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Pure quadrupole resonances have also been observed when a perturbing
magnetic field applied perpendicular to the axis of the electric field in the
absence of a field Hy has induced transitions leading to absorption of
radio-frequency power.

The measuremenis of quadrupole moments by paramagnetic resonances

The technique of Purcell described in section 8.5.6 has been applied to
paramagnetic atoms. The much larger magnetic moment of the atom places

the Larmor frequencies, and hence the resonant frequencies, in the microwave
range. The effect of the nuclear spin is then to produce hyperfine splitting in
the atomic resonances. By observing the degree of splitting as a function

of H,, dingrams of the type encountered in optical hyperfine splitting (see
Figure 43, p. 137) are constructed, By comparing these with the theory of
hyperfine splitting outlined above, the effect of the quadrupole moment can be
detected and values of # estimated.

Summary

Spins of nuclei can be measured by several techniques and can be regarded as
very well established for ground states of stable nuclei. In some cases the
techniques can be applied to give a direct measurement of spin for unstable
nuclei of suitably long half-life.

Magnetic moments can be measured with high precision, a precision limited
In practice by the accuracy with which the internal and induced field produced
by the orbital electrons at the nucleus can be calculated.

With respect to quadrupole moments the situation is very much less
satisfactory. In certain cases B can be measured directly; in other cases it can
be measured as a deviation of hyperfine structure from that expected on the
basis of magnetic dipole moments zlone. However, the deduction of Q from B is
very uncertain because of the lack of knowledge of the internal electric field
gradients at the nucleus. The ratio of @ for two isotopes is known with better
accuracy on the assumption that the internal electric field gradient is the same
for both isotopes.

As we shall see later, information about both electric and magnetic moments
of nuclei comes from the study of transitions between their excited states. It is
Lo that source that at present one has to look for better information about the
electric quadrupole moment.

Vaiues of spins, magnetic dipole moments and quadrupole moments for
stable nuclei are listed in Appendix A.

Nuclear Moments 2: Experimental Measurements
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Chapter9
The Collective Model

Intreduction

We recall that the discussion of section 6.10 showed that a good account of the
ground-state spin of nuclei can be given in terms of the shell model. In that
account it is assumed that nucleons of the same kind form pairs, their angular
momenta coupling so that the resultant angular momentum of the pair is zero.
In the case of {even, even) nuclei there is complete pairing and hence the spin
predicted by the model is zero. This, without known exception, is in agreement
with measured spins, In the case of odd-4 nuclei there is always a nucleon of one
type left unpaired. The nuclear spin then is assumed to arise entirely from the
motion of this unpaired nucleon, In the case of (odd, odd) nuclei there is an
unpaired nucleon of each kind and the nuclear spin has a contribution from the
motion of each of these. The satisfactory agreement of this account of nuclear
spins with experimental observations argues strongly for the validity of the shell
model.

The attempt to extend the ideas of the shell model to explain magnetic dipole
moments met, as we saw in section 7.3, with only limited success. It is true that
(even, even) nuclei have zero magnetic moment, as well as zero spin, as would be

expected on the assumption that the nucleons form pairs. However, in the case of

odd-A nuclei, we see from Figures 31 and 32 (pp. 110-12) that, with few
exceptions, the measured magnetic dipole moments are significantly smaller than
the “single-particle’ predictions. One must conclude that in these cases the paired
nucleons in the ‘core’ are not exactly compensating each others’ magnetic
moments but are making a contribution to the total dipole moment, this despite
the fact that they do compensate each others’ angular momentum. It is however
to be noted that the main contribution to the magnetic moment still arises from
the single particle.

The situation wis-2-vis the predictions of the shell model and the experimental
facts is less satisfactory when we turn to electric quadrupole moments. The
quadrupole moment is taken as a measure of the departure of the charge
distribution from spherical symmetry. If a nucleus has a closed shell of protons
it has no total angular momentum and hence no distinctive axis, It is therefore
expected to exhibit spherical symmetry of charge. If we now take the case of one
proton outside a closed shell then, unless that proton be in an s-state, its
equivalent charge distribution will not be spherically symmetric and a nuclear
electric quadrupole moment would be expecied to result. Consider now a second

{ntroduction




proton outside the shell. If this pairs with the first to give zero total angular
momentum, then again, on the above argument, spherical symmetry is restored.

If a third proton be added then, providing it does not split the existing pair, its
situation will be as for the first proton, that is, it should give rise to a quadrupole
moment calculable from its wave function. This argument can be extended to show
that spherical symmetry is to be expected when the number of protons is even and
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a departure from symmetry of charge distribution, associated with one proton, is
to be expected when the proton number is odd. Now in a nucleus of radius, say,
eight fermis, a single proton can at the most give rise to a quadrupole moment of
0-128 barns (this follows from the application of equation 7.12 to this simple
situation where 7 = z). On the other hand, quadrupole moments as large as eight
barns have been measured. Although these measurements, as was pointed out in
section 8.6, are subject to considerable experimental uncertainties, nevertheless it
is clear that there is an order-of-magnitude discrepancy at least between the single-
particle-model prediction and the measurements. It is also to be noted from
Figure 51 that the discrepancy is greatest when the proton number is midway
between closed shells, As a further departure from shell-model expectations, odd-A
nuclei having paired protons but an unpaired neutron exhibit quadrupole moments.
Nuclei which have shells half-filled not only show serious departure from
shell-model predictions in respect of quadrupole moments, but have as a
characteristic an excited state, not much above the ground state in energy,
de-exciting by electric quadrupole transition to the ground state. The transition
rate is higher than would be expected from single-particle considerations and is
an indication that a large electric quadrupole moment is involved in the process.
These considerations led Bohr and Mottelson (1953) to develop the collective
model of the nucleus, which we now proceed to outline. This model attempts to
extend the shell model rather than to replace it it adds to the shell model some
features of the liquid-drop model and, as it borrowed from both of these extreme
nuclear models, it was originally sometimes referred to as the unified model,

Introduction



9.2

In setting up the collective model a close analogy was maintained with the
behaviour of the diatomic molecule as described by quantum mechanics. To make
it clear how the ideas and nomenclature arose, we begin by outlining briefly the
relevant features and properties of the diatomic molecular system.

Theory of the diatomic molecule

In Figure 52 we represent a simple diatomic molecule having nuclei at A and B.
The theoretical treatment assumes that the energy of the system may be
represented as the sum of three terms. The first of these is the energy of rotation
of the system about the axis PQ; the second is the energy of vibration of the
nuclei which, if their separation d is disturbed, are assumed to vibrate with simple
harmonic motion about their equilibrium separation; the third and final term is
due to the energy of the orbital electrons associated with one or other of the
nuclei or orbiting both. The moment of inertia about the axis AB is assumed to
be negligibly small and consequently no allowance is made for rotation about AB.

P

]

a
Figure 52 Schematic diagram of a diatomic molecule with atomssituated at Aand B

We first consider the rotational energy about PQ. If the moment of inertia
about the axis is # then we can write

E. . .=1f w?,
where w is the angular velocity of the system about the axis PQ. The angular
momentum about that axis will be fw and we note that, from classical
mechanics, we can write
(Sw)?

25
When the system is treated as a quantum-mechanical rotator, we assign to it,

when it is in a stationary state, a quantum number R which is related to the
quantized angular momentum of rotation by the equation

E =

Angular momentum about axis of rotation =+/[R(R + 1)] &A.
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In the quantum-mechanical treatment we then have

R(R+1)K?
rol=T'

If now the molecule has an electric-dipole moment it will be capable of
interacting with the electromagnetic field. It may therefore radiate energy or it
may absorb energy from the field thereby making a transition between states
differing by 1 in R-value. The energy of quantum radiated or absorbed will be
given by

E 9.1

[R(R+1)— (R—1)R]A* RA
25 Ty

Let us take the HCl molecule as an example to which this theory should apply.
The separation d will be of the order of 10™'° m. Hence, taking the moment of
inertia about an axis through G, the centre of mass, perpendicular to the line
joining the nuclei we have

I = (Moxi+ My xf) =3#Myd?~ 16 x 10-*4g m2.

('“’]rol =E o= 9.2

/]
Hence et R x 10~12 Hz,
i

This frequency, for small values of R, corresponds to the far infrared region of
the electromagnetic spectrum. When this spectral region is examined in the
absorption spectrum of HCI, a sequence of lines, listed by wave number

(i.e. k = 1/A = p/c) in Table 5, is found. The difference in wave numbers, apart

Table §: Absorption Spectrum of HCl in the Far Infrared.

[% (calculated)
k (observed) x mm Ak x mm d k (calculated) s vy (observed))
Ak x mm X U
8-303 2x2063 406 (8:303) -
12:430 2:073 6-07 12-455 0-025
14:503 2:048 708 14:530 0027
16551 2:035 8-08 16606 0-055
18:586 2:052 9:08 18-682 0-096
200638 2012 10-08 20758 0120
22:650 (11-06) 22-833 0-183

from that between the first and second entries, is seen to be effectively constant.
The exception is so close to twice this constant difference as to suggest that there

is a line missing. If the interpretation in terms of rotation is correct, then
R .

kX8t < rot
e 2nSc
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Afr B
and hence rot =5~
It follows that
k
SIroL S RESS
rot

where Rrot should be integral,

From column three of the table it can be seen how well this prediction is
borne out. If we now take the nearest integers and use the first wave number we
can calculate the wave numbers of the other lines. It can be seen that the
agreement is good but that there is a discrepancy growing systematically as shown
in the final column of the table. This discrepancy is understandable in terms of the
simple rotator model. As we proceed to higher rotational states, the centrifugal
force will increase and this will tend to stretch the molecule. The increased
separation will lead to an increase in # and, according to equation 9.1, a decrease
in the expected value of Ergt.

We can use the spectral information to find accurate, rather than order-of-
magnitude, values of f and d. We have

RhA Rk

g L -

. =27x10"*gm?,
2w vy, 2mckog, :

367
It follows that d= [——=1-29%x10"'%m.
ISM

H
There is thus seen to be impressive agreement between the spectroscopic data and
the predictions of the rotator model.

The existence of rotational states should affect the thermodynamic properties
of a gas consisting of diatomic molecules. From the equipartitioning of energy in
kinetic theory, it follows that Cy, the specific heat of a gas, is ¥1R, where R is the
gas constant and n the number of degrees of freedom possessed by the molecules.
If the rotational states enter into the equipartitioning of the energy they will add
two additional degrees of freedom, since rotation can take place independently
about two axes perpendicular to AB in Figure 52. The extent to which the
rotational states take up thermal energy will be dictated by the Boltzman factor.

This ensures that the rotational states are negligibly populated when
2

h
KT < () oy =

When h k i »”
en however T — ie. T'~—=30K}s
7 [iwr=gux)

then n should increase from 3 to 5. In fact Cy is observed to increase from 3R to
'ZR in this temperature range, further supporting the validity of the rotator model.

We now tumn to the vibrational energy. If the ‘restoring’ force is proportional
to the change in the separation distance of the nuclei, then the system should
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correspond to a quantum-mechanical oscillator. Such an oscillator has a set of
stationary states of energy given by

Eyjp=(n+ D)y e, 9.3

where n is an integer. A knowledge of the restoring-force constant would enable
(Av)vib to be calculated. However, rather than trying to relate the restoring force
to the separation distance through atomic theory, we turn to thermodynamics to
see whether there is evidence as the temperature increases for the appearance of
further degrees of freedom which might be connected with the population of
vibrational states. As shown in Figure 53 there is a rise from R to R in Cy in
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Figure 53 Representation of the variation of specific heat of molecular hydrogen
with absolute temperature

the range of temperature around 1500 K. We interpret this rise as being due to
the two additional degrees of freedom, one, according to kinetic theory, for the
potential energy and one for the kinetic energy, entering as the vibrational states
become populated. From the temperature at which the increase takes place we
can estimate the vibrational frequency and find

kT
”vlh=7= 312 x lﬂ;ﬂ B3l”

Hence the wave number will be given by
kyjp=1-04 x 10> mm~!.

We deduce therefore that transitions between vibrational states may give rise to
the emission or absorption of quanta in the near infrared. We note that according
to equation 9.3 vibrational states are expected to be equally spaced.

169 Theory of the diatomic molecule
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Finally, we have the electronic contribution to the molecular energy. As far as
the electrons are concerned the situation is not appreciably different from that
existing in a simple atom. The electronic states are therefore expected to be such
that transitions between them will give rise to quanta of radiation in the visible
region of the electromagnetic spectrum. '

The description of the diatomic molecule in terms of rotational, vibrational and
electronic states fits experimental observations very well. Transitions may be
observed directly between rotational levels or directly between vibrational levels;
alternatively the existence of these levels may be deduced from the structure that
is observed when transitions between electronic states are measured with high
resolution. The relationship between the states is illustrated in Figure 54.

e

visible (A 100 nm)

near infrated (A 5 10um)

hhr infrared (A = 1mm)

rotational levals

electronic levels vibrational levels

Figure 54 Relationship of electronic, vibrational and rotational levels
in diatomic molecule

1t should be noted that one reason for the description working so successfully
is that the characteristic frequencies associated with the three energy contributions
are well separated.

An outline of the collective model of the nucleus

We start by considering 2 nucleus in which the nucleons are arranged in closed
shells. Such a nucleus has spherical symmetry and, should a deformation be
impressed on it, forces will act to restore the symmetry. If now a few nucleons
be added to form a heavier nucleus, then the shell model is looked on as still
providing an adequate description of the nuclear behaviour. Nucleons form pairs
which also have spherical symmetry. However, as the process proceeds and the
shell is progressively filled, the number of pairs of nucleons increases and the
nucleons in the partly filled shell form a *softer’ structure, the restoring forces
coming into play when the surface is deformed, being weaker than is the case for
a closed shell. Such nuclei are referred to as transitional nuclei. As more nucleons
are added to the shell, the ‘pairing’ effect is assumed to become less able to

180 The Collective Modal

9.4

161

maintain symmetry and the partly filled shell passes through the state of being an
easily deformed sphere and becomes a spheroid or ellipsoid of revolution. Nuclei
of this type are called deformed nuclei. The subtraction of nucleons from a closed
shell can be treated as readily by the shell model as the addition of nucleons,
assignments of spins and parities to the ‘vacancies’ proceeding as for nucleons,
Thus as we go on adding nucleons to deformed nuclei we pass into a further range
of transitional nuclei before reaching the next closure of the shell. We proceed to
develop the consequences of these ‘properties’ we have conferred on the nucleus.

Rotational states of deformed nuclei

We begin by considering an (even, even) deformed nucleus, i.e. one having an
approximately half-filled shell of nucleons. The shape is, as discussed above, no
longer that of the spherical closed-shell nucleus but has become that of an
ellipsoid of revolution, The extent of the deformation is measured by the
ellipticity

c—b

€ = ——

Ry

where ¢ is the length of the semi-axis of symmetry and b the length of the other
equal semi-axes. Ry is 4(c + ). If we take the result derived in section 7.7 for the
quadrupole moment of a deformed sphere and use the values of € and R defined
above, we can write for the intrinsic quadrupole moment of the nucleus we are
now discussing

Qo =Z3(c?*—b?) $ZeRE.

In the present case the nucleus in its ground state has zero angular momentum.
Hence, if a direction is specified by an electric field gradient, the spheroid will
orient itself randomly, leading, as discussed in section 7.9, to an effective
quadrupole moment of zero.

In analogy with a diatomic molecule we now consider the possibility of the
nucleus having states in which it rotates as a quantum-mechanical rotator about
the axis PQ in Figure 55. This rotation takes place with low enough angular
velocity to permit the single-particle orbits, which involve much higher angular
velocities, to follow the rotation of the spheroid shape. If, as for the diatomic
molecule, we associate a quantum number R with the rotation, the angular
momentumn about the axis PQ will be given by +/[R(R + 1)] 4 and the energy
will be given by

R(R+ 1) K?
2.5
where .# is the moment of inertia of the nucleus about the axis PQ.
We now define two sets of orthogonal axes, one set, x, ¥, z fixed with respect

to the nucleus, the z-axis being the axis of symmetry, and a set x’, 3/, ' fixed in
the laboratory. If we take z' as a specified direction then the nucleus will orient

Rotational states of deformed nuclei




Figure 55 Spheroidal nucleus with intrinsic rotation about 2-axis and capacity
for relatively slow rotation about the axis PQ
itself to have a set of magnetic substates, the maximum angular momentum about

the z'-axis being R/ . Inthis case R is to be equated to /, the spin {.)f the excilef:l
state of the nucleus. The rotational states are therefore expected in analogy with

equation 9.1 to have an energy spacing given by
I+ )R

2s
Since in the case being discussed the spin of the ground state is zero, we note

that the rotator is such that a rotation of 180° about the axirrx or the axis y
leaves the system unaltered. In this situation, as for a diatomic molecule with
identical nuclei, the states of odd spin are missing and a!l‘the s!atei ha:e e‘w:'en+
parity. The expected states then have spil;:landl ;aantles givenby 0%,27,47,67, ...,

i e acings proportionsi to /{(J + 1)}. )
w“{lt tIilaes ';:ﬂ;g::::‘ kngfvf\ ll:lt, with few exceptions, and these usufllly assPclated
with closed-shell nuclei, the first excited state of (even, even) nuz':lel isa 2" state.
The spacing of this state above the ground state diminishes steadily as the shell
fills, reaching a minimum with the deformed nuclei. In Table 6 are enter.ed .
sequences of low-lying states found in four (even, even) deformed nuclei, having

spins and parities as predicted above. It is seen that there is a remarkable similarity -

in energy spacing as between the nuclei, and when the spacing is compared .with
the theoretical prediction we see that the agreement is good_ but that there is a
growing discrepancy as/ increases. We recall a similar behaviour in the case of
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Table 6

L 170 164 164 e II+1)
‘md_ 72HE 66 DY egEr 5Yh e
parity

16* 3:147(31'47) 2533
14*  2:564(25'64) 15-00

12%  2:013(20°13)

1ot 1-503(15-03) (1-466)(16:02)
8%  1:041(10-41) 0-839 (11-43) 1-024(11-19)
6 0641 (6-41) 0-50132 (6:83) 0614 (6:71)
4* 0321 (3:21) 024223 (3-30) 0:299 (3-27) 0°330 (3:24) 3-33
2% 0°100 (1:00) ©-073392(1-00) 0-0915(1:00) 0-1018(1-00) 1-00
ot 0 (0) 0 © o (0) 0 ) 0

2:172(21:33) 2817
1:604(15-76) 18-33
1:097(10:77) 12:00
0:667 (6:55) 7-00

rotational spectra of molecules, discussed in section 9.2. We assume that the
explanation is similar in this case, namely that as the rotational angular velocity
increases, the increasing centrifugal force is stretching the nucleus thereby
increasing the effective .# and leading to a reduction in the energy spacing.

We now turn to the case of odd-4 nuclei, which, on the single-particle view,
have non-zero ground-state spin. Let us assume that the angular-momentum
quantum number of the unpaired nucleon is /. This nucleon will give rise to a
component of angular momentum along the z-axis. This component we denote
by K#. Consider now the rotational states based on this ground state. The angular
momentum of rotation will add vectoriaily to the angular momentum +/[f(j + 1)]4
of the unpaired nucleon to give a resultant angular momentum I with
{1l=+/[I{ + 1)]k. The angular momentum of rotation is, from Figure 55, seen to
be the component of I along the axis of rotation and to have a magnitude given by
W[/ + 1) = K?] k. It follows that the rotational energy in this case is given by

Ui +1)— K24
25

Apart from the term — K2/%/2.#, which will be the same for all the rotational
levels in the sequence and therefore will not affect the spacing, we see that this is
the same result as was found for (even, even) nuclei. However, the symmetry
which suppressed the states with odd spins in that case is not present in the case
of odd-A4 nuclei because X is no longer zero. Hence we expect the spins of the
rotational statestobe K, K+ 1, K +2,K + 3, . . ., all half-integral. The parity of
all the states is expected to be the same as the parity of the unpaired particle.

Nuclei having K = 4 constitute a special case. The angular momentum about
the z-axis is not necessarily unaffected by the rotational motion, and a more
complicated treatment beyond the scope of the present discussion is necessary.
We simply quote here the result of the theoretical analysis for the case of K = 4,
namely

Epou=42[I(1 + 1) = K2 + a(-1)+} (1 + )], 94

E

rot
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1547(1548} — 232
1417(1414) 21125
462 332 432
y
1085{1085) 1872+
1
989(988) 1772+
397 3N ar2
638(688) 4 1572+
7
520{620) 132+
318 250 296
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132 106
10-4(10°6) : s
9 STTm 96 days

Figure 56 Rotational band of "7 Tm. The energies in paranthesis were calculated
from a theoretical formula having four adjustable parameters

where the parameter a, called the decoupling parameter, depends on the details
of the intrinsic nuclear structure. In Figure 56 are drawn a sequence of energy
levels of '$7Tm. The theoretical estimates based on equation 9.4, with terms
added to allow for the stretching in the higher rotational states, show how
accurately the model can be made to match the experimental results.

The absolute spacing between states, together with the appropriate formula
for Erot, can now be used to calculate #. The value thus found is considerably less
than that which would arise were the nucleons in the nucleus to move around the
z-axis with a common angutar velocity. This would amount to a rigid-body
rotation of the nucleus and would result in

S og=24AMRE,

where M is the nucleon mass.
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Figure 57 Rotation of spheroid (a) in which all parts move circularly round the
axis of rotation as for a rigid body and (b} in which the shape rotates but the
component parts osciliate along paths which do not circle the axis of rotation.
The latter wavelike rotation corresponds to irrotational flow

The measured values however are greater than would arise from a movement of
the nucleons depicted in Figure 57, corresponding to irrotational flow in which
the surface shape rotates although the individual nucleons do not have a simple

circular motion round the axis. In the case of irrotational flow the moment of
inertia would be given by

c—b

€= —

Ry
The actual behaviour of nucleons, to judge from the measured values of &, lies
somewhere between the two extremes of rigid-body rotation and irrotational flow.

Firror= iAMR% €2, where

Vibrational states of nuclei

Corresponding to the linear vibration of the diatomic molecule, we have in the
case of the nucleus, the vibration of the three-dimensional sphere (in the case of
closed-shell nuclei) or spheroid (in the case of deformed nuclei). In the simplest
approach, we assume that the nucleus behaves as if it were an incompressible fluid
oscillating under the restoring force of surface tension when deformed in shape.
Just as for a vibrating elastic cord fixed at both ends, which is the two-dimensional
analogue and more easily visualized, the spherical system is capable of vibrating
with one of a series of harmonics or with, in the general case, a mixture of such
harmonics. In the case of the sphere, the harmonics are described by functions
¥(8, ¢) expressing the displacement of a point (R, 8, ¢) on the spherical surface
from its initial undisturbed position. The form of the functions ¥(@, ¢) has to be
found by solving the differential equation corresponding to elastic waves on the
spherical surface. This is mathematically similar to the solution of the Schrodinger
equation of section 6.3. In place of ! and m introduced in the separation of the
variables in that analysis, we introduce in the present application X and g. Asin
the case of a vibrating string, we expect the lowest-order harmonics (i.e. those

Vibrational states of nuclei



described by the lowest A- and p-values) to have the lowest frequencies and to be
associated, in the nuclear context, with the vibrational states of lowest energy.
We now examine the values of

Y340, 4) = 0,,(0)0,.($)
for the lowest-order harmonics.

We recall that
©,,(8) = P} (cos B)
and take @, (4) = cos ug,
rather than the complex function of section 6.4. A takes the value zero or a
positive integer, while p, for a given value of A, takes positive or negative integral
values (or zero) and |ul< A. As we are mainly interested in visualizing the modes
of vibration, our concern is with the angular dependence of the deformation and
we therefore take as unity the constant normalization factor, which strictly

speaking ought to occur in the spherical harmonic. The value of the normalization
factor controls the relative strength of the particular harmonic being discussed.

(a) For A=F-= 0, Yoo(ﬂ,¢) =],
This mode constitutes an isotropic expansion or contraction of the spherical shape

and, as we are considering the fluid incompressible, the strength of this harmenic
must be zero.

{(b) ForA=1,p=0, Y;q(f,¢)=cosb.
The surface in this mode will be described by the equation
r=Rg(l + Acosb).

For small values of A this represents a movement of the whole sphere along the
z-axis without any change in the shape of the surface.

{c) ForA=1,p=21, Y,.,(6,4)=sinfcoss.

For this mode the surface is described by the equation

r=Ry(1 + Bsinfcosg).

Again this represents a bodily movement of the sphere without shape distortion,
In this case the centre is displaced in a direction perpendicular to the z-axis.

(d) ForA=2,p=x1, Y,,,(0,¢)=3sindcosfcosd.

This vibration, while symmetric with respect to reflection in the origin (¢ =+ ¢,

8 — w + 8), is not symmetrical with respect to reflection in the plane of the x- and
y-axes (¢ = ¢, = 7 — 8); on the same basis as the rotational states with /=1, 3,
etc., were discounted above, this mode of vibration is also now discounted.

() For A=2, =42, Y,.,(6,¢)=23sin20cos2¢.
This vibration has the necessary symmetry. If we think of the *poles’ of the nucleus

lying on the z-axis with the xy plane as the equatorial plane, then, as shown in
Figure 58, this mode of vibration will involve transport of nuclear mass around the
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()]
Figure 58 {a) y-Vibration in which a wave runs equatarially with no variation of
polar Hiameter. (b} §-Vibration in which the polar diameter oscillates with no
variation in shape of section at different values of ¢

equator. This will involve angular momentum about the z-axis amounting in the
case of this second-order harmonic to 24 units.

(F) ForA=2,u=0, Y2q(6,8)=43cos?8—1).

This vibration also is seen to have the necessary symmetry. From Figure 58 it may
be seen that in this mode the transport of mass is towards and away from the poles,
i.e. in a plane of constant ¢. This does not involve the generation of angular
momentum about the z-axis.

The behaviour of the system with respect to angular momentum is therefore

seen to be the same as for a particle of spin 2, with A playing the role of the spin
and u playing the role of the magnetic quantum number. The permitted values of
the magnetic quantum number in this case being 2 and 0. The energy of vibration
is said to be carried by a phonon on which we confer these angular momentum
properties.
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9.5.2

The mode of vibration with A = 2, g = 0, is referred to as a fl-vibration; that
with A = 2, = £ 2 is a y-vibration. The energy levels associated with these
vibrations will be spaced as for a simple quantum oscillator, i.e. the spacing will
be even. The first level, a one-phonon level, will have spin and parity 2*. The
second level will contain two phonons, each of spin 2. The angular momentum of
one phonon will couple with the angular momentum of the other to produce a
resultant angular momentum which must have symmetry with respect to the
plane xy. This requirement will limit the resultant angular momentum to the
values 0, 2, 4. In all cases the parity will be positive.

The discussion can be continued to take into account more complicated
harmonics, for example taking A = 3 will involve octupole vibrations with angular
momentum equal to 3 and negative parity.

Experimental evidence for vibrational states

In Figure 59 the energy levels of '®Pd are drawn. We see that there is evidence
for the existence of three levels with spins and parities 0%, 2*, 4" at an energy
above the ground state of approximately twice that of the first excited state,
which has spin and parity 2%, (We recall that for a rotational band the second
state in the sequence has a spin and parity 4* and an energy 3-33 times that of
the first excited state.) We also note that the upper 2 state decays preferentially
to the lower 2* state rather than to the ground state. This is evidence of the
operation of a selection rule typical of harmonic oscillators, namely that
transitions between neighbouring states are favoured. We notice that in two
respects the theoretical predictions are not accurately borne out, namely that
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Figure 59 Vibrational states in 'Pd
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the two-phonon states are not degenerate and that the energy spacings are not
precisely in the ratio 2:1. 1t has to be remembered that the theory is based on
the assumption that the amplitudes of oscillation are within the range of linearity
of the restoring forces; this assumption may not be strictly valid.

Many other examples of vibrational states have been found. A study of these
reveals that as closed shells are approached the phonon energy increases,
indicating that the rigidity of the spherical shape is increasing.

The situation in the case of the nucleus is more complex than it was for a
diatomic molecule. The energies of the single-particle states are much closer to
the vibrational-state energies than were the electronic-state energies in the case of
the molecule, There is thus less validity in the picture of the fast-nucleon orbitals
following the relatively slow vibrations of shape of the nucleus. This means that
when we come to consider spherical, or nearly spherical, nuclei having odd
A-values there is the complication that the unpaired nucleon has its motion coupled
with the vibrations of the core. The results in such cases are then difficult to
interpret.

Vrlijbralional states can also arise in deformed nuclei; then the spheroid must be
imagined as vibrating as well as rotating. In that case phonons will give rise to
vibrational structure which will complicate the rotational bands.
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Figure 60 Schematic representation of potential energy as a function of
deformation for nuclei ranging from closed shell {a} to permanently deformed (e}

In Figure 60 a schematic representation of the potential energy of the nucleus
a3 a function of deformation summarizes the points that have been made with
respect to vibrational levels.

Intrinsic states

In addition to rotational and vibrational states we still have to consider the states
of the individual nucleons moving in the average nuclear potential. These
correspond to the electronic states in the diatomic molecule. In the case of a

Intrinsic states




spherical nucleus (i.e. where the shelks are filled or almost filled), the individual
nucleons experience, as in the simple shell model, a spherically symmetric
potential. In the case of the deformed nuclei (i.e. where there is an approximately
half-filled shell) the potential will not be spherically symmetric, and the results of
section 6.4 will no longer be strictly valid. The analysis of that section has been
repeated for an ellipsoidal potential with the results shown in Figure 61. We note thd
there is further removal of the degeneracies associated with the single-particle states.

97  Summary

In marshalling the large amount of information now available about the excited
states of nuclei we are assisted by the above considerations to the following extent.
When we are dealing with a nucleus having closed shells, or almost closed shells, we
can seek to interpret the pattern of levels in terms of vibrational states and single-
particle states. The latter should be well described by the simple shell model. When
we are dealing with nuclei with half-filled, or nearly half-filled, shells, then we have
to take into account the deformation of the nucleus. This means that we have the
additional possibility of rotational states, and also that the single-particle states
will be modified by the fact that the nuclear potential is now axially symmetric
but not spherically symmetric.
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Figure 61 Variation of nuclear energy levels with deformation of nucleus
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10.1

10.2

Chapter 10
Excited Statesof Nuclei

Introduction

In this chapter we discuss the propeties of excited states of nuclei. We consider
the electromagnetic transitions that occur between states and relate the rates at

which these transitions occur to the properties of the states concerned. The method

of measurement and experimental results obtained are briefly reviewed.

Production of excited states

The existence of excited states of nuclei was established, as we saw in section
3.15, by an investigation of the fine structures in a-particle spectra. The grouping
of nucleons which constitutes the daughter nucleus following a-emission is not
always left in its lowest energy state, i.e. in its ground state. Should it be left in 2
higher energy state, i.e. an excited state, then electromagnetic transitions involving
the emission of photons take place as the system de-excites.

A similar effect, as noted in section 4.12, is observed in the case of certain
B-emitters. In Figure 62 the energy levels in 249py and *3Zr, constructed from
measured a- and B-spectra, are shown to indicate the number of levels that can be
involved and the resulting complexity of the spectrum of y-rays emitted in associ-
ation with the o- and S-particles.

The mass-energy conditions in a- and B decay limit the energy range of
excitation of the nucleus which is explored by these methods. Even within that
limited range, the lower-lying states are favoured in production by the energy
dependence of the a- and f-transition probabilities. Further it is a consequence of
the selection rules for - and B-decay that only those levels having certain spins
and parities will appear in the decay schemes.
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10.2.1

10.2.2

Photoexcitation

Other methods are now available for the production of nuclear excited states,
which enable the energy-level diagrams to be considerably extended. The
exposure of a nucleus in its ground state to a beam of high-energy X-rays,
produced by stopping the beam from an electron accelerator in a target of a
material of high atomic number, can result in the absorption of a photon by the
nucleus leading to a transition from the ground state to an excited state, This
excited state can lie within an energy range limited only by the energy of the
electron producing the X-ray bremsstrahlung spectrum, There are again selection
rules involved in the transitions and it is therefore not to be expected that all
excited states within the accessible energy range will be populated. We return
later to discuss methods involving other nuclear reactions for the production of
excited states,

Bound states

When the full energy range of excited states is being considered, the states divide
into two categories. Those states whose excitation energies are less than the
binding energy of the least tightly bound nucleon are termed bound states. Those
states whose excitation energy exceeds the nucleon binding energy are termed
unbound states,

Usually a bound state promptly de-excites by y-ray emission, a process to be
considered in some detail below. However, as discussed in section 6.11, there are
examples of Y-ray transitions, the so-called isomeric transitions, which proceed
at such a slow rale that B-transitions to a neighbouring isobar, where the mass
difference permits this process, successfully compete. An interesting example of
this is the 283 hour state 388 keV above the ground state of 87Sr, which largely
1/27)
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Figure 63 Decay scheme to show the competition between electron capture and
+-ray emission from the isomeric state in ®7Sr
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de-excites by y-ray emission to the stable ground state, but in 0-7 per cent of the
decays proceeds by electron capture to the ground state of ®’Rb. The decay
scheme is shown in Figure 63. This deviation from the normal Y-ray de-excitation
is however very rare,

The unbound states of the nucleus have no counterparts in the atomic system.
In the case of the atom, as the first ionization energy is passed a continuum of
energy states is entered, There is no resonant absorption of photons from the
neutral atom ground state into states in this continuum. In the case of the nucleus
the behaviour is quite different. Resonant absorption is observed from the ground
state to states which lie above the nucleon binding energy. The resulting states
may decay by y-emission but this process usually competes unsuccessfully with
nucleon emission, as will be discussed below.

Coulomb excitation

Knowledge of excited states has been notably extended in recent years by the
exploitation of Coulomb excitation. A heavy particle, either a proton or a heavy
ion of suitable energy, passing a nucleus in its ground state at a distance greater
than the effective range of nuclear forces, gives rise to a transient electric and
magnetic field at the nucleus. The resulting perturbation may induce a transition
of the nucleus to an excited state. This process, like y-ray absorption, has the
attraction of being entirely electromagnetic in nature and therefore calculable

with the aid of the theoretical equipment, in the form of quantum electrodynamics,
developed and tested in the field of atomic physics. Coulomb excitation has been
particularly successful in demonstrating the existence and determining the
properties of the low-lying states associated with rotational bands (sze section 9.4).
Another technique which has proved extremely valuable in recent years in the
study of excited states is electron scattering. A beam of monoenergetic electrons

is directed at a target nucleus. The electrons are scattered by purely electromagnetic
processes, the scattering events falling into two categories, elastic and inelastic
scattering. In an elastic scattering event the nucleus recoils to conserve linear
momentum but does not make a transition from its ground state. A comparison

of the observed angular distribution of the scattered electrons with that

calculated from relativistic quantum electrodynamics, for a given nuclear charge
distribution, provides valuable information on the nuclear charge radius. In the
event of the nucleus making a transition from its ground state to an excited state
the electron scattering is said to be inelastic. As in Coulomb excitation, but in

this case using the fully relativistic treatment, the transition details are calculable
from quantum electrodynamics.

The compound nucleus

Coulomb excitation and electron inelastic scattering are two specialized forms of
nuclear reactions by means of which both bound and unbound excited states may
be populated. In the more general form of nuclear reaction, where the bombarding
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