
. 

2.4.2 Long-lived parent 

If the parent has a much longer half-life than the daughter, then A. < An. In this 
case. as t increases from zero, exp(- Aot) becomes quickly negligible compared 
with exp{ - A.I). Also, we can neglect A. in the denominator of the right-hand 
side of equation 2.7 and write 

), 
n(1) = ....!.Noe-Ap., 

),n 

as the expression for n(t) for large values of r. The activity of the daughter 
material is given as above by Annt • i.e. 
a, =).pNoe- Apt. 

This expression is of course nlso equal to A,. Thus to the exlent that the 
approximations are valid. the activities of daughter and parent materials are 
equal, and the rate of creation and rate of decay of the daughter material balance. 
It is not however an equilibrium condition as these rates are slowly changing 
with time. The tenn secular equilibrium is used to describe the situation in this 
radioactive context. When secular equilibrium has been attained, note that the 
ratio of the amounts of daughter and parent materials present is the rotio of their 
half·lives. 

In Figure 3 the activities of parent and daughter, in the case when Ap = -nrAD. 
are plotted as functions of time. 

~ .• 
li 

o 2 4 • • ") 12 

time (in haH-llv .. of daughtllf nucleus) 

Figure 3 Plot of the variation with time of the radioactivities of long-lived parent 
and short-lived daughter materials in a source which initially contained only the 
parent material. The half-lives are taken to be in the ratio 10: 1 

26 Radioactive DICIIy L .... 

) 

) 

) 

I 

) 

2.5 

2.6 

2.7 

Naturally oa:urring radioactive series 

The theory developed in section 2.4 can be applied to the naturally occurring 
radioactive series. In the case of each of these series a very long· lived isotope 
( 232Th, half-life 1·41 x 1010 years in the CilSC of the thorium series, 238U. 

half-life 4·5 I x 10' years in the case of the uranium series and 2JSU, half-life 
7·07 x 108 years in the case of the actinium series) constitutes the parent. From 
this parent stem between ten and twenty genera tions of radioactive descendants 
in each case. Above we have analysed the case involving only one descendant. 
However an equation similar to equation 2.6 can be fanned for each succeeding 
generation. The mathematical analysis may then be carried out exactly as above 
and, on the basis that all half-lives are very much shorter than that of the parent 
material, secular equilibrium will be established. When sufficient time has elapsed 
for thls equilibrium to be attained, aU the members of the serie~ have equal 
activities and the amount of material associated with any member is proportional 
to its half·life. 

Definition of the curie 

As a further application of these ideas. we consider the definition of the unit of 
activity named the curie. Originally the curie was defmed as the activity of that 
arnounl of n'Rn (radon; half-life 3·825 days) which is in secular equilibrium 
with one gramme of 1l6Ra (radium; half-life 1622 years). The unit was so defined 
to permit sources of standard activity to be produced wherever a radium sample 
of known weight was available. It follows, since the radon Is in secular equilibrium, 
that its activity will be the same as that of the gramme of radium. The curie is thus 
equal to 

0·693 NA 
>.No--- -, 

Tt A 

where NA is Avogadro's constant. A the atomic weight of radium and T1 the 
half·life of radium_ On substituting the numerical values for these quantities the 
curie may be seen to be 3·61 X 1010 diSintegrations per second. However, to 
make the unit independent of the half-life of radium. redetennination of which 
had several times necessitated changing the curie as a practical unit, an 
internationally agreed definition or the curie as 3'7 x 1010 disintegrations per 
second is now accepted and the traditional unit abandoned. 

Brunching Or parallel decay 

It may happen that a nucleus can decay by either of two modes. If the 
probability per unit time that it will decay by mode one is AI and by mode two 
is A2. then the probability that it decays by one or by two is AI + A2' This latter 
quantity will be the decay constant on the usual definition. AI and Al are tenned 
the partial demy constants and A = AI + A2 the total decay constant. These terms 
could in the obvious way be extended to more than two competing decay modes 
if necessary. 
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It is possible that the activity corresponding to decay by mode one can be 
measured without interference from the activity arising from mode two. For 
example, 64CU decays by one mode to 64Ni and by another to 64Zn. A detecting 
system can be set up to detect only the decays to 64Ni. In this case, the activity 
measured A 1 (t) will be given by AI N(t). Now 

dN(t) - -AI N(t) dt- A2 N(t) dt - -(AI + A2)N(t) dt _ - A N(t) dt, 

from which it follows thatN(t) =Noe-·t and 

A 1 (I) ~ A, N(I) ~ AI Noe- At - (A ,joe-At. 

The half-life exhibited is therefore that corresponding to the total (not the 
partial) decay constant, and the material, in this case MCu (despite its different 
possible decay modes), is still characterized by only one half-life. If it is desired 
to measure AI or All then the fraction of the total number of decays proceeding 
by the mode in question must be detennined. 

Artificial radioactivity 

It is possible to induce radioactivity in an initially nonradioactive sample by 
subjecting it to neutron irradiation in a reactor, or to particle bombardment in 
an accelerator. Let it be assumed that the production of the radioactive nuclei 
by one or other of these methods proceeds at a constant rate of S nuclei per unit 
time. If N(t) is the total number of radioactive nuclei at time t. then 

dN(t) - S dl- A N(t) dt, 

the right-hand side expressing the competition between increase due to production 
and decrease due to radioactive decay. This relation leads immediately to the \ 
differential equation 

dN(t) 
--=S-AN(t), 

dl 

which on integration yields 

S 
N(I)- - + constant x ,-At. 

A , 
If the starting conditions are that there is no activity in the sample, then N(O) = 0 
and the constant of integration is such that 

S 
N(I) = A [1 - ,-At). 

The activity at any time is given by 

A(I) = A N(t) = S[l- ,-At). 2.11 

As t gets very large, clearly the situation is reached of a balance between the 
activity, that is the decay rate, and S. the production rate. This means that the 
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activity produced can never exceed S and approaches it asymptotically. Note 
that one half-life from the beginning of the irradiation the activity reaches one 
half of its asymptotic value. after two half-lives it reaches three quarters. It is 
seldom economic to prolong irradiations beyond this stage in view of the 
diminishing increases in activity. 

It is usual, instead of specifying S, to define the yield Y in an irradiation of 
this kind. The yield is the rate of increase of activity at time t = 0, i.e. 

Y= [dA] . 
dt t.O 

The activity-against-time curve, shown in Figure 4, thus starts off from a zero 
value at I = 0 with a tangent of slope Y. The value of Y is, from differentiating 
equation 2.11. given by Y = AS and equation 2.11 may then be written 

Y 
A(I) = "i [I - e- At ). 

5.= rate of production----------------------

" ~ .• 
"g 

0"15 
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time (in half· lives of product nucleus) 

Figure 4 Artificially produced radioactivity as a function of time of bombardment; 
S is the rate of production, Y the yield 

Summary 

The assumption that a radioactive nucleus has a transfonnation probability per 
unit time which is independent of its previous history enabled a fonnula to be 
derived which related the activity of a simple source to the time of observation. 
This dependence, the 'exponential law' • was found to be in strict agreement with 
experiment. Equally valid fonnulae were derived for the cases of series and 
parallel decay arising in the naturally occurring radioactive materials and for the 
case of the production of radioactivity in accelerators and nuclear reactors. 

Summary 



3.1 

Chapter 3 
Radioactivity: Alpha Decay 

Fundamentals of alpha decay 

Certain radioactive nuclei, on transforming, emit positively charged particles 
whose measured charge and elm values indicate that their charge is twice, and 
their mass four times, that of the proton. These particles, on passing through a 
gas or into a solid material, expend their energy rapidly in the process of 
ionization (i.e. stripping electrons from the originally neutral atoms), thus leaving 
in their wake a short, dense track of positive ions and electrons, the latter 
remaining as free electrons or forming negative ions depending on the properties 
of the medium concerned. In the early days of the study of radioactivity these 
heavy doubly charged particles, because they produced concentrated ionization 
in the gas of electroscopes and because they were readily absorbed in thin foils, 
again by virtue of their ionizing properties, were the first of the 'radiations' to be 
studied and were named a.-particles. Rutherford's pioneer work of 1909 
established that a.-particles, after they had been brought to rest, captured 
electrons and became atoms of helium gas. It is now known that the helium 
isotope concerned is 4He and hence the a.-particle, being the nudeus of this 
isotope, must be a cluster of two protons and two neutrons. Once this is 
appreciated it follows that in a...decay the parent nucleus, denoted by P, and the 
daughter nucleus, denoted by D, are related in A,Z andN value according to 

A A-4 4 
ZPN ~ Z - 2 D N _2 + 2 Hc2-

This relationship, which was in the early days of radioactivity referred to a5 the 
displacement law, may also be stated as aA = - 4, tlZ = - 2, tlN = - 2 . 

3.2 Mass-energy relations in alpha decay 

The conservation of mass-energy must apply to the a...decay process_ Hence 

Mp-MD+M~+Q, 

where the masses are the masses of the nuclei and Q is the energy shared by the 
products of the reaction. As in all equations of this type with which we shall be 
concerned, we can either write the quantities in the traditional mass units or write 
all quantities in energy units, mass and energy transfonning according to E = me2• 
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For the process to be energetically possible Q must be positive and it therefore 
follows that 

Mp>MD+M~_ 

Universally, nowadays, in the published mass tables. neutral-atom masses 
rather than nuclear masses are listed. The inequality is therefore customarily 
written asMp >Mo +MHe where the masses are now neutral-atom masses. In 
taking this step it is however to be noted that something more than adding Z 
electrons to each side of the inequality is involved. Mp < Mp + Zm. by an 
amount equal to that mass which is equivalent to the binding energy of the Z 
electrons in the atom. For heavy nuclei such as those involved in a...decay, this 
total binding energy is of the order of several hundred thousand electronvolts. 
However, this is largely compensated by the total binding energy of the atoms 
involved on the other side of the inequality and the overall error introduced in 
substituting atomic for nuclear masses is usually negligible compared with the 
a.-particle energies, which are in the range of a few million electronvolts. 

From tables of atomic masses, it is found that for A-values from about 150 
upwards very many nuclei should be unstable against a.·decay. For reasons which 
are discussed in section 3.16 the mass condition being satisfied does not 
necessarily result in observable a.·activity. The plot in Figure 5 of the distribution 
of IX-emitters as a function of A-values indicates the extent to which the a. mode 
of decay is limited to the heavy nuclides. 

~ 
.~ 

" '0 

1 • 

Figure 5 Histogram of the number of a.·emitters in terms of their A-values 
(based on Chart of the Nuclides, 19661 

Alpha-particle fine structure 

The kinetic energy of the IX-particles emitted by a particular isotope can be 
measured accurately with a magnetic spectrometer. When such measurements are 
made, it is found that in some cases there is only one group of monoenergetic 

-particles; in other cases there are two or more such groups. When there is mare 
than one group, the «-particle spectrum is said to exhibit fine structure, a 
phenomenon which is discussed in detail in section 3.15. 
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3.4 Recoil energy in alpha decay 

3.5 

The uniqueness of the «-particle energy in the general case points to the process 
being a 'two-body' process with the available energy Q shared by the «-particle 
and the daughter nucleus, which must recoil to conserve linear momentum. As 
the kinetic energies involved are no more than a few million electronvolts, 
whereas the rest masses are to be measured in thousands of millions of 
electronvolts, we may without appreciable error assume the formulae of 
Newtonian dynamics to apply. Thus, if Mo and Mrz. are the masses of the 
daughter nucleus and «-particle and To, Trz. ' Vo , Vrz. their kinetic energies and 
velocities, Mo Vo = Mrz. Vrz. by the conservation of linear momentum. Therefore 

2 M. 
To - tMoVo - -T •. 

Mo 

Now Q - To+T. - T.[I+ ~:l 

so we have and M' Q ~ -- . '0- Mp 
Mo Mo 

T. - Q""-Q 
Mo + M. Mp 

3.1 

Observed energies and half-lives of alpha emitters 

The energies of ex-particles emitted by different «-active nuclides range from 
1·9 MeV for I44Nd 10 9·2 MeV for 213 At. The half-lives range from 2 x 1017 yr 
in the case of 209Bi to 2·9 x 10- 7 s in the case of 212po. Thus, whereas the 
energies are contained within a range of one order of magnitude, the half·lives 
range over more than thirty orders of magnitude. There is an apparent correlation 
between half-life (or decay constant) and the a.-particle energy; a short half-life 
is associated with a high value of «.particle energy and vice versa. An attempt to 
fit the then known (1912) experimental cr.-decay constants and particle energies 
by an empirical fonnula of the fonn 

log>. - Cllog T. + C2 • 3.2 

by Geiger and Nuttall, had limited success. While values of C I and C1 could be 
found to give a satisfactory fit of the calculated decay constant with the 
measured decay constant within one natural radioactive series, the values of the 
constants had to be altered to maintain the goodness of the fit on going from 
one radioactive series to another. Insight into the correlation between half-life 
and ex-particle energy had to await the development of the theory of cr.-decay, 
which we now proceed to discuss. 

3.6 Rutherford scattering: theoretical treatment 

To be in a position to consider a 'model' in tenns of which to picture cr.-decay we 
require quantitative infonnation about the electrostatic field around the nuclew. This 
.can be obtained from the study of scattering in this field of incoming «-particles. 

32 Radioactivity: Alpha Decay 

Figure 6 Scattering of an «-panicle by a nucleus, charge number Z. with an 
impact parameter p 

x 

We begin by considering the motion of a single ex-particle in the Coulomb field 
of a single nucleus which is assumed to be fixed in position. In Figure 6 the 
incoming cr..particle is directed along AC. Under the influence of the Coulomb 
field associated with the charge Ze on the nucleus situated at the point F, the 
particle will experience a repulsive force whose line of action passes through F 
and whose magnitude is inversely proportional to the square of the distance of 
the particle from F. This is completely analogous to planetary motion under 
gravity. t The trajectory is a conic section, in this case a branch of the hyperbola 
with the nucleus at a focus F. The ex·particle will be scattered through an angle tP 
and goes off finally along CB. 

Let A and B be the lengths of the principal semi·axes of Ihe hyperbola. Referred 
to the principal axes ex and Cy. the trajectory has the equation 

xl yl 
----I 
A2 Bl ' 

and the asymptotes AC and Be have the equations 

x y 
-±--1. 
A B 

From the gradient of these lines. it follows that 

B 
tan 8=-· 

A 
3.3 

t For gravity. as for charged particles of opposite sign, Ihe force is altractive, and the other 
branch of Ihe hyperbola is foHowed. 
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The eccentricity of the hyperbola, e, is given by 

A'+B' .1 ____ . 

A' 
3.4 

From the geometry of the hyperbola CF ~ fA and CD = A. Thus s, the distance 
of closest approach to the nucleus for the trajectory under consideration is given 
by s - FD =A(l + e). From equations 3.3 and 3.4 we see that E = sec 8 and hence 
s =A(I + sec 0). 

It is customary to speciry the "closeness' of the collision by the impact 
parameter which is p, the length of the perpendicular from the scattering centre 
on to the original direction of travel of the scattered particle. A 'head-on' 
collision conesponds to p = O. the collision getting more 'distant' as p increases. 
We wish to derive a relation between the angle of scatter t/J and the impact 
parameter p. We start by equating the total energy (i.e. kinetic plus potential) at 
the point D on the trajectory with the kinetic energy at inAnity. where the 
potential energy is zero by definition. Thus 

2Ze' tM.V:+ -- -~M.V~. 3.5 
s 

The line of action of the force passing through F, the angular momentum of the 
particle about an axis through F must stay constant throughout the motion. 
Thus 

M.Jlop-M. JI.s_ 
From this it follows that 

p 
V.-- Vo. • 
On substituting this value of V" into equation 3.S we have 

(

sl p1) 
tM.V~ 7 =2Ze1

. 

It is convenient to introduce h, the distance of closest approach in a head-on 
collision. By equating the potential energy at a separation b, at which the particle 
is instantaneously at rest, to the kinetic energy at infinity, we have 

4Z.' b---· 
MaV~ 

Hence p' _ 1(. - b). 3.6 

Now we wish to find a relation between s and 8. From the triangle FeE, we see 
that sin 8 = pIA •. From the values of. and A given above it follows that 

a-scc(J and 
s 

A- ::----:­
l+sec8 
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Hence sin 8 = p(1 + sec 8) 
s sec 8 

and s-pcot!8. 

When this is substituted in equation 3.6 we fmd 

p-!b tan 8. 

Since; = 11 - 20 we have finally 

p - tb cot 1</1. 

3.7 

3.8 

We now pause in the discussion to examine the values of sand b arising in the 
experimental situation and to establish their magnitudes relative to atomic 
dimensions. Suppose an ex-particle of energy 4·2 MeV. emitted by a 2~~U nucleus 
to be scattered by another 2~~U nucleus. In this case 

2 x 92 x (4·8 x JO - IO)' 
h - m - 63 fm t 

4·2 x 1·6 x JO-" 

the fermi, defined as 10-15 m, being 3. suitable unit orJength in a nuclear context. 
Using this value in equation 3.8 we see that for scattering angles in excess of 20°, 
the impact parameter must be less than 180 fm . Hence, from equation 3.7, s must 
be less than 215 fm. The radius of the orbit of the two innermost electrons 
(I.e. the K-electrons) in the uranium atom is about 600 fm. Thus we see that the 
a.-particle in the energy range being used experiences the full effect of the nuclear 
charge during the important part of the collision. 

We now resume the general discussion of scattering by considering the 
experimental arrangement sketched in Figure 7. A well-collimated beam of 
a.-particles falls at right angles on a thin foil, thickness I, containing" scattering 
centres (say nuclei with charge + Ze) per unit volume. The foil is assumed to be 
so thin that the 1055 of ex-particle energy by ionization is negligible. In these 

• ..an,,;n. c.n1 ... po< un;1 vo'ume --j r-- d1l-~ 
" detector 

a·particle beam 

Figure 7 The geometry of the scattering of an ct.particle beam by a thin foil 
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circumstances, the probability of an «-particle experiencing two large-angle­
scattering collisions is also negligible. The spot on which the «-particles are 
incident is viewed at an angle rfJ to the beam by an «-particle detector subtending 
a solid angle of dU for scattered particles. We now consider how the rate of 
detection of «-particles will be expected to vary with the angle rfJ. 

The probability that an IX-particle be scattered through an angle lying between 
t/J and t/J + dt/J will equal the probability of finding a scattering centre at a distance 
between p and p + dp from the «-particle trajectory. This probability is to be 
measured by the average number of nuclei (necessarily very much less than unity) 
contained in the volume of a hollow cylinder of radius p, thickness dp and length 
t. This volume is equal to 2rrpt dp and hence the required probability is 2rrpnt dp_ 
If A is the number of incident «-particles per unit time, the number scattered 
through an angle between I{> and I{> + dl{> per unit time is 21rApnt dp. These 
particles will be scattered into a hollow cone having an inside semi-angle equal to 
rfJ and an outside semi-angle equal to q, + dt/J with its axis along the direction of 
the incident «-particles. The scattered particles are thus contained in a total solid 
angle 2rr sin t/J dq,. The fraction of the scattered particles which enter the detector 
is then the ratio of the solid angles, namely 

dO. 

21T sin .pd.p 
Therefore the number of particles detected per unit time is equal to 

_21T~A~p:.:.n~t-=dp::...::.do.::. c - -
21T sin.p d.p 

But, from equation 3.8. 

I :; 1-*b cosec' }.p. 

Substituting this value in equation 3.9 we have 

b' 
C - A - nt cosec"}.p dO.. 

16 

3.9 

3.10 

If now it is found in a scattering experiment with «-particles of a given energy 
that the dependence of C on q, is accurately described by equation 3.10 for angles 
greater than a few degrees, then we can conclude that the potential down to a 
separation distance of b is accurately proportional to l/r, i.e. it is the Coulomb 
potential. Any other dependence of potential on r would necessarily lead to a 
different angular distribution. 

We now note that the derivation of equation 3.10, above, rests on the total 
charge of the nucleusZe being effective, and therefore the impact parameter 
must not exceed 600 fm. the radius of the K-shell. This restriction on p-value 
means that a restriction on the qrvalue follows from equation 3.8. It means that 
in the case of uranium rfJ must be greater than 6°. It is also to be noted that the 
foil thickness permitted, having regard to the requirement to limit the scattering 
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to 'pure single scattering', is given by the condition that 2rrpnt dp is very much 
less than unity. This means that t must be very much less than 

4 

21Tpn dp 21Tpnb cosec' }.p d.p . 

Assuming there to be about 5 x 1019 scattering centres per millimetre cubed and 
that the detector accepts an angular range of scattered particles of about a tenth 
of a radian, then the single scattering condition will be satisfied up to a foil 
thickness of 10-2 mm. 

It should be noted that we have neglected in the above derivation the effect 
of the recoil of the scattering nucleus. This is equivalent to assuming that the 
nuclear mass is infinite. A more general treatment by C. Darwin (1914) shows 
that fonnula 3.10 holds for finite nuclear mass provided: 

(a) that the «-particle mass used to evaluate b is replaced by the expression 

m(( mnucleus 

m (( + mnucleus 

which is referred to as the reduced mass, and 

(b) that the angle rfJ, the scattering angle measured in the laboratory reference 
frame, is replaced by the scattering angle measured in a frame of reference 
travelling with the centre-of-mass of the «-particle and nucleus. This frame of 
reference will have a constant velocity 

m. 
V •• 

m(( + mnucleus 

with respect to the frame of reference fIXed in the laboratory, and we refer to the 
moving frame as the cetrtre-ofmass system. 

Rutherford scattering: experimental results 

Geiger and Marsden (1913). by scattering lX'particles 0[7·68 MeV in gold films 
typically 3 x 10-4 mm thick, confirmed fonnula 3.10 over a range of values of 
rfJ from SO to 150°. The distance of closest approach for an «-particle of this 
energy to a gold nucleus, in the event of a scatter of 150°, is, from equations 
3.8 and 3.7, 30 fm. I t was thus established that from the dimensions of the radius 
of the K-shell down to 30 fm the law of force is accurately that for the Coulomb 
field surrounding a point charge. It was on the basis of this observation and by 
the reasoning given above that Rutherford proposed the atomic model that now 
bears his name. The gold foil of the thickness used by Geiger and Marsden is seen. 
in the light of the above discussion, to be such that the probability of double 
scattering can be neglected. Also the energy loss of the «-particle by ionization in 
passing through a foil of this thickness is a negligibly small fraction of its kinetic 
energy. and hence the «-particle energy may be assumed constant throughout its 
passage through the foil. 
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Later experiments with uranium foils gave angular distributions in agreement 
with the Rutherford fonnula and showed that In the case of uranium the Coulomb 
Jaw held down to at least a separation of thirty fennis. 

3.8 Alpha-decay paradox 

3.9 

The "'·particle·scattering experiments showed that the field around the nucleus, 
Z = 90, was accurately the Coulomb field of a point charge down to thirty fermis 
from the centre of the nucleus. Any ex-particle emitted by radioactive decay must 
therefore originate from a point closer to the nuclear centre than thirty fennis. 
Hence it must emerge with at leasl the electrostatic potential energy 3 doubly 
charged particle would have at that distance from the nucleus. This is about 8-6 
MeV. However, ex-particles of about 4 MeV are observed to be emitted from nuclei 
with Z = 92. This paradox could not be resolved within the framework of classical 
physics; understanding had to await the propoSllI of Gamow (and independently 
of Condon and Gurney) in 1928, who suggested abandoning the classical 
description and substituting one in tenns of wave mechanics. 

Nuclear potential banier 

Let us consider the potential energy of an ex-p3rticle as a function of its separation, 
measured centre-to-centre, from a heavy nucleus. Scattering experiments of the 
type discussed above have now been extended to higher energies and have 
established that. up to ex-particle energies of 28 MeV, formula 3.10 holds. Thus 
for separations in excess of ten fermis the potential is that of the Coulomb force 
falling off as I/r. At about a distance of len fermis the Rutherford scattering 
fonnula breaks down. This is due to forces between nucleons in the nucleus and 
the nucleons in the passing IX-particle coming into play. These forces, which are 
believed 10 dominate inside the nucleus and which hold the nucleons together, 
the so called strong-interaction forces, are attractive and only operate for very 
short distances of sep3ration. They cause a rapid rail in the potential when the 
«.particle gets within their short range. We make the simplifying assumption that 
the potential falls infinitely fast as the nuclear surface is crossed to reach a 
constant value inside the nucleus of - Vo, where Vo < B the maximum value the 
potential reaches. This potential curve is drawn in Figure 8. If we now think of 
this curve as the potential of the daughter nucleus, then the parent nucleus may 
be described by adding an ex-particle which moves in the region r « R with a 
Idnetic energy Ttl. + Vo where Ttl. is the kinetic energy on emission (i.e. at infinite 
separation). The ex.particle is represented in total energy (i.e. kinetic + potential) 
by the line ABeD on the diagram. On the basis of classical theory, the kinetic 
energy of the ex-particle reaches zero at B and becomes negative between Band C. 
This is therefore a physically forbidden region which the «-particle cannot enter 
and hence an ex-particle, once in the central well, is trapped forever in the central 
region. The potential is thus said to constitute a barrier which prevents the escape 
of the «.particle. In the wave·mechanical treatment however , the a.-particle has a 
small but finite probability of penetrating into the region CB 3nd in fact or 
succeeding in "tunnelling' through the barrier to the region BA. 
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Figure 8 Potential well arising from short-range nuclear force combined with 
Coulomb potential due to long-range electrostatic force 

Before treating a barrier in the shape of that in Figure 8 we consider a 
mathematically simpler but physically similar situation, namely a rectangular 
potential barrier in one dimension. 

Rectangular potential barrier: one-dimensional wave-mechanical treatment 

Consider a beam of particles incident on the barrier illustrated in Figure 9. In the 
wave·mechanical treatment (see, for example, R. M. EisherS. Fundamentals of 
Modem Physics, Wiley, 1961, p. 212) the beam has 3n associated wave function 

"', which is 3 function of x 3nd t in the one·dimensional case. '" is the product 
of a time-dependent factor, which in the present problem is of the rorm 
exp(i2nvt) throughout, and a space dependent factor which we denote by l]I(x). 
In any region of space lJI(x) must Slltisfy the time-Independent Schrodinger 
equation 

d'.p 2M(W- V) 
dx

' 
+ .• .p =0, 3.110 

where M is the mass of the particles in the beam, V is the potential energy in the 
region and W = T + V, where T is the kinetic energy in the same region. 

We find it convenient to write Schrodinger's equation as 

d'.p + k'.p _ 0, 
dx' 

with 
1 2M(W- V) 

k = . 
Ii' 

3.11b 
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Figure 9 Idealized rectangular potential barrier of finite thickness 

We now treat the three regions in Figure 9 in turn. In region (1) V= 0 and 
III = To. Thererore 

1 2MTo 
k,-~>O. 

The general solution or equation 3.\ 1 then takes the rorm 

"', (x) - A, ,ltl% + B, ,-'.1%. 

~ 

Taken in conjunction with the time.dependent factor exp{i2wt), these terms 
then correspond to an incident wave travelling along the positive direction of the 
x·axis and a reflected wave travelling in the opposite direction. 

In region (2) III is unchanged and thererore must .tUl be taken as equal to To, 
and, as we are assuming that To < V, it rouows that 1M(To - VJ/A' is Jess than 
Zero. Let it equal - k~ where kl is real. Thus in region (2) equation 3.11b becomes 

d1", 
dx

' 
-kiy,-O, 

which has the general solution 

Y,,(x) - A, .-.,%+ B, ,"%. 
Taken in conjunction with the factor exp(i21fllt) this is seen to correspond to 

standing waves. 
In region (3) the situation with respect to W, V and To is the same as in region 

(I). In this case however we need only consider the wave propagated along the 
positive direction of the x·axis as there is assumed to be no further potential 
discontinuities to cause reflections. Hence the solution in region (3) is 

Y,3(x) - A3 ,'·1%. 
The five constants A .. B" A21 B2 and A3 must now be chosen to achieve the 

correct conditions at the boundaries between the regions. We note that both 
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w - V and the wave function, since it is related to the particle density in the beam, 
must everywhere have finite values. It rollows from equation 3.11a that d 21/Jldx2 

is everywhere finite. Hence d1/l/dx cannot undergo sudden changes in value. In 
tum it can be argued that 1/1 cannot change discontinuously. Across the boundaries, 
'" and d1/Jldx must thererore both he continuous. 

t/lt(O)-Y,2(O) yields A, +Bt =A, +B2 • 

[ d';,] [doh] . . . tbc = -;;; YlOlds" k, A, -I, k, B, = -k, A2 + k2 11,. 
.x-o .x_0 

From .pZ(a)-.p3(a) wehave Aze-k1111 + B2e"l" _ A3 e'l,G. 

and rrom 

[~L" - [~L" 
we have -k2 A2 e-" 1G +k2 B2 e"1G_ ikA 3e'l.". 

From these four equationsB1,A z and Bl may be eliminated to give 

A, _ [: +: (k2 _ k')]e(l.1 + ',)"+ [: _ : (k1 _ k')] ,(1.1-.,)4. 
A3 2 4 k, k2 2 4 k, k, 

The nux of particles in the beam is given by the density of particles in the 
beam multiplied by the particle velocity. Since velocities in regions (I) and (3) are 
the same, the ratio of the fluxes in these regions will simply be in the ratio of the 
particle densities. This in turn, from wave·mechanical theory, is given by IA,/A212. 
This may also he written (A dA 3)"(A ,/A 3), where (AdA3)" is the complex 
conjugate of A,fA 3' Taking the complex conjugate and carrying out the 
multiplication, we have 

[A,]. [A,] _ [: + 2- (k2 _~)2] [,2t,4+ .-2.'"1 
A3 A3 4 16 k, k, 

Using the identity 

sinh2k, a = i(,2t," + ,-2.,") - t, 

and simplirying, we can write 

[A,]. [A,] I [ (k2)2 (k')'] A3 A3 -I +4 2+ k, + k2 siDb
2k2 a. 

[k1]2 V-To 
But k; =--r;-' 

+--- --- . 1 I [k2 kl]2 
2 8 k, k2 

3.12 
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Substituting thl. in equation 3.12 we fmd 

IA 12 I V2 
--1 - I + 4 siob2k2 a. 
A3 To(V-To) 

The probability that an incident «-particle will penetrate the harrier is called 
the penetration factor and is equal to IA,/A ,,'. The ratio of the transmitted flux 
to the incident flux, which in the general case is given by 

I
A31' V3

, A, V, 
is called the transmission coefficient. As Y3 = VI . these quantities are equal in the 
present case and we can write hoth equal to 

.2 _ 1+- sinh'k.a . IA I' [ I V' ] - ' 
A, 4 To(V - To) 

We recall that 

I 
k. - Ii V[2M{V - To)]· 

If k._> I, 

s,.nh k et14
_ e- t

2,G t G 2 0 - e 1 2 ~ -- , 

and hence 
e2l];. 

sinh1 k2 Q ~ --. 
4 

Also we note that 
V2 

----"'1 
4To(V-To) 

2 

3.13 

for To'" !Vand increases as To decreases. We therefore proceed to ignore the 
first term in the bracket on the right-hand side of equation 3.13 and write 

T-16 ; [1- ~ ] e-2
'

2
', 

where Tis the transmission coefficient. The approximations made mean that this 
result is valid for a wide barrier which is high compared to the incident kinetic 
energy. Further. for the range of values of Tol V normally of interest. which is 
T oIV not too close to zero nor too close to unity. the factor 

To [ To] 16 V I-V 
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lies between I and 4, and ,the value of Tis domlnated by the exponential factor. 
Therefore without serious error we can simply write 

T _ e-2 ,., 

where y = k.a. 

3 .11 On~enslonal Coulomb barrier 

W. now consider the case of the one-dimensional potential illustrated in Figure 8. 
In region (2) we take the potential to be proportional to I/x as for the Coulomb 
field . We assume that in this region the eigenfunction can be taken to be 

",.{x) - A • • -y(x) + B. eY(") . 

This is a generalization of the result for the rectangular barrier of constant height. 
In the present case the height is varying with distance through the barrier and the 
exponent cannot be assumed to be a linear function of x. We shall assume below 
that, since V is a slowly varying function of x, -y{x) will also be slowly varying 
and d'r/dx' will consequently be very small. I/I,{x) must satisfy SchrOdinger's 
equation. which in region (2), since V = 2Ze11x. will take the fonn 

d'", 2M [ lZe
2

] -+- w-- "'-0. dX' A' x 
3.14 

Now -- =",.{x) - , d'.p. [dr]2 
dx' dx 

where a tenn involvingd11/dxl has been neglected . Substituting into equation 
3.14 we have 

[dr]' + 2M [w- lZe
2] =0. 

dx A2 X 

dr j[2M(lZe' )] 11 follows thaI dx - 1i2 7 - W 

and so 
I x

J r{X)=/iV{4MZe')j (~-~)dx, 

2Ze' 
where b - --. 

To 

Note that the lower limit of integration has been chosen so that -y{R) = 0 and the 
boundary conditions at x = R are as for the rectangular barrier. This integral can 
be evaluated by a change of variable to O. where 
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x 
- _cos28 b • 

Thus 
2b 

r(b) - - v'(2MTo) 
h 

00. -,.,f(R/B) 

f sin' 8 d8 
o 

-~v'(2MTO) [=-lJ~-J ~J(I- :)l 
If now we assume R < b, 

cos-'J~-i-sin-1J~-i- J:. 
Hence r(b)-*v'(2MTO) (i- 2 J:)' 3.15 

The discussion can then proceed as in 3.10 with 7{b) substituted for k,a at the 
second boundary. 

The transmission coefficient (assumed in this case to be equal to the penetration 
factor, see 3.10) is therefore given by 

T_e- 2 '1(b). 

3.12 Nuclear Coulomb barrier 

The nuclear potential barrier must of course he considered in three dimensions. 
We assume spherical symmetry by taking V. the potential, to be 8 function only 
of r. the distance from the nuclear centre. Figure 8 can then be laken to be a 
section through the three-dimensional barrier. 

We can then eany out the same analysis as in the one-dimensional case but 
SchrOdinger's equation takes the three-dimensional fonn 

a'", a'", a'", 2M(W- V) 
-+-+-+ "'-0. ax' ay' az' h' 
To take advantage of the spherical symmetry of the problem we transform from 
Cartesian coordinates to r, 8, til, the usual spherical polar coordinates, and 
Schrodinger's equation then becomes 

[
a'2ala'cot8a I a.] 2M 
-+--+--+--+ - "'+-[w-v(,)]",=o. a,' , a, " a8' " a8 " sin'8 a.p· Ii' 

3.16a 
Next, a solution of the form t/J(" 0,4» E R(,)Y(O, 4» is assumed. When this is 
substituted into equation 3.16a we find that all of the terms are either funclions 
of r alone or functions of 8 and til. The r-dependent teoos are laken to one side 

of the equation, the terms depending on 0 and 4> to the other side. Each side of 
the equation must then be a constant independent of r, 8 and 4J. We set each side 
equal to a separation constant I{I + I). Carrying out this procedure we find that 
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I d[ fiR] lM[ 1(/+1)11'] -- ,'- +. W-V{r)- R-O. 
" d, dr h lM,2 

This constitutes the radial wave equation. If a function G(r) = r R(r), the so-called 
modified radial wave function be now introduced, the radial wave equation can be 
written 

d'(j 2M[ 1(I+I)Ii'] --+-, w- V(,)- , (j-O. 
dr' Ii 2M, 

3.16b 

We note that 'R ,1 is to be associated with a flux density of particles, that is, 
the number of particles crossing unit area per unit time. The total number of 
particles crossing a spherical surface of radius r per unit time will therefore be 
associated with 4",' IR I'. This, the particle flux, will be proportional to IGI'. 
If I "" 0, we note that equation 3.16b is exactly equivalent to the one-dimensional 
case analysed above, G(r) playing the role of t/J(x). The particle flux in the 
spherical case was noted to be proportional to I Gil; in the one-dimensional case 
it is proportional to l1l(x) 11. We can therefore, relying on the analogy of G with 
I/.(x), assume that the penetration factor in the spherical case is given, as in the 
one-dimensional case, by e-2'Y. 

The separation constant was introduced in the somewhat artificial form above 
in order that I would be equivalent to the angular-momentum quantum number 
of early quantum theory. I = 0 therefore implies that the emitted particle has no 
angular momentum about the centre of the nucleus, that is, it is emitted radially. 
We note that if 1::1= 0, there is an additional tenn in Schrodinger's equation which 
effectively adds to the height of the electrostaUc potential barrier. This term is 
said to represent the centrifugal bam·e. The centrifugal barrier does not depend 
on electric charge and is effective in all cases, including the case of the emitted 
particle being a neutron when, because of its electrical neutrality. the Coulomb 
barrier is nol effective_ 

3.13 Gamow's theory ofalpha decay 

From the above discussion the penetration factor for a nuclear ct-particle incident 
on the Coulomb potential barrier is e-2'Y, where 'Y is given by equation 3.1S. When 
the values of the fundamental constants are substituted into this expression, we 
find that the exponent can be written 

Z 
2,. - 3-95 - - 2'97v'(ZR), 

v'To 

To. the emergent energy of the ct-particle. being in millions of electron volts and 
R, the nuclear radius, being in fermis. 

The penetration factor varies rapidly with ex-particle energy. To see how rapid 
this variation is, we substitute Z = 90, with To :z 4 '2 MeV and R ~ 10 fm, the 
values corresponding to the ex.decay of l~U. Then 2')' = 173'4 - 89·1 = 84-3 and 
the penetration factor is therefore e-.!I4-3, which is equal to 10-36-6. Had the 
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«-particle energy been 9 MeV, that is, about double its actual value, then we 
should have had 21 = 118·5 - 89·1 = 29·4, in which case the penetration ractor 
would have been e-29-4 = 10-12•8• Thus for an approximate doubling of ex-particle 
energy there would be a variation of about twenty-four orders of magnitude in 
the penetration factor. 

We now have to consider how many ex-particles per second are incident on the 
potential barrier. This will depend on two factors. namely the number of 
ex-particles existing in the nucleus and the number of collisions each ex-particle 
makes with the potential barrier per unit time. 

The number of ex-particles existing at any time in a heavy nucleus is probably 
somewhere between one and ten. These are transient groupings fonned by the 
nucleons in their motion within the nucleus. Fortunately, as we shall see, the 
decay cons.tant is not critically dependent on this number, which we now denote 
by PrI,' If VrI, be the ex.particle velocity inside the nuclear potential well, then, the 
average distance travelled between collisions being of the order of the nuclear 
radius, the time between collisions will be RI Vor: and hence the number of 
collisions per ~·particle per unit time will be V. IR. Ir the potential inside the 
nucleus is close to the value of the potential at infinity, then Tor: in the well is 
equal to To. that is. it will be a few million eIectronvolts in value. Vor: is then 
approximately cf lO = 3 x 10' m , - '. We can now write the probability A that 
the nucleus will decay per unit time as the product of the number of «-collisions 
per second with the inside of the barrier and the probability of the «-particle 
tunnelling through the barrier, as discussed above. Hence 

"A _ P V. e-13.95Z/v'To-2.9' v' (ZRlI 
• R ' 

or, taking logarithms, 

V. 
log "A = log p. + log R [ 3-95~-2.97v'(ZR)]_1 . v'To 2-3 

3.17 

The quantities inside the logarithmic tenns do not of course affect the result 
critically. However, To and R, which occur in the remaining tenns, clearly have 
a very large effect on the value of the decay constant. 

The theory gives, in a very satisfactory way, the variation of A with To. 
although this is of different analytical fonn from the empirical expressions of 
Geiger and Nuttall. 

3.14 Nuclear unit radius 

As we have discussed in detail above, the energies of scattered ex-particles at which 
departure from Rutherford scattering takes plnce may be used to deduce nuclear 
radii. This has now been done for nuclei ranging through the periodic table. It is 
found that the variation of radius as a function of A is very well described by 
R ;;:Ro A~. We refer toRo as the nuclear unit radius. Once Ro is known we can 
then evaluate the radius of any nucleus. The above theory of ex-decay can be used 
to determine Ro within close limits. 
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r 
We can rewrite equation 3.17 in the fonn 

"A ="A e-(a-bv'Ro) o , 
regarding a and b as constants to be calculated from the Z,A. To values for any 
particular «-emitting isotope. The uncertain quantitiesP m. and V m. are included 
in Ao. We assume that these quantities. and hence Ao, do not change appreciably 
as we go from one isotope to others with only slightly different Z- and N-values. 
A detennination of A and To for two different isotopes will then provide two 
equations from which both AD and Ro can be found. Because of the occurrence 
of Ro in the exponent, this is a very sensitive method for its detennination, a 
variation of 1012 in half-life resulting from a change of a factor of two in the 
value of RD. The best value of Ro arrived at by this method is J ·48 fm. 

3.15 Fine structure in alpha-particle spectra 

It was noted in section 3.3 that ex-particles emitted from a single nucJide do not 
always have the same energy. The spectrum of ex.particles from ThC, shown in 
Figure 10, reveals that in the case of that nuclide there are five possible «-particle 
energies. If we have regard to equation 3.1 we see that different «-particle energies 
are only possible (assuming that lX.decay is a two-body decay) if different values 
of Q are possible. These different Q-values in turn demand that the nuclear 
masses be multivalued. To explain this, the hypothesis is now made that,just as 
the atomic electron structure can have configurations of different energy content, 
so may the nucleus have different configurations each with its own associated 
energy. The lowest energy configuration we call the ground state, the others 
excited stales. In conformity with mass-energy equivalence, the effective mass of 
80 
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Figure 10 Spectrum of ex-particles emitted by The (based on measurements by 
Rutherford and colleagues, 1933) 
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the nucleus when in an excited state will be the ground·state mass plus Eelc1, 
where Ee is the energy of excitation. Thus the radioactive transfannatian will 
have a value of Q which depends on the excited state involved. 

There is no evidence for the existence of excited states of the emitted 
ct·particles. However, there are examples of excited states of parent and of 
daughter nuclei. The, quoted above, is a case of the daughter nucleus being 
created either in the ground state or in an excited state. If the «-particle energies 
are substituted into equation 3.1. the Q-values may then be calculated. The 
highest Q-value will correspond to the fonnation of the ground state. The energies 
of the excited states. measured from the ground state as zero, will then be given 
by the amount by which the associated Q-value is less than the ground-state 
Q·value. The results of this calculation for The are shown in Figure 11 in which 
the states are represented as horizontal lines on a vertical scale of energy, the 
intervals being proportional to the energies associated with the states. Such a 
diagram is referred to as an energy·/eJlel diagram. The excited states may de-excite 
directly to the ground state. the energies of excitation being carried off by r-rays 
(Le. quanta of electromagnetic energy) or they may 'cascade' through lower 
states to the ground state with the emission of a series of r-rays. The time for 
de-excitation is usually very much Ie .. than a nanosecond (10-9 s) and thus the 
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Figure 11 Energy-level dialJ'ilm of The" showing relationship of -particle and 
l-ray spectra. 
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r-ray. will appear to be in gooo time coincidence with the "'-particle. associated 
with the creation of the excited state_ The aboye interpretation of the decay of 
ThC can therefore be confirmed by searchlng for y-ray., measuring the energy of 
these 'Y·rays to compare with the predicted energy from the level diagram and 
showing that they are in time coincidence with «-particles in the appropriate 
energy group. 

As an example of an excited parent nucleus, we quote The', which has a half 
life of only 0-3"s following its formation by ~-<lec.y from ThC. [t may be formed 
in its ground state or in one of a set of excited state •. The half-life for "'-particle 
emission is so short that ,,-<lecay from the excited states i. not entirely insignificant 
compared with photon emission. In a small fraction of cases (approximately 10-4 
for Thc') an «-particle of more than normal energy is emitted in this way. Such 
«-particles are generally referred to as long-mnge a.-particle!. Compared with the 
«.particles emitted from the ground state, they carry excess energy of the order 
of one or two million electronvolts. 

3.16 Alpha decay with extremely long balf-life 

The mass condition of 3.2 has necessarily to be satisfied if «-decay is to be 
energetically possible. There are instances however where the condition is satisfied 
but IX-decay is not observed. This is always where the mass difference, and hence 
the energy released in the «-decay transfonnation, is very small. The «-particle, 
having low energy. has to penetrate a very wide barrier. As a consequence A is 
small and TI is very long even if the «.particle has no angular momentum with 
respect to the centre of the daughter nucleus. If, because of angular.momentum 
conservalion requirements, the «'particle has angular momentum relative to the 
daughter nucleus, then the centrifugal barrier wiU further deaease the decay 
probability. As a result the activity per unit mass of sampie of material will be 
very small. 

There is a limit to the mass of sample which can be under examination by a 
given detection system at anyone time. Further, any detection system has a 
background counting rate due to cosmic rays and radioactive contamination in 
its structural materials and its surroundings. This background counting rate 
arising from random effects has statistical fluctuations which set a limit to the 
accuracy with which an activity can be measured. In the extreme case, it may be 
impOSSible to distinguish between a very weak activity and no activity. 

For this reason, nuclei once believed to be stable may subsequently be found 
to be unstable. For example 141Ce appeared, until recently, in nuclear data tables 
as a stable isotope. There is now evidence that it is lX·unstable. emitting «.particles 
of about 1·5 MeV and having a half-life of 5 x lOiS years. 
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3.17 SIIIIIIII8IY 

The use of the "'.particle as a charge probe for the measurement of the electrostatic 
field within the atom led to the concept of the potential barrier and to an estimate 
of nuclear size. It also revealed a paradox with respect to the emission of 
oc..particles widt insufficient energy to have surmounted Ute potential barrier. The 
resolution of this paradox by the abandonmen t of classical dynamics in favour of 
wave mechanics led to an explanation of the observed relationship between half-life 
and ex-particle energy. The measurements of these two quantities for two «-emitting 
nuclides were used to detennine RD. the nuclear unit radius which enters the 
fonnula for the nuclear radius, namely R =RoAt. The interpretation acUte fme 
structure observed in the energy spectra of IX-particles established the existence of 
excited states of the nucleus and led to the introduction of energy-level diagrams. 
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4.1 

Chapter 4 
Radioactivity: Beta Decay 

Introduction 

Beta decay, the most generally occurring mode of radioactive transformation, 
takes place between neighbouring isobars (i.e. without change inA and with a 
change of one in Z). In contrast to ex-decay, which is a phenomenon limited to 
nuclei with medium and high A ·values, {i-decay has been observed for nuclei with 
allA-vaIues from one upwards. Essentially in {i-decay a neutron switches into a 
proton or vice versa. When the switch occurs a ~partic1e, of negative sign of 
electric charge if a neutron switch, of positive Sign if a proton has switched, is 
observed to be emitted. Careful experimentation bas failed to reveal any 
difference between the physical properties of the negative ~particle and those of 
the electron of atomic structure, and we assume that these particles are identical. 
The positive ~particle, apart from the sign of its electric charge, has the same 
properties as the negative (j-particle. The ~particIes are sometimes named 
negatron (perhaps more properly, but less usually, negaton) and positron (or 
positon), electron then being available to apply generically to either. 

4.2 Beta decay and the conservation laws 

The measurement, by Chadwick in 1914, of the energy of f)-particles emitted from 
a source containing a single isotopic species revealed a continuous spectrum of 
energy ranging from zero to a foote maximum value. If it is assumed that, as in 
ex-decay, the parent and daughter nuclei have well-defmed mass values. then the 
conservation of mass-energy and linear momentum requires that there be at least 
three 'products' of the decay, that is, one product in addition to the (j-particle and 
the recoiling daughter nucleus. Careful measurement of the energy absorbed in 
massive calorimeters containing strong ~.sources indicated an energy per decay 
corresponding to the mean ~~mergy, not to the maximum ~nergy. Thus the 
third ·product'. if such existed, did not deposit any energy in the material of the 
calorimeter (Ellis and Wooster, 1927). 

In addition to the difficulty thus presented in respect of energy conservation, 
~.decay set a problem with respect to conservation of angular momentum. The 
simplest f3-emitter is the free neutron, which, with a half·life of about thirteen 
minutes, decays to a proton. We start with a neutron which has intrinsic angular 
momentum of !Ii. If we end with only a proton and electron, each having 
intrinsic angular momentum of!1i and only permitted by the rules of quantum 
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