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Chapter b
Nuclear Mass

Introduction

In this chapter we discuss nuclear mass, the factors which control its value in the

range of nuclei from the very light to the very heavy and its relevance to sever_al 54
nuclear processes, However, as explained in section 3.2, it is the normal practice

in nuclear physics to use not the mass of the bare nucleus but rather the mass of

the nucleus with its full complement of orbital electrons, i.e. we normally use the

mass of the neutral atom.

The experimental determination of mass values

Experimental information concerning mass values is available from two sources.
Firstly it may be derived from the field of mass spectrometry. This technique had
its birth in the investigations of canal rays by J. J. Thomson in 1913, and has now
been applied to elements throughout the periodic table. The ion of an atom, or
more usually of a molecule, is sent through a system of deflecting electric and
magnetic fields and from its trajectory its charge-lo-mass ratio is measured. Then,
providing its charge is known, its mass may be calculated. Usually the mass
difference between two ions known to be of almost the same mass value is
measured. For example, the molecular ion "0, and the atomic ion 325 form a
doublet suitable for a measurement of this kind. A determination of the mass
difference then enables the mass of S to be accurately related to the mass of 0.
Secondly, relationships between mass values, of accuracy comparable to that
obtained by mass spectrometry, are available from the study of nuclear reactions.
For example the measurement of the threshold energy for the photodisintegration of
2Hintoa proton and a neutron enables us, invoking the conservation of mass—energy,
10 relate the mass of the deuteron to the masses of the proton and neutron. We
recollect that in a- and f-decay a measurement of the particle energies, assuming
the distintegration scheme to be known, leads to an estimate of the decay energy
from which a relationship between the masses of the parent and daughter nuclei
follows.

Atomic mass unit

For the purpose of discussing absolute masses as distinct from mass differences it
is convenient to introduce an afomic mass unit rather than to use submultiple
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units of the gramme or kilogramme. Several such atomic mass units have been
proposed and for periods used. The obvious choice of the mass of 'H as one
atomic mass unit has the disadvantage that on this scale the mass values of heavy
nuclei no longer have the appropriate A-values as the nearest integers. For
example, on such a scale 2°8Pb would have a mass of 206-36 units. This can be
avoided by a different choice of unit mass. For many years, the chemical scale
was based on the natural isotopic mixture of oxygen being sixteen atomic mass
units by definition. Alongside this, there previously existed a physical scale based
on the "0 isotope being defined to be sixteen atomic mass units. Since 1960, an
attempt has been made to replace these scales by a new scale based on the isotope
12C being twelve atomic mass units, and this carbon scale, or unified mass scale,
is now customarily used in nuclear physics.

Binding energy

It is frequently convenient to think in terms of binding energy rather than the

mass of the nuclear system. The two quantities are of course related by the
equation

M(Z, A) =ZMy+ NM,— B(Z, A), 5.1
where M(Z, A) is the mass of the atom whose nucleus contains Z protons and ¥
neutrons, My the mass of the hydrogen atom and M, the mass of the neutron.
B(Z, A) is clearly the energy necessary to dissociate the nucleus into its A
components. We shall usually express B(Z, A) in units of millions of electronvolts,
and we note that the conversion factor to atomic mass units (on the '2C = 12 a.m.u.
scale) is 1 MeV =1-07356 x 1072 a.m.u.

A study of the distribution of the stable nuclei on the nuclear chart described
in section 1.4 enables two important deductions to be made about nuclear
binding energy. Firstly we note that, considering the light nuclei, the stable
isotopes are grouped closely along the line of slope 45, i.e. they tend to have
Z =N. We have seen that the stability of these nuclei against B-decay means that
their masses are less than the masses of the neighbouring isobars. It follows from
equation 5.1 that, if the mass difference exceeds Mn — My (i.e. about 0-75 MeV),
which is usually the case, then the binding energy of a nucleus withZ =N is
greater than the binding energies of the neighbouring isobars. We deduce that
equality of proton and neutron numbers enhances binding energy. As we proceed
to heavier stable nuclei we notice that /V increases more rapidly than Z and must
suppose that other factors enter leading to an excess of neutrons. By the time
338U is reached we note that this excess is 54, i.e. more than 50 per cent of the
total proton number.

Table 1

A even A odd

Z even Z odd Z odd Z even
N even Nodd N even N odd
163 4 49 54

Binding energy
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The second important fact emerges from a consideration of the evenness or
oddness of the Z- and N-numbers. Table 1 gives the number of stable nuclei (listed
in Appendix A) in the four categories arising from the different combinations of
evenness and oddness. It is immediately clear that the binding energy in the case
of the odd-4 nuclei is not affected by whether the odd, or unpaired, nucleon is 8
proton or a neutron. It is also clear that for even-A nuclei the binding energy is
very much affected by the existence of two unpaired nucleons as opposed to the
alternative of a complete pairing of nucleons of both kinds. This suggests that
there is a pairing energy involved between nucleons of the same kind. We note
further that the four exceptions to the general rule that nuclei with Z odd and
N odd - which we shall term (odd, odd) nuclei - are not stable are {H, §Li, '{B
and '3N, the four lightest members of the set of nuclei which have both Z =N and
Z and N odd. This we can interpret in terms of the increase in the binding energy
resulting from the equality of Z and N being more than sufficient to compensate
for the loss of binding energy arising from the existence of two unpaired nucleons.
For Z > 7 this apparently no longer holds.

Semi-cmpirical mass formula

The existence of an extensive set of measurements of mass values for both stable
and unstable nuclei provides an incentive for the development of a mass formula
to fit these experimental data. Weizsacker (1935) employing the analogy between
the nucleus and a liquid drop suggested by Bohs, and proceeding on a semi-
empirical basis, set up such a mass formula; this, with later modifications, still
plays a vital role in systematizing mass values.

Two experimental facts encourage us to make the analogy between the nucleus
and a liquid drop. Firstly, as discussed in section 3.14, the radius of a nuclens is
with good accuracy found to be given by the formula

R=Ry4%.

This means that the number of nucleons per unit volume, which equals A [4nR3, is
a constant. The nucleon density thus behaves as does molecule density in a liquid
drop, that is, it is independent of the size of the structure. Secondly, as was
quickly realized in the early 1930s when the first results of accurate mass
spectrometry appeared, the binding energy per nucleon is almost constant over a
wide range of nuciei. This property is also shown by molecules in a liquid drop,

as is evidenced by latent heat being a general property of the liquid independent
of drop size. In both cases the property is interpreted as arising from the forces
concerned being short range in nature, resulting in bonds being formed only
between close neighbours. The forces are said to safurate since, once there is a
sufficiency of close neighbours, the binding of one particular component particle
is not altered by the existence or absence of more-distant neighbours. Each
particle in the assembly thus makes a fixed contribution to the total energy of
the system and so the total energy is proportional to the total number of particles
in the assembly. If the force did not saturate, then each particle in an assembly of
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say 4 particles might be assumed to form bonds with all the other 4 — 1 particles
in the assembly. The total number of bonds formed would then be $4(A4 — 1).
Assuming a certain fixed energy to be attributable to each bond, the total energy
would then be proportional to. A(4 — 1). Consequently the binding energy per
particle would be proportional to 4 — 1, that is, it would be expected to increase
with 4. This is at variance with the facts, which favour the saturation hypothesis
for nuclear matter.

We therefore begin the construction of the mass formuta by taking a main term
in the binding energy proportional to 4. This term we represent by ay 4, where
ay is a constant, and we refer to av A as the volume energy. Now in any nucleus
of a finite size some of the nucleons must lie on the surface and have a different
arrangement of closest neighbours from those nucleons which lie in the interior.
The same situation arises of course in the case of a liquid drop, where the fact
that the molecules on the surface are differently arranged, with respect to nearest
neighbours, from those in the volume of the drop gives rise to the phenomenon of
surface tension. Under the action of surface tension drops take up a shape which
minimizes the surface area and maximizes the total binding energy. In the nuclear
case we thus have to correct the binding energy (in the belief that a nucleon on
the surface will make a smaller contribution to the total binding energy) by an
amount proportional to the surface area. As the radius is proportional to A’l', the
surface area can be taken fo be proportional to Al and the surface energy
contribution we write as — a, A%

So far it has been assumed that the nuclear system is held together by an
attractive force between nucleons which acts irrespective of their identity as
protons or neutrons. In addition to this cohesive nuclear force, there will be the
Coulomb force acting between protons, This is a long-range repulsive force and
hence reduces the total binding energy. The term to represent this effect, the
Coulomb energy, can be calculated from the principles of elementary electrostatics
if the spatial arrangement of protons in the nucleus is known. If we assume the
protons to be uniformly distributed throughout the nuclear volume, we may then
imagine the protons in the nucleus to be assembled in spherical layers. Assume
that at an intermediate stage of formation the nucleus has radius r and a layer of
thickness dr is brought up, proton by proton, from infinity. Let pp be the number
of protons per unit volume. Then the charge already in the partially assembled
nucleus will be $mr, e. The work done against the Coulomb force in bringing
one additional proton from infinity will then be

r

J' 4nr3p, e?
] 3x2

in magnitude. In this layer there will be dnr? dr Pp protons. Thus the energy built
into this layer is

- 2,2
dx=5mr-ep,

1_5°-1r"r4p3 e dr.
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We therefore see that the Coulomb energy built into the nucleus when it is
assembled to a radius R will be

R
6
I ¥ u2rpletdr= e ﬂzp:Rs el.
o
z
ST 2o R et

Substituting this value into the above equation we have therefore the result

s 3 Z2%32
oulomb energy = —
& S5FR

3 Z%2

5 RoAY

for the uniform distribution assumed.

If the protons are not uniformly distributed, then the form of dependence on
Z and A is the same but the numerical coefficient is different. For example, if all
the protons were on the surface, the Coulomb energy would be that for a charge
Ze on a conducting sphere of radius R. The sphere would have an electrical
capacity equal to R and hence its energy when a charge Ze is placed on it is from
elementary electrostatics given by 4Z%e%/R. We therefore introduce in the general
case a term, again negative since it represents a disruptive effect, into the binding
energy equal to — ac Z 2;,1& to represent the Coulomb energy. In deriving this
expression, it has been assumed that even within one proton there is a certain
Coulomb energy associated with one “part’ of the basic charge interacting with
another. Whether there is such a contribution to the energy or not is a basic
assumption to be built into any nuclear model. If there is no such internal
Coulomb energy to be associated with the proton, then from the above expression
we must subtract a contribution - ac,fA‘}, {obtained by putting Z = 1) for each
proton in the assembly. On this assumption therefore, the Coulomb energy would
be - acZ(Z — l)IA’!. The difference between this and the original expression
becomes less important as Z increases and in what follows we retain the original
expression — acZ %/} for the Coulomb energy.

So far we have considered the nucleus in terms of classical physics and on that
basis there is no explanation for the equality of Z and & leading to particularly
stable nuclear configurations. Rather, in view of the Coulomb energy, an excess
of neutrons should result even in the case of light nuclei. The fact that light nuclei
do not show neutron excess leads us to introduce into the binding energy, on an
empirical basis, an asymmetry energy which is negative for Z # N and zero for
Z =N. A rough justification for this and an indication of the possible form of this
term may be given by the following argument. The nucleons, which we assume to
be obeying the laws of quantum mechanics, must be occupying states of definite
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energy. In terms of the Pauli exclusion principle, only one nucleon of one kind
can occupy one state. The lowest energy states will be filled first. In so far as we
can neglect Coulomb effects, we may take the energy states to be similar for
neutrons and protons. To go on adding particles of one kind in constructing
heavier nuclei thus involves filling higher energy states appropriate to that
particle while lower energy states appropriate to particles of the other kind
remain vacant. Thus, if there is a neutron excess of N — Z, which we assume
even, it means that there are N — Z neutron states filled above the last filled
proton state. If now the neutrons in the top half of this range of states, i.e. the
top 3(N — Z) neutrons were to be transformed into protons then each could
drop down 4(V — Z) states, If the states were evenly spaced and energy € apart,
the energy gained per nucleon would be (& — Z)e and the total energy gained
would thus be (N — Z)e. This substitution of protons for neutrons of course
has the effect of increasing the Coulomb-energy term, and the ¥, Z values which
lead to maximum binding energy will be determined by minimizing the net
result of the opposed effects of asymmetry and Coulomb energy. It is believed
that the average energy spacing € for the last few nucleons is approximately
proportional to 1/4 and hence the asymmetry energy term is substituted into the
binding energy in the form — a,(V — 2)/A.

Finally we have to have regard to the stability of (even, even) as compared to
(odd, odd) nuclei noted in section 5.4. The pairing energy which was suggested
by the information in Table [ is allowed for by introducing into the formula
for the binding energy a term &8, which is taken positive for (even, even) nuclei,
zero for (odd, even) and (even, odd), and negative for (odd, odd) nuclei. Pairing
energy is a concept which is added for purely empirical reasons to the liquid-drop
model and hence the model cannot pronounce on the form & should take. Other
models, for example the shell model, have been appealed to and various expressions
for & have been suggested. The form

1
s==ap;';

has been commonly used and we shall insert that form in what follows, Collecting
together the various terms introduced above and substituting in equation 5.1 we
have for the mass of a nucleus charge number Z, mass number 4

z2 wN—-2)?

M(Z, A)=ZMy+ NM,—a A +a,Ai+aCF ot d

2 — 372
=AM+ Z(My—M)—a A +a,Ai+aC£-+a.(i—zz—):i: 8.
A3 52
We note that in this expression there are five adjustable constants. In principle
these can be found from five simultaneous equations formed by substituting five
known mass values, The usefulness of the formula and the validity of the physical
arguments employed in its construction are then to be judged by how well it
predicts the hundreds of other mass values which have been measured and by how
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well it predicts the mass differences involved, and hence energy released, in very
many nuclear reactions. Various sets of values for the constants have been
suggested, differing slightly depending on the range of nuclei which were under
investigation. We shall follow R. D. Evans (The Atomic Nucleus, McGraw-Hill,
1955) in taking for the constants the following set of values which result in
reasonably good agreement with measured mass values over the whole range of
A-values:

a,= 141 MeV;  a,=13MeV;  ac=0-595 MeV;

335
a,=19MeV; &= STy MeV.

Binding energy per nucleon

An impression of the refative importance of the contributions to the binding
energy of a nucleus made by the various terms in the mass formula, and the change
in their relative importance as we proceed from light to heavy nuclei, is obtained
from Table 2 and from Figure 14. As the surface-energy contribution falks, it is
largely compensated by increased Coulomb energy. The important observed fact
that middle-weight nuclei have a slightly greater binding energy per nucleon than
either heavier or lighter nuclei is reproduced by the formula. Arising from the
interplay of the surface and Coulomb terms, it is seen that energy may be released
by fusing lighter nuclei or by dividing heavier nuclei. The effect of the Coulomb
barrier however inhibits these processes, otherwise all material would tend to
transform so as to end in middle-weight elements.

volume energy

;.-% “ \\ Surfacs snergy \

A
Figure 14 The different negative contributions to the binding energy per nucleon
successively subtracted from a constant-volume energy per nucleon to leave the
net binding energy per nucleon, all plotted as a function of the mass number 4
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Table 2

(experimental)

BjA
[MeV

(calcuiated)

BiA
MeV

s = 19 MeV

Asymmetry
Bg/A

0:595 MeV

Coulomb
BcjA
ac =

13 MeV

Surface
BsjA
as =

14-]1 MeV

Volume
ByjA

dy

A

775
8-50
875

810
8-59
874
874
837
7-90
7-55

0-07
0-02
016

0-87
1-44
1-78

5-06
405
342

14-1
14-1
14-1

17
33
55

875
843
792
7:52

0-22
0-52
076
0-82

1491
262
320
365

3-23
2-59
224
2-08

141

65
127

29
53
78
97

Cu

14-1

14:1

195
245

Pt

14-1

Bk
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Mass surface

Since 4 = Z + N, we can regard equation 5.2 as expressing the mass of a nucleus
in terms of the two parameters (Z, N). If now, on the plot of the nuclei which
has NV along the x-axis and Z along the y-axis, we imagine verticals erected along
the z-axis of lenpth proportional to M(Z, NV), then the end points of these verticals
will define a surface. This we refer to as the mass surface.

Mass excess

The masses, as was noted in section 5.3, are in all cases quite close to integral
values when expressed in atomic mass units. However, in nuclear radioactive
transformations and in nuclear reactions it is mass differences we are concerned
with, and the important information then lies entirely in the amounts by which
the masses depart from integral values, It is consequently convenient to work
with the quantity M(Z, N) - A, where the mass is in atomic mass units and this
quantity is referred to as the mass excess. By virtue of the relationship £ = me?
between energy and mass, the quantity can also be expressed in energy units.

It may easily be confirmed that in equation 5.2 we may substitute on the
left-hand side the mass excess for M(Z, A) providing we replace the mass My by
the mass excess of the hydrogen atom and My by the mass excess of the neutron.

Mass parabolas

We now consider the relationship that equation 5.2 predicts between the masses
of isobars. To do so, we eliminate &V through the relationship/ N =4 — Z and
regard, for a particular set of isobars, A as a constant. We then have that

M(Z,A)=B+CZ+ DZ?, 53
1
where B=AM,—a,A+a,A}+a,A+ap HE
C=My— M,—4a,,
Wechide,)
Ay 4
The section of the mass surface taken through isobars is therefore seen to be
parabolic in shape.

First we consider isobars corresponding 1o odd values of A. For these ap= 0.
The coefficients in equation 5.3 are then single valued and the nuclear-mass values
lie on one parabola. Having regard to the conditions for B-decay, we see that
there will be only one stable nucleus in this set; it will be the nucleus with the
smallest mass value and therefore the nucleus whose mass value is closest to the
vertex of the parabola. All other members of the set have mass relationships with
respect to a neighbour which permit B-decay (or electron capture) to that
neighbour. The vertex of the parabola will be given by Z = Z,, say, where
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aM
—|  =c+2z,=-0.
Z=Z,

9Z
_i (Mn_ MH) e 4“-
2D 2ac/A3+4a,/4)

From the mass tables we have M, — My = 0-7824 MeV. Using this, together with
the values of @, and ac quoted above, we have

- 76-7824
AT 20-595/4% 1 76/4)

We now take as an example the case of isobars with 4 = 141, For this value of
A, equation 5.4 gives Z4 as 58-76. From the table of isotopes it will be found
that the stable member of this set of isobars is '31Pr, which corresponds to the
mass value closest to the vertex of the parabola. In Figure 15 the experimental
masses of the other members of this isobaric set are plotted together with the
section of the mass surface.

ie. ZA =

54

M(Z, A)-A [ MaV

&

fi+ and e.c.

-86 \’

p- stable
56 57 58 58 50 81
Ba La Ca Pr Nd Pm

¥4
Figure 15 Mass excess of a set of odd-4 isobars defining a single sheet of the mass
surface when plotted against the charge number Z

Turning to isobars with even A -values, we no longer have ap = 0, In equation
§.3 B has then two values, giving rise to two parabolas, an upper parabola
corresponding to (odd, odd) nuclei and a lower corresponding to (even, even)
nuclei. Note that the vertices of the two parabolas have the same value of Z. The
(even, even) nucleus whose mass number is closest to Z 4 should be stable. We
take as an example the case of 4 = 134 giving Z4 = 56-17, '¥}Ba is in fact found
to be stable in accordance with this prediction. However, a second member of the

Mass parabolas
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Figure 16 Mass excess of a set of even-A isobars. The even-Z, even-N nuclides
define one sheet of the mass surface, the odd-Z, odd-N nuclides define a separate
sheet lying above the first

set, '24Xe, is also stable. The experimental mass values for these isobars are plotted
in Figure 16 together with the two sections of the mass surface. The reason for
the stability of '3§Xe, which lies on the lower parabola, is there seen to be due to
the position of ns nelghbours which lie on the upper parabola. Decay of this
isotope to '3¢ Ba would only be possible by double B-decay which, it was noted
in section 4.17, is likely to be unobservable by virtue of the very long half-life
involved. It is interesting to note that '33Cs satisfies the conditions for decay
both by B~ emission and by B* emission. In the case of this nucleus, B~ emission
is so favoured by the selection rules that it alone is observed. There are however
other examples of nuclei similarly situated with respect to neighbouring isobars
which do exhibit B~ emission as well as ¥ emission and electron capture. $3Cu

is a well-known example of such a nucleus.

Stability against alpha decay

The mass formula may be used to decide whether or not a nucleus is stable
against transformation by a-particle emission. It follows from the discussion of
section 3.2 that the stability is determined by the algebraic sign of
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Q= Mpnrent = Mdlughter = MH:
=M(Z A —M(Z-2,4—-4)—M(2,4).
Treating £ and A as continuous variables, we have
oM

oM
M(Z, A—M(Z-2,A— 4}——AZ+E‘-AA. 55

where on the right-hand side Z and A4 are to be averaged as between the parent
and daughter values.

Thus, from equations 5.2 and 5.7, and taking nuclei with odd A-values so that
the pairing energy & may be ignored we have

da,+oa 4~ Za @(A‘zz)z B(*H
QﬂT— + = a —;dcr— -T+ ( e).

Substituting the values quoted above for the constants and introducing the
experimental value for the binding energy of the a-particle, we have

z Z\ 3467 2Z\?
Q'B(2'33_°'7937)+,4_i_75(1—T) — 28-1.

If into this expression we substitute the Z- and A-values for '3Pr, then
Q=—024 MeV.

If the values for '§3Nd are used, then Q = + 0-92 MeV.
For 'J4Ir, Q=+2-62 MeV.

Thus the formula with the values of the constants chosen above predicts that
for A-values in excess of about 145, a-decay is becoming energetically possible.
Note that the term making the largest contribution to the change in the Q-value
as we proceed to heavier nuclei is that associated with the Coulomb energy, that
is, it is the electrostatic repulsion between protons that is leading to a-instability.
It does not follow that if a-decay is energetically possible it will be experimentally
observed. With very low (-values, the outgoing a-particle will require to penetrate
a very wide barrier and, as was discussed at length in section 3.13, this will give
rise to very long half-lives. We note that this general prediction concerning the

onset of a-decay as we proceed up the periodic table is in line with the observed
distribution of ec-emitters plotted in Figure 5.

Stability of nuclei against spontaneous symmetric fission

As a further example of the application of the mass formula, we consider the
stability of a nucleus against undergoing spontaneous symmetric fission. This
process involves a nucleus (Z, 4) splitting into two identical nuclei, called fission
fragments, each having charge number 4Z and mass number 44, Z and A4 both
being assumed even. The Q-value for such a transformation will be given by

and the transformation will be energetically possible if @ > 0.

Stability of nuclei against spontaneous symmetric fission




Now, substituting the appropriate values of Z and 4 into equation 5.2 leads to
ZZ
0=a, 4}l -2 —ac—(1-27)

ZZ
-3 .0 5 56
338 4 +022-:*-

Q will thus be positive for nuclei satisfying

z? 338
— > — =15-36.

A 022

This inequality is satisfied for Z = 35,4 = 79 (i.. "Br) and for heavier nuclei.
Once again we note that the process being energetically possible does not mean
that it is observed. The fission fragments are very highly charged and we must
have regard to the Coulomb barrier that will exist. To see how to make allowance
for this imagine the process to be reversed, i.e. imagine the fission fragments,
each having a charge 4Ze and being spherical with a radius Ro(34 )'}, brought
towards each other from infinite separation. As they approach, the energy of the
system is increased by virtue of the work done against the Coulomb repulsion.
If we ignore any deformation of shape of the fission fragments and assume that
the only forces involved until the spherical nuclei touch are the Coulomb forces,
then the work done against the Coulomb forces in bringing the fission fragments
from infinite separation until they are in contact will be

(}Z.e)2 z?
—_— = (1532 x — MeV.
2Ry(34)} 43

It is assumed that the short-range nuclear forces take over when the distance
between centres is less than twice the fission-fragment radius and that the
potential energy will drop as the fragments coalesce. The value to which the
potential energy drops will be the fission energy given by Q in equation 5.6. Now,
if the potential barrier is not penetrable and the fission is to be truly spontaneous,
the peak potential energy reached, namely that at separation ZRO(}A) , should
equal the fission energy, i.e. there should be no drop in potential energy as the
fragments coalesce. Thus @ should be preater than 0-1532 x ZZIA} MeV and not
simply greater than zero. Incorporating this more stringent condition, then from
equation 5.6 we have

Z2 338
— > =
A~ 00668

For the lead isotopes 2%/4 is approximately 32, for uranium it is 36 and for
lawrencium it is 41. Thus the prediction of the mass formula, with the choice of
values of constants made above, is that spontaneous symmetric fission will not
take place for nuclei with a Z-value less than about 110. It is to be noted however
that there is the possibility of spontaneous asymmetric fission and the possibility
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Figure 17 Logarithmic plot of spontaneous fission half-life against n:tass number,
based on data of Figure 86

of barrier penetration to be taken into account. We shall not attempt to treat
these in terms of the simple model here developed, but note that spontaneous
fission is observed for Z-values of 92 and upwards. In Figure 17 the half-life
against spontaneous fission is plotted as a function of A. It is clear that the
probability of spontaneous fission is one of the factors setting a limit to an
extension of the observed heavy nuclei to even higher 4-values,

Induced fission

When the potential energy of tlhe fission fragments is considered, as it was above,
as a function of their separation, the energy at zero separation, while below the

Induced fission
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Ts sepamk;

Figure 18 Potential energy as a function of separation of fission fragments

peak which occurs at a separation of about twice the fission-fragment radius, may
still be very far above the energy corresponding to infinite separation. This is
illustrated in Figure 18. If the original nucleus is disturbed so that the fragments
only separate within certain limits (r <rs) then the nucleus will not undergo
fission. If the disturbance is such as to separate the fragments instantaneously by
a distance greater than rs, then fission will result with the fragments going off to
infinity. The energy released in that case will be £¢. Thus a trigger energy or
excitation energy of Ex can release the fission energy of Et. For the heaviest
nuclei this situation can arise by the capture of a neutron of effectively zero
energy. When the neutron is captured the neutron binding energy, which as we
have seen is a little less than 8 MeV, then provides this excitation and the fuli
fission energy of about 200 MeV may then be released mainly as kinetic energy
of the fission fragments.

Summary

By appeal to a simple classical model with an empirical overlay of quantum-
mechanical effects, the semi-empirical formula arrived at permits, in terms of five
adjustable parameters, a description to be given of a mass surface which, with
exceptions to be noted in the next chapter, gives a satisfactory fit to the
experimental values for many hundreds of nuclei. Using the formula, predictions
can be made concerning the stable members to be expected in a set of isobaric
nuclei. Criterion of stability against a-decay and spontaneous fission can be
arrived at which lead to an explanation of why these processes are limited to
particular ranges of A-values. Also some insight is given into the balance of the
different contributions to binding energy and into the change in this balance as
one proceeds from light to heavy nuclei.
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Chapter 6
Nuclear Shell Model

Introduction

In Chapter 5 the liquid-drop model was developed as a basis for the discussion of
a number of nuclear properties, in particular binding energy. This model will
again be used in a later chapter to explain further nuclear properties, for example
nuclear fission. However, there are certain properties, one of which is the
important property of angular momentum, which cannot find a place in any
elemeniary way in the framework of the liquid-drop model. We now proceed to
outline a model which developed in parallel with the liquid-drop model and
which plays a very important role in certain areas of nuclear physics. We shall

see that it depends on assumptions which appear incompatible with those of the
liquid-drop model. The reason for these two models, based on apparently
contradictory assumptions, each having its areas of useful application, has for
long been a central problem in nuclear physics and is a topic to which we return
in a later chapter.

Experimental evidence for ‘magic’ numbers

Evidence from several different fields of study can be assembled to show that
certain values of Z and V, the proton and neutron numbers of a nucleus, confer
special properties. These Z- and N-values, which are referred to as the ‘magic’
numbers, are 2, 8, 20, 28, 50, 82 and 126. We now collect some of the more
important strands of the evidence for the existence of these magic numbers.

When the adjustable constants in the semi-empirical mass formula of section
5.5 are chosen for the best general fit to experimentally measured mass values, it
is found that the greatest discrepancies are in regions corresponding to magic
numbers of protons or neutrons. Whereas the formula reproduces the general
trend of the mass surface to an accuracy of 1 or 2 MeV, in the neighbourhood of
magic numbers the experimental mass values fall about 10 MeV below the
mass-formula values. Thus the indications are that a nucleus with a magic number
of neutrons or protons has an unusually large binding energy.

This high binding energy brings in its train several other effects. For example,
an examination of the nuclear chart shows that the element with the largest
number of isotopes is tin, for which Z = 50, while the neutron number
corresponding to the greatest number of isotones is V = 82.
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