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promoted to a vacancy in the g¢ state. Once again the large difference in angular
momentum explains the isomeric decay.

Thus in a very satisfactory way the position of the islands of isomerism on the
nuclear chart find an explanation within the framework of the shell model. It
should be noted that all excited states do not have such simple configurations as
we have been picturing above. Those states which are as simple as this are referred
to as single-particle states. However, it is clear that as well as single-particle states
it must also be expected that there will exist excited states involving the promotion
of two or even more particles.

Summary

The shell model, originating in an attempt to meet the challenge of explaining
magic numbers and based on the arbitrary assumption of spin-orbit coupling,
produces a level scheme which enables quantum numbers to be assigned to
nucleons in complex nuclei. With the additional assumption that nucleons pair

so as to cancel angular momentum, a scheme of ground-state spins in excellent
agreement with measured ground-state spin values for odd-A nuclei can be
constructed. In some cases the spins of excited states of nuclei can be explained
on the basis of one particle being promoted from the lowest energy configuration
and in particular the existence of islands of isomerism has a simple interpretation
within the shell model. We shall see in the following chapters that the shell model
has also a role to play in the interpretation of the measured electric and magnetic
moments of nuclei.
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Chapter 7
Nuclear Moments 1

Single-particle magnetic dipole moment

We saw in section 6.9 that cancellation of angular momentum takes place as
long as there is an even number of nucleons in the nucleus; when there is an odd
number of nucleons the total spin of the nucleus can be identified with the
angular momentum of the one unpaired nucleon. Now it is found that (even,
even) nuclei, which, as seen above, invariably have zero spin, also have zero
magnetic dipole moment. [t would therefore seem instructive to consider
whether the observed finite magnetic dipole moments of odd-4 stable nuclei can
be explained as arising from the motion of the single unpaired nucleon. We now
proceed to consider the magnetic moment to be expected to arise from the
single nucleon in a given quantum state.

First however we have recourse to classical physics to define the basic terms
used in atomic and nuclear magnetic studies. A particle with electric charge e,
measured in electrostatic units, and mass M, moving in a circular orbit of radiusr
with constant angular velocity w, is equivalent to a current ew/{2nc flowing so as
10 enclose an area ar?. The equivalent magnetic dipole moment from classical
electromagnetism is ewr?{2c. We note that the angular momentum of the particle
about an axis normal to the orbit and through its centre is Mr?c. Thus the
ratio of magnetic moirient to angular momentum, the gyromagnetic ratio, is
e/2Mc. Denoting the magnetic dipole moment by p and the angular momentum
by f we thus have

% = constant =y, 71

say, where 7 Is independent of ¢ and r. This simple result for a circular orbit is
true in the general case, where the orbit may be elliptic. In the quantum-
mechanical case, the maximum value of angular momentum along a specified
direction for a particle in an /-state is /i and the measured associated dipole
moment would therefore be expected to be lei/2Mc. If we define the constant
quantity ek/2Mc to be the standard unit of magnetic moment, then the magnetic
moment in terms of this standard unit is numerically equal to /. In the case of
the electron, efi [2Mc is termed the Bohr magneton. When we apply the same
ideas to the nucleon, the analogous quantity is termed the nuclear magneton.
The larger value of the nucleon mass means that the nuclear magneton is

1/1836 times the Bohr magneton. Thus on the whole, since the angular momenta
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in both cases is of the order of A, nuclear magnetic moments are expected to be
smaller by this factor than atomic magnetic moments, When the accepted values
of the constants are inserted in the expression efif2Mc, the nuclear magneton is
found to be 5-050 x 107 J G

We now consider the magnetic moment which classical physics attributes to
a rotating charged body. Assume that the charge is distributed through the
volume to give a charge density p,, which may vary from point to point. Let the
mass be distributed in such a way as to give a mass density p, which also may
vary from point to point. Take an element of the body of volume d¥ at a
distance 7 from the axis of rotation. This element is equivalent to an orbiting
particle having a charge p. d¥ and a mass p dV. It will therefore contribute to
the magnetic moment an amount

pedV
dp = (pdV)F? ’
AL w[lp ch]

where t is the angular velocity. If p. and p are constants, or have the same
dependence on the space coordinates, then we can write

pe=Kp,
where X is a constant. The total charge

e=[pedV=K[pdV=KM,

where M is the total mass. In this special case therefore

il T genbd
P M

Integrating over the whole body we then have

2Mc

If on the other hand p. and p do not have the same dependence on the space
coordinates (i.e. the mass and charge distributions are dissimilar) then
i IF zp, av

(/7]
=2
m=— | 4 _d¥ = angular momentum X — ——m0—o——
E2: I is L 2c¢ moment of inertia

ew e
p= —-—I pF? dV = —— x angular momentum.
2Me

As an example, consider a sphere, radius R, of constant density, with the
charge located entirely in a surface layer of thickness ¢, where r € R, Taking a
ring element,

dV = 2n7tR db,
where 8 is the usual spherical polar coordinate, and

[Ppedv= [ 20R%p,sin30db = 3eR?,
0
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since e, the total charge, equals 4nR ?1p,.
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We thus see that in the general case a numerical coefficient is involved which is
dependent on the charge and mass distributions. We therefore modify equation
7.1 by introducing the so called g-factor, writing

B
7 gY- 72
In the case of the electron, Dirac’s theory leads to a predicted value for g of
2, and this is in good agreement with the electron’s measured magnetic dipole
moment. In the case of the nucleon, there is no similar theoretical guidance and
we use the measured values of p together with equation 7.2 to armrive at the
value of g. For the proton, #p = 27934 nuclear magnetons, and therefore the
g-factor, which for rotational or spin angular momentum we shall denote by
&p, Will be pplé = 5-5868. It is found experimentally that the neutron, despite
its having zero net electric charge, has a finite magnetic dipole moment. This
indicates that the neutron has internal electrical structure with different
positive and negative charge distributions, the total charge being zero. The
measured magnetic moment in the case of the neutron is — 1-9135 nuclear
magnelons, the negative sign indicating that the direction of the dipole is related
to the spin direction as it would be for a negatively charged body. The
corresponding g-factor, £m = i,/ = — 3-8270. It is convenient to modify
equation 7.1 when applied to orbital motion by introducing in this case too a
g-factor. For the proton, which behaves in this respect as a classical point charge,
the value of this g-factor g;p, willbe unity. The neutron, again as would be
expected on the classical view, makes no contribution to the magnetic moment
by virtue of its orbital motion and therefore gy, = 0.

Relationship of magnetic moment to nuclear spin

Let the nucleon be in an /-state. Then the angular-momentum vector diagram
when spin-orbit coupling is assumed is drawn in Figure 29. The orbital angular
momentum of absolute magnitude /[ + 1)] 4 we denote by 1, the spin angular
momentum by s and their resultant by j, where, as in section 6.7, j = 1+ 5. The
vectors | and s precess about j, which in turn precesses about the direction of an
applied magnetic field. j has a component j/ along the field direction. If the g;
and g, factors were equal then the same diagram, suitably scaled, would represent
the magnetic dipole-moment vectors. However we have seen that the g and g,
factors are not equal for either type of nucleon. The magnetic moment
associated with I will have a component along the direction of j and also a
component perpendicular to it. The perpendicular component will time-average
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1 We must treat the cases of the proton and neutron separately, as their
Hi g-factors are different. If the particle concerned is a proton (gy, = 1, g, = 5:5863)
and we take the casej =1+ 4, then pp =j +2-29.
For a proton andj =1 — 4,
J
=—(j—129
s Le j+1 u )
Ha ;
. J
Hy ! =j-229 P
For a neutron (g =0, gn = — 3'8270) andj =1+ 4,
pa=—19L
For a neutron andj=1—1,
‘ s
J
=101
o j+1
Figure 29 Contributions to nuclear magnetic dipole moment, arising from 7.3 Schmidt lines
nucleon orbital and spin angular momenta, plotted on an angular-momentum
vector diagram. Note that y; is only one companent of the resultant of y; and g If we now use these results in conjunction with the shell-model hypothesis
to zero. Similarly for the components associated with s. [ we then take the (namely the assumption that the spin and magnetic moment in odd-A nuclei
sum of the components along j and resolve this sum along and perpendicular to 3BT
the field direction, again the perpendicular component can be discounted and §
the measured dipole moment is the component of the sum along the field E
direction, when the angle between j and the field is the smallest of the discrete { g 4
number of permitted angles. Carrying out this programme we have, for the sum & g
of the components of the moments along j, the expression §
i
7 [8dl1lcos (1)) + g,|s]cos s, )] 2
Resolving this along the field direction, the observed moment is found to be
given by u, where o
1 l=ml-s
#= 7 [Billlcos L) + g4l cos s, )] cos (}, Oz)
g U+ +JU+ 1) —s(s+ 1] + gels(s + 1) + (i + D) = Il + 1)) 25 1 2 3 4 5
2(j+1) ’
using the elementary trigonometrical formula for the cosine of the angle in a § ar
triangle. 5
Take now the case j =/ + . We substitute 4 fors andj — 4 for /, and find g /ﬁ:
Brey =8 — ) +ig,= g+ 1z, ;o
Forj=I—s,wehaves=4 and /=7 + 1, and therefore §
f . j . I=l+s
e [x:U'h)—'}Ssl’m [(+1)g;— 18] A 1 2 3 ) 5

Figure 30 The theoretical Schmidt lines of magnetic dipole moment
plotted against nuclear spin quantum number
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Figure 31 Plot of experimental values of nuclear magnetic dipole moment

against nuclear spin quantum number of odd-4 nuclei containing an odd number
of protons

m

arise solely from the motion of the unpaired nucleon), then 7, the nuclear spin,
can be equated withj. The predicted magnetic dipole moments for odd-4 nuclei
will then be as in Table 4. [ has, of course, only discrete values. However, if we

Table 4

Proton Neutron

{odd Z : even N) (even Z : odd N)
i:[—{-s I+229 - 191
: I 91 1
j=l-s lf2-291-+-»] 19]]+l

treat it as a continuous variable for diagrammatic purposes, then the predictions
for the p-values lie on the lines shown in Figure 30. These are known as the
Sehmidt lines. In Figures 31 and 32 histograms are drawn to correspond to the
discrete values of /. On the diagrams are plotted the measured dipole moments
for a series of nuclei. It can be seen that the agreement is by no means perfect.
However, the lines clearly set limits to the measured values. In most cases the
measured value falls much closer to one line than to the other and in these

cases an assignment of the nucleus to one group or the other can be made with
some confidence. This is important as it provides a means of discovering, once
the j-velue has been determined from a measurement of I, which of the two
possible I-values has to be assigned to the unpaired nucleon. This in turn permits
us to establish the parity of the nucleus, positive parity arising from zero and
even values of /, negative parity from odd [-values. We return in a later chapter
to the discrepancy between the measured and the ‘single-particle’ value of
magnetic dipole moment.

Schmidt lines



g +2(
g
]
2
[
g Schrmdt valua for / = /-5
El
1 -
’ Eaoe “7Zn
@'3Ba L
[ETo
-9 AEL)
9'3Xe
_"’Ptzzor "'Os“ e ®
MSem Pb S Dy VITHE
£'7vb
190g
ey
L
$4Fe
(o] 2 12705
15564
L
!l)Gd.
830, lnov 178
295 L ] L ] sogy Hf
ARET | e ®%'Ha 1w0spg °
'H;Cd :1315 unuil"“‘ vasNg
1Teg ° 101Ry 1485m
B120)g SN 84Ty -
123Tag BMge ®'Y7Sm 3G
811350 =“Mﬂ L
1k Wbt 83
L 3 S *7Mo 143y bot=1.13
Sn . d wg,
8o : re
[) 0T}
.Iz'
[ ]
Ca
"0 o
l'! ® Schmidt valua for / = / 4 5
f . . i s
1/2 3/2 5/2 72 9/2
LETTPS i

Figure 32 Plot of experimental values of nuclear magnetic dipole moment against
nuclear spin quantum number for odd-4A nuclei with an odd number of neutrons
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Nuclear electric moments

The shell model claims to provide wave functions for the individual nucleons
and hence should enable a prediction to be made of the spatial distribution of
nucleons within the nuclear volume. As far as the protons are concerned, the
prediction can be tested experimentally by investigating the static electric
moments associated with the distribution. The measurement of these electric
moments is related to the energy of the charge distribution as a function of its
orientation when it is placed in an electric field. We therefore begin by discussing
on the basis of classic electrostatics the energy relation between an external
electric field and the internal distribution of nuclear charge.

We assume that the nucleus has a spin I and that by virtue of the rotation the
averaged nuclear charge, which is the quantity measured experimentally, will be
symmetric about the axis of /. We therefore limit our treatment to distributions
having axial symmetry.

Multipole expansion of the electric potential

Consider F(R, #), the electric potential at a point P with coordinates (R, 8),
outside the volume of the charge distribution. As I/ must satisfy Laplace’s
equation, we can write

PV v v
ax2  ayr 8t
This can be transformed into the usual spherical coordinates. As we are assuming
symmetry of the charge about the z-axis, the differential coefficient with
respect to ¢ will be zero. Thus the transformed equation (see equation 6.2) is
Fhe #3 G 1 9% cotf @
—t——t— ==t — —
@R? R OR R? 38> R* a6

=0 73

V=0. 74

If a solution with the variables separated, of the form V(R, 8) = F(R)G(8), be
assumed, then

R? d?F(R) 2R dF(R) 1  d2G(8) cotf dG(8)
F(R) dR* F(R) dR _ G() d8% G@) d¢

and each side of this equation must then be independent of R and 8. Let this
constant be I + 1). The right-hand side of the equation then, with 2 = cos @,
reduces to
(1 2)__de 2 d¢ Il+1)G=0

- —2u— +I(I+1)G=0.

BV P

As noted in section 6.3, if we limit the choice of ! to zero or positive integral
values, this equation has as a solution G = P{cos #), where P{cos 8} is a Legendre
polynomial.

75

Mulitipole expansion of the electric potential
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Figure 33 Charge distribution symmetrical about z-axis

Taking now the left-hand side of the equation we have

d2F(R) dF(R)
+2R = Il + 1) F(R). 76

2
£ dR? dR

Assuming a solution of the form F(R) =a,/R", where n is a positive integer
(thus ensuring that F(R) has the physically necessary property of tending to
zero as R tends to infinity), and substituting in equation 7.6, we find that

aﬂ al all
An+1) = —2n—C e M+ 1) =5

If F(R) is to be a solution, then we must have n =1+ 1. For the solution of
equation 7.4 we therefore finally have

l @
VRO =7 > % P, (cos 8). 77
-0

The values of the constants a; will depend on the distribution of charge
within the central volume. We can find the form of this dependence by
considering the potential at the point S whose coordinates are (Rg, 0). Since
P(1) =1 for all values of /, the potential at S, from equation 7.7, is given by

V(Rs,0) = Z __é 78
l

The potential at S can also be expressed directly in terms of the charge
distribution. If ps(r, @) is the charge density at Q, the point {r, 8') within the
nucleus, and dr is an element of volume containing the point Q, then
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V(Rg,0) = Ii(sfg_')-dr

p.(r,8)dr
IV{R% 4+r2-2rRg cosf")
_l.J‘ pelr,8))dr o
Rgd v/{1—2(r/Rs) cos8’ + r?/R2} -
Now, as can be shown by expanding by the binomial theorem,
l m
= x" P, (cosf).
/(1 —2x cos 8 + x?) nz_; =
Hence we can express equation 7.9 as
8"
V(Rs,0) = = Z J“’ e(r: 097 P, (cos ) dr. 7.10

If now we compare the coefficients of l/J'i”s“l in equations 7.8 and 7.10, we
see that

a;= J'pe{r,e')rtp,(cosa')dr

is the relationship between the coefficients and the charge distribution.

Definition of the static electric moments

We proceed to consider the physical meaning to be attributed to the coefficients
a; in the above multipole expansion.
Since Py{cos 8) = 1, for all valuesof 8, it follows that

ag= j‘ po(r,8")dr = Ze.

The first coefficient is thus seen to equal the total charge within the nuclear
volume.

Thus, if in equation 7.7 R is assumed to be so large that we need only consider
the first term in the series, the potential for the given distribution is the same as

that for a point charge.
Proceeding to the next term we find that, since P;{cos 8) = cos 8, we have
= _[Pc(r.ﬂ‘)rcosﬂ'a‘f= J' pelr. 0" zdr. =5

This expression is the component of the first moment of the charge taken
parallel to the z-axis. Note that the components of the first moment parailel to
the other axes are zero because of the symmetry. The simplest distribution
giving rise to a finite moment of this order and having net zero charge is the
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dipole formed by the displacement of equal and opposite charges e equal and
opposite distances d from the origin. For this distribution a, = 2ed. At great
distances from the dipole the potential as a function of # is, to the order R ™2,
given by

2qae
V= —cos 8,
RZ

in line with the angular-dependent factor in the second term of equation 7.7.
Thus, if we wish to include the second term in equation 7.7, we can regard
the general charge distribution as equivalent to a point charge at the centre plus

a dipole also at the centre, the dipole moment being calculated from equation
7.11. When the charges in the distribution are all of the same sign, a dipole
moment can arise if the charges are not symmetrically distributed about the
point with respect to which the potential is calculated. This point will normally
be the centre of mass of the system. We shall see later that, in fact, nuclei do not
have finite electric dipole moments.

‘The third term in equation 7.7 involves P, (cos #), which is equal to
4(3 cos?@ — 1). Hence we have

a;=4% j’ pe(r,8)r2(3cos20 — ) dr=14 I po(r, 8322 — r2) dr. 7.12

We now introduce

0= %J. p.(r,0(32% — r¥)dr

and can therefore write a; = 1e0. We call O the quadrupole moment and on this
definition, which is that now commonly used in nuclear physics, it has the
dimensions of area.

The simple distribution shown in Figure 34, which is the symmetrical
displacement of equal and opposite dipoles from the origin, is seen to have zero
net charpe and zero dipole moment. The quadrupole moment as defined
above is given by (0 = 452, since z = r for this linear quadrupole. The potential
at P is thus

b2
Vo= ;—3(300520 -1,

to lowest order in R ™!,

This process of developing muitipoles which are equivalent to the terms in
equation 7.7 can be continued in an obvious way to higher orders. However,
while electric quadrupole moments are of important current interest in nuclear
physics, information about possible moments of higher order is not yet accessible
to the experimentalist.

The odd electric moments - dipole, octupole, eic. - are zero for a nuclear
system which has a definite parity, whether that parity be positive or negative.
This is so because the amplitude of the wave function being unaltered when
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Figure 34 Systern of four point charges having zero net charge, zero net dipole
moment and finite quadrupole moment with symmetry about the z-axis. Note
that in a constant electric field the dipoles experience equal and opposite couples,
the system experiences no resultant couple. However, in a field with a constant
gradient parallel to the z-axis the couples on the dipoles are no longer equal, so
that the system experiences a resultant couple. The net force on each dipole is
equal and opposite if the field gradient is constant so that there is no resultant
force on the system

(— x, — y, — z) is substituted for (x, y, ) means that p.(r, 8'), which is proportional

to Y2, is unaltered on this transformation. For odd values of / however P{cos #),
the other factor in the integral defining the moment of the multipole, is an odd
function in cos 8. The above parity transformation, which changes the sign of
cos 8, thus changes the sign of P{cos 8). Consequently when the integration is
performed over the whole volume for odd values of / the result is zero. Similar
arguments applied to the magnetic moments show that if the nuclear system has
a definite parity, then the evenr magnetic moments - i.e. quadrupole etc. - are
zero. The fact that these predictions seem to be borne out when nuclear electric
and magnetic moments are measured indicates that nuclei do have a definite
parity. We note that this means that their shapes must be symmetrical about the
xy plane. Thus spheres and ellipsoids of revolution are permitted but a pear shape
would violate the parity requirement.

Quadrupole moment of deformed sphere

In the interpretation of quadrupole moments we shall have occasion to picture
nuclej as slightly deformed spheres. We now proceed to calculate the quadrupole
moment of a uniformly charged sphere, slightly deformed to become an ellipsoid
of revolution, having a semi-axis length ¢ along the z-axis and semi-axes each
length & along the x- and y-axes.
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Figure 35 Division of spheroid into ring elements for the calculation of its
quadrupole moment

The quadrupole moment Q will then be given by
eQ = I ;.1,(31'.2 - rz) dr

- I pe(322 — 22 — #'2) 227 dF d2,

where the volume element dr has been taken as a ring lying in the disc at a
distance z from the origin, as depicted in Figure 35. Hence
+a yz

eQ = 2mp, J' dz j (222 - #2)7' dF,
-a 0
where y? is defined by the equation of the generating ellipse, namely
2 2
—_ s =1,
¢t b
On integrating we have
eQ =15 mp, ch?(c? - b?)
=Zet(c2—-b?),

since the volume of the ellipsoid is §z c6? and Ze is the total charge.
We thus have

Q=Z4qR?,
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2 b2 c? + b2
whe = and R%*=
L 24+ b2 2

We nole that the algebraic sign of Q depends on the relative lengths of ¢
and b, and is positive for prolate spheroids and negative for oblate spheroids.

.

The interaction energy of a charge distribution with an electric field

We consider now the interaction energy of a charge distribution with an electric
field. The field is assumed to be axially symmetric about an axis which we shall
denote by Oz'. In the practical cases to which we shall wish to apply this theory,
the field will be that at the nucleus arising from the Coulomb charge of the
atomic electrons. In that circumstance Oz’ will be in the direction of J, where
J=L+S5,
L being the resultant of the orbital angular momenta of the electrons and S the
resultant of their individual spins. We take an axis system Ox’, Oy’, Oz',
symmetrical with respect to the field, and a system Ox, Oy, Oz symmetrical
with respect to the charge distribution, as in Figure 36. The electric field we take
s

x
¥

Figure 36 Ox’, Oy, Oz’ are fixed axes in an electric field which is symmetric
about the z'-axis. Ox, Oy, Oz are axes fixed with respect to the spheroid. The
x- and x'-axes instantaneously coincide
to be defined by an electrostatic potential ¢(x, ', z'). This function may be
expanded in the neighbourhood of the origin, which we take to be the centre
of mass of the nucleus and of the atom as a whole, to give
2$(0) 9¢(0) aM’))
V2 =#0) +{x +y —+2z +

1 224(0) 224(0)
+- (xz 95(2 2xy’ i;-

2 dx ox dy

2
..+z'2L‘(°))+....

s
9z'2
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Taking pe(x, ¥, 2') as the charge density, the energy of the system can then
be expressed as

W= I Pe(x: J", z') 'f'(x-y'- z') dr

(0)  o4(0) (0
=JP°(x’y"z')?5(°)df+IPe(x.y',z’) [x ?;i)*-y' ‘:)(,')+2' l;:-) d

1 924(0 824(0 9%4(0
+5J-Pe(x.y‘.z')[x’ ai(z)+2xy' ¢()+. 42’2 t’s()dar+

axdy dz'2
=W+ Wp+ Wot... ‘
We, which is simply equal to {
$0) [ polx.y',2)dr,
is seen to represent the Coulomb energy associated with the equivalent point

charge. Wp, represents the energy of the dipole moment of the charge distribution
in the constant field

34(0) 94(0) H(0)
ax oy oz |
When the charge distribution being considered is that of a nucleus Wp, = 0, since
the electrical dipole moment is equal to zero.
We now consider the third term Wg. Because of the axial syrnmetry, ¢ depends

on x and y' only through its dependence on the distance from the z"-axis. Hence
in ¢, x and y' appear only in the combination v/(x? + y'2). It follows that

a24(0) a2qﬁ(ﬂ‘) 3’#0)

oxady’ " axer dyaz’
Further, from symmetry,

324 0%

o ay

Also, if we assume that ¢ arises from the atomic-electron Coulomb charge, and

if we neglect the charge density of the orbital electrons within the nuclear volume,
then ¢ satisfies Laplace’s equation at the origin,

2H0) 924(0) 2%
. #( )+ #( )+B ¢(0)=0’
ax? 't g2
3240 240 2
and so a )=—Za # )=—Za #0)-
9z"2 ox? dy?
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1
Hence Wa=-J‘p,(x.y .z')[

a2
#)dr,

1 2
=g pe(xy,2) (322 —r?
wherer = +/(x? + y'? + z'2). Thus finally we have
Wo=1q J' pe(x,¥,2) (32" — r¥)dr,

where g is the gradient of the electric field intensity in the direction 0z’. We
now express the integral in terms of the coordinates (x, y, z), which refer to the
body axes Ox, Oy, Oz, noting that z' =z cos § — y sin 8. Therefore

Wo=1q I polx ¥,2)(32% cos?B +3y? sin?g — 6yz sinBcosB —r?)dr.
From the axial symmetry of the charge distribution,
[yzpex.3.2) dr=o0.
Also from symmetry
[P pxrndr= [ x?polxy D)
=1 [P +y))pclry2)dr
=4[ (? - 2%)p.lx.y.2)dr.

Therefore Wo=1q J' pe(x,7,2) [32%c0s28 + 3(r? — 2%)sin?) dr

='}q [‘[ Pe(xlyrz) (322_r2)d1,] (3C052ﬁ —_ l)

=4geQqo(3cos?f — 1), 7.13

where 0 is the quadrupole moment of the charge distribution as defined in
section 7.6.

Equation 7.13 gives the interaction energy of a nucleus having a quadrupole
moment @, when its symmetry axis lies at an angle § to the symmetry axis of
an axially symmetrical electric field with a field gradient g at the site of the
nucleus.

Quadrupole moments in quantum-mechanical systems

The nucleus has as its axis of averaged symmetry the axis of the total angular
momentum L. We now consider the nucleus to be placed in an electric field of
axial symmetry at a point in the field where the gradient along the field
symmetry axis Oz’ is g. The couple arising from the interaction of the quadrupole

Quadrupole moments in guantum-mechanical systems



moment with the field gradient will cause I to precess about Oz'. The usual
quantum-mechanical conditions will require that the angle between I 2nd Oz’
be such that the component of angular momentum parallel to Oz’ is M4, where
M; is integral if 7 is integral, M; is half-integral if 7 is half-integral, and where

IM; 1 < 1. Since the angle of precession f can never be zero, the value of W can
never attain the value it would have in the classical case for a charge distribution
with quadrupole moment Qg, where the angle § could be zero. In the quantum-
mechanical case the minimum value of the angle f will be

i
VIU+ )]

and the interaction energy for this orientation is given by

COoS ~

Iz
W""éw“[s a+1) I]

-1
aiqu.,[ ] 7.14

I+1

We now introduce Q as the effective quadrupole moment, that is, the quadrupole
moment which is observed experimentally. It will be less than the intrinsic
quadrupole moment @, because of the averaging of the charge distribution by
the necessary precession of I. From 7.13, the maximum value of Wp is

1geQ(3c0s20° — 1) = 4geQ.

Comparing this expression with equation 7.14, we see that

We now consider the expressions for the interaction energies of the magnetic
substates. The angle § is given by

MI
VI +1)]

and hence
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We now have to consider the two special cases / = 0 and / = 4. Let us assume
that we are dealing with a nucleus whose shape is that of an ellipsoid of revolution
having an axis of symmetry Oz. When I = 0 there will be no rotation about the
symmetry axis Oz. The lack of angular momentum about this axis enables the
nucleus to lie with this axis orientated at random with respect to any specified
direction. The arguments made above are then no longer valid for this case. The
randomness of orientation of the nucleus will ensure its equivalence to a spherically
symmetric charge distribution. Thus, although it has a finite intrinsic quadrupole
moment (g, the effective quadrupole moment @ is zero. Tuming to the case of
I =4, we note that # must have the value cos™'{1/+/3) and hence the nuclear
orientation is always such that (3 cos’8 — 1) = 0. Hence, as is clear from the
above expression for Q in terms of Q, again the effective quadrupole moment is
zero despite the nucleus having an intrinsic quadrupole moment. We therefore
arrive at the important conclusion that the measured quadrupole moment can
only be finite for /> 1. This is found to be in accord with experimental
measurements.

7.10 Summary

The theoretical concept of magnetic dipole moment was developed to establish,
on the basis of the single-particle hypothesis, the relationship between the single-
particle quantum numbers and the nuclear dipole moment.

The static electric moments of the nucleus were defined, particular attention
being paid to the electric quadrupole moment and its role in connection with
the classical interaction energy of the nucleus with an electric field. The
modifications to these results arising from a quantum-mechanical treatment
were discussed.
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