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particle approaches close enough to the target nucleus for nuclear forces to be
effective, states of the system resulting from the incorporation of the bombarding
particle in the target nucleus are very frequently formed. The composite system
is referred to as the compound nucleus and when it is formed it must have an
excitation energy in excess of the binding energy of the bombarding particie.
Consider for example the well-studied reaction in which '°B is bombarded with
a-particles and protons are emitted. We represent this reaction by

10B+4He = I3C+1H‘

The yield of protons as a function of the bombarding energy of the o-particle
shows certain peaks. These are interpreted as corresponding to the formation of
the compound nucleus, in this case N, in an unbound state. The energy of this
state must be in excess of the binding energy of an a-particle in *N. That there

is physical reality in regarding the reaction as taking place through this
intermediate state is shown by the existence of similar resonances in other
reactions, for example '2C + 2H, which lead to unbound states of '*N with
precisely the same energies. In Figure 64 is gathered the wealth of information
from a variety of such reactions and their relationships to the excited states of
"N are shown. The question of the competition between the various possible
modes of de-excitation of these unbound states is central to the interpretation of
such nuclear reactions as they proceed through a compound nucleus. From a
general study of nuclear reactions (see W. M. Gibson, Nuclear Reactions, Penguin,
1971) it is clear that there are other types of nuclear reactions, namely direct
reactions, in which a compound nucleus is not created. In a direct reaction a
nucleon or group of nucleons is observed to be emitted without any evidence of
an unbound state being involved in the process. The distinction between a direct
and a compound nuclear reaction becomes difficult to maintain and largely rests
on the time elapsing from the arrival of the bombarding particle to the emission
of the products. This time, in the case of a direct interaction, will be of the order
of the time taken for a nucleon having a velocity one tenth that of the velocity
of light to cross a nucleus, which typically will have a dimension of ten fermis.
The transit time is thus a few times 10722 s. In the case of a reaction involving a
compound nucleus, the time would be expected to be several orders of magnitude
longer than this. Unless this were so the compound nucleus could not be expected
to show the properties of a quasistationary state,

Classical radiation theory

Before turning to the quantum theory of radiative transitions it is useful to review
certain aspects of classical radiation theory which give some insight into features
with which we shall later be concerned. These are

(a) the rate at which energy is radiated, which will be related to the transition
praobability of quantum theory,

(b) angular momentum and parity considerations, which will be involved when
we come to consider selection rules, and
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(c} the damping of the radiating system, which gives rise to finite widths
associated with the resonant states,

Classically the nucleus is equivalent to a system of moving point charges and
magnetic dipoles. In section 7.5 it was shown that the electrostatic potential
arising from the most general stationary charge distribution could be conveniently
treated as the superposition of the potentials of charge multipoles. Similar
considerations, when applied to the time-dependent electric and magnetic
radiation fieids, show that these may be treated as the superposition of radiation
fields from multipoles which, in the case of radiation, will be either electric or
magnetic muitipoles which vary with time (A. E. S. Green, Nuclear Physics,
McGraw-Hill, 1955). We shall later see that, in practical cases, the main
contribution to the radiation field comes from the lowest-order multipoles. In
the static case there was seen to be a monopole contribution corresponding to
an equivalent point charge. As we shall be dealing with nuclei of fixed charge,
this term has no time variation and hence the lowest-order multipole with which
we are here concerned is the dipole. We shall now consider some properties of
the radiation field associated classically with an electric dipole. We recall that the
nucleus has no static electric dipole moment (see section 7.6) in the ground

state or in an excited state which has a definite parity. However we shall later
see that there is a quantity equivalent to a time-varying electric dipole moment
involved in the transition between stationary states. This gives rise to radiation
analogous to the radiation from a classical oscillating electric dipole.

Classical electric dipole

Radiation rate. We consider a charge g having a displacement
Z=agsinwt,

and therefore having an oscillating dipole moment
P=pgsinut.

The instantaneous rate of radiation of energy per unit solid angle at an angle 9,
as in Figure 65, is by classical radiation theory (F. K. Richtmeyer and E. H. Kennard,
Introduction to Modern Physics, McGraw-Hill, 1954)

2,02
97
—— sin?f,
4wc
where [ is the acceleration of the particle, and its velocity is much less than e.
Note that there is no radiation emitted parallel to the axis of vibration.

We now write

S= —wzao sin wf,

and integrate over all angles to find that £, the rate at which energy is lost to the
dipole oscillator by virtue of radiation, is given by
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Figure 86 Oscillating dipole consisting of a charge g performing simple harmonic
oscillations about the origin along the z-axis

2 g% :
Q= Eq_s‘"4°% sinZwt.
¢

It follows that the energy radiated, per cycle of the oscillation, by the dipole is

Zn/w
dW= quw‘a% I sinZewr dr
3 3 o
2mpg 10.1
3 3
The duration of one cycle is 2a/w and therefore the average rate of radiation is
1 pg w*
33

Hence the time taken to radiate an amount of energy equal to that of one
quantum, namely, fiw, will be

hi3c?
Py’

This expression will be the classical analogue of the mean life in the quantum
treatment. Consequently the transition probability A will correspond (see section
2.3) to the reciprocal of this expression, namely

25 (<Y
35 \c
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Angular momentum and parity, We noted above that there is no radiation of
energy along the z-direction by a dipole lying perpendicular to the xy plane.
Retaining the z-axis as the direction of propagation we consider now a radiating
system consisting of two electric dipoles, one along the x-axis and one along the
y-axis, as in Figure 66, and we suppose there to be a phase difference of 4x
between them. This system is equivalent to a single circling charge, the direction
of rotation deciding which dipole is leading in phase. At a distant point on the
z-axis there will be an oscillating electric field vector Ex parallel to the x-axis
associated with the dipole along the x-axis and a similar vector £ parallel to the
J-axis associated with the other dipole. Ex and Ej will, each in synchronism with
its parallel dipole, be 4 out of phase and thus give a resultant field vector E,
which will be of constant amplitude and will rotate with constant angular velocity.
Thus the radiation along the z-axis is circularly polarized.

Figure 66 Circularly polarized electric field arising from a charge circulating in
the xy plane. The relative phase of E and the particte motion will depend on
distance along the 2-axis

If this radiation were truly transverse (i.e. E and H perpendicular to each other
and to the radius vector) the flow of energy, which is along the direction of the
Poynting vector and therefore perpendicular to E and H, would be radial. However
an exact analysis shows that this is not the situation at any finite distance
(J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, Wiley, 1963). The
Poynting vector is not truly radial. There is thus a ‘swirling’ of energy about the
direction of propagation and associated with this an angular momentum about
that direction. This angular momentum will change sign with change in the
direction of rotation of the charge and the consequent change in the sense of the
circular polarization.

Classical radiation theory




If the parity transformation (substitution of — x forx, — y fory and — z for z)
is applied to the system, it amounts to a diametrical displacement of the rotating
charge and hence to a change of 7 in the phase of both equivalent dipoles. It
therefore amounts to changing the sign of E and H. There is thus a negative parity
associated with this electric dipole radiation.

We note that had we been dealing with a magnetic dipole, which is equivalent
to a continuous current rather than a circulating localized charge, the system
would not have been altered by the parity transformation. There is thus a positive
parity associated with magnetic dipole radiation.

Radiation damping. Reverting to the simple electric dipole of Figure 65, we note
that, as a simple harmonic oscillator, it will have an energy content equal to the
potential energy when the amplitude is a maximum, i.e. proportional to a3. We
now assume that the energy radiated in one period of the oscillation, given by
equation 10.1, is very small compared to the total instantaneous energy contained
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Figure 67 {a) Amplitude variation with time in damped oscillator. {b) Frequency
spectrum of damped oscillator
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in the oscillator. The energy radiated, being proportional to aZ, is thus proportional
to the energy stored in the system. Thus the stored energy will decay exponentially
with time. If then we write the energy W of the system as

W"= Wo e-"',

the amplitude of the oscillation will take the form

P -yi2t
a—ﬂ'oe L5 -

A plot of the amplitude is shown in Figure 67(a). The technique of Fourier
analysis may now be applied to this exponentially decaying function to show
that it can be constructed from a superposition of undamped harmonic functions
having amplitudes dependent on their frequency ang given by the spectral
function

) constant

(v =vo)2 + $(v/20)°

This spectral function is illustrated in Figure 67(b). We note that

1 ["o i}ﬂ]=i“"n)’

and therefore that the full width at half-maximum of this function is ¥/27. We
thus see that, in so far as there is energy radiated, the resonant system is damped
and the resonance is no longer infinitely sharp. The half-width is intimately
connected with the rate of radiation of energy.

Quantum theoty of radiative transitions

An exact treatment of radiation transitions in terms of quantum mechanics is of
a difficulty beyond the scope of this text. It is to be found in an introductory
form in R. M. Eisberg, Fundamentals of Modern Physics, Wiley, 1961, and in
advanced form in J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics,
Wiley, 1963. We shall here be content to give some of the physical background
to the theory and to understand and apply the final results.

The transitions with which we are concerned are spontaneous transitions of an
atomic or nuclear system from a state, which we shall characterize by a,t0 a
state of lower energy, characterized by b, These transitions are to be distinguished
from induced transitions, which are between the same states but stimulated by the
presence of an electromagnetic field having a frequency given by /v, =F, - E,.
However, from a consideration of the thermodynamic equilibrium in a closed
volume within which a set of atoms or nuclei are emitting and absorbing radiation,
the transition rate for spontaneous emission can be related to the transition rate
for induced emission and also to the transition rate for absorption. Attention is
therefore directed to the prablem of the behaviour of the quantum system when
it is exposed to an electromagnetic wave, and as a result absorbs or emits energy.
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This problem is dealt with by perturbation theory. The physical basis of this
theory can be described as follows. The wave function of the system in all
circumstances can be expressed as a sum of terms according to the equation

¥ = E ane—lﬁul’ﬁ "’H'

If we assume the system to be in the lower eigenstate b initially, then all the
coefficients ap, are zero except ay, and we have

‘i“=abc'w‘"“'ﬁ,- 10.2

When a perturbing field is applied, the effect is to mix into the wave function a
contribution from the wave function of the eigenstate a, so that now we have

W gy e tEvtihy 4 g e~ tEatihy 10.3

Eventually the first term in this expression is reduced to zero and finally we are
left with the wave function
¥ =a,em'Erthy, 10.4

and the system is then in the eigenstate a.

Now, whereas the time-dependent factor in the product ¥*¥ becomes unity
for the wave functions given by equations 10.2 and 10.4, in the case of the
function given by 10.3 we have

WY = afa, $h i, +ata, P, + “:"be“s'-g")”n Yivut
ol “t"- e—l(E.-E.,)tM ,ﬁ: 4‘:-

We note that the product W*¥ gives the probability density for the system. When
the system is in one or other of its eigenstates we see that the probability density,
and hence the charge distribution, is independent of time. When, however, the
system is in the state described by equation 10.3, the probability density, and
hence the charge distribution, has terms which oscillate with time. We note that
the frequency of oscillation of these terms is (E, — Ep)/h, which is precisely the
frequency of the photon absorbed or emitted in the transition.

Perturbation theory, as was noted earlier in section 4.9, relates the probability
of the transition taking place to the perturbation of the system through matrix
elements. These matrix elements are constructed from the wave funciions of the
initial and final states together with an operator which represents the energy
arising from the interaction of the quantum system with the perturbifg field.
The formal definition of the matrix element in the present case will be

Pan = J. %3 Vi dr,
where V is the operator corresponding to the energy of the component charges of
the system in the perturbing electric field of the photon.

In the nuclear context we are contemplating photons of energy up to about ten
million electronvolts and having wavelengths of 130 fm and upwards. The
diameter of a nucleus at the most is about 15 fm. Thus the oscillating electric
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field E produced by the photon will, to a first approximation, have a constant

value throughout the nuclear volume at any instant. We consider the field E in

terms of its components E,, E,, E;. If we choose the centre of the system as the

reference point from which potential energy is to be measured, then the

:::ictttmslatic energy, considering for the present only the x-direction, may be
en as

Ve=—E. 3 e, x,.
r

Thet? will be similar expressions for ¥, and V. When we now construct the
Ent?x elements according to the formula above, we find occurring integrals of
e form

_“': 2 E,.x,.lﬁbdf,

r
which from its resemblance to
[925 e 5, pydr,

r

the quantum-mechanical analogue of the classical electric dipole moment, we
refer to as the matrix element of the x-component of the electric dipole moment,
and denote by jixan. The transition rate for absorption is then found to be

E}

;¥ L

52 (I‘nhl"xlb + l‘;ahi"'nb it F":lbi"nb)l

on the wpﬁon that the radiation is not polarized, so that Ex = £ = E;. When
this expression is substituted into the equation relating the spontaneous transition

rate Syp to the absorption rate, the dependence on the electric field disappears
and it is found that

S 32a3 "Eb * . .
ab S I (xabMxabT ByabHyab + Frab Fzab) 10.5

A coml?arison of equation 10.5 with the expression derived in section 10.3.2
for a classical system shows that the result in the quantum case is in agreement

ufith t;m for a classical oscillating dipole, whose maximum dipole moment p is
given oy

2 *
Po=Hp caplxapt n“';ab Kyan+ l":nb Hzan)-

Selection rules for radiative transitions
Angular momentum (electric dipole)

The transition probability is seen from equation 10.5 to be finite provided at
least one of the dipole matrix elements has a non-zero value. If all the matrix
elements are zero, then clearly the transition probability is zero and the transition
is said to be forbidden. We now examine the matrix elements to establish the
conditions under which they will have non-zero values, and the transition will
consequently be allowed.
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We are concemned basically with

[ b3xpyar
and corresponding integrals involving y and z. To evaluate the integrals requires a
knowledge of the wave functions of the two siates. We proceed to consider the
special case where these wave functions are of the form found in section 6.4 fora
single particle in a spherical potential well. The results we shall arrive at are in fact
of general validity.

We express the volume integral in spherical coordinates, substitute
x=rsinfcos¢,

represent the wave function as the product R(r}8(8)®{¢) and then have
@ Ld 2w

[ B3 Ryr? dr [©1 O, sin? 0a0 | 2@y cospas.

0 0 o

Taking the third (or azimuthal) integral and substituting the solution
B(¢) =A™ * B) e have for this integral, apart from constant factors,

2z 2=

J‘ e imad olmub cosdh dd = 3 J’ [etma-mut)$ | o= iima—mu-1)$] 48
0 )

where m, and mp are the magnetic quantum numbers of the two states. Now
the expression

2w

J‘ elPé d,

]

where P is intepral, is zero unless P = 0. Hence the azimuthal integral is zero
unless my — myp = 1, in which case one of the two terms in the above expression
will remain finite. By examining the cortesponding integral for y it can readily be
shown that exactly the same conditions apply.

In the case of the z-coordinate, 2 is independent of ¢, and the azimuthal
integral reduces to =
2s
I e 1(ms—mp)é dé.
0

This integral is zero unless my =mp.

We arrive at the following conclusion, which is of general validity, namely that
the dipole transition may take place only if the difference in magnetic quantum
numbers of the two states, Am,ist 1 or 0. If Am=2 1, then piz5, =0 and, if the
transition takes place, the radiation will correspond to that from the classical
system of Figure 66. If Am =0, then p, = tyap = 0 and in this case, if the
transition takes place, the radiation will be as for the classical system of Figure 65.
We later give further consideration to these two cases.

186 Excited States of Nuclei

If, still in terms of the wave functions of 2 single particle in a potential well,
the ‘polar’ integral

{020, sin2 a0,

which will involve an orbital quantum number [ as well as m for each state, is
evaluated, it is found that, in addition to the Am requirements above, Al must be
1 1; otherwise the polar integral is zero.

Up to this point we have ignored the intrinsic spin of the single particle. We
have to take the spin into account in order to consider the selection rules
applicable to the total angular momentum of the particle, j, where j =  + 5. These
selection rules are to be found by using 2 more complete wave function taking into
account the spin-orbit interaction. Here we are content to quote the results of
such an analysis, namely that for electric dipole transitions Aj = £ 1, as for A/,
but that the further possibility of Af = 0 also exists. In this latter case Al is
compensated by a change in the spin quantum numbers, a ‘spin flip’ taking place.

We can now translate the selection rules into terms of the initial and final spin
quantum number of two nuclear states. In terms of the single-particle shell model,
I, the nuclear spin, is to be equated with f for an odd-4 nucleus, and the angular-
momentum selection rule for electric dipole radiation becomes Af =+ { or 0.

The validity of this rule is not limited to states which are describable in terms of
the single-particle shell model but is of general validity. Further, it applies also to
the states of even-4 nuclei, with the proviso that a transition from a state having
I = 0 to a state having fy = O (which is a particular case of AJ = 0) is forbidden.
This forbiddenness is understandable since in this case both initial and final states
are states of spherical symmetry.

We can represent the angular-momentum selection rules graphically. In
Figure 68 the relationships which have to exist between initial- and final-state
values of I and m for a single particle are shown for electric dipole transitions.

Al = 41
Am=20

(=}
Figure 88 Vector diagram illustrating the selection rules for electric dipole transitions

We can maintain, in considering these diagrams, the picture of a photon having
an associated spin 1. In the case of Figure 68(b) we recall that for Am =2 1,
Hzab = 0. We therefore have a situation analogous to the classical case illustrated
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in Figure 66. The radiation emitted along the z-axis is circularly po]nrized.and 105.3
carries angular momentum directed along its direction of propagation. This
angular momentum carried by the photon is of course exn_ctly eqfnal m_ the
angular momentum lost by the nuclear system. The radiam'm emitted in the xy
plane is plane polarized and carries angular momentum at right mglt_:s to its
direction of propagation, i.e. parallel to the z-axis, as before. At'obllque angles
the polarization is elliptic, i.e. a combination of the two cases discussed above;
the associated angular momentum is still parallel to the z-axis. In the case of the
situation represented in Figure 68(a), we recall that for Am = D: Hoaty = }:ly,h-= 0
and therefore the corresponding classical situation is that of a dt?ole osc:il.atmg
along the z-axis as in Figure 65. In this case there is no emission in the z:dm:chon
and the radiation in all other directions is plane polarized with the associated

lar momentum lying parallel to the xy plane.
a"gll:'l the case of the !:nuc:glrus, the diagrams of Figure 68 are still valid if we replace
15 and Iy by I, and Ip. However in the case of the nucleus there is the additfonal
possibility that A7 = 0. In this event I, and Ip, are to be represented as makmg
equal angles with the z-axis and hence being two generators of-a cone with axis
Oz such that I, = I, + 1. This vector representation is geometrically possible for
all values of I and Jp except fa =fp =0, which, as we saw above, is not an allowed

transition.

Parity selection rules for electric dipole transitions

If we apply the parity transformation to the function Y2 xyi» we find th.at t_here
is a change of sign if Ya and Yu have the same parity and no change of sign if {a
and Yp have opposite parity. This behaviour arises, of course, from the odq parity
of the factor x. It follows therefore that the integration over ali space of this
function leads to a finite result only if Ya and P have opposite parity. Het}ce we
conclude that for electric dipole transitions a change of parity between initial and
final states is a necessary condition for at least one of the matrix elements to be
non-zero.

We note that the condition Al =+ 1 ensures that this parity rule is obeyed.
This is so because the parity of the wave functions is determined by the sign of
(- 1)'. We see that this holds for the single-particle wave functions as _t'ollows. In
spherical coordinates, the parity transformation amounts to substilul_mg n—10
for 8, 7 + ¢ for ¢ and leaving r unchanged. These angular transformations lead to

mm(ﬂ' + ¢) =(—1) oAl q’m('ﬁ)
and  O(r—¢)=(1"1" ().
Hence when we take the products of these with the radial wave function we have.
fr,m— 0, m— $) = (=1) ¥r, 6, 4).

it therefore follows that two states differing by one in l-value, as do t%ie states
involved in an electric dipole transition, necessarily have opposite parity.
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Selection rules for radiative transitions in the general case

Many radiative transitions are observed to take place between states whose spins
and parities do not satisfy the above selection rules. Only in the case of 7; =0
Iy = 0 is the transition found to be absolutely forbidden. To understand why the
transitions still can take place, despite the selection rules not being obeyed, we
have to have regard to the assumption made above concerning the nature of the
interaction between the nucleus and the electrostatic field. It was assumed that
the electrostatic field acted uniformly throughout the nuclear volume. This
uniformity is only true to a first approximation and arises from the nuclear
dimension being very much smaller than the wavelength of the radiation. It
amounts to taking the first term in the series expansion of the harmonic function
representing the space dependence of the electromagnetic wave. There will be
further terms involving higher powers of x/X which we neglected. If these terms

are included, then the matrix element has to be expressed as a sum of terms of
the form

[ yaxti, dr,

where L isnow 1, 2, 3, .. .. The terms in the series get progressively smaller as L
increases. However, if, because of a contravention of the selection rules derived
above, the term corresponding to L = | becomes zero, then the transition
probability is dominated by the term corresponding to L = 2. This integral is
termed the electric-quadrupole, or E2, matrix element.

There is the further consideration that no allowance has been made for the
interaction of the magnetic field of the wave with the currents and magnetic
dipoles involved in the system. Allowance for this interaction introduces magnetic-
multipole matrix elements corresponding to magnetic multipole transitions, which
we denote by M1, M2, etc.

We consider first the selection rules for E2 transitions, These are arrived at by
a consideration of

lll:le,'lb d‘l’.

Applying the same simple argument as we applied to the electric dipole (i.e. E1)
transition above, we see that, since x> has positive parity, the initial and final
states must be of the same parity, otherwise the E2 matrix element will be zero.
The arguments made above with respect to the single-particle wave functions can
be repeated for the E2 matrix element and the selection rule arrived at is that
Af=2%2 11 or 0, with again Iz = 0 - Ip = 0 being forbidden.

We consider now M1 transitions. We noted above that a magnetic dipole behaves
in the opposite manner to an electric dipole under parity transformation. It
follows that the parity selection rule for M1 transitions is that the states involved
be of similar parity. The angular-momentum selection rules are found in the case
of M1 transitions to be the same as for El transitions,

In the case of an L-pole transition, the photon can be considered to take away
an angular momentum LA. According to the conservation of angular momentum,

Selection rules for radiative transitions
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the vectors I, Iy and L must therefore form the sides of a triangle. This limits the
possible values of L, for given /a and Iy values, to those satisfying the conditions

[, =yl < L< Ig+ Iy,

The electric or magnetic character of the transition is determined by the relative
parities of the initial and final states, there being no change of parity for electric
transitions of even L-values and for magnetic transitions of odd values.

Transition rates

The transition rate given by equation 10.5 we now see to be valid for E1
transitions only. When we pass to higher multipoles we observed above that we
are incorporating additional terms from the expansion of a space factor exp(i2mx/A}
in the expression for the field of the electromagnetic wave. As therefore we pass
from one multipole order to the next we have to expect an additional factor x/X
to appear in the interaction energy involved in the matrix element. Not only does
this introduce the next highest nuclear multipole into our considerations by
increasing by one the power of x, but it introduces a factor proportional to 1/A
(and hence proportional to v, /c) into the matrix element. The transition rate,
being proportional to the square of the matrix element, in the general case is

therefore expected to be proportional to (v, /c)?E * 1.
A detailed treatment of the general case, given by J. M. Blatt and V. F, Weisskop,
Theoretical Nuclear Physics, Wiley, 1963, shows that the result may be written as

8(L+1) 1[2mv,, 2L+1
TLIRL+ DN E[ ] Ban(L),

where (2L + 1)!! represents the product 1 x 3 x 5 x ... x (2L + 1). When X, here the

transition probability, is written in this way, all of the dependence of the transition
rate on the nuclear wave functions is contained in B, (L), which is termed the
reduced transition probability. When comparing transition rates for transitions of
the same character, for different pairs of states, complications arising from the
different transition energies are clearly avoided by comparing the values of Ban(L)
rather than comparing the values of the transition probability.

In the case of magnetic transitions, current density plays the role played in
electric transitions by charge density. This introducesa factor v/c in the matrix
element, and hence a factor (y/c)? in the transition probability for magnetic
transitions as compared to electric transitions, where v is the nucleon velocity
and is approximately fhc. The existence of nuclear magnetic moments complicates
the issue but does not prevent the magnetic transition rate being significantly
smaller than an electric transition of the same multipole order, due allowance
having been made for the energy dependence.

The calculation of exact values for transition probabilities requires a detailed
knowledge of the nuclear wave functions of the states; usually this is not available,
In fact an excellent test of any proposed wave functions is to use them to predict
transition rates which may then be compared with measured values. For many
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purposes, however, it is valuable to compare measured transition rates with those
ca]cu_lated on the basis of the extreme single-particle model. On the assumption
of this m-odel, namely that the transition involves a change of state of one nucleon
only, Weisskopf (1951) arrived at the following estimates for reduced transition

probabilities in the case of electric and magnetic multipoles
1029, ;
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Figure 69 Half-lives for electric multipole y-ray emission (Weisskopf estimates)
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Figure 70 Half-lives for magnetic multipole Y-ray emission (Weisskopf estimats]l

with (solid lines) and without {dashed lines) correction for internal conversion

82 3RL 2
B(EL)=4_J[L+3] :

1 2
B(ML) =10 [m] B(EL),

where R If the nuclear radius and M is the proton mass. We may further introduce
R =Ry 4% and replace the R-dependence by an A-dependence.
These estimates can now be converted into half-life for the excited state, The

results of such a conversion are shown in Figures 69 and 70 plotted against the

Level widths

We now consider a transition from an excited state to the ground state, which we
assume stable. Just as in the classical theory, as we saw in section 103.2,a
radiating system is damped and emits a range of frequencies, so in the quantum
case we have to assume that the energy level corresponding to an excited state
has an energy width which we represent by I'. We can relate I to the mean life T
of the state by Heisenberg’s uncertainty principle, which gives

I'r=4,

As in the classical analogue, the energy of the radiation emitted will not, strictly
speaking, be monochromatic but will have a spectrum /(E) given by

I constant
(E)" (E_Eo)z_*_*rlZ'

where Eq =E, ~E,,

If the final state is not stable but itself has a finite decay probability, then it
also will have a level width and I will be the sum of the widths of the two levels.
Since A= 1/rand I'r = 7#, the values of transition probabilities quoted in
section 10.6 can be readily translated into level widths. In the case of electric
transitions the first few level widths are as follows (£4 in MeV; R = 1.2 x 43 fm)
(E1) = 68 x 10-243E3 ev,
(E2) =49 x 10-843E5 eV,
(E3) = 23 x 10~1442E eV,
In the case of magnetic transitions the results are
(M1) =2-1 x 10-2E3 v,
(M2) = 1-5 x 108415 eV,
(M3) = 68 x 10-15 43 E] eV,

Level widths
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The resonances are thus seen to be very sharp, i.e. the energy width of the
level is a very small fraction of the y-ray energy.

Internal conversion

In the above discussion we have proceeded on the assumption that the system is
isolated except for its interaction with the electromagnetic field. This in fact is
not strictly correct either for atoms or for nuclei. In normal circumstances atoms
are frequently in collision with other atoms and in their collisions energy-transfer
processes are involved. As a consequence, there will always be a probability of
de-excitation of an excited state by a collision in competition with de-excitation
by radiation. Normally this competition is such, in the atomic context, as to
suppress all radiative transitions except that of the electric dipole.

Nuclei, on the other hand, are isolated very effectively from each other in
ordinary matter by the effect of their screen of orbital electrons. However, in
the nuclear case, the very existence of orbital electrons provides o method of
de-excitation which competes with radiative transitions. In the neighbourhood of
the nucleus the field of the nuclear multipole will act on any electron in that
region of space and can communicate the full transition energy to the electron.
This energy will usually be much greater than the electron binding energy and
consequently the electron will be ejected from the atom. This process is rather
misleadingly referred to as internal conversion. It must not be thought of as the
emission by the nucleus of a photon which is subsequently absorbed by the
atomic structure of the same atom. Thisis a possible process but is much Jess
likely than internal conversion. Internal conversion as a process is distinct from,

and competes with, photon emission. The energy is communicated directly to
the emitted electron, not by the intervention of an electromagnetic wave.

The competition with radiative transitions is clearly brought out by defining

the conversion coefficient « as
Ne

O == w1
Ny
where Ne and Ny are the experimentally measured numbers of electrons and
photons emitted in the same time interval from the same sample. On this
definition a can take values from zero to infinity.
The energy of the emitted electron will be given by

Ee= Eo" EB’

where E is the transition energy and Ep the electron-binding energy. In so far as
electrons from different shells have finite probability densities close to the
nucleus, electrons may be emitted from L, M, . . . shells as well as from the
K-shell, These electrons will be experimentally distinguishable because of the

difference in Eg. Experimentally we can therefore determine ag, @y, . . ., where
Nx
gy W ===
K Ny
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is defined in terms of K-electrons only. It follows from these definitions that
e=apta, tay+.. ..
If now we introduce A to represent the ili
I probability that an electron be
emitted and Ay the probability that a photon be emitted we have
Ae

o =—
v

g;::l:!:i ftrom the d;ﬂniti:l)n of (c;. Internal conversion and radiative transitions are
o proceed as indepel iti
B iy iis L pendent processes and hence the total transition
A = A.e+ Au.
On I‘his view the lifetime of the state, which is proportional to the reciprocal of
A, will be shortened by the existence of the phenomenon of internal conversion
Support for this view comes from the discovery by Bainbridge and others (1957;)
that the life‘time of a state in ®?Tc was altered by about 0-3 per cent by a change
in the chemical composition of the sample. This effect can be entirely accounted
for by the difference in the electronic wave functions of the two chemical
compounds concerned.
' Ao can be developed, as e was above, in terms of conversion probabilities
involving electrons from the different shells, giving A, =Ag + AL +.
The.cajculalion of conversion probabilities is in principle strajghti:o.r;vard We
start with an initial state consisting of an excited nucleus and a bound cleclr;Jn
and end in a final state with a de-excited nucleus and an electron in a state in tl;e
unbound continuum. The transition rate has then to be found from the square of
the matrix elements connecting the two states and the density of final states (the
so-called golden rule which we quoted in section 4.9). The mathematical details
are of _formidable difficulty even for relatively simple transitions (see E. Segré
Nuclei and Particles, Benjamin, 1964). The results of the mathematical analys;s
show that the dependence of A on the nuclear multipole moments is exactly the
same as the dependence in the case of A,. As a consequence «, the internal
f:onversion coefficient, is independent of the nuclear moments. This has made
mle:lnal conversion a very important phenomenon in unravelling the character of
partlf:ular nuclear transitions. « is dependent on the Z-value of the atom involved
as this controls the number of available electrons. « also depends on the transitior'l
:hnergy Eg, on the mul!!polazity of the transitions and on the electric or magnetic
maﬁr\:;c:‘;; ::‘ s:l.ae transition. These latter factors control the field strength involved
The Z-dependence of a follows a high positive power (Z* in the case of ax)
The £, dependence follows a high negative power. As a consequence, internal .
convz?r'siou has its greatest relative importance for high-Z nuclei and low-energy
transitions. It is also in these circumstances that the dependence on the character
of the- multipolarity is greatest. Hence internal conversion has its most significant
expen'mental contribution to make for low-energy transitions in heavy nuclei. Its
effectiveness in providing decisive evidence of the character of the transition t‘:an
be seen from Figure 71, which shows the variation to be expected in the conversion
coefficient for transitions of different multipole order.

Internal conversion




the electron energy permits an accurate determination of the electron binding
Sl 199 energy. This knowledge can then be used to determine the Z of the atom within

b which the transition took place. The necessary experimental accuracy is set by

b the fact that there is a difference of about 2-5 keV in the binding energy of

% K-electrons in heavy nuclei differing by one in the Z-value. The importance of

2 1ok this Z-determination lies in being able unambiguously to decide whether a y-ray

?'.: % transition took place before or after an a. or B-decay. '

£ 4 Finally it is to be noted that, following internal conversion, the atom is left |

k- g with a vacancy in one of the electron shells. There will therefore be the emission

g of an X-ray or an Auger electron. It is sometimes more convenient to detect the

= iy X-ray or Auger electron rather than the conversion electron, and this information

_5.3 can be used to determine N, due allowance being made for the X-ray fluorescence !

£ yield (i.e. the number of X.rays emitted per vacancy). !

)

&

o = 109 Internal pair production &
According to the ‘hole’ theory of positrons, the excited nucleus is immersed in a "
sea of electrons occupying and completely filling states of negative energy which
correspond to the negative square roots of p%c? + mjc*. If the transition
energy is equal to 2mg ¢? = 1-022 MeV, then sufficient energy is available to ‘

o0 raise an electron from the highest of the negative-energy states to the lowest '
state in the positive continuum given by the positive square roots of p*c? +m3 c*.
Should this occur then a stationary electron together with a vacancy in the highest b
1 \‘
: u
:'5 15 Mi;Z=84 I
H .‘.
g E1;Z2=0 ]
1041 5 1.2 =84 W
=3
= 10}
g |
——— £ =
o oz 03 04 06 1 TSRS = H SiS
nuelear transition energy/ MeV i 2.7 84
Figure 71 K-shell internal conversion coefficients as a function of nuclear 5F
transition energy for zirconium (Z = 40)
In addition to providing valuable infonpalion z.about the c‘haracterﬂc;z ::::lnllzfs.
transitions, the studies of internal conversion are important in twot;er 5 msl:"
Firstly, a measurement of the energy of the emitted electron, toge

I .,

knowledge of the electron binding energy, Permils a measuremelr_u o: dxeen ::a:;sitmn
energy to be made. Thisisa useful alternative to th.e metlmfis of y-r yal e
measurements based on photoelectron production in materials extern et
source. Secondly, if the transition energy is otherwise known, a measu

1 5 -

transition energy W / MeV
Figure 72 Internal pair conversion coefficients as a function of transition energy
for nuclei of low and high Z-value
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negative-energy state is produced. The vacancy constitutes 4 positron of zero 10.11.1
kinetic energy. If the transition energy is greater than 2mq ¢? then an electron may
be lifted from a lower-lying negative-energy state across the energy gap to a higher- *
lying state in the continuum. This constitutes the production of an electron-positron
pair, the particles sharing the energy Eq — 2mg c?. The availability of electrons to
the nucleus does not, in this phenomenon, depend on Z. In fact the process is
more likely, other things being equal, in light as compared to heavy nuclei. Also
the likelihood of pair production increases with increasing transition energy. Itis
also favoured for low as compared to high multipole orders, In all these respects
the probability of internal pair production behaves oppositely to that of internal
conversion.

In Figure 72 the internal pair conversion coefficient, i.e. the ratio of pairs
produced to photons emitted, is plotted as a function of energy for different
multipolarities. The discrimination between multipole orders decreases with
increasing transition energy. At higher energies, multipole orders can better be
distinguished by the angular correlation between positron and electron, the angle
between the particles being on average smaller the higher the multipole order.

0 - 0 Transitions

We saw that 0 = O transitions cannot take place by the radiation of photons.
While the field outside the nuclear volume is the same for both states, and
therefore no electromagnetic field is generated in the transition, there can be a
change in radius and a change in field within the nuclear volume. When there is
no change in parity between the two states, internal conversion is a possible

process. However, the transition rate will be small because the effective volume is
small compared to the volume within which internal conversion can take place
for other transitions. When the transition energy exceeds 2mg ¢?, internal pair
production is also possible, the pair being produced within the nuclear volume.
There are several examples known of 0* — 0* transitions proceeding by internal
conversion and others of similar transition proceeding by pair production.

In the case of 0" = 0~ transitions, internal conversion and pair production, as
well as single-photon radiative transitions, are forbidden. It would appear that
the most likely mode of decay in such a case would be two-photon emission, or
one-photon emission together with one conversion electron. Processes such as
these are physicaily possible in the case of all transitions but have a very low
probability compared to the processes discussed above.

There is no known excited state which, for lack of a possible decay mechanism,
has an infinitely long life against de-excitation.

10.10

The measurement of energy-level spacing

We begin our consideration of the experimental measurements of the properties
of excited states by surveying briefly the more important techniques which may
be used for mapping out the energy levels. The problem is that of the accurate
measurement of the energies of the emitted y-rays. Many techniques are available for
y-ray energy measurements and we proceed to outline the most important of these.

10.11
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Curved-crystal spectrometer

The use of a crystal lattice as a diffraction grating is well established in X-ray
technology and provides an accurate way of determining the wavelength of the
X.ray. For reflection from parallel planes of atoms which have a separation d,
the Bragp angle at which reinforcement occurs is given by

A=2d sin 6,

where 8 is the angle between the X-ray beam and the reflecting surface. The
extent to which this technique can be extended in the direction of shorter
wavelengths, i.e. higher quantum energies, is governed by the extent to which
the crystal reflecting power falls off with increasing quantum energy and the
extent to which the Bragg angle gets impractically small.

While the first of these effects has to be accepted, the second can be
ameliorated by experimental ingenuity. To see the smallness of the Bragg angle
involved in extending the technique to y-ray measurements, let us consider the
application of the method to the measurement of the wavelength of annihilation
radiation. This radiation, which is emitted when positrons annihilate on electrons
at rest, is a very convenient standard radiation with which to calibrate y-ray
spectrometers. When an electron of zero kinetic energy encounters a positron at
rest it makes a transition down to the highest of the negative-energy states. Thus
the energy of the gap, namely 2m ¢?, is available for radiation. However, in order
that the final linear momentum of the system be zero, as was the initial linear
momentum, two oppositely directed photons have to be emitted. Each photon
therefore has an energy of mg c?, which is equal to 510-98 keV. The wavelength
of this annihilation radiation is therefore

he

Mg C

N —

5 = 2:43 x 10 mm.

For calcite, which has a lattice constant d = 3-02 x 107" m, the Bragg angle for
annihilation radiation is @ = 4 x 107 rad. This means that a high degree of
parallelism in the incident beam and a long distance of travel following reflection
are necessary to separate the reinforced reflected beam from the incident beam.
In most situations encountered in y-ray spectroscopy the radiation is emerging
from a small specimen so that the geometry called for using an orthodox crystal
would impose a very low solid angle for acceptance of photons, and would lead
to very low efficiencies. An ingenious method in which the crystal is curved
enables the Bragg angle for photons sent through the crystal to be kept constant
over a larger solid angle of emission from a point source (J. W. M. Du Mond,
Experimental Nuclear Physics, Volume 3, Wiley, 1959) and makes it more
practical to screen a y-ray detector, set to detect reflected photons from the
incident beam. With a curved crystal, the annihilation radiation spectrum,
wavelength 2-43 x 10™'2? m, has an instrumental full width at half-maximum of
0:3 x 107*? m, i.e. about 1 per cent of the wavelength. The accuracy of
determination of the position of the peak, i.e. the absolute wavelength, is believed
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to be 0-04 per cent. Working under these conditions the overall detection
efficiency is 5 x 1078 counts per photon emitted from a point source.

10.11.2 Magnetic spectrometers

The y-ray energy determination reduces to the measurement of the energy of an
electron if advantage is taken of internal conversion or if the photons are allowed
to interact with atomic electrons in a thin radiator and thus to produce
photoelectrons, Compton electrons or electron-positron pairs (see Appendix C).
The secondary electrons may then be sent into a uniform magnetic field / and
their curvature p in the plane perpendicular to the field measured.

The electron momentum is then given by 30 000Hp, where H is in gauss, g in
metres and the momentum in eV/ec. Since the electron kinetic energy is comparable
to its rest mass in these experiments, we must use the relativistic relation

2 7% g 2 .4
EZ=p“c*+my¢c

to find the total energy of the electron. The rest-mass energy mg ¢? may be
subtracted from this to find the kinetic energy Te. If the electron is an internal
conversion electron or a photoelectron from the radiator, then we have simply to
add the appropriate binding energy to T to arrive at the transition energy. If the
electron is a Compton electron or an electron from a pair, then the energy Te for
a given value of H is no longer unique. A spectrum has to be measured and
compared with theoretically predicted spectra for a range of y-ray energies.

Energy resolution in a magnetic spectrometer can only be improved at the
expense of reducing the solid angle of acceptance. A typical practical compromise,
in which the electrons are bent round a semicircle from a radiator to a detector
separated by a distance 2p, provides 1 per cent energy resolution at a photon
energy of 1 MeV with an efficiency of 107" counts per photon.

10.11.3  Proportional counters

A proportional counter usually consists of a fine wire running coaxially along a
sealed cylindrical metal tube and insulated from the tube. The wire is raised to a
positive potential with respect to the tube. If any ionization takes place in the
sealed volume of gas, the electrons produced are accelerated towards the wire. In
the high field gradient in the neighbourhood of the wire an electron can gain
enocugh energy between collisions to ionize the next gas molecule it encounters.
In the resulting avalanche, the total charge collected by the wire can, with proper
experimental design, be arranged to be proportional to the number of primary
electrons produced by the ionizing particle.

The gas amplification produced in this way can amount to 10 without any
loss of proportionality. The collected current is then passed through a high
resistance and the resulting voltage pulse amplified to the height required to
operate a pulse-height analyser. In the range of photon energies immediately
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above the K-absorption edges of the gases used to fill the counter there is a high
probability that a photon passed in through a thin window will be absorbed in the
gas and produce a comparatively low-energy photoelectron, which will stop in
volume of the counter. In this way the counter, with a choice of a gas of high
atomic number, such as xenon, for a filling, can for photons of enersgies of

100 keV have a resolution of 3 per cent and an efficiency of 10 per cent.

In some cases the sample may be in gaseous form and suitable for introduction
as a counter gas. Then, for low-energy transitions, K and L internal conversion
electrons will stop in the gas; they are detected with 100 per cent efficiency and
a very accurate measurement, not only of the transition energy but of the ratio
ak /oy is possible.

0.114  Scintillation spectrometers

Charged particles produce not only ionization along their tracks but leave a trail
of excited atoms which de-excite by radiating photons in the optical range of the
electromagnetic spectrum. The light output from the particle track is proportional
to the energy dissipated by the particle, which will be its total kinetic energy if the
particle stops within the material. Certain crystals are quite transparent to this
internally produced light. When this is so, the emergent light can be collected

and passed to a photomultiplier, which will produce a charge proportional to the
number of photons of light falling on its photocathode. This charge can be passed
through a resistance and the voltage pulse amplified. Voltage pulses produced in
this way and passed to a pulse-height analyser will then reproduce the energy
spectrum of the charged particles,

A scintillating erystal, in addition to the necessary optical properties, requires
to have a proportion of heavy nuclei incorporated in it if it is to efficiently convert
incident photons into secondary electrons and stop them within its own volume.
This condition is admirably satisfied by sodium iodide, which has found a very
wide application in y-ray spectroscopy. The crystal may be several centimetres in
linear dimension and large enough to be operated under conditions approaching
total absorption of the incident photon. In this case, (a) when photoelectric
absorption takes place, not only is the photoelectron stopped in the crystal but
the subsequently emitted X-ray is also absorbed; (b) when Compton scattering
takes place, not only is the scattered electron stopped but the degraded y-ray is
absorbed and; (c) when pair production takes place, not only are both particles
stopped but the annihilation quanta are also absorbed in the crystal. The crystal
light output is then proportional to the total energy of the photon and a single
peak in the pulse distribution is observed for a single y-ray energy. In most cases,
however, all the secondary photons are not absorbed and subsidiary peaks,
photon escape peaks, are observed in the spectrum.

In the event of the source emitting two y-rays from a cascade within a time
short compared to the resolving time of the crystal and the associated electronic
apparatus (say 107° s) then it is possible for both y-rays to produce light pulses
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Figure 73 Energy spectrum of 80Co measured with 10 cm x 10 cm Nal(TI)
crystal showing total energy peaks for the y-ray lines at 1-17 MeV ar!d 1-3.3 MeV
together with the sum peak. The y-rays were passed through a beryllium filter

which add together at the photocathode of the multiplier. There is thus the
possibility of a sum peak in the spectrum. An indication of the attai.nable .
performance from a 10 cm x 10 cm cylindrical sodium iodide (thallium activated)
crystal is given in Figure 73. The counts per emitted photon from a source can
exceed 0-1 and, as is seen from the figure, the energy resolution is about 8 per cent.
The energy resolution depends both on the statistical fluctuations in Iig'ht emitted
as a function of energy dissipated and in the variation of efficiency of light
collection from different regions of the crystal. -

Scintillation counters offer very high efficiencies compared to magnetic
spectrometers or curved-crystal spectrometers but their resolution is considerably
inferior.

Solid-siate detectors

The advent of solid-state detectors has enabled y-spectroscopy to proceed with
the high resolution of magnetic spectrometers and with an elficiency approaching
that of heavy scintillators. This, as we shall see, has had very important
consequences in experimental nuclear physics.

The physical principle involved in solid-state detectors concemns electrical
conductivity in a crystal. In the case of a perfect crystal, all the electrons are in
the filled band which lies, with a band gap of about one electronvolt, below the
conduction band. If two electrodes are connected to opposite faces of the crystal
and a voltage difference maintained between them, there will be no flow of
current, However, a charged particle passing through the crystal can promote the
electrons from the filled to the conduction band. There is a consequent flow of
current. The energy necessary to promote an electron and thus produce an
electron-‘hole’ pair is on the average about three electronvolts, which is to be
compared with thirty electronvolts necessary to produce an ion pair in a gas. The
movement of the electron and the ‘hole’ through the crystal is very fast compared
with the movement of electrons and positive ions in a gas counter. It is therefore
to be expected, because of the larger number & of electron-hole pairs produced
compared to ion pairs for a given energy dissipated, that the statistical variation,
which will be proportional to 1/7/N will be smaller and that this will lead to
better energy resolution. At the same time, because of the high mobility of the
electrons and holes, the counter can have a very fast response time.

The achievement of a practical detector based on this principle is not however
a simple matter. In a real as distinct from an ideal crystal, the conduction band is
never in fact completely unoccupied. Electrons are raised into it by thermal
fluctuations and, usually more importantly, by the action of impurity centres in
the crystal. In the semiconductors silicon and germanium, it has proved possible
by ‘doping’ (i.e. by introducing impurities in a controlled way) to compensate for
the unavoidable natural imperfection of the crystal and so to approach the
behaviour of an ideal crystal. This has been achieved by drifting lithium jons
moving under the influence of an applied electric field into a pure silicon or
germanium crystal. Germanium has a special interest for y-ray spectroscopy
because of its high atomic number. In practice there is the complication that the
crystal has to be used and stored at liquid-nitrogen temperature, otherwise its
performance is seriously impaired by lithium diffusing out.

Germanium crystals with a sensitive volume of a hundred cubic centimetres
are now commercially available. Their efficiency is such that the number of
counts in the total absorption peak of the spectrum can be 2-3 per cent of the
number of y-rays falling on the detector for y-rays of two million electronvolts
energy. The efficiency rises to much higher values at lower energies but falls off
quite rapidly at higher energies. The intrinsic time resolution of the detector can
be less than 1078 s,

A spectrum of °Co measured with a 40 cm? lithium drifted germanium
detector is shown in Figure 74. Comparison of this spectrum with the sodium
iodide spectrum in Figure 73 gives a clear indication of the improvement effected
by the development of solid-state detectors. With their help it is now possible,
even when only comparatively weak sources are available, to measure level
spacing to five significant figures.
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