12.34).

The mass attenuation coefficient for 2-MeV photons in iron (density =7.86

gcm ) is 0.0425cm’ g

a) What is the probability that a 2-MeV photon will travel at least 2.14 cm in
iron without interacting?

b) What is the probability that it will have its first interaction after traveling
between 2.14 and 3.09 cm?

c) What is the mean free path of a 2-MeV photon in iron?

Repeat the last problem for a 2-MeV photon in air at 20 °C and 752 Torr

pressure (density = 1.293 kgm > at 0 °C and 760 Torr). The mass attenuation

coefficient for air is 0.0445 cm®g ™"

The linear attenuation coefficient for an 80-keV X-ray in soft tissue is

0.179cm ™.

a) What s the probability that a normally incident, 80-keV photon will reach a
depth of at least 10 cm in soft tissue without having an interaction?
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12.32
12.33

12.34

12.35

12.36

12.37

12.38

b) What is the probability that a normally incident photon will first interact in
the tissue at a depth between 10 and 11 cm?

c¢) If a photon reaches a depth of 10cm without interacting, what is the
probability that it will continue to a depth of at least 11 cm without
interacting?

Prove Eq. (12.40).

A pencil beam of 500-keV photons is normally incident on a 3.5-cm thick

aluminum slab, which is followed immediately by a 1.6-cm lead slab.

The linear attenuation coefficient for Al is 0.227 cm ™' and that for Pb is

1.76cm ™.

a) Give a Monte Carlo procedure to determine the first collision depth of
successive photons, based on a random number sequence.

b) What is the probability that an incident photon will traverse both slabs
without interacting?

¢) Use the random number sequence (12.2)—(12.3) in Section 12.2 to deter-
mine the first collision depths for two photons.

a) In the last problem, what is the median depth of travel of a photon before
the first interaction?

b) Of the photons that do not penetrate both slabs, what is the average
distance of travel to the depth of the first collision?

c) What is the mean free path of the incident photons?

Histories are generated in a Monte Carlo calculation for 50 000 photons,

normally incident on a broad slab, having a density of 0.94gcm >, For

analysis, the target is divided uniformly into subslabs of 0.50-cm thickness,

similar to the slab in Figure 12.17. From the histories it is found that a total of

78.4 MeV was deposited in one of the subslabs. From these data, determine the

average absorbed dose in this subslab per unit fluence from a uniform, broad

beam of these photons.

Neutrons of 5 MeV are scattered by hydrogen.

a) What is the average energy lost by a neutron in a single collision?

b) Whatis the probability that a neutron will lose more than 4 MeV in a single
collision?

c) Whatis the probability thata neutron will lose between 1.0and 1.5 MeVina
single collision?

a) For the last problem, write the probability density function for neutron
energy loss.

b) Write the cumulative energy-loss probability function.

c) Sketch both functions from (a) and (b).

For the scattering of a neutron of energy E by a proton (hydrogen nucleus), as
illustrated in Figure 12.20, the conservation of energy and momentum
requires that x = E sin’ §, where x is the energy lost by the neutron.
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a) From the uniform energy-loss distribution, as illustrated in Figure 12.18,
show that the probability density w(6) for scattering at the angle 0 is
w(f) = sin 26.

b) The angular scattering probability density function is thus independent of
the neutron energy. How is this result related to fact that the scattering is
isotropic in the center-of-mass coordinate system?



13
Dose—Response Relationships and Biological Modeling

13.1
Deterministic and Stochastic Effects of Radiation

Radiation damages the cells of living tissue. If the damage is not sufficiently repaired,
a cell might die or be unable to reproduce. On the other hand, it might survive as a
viable cell, altered by the radiation. The two alternatives can have very different
implications for an individual who is exposed to radiation. The distinction is
manifested in the description of biological effects due to radiation as either stochastic
or deterministic (also previously called nonstochastic). We consider deterministic
effects first.

At relatively small doses of radiation, the body can typically tolerate the loss of a
number of cells that are killed or inactivated, without showing any effect. A certain
minimum, or threshold, dose is necessary before there is a noticeable response,
which is then characterized as a deterministic effect. Reddening of the skin and the
induction of cataracts are examples of deterministic effects of radiation. In addition to
there being a threshold, there is also a direct cause and effect relationship between the
severity of a deterministic effect and the dose that produced it. The larger the dose to
the skin, for instance, the greater the damage, other conditions being the same.

Stochastic effects, on the other hand, arise from cells that survive and reproduce,
butalso carry changes induced by the radiation exposure. Leukemia, bone cancer, and
teratogenic effects in irradiated fetuses are but a few examples of such effects. They
are associated with alterations of somatic cells, and are manifested in the irradiated
individual. Genetic changes due to radiation represent another important example of
stochastic effects. Alterations of the germ cells of an irradiated individual manifest
themselves in his or her descendents. All somatic and genetic stochastic effects
known to be caused by radiation also occur with natural incidence. In principle, since
a single energy-loss event by radiation in a cell can produce a molecular change, the
argument is often made that there is no threshold dose needed to produce stochastic
effects. Presumably, even at very small doses, the probability for a stochastic effect is
not zero, in contrast to a deterministic effect. The probability for producing a
stochastic disease, such as cancer, increases with dose. However, the severity of the

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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disease in an individual does not appear to be dose related, also in contrast to the
response for deterministic effects.

The problem of recognizing and quantitatively assessing the probabilities for
radiation-induced stochastic effects, especially atlow doses, is complicated by the fact
that, as already pointed out, these effects also occur statistically at natural, or
spontaneous, rates of incidence. In a population that has received a high radiation
dose, such as those among the survivors of the atomic bombs at Hiroshima and
Nagasaki, the excess incidence of a number of maladies is evident. While the
probability for a person in the population to develop leukemia, for example, might
be increased by the radiation exposure, one cannot determine whether a given case
would have occurred spontaneously in the absence of the radiation. Atlow doses, any
real or presumed added incidence of a stochastic effect due to radiation cannot be
distinguished from fluctuations in the normal incidence. The estimation of radiation
risks for stochastic effects at low doses — at levels in the range of those used as limits
for the protection of workers and the public — remains an important and controversial
unresolved issue in radiation protection today.

Modeling of biological effects on a wide variety of systems is carried out to try to
understand the mechanisms of radiation action and to make quantitative predic-
tions of results from radiation exposures. In this chapter, we examine the role of
statistics in some simple aspects of biological modeling for stochastic effects. The
discussions are limited to just a few specific examples to introduce and illustrate
this important subject.

13.2
Dose—Response Relationships for Stochastic Effects

Biological responses can be conveniently represented in the form of dose-response
curves.

Figure 13.1 is adapted from a report in the literature on a study of the incidence of
breast cancer in women (Boise et al., 1979).

The data serve to illustrate the general nature of many dose-response relation-
ships — what can be learned and what problems and uncertainties accompany their
interpretation, especially at low doses.

A higher-than-normal incidence of breast cancer was observed in 1047 women
with tuberculosis who were examined fluoroscopically over a number of years
between 1930 and 1954 in Massachusetts. The average number of examinations
per patient was 102, with an accompanying X-ray dose estimated to be, on the average,
0.015 Gy to each breast per exam. Figure 13.1a shows a plot of the observed incidence
of breast cancer versus the estimated total dose to the breasts. The incidence is
expressed as the number of cases per 100 000 woman years (WY) at risk, averaged
over all ages of the women and all exposure regimes. The sense of this unit is such
that it applies, for example, to a group of 1000 women over 10 years or to 10 000
women over 1 year. The error bars represent the 90% confidence interval. Results
from a different study in New York are shown in Figure 13.1b. In this case, irradiation
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Figure 13.1 Examples of dose-response The observed incidence of breast cancer per 10°
relationships for breast cancer: (a) fluoroscopic WY (women years, see the text) is shown as a

examinations in a Massachusetts study; (b) function of the dose to the breasts.
treatment of mastitis in a New York study.
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of the breasts by X-rays occurred in 571 females who were treated for mastitis. As in
Figure 13.1a, the error bars denote the 90% confidence level. The data points in
Figure 13.1a and b are arbitrarily connected by straight lines to form continuous
curves. Ideally, the resulting dose-response functions should at least approximately
represent the risk for breast cancer as a function of dose for X-rays.

It is instructive to examine the data sets in some detail. The two curves in
Figure 13.1 leave little doubt that substantial doses of X-rays increase the risk of
breast cancer in women. As with any stochastic effect, the numbers of cases found in
various dose groups are subject to statistical fluctuations. The ranges of the expected
variations are shown by the error bars.

As is typical, the shape of the dose-response function for breast cancer based on
Figure 13.1 is not clearly established by the available data. In Figure 13.1a, the data
appear to be compatible with a straight line drawn from the point at the highest dose
to the intercept at the ordinate. One might assume this linear response as a working
hypothesis in considering, for example, the establishment of risk and acceptable
radiation limits needed for workers and for the general public. Thus, a most
important aspect of any dose-response function is its shape at low doses. The
annual whole-body occupational limit for X-rays is 0.050 Gy, for instance. One sees
from Figure 13.1 that, under the linear hypothesis, any increased incidence of breast
cancer at such a level of dose to the breasts is small compared with random
fluctuations in both the irradiation data and the normal incidence at zero dose. The
data, in fact, do notrule out the existence of a threshold dose for causing breast cancer.
The situation encountered here illustrates the uncertainty inherent in estimating the
risk for any stochastic effect at low dose levels.

A critical factor in these and similar studies is the assignment of specific values
to the doses that individuals might have received. The exposure of the breasts in
the fluoroscopic examinations was not the primary focus of attention, but was
incidental to the main procedure being carried out. Reconstructed doses for
Figure 13.1a were based on medical records, interviews with physicians and
patients, later laboratory measurements with similar equipment, and even Monte
Carlo calculations. In Figure 13.1D, calibrated therapy units were used, and the
doses are well documented. Generally, there can be considerable uncertainty in
doses assigned retrospectively to individuals in such studies. Moreover, even
given the total dose that a person received, the response is known to depend
markedly on the way it was distributed in fractions during the time of the
repeated examinations.

Several other points about dose-response relationships can be noted. The appear-
ance of the plotted data can be affected to some extent by the particular groupings of
the raw numbers into specific cohort groups. We met this circumstance in dealing
with Monte Carlo histograms in the previous chapter. The raw data are represented by
grouping numbers of cases into selected dose intervals. Also, the control group,
representing unexposed individuals for comparison, should be the same in all other
respects except for the radiation. This ideal is not often attainable. Still another
concern in the example shown in Figure 13.1b is whether the condition of mastitis
predisposes one to breast cancer in the first place.



13.3 Modeling Cell Survival to Radiation

In the paper from which Figure 13.1 is adapted, the authors discuss these matters
as well as others that we shall not attempt to address here. The paper is highly
recommended to the reader interested in statistics and dose-response relationships.

13.3
Modeling Cell Survival to Radiation

One type of dose-response relationship that lends itself to statistical modeling and
interpretation is that for killing cells of a specified type irradiated in vitro. The data are
usually represented by means of a cell survival curve, showing the fraction of a
population of cells that survives a given dose of radiation. When plotted in semilog
fashion, the survival curve for a single, acute dose often closely approximates one of
two general shapes, shown in Figure 13.2. It can either be linear, as is typical for the
response to high-LET radiation, or have a shoulder at low doses before becoming
linear at high doses, characteristic of the response to low-LET radiation. (On a linear,
rather than semilog, plot, the two types of survival curves are exponential and
sigmoidal.) In Figure 13.2, S represents the number of cells from an original
irradiated population of S, that survive a dose D. The ratio S/S,, plotted as the
ordinate, can be interpreted as the survival probability for a given cell in the irradiated
population as a function of the dose D, given by the abscissa.

Before discussing statistical models as a basis for interpreting observed cell
survival curves, we describe briefly what is meant by “cell killing” in the present
context. For some nonproliferating cells, like nerve and muscle, irradiation can lead

1
0.1
/S, i
0.01
F HighLET
0.001 |-
0.0001 1
0 1 2 3 4
D (Gy)

Figure13.2 Two general classes of cell survival  particles. A response with a shoulder at low
curves are common. Linear survival on a doses is characteristic of low-LET radiation,
semilog plot is characteristic of the responseto  such as gamma rays and beta particles.
high-LET radiation, such as neutrons and alpha
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to loss of function, which can be considered as “death” for them. For proliferating
cells, the relevant end point is “reproductive death” — that is, loss of the ability of a cell
to divide indefinitely and thus produce a large colony, or clone. An irradiated cell
might continue to “live,” in the sense of having metabolic activity and even
undergoing mitosis a few times. But if it cannot produce a large colony, the cell
is considered to be “dead,” by definition. A surviving cell must be clonogenic, as
measured by specific techniques that involve further handling, incubation, and
comparison with similarly treated unirradiated controls.

13.4
Single-Target, Single-Hit Model

We consider first a single-target, single-hit model for cell killing by radiation. The
irradiated sample is considered to consist of S, identical, independent, cells sus-
pended in solution. According to the model, there is only one mechanism for killing a
cell. Each cell contains a single critical target that, when acted upon, or “hit,” by
radiation, leads to cell death. The interaction of the radiation with the target is
described in terms of a cross section, o, which has the dimensions of area and is
defined like that for other processes of radiation interaction. That is, when S, targets
are traversed by a monoenergetic, uniform, parallel beam of radiation, having fluence
¢, then the expected number of hits in targets is ¢ S,.. In general, o will depend on the
type of radiation employed and its energy. The absorbed dose is proportional to ¢. It
follows that the average number of hits per target in the population is

_ 995,
=5

u = go. (13.1)

The hits are assumed to be randomly distributed in the targets of the cell population
according to Poisson statistics. Therefore, if X represents the number of hits in the
target of a given cell, then the probability that exactly n hits occur there is

ure®

Pr(X =n) = . (13.2)

n!

The survival probability S/S, for a given cell, under the assumptions of the model, is
the probability that there are no hits in its target:

S Pr(X=0)=e* =e %, (13.3)
0

where Eq. (13.1) has been used to write the last equality. Since the fluence ¢ and dose
D are proportional, we may write

D = ke, (13.4)
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where k is the constant of proportionality. Thus, Eq. (13.3) can also be written as

S _ eDolk _ oD/, (13.5)
So

where the constant
D, = ~. (13.6)

has been introduced in place of k. Comparison with Eq. (13.3) shows that

D
n=1. (13.7)
gives the mean number of hits per target in terms of D,

The survival curve obtained with the single-target, single-hit model, Eq. (13.5), is
exponential. As Figure 13.2 indicates, this type of response is often found for densely
ionizing radiations. The slope of the response curve on the semilog plot is —1/D.,,.
When the dose D is equal to D,, Eq. (13.5) gives for the survival

sﬁ =e1=037. (13.8)

For this reason, D, is often referred to as the “Ds;” dose. Also, in analogy with the
mean life of a radionuclide (Eq. (4.38)) and the mean free path for radiation
interaction (Section 12.9), D, in Eq. (13.5) represents the average dose for killing
a cell (Problem 13.3). D, is thus also called the “mean lethal dose.”

Equation (13.6) shows the formal relationship in the model between the target
“size” 0 and the mean lethal dose. When the targetis small, D, is large, and vice versa,
as one would expect. The quantity k= D/¢, introduced in Eq. (13.4), represents the
absorbed dose per unit fluence for the radiation. This quantity can be measured or
calculated for the radiation used in an experiment. Knowledge of k, coupled with
Eq. (13.6) and the observed slope of the cell survival curve, 1/D,, allows numerical
evaluation of the target cross section ¢. To the extent that such a model might be
realistic, one could, in principle, associate the area o with the size of a critical cellular
component, for example, the cell nucleus, a nucleosome, a gene, or DNA.

W Example

A uniform, parallel beam of 4-MeV protons is used for irradiation in a cell
survival experiment. The data for the survival fractions found at several dose
levels are given in Table 13.1. The fluence-to-dose conversion factor for the
protons is 1.53 x 10~ ** Gym™.

a) Show that the survival decreases exponentially with dose. What is the
mean lethal dose?

b) What is the LDs, for the cells?

¢) What is the proton fluence for 22% survival of the cells?
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Table 13.1  Survival fraction S/S, at different doses D for example in the text.

D (Gy) 515,
0.2 0.72
0.5 0.45
1.0 0.22
15 0.088
2.0 0.040

d) What is the target size for radiation lethality, based on a single-target,
single-hit survival model?

Solution
a) Exponential survival means that the data satisfy an equation of the form
Eq. (13.5). The relation between survival and dose would then be

S D
ln(s—o) = —EO, (139)

which can be written as

—D
Do =inis/s) (13.10)
Using the first and last data points from Table 13.1, we find, respectively,
that

—-0.2Gy
D, = = 0. 13.11
°= Tnogz 009Gy (13.11)
and
—-2.0Gy
= ———22 — 0.621 Gy. 13.12
moos oGy (13.12)

The other three points in Table 13.1 give similar results, showing that the
survival is exponential. We take the mean lethal dose to be D, =0.63 Gy,
which is the average for the five values from Table 13.1.

b) The LDs,is the dose thatkills one-half of the cells. Applying Eq. (13.5) with
the mean lethal dose just found, we write

5 050 = e-D/03 (13.13)

Se ’ ‘
giving D= 0.44 Gy for the LDs(. Note that the relationship between the
LDso and the mean lethal dose is like that between the half-life and the
mean life of a radionuclide: 0.44/0.63 =1n 2 (to within roundoff).

¢) The fluence-to-dose conversion factor was introduced in Eq. (13.4). We
are given k=1.53 x 10712 Gy m?. That is, the dose conversion is
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1.53 x 10~ "2 Gy per unit fluence (i.e., Gy per proton m2). From Table 13.1
and Eq. (13.4), the fluence for 22% survival (1.0 Gy) is

D 1.0Gy

=—= =6.54 x 10" m~2, 13.14
Tk T 153x 10 2Gym? (13.14)

or 6.54 x 10" cm 2.
d) According to Eq. (13.6), the target size is

k153 x10 ' Gym?

— = =24x10"2m?. 13.15
D, 0.63 Gy x m (13.15)

g =

On a more convenient distance scale (1 um = 10"°m) for cellular dimen-
sions, 0 = 2.4 um?. A circle with this area has a radius of 0.87 um, which is
of subnuclear size for many cells.

While useful and instructive, such target models for cell killing are, at best, idealized
approximations to reality. For one thing, the individual cells in a population are not
identical. In addition to variations in size and shape, they are generally in different
phases of the mitotic cycle, in which the radiosensitivity is different. (Synchroniza-
tion can be achieved to some extent.) Also, no account is taken in the model of
possible cell repair mechanisms that come into play in response to the radiation. The
“target” itself within the cell is purely phenomenological. Experiments demonstrate
clearly, though, that the cell nucleus is much more sensitive than the cytoplasm for
radiation-induced cell lethality. Evidence indicates that chromosomal DNA and the
nuclear membrane are probably the primary targets for cell killing. The reader is
referred to the textbook by Hall (1994) in the Bibliography for more detailed
information and references.

13.5
Multi-Target, Single-Hit Model

We treat next a somewhat more general model, which leads to a survival curve with a
shoulder at low doses (Figure 13.2). In the multi-target, single-hit model, each cell is
assumed to possess n identical targets of cross section ¢. Death results when all n
targets of a cell are struck at least once. As before (Egs. (13.1) and (13.7)), the average
number of hits in a given cell target at a dose level D is

(13.16)

The probability that a given target receives no hits is expressed by Eq. (13.3), and so
the probability that it is hit at least once is

Pr(X>1)=1-Pr(X=0)=1—e /P, (13.17)
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The probability that all » targets of a given cell are struck at least once is
[Pr(X >1)]" = (1 —e 2/P)", (13.18)

which is the probability that the cell is killed. The probability that the cell survives is,
therefore,

S =1—(1—e DDy (13.19)
(o]
according to the multi-target, single-hit model.

With n=1, Eq. (13.19) becomes identical with Eq. (13.5), describing the expo-
nential survival of single-target, single-hit theory. Otherwise, the survival probability
curve has a shoulder at low doses. The solid curve in Figure 13.3 shows a plot of
Eq. (13.19) for D, =0.90 Gy and n = 3. Each cell has three targets, which must all be
hit in order to cause its death. Most cells survive low doses, since it is unlikely that a
given cell will have multiple struck targets. As the dose is increased, cells accumulate
targets that are hit, and the killing becomes more efficient. The survival curve then
bends downward, becoming steeper with the increased efficiency, and then straight-
ens out on the semilog plot. For the straight portion, most surviving cells have only
the one remaining unstruck target. The response of the remaining population to
additional radiation then becomes that of single-target, single-hit survival. The overall
survival curve thus begins with zero slope at zero dose (Problem 13.10), bends over
through a shoulder, and then becomes a straight line with slope —1/D,, athigh doses.

The dashed line in Figure 13.3 is extrapolated from the straight portion of the
survival curve from high dose back to low dose. It intersects the ordinate at the value
n=3, which is the number of targets in a cell. This result can be predicted from the

S/S,

0.1

0.01 L L L

D (Gy)

Figure 13.3  Plot (solid curve) of multi-target, single-hit model, Eq. (13.19), for D, =0.90 Gy and
n=3.
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equation that describes the model. At high doses, the exponential term in Eq. (13.19)
is small compared with unity. Using the binomial expansion, (1 — x)" =1 — nx, for
small x, we write in place of Eq. (13.19) with D large

Saqo (1—ne P/P) = pe /P, (13.20)
So

This relation describes a straight line with slope —1/ D, on the semilog plot. At D=0,
the line represented by Eq. (13.20) intersects the ordinate at S/S, = n, which is called
the extrapolation number. The extrapolation number is thus equal to the number of
targets in the multi-target, single-hit model. It provides a measure of the width of the
shoulder of the survival curve. As a rule, reflecting the phenomenological nature of
the model, observed extrapolation numbers are usually not integral. In the model, the
existence of the shoulder is explained by the accumulation of hits in a cell before it is
killed. A shoulder could also be explained by the action of repair processes set up in
the cell in response to the radiation — as well as by other mechanisms not considered
in the model.

A number of different target models for cell survival have been investigated. For
instance, cell death can be attributed to striking any m of n targets in a cell (m <n),
either once or a specified larger number of times. The different targets within a cell
can also have different cross sections, o. A variety of multi-target, multi-hit models
provide cell survival curves with different detailed structures.

We have dealt with statistical aspects of cell survival only in terms of the random
interaction of radiation with targets. Statistics is also important for the practical matters
of experimental data collection and evaluation. The observed survival values at different
doses, such as those in column 2 of Table 13.1, have associated error bars, which we
have not discussed. These arise from various sources. A number of individual cells
from a stock culture are counted for irradiation and controls, and then seeded into
dishes for incubation and cloning. The ratio of the number of colonies and the initial
number of cells, called the plating efficiency, is observed. This number is subject to
experimental errors from cell counting as well as fluctuations in the conditions of
handling and treating the cell colonies. Different samples are prepared for irradiation
at different dose levels. The optimum seeding of the number of cells per dish to be
irradiated is done in such a way as to result in countable numbers of colonies for good
statistical reliability, but not so many as to cause a merging of subsequent colonies into
one another. Irradiations at different doses can also be repeated several times to gain
added statistical significance. The reader is again referred to the excellent book by Hall
(1994) in the Bibliography for additional information.

13.6
The Linear—Quadratic Model

One is not limited to purely phenomenological modeling of cell killing. For example,
a relationship is known to exist between certain kinds of radiation-induced chro-
mosome changes and cell killing. Cells that undergo exchange-type aberrations do
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not survive. Such alterations require two separate chromosome breaks. When the
dose is relatively small, the two breaks, if they occur, are likely to be caused by the
same particle, such as a single secondary electron produced by the radiation. The
probability of an exchange-type aberration is then proportional to the number of
tracks per unit volume, and hence to the dose. The resulting survival curve is
essentially linear on a semilog plot. At high doses, the two breaks can, in addition, be
caused by two different, independent particles. The probability for this mode is
proportional to the square of the dose, and its effect is to bend the survival curve
downward. The expression for cell survival in this linear—quadratic model is then

S e #D-hD* (13.21)
So

where o and f are constants, which depend on the radiation and type of cells. When
compared with Figure 13.2, it is apparent that individual particles of high-LET
radiation, with its linear response at low dose, have a high probability of producing
both chromosome breaks. This happens to a much lesser extent with low-LET
radiation, which is characterized by a shoulder in the survival curve at low dose.
The second chromosome break usually requires a second particle.

The two components of cell killing in the linear—quadratic model are consistent
with evidence from quantitative studies of chromosome aberrations. The dose at
which the linear and quadratic components contribute equally to cell killing occurs
when aD=pD?% or when D=a/f. Unlike the single-hit target models, which
produce linear survival curves at large doses, the linear—quadratic model survival
curve continues to bend downward.

Problems

13.1 Is the production of chromosome aberrations a deterministic or a stochastic
effect of radiation? Explain.

13.2 What are some reasons for the uncertainties in risk estimates for stochastic
effects of radiation at low doses?

13.3 a) Show that D, in Eq. (13.5) is the average dose needed to kill a cell.
b) Show that the ratio of D, and LDsy is In 2.

13.4 The fraction of surviving cells in a certain experiment is given by S/S,=
e %7°P where D is the dose in Gy.
a) What is the mean lethal dose?
b) What is the survival probability for a dose of 1.0 Gy?
c) What dose leaves a surviving fraction of 0.0010?
d) What is the LDsq for the cells?

13.5 In an experiment in which cell survival is exponential, the survival fraction
from a dose of 1.55 Gy is 0.050.
a) What is the mean lethal dose?
b) Write an equation giving the survival fraction as a function of dose.



13.6

13.7

13.8

13.9

13.10
13.11

13.12

13.13

13.14

Problems

Table 13.2 Data for problems in the text.

D (Gy) 5150

1.0 0.648

2.0 0.269

3.0 0.0955

4.0 0.0308

5.0 0.0106

6.0 0.0036

7.0 0.0012

Cell survival data are fit with a multi-target, single-hit model, having D, =

1.4 Gy and an extrapolation number n=4. What fraction of the cells survive
a dose of

a) 1.0 Gy?

b) 5.0 Gy?

10 Gy?

Make a semilog plot of the surviving fraction as a function of dose.

a) What dose in the last problem results in 25% survival?

b) What is the LDsq?

Repeat Problem 13.6 for D,=1.4 Gy and n=2. Why are the survival levels
lower than before at the same doses?

Repeat Problem 13.6 for D,=2.2 Gy and n=4. Why are the survival levels
higher than before at the same doses?

Show that the slope of the survival curve (13.19) is zero at zero dose.

Plot the survival data shown in Table 13.2. Based on a multi-target, single-hit
model, write an equation that describes the data.

In a certain study, cell survival is found to be described by a single-target,
single-hit model, S/S,=e ", where D is in Gy. At a dose of 2.0 Gy, what is
the probability that, in a given cell, there are exactly

a) no hits?

b) 4 hits?

¢) 10 hits?

d) What is the most likely number of hits?

Fit a multi-target, single-hit model to the cell survival data in Table 13.3.

a) Find the slope at high doses.

b) What is the extrapolation number?

c) Write an equation that describes the specific data in Table 13.3.

The survival of cells exposed to photons in an experiment is described by the
multi-target, single-hit function

< O

o
-

d

- = =

2 ] _(]_e13D)28
g=1-(-enps

where D is in Gy. The dose per unit fluence is 4.72 x 10~ '® Gym®.
a) Calculate the surviving fraction for a dose of 1.5 Gy.
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13.15

13.16
13.17

13.18

13.19

13.20

Table 13.3 Data for problems in the text.

Dose (Gy) Surviving fraction
0.10 0.992

0.25 0.934

0.50 0.727

1.00 0.329

2.00 0.0460

3.00 0.00575

4.00 0.00071

b) What is the LDs, for the cells?

¢) What photon fluence is required for a dose of 2.0 Gy?

d) What is the diameter of a cellular target, assumed to be circular?

e) Give one or more reasons why the extrapolation number is not necessarily
an integer.

a) In Problem 13.6, what fraction of cells survive a dose of 0.60 Gy?

b) What is the average number of hits in a given cell target at 0.60 Gy?

¢) What is the average number of struck targets in a given cell at 0.60 Gy?

d) What fraction of the cells have exactly three struck targets at 0.60 Gy?

Repeat the last problem for a dose of 1.5 Gy.

a) For the model in Problem 13.6, find the distribution of the number of hits
in a given cell target at a dose of 1.0 Gy.

b) Find the distribution of the number of struck targets per cell at 1.0 Gy.

¢) From (b), determine the cell survival fraction at 1.0 Gy and compare with
that calculated from Eq. (13.19).

In a single-target, multi-hit model of cell survival, each cell contains a single

target that, when struck m or more times, produces cell killing. Show that the

survival of cells as a function of dose D is given by

Eze—D/Dor"il DY’
So = nl \D, ’

where D, is defined by Eq. (13.6).

a) Make a semilog plot of the survival curve in the last problem for
D,=0.92 Gy and m=4.

b) What is the survival fraction for a dose of 1.15 Gy?

¢) Find the LDs,,.

d) Is this model tantamount to the multi-target, single-hit survival model?
Explain.

A cell population receives a total of Nhits. Let ¢ be the “hit” probability — that s,

the probability that a given cell receives a given hit, all hits in all cells being

equally probable. The probability that a given cell gets exactly h of the N hits is

which of the following?
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13.22

13.23

Problems

a) Q I N h T
b) o"(1-0)" "
c) e MN;
Vo0t
e o"(1-0)" "
When exposed to neutrons, the cell line in Problem 13.14 is found to have
exponential survival, described by
Sio — e 182D

with D in Gy. The relative biological effectiveness (RBE) of the neutrons (relative

to the photons) is defined as the ratio of the photon and neutron doses that

result in the same degree of cell killing.

a) Calculate the photon and neutron doses that result in a survival level
S/S,=10.0010.

b) What is the RBE for S/S,=0.0010?

c) Does the RBE depend upon the dose?

a) In the last problem, calculate the photon and neutron doses that result in
90% survival.

b) What is the RBE for 90% survival?

c) Suggestahypothesis to explain why the neutron RBE should be larger at the
higher level of survival, as in this problem, than in the last problem?

As a general rule, illustrated by the last two problems, the RBE for densely

ionizing radiation (e.g., neutrons and alpha particles) increases as the dose

gets smaller.

a) Discuss the implications of such a finding for radiation protection, where
one needs to assess the potential risks of low levels of radiation to workers
and to members of the public.

b) Is the larger RBE at smaller doses only an artifact — due to the shoulder of
the photon response curve approaching zero slope as the dose approaches
zero?

13.24 A linear—quadratic model is used to fit cell survival data with a = 0.080 Gy '

13.25

13.26
13.27

and f=0.025 Gy 2.

a) Make a semilog sketch of the survival curve out to a dose of 12 Gy.

b) Atwhatdose are the linear and quadratic components of cell killing equal?

Fit the survival data in Table 13.2 to a linear—quadratic function.

a) What are the numerical values of a and f?

b) At what dose are the linear and quadratic contributions to cell killing the
same?

Repeat the last problem for the data in Table 13.3.

How is the ratio a/f in Eq. (13.21) expected to behave with increasing LET?
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Regression Analysis

14.1
Introduction

In many situations, a correlation might exist between two or more variables under
study. For example, the weight of a male over 20 years of age presumably depends to
some extent on his height. To consider the relationship more precisely, one could
randomly sample a population of such men and, on the basis of the sample data, try to
arrive at a mathematical expression for estimating weight based on height. To treat
this formally, one can designate the weight Yas the response variable and the height X
as the independent variable. A model, such as the following, can then be considered to
relate the two quantities mathematically:

Y =B+ X +e (14.1)

Here 8y and 3; are unknown parameters, to be determined from the sample data. The
term ¢ is the error due to a number of possible factors, such as the choice of the model
and uncertainties in the measurements.

In this chapter we shall principally explore simple linear regression models
like Eq. (14.1), which are linear in both the response and independent variables
and the f parameters. While more complicated functions can be employed, the
linear model expressed by Eq. (14.1) is often adequate to relate the two variables
over some limited range of values. Our goal will include estimating the f
parameters and their variances. We shall also determine for the response
variable the variance of a predicted value, a mean value, and a future value.
Regression analysis refers to the study of how one or more independent variables
(X1, X5, .. .) relate to and enable the prediction of a dependent variable (Y). We
will examine goodness of fit and also the inverse regression of obtaining the
value of X when given Y.

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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14.2
Estimation of Parameters f and £,

We assume in the following discussion that we have pairs of variables (X;, Yj),
i=1,2, ..., n. Each pair is independently obtained, and the value of X; is measured
without error or has such small error, compared to that of the response variable Y;,
that it is negligible. We also assume the following model:

Yi =By + 51X+ &, (14.2)

where ¢; has mean zero, constant variance o2, and Cov(e;, &) =0 for i # j, that is, the
errors ¢; are independent. If we plot the pairs (X, Y;), we would want to select the
straight line (Eq. (14.2)) that minimizes the errors. Figure 14.1 shows a hypothetical
situation where (X;, Y;) are plotted, a straight line is drawn, and the errors are shown.
A convenient way to define the error in Eq. (14.2) is to write

e = Yi—(Bo +51X), (14.3)

and then, if the model (Eq. (14.2)) fits exactly, all &;=0.

It is better to reduce the squared errors, &2, since errors can be either positive or
negative. This method is called the least squares method of estimation. Thus, we want
to find values by and b; such that the sum of squared errors is minimized, that is, by
and b, are the values of 8, and f3; that minimize

§= Xn: & = z”: [Yi—=(Bo + 51" (14.4)
p =1

We can determine by and by by differentiating with respect to o and 31, setting the
derivatives equal to zero, and solving

X

Figure 14.1 Plot of data pairs (X;, Y;) showing a straight line drawn through the data so that the
errors g; are minimized.
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85_8” - .2_7” - N
0—50_0_/30;[Y‘ (Bo+B:X)]" = 2;[% (Bo+ 1 Xi)] =0 (14.5)
and
a a n n
57 = 3, 2o N Bo X0 = 2 [+ AKX =0 (149

Now by and b; may be substituted directly for 8, and f3; since the sum of squared
errors is minimized, and Eqgs. (14.5) and (14.6) can be rewritten as the so-called
normal equations

i=1 i=1

and

im:boi&wlixﬁ (14.8)
i=1 i=1 i=1

The solutions for the intercept by and the slope b; are then (Problem 14.3)

1 n n B _
b = - (Zl Yi—by 21X> =Y-bX, (14.9)

where Y and X are the sample means, and

by = i XiYi—(1/n) 3 X 2%1 Yi. (14.10)
Y X =(1/m) (2L, X)

The quantities in Eq. (14.10) have names used in many software programs. The term
Sor . X7 is called the uncorrected sum of squares, and the term (1/n) (31, Xi)2 is the
correction for the mean of the X;’'s. The final term,

n 1 n 2
yoxe-t Al (14.11)
n n Py

is the corrected sum of squares or Sxx. Similarly, >, X;Y; is referred to as the
uncorrected sum of cross-products, (1/n) >_1 X >, Y; is the correction for the means,
and

n 1 "
;}QYi_E;X;Yi (14.12)

is the corrected sum of cross-products of X and Yor Sxy Another term, analogous to Sxx,
is
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Table 14.1  Equivalent computing formulas for Sxy, Sxx, and Syy.

n _ _ n - n -

> (X=X)(Yi-Y) > (X-X) > (Yi-Y)

i=1 i=1 =1

n _ ln _ ln _

S (X-X)Y; 3 X(X-%) S V(Y-T)

i=1 i=1 2 =1 2
n _ n n n n

S x07) Sl (S Sty
i=1 i=1 i—1 i=1 i—1

n 1<& n n _y n 2
YXYi—=D XY Y Y X7-nX > Yi-nY

i=1 n =1 =1 i=1 i=1

n —_

S X Y,—nXY

i=i

2
n 1 n
Syy = Yffﬁ (Z Yi> , (14.13)
i=1 i=1

which will be used later. These expressions are handy when using a calculator.
Table 14.1 summarizes equivalent ways of computing Sxy Sxx, and Syy: Using these
expressions, we can now write that
S
by =X (14.14)
Sxx
We can also write our estimated equation as
Y =by+ b X (14.15)
and, since by = Y—h; X,
Y =Y +b(X-X). (14.16)

Note that, if we set X = X, then Y = Y, which means the point (X, Y) falls on the
regression line.

W Example

Known amounts of uranium were measured using a Geiger—-Mueller counter,
resulting in the data given below. Sources of random error other than counting
statistics are assumed to be negligible, and the variability is considered
constant over the range of the data.

X (g U) 15 20 30 40 50 60
Y (netcounts) 1305 1457 2380 3074 3615 4420

a) Use the least squares formulas to obtain the estimates b, and b;. Plot the
corresponding line and the data points on a graph.
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b) Supposeanew sample of 45 g U were counted. What would you predict the
number of counts to be? Would you have confidence in this predicted
value? Why or why not?

¢) Suppose anew sample of 75 g U were counted. What would you predict the
number of counts to be? Would you have confidence in this predicted
value? Why or why not?

Solution

a) Theleastsquares formulas giveus by = Sxy/Sxx (recall Eq. (14.14) and the
formulas for Syyand Sxx given by Eqs. (14.12) and (14.11), respectively)
and by = Y — b1 X. The values of the terms in Syy and Sy are com-
puted to be >°F | X;Y; = 689025, 7 | X; =215, > | Y; = 16251, and
S, X? = 9225, giving Sxy=68 9025 — (215)(16 251)/6=106 697.5
and  Sxx=9225 — (215)%/6 =1520.8333. Therefore, b, =1520.8333/
106 697.5=70.157 and bo=(16 251/6) — (70.157)(215)/6 =194.532.
Hence, the least squares regression line is given by

Y = 194.532470.157 X. (14.17)

The predicted values of Y for each value of X are

X 15 20 30 40 50 60
Y 1247 1598 2299 3001 3702 4404

Note that we carry more significant digits in the model and round after the
calculations. Plotting the pairs (X, Y) and connecting the points gives the
predicted line. Note that, since this is a linear fit to the data, we can simply
plot the two extreme points and connect them using a straight line.
Figure 14.2 shows the data and fitted regression line.

5000
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Counts

2000

1000

0 I I I I I I ]
0 10 20 30 40 50 60 70

Uranium Mass (g)

Figure 14.2 Data and fitted regression line from the example.
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b) UsingEq. (14.17), Y =194.532 + 70.157(45) = 3352 counts. One could be
confident of this predicted value, since the value X=45 is internal to the
empirical data set.

¢) Againusing Eq. (14.17), Y = 194.532 + 70.157(75) = 5456. This time, the
value of X is outside the set of empirical data, and so one might have less
confidence in this predicted value. Our confidence in the predicted value is
diminished, since we do not know the behavior of Y beyond X=60g,
unless we are certain that the assumed linear properties of our model hold.

14.3
Some Properties of the Regression Estimators

We may write ¢; = Y,—Y,fori=1,2, ..., nand note that Z?:l e; = 0 by referring to
the first normal equation given in Eq. (14.5). This is one way to check our arithmetic,
since this sum should always equal zero. Using the data in the previous example,
we have

X; 15 20 30 40 50 60
Y, 1305 1457 2380 3074 3615 4420
¥, 1247 1598 2299 3001 3702 4404
6 =YY, 58 —141 81 73 —87 16

We see that Zle e = Z?:l (Y; — Y;) = 0. The ¢/’s are called residuals, and 31" | €?
is the minimum sum of squared residuals, as required by the least squares principle. We
can rewrite Eq. (14.5) as

n n

> (Yimho—biX) =) e =0 (14.18)

i=1 i=1

and Eq. (14.6) as

n n

> (Yimho—bi X)X = > eXi =0, (14.19)

i=1 i=1

which provides some useful identities.

The residuals can be used to estimate the variance ¢? mentioned with the
assumptions in Eq. (14.2). Some things to note from Eq. (14.2) and the assumptions
stated there are that

E(Y)) = E(By+P1Xi+ &) = Bo+ P1Xi + E(&;) = By + P1 X (14.20)

Therefore, the mean value of the distribution of Y; for a corresponding X; is
Bo + B1X:. Also,

Var(Y;) = E[(Yi—Bo—:X)?] = El(e)?] = 0%, (14.21)
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Hence, the variance of Y; is constant, regardless of the value of X;. Also,
E{[vi—E(W)I[Y;—E(Y))]} = E(eigj) = 0, (14.22)

by our assumption of zero covariance of the random errors, and, hence, the Y;’s have
zero covariance as well. Note that, so far, we have not stated any distributional
assumptions regarding the error ¢;. Later on, when we want to make inferences, we
will assume that the errors are normally distributed. The normal distribution with
zero covariance implies that the errors ¢; and the observations Y; are independent.

There is a very famous theorem called the Gauss—Markov theorem, which states
some important properties of the estimators by and b;.

Gauss—Markov Theorem
Under the conditions of model (14.2), the least squares estimators by and b; given by
Egs. (14.9) and (14.10) are unbiased and have minimum variance among all unbiased
linear estimators.

Thus, E(bo) =fo and E(b;) =, and, among all linear estimators, these have the
smallest variance. Note that by and b; are linear estimators — that is, they are linear
combinations of the Y;. To show this, consider the equation

by — Zizl(nXi_X)(Yi;Y) ’ (14.23)
2im (Xi=X)
which we can write as (Problem 14.5)
by = M Za’ ., (14.24)
Z = ( i=1

where a; = (X,—X)/ 1, (Xi—X)*.

Similarly, using Eq. (14.9), it is easy to show that by is also a linear function of the
Y/’s (Problem 14.6). The residuals are a natural moment estimator for *. Recall the
assumption that E(e?) = 0? and the function we minimized was S= Y1, ¢} =
S [Yi—(By 4 B1X:)])%. Replacing Sy and f; by the estimators by and by, we have
S=3"r =" (Yi—bo+ b1X;)*. Most texts refer to S’ by SSE, which stands for
sum of squares for error. We note that E(S) = no?; hence, SSE is a natural estimator for
0% and, in fact, E(SSE) = (n—2)0?. Thus, MSE = SSE/(n — 2) is an unbiased esti-
mator of 0. MSE stands for mean square error, since it is a form of average (or mean) of
the squared error terms. We shall not prove that E(SSE) = (n—2)0?, but simply
comment that the form of the multiplier (n — 2) is due to the fact that we have two
constraints on the residuals, Y1 | & = 0and Y -, &X; = 0. The term (n — 2) is often
referred to as the degrees of freedom.

Next we shall determine the variance of our estimators by and b;. Using the
assumption of independence of the Y;'s and recalling that we showed b; to be a linear
function of Y;'s, we find

Var(b;) Z a; Var(Y; Z ato? = o zn: a?, (14.25)
i=1
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where a; = (X;—X)/Sxx. It can be shown (Problem 14.7) that >, a? = 1/Sxx, so
that

2 02

Var(by) = SO—XX -~ (14.26)

Since by = Y—b; X is alinear function of the Y/s, it can be shown (Problem 14.8) that

7’ Zi"zl Xiz

Var(by) = S

(14.27)

Normally 0” is unknown and we replace o with MSE in Egs. (14.26) and (14.27) to
obtain estimates for Var(b;) and Var(by).

W Example
Calculate the following quantities using the data from the previous example:

a) SSE;
b) MSE;
¢) Var(by) and standard error;

—

d) Var(b;) and standard error.

Solution
(Itis important to keep a number of digits until the final result and then round
accordingly.)
a)
SSE =) (Yi—by—b1 X;)*
i—1
= Z YiszOZYﬁhl inyi (14.28)
i1 =1 i—1
or

SSE = Syy—Sxy/Sxx. (14.29)

Either equation can be used, but if by and b; have not been calculated, the
second equation is more direct. We shall use both and see how they
compare. Using Eq. (14.28) gives

SSE = 51 544 375—(194.53145)(16 251)—(70.157262) (679 025)
= 42936.924.

Using Eq. (14.29) gives (14.30)

SSE = 7528 541.5— (106 697.5)* /1520.8333
— 42935.5812. (14.31)




14.4 Inferences for the Regression Model

The relative percent difference, (1.3428/42 935.5812) x 100% = 0.0031%,
is small, but still indicates the need for carrying many digits. We will use
SSE =42 935.5812.

b) MSE = SSE/(n—2) = 42935.5812/(6—2) = 10733.8953. So &° =
10733.8953 and ¢ = 103.6045

o) Var (bo)=06> 3" &2 /nSy, =10733.8953(9225)/6(1520.8333) = 10

851.52705 and the standard error is \/@(bo) = 104.170663.
d) Var(by) = 6°/Ss = 10733.8953/1520.8333 = 7.057904 and the stan-

dard error is \/\//a\r(bl) = 2.656672.

14.4
Inferences for the Regression Model

Up to this point we have not assumed any distribution for ¢; or, equivalently, Y;. Now
we shall assume that the &; ~ N(0, 0°) and, consequently, that Y; ~ N(o + 1 X, 07).
We shall derive the maximum likelihood estimators in place of the least squares
estimators. The likelihood is simply the joint density of the observations, but treated
as a function of the unknown parameters S, A1, and o>. Thus, the likelihood function
is given by

n
L(ﬂmﬂl»az) - Hf(Yi‘ﬁmﬂl:az) (14‘32)
i=1
1 1 2 2
_ =(1/20%)(Yi=Bo—p1Xi)
= e 14.33
L oVain ( )
_ b pe) L i) (14.34)
(Gz)n/Z(zn)n/Z

Recall that we want to find the values of o, 1, and ¢” that maximize the likelihood
function. Maximizing the likelihood function is equivalent to maximizing the log
(natural) likelihood, so

(LB fr,0%)] = SIn2m)~ Dot S (Vo piX) (1435)
i=1

Note that, with respect to 8, and 1, we want to find the values that minimize the sum
of squares, but this is identical to what we did using least squares and hence the
normal assumption leads to equivalent estimators between maximum likelihood and
least squares. Thus, the maximum likelihood estimators 8, = by and f3; = b. The
unbiased and minimum variance properties carry over to the normal distribution
situation. The estimators have the same variances and since these estimators are
linear functions of the Y; and the Y; are normally distributed then so are by and b;. We
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can write

by ~ N(ﬂo, > /ny X /sxx) (14.36)
and

by ~ N(By,0%/5.) (14.37)

The MLE for ¢? is easily obtained by differentiating Eq. (14.35) with respect to o2,
setting the result equal to zero, and solving. Doing so we find

:_Z (Yi—bo—b1 X;)* SSE (14.38)

It can be shown that SSE/0?, under the normality assumption, is x 2 (Le., chi-
squared with (n — 2) degrees of freedom). Recalling that the expected value of a chi-
square random variable is equal to its degrees of freedom, we see

E{”iz] = E[Sj—f] = (n-2) (14.39)

o2

or

o2 (14.40)

Thus, the maximum likelihood estimator for ¢® is biased, but [n/(n—2)]6* =
SSE/(n—2) = MSE is unbiased for o2

In most situations, o? will be unknown and Eqs. (14.36) and (14.37) will not be
useful. In this case, we use the following Student’s t-statistics to make inferences

regarding f, and S;:
bo—Py
\/ (MSE/n) (3> X2/Su)

~ by (14.41)

and

b1 —p,
—F— 1ty 2.
/MSE/S,.

(14.42)

Example
Using the previous example and data obtain the following:

a) A 95% confidence interval for f.

b) A 95% confidence interval for f;.

) Testthe hypothesis that Hy: 8; = 0 versus Hy: 81 # 0 at the a = 0.05 level of
significance.
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Solution

a) Using the results from the previous examples and Eq. (14.41) we have that

_tn72¢a/2 < bO_ﬁO
\/(MSE/n) (3 x2/5...

Pr

< tnfl,a/Z =1-a.

Using Table A.5, we have t4 .5 = 2.776; the standard error is

MSE (Z x?

n Sxx

) = 104.1707

and we have

IMSE (> x? IMSE /" x?
Pr(bo_tnl,a/Z T(ZS l) <ﬂ0<b0+tn—2.a/2 T(ZS l))

=1-a.

Substituting we find Pr[194.532—2.776(104.1707) <3, < 194.532+

2.776(104.1707)] = 0.95, or Pr(—94.6458 < B, < 483.7098) = 0.95. Thus, the

95% confidence interval for S, is (—94.6, 483.7).

Using Eq. (14.42) and our previous results, we have Pr[70.157 —2.776

(7.0579) < By < 70.157 + 2.776(7.0579)] = 0.95, or Pr(50.5643 < B; <

89.7497) = 0.95.

¢) The hypothesis Hy: f; = 0 versus H;: 3, # 0 is a two-sided test, and so we
will compare the result of Eq. (14.42) to t4 9,025 = 2.776. Using Eq. (14.42),
we find t= (b1—pB;)//MSE/S. = (70.157—-0)/+/7.0579 = 26.4079.
Since this is greater than t4 025 = 2.776, we reject Hy at the 5% level of
significance.

=

Next we shall look at predicted values and their associated variability. The prediction
equation is

Y = by + b X, (14.43)
where by and b, are unbiased estimators. We know that E(Y) = 8, + 8, X, which is an
unbiased estimator of the value of Yat the given value of X. It can be shown that Y and
b, are independently distributed (Problem 14.10). Since Eq. (14.43) implies that
Y = Y 4 by (X—X), then

Var(Y) = Var(Y) + (X—X)* Var(b,) (14.44)

- %2 LOXX (1 + (X_X)2>. (14.45)
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We know that a linear combination of normal random variables is itself normally
distributed. Because Y and b; are normally distributed, Y is also. Hence, Y has mean
Bo + Bq1x and variance given by Eq. (14.45). Thus, if we want to place a confidence on
the mean predicted value, we can use normal theory to write

Pr |:_Zla/2 < % < Z1—a/2| = l1-a (1446)
o
and
Pr[Y—2z o002 < Bo+B1X < Y +21 00V 0%] = 1—a, (14.47)

where £ = [1/n+ (X—X)*/Sxx]. We will not know o in most cases and must
estimate this value using the mean square error (MSE). The Student’s t-distribution
must be utilized in this case, resulting in a very similar looking confidence interval,
namely,

Pr[Y—t, 542 V/MSEE < By+B1X < Y+t 540 /MSEE] = 1—a.  (14.48)

Before moving to an example, we mention that predicting values within the region of
our observed X;’s is called interpolation, while predicting values outside the region is
called extrapolation. Interpolation is generally safe to do, in that we can see how well
the observations follow our assumption of linearity. We have little knowledge of how
the relationship between Yand X may vary, once we move outside this region. Our
prediction should be satisfactory if we are reasonably sure that linearity can be
assumed, but we will have no proof that the linear model is correct beyond what we
have observed. Note also that the variance of our predicted value is a function of
(X—X)*, and we can see that the variance increases greatly as we extrapolate further
outside the experimental region.

W Example
Using the previous data, obtain the following when X =30, 36, and 65:

a) the predicted value, and
b) the estimated variance of the predicted value.

Solution
a) The prediction equation is given by ¥ = 194.532 4 70.157X, so we find
X= 30 36 65

Y = 2299.2 2720.2 4754.7

b) Using MSE to estimate 0® and Eq. (14.45), we have

Var(Y) = 10733.8953 (14.49)

6 1520.83333

1 (X—35.83333)2}
— + —_—,
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giving
X = 30 36 65

—

Var(Y) = 2029.1 1789.2 7793.1

Note that the variance of the predicted value becomes larger as we move further from
X. The value X = 65 is outside the range of the data on which we built our regression
model. A prediction in this region is an extrapolation, which may be inaccurate,
unless we are confident that the linear relationship holds in this region.

Predicting future observations is different from predicting expected values of Y for a
given X, as we just did. Let Ydenote the new observation and Y denote our predicted
value at some given value of X. We were predicting E(Y) =5, + 1 X previously, using
Y =by + b,X. Now we wish to predict Y, a new random variable. This new Yshould
come from a distribution with mean 8 + f:X, if our model holds. We know that Y is
unbiased and, hence, this would be our best estimate of Yas well. We can, therefore,
use Y to estimate both the future value of a random variable and its mean value.
Estimating Yby Y incurs an error, e = Y—Y. We can see that the expected value of e is
zero, that is,

E(e) = E(Y=Y) = E(Y)=E(Y) = (Bo + B1X)—(Bo + B X) = 0. (14.50)
The variance of e is
Var(e) = Var(Y—Y) = Var(Y) + Var(Y)—2Cov(Y, Y). (14.51)

The variance of a future observation is simply o? (recall Eq. (14.21)) and the variance
of Y is 0%£ (Eq. (14.45)). The covariance term is zero, since the new Yis not involved in
the determination Y. We find that

Var(e) = 0® + 0?§ = o*(1+ &). (14.52)

Thus, the variability in predicting a future observation is considerably larger than the
variability in predicting the mean value. We can carry the logic one step further by
considering an estimation of the mean of k future observations of Y. We represent the
mean of k future values by Y}, and we can see that Y, comes from a distribution with
mean value 8, + f;x and variance 0% /k. We see, following the arguments given
above, that Y is still the best predictor, and now the variance of the error is

Var(e) = o G + 5). (14.53)

Note that Var(e) approaches Var(Y) as the number of observations k, used in

determining Y}, increases (Problem 14.20).

Example
Using the previous example, obtain the following when X= 30, 36, and 65:

a) the predicted value of Y, and
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b) the estimated variance of the predicted value.
Solution

a) The predicted future observation is given by Y, as in the previous example,
so that

X = 30 36 65
Ynew = 2299.2 2720.2 4754.7

b) The variance of the prediction of a future observation is given by
Eq. (14.52). Replacing o by MSE we find

X = 30 36 65
Var(e) = 12763.0 12523.1 18527.0

The variance for the prediction of a new value at a given Xis considerably larger than
the variance for the expected value at a given X. It is clear that the distribution for a
future predicted value is normal with mean (5, + ;%) and variance given by
Eq. (14.53), where k=1. A (1 — a)100% confidence interval is given by

R 1 1/2
Yj:zl_a/za(% +g> (1454)

for the mean of k future values at x.
Similarly, if 0? is unknown, then we must estimate it using MSE and Student’s t-
distribution. The corresponding confidence interval is

. 1 1/2
Yttty 2ap [MSE (E +§)} . (14.55)

We state the following without proof, but refer the interested reader to R.G. Miller’s
text, Simultaneous Statistical Inference (Miller, 1981). To obtain simultaneous
confidence curves for the whole regression function over its entire range, replace
tn—2.q/2 With (ZFZ,n,zyl,a/z)l/z in Eq. (14.55) for the mean of k future observations, or
in Eq. (14.48) for a predicted value.

14.5
Goodness of the Regression Equation

In this section, we will take a different approach to examining the regression
equation. This alternative approach is not so important for simple linear regression,
but is helpful for more complex regression models. It consists of partitioning the
variability we observe in Yamong the various components of the regression model. To
this end, consider the following identity:

(Yi=Y) = (Yi=Y)=(Y;-7). (14.56)



14.5 Goodness of the Regression Equation

The residual ¢; = (Y;—Y;) can, as suggested by this identity, be partitioned into two
parts: (1) the deviation of Y; from the mean and (2) the deviation of the predicted Y;
from the mean. We can rewrite (14.56) as

n

> (v-v)? —Z (Yi—Y)*+ Z +22 (Y—Y)(Y;i=Y). (14.57)
i=1 i=1
The term on the left-hand side of Eq. (14.57) is called the total sum of squares (TSS); the
first term on the right, the sum of squared deviations or the sum of squares for error (SSE)
(can you see why?); the second term on the right, the sum of squares due to regression
(SSR). The cross-product term is zero (Problem 14.13). In the abbreviated nomen-
clature, we have

TSS = SSE + SSR. (14.58)

Each of these sums of squares has associated degrees of freedom. The term TSS, for
instance, has (n — 1) degrees of freedom. One way of seeing this is that, even though
there are n terms in the sum, there are only (n—1) independent terms, since
Zl 1(Y;=Y) = 0. The SSR has only one degree of freedom. To see this, recall that
Y; = Y+ b (X;—X), sothat" ¥;—Y = b;(X;—X) is a function of only one parameter,
b,. The degrees of freedom on the left-hand side of the equation must equal those on
the right; hence, the degrees of freedom associated with SSE are (n — 2) due to two
constraints, namely, > (Yi—Y;) =0 and 3" | Xi(Y;—Y;) = 0. These sums of
squares and degrees of freedom are usually presented in what is called an analysis
of variance (ANOVA) table, which is usually constructed as shown in Table 14.2. The
column MS shows the sum of squares divided by its degrees of freedom. The last
column indicates that E(MSR) is a function of 0> and 37, and that E(MSE) is equal to
o2 alone. One can show that SSR and SSE are distributed as > random variables, the
ratio of which, divided by their respective degrees of freedom, has an F distribution
(Eq (6.98)). We can see that the ratio F=MSR/MSE can be used to test whether

: B, = Oversus Hy : f3; # 0.If B; =0, then the expected mean squares are both
equal to 02 and their ratio should be unity. If 8; # 0, then the MSR will be inflated and
the ratio should be greater than unity. Hence, we can use the F; ,_, distribution to test
the null hypothesis above, which we rejectif F > F;,, 51 4.

Table 14.2  Typical ANOVA table for the simple linear regression model.

Source of variation  df SS Ms E(MS)? F p-value
Regression 1 SSR  SSR/1 02+ %S,  MSR/MSE  Pr(Fi, , > F)
Error n—2 SSE SSE/n—2) o

Total n—1 TSS

a) Expected value of mean squares is not typically given in the ANOVA table. It is shown here to see
why the Fratio is a test of 5; =0.

1) The X; are fixed and have no uncertainty.
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W Example
Complete the ANOVA table using data from the previous example.

Solution
Determine SSR, SSE, and TSS and putthem in the ANOVA table using the form
given in Table 14.2. The TSS is simply Yr,(Yi—Y)’ =
S Y2—nY? = 51544 375—44 015 834 = 7528 541. The SSR is calculated
as S0 (Yi—Y)* = b2S,, = (70.1573)” (1520.8333) = 7 485 612. The SSE is
obtained by subtraction, SSE =TSS — SSR=7528541 — 7485612 = 42929.0f
course, SSE = S7 | (Y;—¥;)* = (58.10959)* + (—140.67671)* + (80.75068)>
+ (73.17808)> + (—87.39452)? + (16.03288) = 42937.22027. (Although the
two methods used to obtain SSE do not agree exactly, there is only a 0.02%
difference.) The ANOVA table can now be filled in.

ANOVA for simple linear regression example:

Source of variation df SS MS I p-value”
Regression 1 7485612 7485612 697.49 1.222x10°
Error 4 42929 10 732.25

Total 5 7528541

% F=MSR/MSE has the F distribution with degrees of freedom equal to

regression and error, respectively. In this case, F~ Fj 4.
b p-value = Pr(F, 4 > F) = Pr(F, 4 > 697.49) = 0.00001222.

The p-value is very small in this case, indicating a highly significant linear
regression coefficient. In the case where we have a single dependent
variable, the above F test is equivalent to testing Hy: f; = 0 versus
Hi: By #0. Eq. (14.42) shows that b;, suitably normalized, has the
Student’s t-distribution. Recall that a Student’s t random variable is defined
as the ratio of a standard normal random variable and the square root of a y?
random variable divided by its degrees of freedom. The square of a Student’s
t random variable, then, is the ratio of the square of a standard normal
random variable (which has a y? distribution with one degree of freedom)
and a y? random variable divided by its degrees of freedom. This is exactly
the definition of an Frandom variable. We earlier used the t-distribution to
test Hy: B, =0 versus Hj : f3; # 0 and obtained t~26.408, so that t*
= 697.38 — nearly the same as our F value, with the difference accredited
to rounding. Thus, the F value is equivalent to testing Hy : 5; = 0 versus
Hi : B4 # 0in the single-variable regression. We note that, when there are
several independent variables (X;, X5, .. ., X;), one can calculate an F value
that is then equivalent to testing the hypothesis that each 8; = 0 foralli=1,
2, ..., ksimultaneously. The alternative hypothesis in this case is that atleast
one f; is not zero.




14.6 Bias, Pure Error, and Lack of Fit

Another statistic often used in regression analysis is called R?, and it represents the
percent of variation in the dependent variable Y that is explained by the independent
variable X. The definition of R? is

R2 — SS_R _ Dt (?i*?)z

TSS ~ ST (Yi—i’)z : (14.59)

This is often expressed as a percentage by multiplying by 100%. We have, from the
ANOVA table in the last example, R*=7 485 612/7 528 541=0.9943, or R
=99.43%. This says that the independent variable X explains 99.43% of the variation
that occurs in Y. This indicates a very strong linear relationship between Xand Y. The
values of R” range from 0 to 1, where 1 implies a perfect linear relationship between
the dependent and independent variables, thatis, Y=/, + (;Xwith no error. If one
took repeat observations, then R? must be less than 1, unless all the repeat
measurements yielded equivalent results at a given value of X. This would occur
very infrequently, if at all, in any real experimental situation.

14.6
Bias, Pure Error, and Lack of Fit

The simple linear regression model is something we have assumed in our analysis so
far, butitis an assumption that we can examine. Recall that the residuals, ¢; = Y;— Y;,
reflect the adequacy of the linear model to describe the data. It is common, if not
imperative, to plot the residuals to see if they appear random. Recall that, in our
assumed linear model Y; = 3, + 5, X; + &, the ¢; are assumed independent and have
constant variance 0% with mean zero. The residuals should mimic these character-
istics. We know that e = 0 by the normal equations, and this implies that the e; are
correlated. The correlation imposed by this constraint will not be that important in
our examination of the residuals, where we are looking for discrepancies from the
assumed model. Figure 14.3 shows some plots that would generally be used in the
regression analysis. There are no obvious patterns in the above plots, and nothing to
make us suspect there is any violation of our assumptions. Figure 14.3a is frequency
plot of the residuals from a very large data set. We would expect the distribution of the
values of residuals from a good regression fit to be symmetrically distributed about
zero, with most of the values close around zero, and to have fewer points at the
extremes, as we see in the figure. Figure 14.3b is a scatter plot of the residuals against
the independent variable from the first example. These residuals are fairly randomly
distributed around zero, indicating a good regression fit. We would suspect some
possible issues if the residuals increased in magnitude as X increased (nonconstant
variance), or if the residuals were negative at the low and high values of X but positive
for the middle values of X (possibly indicating a quadratic model in X). Figure 14.3c
is a plot of the residuals against the predicted values of the dependent variable in the
first example. Again, we see that the distribution of residual values is fairly random
about zero, indicating a good regression fit.

369



370

14 Regression Analysis

(2) |
|
|
|
§ T L
§ .
=S .
3 L
o
A0 M I_I n n
0
Residual
()
400 -
Z 200
(=]
=
g . b °
= 0 e
=
b=} .
5] .
K200 F
-400 -
1 1 1 1 1 1 1
10 20 30 40 50 60 70
Uranium Mass (g)
(©
400 -
2 200+
g
§/ 0 ° ° ¢ o
E
s . ¢
& 200
-400 -
| | | | |
1000 2000 3000 4000 5000

Predicted Values of Y (net counts)

Figure 14.3  Plots of residuals from data fitted  the data in the first example; (c) scatter plot of
by linear regression: (a) frequency distribution  residuals as a function of the predicted values
of residuals from a large data set; (b) scatter plot ~ for net counts in the first example.

of residuals as a function of uranium mass from



14.6 Bias, Pure Error, and Lack of Fit

Recall that, by the normal equations, 3.1 ; &;Y; = 0, so that the residuals and the
predicted values are uncorrelated. This may not be the case with the actual observa-
tions, and so plotting the residuals against the observations might yield a nonrandom
pattern, but that would still not be a violation of assumptions. We would suspect a
nonconstant variance if the plot of the residuals against the predicted values shows an
increase or decrease as Y increases. We might suspect that a quadratic or higher order
model might be more appropriate if the pattern were curved. Figure 14.4 shows the
general patterns that would cause concern, with (a) showing a nonconstant variance,
(b) showing an inadequate model (using, in this case, a linear model to fit an
exponential function), and (c) showing the pattern that would be considered
acceptable. Figure 14.4d shows a situation where we know the time order in which
the data were collected. Patterns such as those here (i.e., alternating groups of positive
and negative residuals) suggest that there might be some learning effect or change in
the process over time. This would imply a need to adjust the model for time, or for
whatever factor might be changing with time. For example, temperature might be
confounded with time, and beginning measurements might have been taken under
cooler conditions. Training or learning is often confounded with time, chemicals can
degrade over time, and so on. If the underlying cause for a time effect can be
determined, then a new model incorporating this can be fit.

Another issue is that of systematic bias in the regression results. Let u; = E(Y;)
denote the value given by the “true” model, whatever it is, when X = X;. Then we can
write

Yi-Yi = (Yi-Y)—E(Yi—Yi) + E(Yi-Y)) (14.60)
= (Yi=Y) = [u— E(Y3)] + [~ E(Y3)] (14.61)
=" + B,’, (1462)

where 7; = (Y;—Y;)—[u;—E(Y;)] and B; = y;—E(Y;). The quantity B; is the bias at
X=X If the model is correct, then E(Y;) = u, and B; = 0. If the model is not correct,
then E(Y;) # u; and B; takes on a nonzero value that depends on both the true model
and the value of X. The quantity r; is a random variable whose mean is zero, since
E(r;) = E(Y;)—E(Y:)—p; + E(Y;) = 0. It can be shown that E(}_}" , 1) = (n—2)0?,
based on the assumption that the Y;'s have constant 2 and that they are independent
of each other. Then it can be shown that the expected value of the sum of squares for

error is (Problem 14.14)

E(SSE) = E[Z (Yi—?i)z} = (n—2)0* + Z B, (14.63)

i=1

and, since MSE = SSE/(n—2),

E(MSE) = ¢* + %12?2 (14.64)
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14.6 Bias, Pure Error, and Lack of Fit

Thus, the expected value of the MSE is inflated if the model is not correct. The bias, if
large enough, will tend to increase our estimate of the population variance, and this
will affect confidence intervals and tests of hypothesis accordingly. This increase in
our estimate of the true variance leads to what is called a loss of power in a test of
hypothesis. The loss of power is a reduction in the probability ((1—/), where 3 is the
probability of a type II error) of detecting a true effect when one exists.

This can often be seen in a plot of the residuals versus the independent variable Xin
the case of a single predictor variable, but is more difficult to detect when there are
multiple independent variables. One way of testing for model inadequacy is by using
a prior estimate of o” obtained by previous experiments. One can then compare the
estimate of 0> obtained from the current model to that obtained in the past. If the
current estimate is large compared to the past, then one might conclude that the
current model is somehow inadequate and investigate possible reasons, amending
the model accordingly. This can be done in another way if there are repeat observa-
tions taken at the same value of X. The variability we observe at each of these repeat
points are estimates of the true variance, since the model, whatever it is, does not
change at that given value of X. Thus, the variation at these repeat points is termed
pure error, since it estimates only the random variation. It is important to understand
what is meant by repeat observations. Repeat observations come by replicating
the experiment at the same setting of X. For example, suppose we are interested
in the amount of potassium in a human as a function of the weight of the person. A
true repeat observation is obtained by measurement of [K] in two persons of the same
weight. (Measuring the potassium concentration [K] in the tissue of one person at two
points in time is a reconfirmation, which provides information about the variability in
our measurement system, but not about variation in the values of [K] between people
of the same weight.)

To analyze such data we need to use subscripts that identify particular values of X
and a second subscript identifying the number of repeats at that value of X. For
example,leti=1, 2, ..., mrepresent the number of distinct Xvalues, andj=1,2, ...,
m; be the number of repeat points at X=X;. The contribution to the sum of squares
pure error at the value X=X; is given by

i (Y- Y3)? Z (14.65)
Jj=1

Pooling the sum of squares across all the repeat points gives the sum of squares pure
error,

SSpe = > > (Yy=Yy)? (14.66)

df e = Z(mi—l). (14.67)
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Then the pure error mean square is given by

SSpe

MSpe = df e’

(14.68)

and this is an estimate of 0%, regardless of whether the model is correct or not. Next we
show that the SSE can be partitioned into two separate sums of squares, one being the
sum of squares pure error and the other, what we will call the sum of squares lack of fit. We
begin with an identity,

m m

S (1 = 3 (T + (T (14.69)

(14.70)

Note that the cross-product term vanishes (Problem 14.15). We can express
Eq. (14.70) as

SSE = SSpe + SSigf (14.71)

where “pe” stands for “pure error” and “lof” for “lack of fit.” Let n denote the total
number of observations so that n=Y_!", m;, then we note that SSE has (n—2)
degrees of freedom associated with it, that SS,, has >~ ; (m;—1) degrees of freedom
associated with it, and we find Dby subtraction that the SS)¢ has
(n—2)— ", (mi—1) = m—2 degrees of freedom. One may consider that there are
mdistinct points in X on which to build the model, and that two of these are lost for the
terms in our model, thus yielding (m — 2) degrees of freedom for lack of fit. The
model’s lack of fit can be tested by computing

Fo SSlof/(m—Z)

©SSpe/ Yy (mi=1)’ (14.72)

which has an F distribution with (m —2) and >, (m;—1) degrees of freedom.

W Example

Suppose in the example examining weight and counts of 2*>U we obtained
three additional ingots that weighed 20, 40, and 60 g. The counts for these
ingots are 1225, 3208, and 4480, respectively.

a) Repeat the regression analysis using these additional points.
b) Determine SSE, SS,, and SSy,.
) Test whether there is significant lack of fit in the model.




14.7 Regression through the Origin
Solution
a) by = Sxy/Sxx = 175707.2222/2355.5556 = 74.593,

by = Y—b1 X = 2784.889—74.593(37.222) = 8.373,

2
n 1 noo 1
TSS =) ¥7—- (Z Y) = 83171664~ (25064)"
i=1 i=1
=13371208.89,

SSR = by Sxy = 74.593(175 707.2222) = 13 106 528.83,

SSE = TSS—SSR = 264 680.06.

We can now fill in the ANOVA table:

Source of variation df SS MS F p-value
Regression 1 13106 528.83 13 106 528.83 346.63 3.2x 10’
Error 7 264 680.06 37 811.44

Total 8 13371 208.89

b) SSE=264680.06.

We calculate the pure error contribution at each repeat point. If there are
only two repeats, then Z}Zl (Y,j—}_’i)z = (1/2)(Yiy—Y3)>. Hence, we find
SSpe = (1/2)(1457 — 1125)% + (1/2)(3074 — 3208)” + (1/2)(4420 — 4480)?
= 65 890, with (9 — 6) = 3 degrees of freedom. Then SS,.¢ follows by
subtraction: SSj,¢= SSE — SS,. = 264 680.06 — 65 890 = 198 790.06, with
(m — 2) = (6 — 2) = 4 degrees of freedom.

To test for lack of fit, we compute F = [SSiof /(m—2)]/[SSpe/ D11 (mi—1)]
= (198 790.06/4)/(65 890/3) = 2.263. We compare this to the upper 5%
point on the F,; distribution, which is Fy 3005 =6.59, exceeding our
calculated F, from which we conclude that there is no lack of fit with the
linear model.

g)
~

14.7
Regression through the Origin

The regression line may be known to pass through the origin in some situations. For
example, the amount of precipitate Y resulting at a concentration X of a chemical
reactant must be zero if Xis zero, since there is no chemical reaction and, therefore,
no precipitate. We would also expect the number of counts from a radiation detector
to be zero if the amount of radioactive material is zero (but only in an environment
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with no background radiation). The model is the same in this situation, except that
By = 0, so that the model is given by

Y, = ,81Xi+8i, (14.73)

where f3; is an unknown parameter, X; is a known value of the independent variable,
and ¢; is the random error term, which we assume to be normally distributed with
mean 0 and variance ¢”. We assume, as before, that ¢; and ¢; are independent
(implying that Y; and Y] are also independent).

The least squares or maximum likelihood estimation for f; is obtained by
minimizing

Q=> (Yi-pX)’ (14.74)
i=1
with respect to ;. This leads to the following estimator:
L Z?:l XiY;
b, = Srxr (14.75)
An unbiased estimator of E(Y) =[:X is given by
Y =hX. (14.76)

It can be shown, using the same arguments as those in Section 14.5, that an unbiased
estimator for o2 is

n AV n L )2
MSE — izt (Yzl Y« Y (Y 1b1X1) ‘ (14.77)
n— n—

Note that, in this case, the denominator is (n — 1), rather than (n — 2), since we are

only estimating one parameter, 3;, thereby losing only one degree of freedom.
We can obtain the estimated variance and confidence interval for 5;, E(Y), and a new

observation Yy using the techniques of Section 14.4. These are given in Table 14.3.

Table 14.3 Estimated variance and confidence interval for 8y, E(Y), and a new observation, Ypew.

Parameter Estimator Variance of estimator Estimated variance Confidence interval”
Y XY, . 5 MSE
B b= £ =y bi—ts, <py < b
S X7 2 X YL X ]+ ts,
1
2y2 2
S X X~ MSE N N
E(Y) ¥ =bhx o = Y—ts¥ < E(Y)
Ez—lXL ¥ Ei:l‘)(t v v
< Y+tsY

. X2 X2 N
Ynew Ynew = le UZ (1 + n—> S?mwz = MSE |:1 + n—:| Ynew—ts? < Ynew

a) Where t=t, 14



14.8 Inverse Regression

W Example

Varying amounts of a sample are analyzed to determine its activity concen-
tration (in kBq g~ '). The following table relates the measured activity for a
specified weight.

X=sample weight (g) 2.0 2.0 5.0 6.0 8.0 8.0
Y =activity (kBq) 42.8 451 1094 1294 1763 175.1

a) Estimate 8; and interpret what it represents, assuming Y=/,X + «.
b) Estimate MSE for this model.
¢) Obtain an estimate of Y;,e, and a 95% confidence interval when X=5.0g.

Solution

a) Wefindthat) !, X;Y; = 4309.4and > ; X? = 19.7, so that b; =4309.4/
19.7=21.87513kBqg .

b) MSE = Y0, (Y;—Y;)?/(n—1) = 1.576 kBq’.

¢) When X=5.0g, Yyew=bX=(21.87513kBqg ')(5.0g) = 109.376kBq.
We see from Table 14.3 that sz?new = MSE[1+ X%/ Y| X?] =1.776kBq".
The 95% confidence interval for Y., also from Table 14.3, is
?new_ts?new < Yoew < Yrew + tsy which evaluates (using ts 025 = 2.571
from the Student’s t-distribution table in Appendix A.5) to
109.376—2.571/1.776 < Ypew < 109.376 +2.5711/1.776 or 105.949 <

Yoew < 112.803 (in units of kBq).

Note that the assumption f,=0 is a strong one. Fitting the full model,
Y = B, + 1 X + ¢, is preferable in many situations where we cannot investigate the
response near X=0.

14.8
Inverse Regression

One might be interested in the value of X corresponding to a value of Y in some
situations. For example, one might want to know the frequency of chromosome
aberrations in blood cells corresponding to a whole-body dose above which radiation
accident victims are referred for medical treatment, based on chromosome dicentric
formation rate determined as a function of dose. The regression equation should be
significant (i.e., #; # 0) for the inverse regression to be reasonable. A simple plot of
the regression equation and its associated (1 — a) x 100% confidence interval for the
true mean value illustrates the problem graphically. Assume that we are interested in
the value of X corresponding to Y = Y,. We represent Y= Y, by the horizontal line in
Figure 14.5. It intersects the regression line at

Y=Y = b() + b]j{o, (1478)
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giving a solution for Xo,

The line Y=Y, also intersects the 95% confidence band at

(14.80)

where Yx, = bo + b1 X1, t = t,_5 /2, and s = vVMSE. Setting Eqs. (14.78) and (14.80)
equal, canceling b, and rearranging the terms so that the square root is on one side
only, squaring, and collecting terms yields a quadratic equation in X,

AX? +2BX, + C =0, (14.81)
where
t2 2
A=b-", (14.82)
Sxx
tZ 2)‘( R
B=""2_1X,, (14.83)
Sxx

and

22 22%
o2 Bst 557X
C:blxo—T—

. 14.84
- (1484



14.9 Correlation

We get exactly the same equation for Xy, so that X; and Xy are the roots of the
quadratic equation. Solving the equation and collecting terms, we find that

(Xo—X)g + (t5/b1)y/ (Xo—X)*/Sx + (1-g) /n

Xy, X, =X 14.85
Us XL o+ 1—g ) ( )
where
12
=—. 14.86

The values X; and X, are called fiducial limits. Small values of g indicate a significant
regression coefficient f3;.

W Example

Find the value of X and calculate the upper and lower 95% fiducial limits X;
and Xy when Y=2500 counts using the initial example in Section 14.2 of
detector response with mass of 2°U.

Solution

Using Eq. (14.1), Xo = (2500 — 194.532)/70.157 = 32.86 g. The value of g is
calculated as (2.776)* (42 935.5812)%/(70.157)1520.8333 = 0.044. The solu-
tion for X; and Xy is given by Eq. (14.85),

Xy, Xy =32.86
(32.86—35.83)0.044 & [(2.776)(20721)/704157]\/(32.86—35.83)2/15208333 +(1-0.044) /6
+
1-0.044

= 32.86—

0.956 0.956

013068 (3'33178) = 36.208,29.238.

In this example, §; is highly significant and g is small. This allows inverse
regression to be well determined. Figure 14.6 shows an example where the method
given in Eq. (14.85) would give spurious results due to the regression not being
significant. Plotting the graph and its confidence bands is a good practice and can be
useful in avoiding issues evident in Figure 14.6. The inverse regression problem is
also referred to as the calibration problem.

14.9
Correlation

Correlation is strongly related to regression, as we shall see. Correlation is appro-
priate when both Xand Yare random variables. Correlation is a measure of the linear
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@ >

Figure 14.6 Spurious solutions for the upper  does not intersect the confidence intervals;
and lower limits in the inverse regression (b) the solution for Xy, X_ has real roots, but
problem: (a) the solution for Xy, X, given by both are on the same side of the regression line.
Eq. (14.85) has complex roots and line Y=Y,

relationship between X and Y. The correlation coefficient, usually denoted by o, is
defined by

__CovXY) (14.87)

/Var(X)Var(Y)’

where Cov(X, Y) is the covariance between X and Y. It can be shown that -1 <p <1,
where ¢ = + 1 indicates a perfect linear relationship between X and Y. If we have a



14.9 Correlation
random sample (X3, Y1), (X2, Y2), . - ., (X, Ys) from the joint distribution fx v(x, y), then
the quantity

r= Y (Xi—X)(Yi-Y) _ S
o X (v Ve

(14.88)

is called the sample correlation coefficient. Like o, the sample correlation coefficient
satisfies —1 < ¢ < 1. If we compare the equation for b; (Eq. (14.14)) and Eq. (14.88), it
can be shown that (Problem 14.19)

(14.89)

R.A. Fisher showed that the following transformation on r has an approximately
normal distribution, namely,

1 (147 L1
zlen(17r>ftanh (r) N<tanh Q’n73)’ (14.90)

where tanh ' is the inverse hyperbolic tangent. Equation (14.90) can be used
to obtain confidence intervals on g or to test the hypothesis that Hy: ¢ = 0o versus
Hj: o # 0. For example, 100(1 — a)% confidence intervals on @ are obtained
by solving

1, (1+7 1 1 [1+o
S & — —_m(2"9). 14.91
2 n(l—r> a2\ 7372 n(l—@) (1491)

Similarly, for testing Hy: 0 =0 versus Hi: ¢ # o, We can compute

2= Eln(H'r)—%ln(ﬂ)}\/ﬁ (14.92)

1—r 1—-0,

and compare |z| to z;_,/, for a size a test. Of course, one can test one-sided
hypotheses as well (e.g., Hy: 0 < 0o or Hi: 0 > Qo).

Example
Suppose that a sample of size n = 28 is obtained on pairs (X, Y) and the sample
correlation obtained is r=0.43.

a) Obtain a 90% confidence interval on o.
b) Test the hypothesis that Hy: 0 = 0.60 versus Hy: ¢ < 0.60, using a = 0.05.
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Solution
a) Equation (14.91) yields

1. (143 1 1, [1+0
Sln[ 22| £1.645 |- =-In|—%
2 n(0.57) 513572 n(1—9>

(14.93)
(0.1309,0.7889) = %ln (H—(’) ;

therefore, 0.1302 < 0 < 0.6578.
b) Using Eq. (14.92), we have

1, (143\ 1. (1.60
z= {Eln(rw)—zln(m)} V25 = —1.1663. (14.94)

We compare to zg s = —1.645, since this is a one-sided test, and reject if
z < 2905 = —1.645. Hence, we do not reject Hy,.

The field of regression analysis is quite large and this chapter has explored some of
the concepts for the simple linear regression case, that is, a single independent
variable X. The extension to the multiple regression scenario, where we have p
independent variables, X, X;, . .., X,,, is straightforward (although the mathematics
gets messy without the use of matrix theory). Those wanting a more thorough
discussion of regression analysis should consult Draper and Smith (1998), Ryan
(2009), or Neter et al. (2004).

Problems

14.1 A chemical engineer observes the following process yields at 10 corresponding
temperatures:

Temp, °F (X) 100 110 120 130 140 150 160 170 180 190
Yield, g (Y) 520 586 600 62.6 654 0641 726 724 824 838

a) Plot the data.

b) Fitthe model, Yield =, + (; Temp + &, and obtain estimates for S, and
B

) Use the fitted model to plot a straight line through the data.

d) Test the hypothesis Hy: 51 =0 versus Hy: 1 # 0 at the a =0.05 level of
significance.

14.2 Itwas conjectured that the growth of pine trees was dependent on the amount
of rainfall. A botanist studied the growth of seven pine trees, each initially 2
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feettall, for a 3-month period, where the trees were given different amounts of
water ranging from 10 to 70 mm per month. Results were as shown:

Water (mm monthfl) 10 20 30 40 50 60 70
Growth (cm) 2.72 2.85 2.41 2.68 2.98 3.36 3.09

14.3
14.4
14.5

14.6

14.7
14.8

14.9

a. Plot the data.

b. Fit a linear model to these data.

c. Obtain a 95% confidence interval on the slope, f;.

d. Test Hy: 51 =0 versus Hy: 81 #0 at the a =0.05 level of significance.
Refer to Egs. (14.7) and (14.8) and prove that the solution for by and b, is given
by Egs. (14.9) and (14.10), respectively.

Show that >, (Xi—X)(Yi—Y) = > 1, (6—X)Y;, where X = (1/n) Y0, X;
and Y= (1/n) Y"1, V.

Use Problem 14.4 to show that Eq. (14.23) can be written as Eq. (14.24).
Recall that by = Y—b;X. Use this relationship and that of Eq. (14.24) to show
that by is a linear function of the Y;’s. That is, show that by = > 1, a;Y; for
some choice of a;.

Show that if a; = (X;—X)/Sxx, then Y"1 ; a? = 1/Sxx.

Use Problem 14.6, where a; = [Sxx—nX(X;—X)]/nSxx, to show that
Eq. (14.27) is true.

(Hint: Note that Sxx +nX> = 321, X2))

The strength Yof concrete used for radiochemical storage tanks is related to the
amount X of potash used in the blend. An experiment is performed to
determine the strength of various amounts of potash. The data are given below.

X (%)

1.0 1.0 1.5 2.0 2.0 2.5 3.0 3.0

Y (ft Ib) 103 104 103 111 110 118 119 113

14.10

a) Fit a linear model to these data with the amount of potash as the
independent variable.

b) Construct the ANOVA table. Is the regression significant? (Test using
a=0.05.)

c) Since there are repeat values of the independent variable, calculate the sum
of squares pure error and the sum of squares lack of fit and test for lack of
fit. (Test using a =0.05.)

d) Plot the data, the fitted line, and a 95% confidence interval for the mean
value of the regression line using Eq. (14.48).

Consider reparameterizing the linear model to Y; = ag + 8;(Xi—X) + ¢&; for

i=1,2,...,n

a) Obtain the relationship between a¢ and f, where f3 is the intercept in our
original model (Eq. (14.1)).

b) Show that Cov(dyo, by) =0.

(Hint: Since ao and b, are linear functions of the Y’s, thatis, do = ) _;4;Y; and

by = ",6Y;, then all one needs to show is that ) ;a;c; = 0.)
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c) Obtain a test for the hypothesis Hy: ag=a versus Hi: ay # a.

14.11 A teacher conjectured that a student’s initial exam score might be a good
predictor of the score on a second exam. The table below shows scores of 15
students on the two exams.

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Exam1 95 8 76 77 78 8 78 80 76 83 81 87 76 83 82
Exam2 94 91 8 87 87 8, 8 84 8, 8 8 88 86 88 90

a) Determine the correlation between the two exam scores.
b) Use Eq. (14.10) to determine the slope by, if Exam 2 scores are regressed as
a function of scores from Exam 1.

c) Obtain a 95% confidence interval for the correlation coefficient o.

14.12 The coating of a component for use in orbital satellites was tested to determine
its degradation in the presence of energetic protons encountered in near-earth
orbit. The coating integrity I, expressed as a dimensionless number between 0
and 1, is shown in the table below as a function of time t (in days) in the space

environment.
t I t 1 t 1 t I
10 0.998 60 0.994 110 0.987 160 0.983
20 0.998 70 0.991 120 0.985 170 0.982
30 0.996 80 0.991 130 0.988 180 0.982
40 0.997 90 0.988 140 0.985 190 0.981
50 0.994 100 0.989 150 0.984 200 0.978

a) Fit the linear model, I = §,+ [t +e¢.
b) The coating’s effectiveness is compromised when its integrity drops below
0.985. Estimate the time in orbit before this occurs.
c¢) Obtain the 95% confidence interval on the time estimate of part (b).
14.13 Show that the cross-product term in the total sum of squares, Eq. (14.57), is
zero, that is,

2> (Yi—Y)(Yi-Y) =0,
=1
so that we can write TSS = SSE + SSR, as given in Eq. (14.58).
14.14 Use the identity givenin Eq. (14.62) and the fact that E(}"} ; ) = (n—2)0? to
show that E(SSE) = (n—2)0? + Y., B2, as given by Eq. (14.63).
14.15 Show that the cross-product term in Eq. (14.70), 321, >, (Yy— Y)(Yi—Y5),
equals zero, so that Eq. (14.71) holds.
14.16 Show that the variance for the estimator b;, when the regression is through the
origin, is given by Var(b;) = 6%/ > 1 X2
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14.17 Show that the variance of the estimator for E(Y), when X is the value of the
independent variable and regression is through the origin, is given by
X0t/ S0, X2,

14.18 Show that the variance for the estimator of a new observation at X = X;, when
regression is through the origin, is given by Var(e) = Var(Ypm,—Y) =
o (1+ X2/ 32 XP).

14.19 Show that the slope b; can be expressed in terms of the sample correlation
coefficient r, as indicated in Eq. (14.89).

14.20 Show that, from Eq. (14.53), limy _, . [Var(e;)] = Var(Y).

14.21 The response Q of an ion chamber is tested as a function of pressure Pin a
hyperbaric chamber by taking 10 readings of a standard gamma source over a
fixed time, with the results shown:

P (mmHg) 100 110 120 130 140 150 160 170 180 190
Q (nC) 520 58.6 60.0 626 654 0641 726 724 824 838

a) Plot the data, with the response (Q) as the dependent variable.

b) Fit the model Q = 8, + 3; P+ ¢ and obtain estimates for 3, and f;.

c) Use the fitted model to plot a straight line through the data.

d) Test at the a =0.05 level the hypothesis Ho: f; =0 versus Hy: 1 #0.

e) Calculate the residuals and plot them against P. Do the residuals appear
random? Comment on any observations that raise issues with the assump-
tion of randomness in the residuals.

14.22 The production of a particular mouse protein in response to a given radiation
dose is postulated to be dependent on the dose rate D. Irradiation of groups of
mice of a particular strain with the same delivered dose, but at different dose
rates, gave the following results:

D (radh™ 100 110 120 130 140 150 160
C (nmol 17") 402 468 5.02 4.92 5.84 5.42 6.17

a) Plot the data, fit the model C = f, +ﬁ1D + ¢, and plot the line.

b) Obtain a 95% confidence interval for the slope parameter £3;.

¢) A concentration of C=5.39 nmol 17" is of particular interest in assessing
the mouse’s metabolic response to ionizing radiation. Determine the dose
rate D at which this protein concentration is expected and obtain the 95%
confidence interval for this dose rate.
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15
Introduction to Bayesian Analysis

15.1
Methods of Statistical Inference

Classical statistics defines the probability of an event as the limiting relative
frequency of its occurrence in an increasingly large number of repeated trials. This
“frequentist” approach to making statistical inferences was developed extensively in
Chapter 7 under the heading of parameter and interval estimation. As an example,
one might make measurements for the purpose of determining the true, but
unknown, numerical value of the decay constant A of a long-lived pure radionuclide.
The true value can be estimated by repeatedly observing the number of disintegra-
tions X in a fixed amount of time. The variability in the estimate of 4 is evident from
one set of measurements of the random variable X to another. Following classical
procedures, the frequentist can provide an interval within which the true value of 1
might lie with, for example, 95% confidence. The inference to be made is that 95% of
the intervals so constructed by repeated sampling can be expected to contain the true
value of A. This is not to say, however, that the probability is 95% that any particular
interval contains the true value. Such a probability statement would relate to a
random variable, which the true value is not. This formal procedure for ascertaining
the value of 4 is embodied in the maximum likelihood estimation described in
Section 7.9.

A different approach to statistical inference stems from the work of Thomas Bayes
(1702-1761), whose theorem on conditional probability was presented in Section 3.5.
The unknown quantity 4 is assigned a prior probability distribution, based on one’s
belief about its true value. This assignment does not mean that 4 is random, but only
represents a statement of the analyst’s belief about its true value. One can think of the
true value of the parameter A as being the realization of random variable A with a
known distribution (which we call the prior distribution). This distribution is
normally not the product of some realizable experiment on A, but rather is thought
of as the belief of the experimenter’s disposition to the true value before any data are
collected. Observed data X are considered to be fixed information, which can be used
to revise the probability distribution on 4. Given the data, what is the probability that
the true value lies within a specified interval? The inference expresses subjectively a

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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degree of belief in this probability. Furthermore, this probability is always condi-
tional, depending on the information one has.

As an example to contrast the frequentist and Bayesian viewpoints, consider the
experiment of tossing a fair coin 20 times and observing the number of heads.
The interpretation of “fair” implies that the probability of heads occurring on any toss
is 1/2. Suppose that the experiment ended with all 20 tosses resulting in heads. The
classical statistician, if assuming the coin to be fair, would still consider the
probability of heads to be 1/2. The Bayesian, on the other hand, would now consider
that his belief about the true value of the probability for heads has shifted to some
larger value.

In this chapter, we introduce the Bayesian approach. Itis rapidly finding increasing
use and importance today in a wide range of applications, including radiation
protection (Martz, 2000).

15.2
Classical Analysis of a Problem

We begin by treating a specific problem by classical methods in this section and then
analyzing the same problem by Bayesian methods in the next section.

We associate a random variable Xwith alarge population of events that can resultin
one of only two possible outcomes: X=1 (which we term “success”) or X=0
(“failure”). Our objective is to sample the population randomly in order to determine
the probability p of success for the population. The frequentist considers the value of p
to be fixed, but unknown. A random sample of size n is drawn from the population,
and the number of successes Y is recorded:

Y = Zx (15.1)
i=1

Since p is constant from draw to draw, Y has the binomial probability distribution,

Pr(Y = ) = (’;)pyu . (15.2)

Here y = > «x;, with the summation understood to run from i=1 to i=n. We
can interpret this function as the probability fy|p) — that is, the probability for y
successes given p. Showing the dependence on the x; explicitly, we write in place
of Eq. (15.2)

Filp) = £ (Y- xlp) = (ixi)pz’“u —p) (15.3)

Regarding Eq (15.3) as a function of p for a given set of the x;, we define the likelihood
function (Section 7.9),

L(plzxi> = (En:xi>pz"‘(1 —p) (15.4)
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In the frequentist’s view, this function tells us the likelihood of obtaining a sample
with the value y = ) x; for different values of p.

Example
A random sample of n =10 events, drawn from a binomial population with
unknown probability of success p, yields > x; = 4.

a) Obtain the likelihood function.

b) Calculate the values of the function for p=0.0, 0.1, ..., 1.0.

c) Plot the likelihood function and find the value of p that maximizes it.
d) What is the significance of the maximizing value of p?

Solution
a) With n=10 and ) x; = 4, the likelihood function (15.4) becomes

10! _
L(p| > wi= 4) - mp4(1 _ p)lo-
=210p*(1 — p)°. (15.5)
b) Values of this function for the specified values of p are presented in
Table 15.1. The largest value in the table occurs for p=0.4.
¢) The likelihood function (15.5) is plotted in Figure 15.1. To find its
maximum, we differentiate L with respect to p and set the result equal
to zero:
4510 [4p3(1 —p)®—ept(1 —p)s] —0. (15.6)
dp
The solution is p = pmax=2/5 (=0.4, exactly, which coincidently is one of
the values assigned for Table 15.1).
d) This value, p= pmay is the value most likely to have produced the set of
observations.

Table15.1 Values oflikelihood function, L, calculated as function of p
from Eq. (14.5).

p L

0.0 0.0000
0.1 0.0112
0.2 0.0881
0.3 0.2001
0.4 0.2508
0.5 0.2051
0.6 0.1115
0.7 0.0368
0.8 0.0055
0.9 0.0001

1.0 0.0000
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Figure 15.1 Plot of the likelihood function, Eq. (15.5).

The problem of determining p in this example has thus been treated in classical
fashion by the method of maximum likelihood. As described in Section 7.9, the
maximum likelihood estimator (MLE) has many desirable properties and is widely
employed in statistics.

15.3
Bayesian Analysis of the Problem

The frequentist and Bayesian paradigms are quite different. In the Bayesian
procedure, the unknown quantity p is the realization of the random variable P
with an initial (prior) probability distribution, g(p), of its own. This prior distribution
for P is chosen on some basis (subjective) before a sample is drawn from the
population. When the sample is taken, the data x; are treated as fixed information.
They are then used to make revisions and produce a posterior distribution on P. The
end result is to provide a probability statement that the numerical value of P
actually lies within a certain, specified interval. In contrast to the frequentist, the
Bayesian analyst thus expresses a degree of “belief” in what the actual value of the
parameter is.

To express these ideas formally, we set out to determine the probability function
f(p| 3> %), the posterior distribution on P given the sample > x;. Applying Bayes’
theorem, Eq. (4.137), with the prior distribution g(p), we write for the posterior
distribution

o) S 2x) _ fOoxlp)g(p)
£ %) fox  f(ox) (15.7)



15.3 Bayesian Analysis of the Problem

Example

Treat the last example, in which n=10 and } x; = 4, by Bayesian method-
ology. In the absence of other information, let the prior distribution be
uniform, namely,

_JL 0=p=s1,
g(p) = {0, otherwise. (15.8)

a) Obtain the posterior distribution on p.

b) Plot the distribution.

c) Determine the mean of p based on the posterior distribution.
d) What is the significance of this mean?

Solution
a) As before, Egs. (15.1)—(15.3) apply. Using Bayes’ theorem (15.7) with the
uniform prior g(p) =1, we write for the posterior distribution

_flvlp)glp) _ (y )Py(l —p)" % (1)
f(ply) i . | 5o
Y [ (n)py(l —p)" Y dp
Jo \Y

Note that the denominator, in which the integration is carried out over the
range of p, is simply the marginal distribution (Section 4.4) on y. The
binomial factor, which does not depend on p, cancels in the numerator and
denominator. The remainder of the integral in the denominator can be
evaluated through its relationship with the beta distribution. The proba-
bility density function for a random variable P, having the beta distribution
with parameters a >0 and >0, is given by Eq. (6.111):

F(a +ﬂ) a-17/1 _ \B-1
upaf) = | T@r@? TP 0SPSL e

0, elsewhere.

From Eq. (6.112), the mean and variance of P are

E(P) = (15.11)

and

Var(P) = ob (15.12)

S (a+Bt1)(atp)
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Normalization of the beta probability density function (15.10) implies that

jpa—l(l o p)ﬁfl dp _ F(a)r(ﬁ)

O “Taip (15.13)

Comparison with the integral in Eq (15.9) shows that we can set
(Problem 15.1)

a=y+1 and f=n—-y+1 (15.14)

and write in place of Eq. (15.13)

Fy+1)I(n—y+1)

ey (15.15)

1
JPY(l -p)tdp=
0

It follows from Eq. (15.9) that the posterior distribution on p given y is

I'(n+2)
flply) =3 T+ Dl(n—y+1)
0, elsewhere.

pPa-p"t, 0<p<i1,

(15.16)

The posterior distribution is thus the beta distribution with parameters a
and 3 given by Eq (15.14). As in the last section, n =10 and y = 4, and so the
posterior distribution (15.16) becomes

raz ¢ 11!, 6 4 6
Floly) = WZ’ (1-p) = 11617 (1-p) =2310p"(1-p)°, 0<p<1,
0, elsewhere.
(15.17)

b) The distribution (15.17) is plotted in Figure 15.2. One sees that the shape
of the posterior density on P is nearly the same as the shape of the
likelihood function, indicating that the data have influenced our prior
Dbelief substantially, moving it from a uniform prior distribution to a beta
distribution.

) It follows from Eqs (15.14) and (15.11) that the mean is

5

E(Ply=4) =5~ =04167. (15.18)
d) The mean value given by Eq. (15.18) is now a weighted average of our prior
belief (mean = 0.5) and the data (mean = 0.4). It will be shown later that
the mean of the posterior distribution has a nice property with respect to
estimators using a mean-square error criterion. It is also one way of
comparing back to the classical estimator, which in this case is

p=y/n=0.40.
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Figure 15.2 Plots of the prior, likelihood, and posterior densities.

The beauty of the Bayesian paradigm is that, once we have the posterior
distribution, we know all that one needs to know about P, under the assumptions
made. We can display the distribution, calculate its mean and variance, and
compute any other quantities that are pertinent. We can calculate exact probability
intervals for P, rather than confidence intervals that rely on repeated realizations of
the sampling scheme. Thus, Bayesian statistics offers many features that the
frequentist’s does not.

15.4
Choice of a Prior Distribution

The major issue in the Bayesian methodology is the choice of the prior distribution.
Its selection is necessary in order to apply Bayes’ theorem and obtain the posterior
distribution on the parameter, or parameters in a multivariate setting. The multi-
parameter situation entails some additional concepts with respect to distribution
theory, but follows the same procedures that are employed for a single parameter. We
shall investigate the single-parameter case only. The multivariate problem is dis-
cussed in other texts, for example, Press (1989).

To establish notation, we shall be interested in a random variable ®, which has a
prior distribution g(0) and is a parameter in the sampling distribution f{y|6). The joint
distribution on (y, 6) can be expressed as

(. 0) =f(y10)g(6). (15.19)

Suppose that we have drawn a sample that is characterized by 6, and that we have a
prior distribution on 6 that is independent of our sample. We can then use Bayes’
theorem, Eq. (4.137), to derive a posterior distribution,
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_fO.y) _f(yl0)g(0)
FON="50) = F) (1320)

The marginal distribution f{y) is obtained by integrating the joint distribution £{6, y)
over 6, and so

f(y10)s(6)
0ly) = . 15.21
T =Tf10)5(0)d0 (1521
The function f{y) does not depend on 6, and thus acts like a multiplicative constant in
Eq. (15.20), specifying f{fy). Therefore, we may write the proportionality

F(Oly) < f(y10)(6), (15.22)

which is sufficient to describe general properties, as we shall see. This important
form of Bayes’ theorem states that the posterior distribution is proportional to the
product of the sampling and prior distributions. The statement (15.22) turns things
around with respect to the conditioning symbol. It relates f{8|y) to fly|6). The quantity
flOy) is of interest as expressing the probability distribution of 6 given y (the data).
The sampling distribution f{y|6) expresses the likelihood of observing the data y given
the value 6. As will become clearer in examples that follow, if we draw a random
sample of size n from the population, then f{y|6) is simply the likelihood function.
The prior distribution g(6), representing our knowledge or ignorance about the value
of 0, is modified by the likelihood function to produce the posterior distribution.
Thus, f{0]y) in Eq (15.22) represents our state of knowledge about 0 in light of the data.

As pointed out at the beginning of this section, the choice of the prior distribution
is crucial. Yet, in most situations, nothing is known about this distribution, and so it
must be selected subjectively. There are two basic ways to look at prior distributions.
The “population” interpretation states that the prior distribution represents a
population of possible parameter values from which the 6 of current interest has
been drawn. On the other hand, the “state of knowledge” interpretation says that we
must express our knowledge about 6 as if its value could be thought of as a random
realization from the prior distribution. Usually, there is no relevant population of 6’s
from which the current 6 has been drawn. This situation appears to present a
dilemma, because the prior should reflect some things about 6. For example, it should
include all possible values of 6. The principle of insufficient reason, first used by Laplace,
states that if nothing is known about 6, then a uniform specification is appropriate.
(We made this assumption in the last example by using Eq. (15.8).) As we shall see,
however, the prior information is often outweighed by the information about 6 that is
contained in the sample. Since the prior distribution is a subjective choice, the
domination of the sample information is desirable because it moves the inference
from the subjective to the empirical.

Example

Return to the specific problem introduced through Egs. (15.1)—(15.3) in
Section 15.2, involving the binomial probability distribution. Choose the beta
distribution with parameters a and f as the prior distribution on P.
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a) Determine the posterior distribution on P.

b) Comment on how the parameters a and f can be interpreted.
c) What happens if a=4=1?

d) Find the mean of the posterior distribution.

Solution
a) We write for the sampling distribution from Egs. (15.2) and (15.3)

fllp) = (;)py(l -p" (15.23)
The prior is given as the beta distribution, which from Eq (15.10) we
write as
r(a+ﬂ) a—1 p-1
TIAT(A) 1- , 0<p<l,
a(p) = { T(@T(B)” (1=p) p (15.24)

0, elsewhere.

Applying Bayes’ theorem in the form of the proportionality (15.22), we
write for the posterior distribution

[ n n— r(a+ﬁ) o—1 -1
f(ply) < f(ylp)g(p) = (Y>py(1 -p) YWP (1-p)f

o prtei(1 — p) AT (15.25)

where we have dropped all the multiplicative constant terms in the last

step. Comparison with Eq (15.10) shows that the posterior distribution

also has the form of a beta distribution with parameters (y + a) and

(n—y+B).

The dependence of the sampling distribution (15.23) on P is contained in

the factors p¥(1 — p)" 7, where y is the number of successes and (n —y) is

the number of failures. The prior, p*~ (1 — p)ﬂ 1, given by Eq (15.24), is

similar in form. It follows that (¢ — 1) and (8 — 1) may be thought of as the

number of successes and failures, respectively, prior to sampling.

¢) Ifa=p=1,thenthe (prior) beta distribution (15.24) becomes the uniform
distribution. The posterior distribution (15.25) is beta, with parameters
(y+1and (n—y+ 1)

d) As shown in (a), the posterior is a beta distribution with parameters
(y + @) and (n —y + f). The mean is, by Eq. (15.11),

A=x

a-+y

E(PY) = g (15.26)

This example shows how one can select a rich prior distribution and can also
choose values for the parameters of that prior distribution (called hyperparameters)
to investigate special cases. In the example we saw that a and f can be interpreted as
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the prior number of successes and failures. Choosing a = =1 yielded a uniform
prior on p, which satisfies the principle of insufficient reason. One can also look at
other choices of a and f§ to evaluate their effects on the posterior distribution and
can get a good sense of how different choices can affect the posterior. The value of
the posterior mean (15.26) lies between the sample proportion y/n and the prior
mean a/(a + ) (Problem 15.5). For fixed a and 3, y and (n — y) both become larger
as the sample size increases, and E(P|y) = y/n. Thus, if the sample size is large
enough, the choice of the hyperparameters will have little influence on the
posterior. Conversely, if our sample is small, then the hyperparameters might
make a considerable impact.

15.5
Conjugate Priors

The property that the posterior distribution follows the same parametric form as
the prior distribution is called conjugacy. In the last example, the beta prior
distribution for different values of a and f leads to a conjugate family for the
binomial sampling distribution (or the binomial likelihood). Without discussing
conjugate priors in any detail, we present several in Table 15.2 for specific
sampling distributions.

Example
Use the Poisson distribution to model the number of disintegrations Xin a
specified time t from a long-lived radioactive source.

a) Obtain the posterior distribution by using the natural conjugate prior.
b) Obtain the expected value of the posterior distribution.

Table 15.2 Natural conjugate priors.

Sampling distribution Natural conjugate prior distribution
Binomial: f (y|p) oc p*(1 —p)*” Beta: g(p) o p* (1 —p)’~"

Negative binomial: f(y|p) o p"(1 — p)* Beta: g(p) o p* (1 — p) !

Poisson: f(y|) o< e * A Gamma: g(4) oc A e

Exponential: f(y|A) oc 4 e™? Gamma: g(4) o< A“' e

Normal with known ¢ and unknown u: Normal: g(u) o e (u=0/22

Fylu) oc et

Normal with known u and unknown o*: Inverse gamma:* g(02) oc e #/7" /(%) "!

Fylo?) o« e /7" [(0?)'/?

*The inverse gamma is simply the distribution of Y = 1/X, where Xhas the gamma distribution. If the
gamma distribution is f(x; a, 8) = f*x* ' e #*/T'(a), then Y=1/X has the inverse gamma
distribution with density given by f(y; a, 8) = * e #/7 /T(a)y**.
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Solution
a) Letting A denote the decay constant, we write

(At)* e

fel) == (15.27)

From Table 15.2, the conjugate prior is the gamma distribution, which we
write here as!

g(A) occ A% e, (15.28)

From Bayes’ theorem it follows that the (unnormalized) posterior distri-
bution is

FQ@lx) oc fx|A)f (2) oc 27747 e A, (15.29)

which we can identify as a gamma distribution with parameters a’ =
(x + a)and ' =(t + f).

b) The expected value of a gamma random variable with parameters a’ and 5/
isa'/f’ (Eq. (6.69)). Hence, the expected value of the posterior distribution
is

_x+a
Ct+ B

(Note that the classical estimator of 1 is A = x/t.)

E(A) (15.30)

It appears that one may interpret the parameter f as a prior timescale over which
we observe the process and the parameter a is the number of occurrences observed
prior to the sample. We note that if we choose a =0 and =0, then the posterior
mean (15.30) converges to the classical estimator. This choice of parameter values is
similar to having very little information about the process. Such priors are called non-
informative and agree with the principle of insufficient reason.

15.6
Non-Informative Priors

We have already seen the application of a non-informative prior in our study of the
binomial parameter P when we chose the uniform prior. Such distributions are also
called reference prior distributions. The name non-informative, or vague, implies that
the prior distribution adds little to the posterior distribution about information on the
parameter. Itlets the data set speak for itself. The idea is that no particular value of the

1) The following substitutions have been made in writing Eq. (15.28) from Eq. (6.68): x — 4,4 — f3,and
k— a.
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prior distribution is favored over any other. For example, if © is discrete and takes on
values 0,,i=1, 2, ..., n, then the discrete uniform distribution,

g6) ==, i=1,2,....n (15.31)

does not favor any particular 6; over another. We say that g(6;) is a non-informative
prior. Similarly, in the continuous case, if © is bounded, say 6 € [a, ], then we call the
distribution,

a<6<bh, (15.32)

non-informative.

If the parameter space is infinite, for example, 6 € (—oo, 00), then the situation is
less clear. We could write the non-informative prior as constant everywhere, g(6) =c,
but this function (called an improper distribution) has an infinite integral and
therefore cannot be a valid density function. However, Bayesian inference is still
possible, provided the integral over 6 of the likelihood f{x|6) exists. As seen from
Eq. (15.21), g(60) = ¢ cancels in the numerator and denominator. If the integral exists,
then f{0|x) is a proper posterior density.

A thorough discussion of non-informative prior distributions is beyond the scope
of this text. Interested readers are referred to Carlin and Louis (1996), Box and Tiao
(1973), Press (1989), and Martz and Waller (1982). Non-informative priors can be
proscribed by attributes of the sampling distribution. If the sampling distribution is
such that f{x|0) = fix — 0), for instance, so that the density involves 6 only through the
term (x — 6), then 0 is called a location parameter. In this case, if @ belongs to the whole
real line, then the non-informative prior for a location parameter is

g(0)=1, —o00<6<cx. (15.33)

If the sampling distribution is such that f (x|0) = (1/0)f (x/0), where 6 > 0, then 0 is
called a scale parameter. Thus, the non-informative prior for a scale parameter is
given by

g0)=-, 0>0. (15.34)

One can also work with g(6*)=1/6> as well as Eq. (15.34) and use
f(x]0) = (1/6)f (x/6). Both of the prior distributions described by Eqgs. (15.33)
and (15.34) are improper priors, since the integrals of the densities are infinite.
However, this factis not as serious as it may seem if the sampling distribution and the
prior combine in a form that is integrable.

Example
The random variable X has the exponential distribution with parameter 4,
where 0 <1 < o0.

a) Show that 6 =1/4 is the scale parameter.
b) Obtain the posterior distribution on 4 by using the non-informative prior.
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c) Obtain the posterior distribution on 4 by using the gamma prior with
parameters o and f (i.e., the conjugate prior in Table 15.2).
d) Compare the posterior distributions provided by (b) and (c).

Solution
a) The sampling distribution is given by
1
I PO S TCY/)
f(x|A)=12e 1//1e . (15.35)

The distribution has the form (1/60)f (x/6), where 6 =1/1 is the scale

parameter.
b) The non-informative prior for a scale parameter is, from Eq. (15.34),

1

g =g =k >0 (15.36)

From Eq (15.22), we can write for the posterior density
FAx) o< f(x|A)g() = Ae ™A = 2% e ™. (15.37)

This function has the form of a gamma density with &’ = 3 and ' = x. In
this case, even though the prior density is improper, the resulting posterior
density is proper.

¢) Given that the prior is gamma with parameters a and j, we have

FlAlx) o f(x|A)g(A) = he A% T e ¥ = 3% e AHP) (15.38)
which has the form of a gamma density with parameters (Problem 15.8)

a=a+1,

B =x+p.

d) Comparing the two posterior distributions, we see that choosing a =2 and
B =0 is equivalent to selecting a non-informative prior. In this case, the
gamma distribution contains the non-informative distribution as well as
many others, thus presenting a rich variety of priors.

(15.39)

Consider next a normal population with unknown mean u and known standard
deviation 0. The sampling distribution is given by
1
Flxlu) = ———e 12001 _ oo < x < o0, (15.40)
2no
where we have omitted writing ¢ in the conditional part, since it is known. It is
apparent that u is a location parameter, because f{x|u) depends on i only through the

2) In the definition (6.68) of the gamma density, we can interchange the roles of x and A, writing
F(Aik,x) o x¥2¥" e=#*. Dropping the scale factor x¥, we write this as proportional to the gamma
density on A with parameters o’ and f: f(4; o', ') o A% "' e=#'. Comparison with Eq. (6.68) shows
that the parameters in Eq. (15.37) are o’ =3 and ' =x.
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term (x —u). In this situation, if we want to use a non-informative prior on u, we

would use
glu) =1, —oo<pu<oo. (15.41)
W Example
Let X;, X;, ..., X, denote a random sample from a normal population with

unknown mean u and known standard deviation o.

a) Assuming a non-informative prior, determine the posterior distribution
on u.

b) Choose the natural conjugate prior and determine the posterior distribu-
tion on u.

c) Compare the two posterior distributions obtained in (a) and (b) when the
uncertainty in the unknown mean is very large. If the uncertainty in the
mean is not large, what is the effect of a large sample on the posterior
distribution?

Solution

a) The posterior distribution is proportional to the product of the sampling
distribution and the prior. Assuming a non-informative prior on u, we use
Egs. (15.40) and (15.41) to write

F e, %2, -y 30) o e 120D 200, () (15.42)

To obtain the distribution on u, we first add and subtract ¥ within
the quadratic term. We then express the sum from i=1 to i=n in the

exponent as
dDi—w?=> (i—x+x%—p)’ (15.43)
:Z( —X) +ZZ i —%)(x — ,u+2x u)’
= (i —%)"+nEx -’ (15.44)
since Y (x; — %) = 0. Thus, the posterior distribution (15.42) becomes
Flulxr, %o, . .. %) o e (/20 > =) o—[1/(20%/m)](u—%)’
el1/@o?/m) (=) (15.45)

The first exponential term that appears here is a constant with respect to u
and can, therefore, be ignored in determining the proportional posterior
distribution on u. The remaining exponential term shows that the poste-

rior on u is normal with mean % and variance o?/n.
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b) Table 15.2 shows that the natural conjugate prior is normal with mean 6
and variance 72. Thus, the posterior is proportional to the product

fulx, %, ..., %) x e (/201 30 (i)’ o=(1/20)(u=0)" (15.46)

As before, adding and subtracting X in the exponent of the first term on the
right, we find that

Flulxt, %2, . .. %) oc e /@ /WIER) o=(1/2)(e=0)" (15.47)

We can expand and collect terms in the exponents. By completing the
square and omitting multiplicative factors that do not depend on u, we find
that (Problem 15.9)

Flulxr, %, %) oc e”A/20 00" (15.48)

where
(1/79)6 + (n/0*)x
N ST A St A 15.4

O =+ (o) (15:49)
and

1 1 n

E:§+g. (15.50)

This result shows that the posterior distribution on u is normal with mean
6, and variance 2.

¢) To compare the results from (a) and (b), we first consider the case of very
large 7%, implying great prior uncertainty about the value of 4. Then, from
Eqs (15.49) and (15.50),

1 n
0, =% d Ss~—. 15.51
12X an 2= ( )

This limiting case, 7> — oo, yields the same posterior (15.45) as the non-
informative prior. On the other hand, if 7 is not large, but nis large, then n/
0” dominates and again the posterior density is close to that obtained by
using the non-informative prior. In this instance, when we collect a large
sample, it would be expected that the sample dominates the posterior, as
it does.

15.7
Other Prior Distributions

There are many prior distributions that can be used in doing Bayesian analysis. Press
(1989) discusses vague, data-based, and g-priors. Carlin and Louis (1996) discuss
elicited priors, where the distribution matches a person’s prior beliefs. We note that

401



402

15 Introduction to Bayesian Analysis

prior distributions simply serve as a weighting function and, as such, one can
imagine a large variety of them.

Prior distributions should satisfy certain criteria. The principle of insufficient
reason would suggest a uniform or non-informative prior. On the other hand,
selecting the natural conjugate argues that the selection of the sampling distribution
is as subjective as the selection of the prior. Box and Tiao (1973) argue that the choice
of the prior is not important as long as the information from the sample dominates
the information contained in the prior. As we have pointed out, the main objection to
the Bayesian analysis is the selection of the prior distribution. Much consideration
and thought should go into its choice.

15.8
Hyperparameters

The prior distribution itself often depends on certain parameters that are conve-
niently referred to as hyperparameters. For example, the beta prior (15.24) is a function
of pwith hyperparameters @ and 3. Once a functional form for a prior distribution has
been chosen, the values of its hyperparameters need to be selected (unless the prior is
non-informative). To illustrate one method for determining the values of the
hyperparameters, we consider the screening for radioactivity of a collection of soil
samples from a retired production site. Random samples are taken and counted
under uniform conditions. A given sample is classified as “high” or “low,” depending
on the magnitude of an observed count rate. We expect the sampling for “high” or
“low” to follow the binomial model, and hence we chose the beta prior distribution as
we did with Eq. (15.10). While we do not know the values of a and f directly, we might
have a practical feel for the mean and standard deviation of the prior distribution.
This information can be used to determine a and j. For instance, let us estimate that
the prior mean is 0.040 and that the standard deviation is 0.025 in appropriate units
(e.g., counts per second). This choice of distributional characteristics reflects a guess
about the magnitude of mean, with uncertainty reflected in the relatively large value
of the standard deviation. The assumed mean and variance satisfy Egs. (15.11)
and (15.12). In this case, then,

E(P) = “ﬂ:o.o4o (15.52)

and

ap
(a+p+1)(a+p)?

Var(P) = = (0.025)%. (15.53)
Solution for the two unknowns gives o = 2.42 and 8 = 58.0. In practical terms, our
prior is saying that, if we checked about 60 soil samples, we would expect to see 2 or 3
with “high” readings. Use of Egs. (15.52) and (15.53) provides a way to determine
values for the hyperparameters a and .
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In the next section, we discuss how one can use Bayesian analysis to make
inferences. Additional sections will address applications of the inference method to
the binomial probability, the Poisson rate, and the mean of a normal population with
known variance.

15.9
Bayesian Inference

The Bayesian inference is embodied in the posterior distribution. All that one needs
to know formally about the random variable is contained in the posterior density or its
cumulative distribution. Knowledge of either or both is sufficient for answering most
questions, but using them leaves comparison with frequentist methods somewhat
unclear. Bayesians have been adept at finding good comparative measures, and we
shall discuss these for point estimators, interval estimators, and hypothesis testing.

To consider a point estimate for a random variable ®, we look at any summary
entity, such as the mean, median, or mode of the posterior density. The mode is the
value that maximizes the posterior density, which is proportional to the product of the
sampling distribution and the prior. If we choose a flat prior, then the maximization
of the posterior is equivalent to maximizing the sampling distribution or the
likelihood function. Hence, the mode and the maximum likelihood estimator will
be the same when the prior is flat. Because of this fact, the mode is often called the
generalized maximum likelihood estimator. The mode is most appropriate if the density
is two-tailed. In the case of a single-tail distribution, like the exponential, the mode
may be the leftmost point, which is not very appropriate or informative.

The mean is often used to measure central tendency. The mean of the posterior can
thus serve as a measure of centrality as well. Based on the posterior distribution, we
can evaluate the accuracy of an estimator, 6(y), by looking at its variance
Ep,[(© — 0(y))?], where the subscript indicates that the expectation is taken with
respect to the posterior distribution on ©. Letting u = Ey;,[®] represent the posterior
mean, we can write

Egy[(© — 0(y))*] = Eg,[(© — t + 1 — 6(y))’] (15.54)

= Eg[(© — )] +2( — 6()) Egy[© — u] + (1 — 6(y))?
= Egp[(© — )] + (u — 0(y))°. (15.55)

We see that the posterior variance of A(y) is equal to the variance of the posterior
distribution plus the square of the difference between the estimator and the posterior
mean. Therefore, to minimize the posterior variance of 6(y), we should choose 0(y)
such that the last term in Eq (15.55) vanishes, that is, choose 6 = u. Thus, u
minimizes the posterior variance of all estimators. The mean is a common measure
of centrality. However, we note that highly skewed distributions will tend to have
mean values that are large, due to the influence of long tails, and thus can vary
significantly from the middle of the distribution.
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The median is the value 0 for which Prg,(© < é) > 1/2and Prg,(© > é) >1/2.
(For continuous densities, the median is unique. For discrete distributions, it can
take on infinitely many values.) Also, # minimizes Eol(|® — 6|). Simply put, the
median is the value that splits the distribution in half. The major issue with the
median is the fact that finding an analytical representation for it is usually difficult.
For aunimodal, symmetric distribution (such as the normal), the mean, median, and
mode all coincide.

The Bayesian’s version of the frequentist’s confidence interval is the credible
interval. Credible intervals are simply probabilistic intervals taken directly from the
posterior distribution. If Fy,(6) is the cumulative distribution function of the
posterior distribution, then we can find values a and b such that

Pr(a < © < bly) = Fg)(b) — Fgp(a) =1 —a. (15.56)

The interval (a, b) isa 100(1 — )% “credibility interval” for 6. The values of a and bare
not unique. That is, there are many possible choices that will yield a 100(1 — a)%
credibility interval. The usual way to determine their values is to specify equal
probabilities to the left and right of a and b, respectively. We choose a such that
Prg,(® < a) = a/2 and bsuch that Prg,(© > b) = a/2. This partitioning can always be
done when O is continuous. If O is discrete, however, one cannot always find values
of a and b that capture exactly 100(1 — @)% of the distribution.

The symmetric form for determining a and b will not always yield the shortest
interval. The highest posterior density (HPD) method seeks to avoid this defect. The
HPD credible set C can be defined by writing

C={0€O:f(0ly) >k(a)}, (15.57)

where k(a) is the largest constant that satisfies Pr(C|y) > 1 — a. This statement means
that C contains all the values of 6 for which the posterior density is greater than or
equal to some constant k(a), where this constant is dependent upon the choice of a.
Figure 15.3 indicates the idea behind the HPD credibility interval. The value k(a) cuts
the posterior density function in two places, where 6 = a and 6 = b. We move k(o) up

p@Ly) 2 k(o)

p(8ly)

k(o)

0

Figure 15.3 Graphical representation of the HPD credible interval of size (1 —a).
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p(8ly)

k(o))

Figure 15.4 Graphical representation of example in which HPD credible interval method can yield
two disjoint intervals.

and down until the integral over the interval from a to bis equal to (1 — a). The interval
(a, b) is then the HPD interval.

For most well-behaved posterior densities, the method works well. However, if the
density is single-tailed or multimodal, one can obtain some strange credible intervals.
For example, if the posterior density is U shaped, Figure 15.4 shows that the HPD
method would give two disjoint intervals. Again, we move k(a) up or down until the
area under the posterior density function equals (1 — a). For the posterior density
plotted in Figure 15.4, we see that the end points ¢; and ¢, must be included and, in
addition, the line fl0]y) = k(@) cuts the graph at the points ¢, and ¢;. Thus, there are
two disjoint intervals (cq, ¢;) and (c3, ¢4) that make up the HPD interval. Although this
problem is not common, the HPD interval is normally solved by numerical
techniques on a computer. This procedure is computationally more intensive than
using the symmetric form. We use the symmetric form throughout, but note that the
HPD interval will, in general, be shorter than the symmetric interval.

The last inferential area to be discussed is hypothesis testing, which is notably
different in the frequentist and Bayesian settings. The Bayesian paradigm allows for
different hypotheses or models in a very natural way. In the usual hypothesis testing
model, a null hypothesis Hy and an alternative H; are stated. If the null and
alternative hypotheses specify single values, for example, Hy: 0 =6, versus Hj:
0 = 01, then the hypotheses are described as simple versus simple. If one hypothesis
specifies a single value while the other gives an interval, for example, Hy: 0 =6,
versus Hy: 6 > 64, then they are referred to as simple versus composite. Composite versus
composite hypotheses are possible as well, for example, Hy: 8 < 8, versus Hy: 6 > 6.
Initially, we shall consider simple versus simple hypotheses. One can think of these
equally well as two competing models, but we shall keep the hypothesis testing
format. We let T(y1,ys, .., yn) denote some appropriate test statistic based on a
random sample of size n. By Bayes’ theorem (3.44), the posterior probability of Hy
given the observed data T'is

PI’(T|H())PI’(H0)
Pr(T|Hy)Pr(Hy) + Pr(T|H;)Pr(Hy)’

Pr(Ho|T) = (15.58)
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where Pr(Hy) + Pr(H;) = 1 is the sum of the prior probabilities for Hy and Hj.
Similar posterior probability of H; is

Pl’(T'Hl)Pl’(Hl)
PT(T‘H())PI”(H()) + PI’(T|H1)P1’(H1) '

Pr(Hy|T) = (15.59)

The posterior odds of H, (compared with H;) are given by the ratio of these
quantities:

(15.60)

i [ )

= |Pr(T)HY) | |Pr(HY)

which is just the product of the likelihood odds and the prior odds of Hy. If the
ratio (15.60) is greater than unity, then we accept Hy over Hy; otherwise, we reject Hy
in favor of Hj.

The Bayes factor is defined as the ratio of the posterior odds of Hy and the prior odds
of Hy. Thus, with the help of Eq (15.60) we have

[Pr(Ho|T)/Pr(H|T)] _ Pr(T|Ho)

Bayes factor = [Pr(Ho)/Pr(Hy)] ~ Pr(T|H;)’

(15.61)

which depends only on the data. When testing a simple versus simple hypothesis, we
see that the last expression is the ratio of the likelihood obtained from the two
competing parameters 6, and 6,. Equation (15.60) shows that, if the hypotheses are
simple and the prior probabilities are equal, then the Bayes factor equals the posterior
odds of Hy, which equal the likelihood odds of Hj,.

With the simple versus composite hypothesis (e.g., Ho: € = 60, versus Hy: 6 # 0,), we
need to define prior densities on 6, and 6. Under Hy, the prior density is degenerate
with all its mass at the point 6,. That is,

PI’HO(Q = 0()) =1. (1562)

Under Hj, the prior on © can be any other prior, such as a conjugate or non-
informative. We can then write for the probability

PI’(T|H1) = Jf(T‘GH Hi)gi(gi)dgi, i= 07 1. (1563)

Under H,, the integral is simply the function f{T|6y, Ho). Under Hj, the integral
represents the average likelihood over the prior density. Note that if the prior is non-
informative and improper, then the integral might not exist, and so care must be
taken. This circumstance furnishes one argument against using improper priors.
Given that Pr(T|Ho) and Pr(T|H,) are defined, the posterior odds and the Bayes factor
can be calculated. The results given earlier follow for this simple versus composite
situation.
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Table 15.3 Comparison of frequentist and Bayesian inference methods.

Inference Frequentist Bayesian
Point estimate Maximum likelihood Mean, median, or mode of posterior
estimate distribution
Interval estimate Confidence interval Credible, or highest posterior density, interval
Hypothesis testing Likelihood ratio test Ratio of posterior odds, or Bayes factor

Table 15.3 compares the frequentist and Bayesian inference methods just dis-
cussed. In the next three sections, we shall apply the Bayesian method to the
binomial, Poisson, and normal mean parameters.

15.10
Binomial Probability

We return to the drawing of a random sample of size n from a Bernoulli population
where the probability of success is p. When the prior is the beta distribution with
parameters a and f3, the posterior on P is given by Eq. (15.25). We can determine the
mode by differentiating with respect to pin Eq (15.25), setting the result equal to zero,
and solving for p (Problem 15.13). We find that

y+a-1

Mode of P = ———.
ode o P

(15.64)

In part (c) of the example in Section 15.4, we showed that, when a = = 1, the prior
is equal to the uniform distribution. Because the prior is flat, the mode should then
equal the maximum likelihood estimator, y/n. This result is borne out by
Eq. (15.64).

The median is difficult to use in a straightforward manner, because there is no
simple algebraic form that describes it. One needs actual numerical values for the
terms n, y, a, and f. Using these and tables of the cumulative binomial distribution,
one can determine the median.

The mean of the posterior was shown through Eq. (15.55) to be an optimal
estimator in that it minimizes the squared error. Witha' =y + aandf/'=n—y + 8
in Eq. (15.25), the mean is

y+a
E(P)=p= " (15.65)
Recall that we can think of the prior as telling us the number of successes a and
failures f in a sample of size (& + f). The mean simply incorporates the prior and
data in a natural way in Eq. (15.65), giving an estimator that is the ratio of the total
number of successes and the total sample size.
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Example

A collection of air monitor filters from a building is to be checked for large
particulates, defined for control purposes as having dimensions that exceed a
certain control value. Assume that the number Y of such filters that check
positive for large particles in a sample of size n from the total filter population
has the binomial distribution with probability p of selection.

a) Inarandom sample of n =120 filters, y =4 are found to check positively.
Using a uniform prior on p, find the posterior distribution. Obtain its
mode, mean, and median.

b) Past history suggests that the average value of p is 0.010 with a standard
deviation of 0.007. Find the prior on p that would yield these values,
assuming a beta prior. Obtain the posterior distribution and its mode,
mean, and median.

) Itishypothesized that p=0.010 is the historical value for p. Compare with
the alternative hypothesis that p = 0.040 by using the posterior odds and
the Bayes factor. Due to a lack of knowledge about the likelihood of one
hypothesis over the other, we shall assume that Pr(Hy: p=0.01) = Pr(Hy:
p=0.04)=1/2.

Solution
a) From our previous examples, the posterior distribution is given by
Eq. (15.25), with a=p=1 for the uniform prior. With n=120 and
y=4, the mode (15.64) is
441-1

The mean of the posterior distribution is, from Eq. (15.65),

441

=——=0.041. 15.
120+1+1 0.0 (1567)

E(P)

The median p is defined by writing

p
(122) . e, 1
T5)T(117) Jp (1-p) "dp= 5 (15.68)
0
The factor outside the integral is I'(n + a + 8)/[I'(y + a)T'(n — y + B)].
Numerical solution of Eq. (15.68) gives the result p = 0.038.
b) Past history suggests the mean x4 =0.010 and standard deviation
0 =0.007. From Egs. (15.11) and (15.12),

a

= =0.010 15.69
M= ( )

and

2 af _ 2
ot = PR PRI (0.007)%. (15.70)
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Solving for o and 3, we find a = 2.01 and 8 = 199. Combining these values
(rounded to the nearest integer) with the data yields a beta posterior with
parametersa’ =y + a=4 + 2=6andf' =n—y + f=120—4 + 199=
315. The mode (15.64) of the posterior is

Mode of p— 42~ 1 > _ 0.0 (15.71)

120+2+19-2 319
The mean of the posterior is

o 6

E(P) = —— = =0.01 15.72
(P) a’—l—ﬂ' 6+ 315 0.019, (15.72)

and the median is
5 =0.018. (15.73)

In the simple versus simple hypothesis, the posterior odds are given by the
product of the likelihood odds of Hy and the prior odds of Hy, as expressed
by Eq. (15.60). The test statistic T'in that equation is the binomial variable y
here:

£l = (7 )= pr (1574
Under H,

Pr(y|Ho) = Pr(y|p = 0.01) = (1i°> (0.01)*(0.99)"¢, (15.75)
and under H,

Pr(y|Hi) = Pr(ylp = 0.04) — (110) (0.04)*(0.96)15. (1576

We are given Pr(Hy) =Pr(H;) =1/2, and so

Pr(Holy) ~ (0.01)*(0.99)""¢
Pr(Hily) — (0.04)%(0.96)"" 0139 (15.77)

Since the ratio is less than unity, we would accept H; in favor of Hy. Since
Pr(Ho) = Pr(H;) = 1/2, the posterior odds are equal to the Bayes factor, and
both are equal to the likelihood ratio. In the above case, we see that the odds
are roughly 6 to 1 in favor of the alternative hypothesis that p=0.04.

Poisson Rate Parameter

We next consider the Bayesian method applied to the important Poisson rate
parameter 1. We assume that, during a given time t, a number of events x occur
from some process. In addition, we assume that the natural conjugate prior
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distribution for 4 is the gamma distribution. Making the replacements, x — 4,
k — a,and 1 — f in Eq. (6.68), we write for the prior

glA) = %/1“71 e 1>0, ap>o0. (15.78)

With the application of Bayes’ theorem from Eq (15.22), we can express the posterior
distribution as proportional to the product of the likelihood function and the
prior. Thus,

FAx) oc AxTet e A, (15.79)

We see that the posterior is of the gamma family. The parameters a and 8 can be
interpreted as the number of prior events a in a time period . Thus, the posterior
density on 4 is given by

F(Alx) = %A“‘H e HEh). (15.80)

It can be shown (Problem 15.14) that the mode of fil|x) is

x+a—1

Mode of A = —— 15.81
ode o Py ( )
and the mean is
x+a
EA)=——. 15.82
=3 (15:82)

One sees thatif (t + [) is large, then the mean and mode have nearly the same value.

The Bayesian inference for the Poisson parameter A has been illustrated nicely by
Martz (2000) in a study of scrams that occur at nuclear power stations. A scram
produces a rapid decrease in the reactivity of a reactor in order to make it subcritical in
response to some transient event, unplanned or otherwise, that could lead to loss of
control. The frequency, or rate, of unplanned scrams is an important measure of how
well a facility performs. The Nuclear Regulatory Commission has published for 66
licensed power reactors in the United States the number X; of unplanned scrams and
the total number of hours T; that a reactor i was critical during the year 1984. The
objective of the study is to determine the (unknown) scram rates A; (number of
unplanned scrams per 1000 h of operation) from the published data. We shall assume
that the X; are described by Poisson distributions with parameters 4;T; (Problem
15.15). If the rates appear to be different from reactor to reactor, then the 4; might be
considered as independent, to be estimated individually for each plant. On the other
hand, the scram rates might have a commonality among different reactors by virtue
of the standard operating and regulatory conditions under which all of the facilities
are constrained. Estimations that reflect any such common aspects would, of course,
be desirable.

Martz chooses a special type of gamma prior distribution with a =1/2 and =0,
called the Jeffreys non-informative prior (Box and Tiao, 1973). Although this is an
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Table 15.4 Unplanned scram data for two reactors in 1984 (Martz, 2000).

Reactor, i Number of scrams, x; Operating time, t; (><1O3 h)
1 6 5.5556
2 9 7.3770

improper prior, the posterior is a proper gamma distribution with parameters
a' =x; + 1/2 and ' = ;. Martz also considers an empirical gamma prior, suggested
by the data collected on all 66 plants in the Commission report, with o =1.39 and
B=1.21.

W Example

Data for two of the reactor facilities in Martz’s study are given in Table 15.4,
showing the numbers of unplanned scrams and the operating times in 10° h.
Use both the Jeffreys (¢ =1/2, f=0) and the empirical gamma (a=1.39,
p=1.21) priors.

a) Obtain the resulting two posterior densities for each facility.

b) Determine the mode and mean estimates for the four posteriors and
compare them with the MLE.

) Obtaina 95% confidence interval on the rates and symmetric 95% credible
intervals from the posterior densities for reactor 1.

Solution
a) With a Poisson distribution for the X; in time T; with rate 4; and a gamma
prior with parameters a and 3, we showed by Eq. (15.29) that the posterior
density is also gamma with parameters o’ =x; + a and ' =t; + f. For
reactor 1 and the Jeffreys prior, we find @’ =6 + 1/2=6.5 and ' =5.5556
+ 0=5.5556. This result, together with the parameters for the other three
posterior gamma distributions, is shown in Table 15.5 (Problem 15.16).
b) The posterior mode for A is (¢’ — 1)/8’ (Eq. (15.81)), and the meanis o/f’
(Eq. (15.82)). The MLE, obtained by maximizing the likelihood with
respect to 4, is given by Amig = x;/t;. Using these estimates, we obtain
the results summarized in Table 15.6 (Problem 15.17).

Table 15.5 Parameters o’ and 3’ for the gamma posterior densities for example in the text.

Reactor, i Jeffreys prior (@ =1/2, Empirical prior (& = 1.39,
p=0) B=121)
a/ ﬂ/ a/ ﬁ/
1 6.5 5.5556 7.39 6.7656

2 9.5 7.3770 10.39 8.5870
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Table 15.6 Mode, mean, and MLE for example in the text.

Reactor, i Jeffreys prior Empirical prior MLE
Mode Mean Mode Mean

1 0.99 1.71 0.94 1.09 1.08

2 1.15 1.29 1.09 1.21 1.22

¢) To obtain a 95% confidence interval on the rate parameter, one can employ
techniques described elsewhere (e.g., Miller and Freund, 1965). The MLE
is x;/t;, and the (1 — @)100% confidence interval on 4 is

% /2 Yoy 21 /2
i l _ X1,00 x1+2,1—a 1 .
[ L, U} |: 2t1 ) 21‘»1 3 ( 5 83)

where xﬁ_ﬂ is the 0 percentile of the chi-square distribution with v degrees of
freedom. Using the reactor 1 data from Table 15.4, we find that

2 2
X120, X14,0. 4.404 26.117
L, Au] = {2 12,0025 14,0.975 } _ { }

(5.5556) '2(5.5556) |  |11.11° 11.11

=[0.396,2.351]. (15.84)

The Bayesian symmetric credible interval is obtained from the posterior
distribution on 4, and is such that Pr(A; <1 < Ay|x) =1 — a. If we impose
symmetry, then Pr(A <Ay) =Pr(A >1;) =1 — a/2. It can be shown (Prob-
lem 15.20) that the posterior distribution of the transformed random
variable 2T/ given x is a chi-square distribution with (2x + 1) degrees of
freedom. Thus, the corresponding symmetric 100(1 — a)% two-sided
Bayesian credible interval on 4 is given by

131 /2 Yowi1a /2
A, Ay) = |ZEEL2 TR a2 15.85
Aol 2, 24 } (1585)

Thus,

2(5.5556) ' 2(5.5556) |  |11.11° 11.11

= [0.451,2.226]. (15.86)

e, Ao = X005 X097 } _ {3009 24736}

Comparing the lengths of the frequentist (Eq. (15.84)) and Bayesian
(Eq. (15.86)) intervals, we see that the Bayesian interval is shorter by
[(1.955 — 1.775)/1.995] x 100% = 9.02%.

For the Bayesian, there is little point in considering hypothesis testing. Having the
posterior distribution, one can compute probability statements for the values that the
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parameters take on. To complete the comparison with the classical approach, we
consider the simple versus simple hypothesis that Hy: 1 =2 versus Hy: 4 =1 for the
reactor 1 plant. Recall from Eq. (15.60) that the posterior odds are equal to the product
of the likelihood and prior odds of Hy. If we assume that Hy is just as likely to occur as
H;, then the prior probabilities are the same and the posterior odds equal the
likelihood odds. Thus, Eq. (15.60) yields

Pr(Hy|T) _ Pr(T|Ho) _ (Agt)™ e ot /x! _ Ao ¥ o o—h)t (15.87)
PI’(Hl‘T PI’(T'Hl) (llt)x e**l‘/x! /11 ' '
Substitution of the numerical values gives for the posterior odds ratio
6
G) e 22-1(:3556) — (247, (15.88)

Since the ratio is less than unity, we reject Hy in favor of H;. We note that, since the
prior odds are equal, the posterior odds and the Bayes factor are equal. Here we see
that the posterior odds in favor of H; are roughly 3 to 1.

The more common hypothesis testing is the simple versus composite, where Hy
specifies the value and H; is of the form >, <, or #. In this case, the ratio of the
posterior density of H, compared with that of H; is

PI'(H()|T) _ PI’(T|H0) PI’(H()) _ PI’(H()) PI’(T‘H(),A())
PI'(H1|T) PI’(T|H1) Pl’(Hl) Pl’(Hl) J‘f(T|H1/‘Ll)g(/11)d/11 ’

(15.89)

where g(4;) denotes the prior density of 1; under H;. Consider Hy: A =2 versus H;:
A #2, and assume that Pr(Ho) = Pr(H;) = 1/2. The likelihood for reactor 1 under H,
is Poisson with A =2, t=75.5556, and x = 6. We take the Jeffreys prior for g(1,) (i.e.,
gamma density with a =1/2 and =0). Thus,

. X —Ait -1/2
Jf(T|H1,/11)g(/11)d/11 = J%Fi(llﬁ) o
0

o t* T x—1/2 it
= FUD jzl e Mt dl, (15.90)
0

__ ¥ Tx+1/2) T(x+1/2)
N xT'(1/2) 2 x!F(l/z)tl/Z . (15.91)

The last integral in Eq (15.90) is a gamma function, which can be evaluated with the
help of Eq. (6.70) (Problem 15.22). Given x=6 and t=5.5556, we find from
Egs. (15.89) and (15.91) that (Problem 15.23)

Pr(Holt) 1/2 (2 % 5.5556)° e~2(5:55%) /g

Pr(FLIT) 172 (6 +1/2)/60(1/2)(5.5556) 7] 0 (15.92)

Again, we would reject Hy in favor of Hy. In this case, we had to determine a weighted
average value for Pr(T|H;) since 4 was not specified in H; and we used Jeffreys

413



414

15 Introduction to Bayesian Analysis

non-informative prior. One can see the added complexity by not specifying the
alternative hypothesis and having a simple versus simple comparison.

15.12
Normal Mean Parameter

The normal distribution plays a central role in statistics and no less a role in Bayesian
analysis. The distribution is characterized by its mean u and variance ¢ In our
analysis, we shall be concerned with the mean value alone, assuming that we have a
good idea of the variance. (Generally, both u and o” should be considered; see Press
(1989).) To simplify matters further, we initially treat the case in which a single data
point is observed.

We let x denote a single observation from a normal distribution parameterized by
an unknown mean 6 and known variance o%. We write the likelihood function as

F(x]6) = — e~/ (15.93)

2no
We select the prior distribution on © to be the conjugate prior, which from Table 15.2
we can write as a normal distribution with mean u, and variance 7,. We also assume
thatthese two hyperparameters are known. By combining the likelihood and the prior
and using Eq. (15.22), it follows that the proportional posterior distribution on 6 is

F(Oly) oc e~ (/D=0 /0 +(O=o)’ /73] (15.94)
The exponent can be rewritten with the help of the identity

A(0 — a)* + B(0 — b)* = (A+ B)(0 — 6,)*
+ (A + B Y (a—b), (15.95)

in which A, B, a, and b are constants and 6= (A + B) '(Aa + Bb). (The identity can
be shown by expanding and collecting terms on the left and then completing the
square for terms involving 6* and 6 (Problem 15.24).) Substituting A=1/0%, a=x,
B = 7, and b=, into Eq. (15.95), we find that the exponent in Eq (15.94) becomes
(Problem 15.25)

2 2
1 {("_0) 10— ] :—1[<1 +l>(0790)2+(UZ+73)71(3‘*%)2 ,

2 o? 72 2| \a? 7
(15.96)
in which
1 1\ '/x o
oo — (Lo 1Y (* . o) 15.97
(e o) -

The second term in brackets on the right-hand side of Eq. (15.96) does not depend on
0, and so it can be dropped from the exponential term of the proportional posterior
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expression (15.94). We are left with
F(Bly) oc e MDA/ HR)O-00) (15.98)

showing that the posterior distribution on 6 is normal with mean 6, and variance

1 1\!
r%:( +7> . (15.99)

g2
ot T

The results can be summarized in some meaningful ways. First, the reciprocal of the
variance is often called the precision. Thus, we see from Eq (15.99) that the posterior
precision, 1/72, is equal to the sum of the prior precision 1/73 and the data precision
1/0. Second, the posterior mean value (15.97) is the weighted average of the prior
mean, uy, and the data mean, x (single value since n = 1), with weights proportional to
the respective precisions. Another way to express the relationship is to say that 6, is
equal to the prior mean adjusted toward the observed x. That is, we can rewrite
Eq (15.97) in the form

2
7o

—_—. 15.100
o2 +T(2) ( )

Oo = 1o + (x — o)
We can also rewrite Eq (15.97) as an expression of the data shrunk toward the prior
mean,

0.2

——. 15.101
0% + ( )

O = % — (x — y)
These descriptions provide simple ways to think of how the prior mean and the data
mean combine to yield the posterior mean.

We next take a random sample X;, X;, . . ., X, of size n from a normal population
with unknown mean 6 and known variance 2. As before, we choose the normal prior
with mean u, and variance 72, and assume that these hyperparameters are known.
The posterior density satisfies

fF(Olx1,%2, ..., %) x g(O)f (%1,%2,...%4|0) = g(0) Hf(xl|0) (15.102)

n

ox e~ 1/2)0-10)" T e 1/20)5-0) — =1/ [/) 0w +0/e) L, =07] - (15.103)

i=1

Earlier we used the technique of adding and subtracting X = Y x;/n within each
squared term in the summation on the right. The reason for introducing X is that it is
sufficient for 6, the mean value. That is, the sample mean carries all of the
information about the population mean. As we did with Egs. (15.43)—(15.44), we write

n n n

D -0 => (xi-x+x-0)" =) (x—% +nx—0)> (15.104)

i=1 i=1 i=1
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The summation on the far right does not involve 6, and hence can be dropped from
the proportional density (15.103). We are left with

F(Ox1%2, . .. %) ox @ M2NA/T)O0) +(n/0%) (&=0)] (15.105)

Again, like Egs. (15.94)—(15.97), we can write here

-1
1 2 n 2 1 n 2 2 02 _ 2
B0+ 07 = (o) O 0+ (%) E-m (15100

where

1 n\" Uy  nx
O=|5+—= =+ ). 15.107
=) (3+5) 15107

Neglecting the terms that do not involve 6, we see that the posterior distribu-
tion (15.105) is normal with mean 6, and variance > = (1/73 + n/o*) .

Often it is desired to analyze frequency data, such as numbers of counts, by using
standard normal theory procedures. When the count numbers are large, the normal
can give a good approximation to the Poisson distribution. In applying the normal
theory procedures, the variance needs to be constant. It turns out that, by analyzing
the square root of the counts rather than the counts themselves, the variance is
stabilized and is approximated by the value 0.25. This result is discussed in Box,
Hunter, and Hunter (1978). We use it in the following example.

W Example

Repeated countsaremadein 1-minintervals withalong-lived radioactive source.
The results for n=100 1-min readings yield a sample with a mean of 848.37
countsandavarianceof631.41. For Poisson data, the squareroottransformation
is a variance stabilizing transformation (recall that Var(X) =1 = E(X)). There-
fore, as the mean changes, the variance also changes. In fact, the square root
transformation yields a new random variable whose variance is approximately a
constant equal to 1/4. A Poisson distribution with a mean this large is well
approximated by a normal, and so the square root transformation actually
improves the approximation. The mean and variance of the transformed data
(replacing each count by its square root value) are X = 29.1200 and s* = 0.1862.
Use the transformed data and assume that 6> = 1/4. Assume that the prior
distribution for the mean (onthe squarerootdata) hasmean 30 and variance 1/2.

a) What is the posterior density on the mean?
b) Determine the mean, median, and mode for the posterior distribution.
¢) Obtain a 95% symmetric credible interval on the mean.

Solution
a) The sample values are n =100, 0* = 1/4, and ¥ = 29.1200, and the prior
distribution has uo=30 and 72 = 1/2. Recalling Eq. (15.107) and the
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sentence following it, we know that the posterior density on 6, the mean of
the transformed data, is normal with mean
1100\ '/30 100(29.12)
Op=|—+— —+———= | =29.1244 15.108
0 (1/2+1/4) (1/2+ 1/4 ( )

and variance

5 1 100\ "

= (m+1/—4) = 0.0024876. (15.109)
We see that the posterior mean is numerically the same as the data mean.
(The posterior mean is actually shifted alittle to the right of the data mean.)
As mentioned earlier, with increasing sample size, the data should have
increasing influence, as comes out clearly in this example.

Also, the posterior variance is nearly the same as that (6%/n = 0.0025) of

the sample mean. The effect of the prior variance is slight, as expected for a
large sample.

b) For the normal density, the mean, median, and mode are identical,
namely, 29.1244.

) Forthe symmetric 95% credible interval for the normal posterior, we write,
therefore,
— 0,
Pr(—l.% < ? < 1496) —0.95. (15.110)
Pr(29.0266) < © < 29.2221) = 0.95. (15.111)

We note that the credible interval is on the square root of the mean of the
original data. If we square each term inside the probability state-
ment (15.111), the probability will not change. We then find that the
credible interval in the original units is (842.54, 853.93). The original
sample was generated randomly from a Poisson distribution with mean
850. The back-transformed estimate of the mean is (29.1244)* = 849.25,
close to the true mean value.

To complete this section, we consider the simple versus composite hypothesis,
Hy: 0 = 0, versus Hy: 6 =07 # 6y, with Pr(Ho) =Pr(H;) =0.5. Taking a random
sample X;, X5, . . ., X,, of size n, assume that X|0 ~ N(6, 1). We know that X is sufficient
for the mean, 0, and that X|0 ~ N(6,1/+/n). Thus, the two sampling distributions
can be written as

1/2 o
fo(%|Ho, 60) = (%) e~ ("/2)F=00) (15.112)
and

1/2 B
A& Hy, 0,) = (%) e (n/DE-0) (15.113)
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Under H,, the prior density on 6 is a point distribution at 6 = 6,. Under Hy, we take
the prior density on 6 to be N(6*, 1). The posterior odds ratio (see Egs. (15.60)
and (15.63)) becomes

Pr(Ho|X) _ f<n/z><§feo>2
X (15.114)
Pr(H;|X) (1/\/ﬁ) (2/n+2)” J, ~(n/2+1/2)(6-1)* 49
where
n 1\/nx 6
H= <5+5><7+7)~ (15.115)

The integrand is identical to the normal density except for the factor [(n + 1)/2x]"/.
Thus, the integral is equal to the reciprocal of this factor, and so the posterior odds
ratio (15.114) is

Pr(HoX) e 15.116
Pr(Hy[X) (1/\/n+”) /D) /G0 ) (15.116)

Since the prior odds are equal, the Bayes factor reduces to the posterior odds.

W Example

Ten film dosimeters are checked for possible exposure to radiation in a
laboratory experiment. Calibration shows that the background densitometer
reading for unexposed films should be 8, =0.25 (relative units). The mean
reading for the n=10 films is ¥ = 0.65. Assume that the prior for the film
darkening is a normal distribution with mean 6* =0.45 and standard devi-
ation 0 =1. Let Hy: 6 = 6, =0.25 and H;: 6 # 6, be the hypotheses we wish to
test and, for simplicity, let Pr(Ho) = Pr(H;) =1/2.

a) Find the posterior odds ratio.
b) Obtain the Bayes factor.
¢) Which hypothesis should we accept?

Solution
a) Substituting the given information into Eq. (15.116), we compute

Pr(Ho|%) e—s(o.ss—o,zs)Z

Pr(H, |x) B (11) 72 e-11(065-045)°/2

=1.523. (15.117)

b) Since Pr(Hy) = Pr(H;) =1/2, the Bayes factor and the posterior odds ratio
are equal.

c) Because the posterior odds are greater than unity, we accept Hy: 6 = 0.25 in
favor of Hy: 6#£0.25.

We have only scratched the surface concerning Bayesian analysis. For further
reading, one can consult several books mentioned throughout this chapter and, in
addition, the excellent introductory texts by Barry (1996) and by Sivia (1996).



Problems

Problems

15.1 Verify the relations (5.14).

15.2 Surface swipes are collected and counted at a nuclear facility in order to check
for removable activity on various surfaces. A swipe sample resultis declared to
be “high” when the number of counts it produces exceeds an established
control value. Random swipe samples are to be collected throughout the
facility to determine the probability p that a given one will be “high.” From a
random sample of 450 swipe samples tested, 18 “high” ones were found.
a) Write down the likelihood function for p.

b) Sketch the likelihood function over the range 0 < p <0.15.

¢) Obtain the maximum likelihood estimate.

d) Obtain the posterior distribution on p using the uniform prior.

e) Find the mean of the posterior distribution and compare it to the
maximum likelihood estimate. Are you surprised? Why or why not?

15.3 Refer to the last problem.

a) Obtain the posterior distribution by using the beta prior with o =10
and 5 =290.
b) Calculate the mean value for this posterior distribution.

15.4 Suppose that T has an exponential distribution with parameter 1 >0 and
0 < T< oc. Let A have a prior distribution that is exponential with parameter
¢> 0. Obtain the posterior density on 4.

15.5 Show that the expected value (15.26) lies between the sample proportion y/n
and the prior mean a/(a + f).

15.6 Provide a conjugate prior distribution for the unknown parameter.

a) X ~ binomial (1, p), n known.
b) X ~ negative binomial (r, p), r known.
¢) X ~ normal (4, 0), o known.

15.7 State whether the following is a location family or a scale family.

a) X ~ uniform (6 —a, 6 + a).
b) X ~ gamma (a, §), a known.
c) X~ N(u, o), u known.

15.8 Verify (15.39).

15.9 Show that Eqs. (15.48)—(15.50) follow from Eq. (15.47).

15.10 The negative binomial distribution was given by Eq. (5.70). Let Y;, Y, ..., Y,
be independent, identically distributed binomial variables with parameters (r,
0), with r known and 6 having a beta (a, ) prior distribution. In this instance,
Y is the number of failures that precede the rth success, and the probability
function given by Eq (5.70) can be written as

p(yIr,0) = (H;* 1)9’(1 — o).

The mean and variance are E(Y)=r(1 — )/ and Var(Y) = r(1 — 6)/6%
a) Show that the posterior distribution on 6 is beta | nr +a,> i, yi + ﬁ) .
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b) Show that the expected value of the posterior distribution is

nr+a

E@lyr vz, w) = Sy 5

¢) Interpret the parameters a and f in the prior distribution on 6.
d) Write the likelihood function and show that the MLE for 6 is

po_ o
Swrsy ey
e) Compare the MLE and the mean of the posterior distribution as the
number of experiments n gets larger.
f) Show that the MLE and the maximum of the posterior density on 6 are the
same when a = =1 (and the prior is the uniform distribution).
15.11 In the last problem, n =10 experiments were run with r=>5, and ) y; = 40
was observed (i=1, 2, ..., 10).
a) Assume that the prior is beta with a = 2 and 8 = 2. Calculate the posterior
mean and the MLE for 6.
b) Write down the integral equations that need to be solved in order to obtain
the 95% symmetric credible interval for 6.
c) Determine the Bayes factor for the simple versus composite hypothesis
that Hy: 0 =6y =0.5 versus Hy: 6 # 0,. Assume that both hypotheses are
equally likely to occur and that the prior on 6 under H; is uniform (0, 1),
that is, beta with a = = 1. Which hypothesis do you accept?
(Hint: Since Pr(Hy) = Pr(H;) =1/2, the Bayes factor is equal to the posterior
odds ratio. Show that, in general, the posterior odds ratio is

-1

Pr(Holy1, Y2, ---+¥n)
Pr(Hl|Y17Y27 e 7Yﬂ)

I'(nr+ 1)F(ZYi + 1)

- (-0 F(nr+ vt 2)

then substitute the given data.)

15.12 Additional data for Problem 15.2 suggest that the prior is a beta distribution
with mean 0.033 and standard deviation 0.010. Use this information to
calculate the values of the hyperparameters, a and 3, using Egs. (15.11)
and (15.12).

15.13 Show that the mode of the density,

I'(n+a+p)
y+a)(n—y+p)

is given by Eq. (15.64).
15.14 Show that the mode of the density,

aqa—1 efzﬁ
70 =

is given by (a0 — 1)/p. Use the result to show that Eq. (15.81) is correct.

— y+a—1 _ n—y+p—1
gp) = P (1 -p) :
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15.16

15.17
15.18

15.19

15.20

15.21
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Justify using the Poisson distribution as an appropriate model to describe the
sampling of variability in the numbers X; of unplanned reactor scrams among
the different facilities, i, in Section 15.11.

Determine the values of the parameters o’ and 8’ shown for the two reactor
facilities and two priors in Table 15.5.

Calculate the entries in Table 15.6 for the two reactor facilities.

The random variable U has the density
u(l e*u
h(u) = o u,a >0,

where o is an integer.
a) If Y=2U, show that the density on Y is given by

Ya e—y/Z
fy) = Sarig N > 0.

b) Show hat Y has a chi-square density with degrees of freedom v=2a + 2
by equating parameters in the density in part (a) to the chi-square density
with v degrees of freedom given by

xv/Z—l e—l/z
fo) = W

Show that

Tu” e s — N e‘”(/lT)k.

N! k!
iT k=0
Let X be a Poisson random variable with rate parameter 1 and measurement
time T. Then
N AT k
e *T(AT)
Pr(X < NJA) = kgoT.

Using the results from the last two problems, show that
Pr(X < NJA) = Pr(zyy) > 24TIA),

where X%( 1) is interpreted as a random variable that is chi-square with
2(N + 1) degrees of freedom.

The confidence interval given by Eq. (15.84) can be obtained in the following
way. Suppose we are concerned about the mean 4 = AT of a Poisson process.
Consider the hypothesis test of Hy: it = o= Ao versus Hi: u > uo. We observe
the random variable Xand find X = n. We can determine the exact significance
level of the test corresponding to the observed value n by computing

2 (Ao T)* e T

k=n
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15.22
15.23
15.24
15.25
15.26

15.27

If we select A such that this probability is equal to @/2, then this value of 1 is
the smallest for which we would reject Hy with probability /2. Thus, this value
of Ag is A1. Similarly, if we turn the hypothesis around so that Hy: w=uo =4
versus Hy: | < uo, then the exact significance level of the test corresponding to
an observed value n is given by

" (AoT)F e T

Pr(X < nlu=uy =4T) = i

k=0

If we select 4o such that the value of this sum is equal to a/2, then this value of
Ao is the largest for which we would reject H, for H; with probability a/2. This
value of A¢ is Ay. The interval (A1, Ay) thus forms a (1 — @)100% confidence
interval for A,.

a) Verify Eq. (15.84) by showing that

f‘: WD) e a
— k! 2

k=n

leads to the expression A; = X%n,a 12/2T.
b) Verify Eq. (15.84) by showing that

z": (T e T «
— k! 2

leads to the expression Ay = X%n+2,l—a/2/2T‘

Show that Eq. (15.92) follows from (15.91).

Verify that Eq. (15.92) is correct.

Prove the identity (15.95).

Show that Egs. (15.96) and (15.97) follow from Eq. (15.95).

A random sample of size n=10 is drawn from a normal population with

unknown mean u and standard deviation o = 2. The sample meanisx = 1.2,

and Z}ﬁl (% — x)* = 0.90.

a) Write down the proportional likelihood function (ignoring the factor
(1/V2m0)").

b) Calculate the likelihood function for 4 =— 1.0, —0.5, 0.0, 0.5, 1.0, 2.0, and
3.0.

) Sketch the likelihood function.

d) Obtain the value of the maximum likelihood estimator analytically.

e) Determine the value of the proportional likelihood function at its
maximum.

Assume in the last problem that the prior distribution on u is N(0, 1).

a) Show that the posterior distribution on x4 is normal with mean 6/7 and
variance 2/7.

b) Sketch the prior and posterior densities.

c) Obtain a 95% credibility interval on u using the posterior density.
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Table A.1  Cumulative binomial distribution.

n r
0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5 0 0.590 0.328 0.237 0.168 0.078 0.031 0.010 0.002 0.000 0.000
5 1 0919 0.737 0.633 0.528 0.337 0.188 0.087 0.031 0.007 0.000
5 2 0991 0942 0.896 0.837 0.683 0.500 0.317 0.163 0.058 0.009
5 3 1.000 0.993 0984 0.969 0913 0813 0.663 0472 0.263 0.081
5 4 1.000 1.000 0.999 0.998 0.990 0969 0922 0.832 0.672 0.410
5 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 0 0.349  0.107 0.056 0.028 0.006 0.001 0.000 0.000 0.000 0.000
10 1 0.736 0376 0.244 0.149 0.046 0.011 0.002 0.000 0.000 0.000
10 2 0.930 0.678 0.526 0.383 0.167 0.055 0.012 0.002 0.000 0.000
10 3 0.987 0.879 0.776 0.650 0.382 0.172 0.055 0.011 0.001 0.000
10 4 0.998 0.967 0.922 0.850 0.633 0.377 0.166 0.047 0.006 0.000
10 5 1.000 0.994 0980 0.953 0.834 0.623 0.367 0.150 0.033 0.002
10 6 1.000 0.999 0996 0989 0.945 0.828 0.618 0.350 0.121 0.013
10 7 1.000 1.000 1.000 0.998 0.988 0945 0.833 0.617 0.322 0.070
10 8 1.000 1.000 1.000 1.000 0.998 0.989 0.954 0.851 0.624 0.264
10 9 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0972 0.893 0.651
10 10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 0 0.206 0.035 0.013 0.005 0.000 0.000 0.000 0.000 0.000 0.000
15 1 0.549 0.167 0.080 0.035 0.005 0.000 0.000 0.000 0.000 0.000
15 2 0.816 0.398 0.236 0.127 0.027 0.004 0.000 0.000 0.000 0.000
15 3 0.944 0.648 0.461 0.297 0.091 0.018 0.002 0.000 0.000 0.000
15 4 0.987 0.836 0.686 0.515 0.217 0.059 0.009 0.001 0.000 0.000
15 5 0.998 0.939 0.852 0.722 0.403 0.151 0.034 0.004 0.000 0.000
15 6 1.000 0982 0943 0.869 0.610 0.304 0.095 0.015 0.001 0.000
15 7 1.000 0.996 0983 0.950 0.787 0.500 0.213 0.050 0.004 0.000
15 8 1.000 0.999 0996 0.985 0.905 0.696 0.390 0.131 0.018 0.000
15 9 1.000 1.000 0.999 0.996 0.966 0.849 0.597 0.278 0.061 0.002
15 10 1.000 1.000 1.000 0.999 0.991 0941 0.783 0.485 0.164 0.013
15 11 1.000 1.000 1.000 1.000 0.998 0.982 0.909 0.703 0.352 0.056
(Continued)

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Table A.1 (Continued )

n r p
0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9

15 12 1.000 1.000 1.000 1.000 1.000 0.996 0.973 0.873 0.602 0.184
15 13 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.833 0.451
15 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.794
15 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 0 0.122  0.012 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000
20 1 0.392 0.069 0.024 0.008 0.001 0.000 0.000 0.000 0.000 0.000
20 2 0.677 0.206 0.091 0.035 0.004 0.000 0.000 0.000 0.000 0.000
20 3 0.867 0.411 0.225 0.107 0.016 0.001 0.000 0.000 0.000 0.000
20 4 0.957 0.630 0.415 0.238 0.051 0.006 0.000 0.000 0.000 0.000
20 5 0.989 0.804 0.617 0416 0.126 0.021 0.002 0.000 0.000 0.000
20 6 0.998 0913 0.786 0.608 0.250 0.058 0.006 0.000 0.000 0.000
20 7 1.000 0.968 0.898 0.772 0.416 0.132 0.021 0.001 0.000 0.000
20 8 1.000 0990 0.959 0.887 0.596 0.252 0.057 0.005 0.000 0.000
20 9 1.000 0.997 0986 0.952 0.755 0.412 0.128 0.017 0.001 0.000
20 10 1.000 0.999 0996 0.983 0.872 0.588 0.245 0.048 0.003 0.000
20 11 1.000 1.000 0.999 0.995 0.943 0.748 0.404 0.113 0.010 0.000
20 12 1.000 1.000 1.000 0.999 0979 0868 0.584 0.228 0.032 0.000
20 13 1.000 1.000 1.000 1.000 0.994 0.942 0.750 0.392 0.087 0.002
20 14 1.000 1.000 1.000 1.000 0.998 0979 0.874 0.584 0.196 0.011
20 15 1.000 1.000 1.000 1.000 1.000 0.994 0949 0.762 0.370 0.043
20 16 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.893 0.589 0.133
20 17 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.965 0.794 0.323
20 18 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.992 0.931 0.608
20 19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.988 0.878
20 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Tabulated values are B

Eq. (5.9).

Table A.2 Cumulative Poisson distribution.

() = Ticablrmp) = S ()71 = P < ). Referto

0.01 0.05

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

‘\/U'I-PWNHO

0.990 0.951
1.000 0.999
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000

0.905
0.995
1.000
1.000
1.000
1.000
1.000

0.819
0.982
0.999
1.000
1.000
1.000
1.000

0.741
0.963
0.996
1.000
1.000
1.000
1.000

0.670
0.938
0.992
0.999
1.000
1.000
1.000

0.607
0.910
0.986
0.998
1.000
1.000
1.000

0.549
0.878
0.977
0.997
1.000
1.000
1.000

0.497
0.844
0.966
0.994
0.999
1.000
1.000

0.449
0.809
0.953
0.991
0.999
1.000
1.000

0.407
0.772
0.937
0.987
0.998
1.000
1.000

0.368
0.736
0.920
0.981
0.996
0.999
1.000
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Table A2 (Continued)

r u

1.1 1.2 13 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 22

0.333 0.301 0.273 0.247 0.223 0.202 0.183 0.165 0.150 0.135 0.122 0.111
0.699 0.663 0.627 0.592 0.558 0.525 0.493 0.463 0.434 0.406 0.380 0.355
0.900 0.879 0.857 0.833 0.809 0.783 0.757 0.731 0.704 0.677 0.650 0.623
0.974 0.966 0.957 0.946 0.934 0.921 0.907 0.891 0.875 0.857 0.839 0.819
0.995 0.992 0.989 0.986 0.981 0.976 0.970 0.964 0.956 0.947 0.938 0.928
0.999 0.998 0.998 0.997 0.996 0.994 0.992 0.990 0.987 0.983 0.980 0.975
1.000 1.000 1.000 0.999 0.999 0.999 0.998 0.997 0.997 0.995 0.994 0.993
1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.999 0.998
8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SV NV A W N RO

23 2.4 25 2.6 2.7 2.8 29 3.0 3.5 4.0 4.5 5.0

0.100 0.091 0.082 0.074 0.067 0.061 0.055 0.050 0.030 0.018 0.011 0.007
0.331 0.308 0.287 0.267 0.249 0.231 0.215 0.199 0.136 0.092 0.061 0.040
0.596 0.570 0.544 0.518 0.494 0.469 0.446 0.423 0.321 0.238 0.174 0.125
0.799 0.779 0.758 0.736 0.714 0.692 0.670 0.647 0.537 0.433 0.342 0.265
0.916 0.904 0.891 0.877 0.863 0.848 0.832 0.815 0.725 0.629 0.532 0.440
0.970 0.964 0.958 0.951 0.943 0.935 0.926 0.916 0.858 0.785 0.703 0.616
0.991 0.988 0.986 0.983 0.979 0.976 0.971 0.966 0.935 0.889 0.831 0.762
0.997 0.997 0.996 0.995 0.993 0.992 0.990 0.988 0.973 0.949 0.913 0.867
0.999 0.999 0.999 0.999 0.998 0.998 0.997 0.996 0.990 0.979 0.960 0.932
1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.999 0.997 0.992 0.983 0.968
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.993 0.986
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.995
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998
13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
>14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

O 0NV A W~ O

I
N o= O

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 95 100 15.0 20.0

0.004 0.002 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.027 0.017 0.011 0.007 0.005 0.003 0.002 0.001 0.001 0.000 0.000 0.000
0.088 0.062 0.043 0.030 0.020 0.014 0.009 0.006 0.004 0.003 0.000 0.000
0.202 0.151 0.112 0.082 0.059 0.042 0.030 0.021 0.015 0.010 0.000 0.000
0.358 0.285 0.224 0.173 0.132 0.100 0.074 0.055 0.040 0.029 0.001 0.000
0.529 0.446 0.369 0.301 0.241 0.191 0.150 0.116 0.089 0.067 0.003 0.000
0.686 0.606 0.527 0.450 0.378 0.313 0.256 0.207 0.165 0.130 0.008 0.000
0.809 0.744 0.673 0.599 0.525 0.453 0.386 0.324 0.269 0.220 0.018 0.001
0.894 0.847 0.792 0.729 0.662 0.593 0.523 0.456 0.392 0.333 0.037 0.002
0.946 0.916 0.877 0.830 0.776 0.717 0.653 0.587 0.522 0.458 0.070 0.005
0.975 0.957 0.933 0901 0.862 0.816 0.763 0.706 0.645 0.583 0.118 0.011
0.989 0.980 0.966 0.947 0.921 0.888 0.849 0.803 0.752 0.697 0.185 0.021
0.996 0.991 0.984 0.973 0.957 0.936 0.909 0.876 0.836 0.792 0.268 0.039

O 0NV A W ~R O

_
N = O

(Continued)
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Table A2 (Continued)
r

5.5 6.0 6.5 7.0 7.5 80 85 90 95 100 150 20.0
13 0.998 0.996 0.993 0.987 0.978 0.966 0.949 0.926 0.898 0.864 0.363 0.066
14 0.999 0.999 0.997 0.994 0.990 0.983 0.973 0.959 0.940 0.917 0.466 0.105
15 1.000 0.999 0.999 0.998 0.995 0.992 0.986 0.978 0.967 0.951 0.568 0.157
16 1.000 1.000 1.000 0.999 0.998 0.996 0.993 0.989 0.982 0.973 0.664 0.221
17 1.000 1.000 1.000 1.000 0.999 0.998 0.997 0.995 0.991 0.986 0.749 0.297
18 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.996 0.993 0.819 0.381
19  1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.875 0.470
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.917 0.559
21 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.947 0.644
22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.967 0.721
23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.981 0.787
24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.989 0.843
25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.888
26 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.922
27 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.948
28 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.966
29  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.978
30  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987
31 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.992
32 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995
33 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997
34 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
Tabulated values are P(r;u) = >, _op(x; ) = > _ou* e /x! = Pr(X < r). Refer to Eq. (5.27).
Table A.3  Cumulative normal distribution.

0 z
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
—3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
—3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
—3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
—3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
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z

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-29
—-2.8
—-2.7
—2.6
—25
—2.4
—-2.3
—2.2
-2.1
-2.0
-1.9
—-1.8
—-1.7
-1.6
-1.5
—-1.4
—-1.3
-1.2
—-1.1
-1.0
-0.9
-0.8
—0.7
—0.6
—0.5
—0.4
-0.3
-0.2
—0.1
-0.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

0.0019
0.0026
0.0035
0.0047
0.0062
0.0082
0.0107
0.0139
0.0179
0.0228
0.0287
0.0359
0.0446
0.0548
0.0668
0.0808
0.0968
0.1151
0.1357
0.1587
0.1841
0.2119
0.2420
0.2743
0.3085
0.3446
0.3821
0.4207
0.4602
0.5000
0.5000
0.5398
0.5793
0.6179
0.6554
0.6915
0.7257
0.7580
0.7881
0.8159
0.8413
0.8643
0.8849
0.9032
0.9192
0.9332

0.0018
0.0025
0.0034
0.0045
0.0060
0.0080
0.0104
0.0136
0.0174
0.0222
0.0281
0.0351
0.0436
0.0537
0.0655
0.0793
0.0951
0.1131
0.1335
0.1562
0.1814
0.2090
0.2389
0.2709
0.3050
0.3409
0.3783
0.4168
0.4562
0.4960
0.5040
0.5438
0.5832
0.6217
0.6591
0.6950
0.7291
0.7611
0.7910
0.8186
0.8438
0.8665
0.8869
0.9049
0.9207
0.9345

0.0018
0.0024
0.0033
0.0044
0.0059
0.0078
0.0102
0.0132
0.0170
0.0217
0.0274
0.0344
0.0427
0.0526
0.0643
0.0778
0.0934
0.1112
0.1314
0.1539
0.1788
0.2061
0.2358
0.2676
0.3015
0.3372
0.3745
0.4129
0.4522
0.4920
0.5080
0.5478
0.5871
0.6255
0.6628
0.6985
0.7324
0.7642
0.7939
0.8212
0.8461
0.8686
0.8888
0.9066
0.9222
0.9357

0.0017
0.0023
0.0032
0.0043
0.0057
0.0075
0.0099
0.0129
0.0166
0.0212
0.0268
0.0336
0.0418
0.0516
0.0630
0.0764
0.0918
0.1093
0.1292
0.1515
0.1762
0.2033
0.2327
0.2643
0.2981
0.3336
0.3707
0.4090
0.4483
0.4880
0.5120
0.5517
0.5910
0.6293
0.6664
0.7019
0.7357
0.7673
0.7967
0.8238
0.8485
0.8708
0.8907
0.9082
0.9236
0.9370

0.0016
0.0023
0.0031
0.0041
0.0055
0.0073
0.0096
0.0125
0.0162
0.0207
0.0262
0.0329
0.0409
0.0505
0.0618
0.0749
0.0901
0.1075
0.1271
0.1492
0.1736
0.2005
0.2296
0.2611
0.2946
0.3300
0.3669
0.4052
0.4443
0.4840
0.5160
0.5557
0.5948
0.6331
0.6700
0.7054
0.7389
0.7704
0.7995
0.8264
0.8508
0.8729
0.8925
0.9099
0.9251
0.9382

0.0016
0.0022
0.0030
0.0040
0.0054
0.0071
0.0094
0.0122
0.0158
0.0202
0.0256
0.0322
0.0401
0.0495
0.0606
0.0735
0.0885
0.1056
0.1251
0.1469
0.1711
0.1977
0.2266
0.2578
0.2912
0.3264
0.3632
0.4013
0.4404
0.4801
0.5199
0.5596
0.5987
0.6368
0.6736
0.7088
0.7422
0.7734
0.8023
0.8289
0.8531
0.8749
0.8944
0.9115
0.9265
0.9394

0.0015
0.0021
0.0029
0.0039
0.0052
0.0069
0.0091
0.0119
0.0154
0.0197
0.0250
0.0314
0.0392
0.0485
0.0594
0.0721
0.0869
0.1038
0.1230
0.1446
0.1685
0.1949
0.2236
0.2546
0.2877
0.3228
0.3594
0.3974
0.4364
0.4761
0.5239
0.5636
0.6026
0.6406
0.6772
0.7123
0.7454
0.7764
0.8051
0.8315
0.8554
0.8770
0.8962
0.9131
0.9279
0.9406

0.0015
0.0021
0.0028
0.0038
0.0051
0.0068
0.0089
0.0116
0.0150
0.0192
0.0244
0.0307
0.0384
0.0475
0.0582
0.0708
0.0853
0.1020
0.1210
0.1423
0.1660
0.1922
0.2206
0.2514
0.2843
0.3192
0.3557
0.3936
0.4325
0.4721
0.5279
0.5675
0.6064
0.6443
0.6808
0.7157
0.7486
0.7794
0.8078
0.8340
0.8577
0.8790
0.8980
0.9147
0.9292
0.9418

0.0014
0.0020
0.0027
0.0037
0.0049
0.0066
0.0087
0.0113
0.0146
0.0188
0.0239
0.0301
0.0375
0.0465
0.0571
0.0694
0.0838
0.1003
0.1190
0.1401
0.1635
0.1894
0.2177
0.2483
0.2810
0.3156
0.3520
0.3897
0.4286
0.4681
0.5319
0.5714
0.6103
0.6480
0.6844
0.7190
0.7517
0.7823
0.8106
0.8365
0.8599
0.8810
0.8997
0.9162
0.9306
0.9429

0.0014
0.0019
0.0026
0.0036
0.0048
0.0064
0.0084
0.0110
0.0143
0.0183
0.0233
0.0294
0.0367
0.0455
0.0559
0.0681
0.0823
0.0985
0.1170
0.1379
0.1611
0.1867
0.2148
0.2451
0.2776
0.3121
0.3483
0.3859
0.4247
0.4641
0.5359
0.5753
0.6141
0.6517
0.6879
0.7224
0.7549
0.7852
0.8133
0.8389
0.8621
0.8830
0.9015
0.9177
0.9319
0.9441

(Continued)
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Table A.3 (Continued )

z

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
29
3.0
3.1
3.2
33

0.9452
0.9554
0.9641
0.9713
0.9772
0.9821
0.9861
0.9893
0.9918
0.9938
0.9953
0.9965
0.9974
0.9981
0.9987
0.9990
0.9993
0.9995

0.9463
0.9564
0.9649
0.9719
0.9778
0.9826
0.9864
0.9896
0.9920
0.9940
0.9955
0.9966
0.9975
0.9982
0.9987
0.9991
0.9993
0.9995

0.9474
0.9573
0.9656
0.9726
0.9783
0.9830
0.9868
0.9898
0.9922
0.9941
0.9956
0.9967
0.9976
0.9982
0.9987
0.9991
0.9994
0.9995

0.9484
0.9582
0.9664
0.9732
0.9788
0.9834
0.9871
0.9901
0.9925
0.9943
0.9957
0.9968
0.9977
0.9983
0.9988
0.9991
0.9994
0.9996

0.9495
0.9591
0.9671
0.9738
0.9793
0.9838
0.9875
0.9904
0.9927
0.9945
0.9959
0.9969
0.9977
0.9984
0.9988
0.9992
0.9994
0.9996

0.9505
0.9599
0.9678
0.9744
0.9798
0.9842
0.9878
0.9906
0.9929
0.9946
0.9960
0.9970
0.9978
0.9984
0.9989
0.9992
0.9994
0.9996

0.9515
0.9608
0.9686
0.9750
0.9803
0.9846
0.9881
0.9909
0.9931
0.9948
0.9961
0.9971
0.9979
0.9985
0.9989
0.9992
0.9994
0.9996

0.9525
0.9616
0.9693
0.9756
0.9808
0.9850
0.9884
0.9911
0.9932
0.9949
0.9962
0.9972
0.9979
0.9985
0.9989
0.9992
0.9995
0.9996

0.9535
0.9625
0.9699
0.9761
0.9812
0.9854
0.9887
0.9913
0.9934
0.9951
0.9963
0.9973
0.9980
0.9986
0.9990
0.9993
0.9995
0.9996

0.9545
0.9633
0.9706
0.9767
0.9817
0.9857
0.9890
0.9916
0.9936
0.9952
0.9964
0.9974
0.9981
0.9986
0.9990
0.9993
0.9995
0.9997

Tabulated values are Pr(Z < z) = F(z) = (1/v2r) [*,_ eV 2% dt, as represented by the shaded
area of the figure. Refer to Eq. (6.20).
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TableA.5 Quantiles ¢, , that cut off area « to the right for Student’s t-distribution with v degrees of
freedom.

o
/
0 tV,O{

v o

0.100 0.050 0.025 0.010 0.005
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2,131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
00 1.282 1.645 1.960 2.326 2.576

Refer to Eq. (6.96).
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Table A.6 Quantiles f595(v5, v2) for the F distribution.

o=0.95

0 Joos(Vi:Vy)

V2 4

1 2 4 6 7 8 9 10 1 12

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.0 2439

2 1851 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.39 19.40 19.41 19.41
3 10.13 9.552 9.277 9.117 9.013 8941 8.887 8.845 8.812 8.786 8.763 8.745
4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964 5.936 5.912
5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772 4.735 4.704 4.678
6 5.987 5.143 4757 4.534 4387 4.284 4207 4.147 4.099 4.060 4.027 4.000
7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637 3.603 3.575
8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388 3.347 3.313 3.284
9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137 3.102 3.073
10 4965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978 2.943 2913
11  4.844 3982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854 2818 2.788
12 4747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753 2.717 2.687
13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671 2.635 2.604
14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602 2.565 2.534
15 4543 3.682 3.287 3.056 2901 2.790 2.707 2.641 2.588 2.544 2507 2475
16  4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494 2456 2.425
17 4.451 3.592 3.197 2965 2.810 2.699 2.614 2.548 2.494 2450 2413 2381
18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2412 2374 2342
19 4381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2378 2340 2.308
20 4351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2393 2348 2310 2278
21 4325 3.467 3.072 2.840 2.685 2.573 2.488 2.420 2.366 2.321 2.283 2.250
22 4301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2342 2297 2259 2.226
23 4279 3.422 3.028 2.796 2.640 2.528 2.442 2.375 2.320 2.275 2.236 2.204
24 4260 3.403 3.009 2776 2.621 2.508 2.423 2.355 2.300 2.255 2.216 2.183
25 4242 3.385 2991 2759 2.603 2.490 2.405 2.337 2.282 2.236 2.198 2.165
26 4.225 3.369 2975 2743 2587 2.474 2388 2.321 2.265 2.220 2.181 2.148
27 4210 3.354 2960 2.728 2.572 2.459 2.373 2.305 2250 2204 2.166 2.132
28 4196 3.340 2947 2.714 2558 2.445 2.359 2291 2.236 2.190 2.151 2.118
29 4183 3.328 2.934 2.701 2.545 2.432 2346 2278 2223 2177 2.138 2.104
30 4.171 3.316 2922 2.690 2.534 2.421 2.334 2266 2211 2.165 2.126 2.092
40 4.085 3.232 2.839 2.606 2.449 2336 2249 2.180 2.124 2.077 2.038 2.003
60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 2.040 1.993 1.952 1.917
120 3.920 3.072 2.680 2.447 2.290 2.175 2.087 2.016 1.959 1910 1.869 1.834
oo 3.841 2996 2.605 2372 2214 2.099 2.010 1.938 1.880 1.831 1.789 1.752
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Table A.6 (Continued)

V2 41

13 14 15 16 17 18 19 20 21 22 23 24

1 2447 2454 246.0 246.5 246.9 247.3 247.7 248.0 2483 248.6 248.8 249.1

2 1942 1942 19.43 19.43 19.44 19.44 19.44 19.45 1945 19.45 19.45 19.45
3 8.729 8.715 8.703 8.692 8.683 8.675 8.667 8.660 8.654 8.648 8.643 8.639
4 5.891 5.873 5.858 5.844 5832 5821 5811 5803 5.795 5.787 5.781 5.774
5 4.655 4.636 4.619 4.604 4.590 4.579 4.568 4.558 4.549 4.541 4.534 4.527
6 3.976 3956 3.938 3.922 3908 3.896 3.884 3.874 3.865 3.856 3.849 3.841
7 3.550 3.529 3.511 3.494 3.480 3.467 3.455 3.445 3.435 3.426 3.418 3.410
8 3.259 3.237 3.218 3.202 3.187 3.173 3.161 3.150 3.140 3.131 3.123 3.115
9 3.048 3.025 3.006 2.989 2974 2960 2.948 2936 2926 2917 2.908 2.900
10 2.887 2.865 2.845 2.828 2.812 2.798 2.785 2774 2764 2754 2745 2.737
11 2761 2739 2719 2701 2.685 2.671 2.658 2.646 2.636 2.626 2.617 2.609
12 2,660 2.637 2.617 2.599 2.583 2.568 2.555 2544 2533 2523 2514 2.505
13 2577 2554 2533 2515 2499 2484 2471 2459 2448 2438 2429 2.420
14 2507 2484 2463 2445 2428 2413 2400 2.388 2377 2367 2.357 2.349
15 2448 2424 2403 2.385 2368 2.353 2340 2328 2316 2306 2297 2.288
16 2397 2373 2352 2333 2317 2302 2288 2276 2.264 2254 2244 2.235
17 2353 2329 2308 2.289 2272 2257 2243 2230 2219 2208 2.199 2.190
18 2314 2290 2269 2.250 2.233 2217 2203 2191 2179 2168 2.159 2.150
19 2280 2.256 2.234 2215 2198 2.182 2.168 2.155 2.144 2133 2123 2.114
20 2.250 2.225 2203 2184 2167 2151 2137 2124 2112 2102 2.092 2.082
21 2222 2197 2176 2156 2.139 2123 2.109 2.096 2.084 2.073 2.063 2.054
22 2198 2173 2151 2131 2.114 2.098 2.084 2.071 2.059 2.048 2.038 2.028
23 2175 2150 2.128 2109 2.091 2.075 2.061 2.048 2.036 2.025 2.014 2.005
24 2155 2130 2.108 2.088 2.070 2.054 2.040 2.027 2.015 2.003 1.993 1.984
25 2136 2111 2.089 2.069 2051 2035 2.021 2.007 1.995 1.984 1.974 1.964
26 2119 2.094 2.072 2.052 2.034 2018 2.003 1.990 1.978 1.966 1.956 1.946
27 2103 2.078 2.056 2.036 2.018 2.002 1.987 1.974 1.961 1.950 1.940 1.930
28  2.089 2.064 2.041 2.021 2.003 1.987 1.972 1959 1946 1.935 1.924 1915
29 2.075 2.050 2.027 2.007 1.989 1.973 1.958 1.945 1.932 1921 1910 1.901
30 2.063 2.037 2.015 1.995 1976 1960 1.945 1932 1919 1908 1.897 1.887
40 1974 1948 1.924 1904 1.885 1.868 1.853 1.839 1.826 1.814 1.803 1.793
60 1.887 1.860 1.836 1.815 1.796 1.778 1.763 1.748 1.735 1.722 1.711 1.700
120 1.803 1.775 1.750 1.728 1.709 1.690 1.674 1.659 1.645 1.632 1.620 1.608
oo 1720 1.692 1.666 1.644 1.623 1.604 1.587 1.571 1.556 1.542 1.529 1.517
Vv, vy

25 26 27 28 29 30 40 60 120 o

1 2493 2495 249.6 249.8 250.0 250.1 251.1 252.2 2533 2543

2 1946 19.46 1946 19.46 19.46 19.46 19.47 19.48 19.49 19.50
3 8.634 8.630 8.626 8.623 8.620 8.617 8.594 8.572 8.549 8.526
4 5.769 5.763 5.759 5.754 5.750 5.746 5.717 5.688 5.658 5.628
5 4.521 4.515 4.510 4.505 4.500 4.496 4.464 4.431 4398 4.365
6 3.835 3.829 3.823 3.818 3.813 3.808 3.774 3.740 3.705 3.669
7 3.404 3.397 3.391 3.386 3.381 3.376 3.340 3.304 3.267 3.230

(Continued)
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Table A.6 (Continued)

V2 4

25 26 27 28 29 30 40 60 120 oo

8 3.108 3.102 3.095 3.090 3.084 3.079 3.043 3.005 2.967 2928
9 2.893 2886 2.880 2.874 2869 2.864 2.826 2.787 2748 2.707
10 2730 2.723 2716 2.710 2.705 2.700 2.661 2.621 2.580 2.538
11 2.601 2.594 2.588 2.582 2.576 2.570 2531 2490 2448 2.404
12 2498 2.491 2.484 2478 2472 2466 2426 2384 2341 2.296
13 2412 2405 2.398 2.392 2386 2.380 2.339 2297 2252 2.206
14 2341 2333 2326 2320 2.314 2308 2266 2223 2178 2131
15 2280 2.272 2.265 2.259 2253 2247 2204 2.160 2.114 2.066
16 2227 2220 2212 2206 2200 2.194 2151 2106 2.059 2.010
17 2181 2.174 2167 2.160 2.154 2.148 2.104 2.058 2.011 1.960
18 2141 2.134 2126 2.119 2113 2107 2.063 2017 1.968 1.917
19 2106 2.098 2.090 2.084 2.077 2.071 2.026 1.980 1.930 1.878
20 2.074 2.066 2.059 2.052 2.045 2.039 1.994 1.946 1.896 1.843
21 2.045 2.037 2.030 2.023 2016 2.010 1.965 1916 1.866 1.812
22 2.020 2.012 2.004 1.997 1.990 1.984 1.938 1.889 1.838 1.783
23 1996 1988 1981 1973 1.967 1961 1914 1.865 1.813 1.757
24 1975 1967 1959 1.952 1945 1939 1.892 1.842 1790 1.733
25 1.955 1947 1939 1932 1926 1919 1.872 1.822 1.768 1.711
26 1938 1929 1921 1914 1907 1.901 1.853 1.803 1.749 1.691
27 1921 1913 1905 1.898 1.891 1.884 1.836 1.785 1.731 1.672
28 1906 1.897 1.889 1.882 1.875 1.869 1.820 1.769 1.714 1.654
29 1.891 1.883 1.875 1.868 1.861 1.854 1.806 1.754 1.698 1.638
30 1.878 1.870 1.862 1.854 1.847 1.841 1.792 1.740 1.683 1.622
40 1.783 1.775 1.766 1.759 1.751 1.744 1.693 1.637 1.577 1.509
60 1.690 1.681 1.672 1.664 1.656 1.649 1.594 1.534 1.467 1.389
120 1.598 1.588 1.579 1.570 1.562 1.554 1.495 1.429 1.352 1.254
oo 1506 1.496 1.486 1.476 1.467 1.459 1.394 1.318 1.221 1.000

Refer to Eq. (6.100). vy: degrees of freedom in numerator; v,: degrees of freedom in denominator.



435

Appendix

(panunuo))
€66°¢ 919°¢ 169°¢ 08L°¢ 068°¢ 970y oy LEY'Y CLLY ¢6C°S 979 1¢6'8 91
999°¢ 0€L'e S08°¢ S68°¢ 00y (444 SI¢Y 96SY €68 L1Y'S 6S¢€9 €898 ST
008°¢ 98'¢ 6£6°¢ 0¢0'v orl'y 8LTY 9S¥'v S69v Ge0'S ¥96°¢S 1S9 98'8 14!
096°¢ S0y 00T¥ 161V [4\} %4 18244 009y 981 S0T's 6¢L'S 1049 L0°6 €1
SST'Y ey 96Tt 88¢Y 66v'Y 0¥9' ¥y 178y ¥90°S (454 €56°'S L7699 0€¢6 [4s
L6V o7y 6ESY (A3 h4 YvLY 988 690°S 91¢’S 899°¢ L1T9 90C’L 9%9°6 11
90LY ULLY 6¥8'Yv woe'y £LS0'S 00C°S 98¢°S 9¢9°'¢ ¥66°S SS9 6SS°L 00T ot
TI°S 8LT'S LST'S 18¢°S L9Y'S €19°S 08'S £S09 w9 7669 0’8 9601 6
£99°S YeL'S v18'S 116°S 6209 819 1L£°9 €99 900°L 16S°L 6¥9'8 9C'11 8
69¥'9 8¢S°9 0799 61,9 0¥8'9 €669 161°L 09¥°L LYS'L 1S¥'8 LYS6 Tl L
SILL 06L°L vL8'L 9L6'L 01’8 09C'8 99¥°8 L8 8¥1°6 0846 601 vLEL 9
8886 €96°6 S00T 91°01 6C°0T 9%°01 £9°01 L6°0T 6¢°TL 90°¢CT LTET 991 S
LEYT 441 SSY1 99'v1 08'¥1 86’1 1C°ST ¢SSt 86°S1 6991 00°81 0C'1C 14
S0°LT €TLT €T LT e LT 6v°LT L9°LT 16°LC YC'8C 1L°8C 97°6C 8°0¢ ve €
¥'66 1¥°66 0¥'66 6£°66 LE°66 9¢°66 €€°66 0€°66 ST'66 L1°66 00°66 05°86 C
9019 €809 9509 09 1865 8765 6S8S Y9LS §T9S ¢0¥S 000S 14014 1

[48 LL oL 14 € [4 L
L]
AN Al >v§._~._ v 0
66°0
=0

‘uonNguUISIp 4 Ayl 4oy (2a ‘La)660[ sajnuend) £’y 9|qeL



81T 8YC'C Teee LOY'T TISC 6¢£9°C 08¢ 810°¢ Yee'e (4743 S09°v G€9'9 o0
9¢¢°C 66€°C Uy'e 6SS°C €99°C 6L'C 966'C vLT'E 08¥°¢ 66'¢ L8LY 1589 0oct
96¥°C 6SS°C €9'C 81T [ X4 4 €56'C 6IT°¢ 6¢¢°¢ 6¥9°¢ 9C1'¥y LL6Y LLO°L 09
§99°C LTLT 108°C 888C €66'C vel'e 16T°¢ y16'¢ 8(8'¢ eIy 6LT'S Y1¢'L oy
€¥8°C 906°C 6L6'C £90°¢ LT Y0¢°¢ €LY'E 669°¢ 810°¥ oISy 06¢°S 9s°L 0¢
898°C 1€6°C S00°¢ 60°¢ 861°¢ 0¢ee 66¥°¢ STLE S0y 8¢SV (142 86S°L 6¢C
968°C 6S6'C c0'¢ 0cT'e 9TT’e 8G¢°¢ 8CS'¢ YSLE vL0'Y 89S ¥ 1394 9¢9°L 8C
926'C 886'C 790°¢ (1483 96C’¢ 88¢'¢ 866G°¢ G8L°¢ 90Ty 109'% 88¥°S LLYL LT
866°C 120°¢ ¥60°¢ [4:183 88C'¢ Tev'e 16S°¢ 818'¢ orly LE9Y 9¢S'S 12LL 9C
€66°C 960°¢ 6CT'¢ L1T¢ vee'e LSY'E L79°¢ GG8'¢ LLTY SL9Y 89S°S 0LLL 14
e0'e 60°¢ 891°¢ 96T'¢ €9¢°¢ 961°¢ £99°¢ S68°¢ 81TV SILY ¥19°S €C8’L 144
vL0°¢ LET'E 11C¢ 66C°¢ 90¥°¢ 6¢S°¢ 01L'¢ 6¢6'¢ YT S9LY ¥99°S 188°L €T
1cre v81°¢ 8SC'¢ Ivee 13943 L8S°¢ 86L'¢ 886°¢ €Iey L1V 6IL'S SY6'L (44
€LT'E 9¢T’¢e 01¢'e 86¢°¢ 90S°¢ 0v9°¢ [45:23 oy 69¢ ¥y VL8V 08L°S L10°8 1T
1¢Ce Y6C'¢ 89¢°¢ LSY'E ¥95°¢ 669°¢ 148°¢ 0Ty 15344 8¢6'Y 6¥8°S 960°8 0¢
L6T'E 09¢°¢ Yev'e €Cs'e 1€9°¢ S9L°¢ 6¢6'¢ LTV 00Sv 010°S 9¢6'S G81'8 6l
TLE°¢ vey'e 80S°¢ L6S'¢ S0L°¢ 1¥8°¢ S10'Y 1444 6LSY 60°S €109 8T8 81
Sy'e 61S°¢ €6S°¢ 789°¢ 16L4°¢ LT6°¢ (V)14 9eey 699t G8I°S (4] 00+'8 L1
[48 LL oL [A
la L]

436 | Appendix

(panunuod) v °|qeL



~
2 (panunuo))

x 059°C 9/9'C S69°C 91LC 8€L'T 9L'C 68LC 6I8'C [4%: %4 688°C 0¢6°C LL6'T e
.,m 0L'C 6ILT 8¢L'T 8SL'C 18LC S08'C €8T 198°C ¥68°C 1€6°C €L6'C 020°¢ €C
W 6¥L'C 99L°C S8L°C S08°C LT8'C [4%: %4 6L8'C 806°C 1¥6'C 8L6'C 610°¢ £90°¢ [44
< 108¢ 818'C LE€8'T LS8'C 088°C ¥06°C 1€6°C 096'C £€66°C 0¢0'¢ LO'E 6IT¢ 1C
6S8°C LL8'T S68°C 916'C 8¢6°C 796°C 686'C 810°¢ 1S0°¢ 880°¢ 0¢T'e LLT'E 0¢
ST6'C (44 X4 196C 186°C €00°¢ LT0°¢ ¥S0°¢ +¥80°¢ 9IT°¢ (33 S6l°¢ wie 61
666'C 910°¢ Se0'¢ SS0°¢ LLO°E 10T°¢ 8CT'¢ 8ST'¢ 06T°¢ LTT'E 69C°¢ 91¢’¢ 81
¥80°¢ 10T°¢ 6IT'¢ 6eT°¢ o1'e 981°¢ ace wee SLT'E ee €6e'e 10¥°¢ L1
181°¢ 861°¢ 91T'¢ LET'E 6ST'¢ €8C°¢ 0re’e 6£¢°¢ CLEE 60¥°¢ 1Sv'¢ 86¥°¢ 91
Y6T'¢ 11¢°¢ 0€ee 0S¢'¢ [AA%3 96¢°¢ (X443 (4743 8¢ [44°R3 ¥9S°¢ 19°¢ ST
LTY'E j24 A% €9Y°¢ €8Y'¢ S0S°¢ 6CS°¢ 966°¢ 98G°¢ 619°¢ 969°¢ 869°¢ SYL¢ 14!
L8S°¢ ¥09°¢ 9'e €V9°¢ S99°¢ 689°¢ 9TL'¢ SYLE 8LL'¢ I8¢ LS8 S06°¢ ¢l
08L'¢ 86L'¢ 918°¢ 9¢8°¢ 868°¢ £88°¢ 606°¢ 6¢6°¢ TL6'E 010% [4Vh4 00T 4}
120'v 8¢0¥ LSOV LLOY 660°¥ €y (U4 08Ty €Iy 1STy €6CY wey 11
LTEY 12494 €9¢'Yy €8¢y Sov'y ocr'y LSY'Y L8V ({14 % 865V 109'¥ 059y ot
6Ly LY S9LY 98L'v 808 €e8Y 098 068 Y6y 96’ S00°S SS0°S 6
6LTS L6T'S 91¢'S 9¢¢’S 6S¢°S 8¢S (484 (444 LLY'S SIG6°S 6S8S°S 609°S 8
¥L0'9 609 1119 [A°) SS1T'9 1819 60C'9 ovC9 SLT9 v1¢9 6S¢9 01+'9 L
€1eL 1€¢°L 16¢°L TLE L 96¢°L wL 1S¥°L €8Y'L 61S°L 6SS°L S09°L LSYL 9
99¥°6 S8Y°6 90S°6 8CS6 €656 085°6 019°6 V96 089°6 L6 0LL6 86 S
€6°¢l S6°¢l L6°¢T 66'¢T [{\h 4" SO¥1 801 avl ST¥L 0C'¥yL STyl T¢y1 14
09'9C 79'9C 99T 99'9C 69°9¢ TL9T SL9T 6L9T €8'9¢ £L8'9C 76'9¢C 86'9C 3
9°66 9t°66 S¥°66 S¥°66 S¥°66 S¥°66 ¥¥°66 766 66 £€¥°66 €766 66 [4
S€09 679 €09 9179 6079 1029 619 1819 0L19 LST9 €19 919 1

e €C [44 Lc (114 6L 8L LL 9L SL L €L
la 2

(panunuod) v 9|qeL



438 | Appendix

606°€ 966'€ 780 S9TY YTy 85Ty 0LT €8T Y 96Ty ey 01
[AE 86¢Y €87y L9SY 6Y9'Y 0997 w9y S89'% 8697 1LY 6
658 96y 7€0°S 9IS 861°S 60T°S 1zes ¥ET'S 8¥T'S €97°S 8
0$9°S LELS ¥78's 806'S 266°S £00'9 9109 6209 £40'9 8509 L
0889 696'9 LSO'L 1349 67T'L 0¥TL €STL 99T 08T'L 96T°L 9
020°6 aure 076 1676 6L£°6 16£°6 Y016 81¥°6 3349 6v¥'6 S
9p°¢l 95°€1 S9'€T vL€l ¥8°€1 S8'€T 98°¢1 88°€1 68°€T 1671 4
9 (AALT4 7£'9C 14'9C 0597 75'9C €597 $5'9C 9597 8597 3
0566 67°66 8766 L¥'66 L¥'66 966 9766 966 9766 97'66 z
99¢9 6££9 €1€9 879 1979 LST9 €579 6¥79 Sv79 0¥79 1
00 ozL 09 (114 o€ 67 14 VA 9z st
La 2
1641 0181 €81 y$8°1 8181 S06'T y€6'1 S96'T 000°C 6£0°T 780°C 0¢T°T 00
0561 696'T 6861 1107 50T 090°C 680°C 611°C ¥S1T 61T veT'T 87T 071
SIT'T YEL'T €S1°T SLTT 861°C €7TT 1ST°T 187°C S1£°T 786 v6£°T wr'e 09
887°C 90€°C YAN4 9eT 69¢°C ¥6£°T e 1S9'C y8Y°T (4454 £95°C 119°¢C oy
69¥°T L8¥'T 905°C 978°T 6vS°T €15°T 009°T 0£9°C £99°C 00£T WL 68L°T o€
S6¥°C st 1€S°C (A4 YLS'T 66S°C 979'C 959°C 689C 97LT L9L°T y18T 67
(4454 0¥S'T 65S°T 6LST 209°C 979'C £€99°C £89°C 9ILT YA S6L°T ws'T 8¢
14354 04T 685°C 609'C 69T 959'C €89°C €1LT WLT £8/°T v78'T 18T [T
$86°C 209°C 179°C wo'T ¥99'C 889°C S1LT SvL'T 8LLT S18°C LS8T $06'C 9
029'C 8¢9°C LS9T LL9T 669°C YTLT ISLT 08T €18°C 0S8°C 68T 6£6'C ¥4
vz €z 44 Lz oz 6L 8L LL 9L sL L €L
La (]
(panunuod)  £v 2iqeL



439

Appendix

*I0]RUTWIOUSP UT WOPIII] JO $39139p :%4 {10JBISWNU UT WIOPadJ Jo s32139p :'a *(001'9) ‘b7 01 19799

000'T szel €yl 7651 969'1 01L1 YTl 65L'T SSL1 €LLT 00
18¢°1 €T 9591 €941 098'T €81 988’1 1061 916’1 66T 0zt
1091 97L'1 9¢8'1 9¢6°'1 870°C 1+0°C ¥50°C 890°C £€80°C 860°C 09
S08'1 L16'T 610'C yITT €07T S1TT 87T'T e 95T'T 1LTT ov
900'C TI1e 807°C 667°C 98¢°C 86£°C 01¥°C e LEV'T €T 0¢
v€0°T 8¢1°T y€TT STeT AR €T 9T 6v¥T £9Y°T 8LY'T 67
¥90°C 91T €92T ySeT orr'e ISy'T Y9¥°C LLY'T 16+°C 90T 8¢
£60°C 861°C ¥62°C ¥8¢€°C 0Ly'T 18+°C Y6¥°C £0S°T 12S°T 9¢5°T LT
11T €€TT LTET LT £€0ST y1S°T 978°T 0vs'T ¥§5°T 695°T 9
691°C LTT $9€°C €SHC 865°C 0SS°C (£1%4 SLST 685°C ¥09°C 94
11T €T €0V'T WY LLST 685°C 109°C ¥19°C 879'C £9°C vz
95T'T YSET yr'T $€S°T 079°C 7€9°T ¥99°C L89°T 49T 989'C €T
S0£°T €0V'T S6v'T £85°T £99°T 6L9°C 169°C Y0L'T 814°T £€LT w
09¢°C LSY'T 85T 9£9'C 0TLT T€LT LT 984T 0LLT S8LT X4
14T L1§°T 809°C $69°C 8LLT 06L'C 08T 18T 678°C €8T 0z
687'T 85T ¥L9°T 194T Y¥8'T $S8T 898'C 088°C 768°C 606'T 61
995°C 99'C 6YLT $€8C 616C 0£6'C we'T $56C 896°C £€86'C 81
£59°C WLT 68T 6T £00°€ y10°€ 970°¢ 6£0°€ £50°¢ 890°¢ L1
€5LT SH8T £66C 810°¢ 01°¢ e yere LETE 0ST°¢ S9T¢ 91
898°C 656'C LY0°€ Tere Y1TE sTee LETE 0ST'€ y97°€ 8LT€ 9
$00°€ ¥60°¢ I8T'E 99T°¢ 8Yee 65¢°€ TLE€ €8¢°¢ L6€°€ are 1
9T¢ YA Ire'e Stye L0S°€ 816°¢ 0£5°€ 34 956°¢ 1LS°€ €1
19g°¢ 6vr'E Sese 619°€ 10L€ AVAL veLe 9¢L°€ 0SL°€ S9L€ 4
209°¢ 69°¢ 9LL€ 98¢ I+6°€ 756°¢ ¥96°€ LL6€ 066°€ S00Y T
ozL 09 oy o€ 62 14 e 9 14

] 2

(panunuod) L'V 2qeL



References

Altshuler, B. and Pasternack, B. (1963)
Statistical measures of the lower limit of
detection of a radioactive counter. Health
Phys., 9, 293-298.

Anderson, V.L. and McLean, R.A. (1974)
Design of Experiments: A Realistic Approach,
Marcel Dekker, Inc., New York, NY.

Atkinson, A.C. (1980) Tests of pseudo-random
numbers. Appl. Stat., 29 (2), 164-177.

Barnett, V. and Lewis, T. (1994) Outliers in
Statistical Data, 3rd edn, John Wiley &
Sons, Ltd, Chichester, UK.

Barry, D.A. (1996) Statistics: A Bayesian
Perspective, Duxbury Press, New York, NY.

Bickel, P.J. and Doksum, K.A. (1977)
Mathematical Statistics: Basic Ideas and
Selected Topics, Holden-Day, Inc., San
Francisco, CA.

Bishop, Y.M.M., Fienberg, S.E., and Holland,
P.W. (1975) Discrete Multivariate Analysis:
Theory and Practice, MIT Press, Cambridge,
MA.

Boise, J.D., Land, C.E., Shore, R.E., Norman,
J.E., and Tokunaga, M. (1979) Risk of breast
cancer following low-dose radiation
exposure. Radiology 131, 589-597.

Box, G.E.P. and Tiao, G.C. (1973) Bayesian
Inference in Statistical Analysis, Addison-
Wesley, Reading, MA.

Box, G.E.P., Hunter, W.G., and Hunter, J.S.
(1978) Statistics for Experimenters: An
Introduction to Design, Data Analysis, and
Model Building, John Wiley & Sons, Inc.,
New York, NY.

Carlin, B.P. and Louis, T.A. (1996)

Bayes and Empirical Bayes Methods

for Data Analysis, Chapman & Hall,
New York, NY.

Carter, L.L. and Cashwell, E.D. (1975) Particle-
Transport Simulation with the Monte Carlo
Method. TID-26607, Technical Information
Service, U.S. Department of Commerce,
Springfield, VA.

Cember, H. (1996) Introduction to Health
Physics, 3rd edn, McGraw-Hill, New York,
NY.

Currie, L.A. (1968) Limits for qualitative
detection and quantitative determination.
Anal. Chem., 40, 586-593.

Currie, L.A. (1984) Lower Limit of Detection:
Definition and Elaboration of a Proposed
Position for Radiological Effluent and
Environmental Measurements. NUREG/
CR-4007, U.S. Nuclear Regulatory
Commission, Washington, DC.

DOE (1986) DOE/EH-0027: Department of
Energy Standard for the Performance Testing
of Personnel Dosimetry Systems, U.S.
Department of Energy, Washington,

DC.

DOE (2001) ANSI/HPS N13.11-2001:

Personnel Dosimetry Performance — Criteria
for Testing, Health Physics Society, McLean,
VA.

Draper, N.R. and Smith, H. (1998) Applied
Regression Analysis, 3rd edn, John Wiley &
Sons, Inc., New York, NY.

Edwards, A.W.F. (1972) Likelihood, Cambridge
University Press, London, UK.

Garthwaite, P.H., Jolliffe, I.T., and Jones,

B. (2002) Statistical Inference, Oxford
University Press, Oxford, UK.

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.

441



442

References

Hall, E.J. (1994) Radiobiology for the
Radiologist, 4th edn, ]J.B. Lippincott,
Philadelphia, PA.

Hogg, R.V. and Craig, A.T. (1978) Introduction
to Mathematical Statistics, 4th edn,
Macmillan Publishing Company,

New York, NY.

Hogg, R.V. and Tanis, E.A. (1993) Probability
and Statistical Inference, 4th edn, Macmillan
Publishing Company, New York, NY.

HPS (1996) HPS N13.30-1996: Performance
Criteria for Radiobioassay: An American
National Standard, Health Physics Society,
McLean, VA.

Johnson, Norman L., Kotz, Samuel, and
Balakrishnan, N. (1994) Continuous
Univariate Distributions, Vol. 1, 2nd Edition,
John Wiley and Sons, Hoboken,

N.J.

Johnson, Norman L., Kemp, Adrienne W., and
Kotz, Samuel (2005) Univariate Discrete
Distributions, John Wiley and Sons,
Hoboken, N.J.

Kalos, M. and Whitlock, P. (1986) Monte Carlo
Methods, Wiley—Interscience, New York,
NY.

Kennedy, W.J., Jr. and Gentle, J.E. (1980)
Statistical Computing, Marcel Dekker, Inc.,
New York, NY.

Knuth, D.E. (1980) The Art of Computer
Programming, vol. 2: Seminumerical
Algorithms, 2nd edn, Addison-Wesley,
Reading, MA.

Martz, H.F. (2000) Chapter 2: An introduction
to Bayes, hierarchical Bayes, and empirical
Bayes statistical methods in health physics,
in Applications of Probability and Statistics in
Health Physics: Health Physics Society 2000
Summer School (ed. T.B. Borak), Medical
Physics Publishing, Madison, W1,
pp- 55-84.

Martz, H.F. and Waller, R.A. (1982) Bayesian
Reliability Analysis, John Wiley & Sons, Inc.,
New York, NY.

Metropolis, N. and Ulam, S.M. (1949) The
Monte Carlo method. J. Am. Stat. Assoc., 44,
335-341.

Miller, Rupert G., Jr. (1981) Simultaneous
Statistical Inference, 2nd ed, Springer,
New York, NY.

Miller, 1. and Freund, J.E. (1965) Probability
and Statistics for Engineers, Prentice Hall,
Inc., Englewood Cliffs, NJ.

Neter, J., Kutner, M.H., Nachtsheim, C.J.,
Christopher, ., and Li, W. (2004) Applied
Linear Statistical Models, 5th edn, McGraw-
Hill, New York, NY.

Newman, M.E.J. and Barkema, G.T. (1999)
Monte Carlo Methods in Statistical
Physics, Oxford University Press,

New York, NY.

Parzen, E. (1960) Modern Probability Theory
and Its Applications, John Wiley & Sons,
Inc., New York, NY.

Press, S.J. (1989) Bayesian Statistics: Principles,
Models, and Applications, John Wiley &
Sons, Inc., New York, NY.

Roberson, P.L. and Carlson, R.D. (1992)
Determining the lower limit of detection for
personnel dosimeter systems. Health Phys.,
62, 2-9.

Rossi, H.H. and Zaider, M. (1996)
Microdosimetry and Its Applications,
Springer Verlag, New York, NY.

Ryan, T.P. (2009) Modern Regression Methods,
John Wiley & Sons, Inc., New York, NY.

Satterthwaite, F.G. (1946) An approximate
distribution of estimates of variance
components. Biometrics, 2, 110-112.

Scheaffer, R.L. and McClane, ].T. (1982)
Statistics for Engineers, Duxbury Press,
Boston, MA.

Sivia, D.S. (1996) Data Analysis: A Bayesian
Tutorial, Oxford University Press,

New York, NY.

Sonder, E. and Ahmed, A.B. (1991)
Background Radiation Accumulation and
Lower Limit of Detection in
Thermoluminescent Beta-Gamma
Dosimeters Used by the Centralized
External Dosimetry System. ORNL/TM-
11995, Oak Ridge National Laboratory,
Oak Ridge, TN.

Strom, D.J. and MacLellan, J.A. (2001)
Evaluation of eight decision rules for
low-level radioactivity counting. Health
Phys., 81, 27-34.

Taylor, L.D. (1974) Probability and
Mathematical Statistics, Harper & Row,
New York, NY.



Turner, J.E. (1995) Atoms, Radiation, and
Radiation Protection, 2nd edn, John Wiley
& Sons, Inc., New York, NY.

Turner, J.E. (2007) Atoms, Radiation, and
Radiation Protection, 3rd edn, Wiley-VCH
Verlag GmbH, Weinheim, Germany.

Turner, J.E., Wright, H.A., and Hamm, R.N.
(1985) A Monte Carlo primer for health
physicists. Health Phys., 48, 717-733.

Turner, J.E., Bogard, J.S., Hunt, ].B., and
Rhea, T.A. (1988) Problems and Solutions in

References

Radiation Protection, Pergamon Press,
Elmsford, NY. Available from McGraw-
Hill, Health Professions Division, New
York, NY.

Ulam, S.M. (1983) Adventures of a
Mathematician, Charles Scribner’s Sons,
New York, NY.

Walpole, R.E. and Myers, R.H. (1989)
Probability and Statistics for Engineers and
Scientists, 4th edn, Macmillan Publishing
Company, New York, NY.

443



Index

a

“absorbed fraction” 327

activity 15fF, 26ff, 85, 157ff, 177, 195, 199,
2056, 213ff, 227ff, 231ff, 246f, 251ff, 266
377, 402, 419

— becquerel (Bq) 16

— curie (Ci) 16, 19

—sample 92, 216, 217, 228

— specific 18, 19, 27, 213, 214

—TRUE 206, 217, 232, 234

—mean 217,236

alpha decay 9

— alpha particle 4, 9, 144ff, 251ff, 276

— spectrum, alpha particle 9

analysis of variance (ANOVA) table 367

annual limits on intake 327

ANSI/HPS N13.30 248

anthropomorphic phantom 248, 327

atomic theory, semiclassical 3ff

attenuation coefficient 214, 317ff

—linear 214, 317, 319ff, 324, 334

—mass 318, 320, 321, 333

attenuation processes 320

— Compton scattering  3,5,12, 276, 277, 320,
321, 323fF

— pair production 3, 320

— photoelectric absorption 3, 12, 321, 323ff

— photoelectric effect 5, 320, 322

— photonuclear reaction 320

Auger electrons 276

avalanche 279

average life 17, 60

average, weighted 306, 392, 413, 415

Avogadro’s number 18

b

Bayes factor 406ff, 409, 413, 418, 420
Bayes' Theorem 43

Bayesian statistics 393

Becquerel 4, 16

Bernoulli 22, 92, 172, 186, 192, 306, 407
— process 22,92

—trial 92, 94, 112, 114, 186

Bernoulli distribution 92, 93, 192

beta decay 9, 12

— antineutrino 9

— beta particle 9, 12, 17, 77, 291

— spectrum, beta particle 9

beta distribution 154

bias, systematic 249, 371

binding energy 274, 325

binomial 93

— approximation to hypergeometric 107

— cumulative distribution 94, 96, 407

— distribution 15, 16, 22ff; 29, 78, 85, 91, 93ff,
99, 100, 104, 106, 114ff, 135, 136, 139ff, 159,
164, 216, 224, 407, 408

— normal approximation 135, 136

— Poisson approximation 100, 141

binomial distribution 15ff, 22ff

binomial series 24

blank, appropriate 248, 249, 253, 255

Bohr 4,6, 11

Bragg-Gray chamber 300

bremsstrahlung 276, 325

c

calibration 164, 216ff, 231, 238, 249ff, 253,
272, 380, 418

calibration problem 380

Cauchy distribution 89, 123, 150, 157, 161,
192

cell killing  341ff

cell survival 341ff

— aberrations, exchange-type 347{f

— clonogenic 342

—curve 341ff

— probability 341ff

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.

445



446

Index

central limit theorem 124,132, 160, 162,172,
175, 181, 210, 216ff

Chadwick 8

characteristic function 192

characteristic X-ray 9, 276

Chauvenet's criterion  263ff

Chebyshev’s inequality  76ff; 87ff, 96,
128, 158

chi-square distribution 142, 145ff, 160, 164,
168, 183, 184, 412

— additivity, property of 148, 149

— degrees of freedom  146ff

— normal approximation 147

— quantiles 146

— relation to gamma distribution 146

— relation to standard normal
distribution 148

chi-square testing 145, 271, 281

chord length  300ff

— Cauchy theorem 311

— distribution, isotropic  300ff

classical laws  1ff

— of electromagnetism 2

— of gravitation 2

— of mechanics 2

—of motion 1ff

— Newtonian mechanics 2

— of physics 2

— of thermodynamics 2

— “ultraviolet catastrophe” 2

classical statistics 387

coefficient of variation (CV) 164

Compton 3, 5, 12, 276ff, 320ff, 327

— distribution 276

—edge 276

— scattering 3, 5, 12, 276ff, 320ff

Compton scattering 3, 5, 12, 276, 277, 320,
321, 323ff, 327

— attenuation processes 320

— Klein-Nishina formula 324

conditional probability 21, 38ff; 44, 69ff, 87,
145, 319, 333, 387

— Bayes’ Theorem 43

— definition 39

confidence interval 169

— for difference in means 176ff, 196

— for difference in proportions 181

— for means 168

— for Poisson rate

— probable error 170, 195

— for proportions 172

— for ratio of variances

— standard error 169

— for variance 183

175

184

conjugate prior distribution  396ff, 399ff, 414,
419, 423

continuity correction factor 137ff, 141, 159

correlation 71, 353, 369, 381ff

— coefficient 381

— coeffcient, sample 381

correlation, coefficient of  71ff, 381ff

count 106, 144, 169, 176, 195, 199, 202ff, 210,
214fF, 231ff, 248fF, 266ff, 271, 281, 284f, 317,
322, 402, 416

— background 215ff

—gross 204,215,216, 218, 219, 222, 226, 228,
232, 239, 267

counter 102, 144, 228ff, 231, 267, 271ff, 300,
314, 331

— gas proportional 272, 274ff, 279

— operation, chi-square testing of 281

— scintillation 271

counter, gas proportional 272, 274ff, 279,293,
300

— dosimetry, applications in 300

— microdosimetry, applications in 300

—Rossi 300

— spherical 300

— tissue-equivalent 300

covariance 71ff, 87, 90, 200, 359, 365, 381

credible interval 404

critical value, Lc  231ff, 236, 243, 263, 268

cross section, macroscopic 317, 327, 329

— mean free path, inverse 319, 327

- neutron 327

cumulative distribution function 53ff, 57ff,
66, 84fF, 88, 121ff, 318, 404

cumulative normal distribution 125, 126,
128, 140, 147, 148

d

Davisson-Germer 5

de Broglie 5ff

- momentum 7

— wavelength 8

de Moivre, Abraham 132

dead time 284ff

dead time correction 271, 284ff

decay 1,4, 7ff

—constant 15, 17, 21, 23, 26ff; 60, 61, 143,
144, 161, 176, 205, 21, 223, 315, 319, 387

— disintegration 12, 15ff, 46, 106, 198, 224,
253

— exponential  15ff, 26, 315, 372

— radioactive 1, 4, 7ff, 15ff, 22, 26, 29, 61, 99,
102, 140, 143ff, 214, 216, 223, 224, 231, 315,
322

—rate 16, 17, 102



decay probability 16, 23, 225

decay time sampling 315

decision level, Lc 233, 241, 248ff, 270

delta theorem 210

derived air concentrations 327

derived quantity 199, 201, 202

detector 228, 232, 234, 236, 237, 250, 271ff,
275ff, 284, 285, 287, 290, 317, 322, 376

— “energy proportional” 272

— Fano Factor 273, 274, 277, 290

— linear response 278

— nonparalyzable 284ff, 290ff

— observed resolution of 274

— paralyzable 284ff, 291, 292

— resolution of  271ff, 290, 291

— response function of  272ff, 279

— scintillation  276ff, 280, 290, 291, 321

— semiconductor 274, 276, 280, 281, 290

— sodium iodide crystal scintillator 276, 277,
280, 281, 291, 320

discrete uniform distribution 91,92, 167, 398

distribution  15ff;, 51ff, 65ff

— Bernoulli 92, 93, 192

—Dbeta 154ff, 161, 391, 392, 394, 395, 407, 420

— binomial 15, 16, 22ff; 29, 78, 85, 91, 93ff, 99,
100, 104, 106, 114ff, 135, 136, 139ff, 159, 164,
216, 224, 407, 408

— Cauchy 89, 123, 150, 157, 161, 192

— chi-square 142, 145ff, 160, 164, 168, 183,
184, 412

— conditional 70

— cumulative 53, 57f, 66, 84ff, 88, 121, 318,
404

— discrete uniform 91

— exponential 142ff

—F 151f

—gamma 142ff, 155, 159, 396, 397, 399,
410, 411

— Gaussian 124, 132

— geometric 110

— hypergeometric  106ff

— independence 66

—joint  65ff

—lognormal  153ff

— multivariate hypergeometric 109

— negative binomial 112

—normal 3,15, 26, 89, 102, 124ff, 133, 135,
136, 139, 140, 147{f, 154, 157, 161, 164, 168,
169, 171, 173, 177, 189, 190, 215, 216, 221,
232,242,247, 248, 251, 258, 260ff, 269, 272,
290, 359, 361, 381, 414, 418

— Poisson 15, 26, 98ff, 114ff, 141, 143, 144,
160, 164, 166, 167, 176, 187, 191, 193ff, 204,
215,216, 223ff, 231, 248, 251ff, 269, 273, 282,

Index

283, 289, 290, 396, 410, 411, 416,
417, 421

— posterior 84, 390ff, 403ff, 422

— prior 84, 387, 390ff, 397ff, 406{f

— standard normal  124ff, 128, 131, 148ff, 157,
169, 173, 177, 201, 218, 232, 237, 243, 245,
247, 248, 263, 332

— Student’s t 89, 123, 149ff, 161, 170, 171,
179ff, 183,195, 247, 248, 257, 258, 264ff, 269,
364, 366, 368, 377

—uniform  91ff, 119ff, 156, 160, 167, 194, 295,
301, 308, 324, 328, 331, 335, 391, 392, 395f},
402, 407, 408, 419, 420

—of values 15

distribution, probability 8, 51ff, 91, 92, 94,
109, 1114}, 119, 121, 122, 124, 137, 148,
165, 186, 283, 312, 313, 387, 388,
390, 394

— discrete 52, 67, 72, 91ff, 167, 398, 404

— cumulative 54, 55ff, 61, 62, 65, 66, 84, 85,
88,94, 96, 97, 100, 102, 119ff, 136, 137, 148,
252, 313ff, 324, 331, 332, 334, 407

DOE Laboratory Accreditation Program
(DOELAP) 255

dose 1, 242, 245, 255ff, 264, 266, 269, 270,
275, 293, 294, 317, 322ff, 334, 337f},
378, 385

— absorbed, per unit fluence 322, 323, 325,
326, 334, 343, 345, 349

— committed 327

—LDs, 343, 344, 348fF

— mean lethal 343, 344, 348

— minimum 337

—model 327

— threshold 337

dose-response 1, 260, 337ff

—curve 338ff

— function 340ff

— relationship 338ff

dosimeter, thermoluminescence (TLD)
159, 242, 2556

dosimetry 122, 255, 260, 261, 269, 293, 300,
327, 328

—internal 327

— using gas-proportional counter

114,

300

e

effects, biological 337

— deterministic 337

— and exposure, radiation 337
— genetic 337

— germ cells 337

— radiation induced 338

— severity and dose 337

447



448

Index

— somatic cells 337

— stochastic 337

efficiency, counter 106, 210, 213, 214, 217,
219, 222, 225ff, 232, 234, 236, 237, 250, 277,
278, 291

Einstein 2,5,9, 11

— “God does not play dice.” 11

— special theory of relativity 2

electron-hole pair 271, 276, 280

energy resolution 271ff, 276, 280, 281,
290, 291

error 163

— estimated 173, 174

— mean square, MSE  359ff, 366ff, 371,
373, 376ff

—random 163

— standard 168

— sum of squares for, SSE  359ff, 367, 368,
371, 374f, 384

— systematic 163, 164, 193, 199, 249, 271

error in an estimation 174

error propagation 199

— analysis 279

— in confidence interval of mean 201

— in derived quantity 201
—in mean 201
— in standard error 201

error propagation formulas 202

— exponentials 203

— products and powers

— sums and differences

— variance of mean 203

error, systematic 164, 193, 249

estimate, interval 168, 169, 407

estimate, point 165, 168, 170, 177, 186,
403, 407

estimated error 173

estimation 145, 163ff, 231, 253, 354ff, 358f},
365, 376, 387

— least squares method 354

estimator 165

— consistent 166

— efficient 166

— generalized maximum likelihood 403

— maximum likelihood 186ff, 197, 361, 362,
390, 403, 407, 422

— minimum variance unbiased 166

— pooled, for variance 178

— standard error 173

— unbiased 165

event 33

— complement 34

— exhaustive 41ff

— independent  21ff; 38ff 322

202
202

— intersection of 34

— mutually exclusive 34ff, 41ff, 46, 47

— probability 36

- simple 33

—union of 33

expected value 27, 59ff, 63, 69, 72, 74, 85, 89,
92,95, 99, 105, 165, 166, 189, 190, 192, 198,
200, 209, 224, 227, 229, 232, 267, 295ff, 314,
330, 331, 362, 365ff, 371, 373, 396, 397,
419, 420

experiment 29

exponential distribution 85, 142ff, 159,
160, 197, 198, 286, 289, 315ff, 320,
398, 419

— arrival time for first Poisson event

—memory 99, 145, 319, 320

— relation to gamma distribution 142

— relation to radioactive decay 142

extrapolation 364

f

F distribution 151

— degrees of freedom 151

— quantiles 151

— relation between upper and lower
quantiles 152

false negative (type II) error 235

false positive (type I) error 233

Fano factor 273, 274, 277, 290

fiducial limits 378, 379

film, radiosensitive 255

finite population correction factor
116, 134

Fisher, R.A. 381

frequency, relative  302ff, 313, 387

frequentist 387ff, 393, 403ff, 407, 412

full width at half maximum (FWHM)
272fF, 290

143

107, 109,

g
gamma distribution  142ff, 155, 159, 396, 397,

399, 410, 411
gammaray 9, 11, 12, 276ff, 291, 319ff, 327,
328, 341
gas multiplication 272, 279
Gauss,Carl Friedrich 132
Gauss-Markov theorem 359
generalized maximum likelihood
estimator 403
geometric distribution 110
GM tube, self-quenching 290
goodness-of-fit 119, 353
Gosset, W.S. 151
gram atomic weight

18ff



h

halflife 12, 15ff; 19f}, 25, 27, 28, 62, 106, 140,
206, 207, 211, 213, 224, 225, 227, 333, 344

Heisenberg 5,6

— quantum mechanics 5

— uncertainty principle 5ff, 12

highest posterior density (HPD)

high-purity germanium (HPGe)
280, 281, 290

hypergeometric distribution 106

hypothesis 240

— alternative 240, 241, 243, 245ff, 270, 368,
408, 409, 414

— composite vs. composite 240

—null 240ff; 257, 258, 270, 367, 405

— simple vs. composite 240

— simple vs. simple 240

hypothesis testing 240

404, 407
228, 276,

1

importance sampling 309

increment, independent 320

Independence Theorem 44

independent event 44

independent variable 304, 306, 308, 353, 368,
369, 373, 376, 382, 383, 385

inference, Bayesian 403

inference, statistical 84, 231, 366, 387

integral calculus, fundamental theorem 56

interpolation 364

ion pair 274ff, 281, 290

— average energy, W, to produce 275

ionization 270ff, 274ff, 279

— device 271

— potential 274

J
joint probability function 65ff, 186

k
Klein-Nishina formula 324

I

lack of fit 369, 371, 373ff, 383

laws of quantum physics 2

— definite 2

— statistical 2

Le 231ff 236, 243, 263, 268

— critical value 231

— decision level 248

Lp 237,238, 250ff, 258, 266, 269, 270

— minimum detectable true net count
number 237

— lower limit of detection, LLD 237

Index

— minimum detectable amount, MDA 237,
248, 250ff, 269

LDs, 343, 344, 348ff

leakage, radiation 322

LET spectrum 300

lifetime, average 17, 60

likelihood function  186ff, 197,262, 361, 388,
392, 394, 403, 410, 414, 419, 420, 422

linear energy transfer (LET) 294, 300, 327,
341, 348, 351

— distribution 294

— quality factor 327

— spectrum 300

lognormal distribution 153

lower limit of detection, LLD 237

m

marginal 66ff, 72, 84, 86, 87, 89, 391, 394

— density 66, 67, 69, 70, 84, 86, 87, 89

— distribution 67, 68, 72, 86, 391, 394

maximum likelihood estimator (MLE)
197, 361, 362, 390, 403, 407, 422

Maxwell 4

mean 59ff

mean square error, MSE 359, 364, 392

mean, correction for 355

median  62ff, 86, 89, 161, 165, 292, 332, 334,
403, 404, 407ff, 416, 417

Medical Internal Radiation Dose (MIRD)
Committee 327

memory 99, 145, 319, 320

microscope, scanning tunneling 10

Millikan 4

minimum detectable amount, MDA 237,
248, 250, 269

minimum detectable true activity, Ay
241, 242, 258, 267

minimum detectable true net count
number, Lp 237

minimum significant measured
activity, A, 231ff 238fF, 266, 267

minimum variance unbiased estimator
(MVUE) 166ff, 188, 189, 194

mode 403, 404, 407ff, 416, 417, 420

modeling, biological 338

— cross section 342

— extrapolation number 347, 349, 350

— for stochastic effects 338

— hits per target, average number of 342

— linear quadratic 347

— multi-target, multi-hit 347

186ff,

2354,

— multi-target, single-hit 345, 346
— single-target, single hit 342
moment 189

449



450

Index

— generating function about point b 192

— generating function for a sum of random
variables 193

— generating function 191

-i™ 190

—i™, of the sample 190

— method of 189

momentum  4ff, 11, 77, 335

Monte Carlo method 122, 293ff; 340

— to determine absorbed dose 294, 323, 325,
326, 334

— to determine dose equivalent

— to determine dose 293

— to determine LET distribution 294

— to determine shielding properties

— in dosimetry 293

— in energy losses 293

— in flight distances 293

—in neutron transport 293

— in photon transport 317, 319ff

— in radiation penetration 293

— in radiation physics 293

— Russian roulette 329

— in scattering angles 293

- splitting 329

multiplicative rule 44

multivariate hypergeometric distribution 109

293

293

n

negative binomial distribution 112, 113, 115,
117, 396, 419

net dosimeter reading 256

Newton 1

Neyman-Pearson Lemma 262

noninformative prior distribution 397ff, 410,
414

— Jeftreys 410ff

— location parameter 398
— reference 397
— scale parameter 398

—vague 397

nonparalyzable detector 284ff, 290ff
normal equations 355, 369, 371
normalize 61

0
outlier 263
overdispersion 253

p
pair production 3, 320

paralyzable detector 284, 285, 287
parameter 164
partitioning of counting times, optimum 222

permutation  23ff

photoelectric absorption 3, 12, 321, 323ff

photopeak 276

pivotal quantity 171

Planck 2

—constant 4,6, 8,9, 11

— quantum of action 2

Poisson 98

— cumulative distribution 100

— distribution 98

— process 99

precision 163ff

— double 295, 299

- limiting 221

— numerical, of the computer

— as reciprocal of variance 415

— roundoff, function of 299

predicting  364ff

— future observations 365

— mean of k future observations

— mean value 365

prior distribution 84, 387, 390ff, 397ff, 406ff

— conjugate  396ff, 399ff, 414, 419, 423

— data-based 401

— elicited 401

— empirical gamma 411

— g-priors 401

— hyperparameters
415, 420

— noninformative 397ff, 410, 414

— population 394

— principle of insufficient reason 394

— state of knowledge 394

probability 2, 36ff

— axioms of 37

— conditional 38ff

probability density function 55ff

— posterior  84ff

— prior  84ff

protection, radiation 338

pulse height 271ff, 276, 277, 300

pure error 369, 371, 373ff, 383

—mean square 374

- sum of squares 374

pure error mean square 374

299

365

395, 396, 402, 414,

q

quantum mechanics 5ff, 52, 53, 56

r

radiation, isotropic 89, 117, 122, 157, 300

radioactive decay 1, 4, 7ff, 15ff, 22, 26, 29, 61,
99, 102, 140, 143ff, 214, 216, 223, 224, 231,
315, 322



radiobioassay 248ff, 255, 269

radionuclides, short-lived 223

random number 293ff

— generator 92, 122, 294, 295, 302, 308,
316, 330

—seed 294

— sequence 295

randomness, test for 295

rate, count 106, 144, 204, 205, 210, 215ﬂ:
226ff, 232,236, 250,267, 271, 284ff, 317, 318,
322, 402

— background 216, 217, 227

—gross 204, 205, 216, 218, 219, 222, 226, 228

—net 215,217, 220ff, 227, 228, 232, 233, 236,
249, 267

rate, event 285

ratio of variances estimator

reconfirmation 373

region 240

— acceptance 240

— critical 240

—rejection 240

regression 259, 260, 269, 353ff

—inverse 353, 378ff

—linear 353ff

— through origin 376

regression analysis  353ff

relation between gamma and beta
distributions 154

relative error 106

relativity, special theory of 2

repeat observations 373

residual 358

residual, minimum sum of squared 358

response variable 353ff

risk  327ff

— and acceptable radiation limits

— assessment 327

— estimation 338

Roentgen 3

Rule of Elimination 41

Rutherford 4

184

340

s

sample size estimation 174

sample space 29ff, 51, 82

— continuous 32, 33, 37

— discrete 32, 33, 36, 37, 51

— element, individual 29

— outcome 29

sampling 107

— decay times, from exponential
distribution 315

— from known distribution 313

Index

— importance 309

— stratified 308

— with replacement 107

— without replacement 107

sampling distribution 132ff;, 149, 158, 159,
166, 168,169,171, 173, 194, 393ff, 398ff, 402,
403, 417

Satterthwaite’s approximation 180

Schrédinger 5

scintillation 271

— counter 271

— photon 272

scintillation detector  276ff, 280, 290, 291, 321

— lanthanum bromide, cerium activated [LaBr
(Ce)] 280

— sodium iodide, thallium-doped [Nal
(T1)] 228, 276, 277, 280, 281, 291, 320

scram 410

semiclassical physics 4

semiconductor detector
281, 290

— cadmium zinc telluride [CdZnTe]

— high-purity germanium (HPGe)
280, 281, 290

set 33

—empty 33

—null 33

smoothing techniques 306

specific activity 18, 19, 27, 213, 214

spectrometer, alpha particle 251ff

standard deviation  63ff, 95ff, 106, 124ff, 132ff,
144, 154, 156ff, 164, 168ff, 173, 193ff, 202,
210ff, 216ff, 222ff, 232ff, 242, 249, 264ff, 273,
291, 307, 315f}, 330, 402,
420, 422

— net count rate 217

standard error 168

standard error of the mean 133, 195

standard normal distribution  124ff, 128, 131,
148ff, 157, 169, 173, 177, 201, 218, 232, 237,
243, 245, 247, 248, 263, 332

statistic 165

— sufficient 415

—test 240

statistical inference, methods 387

— Bayesian  387ff, 398, 403ff, 410

— classical 387

— frequentist 387ff, 393, 403ff, 407, 412

stratified sampling 308

strong force, short range 327

Student’s t-distribution 149

— degrees of freedom 149

— quantiles 150

— relation to Cauchy distribution 150

274, 276, 280,

280, 281
228, 276,

451



452

Index

sum of cross products 355

— corrected 355

—uncorrected 355

sum of squares 355, 359, 361, 367, 371, 374,
383, 384

— corrected 355

— due to regression, SSR 367

— for error, SSE 359

—lack of fit 374, 383

— pure error 374, 383

—uncorrected 355

sum of squares due to regression, SSR
367

sum of squares for error, SSE 359

sum of squares lack of fit 374

sum of squares pure error 374

sum of squares, corrected 355

sum of squares, uncorrected 355

support 80

survival probability 16, 20, 21, 23, 26, 143,
322, 341, 342, 3406, 348

t
Taylor series expansion 199
test 241

— most powerful 262

— one-sided 245

— one-tailed 245, 246

— power curve for 241

— power of 241, 242, 373

— significance level of 241

—size 241

— two-tailed 245, 246

test statistic 240

Theorem of Total Probability 41ff
Thomson 4

time 290

—dead 271, 284fF, 289fF

— real elapsed 290

— system live 290

transformations of random variables
transformation, radioactive 9, 16
transmutation 4

transport, photon 317

— linear attenuation coefficient 317
— mass attenuation coefficient 318
— Monte Carlo 122, 293ff, 340

— in shielding calculation 317ff
—under good geometry 52, 317, 318
tunneling 9

77

typelerror 233ff,241,243,249,252,257,263,
266, 267, 269

u

unbiased estimator 165

uncertainty, systematic

underdispersion 253

uniform distribution  91ff, 119ff, 156, 160,
167, 194, 295, 301, 308, 324, 328, 331, 335,
391, 392, 395ff, 402, 407, 408, 419, 420

uniqueness property 192

249

14

variable, random 36

— continuous 36

— discrete 36

— expectedvalue  27,59ff,63,69,72,74,85,89,
92,95, 99, 105, 165, 166, 189, 190, 192, 198,
200, 209, 224, 227, 229, 232, 267, 295ff, 314,
330, 331, 362, 365ff, 371, 373, 396, 397, 419,
420

— independent 304, 306, 308, 353, 368, 369,
373, 376, 382, 383, 385

—mean 59ff

—mode 403

—response  353ff

variance 63ff, 71ff, 84, 87, 89, 92, 94ff, 105,
107, 110, 113ff, 120, 135, 142, 145, 146, 151,
154F, 159fF, 164f, 170ff, 183, 189, 194
208ff, 217, 222, 232, 240, 247, 248, 250, 253,
256ff, 262, 270, 273, 274, 282, 308, 309, 316,
317,353, 354, 358, 359, 361, 364ff, 369, 371f,
376, 377, 385, 391, 393, 400ff, 414ff,
419, 422

- interval estimate 183

— of a linear combination of variables 74

— pooled estimator for 178

Venn diagram 35

von Laue 5

w

wavelength 2, 4ff 11, 291
wavelengths, distribution of 2
wave-particle duality 5

— photoelectric effect 5

— Xeray diffraction 5
whole-body count 251

X

X-rays  3,5,9,164,211,276, 320,334, 338, 340



