
Chapter 5 
Nuclear Mass 

5.1 Introduction 

In this chapter we discuss nuclear mass, the factors which control its value in the 
range of nuclei from the vel)' light to the very heavy and its relevance to several 
nuclear processes. However, as explained in section 3.2, it is the normal practice 
in nuclear physics to use not the mass of the bare nucleus but rather the mass of 
the nucleus with its full complement of orbital electrons, i.e . we na nn ally use the 

mass of the neutral atom. 

5.2 The experimental determination of mass values 

Experimental information concerning mass values is available from two sources. 
Firstly it may be derived from the field of mass spectrometry. This technique had 
its birth in the investigations of canal rays by J . J. Thomson in 1913, and has now 
been applied to elements throughout the periodic table. The ion of an atom, or 
more usually of a molecule, is sent through a system of deflecting electric and 
magnetic fields and from its trajectory its charge-ta-mass ratio is measured. Then, 
providing its charge is known, its mass may be calculated. Usually the mass 
difference between two ions known to be of almost the same mass value is 
measured. For example, the molecular ion 160 1 and the atomic ion J1S form a 
doublet suitable for n measurement of this )dnd. A determination of the mass 
difference then enables the mass of 32S to be accUlately related to the mass of 

16
0 . 

Secondly, relationships between mass values, of accUlacy comparable to that 
obtained by mass spectlOmetry, are available from the study of nuclear reactions. 
For example the measurement of the threshold energy for the photodisintegration of 2" into a plOton and a neutron enables us, invoking the conservation of mass-energy, 
to relate the mass of the deuteron to the masses of the plOton and neutlOn. We 
recollect that in ct- and ~-decay a measurement of the particle energies, assuming 
the distintegration scheme to be known, leads to an estimate of the decay energy 
from which a relationship between the masses of the parent and daughter nuclei 

follows. 

5.3 Atomic mass unit 

For the purpose of discussing absolute masses as distinct flOm mass differences it 
is convenient to introduce an atomic mass unit rather than to use submultiple 
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units of the gramme or kiJogramme. Several such atomic mass units have been 
proposed and for periods used. The obvious choice of the mass of 1 H as one 
atomic mass unit has the disadvantage that on this scaJe the mass values of heavy 
nuclei no longer have the appropriate A·values as the nearest integers. For 
example, on such ascale 208Pb would have a mass of 206·36 units. This can be 
avoided by a different choice of unit mass. For many years, the chemicQ/ scale 
was based on the natural isotopic mixture of oxygen being sixteen atomic mass 
units by definition. Alongside this, there previously existed a physiml scale based 
on the 1·0 isotope being defined to be sixteen atomic mass units. Since 1960, an 
attempt has been made to replace these scales by a new scale based on the isotope 
11C being twelve atomic mass units, and this carbon scale, or unified fTI/lSS scale, 
is now customarily used in nuclear physics. 

5.4 Binding ene'l)' 
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It is frequently convenient to think in tenns of binding energy rather than the 
mass of the nuclear system. The two quantities are of course related by the 
equation 

M(Z, A) =ZMH+ NM.-B(Z, A), 5.1 
where M(Z, A) is the mass of the atom whose nucleus contains Z protons andN 
neutrons, MH the mass of the hydrogen atom and Mn the mass of the neutron. 
l/(Z,A) I, clearly the energy necessary to dissociate the nucleus into itsA 
components. We shall usually express B(Z, A) in units of millions of electlOnvohs, 
and we note that the conversion factor to atomic mass units (on the 12C = 12 a.m.u. 
scale) is I MeV 2 1·07356 x 10-3 a.m.u. 

A study of the distribution of the stable nuclei on the nuclear chart described 
in section 1.4 enables two important deductions to be made about nuclear 
binding energy. Firstly we note that, considering the light nuclei, the stable 
isotopes are grouped closely along the line of slope 45°, i.e. they tend to have 
Z = N. We have seen that the stability of these nuclei against p-decay means that 
their masses are less than the masses of the neighbouring isobars. It follows from 
equation 5.1 that, if the mass difference exceedsM. - MH (i.e. about 0·75 MeV), 
which is usually the case, then the binding energy of a nucleus with Z = N is 
greater than the binding energies of the neighbouring isobars. We deduce that 
equality of proton and neutron numbers enhances binding energy. As we proceed 
to heavier stable nuclei we notice that N increases more rapidly than Z and must 
suppose that other factors enter leading to an excess of neutrons. By the time 
2J:U is reached we note that this excess is 54, i.e. more than 50 per cent of the 
total proton number. 

Table I 

A even A odd 

Z even Zodd Zodd Z ellen 
Neven Nodd Neven Nodd 

163 4 49 54 

Binding 8""'UY 



The second important fact emerges from a consideration of the evenness or 
oddness of the Z. and N·numbers. Table I gives the number of stable nuclei (listed 
in Appendix A) in the four categories arising from the different combinations of 
evenness and oddness. It is immediately clear that the binding energy in the case 
of the odd-A nuclei is not affected by whether the odd, or unpaired, nucleon is a 
proton or a neutron. It is also clear that for even-A nuclei the binding energy is 
very much affected by the existence of two unpaired nucleons as opposed to the 
alternative of a complete pairing of nucleons of both kinds. This suggests that 
there is a pairing energy involved between nucleons of the same kind. We note 
further that the four exceptions to the general rule that nuclei with Z odd and 
N odd - which we shall term (odd, odd) nuclei - are not stable are IH, ~U, 19B 
and ';N, the four lightest members of the set of nuclei which have both Z = N and 
Z and N odd. This we can Interpret in terms of the increase in the binding energy 
resulting from the equality of Z and N being more than sufficient to compensate 
for the loss of binding energy arising from the existence of two unpaired nucleons. 
For Z > 7 this apparently no longer holds. 

5.5 Semi-cmpirica1 mass formula 

The existence of an extensive set of measurements of mass values for both stable 
and unstable nuclei provides an incentive for the development of a mass formula 
to fit these experimental data. Weizsacker (1935) employing the analogy between 
the nucleus and a liquid drop suggested by Bohr, and proceeding on a semi­
empirical basiS, set up such a mass formula; this, with later modifications, still 
plays a vital role in systematizing mass values. 

Two experimental facts encourage us to make the analogy between the nucleus 
and a liquid drop. Firstly, as discussed in section 3.14, the radius of a nucleus is 
with good. accuracy found to be given by the formula 

R=RoAt. 

This means that the number ofnudeons per unit volume, which equalsA/-!trR
3

, is 
a constant. The nucleon density thus behaves as does molecule density in a liquid 
drop, that is, it is independent of the size of the structure. Secondly, as was 
quickly realized in the early 1930s when the first results of accurate mass 
spectrometry appeared, the binding energy per nucleon is almost constant over a 
wide range of nuclei. This property is also shown by molecules in a liquid drop, 
as is evidenced by latent heat being a general property of the liquid independent 
of drop size. In both cases the property is interpreted as arising from the forces 
concerned being short range in nature, resulting in bonds being formed only 
between close neighbours. The forces are said to Sllturate since, once there is a 
sufficiency of close neighbours, the binding of one particular component particle 
is not altered by the existence or absence of more·distant neighbours. Each 
particle in the assembly thus makes a fixed contribution to the total energy of 
the system and so the total energy is proportional to the total number of particles 

. in the assembly. If the force did not saturate, then each particle in an assembly of 
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say A particles might be assumed to form bonds with all the other A - I particles 
in the assembly. The total number of bonds formed would then be tA{A - I). 
Assuming a certain fixed energy to be attributable to each bond, the total energy 
would then be proportional toA(A - I). Consequently the binding energy per 
particle would be proportional toA - I, that is, it would be expected to increase 
with A. This is at variance with the facts, which favour the saturation hypothesis 
for nuclear matter. 

We therefore begin the construction of the mass formula by taking a main term 
in the binding energy proportional to A. This term we represent by Qv A, where 
Q v is a constant, and we refer toavA as the volume energy. Now in any nucleus 
of a fmite size some of the nucleons must lie on the surface and have a different 
arrangement of closest neighbours from those nucleons which lie in the interior. 
The same situation arises of course in the case of a liquid drop, where the fact 
that the molecules on the surface are differently arranged, with respect to nearest 
neighbours, from those in the volume of the drop gives rise to the phenomenon of 
surface tension. Under the action of surface tension drops take up a shape which 
minimizes the surface area and maximizes the tot31 binding energy. In the nuclear 
case we thus have to correct the binding energy (in the belief that a nucleon on 
the surface will make a smaller contribution to the total binding energy) by an 
amount proportional to the surface area. As the radius is proportional to At, the 
surface area can be taken to be proportional to Ai and the sur/ace energy 
contribution we write as - a l A~. 

So far it has been assumed that the nuclear system is held together by an 
attractive force between nucleons which acts irrespective of their identity as 
protons or neutrons. In addition to this cohesive nuclear force, there will be the 
Coulomb force acting between protons. This is a long·range repulsive force and 
hence reduces the total binding energy. The term to represent this effect, the 
Coulomb energy, can be calculated from the principles of elementary electrostatics 
if the spatial arrangement of protons in the nucleus is known. If we assume the 
protons to be uniformly distributed throughout the nuclear volume, we may then 
imagine the protons in the nucleus to be assembled in spherical layers. Assume 
that at an intermediate stage of formation the nucleus has radius r and a layer of 
thickness dr is brought up, proton by proton, from infinity. Let Pp be the number 
of protons per unit volume. Then the charge already in the partially assembled 
nucleus will be lm"3pp e. The work done against the Coulomb force in bringing 
one additional proton from infinity will then be 

r 

f 4.rr3p .' 
---,.!P=-- dx - t1Tr'~'pp 

l1li 3x2 

in magnitude. In this layer there will be 47172 dr Pp protons. Thus the energy built 
into this layer is 

.!}7r2 r 4 P~ e2 dr. 
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We therefore see that the Coulomb energy built into the nucleus when it is 
assembled to a radius R will be 

R 

f !! 1T2r4 p l e2 dr _ .!!. 1J'2p2 R5 e2 
J p 15 P • 

o 

Now 
Z 

Pp- t~Rl 

Substituting this value into the above equation we have therefore the result 

3 Zle
' Coulomb energy - - --

5 R 

3 Zle
' -5 RoAi' 

for the uniform distribution assumed. 
If the protons are not uniformly distributed, then the form of dependence on 

Z and A is the same but the numerical coefficient is different. For example, if all 
the protons were on the surface, the Coulomb energy would be that for a charge 
Ze on a conducting sphere of radius R. The sphere would have an electrical 
capacity equal to R and hence its energy when a charge Ze is placed on it is from 
elementary electrostatics given by !Zle'l/R. We therefore introduce in the general 
case a term, again negative since it represents a disruptive effect, into the binding 
energy equal to - Qcz1tAl to represent the Coulomb energy. In deriving this 
expreSSion, it has been assumed that even within one proton there is a certain 
Coulomb energy associated with one 'part' of the basic charge interacting with 
another. Whether there is such a contribution to the energy or not is a basic 
assumption to be built into any nuclear model. If there is no such internal 
Coulomb energy to be associated with the proton, then from the above expression 
we must subtract a contribution - acIA!, (obtained by puttingZ - 1) for each 
proton in the assembly. On this assumption therefore, the Coulomb energy would 
be - acZ(Z - 1)IAi. The difference between this and the oriainal expression 
becomes less important as Z increases and in what foHows we retain the original 
expression - acZ'/A\ for the Coulomb energy. 

So far we have considered the nucleus in terms of classical physics and on that 
basis there is no explanation for the equality of Z and N leading to particularly 
stable nuclear conngurations. Rather, in view of the Coulomb energy, an excess 
of neutrons should result even in the case of light nuclei. The fact that light nuclei 
do not show neutron excess leads us to introduce into the binding energy, on an 
empirical basi., an asymmetry ene'V' which I. negative for Z ~N and zero for 
Z = N. A rough justification for this and an indication of the possible form of this 
term may be given by the following argument. The nucleons, which we assume to 
be obeying the laws of quantum mechaniCS, mwt be occupying states of definUe 
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energy. In terms of the Pauli exclusion principle, only one nucleon of one kind 
can occupy one state. The lowest energy states will be mled first . In so far as we 
can neglect Coulomb effects, we may take the energy states to be similar for 
neutrons and protons. To go on adding particles of one kind in constructing 
heavier nuclei thus involves filling higher energy states appropriate to that 
particle while lower energy states appropriate to particles of the other kind 
remain vacant. Thus, if there is a neutron excess of N - Z, which we assume 
even, it means that there are N - Z neutron states filled above the last fined 
proton state. Ir now the neutrons in the top half of this range of states, i.e. the 
top !(N - Z) neutrons were to be transformed into protons then each could 
drop down !<N - Z) states. If the states were evenly spaced and energy E apart, 
the energy gained per nucleon would be !(N - Z)f and the total energy gained 
would thus be !<N - Z)' f. This substitution of protons for neutrons of course 
has the effect of increasing the Coulomb-energy term, and the N, Z values which 
lead to maximum binding energy will be determined by minimizing the net 
result of tbe opposed effects ofasymmetry and Coulomb energy. It is believed 
that the average energy spacing E for the last few nucleons is approximately 
proportional to itA and hence the asymmetry energy term is substitu ted into the 
binding energy in the form - a.(N - Zl'IA. 

Finally we have to have regard to the stability of (even, even) as compared to 
(odd, odd) nuclei noted in section 5.4. The pairing energy which was suggested 
by the information in Table I is allowed for by introducing into the formula 
for the binding energy a term 6, which is taken positive for (even, even) nuclei, 
zero for (odd, even) and (even, odd), and negative for (odd, odd) nuclei. Pairing 
energy is a concept which is added for purely empirical reasons to the liquid·drop 
model and hence the model cannot pronounce on the form 6 should take. Other 
models, for example the shell model, have been appealed to and various expressions 
for 6 have been suggested. The form 

I 
8-apAI 

has been commonly used and we shall insert that fonn in what follows. Collecting 
together the various terms introduced above and substituting in equation S.1 we 
have for the mass of a nucleus charge number Z, mass number A 

Z2 (N_Z)2 
M(Z, A)-ZMH+NMn-a.A +a,A'+ac-. +a, ±8 

AT A 

i Zl (A_2Z)' 
- AMn+Z(MH-M.)-a.A+a,A +ac-,+a, ±8. 

AT A S.2 
We note that in this expression there are nve adjustable constants. In principle 

these can be found from five simultaneous equations formed by substituting five 
known mass values. The usefulness of the formula and the validity of the physical 
arguments employed in its construction are then to be judged by how well it 
predicts the hundreds of other mass values which have been measured and by how 
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5.6 

well it predicts the mass differences involved, and hence energy released, in very 
many nuclear reactions. Various sets of values for the constants have been 
suggested, differing slightly depending on the range of nuclei which were under 
investigation. We shall follow R. D. Evans (The Atomic Nucleus, McGraw·Hill, 
1955) in taking for the constants the following set of values which result in 
reasonably good agreement with measured mass values over the whole range of 
A-values: 

a y- 14·1 MeV; a,= J3 MeV; 

33·5 
a = 19 MeV' 8=-MeV a ' Ai . 

Binding energy per nucleon 

ac-O·S9S MeV; 

An impression of the relative importance of the contributions to the binding 
energy of a nucleus made by the various teons in the mass foonula, and the change 
in their relative importance as we proceed from light to heavy nuclei, is obtained 
from Table 2 and from Figure 14. As the surface-energy contribution falls, it is 
largely compensated by increased Coulomb energy. The important observed fact 
that middle-weight nuclei have a slightly greater binding energy per nucleon than 
either heavier or lighter nuclei is reproduced by the fonnula. Arising from the 
interplay of the surface and Coulomb teons, it is seen that energy may be released 
by fusing lighter nuclei or by dividing heavier nuclei. The effect of the Coulomb 
barrier however inhibits these processes, otherwise all material would tend to 
transform so as to end in middle-weight elements. 
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Figure 14 The different negative contributions to the binding energy per nucleon 
successively subtracted from a constant-volume energy per nucleon to leave the 
net binding energy per nucleon, all plotted as a function of the mass number A 
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5.7 Mass surface 

Since A = Z + N, we can regard equation 5.2 as expressing the mass of a nucleus 
in terms of the two parameters (Z,N). If now, on the plot of the nuclei which 
has N along the x-axis and Z along the y-axis, we imagine verticals erected along 
the z-axis of length proportional to M(Z, N), then the end points of these verticals 
will define a surface. This we refer to as the mass surface. 

5.8 Mass excess 

5.9 

The masses, as was noted in section 5.3, are in all cases quite close to integral 
values when expressed in atomic mass units. However, in nuclear radioactive 
transfonnations and in nuclear reactions it is mass differences we are concerned 
with, and the important infonnation then lies entirely in the amounts by which 
the masses depart from integral values. It is consequently convenient to work 
with the quantity M(Z. N) - A. where the mass is in atomic mass units and this 
quantity is referred to as the mass excess. By virtue of the relationship E = me2 

between energy and mass. the quantity can also be expressed in energy units. 
It may easily be confirmed that in equation 5.2 we may substitute on the 

left-hand side the mass excess for M(Z. A) providing we replace the massMH by 
the mass excess of the hydrogen atom and Mn by the mass excess of the neutron. 

Mass parabolas 

We now consider the relationship that equation 5.2 predicts between the masses 
of isobars. To do so, we eliminate N through the relationship N = A - Z and 
regard. for a particular set of isobars. A as a constant. We then have that 

M(Z,A)-B+CZ+DZ', 5.3 

I 
where B=AMn-ayA +a.Ai+a.A ±ap Ai' 

C-MH -M.-4a., 

ac 40. 
D--+-· 

At A 

The section of the mass surface taken through isobars is therefore seen to be 
parabolic in shape. 

First we consider isobars corresponding to odd values of A_ For these Op = O. 
The coefficients in equation 5.3 are then single valued and the nuclear-mass values 
lie on one parabola. Having regard to the conditions for ~-decay. we see that 
there will be only one stable nucleus in this set; it will be the nucleus with the 
smallest mass value and therefore the nucleus whose mass value is closest to the 
vertex of the parabola. All other members of the set have mass relationships with 
respect to a neighbour which permit ~-decay (or electron capture) to that 
neighbour. The vertex of the parabola will be given by Z = ZA. say. where 
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[aM] -C+2DZ .. -O. 
az z-z .. 

Le. 
C (M.-MH )+4a. 

Z ---= . 
.. - 2D 2(ac/At+4a./A) 

From the mass tables we have Mn - MH = 0·7824 MeV. Using this, together with 
the values of D. and DC quoted above, we have 

76·7824 
Z - . 

.. 2(O·595/At + 76/A) 
5.4 

We now take as an example the case of isobars with A = 141. For this value of 
A, equation 5.4 gives Z .. as 58·76. From the table of isotopes it will be found 
that the stable member of this set of isobars is 1:~Pr. which corresponds to the 
mass value closest to the vertex of the parabola. In Figure 15 the experimental 
masses of the other members of this isobaric set are plotted together with the 
section of the mass surface. 
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Figure 15 Mass excess of a set of odd-A isobars defining a single sheet of the mass 
surface when plotted against the charge number Z 

Turning to isobars with evenA-values, we no longer have Dp = O. In equation 
5.3 B has then two values, giving rise to two parabolas, an upper parabola 
corresponding to (odd, odd) nuclei and a lower corresponding to (even. even) 
nuclei. Note that the vertices of the two parabolas have the same value of Z. The 
(even, even) nucleus whose mass number is closest to ZA should be stable. We 
take as an example the case or A = 134 giving ZA = 56· 17. I~Ba is in fact found 
to be stable in accordance with this prediction. However, a second member of the 
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Figure 16 Mass excess of a set of even-A isobars. The even-Z, even-N nuclides 
define one sheet of the mass surface, the odd-Z, odd-N nuclides define a separate 
sheet lying above the first 

z 

set, Ir.Xe, is also stable. The experimental mass yalues for these isaban are plotted 
in Figure 16 together with the two sections of the mass surface. The reason for 
the stability of 1~:Xe. which lies on the lower parabola, is there seen to be due to 
the position of its neighbours which lie on the upper parabola. Decay of this 
isotope to '~:Ba would only be possible by double~·decay which, it was noted 
in section 4.17, is likely to be unobservable by virtue of the very long half-life 
involved. It is interesting to note that l~~CS satisfies the conditions for decay 
both by~- emission and by ~+ emission. In the case of this nucleus,~- emission 
is so favoured by the selection rules that it alone is observed. There afC however 
other examples of nuclei similarly situated with respect to neighbouring isobars 
which do exhibit {3- emission as well as f3+ emission and electron capture. ~;Cu 
is a weD-known example of such a nucleus. 

5.1 0 Stablllty apins! alpha decay 

The mass fonnula may be used to decide whether or not a nucleus is slable 
against transfonnation by «-particle emission. It follows from the discussion of 
section 3.2 that the stability is detennined by the algebraic sign of 
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Q-Mp•rent -Md.ughter -MHe 

-M(Z, A)-M(Z-2, A -4)-M(2,4). 
Treating Z and A as continuous variables. we have 

aM aM 
M(Z A)-M(Z-2 A-4)= -11Z+-AA , , az aA' S5 

where on the right-hand side Z and A arc to be averaged as between the parent 
and daughter values. 

Thus, from equations 5.2 and 5.7, and laking nuclei with odd A-values so that 
the pairing energy 6 may be ignored, we have 

4ac Z 8 4 Zl (A _ 2Z)' 
Q----;---4a +-a A-t--ac--4a +B{·He). 

A' ., 3 s 3 At • Al 

Substituting the values quoted above for the constants and introdUcing the 
experimental value for the binding energy of the «.particle. we have 

Z ( Z) 34·67 ( 2Z)' Q-Al 2·38-0·793 A" +~-76 1- 7 -28,1. 

If into this expression we substitute the Z· and A-values for I~~r. then 

Q--0'24 MeV. 

If Ihe values for ':~d are used, then Q a + 0'92 MeV. 

For 'nlr, Q-+2'62 MeV. 

Thus the fonnula with the values of the constants chosen above predicts that 
for A-values in excess of about 145. «-decay is becoming energetically possible. 
Note that the tenn making the largeS! conlribution to the change in the Q·value 
as we proceed to heavier nuclei is that associated with the Coulomb energy, that 
is, it is the electrostatic repulsion between protons that is leading to «-instability. 
It does not follow that if «-decay is energetically possible it will be experimentally 
observed. With very low Q-values. the outgoing «-particle will require to penetrate 
a very wide barrier and, as was discussed at length in section 3.13, this wilt give 
rise to very long half-lives. We note that this general prediction concerning the 
onset of «-decay as we proceed up the periodic table is in line with the observed 
distribution of «-emitters plotted in Figure S. 

5.11 Stability of nuclei against spontaneous symmetric fission 

As a further example of the application of the mass fonnula, we consider the 
stability of a nucleus against undergoing spontaneous symmetric fission. This 
process involves a nucleus (Z.A) splitting into two identical nuclei. calledFwion 
frogmen/s, each having charge number!Z and mass number!A, Z and A bOlh 
being assumed even. The Q-value for such a transronnation wilt be given by 

Q - M(Z, A) - 2M<!Z, !A), 
and the transfonnation will be energetically possible if Q > O. 

81 Stability of nuclei agooinst spontaneous symmetric fission 



Now, substituting the appropriate values of Z and A into equation S.2leads to 

Z2 
Q-a Ai(\-2~-ac-(\-2-i) 

• Ai 

Zl 
--3,38 Ai +0'22-:.if' 

Q will thus be positive for nuclei satisfying 

Z2 3-38 
->--15-36. 
A 0·22 

S.6 

This inequality is satisfied for Z = 35,A = 79 (i.e. 79Br) and for heavier nuclei. 
Once again we note that the process being energetically possible does not mean 
that it is observed. The fission fragments 3rc very highly charged and we must 
have regard 10 the Coulomb barrier that will exist. To see how to make allowance 
for this imagine the process to be reversed, i.e. imagine the fission fragments, 
each having a charge !Ze and being spherical with a radius Ro(!A)t, brought 
towards each other from infinite separation. As they approach, the energy of the 
system is increased by virtue of the work done against the Coulomb repulsion. 
If we ignore any defonnation of shape of the fission fragments and aS$Ume that 
the only forces involved until the spherical nuclei touch are the Coulomb forces, 
then the work done against the Coulomb forces in bringing the fission fragments 
from infinite separation until they are in contact will be 

HZe)' Z2 
--- - 0·1532 x -McV. 

2RoHA)i Ai 

It is assumed that the short-range nuclear forces take over when the distance 
between centres is less than twice the fission-fragment radius and that the 
potential energy will drop as the fragments coalesce. The value to which the 
potential energy drops will be the fission energy given by Q in equation 5.6. Now, 
if the potential barrier is not penetrable and the fission is to be truly spontaneous, 
the peak potential energy reached, namely that at separation lRo(!A)i, should 
equal the fission energy, i.e. there should be no drop in potential energy as the 
fragments coalesce. Thus Q should be greater than 0'1532 x Zl/A! MeV and not 
simply greater than Zero. Incorporating this more stringent condition, then from 
equation 5.6 we have 

Zl 3·38 
->---.50-6. 
A O·066g 

For the lead isotopes Zl fA is approximately 32, for uranium it is 36 and for 
lawrencium it is 41. Thus the prediction of the mass fonnula, with the choice of 
values of constants made above, is that spontaneous symmetric fission will not 
take place for nuclei with aZ-value less than about 110. It is to be noted however 
that there is the possibility of spontaneous asymmetric fission and the possibility 
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Figure 17 logarithmic plot of spontaneous fission haff-life aga inst mass number, 
based on data of Figure 86 

of barrier penetration to be taken into account. We shall not attempt to treat 
these in terms of the simple model here developed, but note that spontaneous 
fission is observed for Z-values of 92 and upwards. In Figure J 11he half-life 
against spontaneous fission is plotted as a function of A. It is clear that the 
probability of spontaneous fission is one of the factors setting a limit to an 
extension of the observed heavy nuclei to even higher A-values. 

Induced fission 

When the potential energy of \he ,fission fragments is considered, as it was above, 
as a function of their separation, the energy at zero separation, while below the 

A 
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Figure 18 Potential energy as a fUnction of separation of fission fragments 

peak which occurs at a separation of about twice the fission·fragrnent radius, may 
st ill be very far above the energy corresponding to infinite separation. This is 
illustrated in Figure) 8. If the original nucleus is disturbed so that the fragments 
only separate within certain limits (r < r,) then the nucleus will not undergo 
fission. If the disturbance is such 35 to separate the fragments instantaneously by 
a distance greater than Ts. then fission will result with the fragments going off to 
infinity. The energy released in that case wilt be E,. Thus a trigger energy or 
excitation energy of Ex can release the fission energy of Er. For the heaviest 
nuclei this situation can arise by the capture of a neulron of effectively zero 
energy. When the neutron is captured the neutron binding energy. which as we 
have seen is a Uttle less than 8 MeV. then provides this excitation and the full 
fiu ion energy of about 200 MeV may then be released mainly as kinetic energy 
of the fission fragments. 

5.13 Summary 

By appeal to a simple classical model with an empirical overlay of quantum­
mechanical effects, the semi-empirical fonnula arrived at pennits. in tenns of five 
adjustable parameters, a description to be given of a mass surface which, with 
exceptions to be noted in the next chapter, gives a satisfactory fit to the 
experimental values for many hundreds of nuclei. Using the fonnula, predictions 
can be made concerning the stable members to be expected in a set of isobaric 
nuclei. Criterion of stability against «-decay and spontaneous fission can be 
arrived at which lead to an explanation of why these processes are limited to 
particular ranges of A-values. Also some insight is given into the balance of the 
different contributions to binding energy and into the change in this balance as 
one proceeds from light to heavy nuclei. 
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Chapter 6 
Nuclear Shell Model 

6.1 Introduction 

In Chapter 5 the liquid-drop model was developed as a basis for the discussion of 
II number of nuclear properties, in particular binding energy. This model will 
again be used in a later chapter to explain further nuclear properties, for example 
nuclear fission. However, there are certain properties, one of which is the 
important property of angular momentum, which cannot find a place in any 
elementary way in the framework of the liquid-drop model. We now proceed to 
outline a model which developed in parallel with the liquid-drop model and 
which plays a very important role in certain areas of nuclear physics. We shan 
see that it depends on assumptions which appear incompatible with those of the 
liquid-drop model. The reason for these two models, based on apparently 
contradictory assumptions, each having its areas of useful application, has for 
long been a central problem in nuclear physics and is a topic to which we return 
in a later chapter. 

6.2 Experimental evidence (or 'magic· numbers 

Evidence from several different fields of study can be assembled to show that 
certain values of Z andN, the proton and neutron numbers of a nucleus, confer 
special properties. These Z- and N-values. which are refened to as the 'magic· 
numbers, are 2, 8. 20, 28, SO, 82 and 126. We now collect some of the more 
important strands of the evidence for the existence of these magic numbers. 

When the adjustable constants in the semi·empirical mass fonnula of section 
5.5 are chosen for the best general fit to experimentally measured mass values, it 
is found that the greatest discrepancies are in regions corresponding to magic 
numbers of protons or neutrons. Whereas the formula reproduces the general 
trend of the mass surface to an accuracy of 1 or 2 Me V, in the neighbourhood of 
magic numbers the experimental mass values fall about 10 MeV below the 
mass-formula values. Thus the indications are that a nucleus with a magic number 
of neutrons Or protons has an unusually large binding energy. 

This high binding energy bring> in its train several other effects. For example, 
an examination of the nuclear chart shows that the element with the largest 
number of isotopes is tin. for which Z = 50, while the neutron number 
corresponding to the greatest number of isotones is N = 82. 
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