
promoted to a vacancy in the 8t state. Once again the large difference in angular 
momentum explains the isomeric decay. 

Thus in a very satisfactory way the position of the islands of isomerism on the 
nuclear chart find an explanation within the framework of the shell model. It 
should be noted that all excited states do not have such simple configurations as 
we have been picturing above. Those states which are as simple as this are referred 
to as single-parrtcle states. However, it is clear that as well as single-particle states 
it must also be expected that there will exist excited states involving the promotion 
of two or even more particles. 

'6 .12 Summary 

The shell model, originating in an attempt to meet the challenge of explaining 
magic numbers and based on the arbitrnry assumption of spin-orbit coupling, 
produces a level scheme which enables quantum numbers to be assigned to 
nucleons in complex nuclei. With the additional assumption that nucleons pair 
so as to cancel angular momentum, a scheme of ground-state spins in excellent 
agreement with measured ground-state spin values for odd·A nuclei can be 
constructed. In some cases the spins of excited states of nuclei can be explained 
on the basis of one particle being promoted from the lowest energy configuration 
and in particular the existence of islanits of isomerism has a simple interpretation 
within the shell model. We shall see in the following chapters that the shell model 
has also a role to play in the interpretation of the measured electric and magnetic 
moments of nuclei. 
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Chapter 7 
Nuclear Moments 1 

Single-particle magnetic dipole moment 

We saw in section 6.9 that cancellation of angular momentum takes place as 
long as there is an even number of nucleons in the nudeus; when there is an odd 
number of nucleons the total spin of the nudeus can be identified with the 
angular momentum of the one unpaired nucleon. Now it is found that (even. 
even) nuclei. which, as seen above, invariably have zero spin, also have zero 
magnetic dipole moment. It would therefore seem instructive to consider 
whether the observed finite magnetic dipole moments of odd·A stable nuclei can 
be explained as arising from the motion of the single unpaired nucleon. We now 
proceed to consider the magnetic moment to be expected to arise from the 
single nucleon in a given quantum state. 

First however we have recourse to classical physics to define the basic terms 
used in atomic and nuclear magnetic studies. A particle with electric charge e. 
measured in electrostatic units, and mass M. moving in a circular orbit of radius, 
with constant angular velocity w, is equivalent to a current ew/2rrc flowing so as 
to enclose an area 11',2 • The equivalent magnetic dipole moment from classical 
electromagnetism is ewr'2/2c. We note that the angular momentum of the particle 
about an axis Donnal to the orbit and through its centre isM,2 w ; Thus the 
ratio of magnetic moment to angular momentum, the gyromDgnet;c ratio , is 
e/2Mc. Denoting the magnetic dipole moment by IJ. and the angular momentum 
by I we thus have 

I' 
- - constant - y. 
I 

7.1 

say, where .., is independent of wand r. This simple result for a circular orbit is 
true in the general case, where the orbit may be elliptic. In the quantum· 
mechanical case, the maximum value of angular momentum along a specified 
direction for a particle in an '-state is Iii and the measured associated dipole 
moment would therefore be expected to be/ell/We. If we define the constant 
quantity efi/2Mc to be the standard unit of magnetic moment, then the magnetic 
moment in tenns of this standard unit is numerically equal to I. In the case of 
the electron. eli/2Mc is termed the Bohr magneton. When we apply the same 
ideas to the nucleon, the analogous quantity is tenned the nuclear magneton. 
The larger value of the nucleon mISs means that the nuclear magneton is 
1/1836 time, the Bohr magneton, Thus on the whole. sinco the angular momenta 
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in both cases is of the order of Ii, nuclear magnetic moments are expected to be 
smaller by this factor than atomic magnetic moments. When the accepted values 
of the constants are inserted in the expression eli/2Mc, the nuclear magneton is 
found to be 5·050 x 10-31 J G-1• 

We now consider the magnetic moment which classical physics attributes to 
a rotating charged body. Assume that the charge is distributed through the 
volume to give a charge density Pet which may vary from point to point. Let the 
mass be distributed in such a way as to give a mass density p, which also may 
vary from point to point. Take an element of the body of volume dV at a 
distance; from the axis of rotation. This element is equivalent to an orbiting 
particle having a charge Pe dV and a mass P dV. It will therefore contribute to 
the magnetic moment an amount 

, [ pe
dV

] dp. - (pdV)f w -- , 
2p dVe 

where (.oJ is the angular velocity. If Pe and P are constants, or have the same 
dependence on the space coordinates, then we can write 

Pc - Kp, 

where K is a constant. The total charge. 

. - fPedV-KfpdV-KM, 

where M is the total mass. In this special case therefore 

p, • - - K- - · 
p M 

Integrating over the whole body we then have 

p. _ -- p;2 dV ___ x angular momentum. ow f e 
2Mc 2Mc 

If on the other hand Pc and p do not have the same dependence on the space 
coordinates (i.e. the mass and charge distributions are disSimilar) then 

W f I f"Pe dV 
p. - - ,2p dV _ angular momentum x - . 

2c • 2c moment of inertia 

As an example, consider a sphere, radius R, of constant density, with the 
charge located entirely in a surface layer of thickness t, where t < R. Taking a 
ring element, 

dV - 2,,1tR de, 

where 8 is the usual spherical polar coordinate, and 

• f "p.dV - J 2"~/Pesin38d6 - feR', 
o 
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since e, the total charge, equals 4nR'/p •. 

I ieR' S. 
Thus ~ - angular momentum x - x --2 - angular momentum x - _. 

2c tMR 6 Me 

p. _e_ 5 
Therefore 1- 2Mc 3 

We thus see that in the general case a numerical coefficient is involved which is 
dependent on the charge and mass distributions. We therefore modify equation 
7.1 by introducing the so caUedg·factar, writing 

p. 
I - n . 72 

In the case of the electron, Dirac's theory leads to a predicted value for g of 
2, and this is in good agreement with the electron's measured magnetic dipole 
moment. In the case of the nucleon, there is no similar theoretical guidance and 
we use the measured values of Jl together with equation 7 .2 to arrive at the 
value of g. For the proton, Jlp = 2·7934 nuclear magnetons, and therefore the 
g.factor, which for rotational or spin angular momentum we shaH denote by 
&p, will be I',,!! = 5·5868. It is found experimentally that the neutron, despite 
its having zero net electric charge, has a finite magnetic dipole moment. This 
indicates that the neutron has internal electrica1 structure with different 
positive and negative charge distributions. the total charge being zero. The 
measured magnetic moment in the case of the neutron is - 1·9135 nuclear 
magnetons, the negative sign indicating that the direction of the dipole is related 
to the spin diJection as it would be for a negatively chasged body. The 
correspondingg-factor, gm = 1'./1 = - 3·8270. It is convenient to modify 
equation 1.1 when applied to orbital motion by introducing in this case too a 
g.factor. For the proton, which behaves in this respect as a classical point charge, 
the value of this g.factor g,p will be unity. The neutron. again as would be 
expected on the classical view, makes no contribution to the magnetic moment 
by virtue of its orbital motion and therefore gin = O. 

7.2 Relationship of magnetic moment to nuclear spin 

Let the nucleon be in an [·state. Then the angular-momentum vector diagram 
when spin-orbit coupling is assumed is drawn in Figure 29. The orbital angular 
momentum ofab,olute magnitudev[l(l+ l)jh we denote by I, the spin angular 
momentum by s and their resultant by j, where, as in section 6.7, j:c: 1+ s. The 
vectors I and s precess about j, which in turn precesses about the direction of an 
applied magnetic field. j has a component iii along the field direction. If the Ci 
and g, factors were equal then the same diagram, suilably scaled, would represent 
the magnetic dipole-moment vectors. However we have seen that the g, and g. 
factors are not equal for either type of nucleon. The magnetic moment 
associated with I will have a component along the direction of j and also a 
component perpendicular to it. The perpendicular component will time-average 
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a 
Figure 29 Contributions to nuclear magnetic dipole moment. arising from 
nucleon orbital and spin angular momenta, plotted on an angular-momentum 
vector diagram. Note that PJ is only one component of the resultant of III and P.s 

to zero. Similarly for the components assOciated with s. If we then take the 
sum of the components alongj and resolve this sum along and perpendicular to 
the field direction, again the perpendicular component can be discounted and 
the measured dipole moment is the component of the sum along the field 
direction, when the angle betweenj and the field is the smallest of the discrete 
number of permitted angles. Carrying out this programme we have, for the sum 
of the components of the moments alongj. the expression 
I 
ii (glill cos (I.j) + g,ls lcos (s,j)). 

Resolving this along the field direction, the observed moment is found to be 
given by II. where 

I 
I' - A (g.lllcos(~Jl + g,lsl cos (s.j)) cos (j, Oz) 

gl (/(/+ \)+}U+ 1)-*+ I))+g,(*+ I)+}U+ 1)-/(/+ I)) 

2(j+ I) 
using the elementasy trigonometrical fannula for the cosine of the angle in a 
triangle. 

Take now the case f = / + s. We substitute! for sand; -! for /. and find 

I'1+I-gIU-t) +ig,-/gl+tg,. 

For f -/- s. we have s =! andl =; + ~. and therefore 

} j 
1'1-1--- (gIU+f)-tg.I-- ((1+ I)gl-il,l· 

1+1 1+1 
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We must treat the cases of the proton and neutron separately, as their 
g·factolS are different.lfthe particle concerned is a proton (s,p = I. &p = 5'5863) 
and we take the case; = / + !. then Pp -; + 2·29. 

For a proton andi = /- t 
I' -~U-I'29) 

P }+ I 

-1'-2.292-. 
}+I 

For a neutron (g", = 0, g", = - 3'8270) and; = / +!. 
I'n - -1·91. 

For a neutron and;= / - L 
j 

u -1·91-. 
rn j+ I 

Schmidt lines 

If we now use these results in conjunction with the sheJl·model hypothesis 
(namely the assumption that the spin and magnetic moment in odd-A nuclei 
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Figure 30 The theoretical Schmidt lines of magnetic dipole moment 
plotted against nuclear spin quantum number 
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Figure 31 Plot of experimental values of nuclear magnetic dipole moment 
against nuclear spin quantum number of odd-A nuclei containing an odd number 
of protons 

, 
arise solely from the motion of the unpaired nucleon), then I, the nuclear spin, 
can be equated withj. The predicted magnetic dipole moments for odd·A nuclei 
will then be as in Table 4. I has, of course, only discrete values. However, if we 

Table 4 

Proton Neutron 

(odd Z : even N) (even Z : odd N) 

j=l+s 1+ 2·29 - 1·91 

1 1 
j= / - s 1 - 2,29 - 1·91 -

1+ 1 1+1 

treat it as a continuous variable for diagrammatic purposes, then the predictions 
for the II-values lie on the lines shown in Figure 30. These are known as the 
Schmidt lines. In Figures 31 and 32 histograms are drawn to correspond to the 
discrete values of I. On the diagrams arc plotted the measured dipole moments 
for a series of nuclei. It can be seen that the agreement is by no means perfect. 
However, the lines clearly set limits to the measured values. In most cases the 
measured value falls much closer to one line than to the other and in these 
cases an assignment of the nucleus to one group or the other can be made with 
some confidence. This is important as it provides a means of discovering, once 
the j-value has been determined from a measurement of I, which of the two 
possible [-values has to be assigned to the unpaired nucleon. This in tum permits 
us to establish the parity of the nucleus, positive parity arising from zero and 
even values of I, negative parity from odd I-values. We return in a later chapter 
to the discrepancy between the measured and the 'single. particle' value of 
magnetic dipole moment. 
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Figure 32 Plot of experimental values of nuclear magnetic dipole moment against 
nuclear spin quantum number for odd·A nuclei with an odd number of neutrons 
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Nuclear electric moments 

The shell model claims to provide wave functions for the individual nucleons 
and hence should enable a prediction to be made of the spatial distribution of 
nucleons within the nuclear volume. As far as the protons are concerned, the 
prediction can be tested experimentally by investigating the static electric 
moments associated with the distribution. The measurement of these electric 
moments is related to the energy of the charge distribution as a function of its 
orientation when it is placed in an electric field. We the",fore begin by discussing 
on the basis of cJassjc electrostatics the energy relation between an external 
electric field and the internal distribution of nuclear charge. 

We assume that the nucleus has a spin J and that by virtue of the rotation the 
averaged nuclear charge, which is the quantity measured experimentally, will be 
symmetric about the axis of 1. We therefore limit our treatment to distributions 
having axial symmetry . 

7.5 Multipole expansion of the electric potential 

Consider V(R. 8), the electric potential at a pOint P with coordinates (R,B), 
out::ide the volume of the charge distribution. As V must satisfy Laplace's 
equation, we can write 

a2v a2v a2v 
-+--+---0 ax2 ay2 az2 . 

7.3 

This cln be transfonned into the usual spherical coordinates. As we are assuming 
symmetry of the charge about the z·axis, the differential coefficient with 
respect to, will be zero. Thus the transformed equation (see equation 6.2) is 

[ 
a' 2 a I a2 cotS a] 

aR2 + II aR + R2 as2 + fil as v - o. 7.4 

If a solution with the variables separated, of the form V{R, 8) = F(R)G(8), be 
assumed. then 

R2 d2F(R) 2R dF(R) I d2G(8) cotB dG(8) 
F-(R-) -d-R-

'
- + F-(-R) -d-R- - - -G(-S) --;;dB;";2- ---

G(B) dB 

and each side of this equation must then be independent of Rand 8. Let this 
constant be 1(/+ I). The right·hand side of the equation then, with I' = cos 8, 
reduces to 

2 d2G dG 
(1-,. )-2 -2,.-+I(I+I)G-0. 

d,. d,. 

75 

As noted in section 6.3, if we limit the choice of I to zero or positive inlegral 
values, this equation has as a solution G = Pl..cos 8), where Pl..cos 8) is a Legend", 
polynomial. 
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Figure 33 Charge distribution symmetrical about z-axis 

Taking now the left-hand side of the equation we have 

R2 d
2
F(R) 2R dF(R) _III I) F(R). ._. + dR + 7.6 

Assuming a solution orthe form F(R) ~ an/R". where n is a positive integer 
(thus ensuring that F(R) has the physically necessary property of tending to 
Zero asR tends to infinity), and substituting in equation 7.6, we find that 

all all all 
n(n+ 1)--2n- - /(/+ 1)-. 

R" R" R" 

If F(R) is to be a solution, then we must have n = I + I. For the solution of 
equation 7.4 we therefore finally have 

I ~ D, 
VIR, 0) - R L. ""jff P, (cos 0). 

1-0 

The values of the constants a, will depend on the distribution of charge 
within the central volume. We can find the Conn of this dependence by 
considering the polential at the point S whose coordinates are (Rs . 0). Since 
P,(I) = I for all values of I, the potential at S, from equation 7.7, is given by 

I ~ D, 
V(Rs,O)-R L. Ri' 

s '-0 5 

The potential at S can also be expressed directly in terms of the charge 
distribution. If p.(r, 0') is the charge density at Q, the point (r, 0') within the 
nucleus, and dT is an element of volume containing the point Q, then 
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7.7 

7.8 

7.6 

V(RS'O)- JP.(r, 0') dT 
SQ 

-

f 

p.(r,O')dT 

M v(R~+r2 - 2rRs cosO') 

I f p.(r, 0') dT 
- Rs v{l - 2(r/Rs) cosO' + r2/R~} 

Now, as can be shown by expanding by the binomial theorem, 

I -
-;:-:_::-_-:--;; _ '" x" p" (cos 0). 
v(I-2xc050+x2) .6, 
Hence we can express equation 7.9 as 

I L- fP.(r,O')r' V(R., 0) _ - p.(cos 0') dT. 
Rs R" ,.-0 s 

If now we compare the coefficients of lIR~"'1 in equations 7.8 and 7.10, we 
see that 

Q,- f p.(r,O')rlp,(cosO')dT 

is the relationship between the coefficients and the charge distribution. 

Dermition of the static electric moments 

7.9 

7.10 

We proceed to consider the physical meaning to be attributed to the coefficients 
ti, in the above multipole expansion. 

Since Po(cos 0) ~ I, for all values of 6, it follows that 

DO- f p.(r,O')dT=Ze. 

The ftfst coefficient is thus seen to equal the total charge within the nuclear 
volume. 

Thus, if in equation 7.7 R is assumed to be so large that we need only consider 
the first term in the series, the potential for the given distribution is the same as 
that for a point charge. 

Proceeding to the next term we find that, since PI (cos D) = cos 0, we have 

D,- f p.(r,O')rc050'dT= f p.(r,O')zdT. 7.11 

This expression is the component of the first moment of the charge taken 
parallel to the z·axis. Note that the components of the fust moment parallel to 
the other axes are zero because of the symmetry. The simplest distribution 
giving rise to a finite moment of this order and having net zero charge is the 
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dipole formed by the displacement of equal and opposite charges e equal and 
opposite distances d from the origin. For this distribution a I = 2ed. At great 
distances from the dipole the potential as a function of B is, to the order R -2 , 
given by 

2ae 
v - R2 cos8, 

in line with the angular-dependent factor in the second tenn of equation 7.7. 
Thus, if we wish to include the second tenn in equation 7.7, we can regard 

the general charge distribution as equivalent to a point charge at the centre plus 
a dipole also at the centre, the dipole moment being calculated from equation 
7.11. When the charges in the distribution are all of the same sign, a dipole 
moment can arise if the charges are not symmetrically distributed about the 
point with respect to which the potential is calculated. This paint will nonnally 
be the centre of mass of the system. We shall see later that, in fact, nuclei do not 
have finite electric dipole moments. 

The third term in equation 7.7 involves P2(cos8), which is equal to 
!(3 cos26 - I). Hence we have 

02 -t J p.(r,0')r2(3cos26-1)dT_t J p.(r,6')(3.2 -r2)dT. 7.12 

We now introduce 

Q ~ ~ f p.(r, 0')(3.2 - r2) dT 

and can therefore write 02 = \eQ. We call Q the qUlldrupo/e moment and on this 
defmition, which is that now commonly used in nuclear physics, it has the 
dimensions of area. 

The simple distribution shown in Figure 34, which is the symmetrical 
displacement of equal and opposite dipoles from the origin, is seen to have zero 
net charge and zero dipole moment. The quadrupole moment as defined 
above is given by Q = 4b 2 , since z = r for this linear quadrupole. The potential 
at P is thus 

eb2 

Vp- -3 (3cos20 -I), 
R 

to lowest order in R -1 . 

This process of developing multipoles which are equivalent to the terms in 
equation 7.7 can be continued in an obviow way to higher orders. However, 
while electric quadrupole moments are of important current interest in nuclear 
physics, information about possible moments of higher order is not yet accessible 
to the experimentalist. 

The odd electric moments - dipole. octupole, etc. - are zero for a nuclear 
system which has a defmite parity, whether that parity be positive or negative. 
This is so because the amplitude of the wave function being unaltered when 
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Figure 34 System of four point charges having zero net charge, zero net dipole 
moment and finite quadrupole moment with symmetry about the z-axis. Note 
that in a constant electric field the dipoles experience equal and opposite couples; 
the system experiences no resultant couple. However, in a field with a constant 
gradient parallel to the z·axis the couples on the dipoles are no longer equal, so 
that the system experiences a resultant couple. The net force on each dipole is 
equal and opposite jf the field gradient is constant so that there is no resultant 
force on the system 

(- x. - y, - z) is substituted for (x,y, z) means that Peer, 0'), which is proportional 
to 1/1 2 , is unaltered on this transformation. For odd values of / however PI.. cos 0), 
the other factor in the integral defming the moment of the multipole, is an odd 
function in cos 8. The above parity transformation. which changes the sign of 
cos 8, thus changes the sign of Pf..cos 6). Consequently when the integration is 
performed over the whole volume for odd values of / the result is zero. Similar 
arguments applied to the magnetic moments show that if the nuclear system has 
a definite parity. then the even magnetic moments - i.e. quadrupole etc. - are 
zero. The fact that these predictions seem to be borne out when nuclear electric 
and magnetic moments are measured indicates that nuclei do have a definite ;' 
parity. We note that this means that their shapes must be symmetrical about the 
xy plane. Thus spheres and eUipsoids of revolution are permitted but a pear shape 
would violate the parity requirement. 

Quadrupole moment of deformed sphere 

In the interpretation of quadrupole moments we shall have occasion to picture 
nuclei as slightly deformed spheres. We now proceed to calculate the quadrupole 
moment of a uniformly charged sphere, slightly deformed to hecome an ellipsoid 
of revolution, having a semi-axis length c along the z-axis and semi-axes each 
length b along the x- andy-axes. 
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Figure 35 Division of spheroid into ring elements for the calculation of its 
quadrupole moment 

The quadrupole moment Q will then be given by 

eQ - f p,(3z2
_ ,2) dT 

- J pc(3z2_z2_;~2)21Trd;'dzt 
where the volume element dr has been taken as a ring lying in the disc at a 
distance z from the origin, as depicted in Figure 35. Hence 

+0' )1'1 

eQ - 2np, f dz f (21' - ,,2),' dr, 

- . 0 

where y1 is defined by the equation of the generating ellipse, namely 
Z2 y2 
2+' - 1. c b 

On integrating we have 

~Q - liS ""Pc cb1 (c2 - b2
) 

_ ZeHc' - b'), 

since the volume of the eUip50id is ~Jf cb1 and Ze is the total charge. 
We thus have 

Q - ZhR2 , 
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c'-b' c'+b' 
where '1 - --,----, and R'---· 

c +b 2 

We note that the algebraic sign of Q depends on the relative lengths of c 
and b, and is positive for prolate spheroids and negative for oblate spheroids. 

The interaction energy of a charge distribution with an electric field 

We consider now the interaction energy of a charge distribution with an electric 
field. The field is assumed to be axially symmetric about an axis which we shall 
denote by Oz', In the practical cases to which we shall wish to apply this theory. 
the field will be that at the nucleus arising from the Coulomb charge of the 
atomic electrons. In that circumstance 01' will be in the direction of J, where 

J- L+ S, 
L being the resultant of the orbital angular momenta of the electrons and S the 
resultant of their individual spins. We take an axis system Ox'. Oy', Oz', 
symmetrical with (espectto the field, and a system Ox, Oy, Oz symmetrical 
with respect to the charge distribution, as in Figure 36. The electric field we take 

z· 

z 

x 
y 

Figure 36 Ox', Oy', Oz' are fixed axes in an electric field which is symmetric 
about the z' -axis. Ox, Oy, Oz are axes fixed with respect to the spheroid. The 
x· and x'·axes instantaneously coincide 

to be defined by an electrostatic potential ¢(:c ,y', z'). This function may be 
expanded in the neighbourhood of the origin, which we take to be the centre 
of mass of the nucleus and of the atom as a whole, to give 

, , (a~o) a.KO) , a.KO») 
~x,y,z)-~O)+ xTx+ Y' ay' +z~ + 

I ( 2 a2~O) , a'~O) ,2 a2~O») 
+- x --,-+2xy -a a' + ... +z --,- + .... 

2 ax x y az' 

Ii' 

119 The interaction energy of a charge distribution with an electric field 



TakingPe(x,y', z') as the charge density, the energy of the system can then 
be expressed as 

w- J Pe(x,y',z')rfo(x,y',Z')dT 

f f [ a.f>{o) a.f>{O) a.f>{o)] 
= P.(x,y',z').f>{O)d.+ P.(x,y',z') x-a-+Y'--+z'-- d.+ 

x ay' az' 

If, ,[ 2 a
2

.f>{O) , a
2

.f>{O) '2 a2.f>{O)] 
+ -2 P.(x,y,z) x --2-+ 2xy --+ ••• +z --'2- d.+ ... 

ax axay' az 

- Wc+ WD + WQ + .... 
We, which is simply equal to 

.f>(0) f P.(x,y',z')d., 

is seen to represent the Coulomb energy associated with the equivalent point 
charge. Wo represents the energy of the dipole moment of the charge distribution 
in the constant field 

[ 
a.f>{O) a.f>{O) a.f>{O)] 
h' at' a;;- . 

When the charge distribution being considered is that of a nucleus Wo = O. since 
the electrical dipole moment is equal to zero. 

We now consider the third term WQ' Because of the axial symmetry, t/J depends 
on x andy' only through its dependence on the distance from the z'·axis. Hence 
in 4J. x and y' appear only in the combination ,j(xl + y'2). It follows that 

02.f>(0) a2.f>{O) a2.f>(0) 
--=--=--=0. 
ax oy' ax oz' oyaz' 

Further, from symmetry, 

a2.p 02</> 
ax2 = ay'2' 

Also, if we assume that t/J arises from the atomic-electron Coulomb charge, and 
if we neglect the charge density of the orbital electrons within the nuclear volume. 
then t/J satisfies Laplace's equation at the origin, 

. a2.p(0) a2.p(0) a2.p(0) 
Ie --+--+---0 
.. iix2 iiy'2 iiz'2 ' 

and so 
ii2.f>{O) a2.f>(0) a2.p(O) 
--= -2--= -2--. 

az'2 iix2 iiy'2 
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Hence I f [a
2

.f>{O) I a
2

.f>{O)] 
WQ=! P.(x,y',z') .'2 az'2 -!(x'+ y'2) az'2 dT 

If 02.f>(0) 
=-4 P.(x,y',z')(3z,2_ r2)_-d., 

az'2 

where r = V(xl + y'l + Z'l). Thus fmaUy we have 

WQ=!q f P.(x,y',z')(3z,2_ r2)d., 

where q is the gradient of the electric field intensity in the direction Oz'. We 
now express the integral in terms of the coordinates (x,y, z), which refer to the 
body axes Ox, Oy, Oz, noting that z' = z cos fl - y sin fl. Therefore 

WQ-iq f P.(x,y,z)(3z2 cos2J1 +3y2 sin2J1- 6yz sin JI cos 13 - r2)d •. 

From the axial symmetry of the charge distribution, 

f yz P.(x,y,z) d. - O. 

Also from symmetry 

f y2 P.(x,y,z)d. = f x' P.(x,y,z)d. 

=! J (x'+y2)P.(x,y,z)d. 

-t f (r2_z2)p.(x,y,.)d •. 

Therefore WQ=!q f P.(x,y,z)[3z2cos2J1+ f(r2-z2)sin 2J1J d. 

=tq [J P.(x,y,z)(3z2 - r2)d'] (3cos2J1- I) 

-tqeQo(3cos2J1-I), 7.13 

where Qo is the quadrupole moment of the charge distribution as dermed in 
section 7.6. 

Equation 7.13 gives the interaction energy of a nucleus having a quadrupole 
moment Qo when its symmetry axis lies at an angle fJ to the symmetry axis of 
an axially symmetrical electric field with a field gradient q at the site of the 
nucleus. 

7.9 Quadrupole moments in quantum·mechanical systems 

The nucleus has as its axis of averaged symmetry the axis of the total angular 
momentum I. We now consider the nucleus to be placed in an electric field of 
axial symmetry at a point in the field where the gradient along the field 
symmetry axis Oz' is q. The couple arising from the interaction of the quadrupole 
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moment with the field gradient will cause J to precess about Oz'. The usual 
quantum-mechanical conditions will require that the angle between J and 0:' 
be such that the component of angular momentum parallel to Oz' isM/ii. where 
~ is integral if I is integral, MJ is half-integral if I is half-integral, and where 
IMj I <;;1. Since the angle of precession fJ can never be zero, the value of W" can 
never attain the value it would have in the classical case for a charge distribution 
with quadrupole moment Qo. where the angle Ii could be zero. In the quantum­
mechanical case the minimum value of the angle ~ will be 

I 
cos - 1 , 

v[/(1 + I)) 
and the interaction energy for this orientation is given by 

Wo -iqeQo[3~-I] 
1(/+ I) 

- tqeQo -- . [
2/-1] 
1 + 1 

7.14 

We now introduce Q as the effective quadrupole moment, that is, the quadrupole 
moment which is observed experimentally , It wilt be less than the intrinsic 
quadrupole moment QD. because of the averaging of the charge distribution by 
the necessary precession of I. From 7.13, the maximum value of WQ is 

iqeQ(3cos'O' - I) - !qeQ. 

Comparing this expression with equation 7.14, we see that 

2/ - 1 
Q - 2(/+ I) Qo· 

We now consider the expressions for the interaction energies of the magnetic 
substates. The angle ~ is given by 

M coS - 1 ___ 
' 

v[/(1 + I)] 
and hence 

[ 3M' ] 
(WOh,, - tqeQo 1(/+'1)-1 

2(/+ I) [3MJ-/(/+ I)] 
- tqeQ 2/- I 1(/+ t) 

- i e [3M:-/(/+I)]. 
q Q 1(2/-1) 

7.IS 
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We now have to consider the two special cases 1 = 0 and I = ~ . Let us assume 
that we are dealing with a nucleus whose shape is that of an eUipsoid of revolution 
having an axis of symmetry Oz, When I = a there will be no rotation about the 
symmelJy axis Oz. The lack of angular momentum about this axis enables the 
nucleus to lie with this axis orientated at random with respecl to any specif .. d 
direction. The arguments made above are then no longer valid for this case. The 
randomness of orientation of the nucleus will ensure its equivalence to a spherically 
~mmetric charge distribution. Thus, although it has a fmite intrinsic quadrupole 
moment QQ. the effeclive quadrupole moment Q is zero. Turning to the case of 
1 = 1. we note that p must have the value cos-1(1 /v3) and hence the nuclear 
orientation is always such that (3 cos~ - 1) = O. Hence. as is clear from the 
above expression for Q in leons of Qo• again the effective quadrupole moment is 
zero despite the nucleus having an intrinsic quadrupole moment. We therefore 
arrive at the important conclusion that the measured quadrupole moment can 
only be fUlite for /;;'\. This is found to be in accord with experimental 
measurements. 

7.1 0 Summary 

The theo~tical concept of magnetic dipole moment was developed to establish, 
on the basis of the single.particle hypothesis, the relationship between the single­
particle quantum numbers and the nuclear dipole moment 

The static electric moments of the nucleus were defmed, particular attention 
being paid to the electric quadrupole moment and its role in connection with 
the classical interaction energy of the nucleus with an electric field. The 
modifications to these results arising from a quantum-mechanical treatment 
were discussed. 
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