
10.3 

10.3.1 

particle approaches close enough to the target nucleus for nuclear forces to be 
effecllve, states of the system resulting from the incorporation of the bombarding 
particle in the target nucleus are very frequently fonned. The composite system 
is referred to 35 the compound nucleus and when it is fonned it must have an 
excitation energy in excess of the binding energy of the bombarding particle. 
Consider for example the well·studied reaction In which lOB is bombarded with 
lX·particies and protons are emitted. We represent this reaction by 

,oB+ 4H. -+ 13C+'H. 

The yield of protons as a function of the bombarding energy of the at-particle 
shows certain peaks. These are interpreted as corresponding to the fonnation of 
the compound nucleus, in this case 14N, in an unbound state. The energy of this 
state must be in excess of the binding energy of an «-particle in 14N. That there 
is physical reality in regarding the reaction as taking place through this 
intennediate state is shown by the existence of similar resonances in other 
reactions, for example 12C + 2H, which lead to unbound states of 14N with 
precisely the same energies. In Figure 64 is gathered the wealth of infonnation 
from a variety of such reactions and their relationships to the excited states of 
14N 3re shown. The question of the competition between the various possible 
modes of de-excitation of these unbound states is central to the interpretation of 
such nuclear reactions as they proceed through a compound nucleus. From a 
general study of nuclear reactions (see W. M. Gibson, Nuclear Reactions, Penguin, 
1971) it is clear that there are other types of nuclear reactions, namely direct 
reactions, in which a compound nucleus is not created. In a direct reaction a 
nucleon or group of nucleons is observed to be emitted without any evidence of 
an unbound state being involved in the process. The distinction between a direct 
and a compound nuclear reaction becomes diffICult to maintain and largely rests 
on the time elapsing from the arrival of the bombarding particle to the emission 
of the products. This time, in the case of a direct interaction, will be of the order 
of the time taken for a nucleon having a velocity one tenth that of the velocity 
of light to croSS a nucleus, which typically will have a dimension of ten fermis. 
The transit time is thus a few times 10-22 s. In the case of a reaction involving a 
compound nucleus, the time would be expected to be several orders of magnitude 
longer than this. Unless this were so the compound nucleus could not be expected 
to show the properties of a quasistationary state. 

Classical radiation theory 

Before turning to the quantum theory of radiative transitions it is useful to review 
certain aspects of classical radiation theory which give some insight into features 
with which we shall later be concerned. These are 

(a) the rate at which energy is radiated, which will be related to the transition 
probability of quantum theory. 

(b) angular momentum and parity considerations, which will be involved when 
we come to consider selection rules, and 
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(c) the damping of the radiating system, which gives rise to fmite widths 
associated with the resonant states .. 

Classically the nucleus is eqUivalent to a system of moving point charges and 
magnetic dipoles. In section 7.S it was shown that the electrostatic potential 
arisillg from the most general stationary charge distribution could be conveniently 
treated as the superposition of the potentials of charge multipoles. Similar 
conSiderations, when applied to the Wne·dependent electric and magnetic 
radialion fields, show that these may be treated as the superposition of radiation 
Oelds from multipoles which, in the case of radiation, will be either electric or 
magnetic multipoles which vary with time (A. E. S. Green, Nuciet1r Physics, 
McGraw.HilI, 1955). We shall later see that, in practIcal cases, the main 
contribution to the radiation field comes from the lowest-order multipoles. In 
the static case there was seen to be a monopole contribution corresponding to 
an equivalent point charge. As we shall be dealing with nuclei of fIxed charge, 
this tenn has no time variation and hence the lowest..arder multipole with which 
we are here concerned is the dipole. We shall now consider some properties of 
the radiation field associated classically with an electric dipole. We recall that the 
nucleus has no static electric dipole moment (see section 7.6) in the ground 
state or in an excited state which has a definite parity. However we shall later 
see that there is a quantity equivalent to a time.varying electric dipole moment 
involved in the transition between stationary slates. This gives rise to radiation 
analogous to the radiation from a classical oscillating electric dipole. 

10.3.2 Cltmical electric dipole 

Rlldiation rate. We consider a charge q having a displacement 

z-oosinwt, 

and therefore having an oscillating dipole moment 

p"posinwt. 

The instantaneous rate of radiation of energy per unit solid angle at an angJe 8, 
as in Figure 65, is by classical radiation theory (F. K. Richtmeyer and E. H. Kennard, 
Introduction to Modem Physics, McGraw· Hill, 1954) 

2r2 
q J • 28 
41rc3 SIn t 

where [is the acceleration of the particle, and its velOCity is much less than c. 
Note that there is no radiation emitted parallel to the axis of vibration. 

We now write 

f - -w2ao sin wI. 

and integrate over all angles to f1l1d that n, the rate at which energy is lost to the 
dipole oscillator by virtue of radiation, is given by 
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Figure 65 Oscillating dipole consisting of a charge q performing simple harmonic 
oscillations about the origin along the z-axis 

2 q2 n ___ W4Q2 sin2"". 
3 c3 0 

It follows that the energy radiated, per cycle of the oscillation, by the dipole is 

dW_:q2w4a~ 
3 -----;3 

2," P~ ",,3 

-3~' 

2./t.I 

f sin2wt dl 
o 

10.1 

The duration of onc cycle is 2rr/w and therefore the average rate of radiation is 

I p~w4 

3~' 

Hence the time taken to radiate an amount of energy equal to that of one 
quantum, namely,1tw,will be 

h3c3 

p~w3' 

r 

This expression will be the classical analogue of the mean life in the quantum 
treatment. Consequently the transition probability). will correspond (see section 
2.3) to the reciprocal of this expression, namely 

p~ (~)3 
3h c 
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Angular momentum and parity. We noted above that there is no radiation of 
energy along the z-direction by a dipole lying perpendicular to the xy plane. 
Retaining the z-axis as the direction of propagation we consider now a radiating 
system conSisting of two electric dipoles, one along the X-axis and one along the 
y·axis, as in. Figure 66, and we suppose there to be a phase difference of f,r 
between them. This system is equivalent to a single circling charge, the direction 
of rotation deciding which dipole is leading in phase. At a distant point on the 
z·axis there will be an oscillating electric field vector Ex parallel to the x·axis 
associated with the dipole along the x-axis and a similar vector Ey parallel to the 
y-axis associated with the other dipole. Ex andEy will, each tn synchronism with 
its parallel dipole , be 1" out of phase and thus give a resultant field vector E, 
which will be of constant amplitude and will rotate with constant angular velocity. 
Thus the radiation along the Z-axis is Circularly polarized . 

z 

E.~Er 

E 

• 

Figure 66 Circularly polarized electric field arising from a charge circulating in 
the xy plane. The relative phase of E and the particle motion will depend on 
distance along the z-axis 

r 

If this radiation were truly transverse (I.e. E and H perpendicular to each other 
and to the radius vector) the flow of energy, which is along the direction of the 
Poynting vector and therefore perpendicular to E and H, would be radial . However 
an exact analysis shows that this is not the sitUation at any finite distance 
(J. M. Blatt and Y. F. Weisskopf, Theoretical Nuclear PhYSics, Wiley, 1963). The 
Poynting vector is not truly radial. There is thus a 'swirling' of energy about the 
direction of propagation and associated with this an angular momentum about 
that direction. This angular momentum will change sign with change in the 
direction of rotation of the charge and the consequent change in the sense of the 
circular polarization. 
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If the parity transformation (substitution of - x for x, - Y for y and - z for z) 
is applied to the system, it amounts to a diametrical displacement of the rotating 
charge and hence to a change of 1T in the phase of both equivalent dipoles. It 
therefore amounts to changing the sign of E and H. There is thus a negative parity 
associated with this electric dipole radiation. 

We note that had we been dealing with a magnetic dipole, which is equivalent 
to a cDntinuous current rather than a circulating localized charge, the system 
would not have been altered by the parity transfonnation. There is thus a positive 
parity associated with magnetic dipole radiation. 

Radiation damping. Reverting to the simple electric dipole of Figure 65, we note 
that, as a simple hannonic oscillator, it will have an energy content equal to the 
potential energy when the amplitude is a maximum, i.e. proportional to a~. We 
now assume that the energy radiated in one period of the oscillation, given by 
equation ]0.], is very small compared to the total instantaneous energy contained 
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Figure 67 (a) Amplitude variation with time in damped oscillator. 
spectrum of damped oscillator 

(b) Frequency 
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v 

in the oscillator. The energy radiated, being proportional to a~, is thus proportional 
to the energy stored in the system. Thus the stored energy will decay exponentially 
with time. ]f then we write the energy Waf the system as 

W= Woe-Y', 

the amplitude of the oscillation will take the form 

D = DO e-y/2 ,. 

A plot of the amplitude is shown in Figure 67(a). The teclmique of Fourier 
analysis may now be applied to this exponentially decaying function to show 
that it can be constructed from a superposition of undamped hannonic functions 
having amplitudes dependent on their frequency and given by the spectral 
function 

lev) _ constant_ 
(v - vO)2 + HY/2 .. )2 

This spectral function is illustrated in Figure 67(b). We note that 

/ [vo < .. ] = t/(vo) , 

and therefore that the full width at half·maximum of this function is "1/2". We 
thus see that, in so far as there is energy radiated, the resonant system is damped 
and the resonance is no longer infmitely sharp. The half-width is intimately 
connected with the rate of radiation of energy. 

10.4 Quantum theory of radiative transitions 

An exact treatment of radiation transitions in teans of quantum mechanics is of 
a difficulty beyond the scope of this text. It is to be found in an introductory 
form in R. M. Eisberg, Fundamentals o/Modem PhYSics, Wiley, 1961, and in 
advanced form in J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, 
Wiley, 1963. We shall here be content to give some of the physical background 
to the theory and to understand and apply the final results. 

The transitions with which we are concerned are spontaneous transitions of an 
atomic or nuclear system from a state, which we shall characterize by a, to a 
state of lower energy, characterized by b. These transitions are to be distinguished 
from induced transitions, which are between the same states but stimulated by the 
presence of an electromagnetic field having a frequency given by ilVba = E. - Eb. 

However, from a consideration of the thermodynamic equilibrium in a closed 
volume within which a set of atoms or nuclei are emitting and absorbing radiation. 
the transition rate for spontaneous emission can be related to the transition rate 
for induced emission and also to the transition rate for absorption. Attention is 
therefore directed to the problem of the behaviour of the quantum system when 
it is exposed to an electromagnetic wave, and as a result absorbs or emits energy. 
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This problem is deait with by pmuTbation theory. The physical basis of this 
theory can be described as follows. The wave function of the system in all 
circumstances can be expressed as a sum of teons according to the equation 

'I' - ~ a.e-I£.'/~ "' •. 

If we assume the system to be in the lower eigenstate b initially J then aU the 
coerficients an are zero except ab and we have 

'Y _ a.e-I£o''''''.. 10.1 
When a perturbing field is applied, the effect is to mix into the waYe function a 
contribution from the wave function of the eigenstate at so that now we have 

V - a e-1Eb"fi.l. +a e- 1E• t / A.,. b 't'b. 't' •• 
10.3 

Eventually the first teon in this expression is reduced to zero and fmally we are 
left with the wave function 

'Y - a e-IEar /A.,. 
• 't'. 

10.4 

and the system is then in the eigenstate 3. 

Now, whereas the time-dependent factor in the product ""*v becomes unity 
for the wave funct ions given by equations 10.2 and 10.4, in the case of the 
function given by 10.3 we have 

'Y''Y - a'a .1.'.1. + a'a .1.'.1. + a!a ,1(£.-£.lJ /A.I ••. I. + b b'1"b'1"b •• '1"a'1". • b '1".'1"b 

+ a* a e-I(Ea- Eb)t l" .1.* .1. b • '1"b"t'. · 

We note that the product q,.q, gives the probability density for the system. When 
the system is in one or other of its eigenstates we see that the probability density, 
and hence the charge distribution, is independent of time. When, however, the 
system is in the state described by equation 10.3, the probability density, and 
hence the charge distribution, has terms which oscillate with time. We note that 
the frequency of oscillallon of these terms is (E. - E.)/h, which is precisely the 
frequency of the photon absorbed or emitted in the transition. 

Perturbation theory, as was noted earlier in section 4.9, relates the probability 
of the transition taldng place to the perturbation of the system through nuztrix 
elements. These matrix elements are constructed from the wave functions of the 
initial and fmal states together with an operator which represents the energy 
arising from the interaction of the quantum system with the perturbitll field. 
The formal definition of the matrix element in the present case will be 

" •• = f tit: Vop.dT, 
where Y is the operator corresponding to the energy of the component charges ot 
the system in the perturbing electric field of the photon. 

In the nuclear context we are contemplating photons of energy up to about ten 
million eiectronvolts and having wavelengths of 130 fm and upwards. The 
diameter of a nucleus at the most is about 15 fm. Thus the oscillating electric 
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10.5.1 

field E produced by the photon wiD, to a fust approximation, have a constant 
value throughout the nuclear volume at any instant. We consider the f1eld E in 
tenus of its components Ex. Ey, Ez• If we choose the centre of the system as the 
... fe ... nce point from which potenllal energy is to be measured, then the 
electrostatic energy, considering for the present only the x·direction, may be 
written as 

Y .. --E.x!erxr· 
T 

There will be similar expressions for Yy and Ys' When we now construct the 
matrix elements according to the fonnula above, we find occurring; integrals of 
the form 

f op: ~ ',"',op.tIT, , 
which ftom its resemblance to 

f .,.: ~ e,"',';.dT, , 
the quantum·mechanical analogue of the classical electric dipole moment, we 
refer to as the matrix element of the x·component of the electric dipole moment, 
and denote by "'Db. The transition rate for absorption is then found to be 

E: • * /i2 CJ.t..x.tJLX.b+ ";.bl',.b + ILnbILnb)' 

on the assumption that the radiation is not polarized, so thatEx:Z Ey -Es• When 
this expression is substituted into the equation relating the spontaneous transition 
rate Sib to the absorption rate, the dependence on the electric field disappears 
and it is found that 

321f
3

v:b • * * 
s •• - 3hc3 Vtn.lLn.+IL, •• IL, •• +IL •• blL ... ). 10.5 

A comparison of equation 10.5 wIth the expression derived in secllon 10.3.2 
(or a classical system shows that the result in the quantum case is in agreement 
with that for a classical oscillating; dipole, whose maximum dipole moment Po is 
given by 

l M •• ' • ') Po - ~x.bJ'%.b + J£,.bl',.b + ILsablLnb • 

Selection ru1es for rtIdiotiYe Innsitiom 

Angullu momentum (el«me dipole) 

The transition probability is seen from equation 10.5 to be finite provided at 
least one of the dipole matrix elements has a non·zero value. If all the matrix 
elements are zero, then clearly the transition probability is zero and the transition 
is sald to be forbidden. We now examine the matrix elements to establish the 
conditions under which they will have non·zero values, and the transition will 
consequently be allowed. 
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We are concerned basically with 

f "':»Po dT 

and corresponding integrals involvingy and z. To evaluate the integral. require. a 
knowledge of the wave functions of the two states. We proceed to consider the 
special case where these wave functions are of the form found in section 6.4 for a 
single particle in a spherical potential weD. The results we shaD arrive at are in fact 
of general validity. 

We express the volume integral in spherical coordinates, substitute 

x- rsinBcos"" 
represent the wave function as the productR(r}8(6)<1>{t/» and then have 

11;1 " 2. J R: RoTl dT f e: eo sin2 Bd6 f "': "'0 cos +d+. 
o 0 0 

Taking the third (or azimuthal) integral and substituting the solution 
4>(t/» =Ae'<m4> + B). we have for this integral. apart from constant factors. 

2. 2-f .-'m·~e'mb~cos+dofo=t f [e-lCm.-mb+lh' +e-lC ... -mb-1)~ld+. 
o 0 

where m. and mb are the magnetic quantum numbers of the two states. Now 
the expression 
2. f .'p~ dofo. 
o 
where P is integral, is zero unlessP = O. Hence the azimuthal integral is zero 
unless mil - mb = ± 1, in which case one of the two tenus in the above expression 
will remain fmite. By examining the corresponding integral for y it can readily be 
shown that exactly the same conditions apply. 

In the case of the z-coordinate} z is independent of t/J, and the azimuthal 
integral reduces to ... 
2. J e-l(m.-mb)~ d". 
o 

This integral is zero unless m. =mb. 
We arrive at the following conclusion, which is of general validity, namely that 

the dipole transition may take place only if the difference in magnetic quantum 
numbers of the two states, Am, is ± 1 or O. If Am = ± I. then Jl.zab =. 0 and, if the 
transition takes place. the radiation will correspond to that from the classical 
system of Figure 66. If am = O. then /lno = /l,..b = 0 and in this c .... if the 
transition takes place, the radiation will be as for the classical system of Figure 65. 
We later give further consideration to these two cases. 
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If. still in terms of the wave functions of a single particle in a potential weD. 
the 'polar' integral 

J e: eo sin26 dB. 

which will involve an orbital quantum number I as well as m for each state, is 
evaluated, it is found that, in addition to the lim requirements above,lil must be 
± 1; otherwise the polar integral is zero. 

Up to this point we have ignored the intrinsic spin of the single particle. We 
have to take the spin into account in order to consider the selection rules 
applicable to the total angular momentum of the particle.i. wherei = I ± £ These 
selection rules are to be found by using a more complete wave function taking into 
account the spin-orbit interaction. Here we are content to quote the results of 
such an analysis, namely that for electric dipole transitions Ai =. ± I, as for lil. 
but that the further possibility of ai = 0 also exists. In this latter case t;l is 
compensated by a change in the spin quantum numbers. a 'spin flip' taking place. 

We can now translate the selection rules into terms of the initial and final spin 
quantum number of two nuclear states. In terms of the single·particle shell model, 
I. the nuclear spin. is to be equated wlthi for an odd·A nucleus. and the angular. 
momentum selection rule for electric dipole radiation becomes AI = ± I or O. 
The validity of this rule is not limited to states which are describable in terms of 
the single·particle shell model but is of general validity. Further. it applies also to 
the states of even·A nuclei, with the proviso that a transition from a state having 
Ia = 0 to a state having Ib = 0 (which is a particular case of aI = 0) is forbidden. 
This forbiddenness is understandable since in this case both initial and fmal states 
are states of spherical symmetry. 

We can represent the angular-momentum selection rules graphically. In 
Figure 68 the relationships which have to exist between initial- and final.state 
values of I and m for a single particle are shown for electric dipole transitions. 

(al 

AI- +1 
4m=O 

(bl 

AI_ +1 
4m=+1 

Figure 68 Vector diagram illustrating the selection rules for electric dipole transitions 

We can maintain, in considering these diagrams, the picture of a photon having 
an associated spin 1. In the c ... of Figure 68(b) we recall that for am = ± 1. 
Pub = O. We therefore have a situation analogous to the classical case illustrated 
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in Figure 66. The radiation emitted along the z-axis is circularly polarized and 
carries angular momentum directed along its direction of propagation. This 
angular momentum carried by the photon is of course exactly equal to the 
angular momentum lost by the nuclear system. The radiation emitted in the xy 
plane is plane polarized and carries angular momentum at right angles to its 
direction of propagation. i.e. parallel to the z·axis. as before. At oblique angles 
the polarization is elliptic, i.e. a combination of the two cases discussed above; 
the associated angular momentum is still parallel to the z-axls. In the case of the 
situation represented in Figure 68(a), we recall that for Am = 0,11".., = Il".b = 0 
and therefore the conesponding classical situation is that of a dipole oscillating 
along the z-axis as in Figure 65. In this case there is no emission in the z.direction 
and the radiation in all other directions is plane polarized with the associated 
angular momentum lying parallel to the xy plane. 

In the case of the nucleus, the diagrams of Figure 68 are still valid if we replace 
I. and Ib by I. and lb. However in the case of the nucleus there is the additional 
possibility that III = O. In this event I, and Ib are to be represented as making 
equal angles with the z·uis and hence being two generators of a cone with axis 
Ot such that I. = Ib + I . This vector representation is geometrically possible for 
all values of I. and Ib except I. =Ib z 0, which, as we saw above, is not an allowed 

transition. 

10.5.2 Parity selection rules for electric dipole transitions 

If we apply the parity transformation to the function ~: X;b we fmd that there 
is a change of sign if.p. and .pb,have the same parity and no change of sign if.p. 
and .pb have opposite parity. This behaviour arises, of course, from the odd parity 
of the f.ctor:c. It follows therefore that the Integration over all space of this 
function leads to a finite result only if 1/1. and Wb have opposite parity. Hence we 
conclude that for electric dipole transitions a change of parity between initial and 
final states is a necessary condition for at least one of the matrix elements to be 

non-zero. 
We note that the condition Al = ± I ensure. that this parity rule is obeyed. 

This is so because the parity of the wave functions is determined by the sign of 
(_ 1'/. We see that this holds for the single.pastic\e wave functionsa. follows. In 
spherical coordinates, the parity transformation amounts to substituting 11' - 6 
for 6, fI' + 4J for; and leaving r unchanged. These angular transformations lead to 

tIJ .. (,,+cfo)-(-I),ml tlJm(cfo) 

and 9("-cfo) - (-I)'+I.'9(8). 

Hence when we take the products of these with the radial wave function we have 

o{I(r,,, - 8,,, - cfo) = (-I)'o{I(r. 8, cfo)· 

It therefore follows that two states differing by one in I-value, as do the states 
involved in an electric dipole transition, necessarily have opposite parity. 
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IG.S3 Selection rules for radkltive transitions In the general case 

Many radiative transitions are observed to take place between states whose spins 
and parities do not satisfy the above selection rules. Only in the case of I. - O-+
Ib ·0 is the transition found to be absolutely forbidden. To understand why the 
transitions still can take place, despite the selection rules not being obeyed. we 
have to have regard to the assumption made above concerning the nature of the 
interaction between the nucleus and the electrostatic field. It was assumed that 
the electrostatic field acted unifonnly throughout the nuclear volume. This 
uniformity is only true to a first approximation and arises from the nuclear 
dimension being very much smaller than the wavelength of the radiation. It 
amounts to taking the first term in the series expansion of the hannonic function 
representing the space dependence of the electromagnetic wave. There will be 
further terms Involving higher powers of :c1'A which we negiected. If these terms 
are included, then the matrix element has to be expressed as a sum of terms of 
the form 

J ",:XL"'b dT, 

where L is now 1. 2. 3 •. . .. The terms in the series get progressively smaller as L 
increases. However, if, because of a contravention of the selection rules derived 
above, the term conesponding to L = 1 becomes zero. then the transition 
probability is dominated by the term corresponding to L = 2. This Integral is 
termed the electric.quadrupole, or E2, matrix element. 

There is the further consideration that no allowance has been made for the 
interaction of the magnetic field of the wave with the currents and magnetic 
dipoles involved in the system. Allowance for this interaction introduces magnetic
multlpole matrix elements corresponding to magnetic multipole transitions, which 
we denote by Mi, M2, etc. 

We consider first the selection rules for E2 transitions. These are arrived at by 
a consideration of 

"':x''''b dT. 
Applying the same simple argument as we applied to the electric dipole (i.e. El) 
transition above, we see that, since Xl has positive parity. the initial and fmal 
states must be of the same parity. otherwise the E2 matrix element will be zero. 
The arguments made above with respect to the single-particle wave functions can 
be repeated for the E2 matrix element and the selection rule arrived at is that 
Al = ± 2, ± 1 or 0, with again I. = 0 -+Ib ·0 being forbidden. 

We consider now M 1 transitions. We noted above that a magnetic dipole behaves 
in the opposite manner to an electric dipole under parity transformation. It 
follows that the parity selection rule for Ml transitions is that the state. Involved 
be of simiJar parity. The angular.momentum selection rules are found in the case 
ofM) transitions to be the same as for EI transitions. 

In the case of an L-pole transition, the photon can be considered to take away 
an angular momentum Lh. According to the conservation of angular momentum, 

189 Selection ruJes for radiative transitions 



10.6 

the vectors 1,.1. and L must therefore form the sides of a triangle. This limits the 
possible values of L, for given J. and Ib values, to those satisfying the conditions 

II,-I.I.;;L.;;I.+I •. 

The electric or magnetic character of the transition is detennined by the relative 
parities of the initial and final states, there being no change of parity for electric 
transitions of eyen L-values and for magnetic transitions of odd values. 

Transition rates 

The transition rate given by equation 10.5 we now see to be valid for El 
transitions only. When we pass to higher multipoles we observed above that we 
are incorporating additional tenns from the expansion of a space factor exp(i2rrxfA) 
in the expression for the field of the electromagnetic wave. As therefore we pass 
from one multipole order to the next we have to expect an additional factor xf1. 
10 appear in the interaction energy involved in the matrix element. Not only does 
this introduce the next highest nuclear multipole into our considerations by 
increasing by one the power ofx. but it introduces a factor proportional to II). 
(and hence proportional to vable) into the matrix element. The transition rate, 
being proportional to the square of the matrix element, in the general case is 
therefore expected to be proportional to (vable)2L + 1. 

A detailed treatment of the general case. given by J. M. Blatt and V. F. Weisskopf, 
Theoretical Nuclear PhysiC!. Wiley. 1963. shows that the result may be written as 

.>.- - -- B L 
8.-(L+ 1) 1 [2mo,.]'L+l 

L[(2L + I)!!)' Ii c 0'( ) • 

where (2L + I)!! represents the product 1 x 3 x 5 x ... x (2L + 1). When ).. here the 
transition probability. is written in this way I all of the dependence of the transition 
rate on the nuclear wave functions is contained in B.b(L). which is termed the 
reduced lransilion probobilily. When comparing transition rates for transitions of 
the same character, for different pairs of states, complications arising from the 
different transition energies are clearly avoided by comparing the values of BIb(L) 
rather than comparing the values of the transition probability. 

In the case of magnetic transitions, current density plays the role played in 
electric transitions by charge density. This introduces a factor vic in the matrix 
element. and hence a factor (v/C)2 in the transition probability for magnetic 
transitions as compared to electric transitions, where v is the nucleon velocity 
and is approxbnately ,be. The existence of nuclear magnetic moments complicatel 
the issue but does not prevent the magnetic transition rate being significantly 
smaller than an electric transition of the same multipole order, due allowance 
having been made for the energy dependence. 

The calculation of exact values for transition probabilities requires a detalled 
knowledge of the nuclear wave functions of the states; usually this is not available. 
In fact an excellent test of any proposed wave functions is to use them to predict 
transition rates which may then be compared with measured values. For many 
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purposes, however, it is valuable to compare measured transition rates with those 
calculated on the basis of the extreme single·partiele model. On the assumption 
of this model, namely that the transition involves a change of state of one nucleon 
only. Weisskopf (195 I) arrived at the following estimates for reduced transition 
prObabilities in the case of electric and magnetlc multipole •. 
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Figure 69 Half·lives for electric multipole y·rav emission (Weisskopf estimates) 
with (solid lines) and without (dashed lines) correction for internal conversion 
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B(EL)=~[ 3R
L]2 

4". L+3 ' 

B(ML) _ 10 [~]2 B(EL), 
MeR 

where R is the nucJear radius and M is the proton mass. We may further introduce l 
R == RoA J and replace theR.dependence byanA.dependence. 

These estimates can now be converted into half-life for the excited slate. The 
results of such a conversion are shown in Figures 69 and 70 plotted against the 
energy of the transition. It is seen that the lowest multipoJe order permitted by 
the selection rules is favoured and that electric transitions always proceed faster 
than magnetic transitions of the same multipole order. 

Le •• f widths 

We now consider a transition (rom an excited state to the ground state, which we 
assume stable. lust as in the classical theory, as we saw in section 10.3.2, a 
radiating system is damped and emits a range of frequencies, so in the quantum 
case we have to assume that the energy level corresponding to an excited state 
has an energy width which we represent by r. We can relate r to the mean life T 

of the state by Heisenberg's uncertainty principle, which gives 
r,-li. 
As in the classical analogue, the energy of the radiation emitted will not, strictly 
speaking, b. monochromatic but will have a spectrum /(E) given by 

constant 
/(E) = (E _ EO)2 + tr2' 

where Eo -E. -E
b

• 

If the final state is not stable but itself has a finite decay probability, then it 
also will have a Ieyel width and r wilf be the sum or the widths or the two leyels. 

Since h :: 1/T and rT = 11, the values of transition probabilities quoted in 
section 10.6 can be readily translated into level widths. In the case of electric 
transitions the first few level widths are as follows (Eo in MeV;R::a 1-2 xA~ fm) 

(EI) = 6·8 x 1O-'AIE~eV, 

(El) = 4-9 x 1O-8AIEg eV, 

(E3) = 2-3 x 1O-14A2EJeV. 

In the case of magnetic transitions the results are 

(MI) = 2·f x 1O-'Eg.V, 

(M2) = 1·5 x 1O-8A1EgeV, 

(M3) = 6'8 x 10-15 Al EZ .V. 

Level widths 
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The resonances are thus seen to be very sharp, i.e. the energy width of the 
level is a very small fraction of the y·ray energy. 

Internal conversion 
[n the above discussion we have proceeded on the assumption that the system is 
isolated except for its interaction with the electromagnetic field. This in fact is 
not strictly correct either for atoms or for nuclei. In nonnal circumstances atoms 
are frequently in collision with other atoms and in their collisions energy·transfer 
processes are involved. As a consequence, there will always be a probability of 
de..excitation of an excited state by a collision in competition with de-excltation 
by radiation. Nonnally this competition is sUch, in the atomic context, as to 
sUppress all radiative transitions except that of the electric dipole. 

Nuclei , on the other hand. are isolated very effectively from each other in 
ordinary matter by the effect of their screen of orbital electrons. However, in 
the nuclear case. the very existence of orbital electrons provides a method of 
de-excitation which competes with radiative transitions. In the neighbourhood of 
the nucleus the field of the nuclear multipole will act on any electron in that 
region of space and can communicate the full transition energy to the electron. 
This energy will usually be much greater than the electron binding energy and 
consequently the electron will be ejected from the atom. This process is rather 
misleadingly referred to as internal conversion. It must not be thought of as the 
emission by the nucleus of a photon which is subsequently absorbed by the 
atomic structure of the same atom. This is a possible process but is much less 
likely than internal conversion. Internal conversion as a process is distinct from. 
and competes with. photon emission. The energy is communicated directly to 
the emitted electron. not by the intervention of an electromagnetic wave. 

The competition with radiative transitions is clearly brought out by defming 
the conversion coefficient a as 

N. ,, - -. 
NT 

where N e and NT are the experimentally measured numbers of electrons and 
photons emitted in the same time interval from the same sample. On this 
definition a can take values from zerO to infmity . 

The energy of the emitted electron will be given by 

E.-Eo-Ea. 
where Eo is the transition energy and ED the electron·binding energy. In so far as 
electrons from different shells have futile probability densities close to the 
nucleus. electrons may be emitted from L, M •. • . shells as well as from the 
K.shell. These electrons will be e~perlmenlally distinguishable because of the 
difference in Ea- Experimentally we can therefore detennine OK' 0L' •••• where 

NK 
ClK - Ny 
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is defined in lenos of K .. leclrons only. (I follow. from these defllIitions that 
IX = ClK+ elL + a. M + •••• 

If now we introduce A.e to represent the probability that an electron be 
emitted and A. the probability that a photon be emitted we have 

A. ,,--
A. 

directly from the defUlition of Q . Internal conversion and radiative transitions are 
assumed to proceed as independent processes and hence the total transition 
probabililY A i. given by 
A = A.+ A,. 
On this view the lifetime of the state. which is proportional to the reciprocal of 
A. will be shortened by the existence of the phenomenon of internal conversion. 
Supporl for this view comes from the discovery by Bainbridge and others (1957) 
that the lifellme of a .lale in 99Tc was allered by aboul 0·3 per cenl by a change 
in the chemical composition of the sample. This effect can be entirely accounted 
for by the difference in the electronic wave functions of the two chemical 
compounds concerned. 

he can be developed. as ° was above, in terms of conversion probabilities 
involving electrons from the different shells. giving he :: AK + ~L + . . . . 

The calculation of conversion probabilities is in principle straightforward. We 
start with an initial state consisting of an excited nucleus and a bound electron, 
and end in a final state with a de-excited nucleus and an electron in a state in the 
unbound continuum. The transition rate has then to be found from the square of 
the matrix elements connecting the two states and the density of final states (the 
so·called golden rule which we quoted in section 4.9). The mathematical delails 
are of fonnidable difficulty even for relatively simple transitions (see E. Segr~. 
Nuclei and Particles, Benjamin, 1964). The results of the mathematical analysis 
show that the dependence of A. on the nuclear multipole moments is exactly the 
same as the dependence in the case of),., . As a consequence cr, the internal 
conversion coefficient, is independent of the nuclear moments. This has made 
internal conversion a very important phenomenon in unravelling the character of 
particular nuclear transitions. ° is dependent on the Z·value of the atom involved, 
as this controls the number of available electrons. cr also depends on the transition 
energy Eo, on the multipolarity of the transitions and on the electric or magnetic 
character of the transition. These latter factors control the field strength involved 
in the process. 

The Z-dependence of a follows a high positive power (Z3 in the case of aK). 
The Eo dependence follows a high negative power. As a consequence. internal 
conversion has its greatest relative importance for high·Z nuclei and low·energy 
transitions. It is also in these circumstances that the dependence on the character 
of the multipolarity is greatest. Hence internal convenion has its most significant 
experimental contribution to make for low-energy transitions in heavy nuclei. Its 
effectiveness in providing decisive evidence of the character of the transition can 
be seen from Figure 71, which shows the variation to be expected in the conversion 
coefficient for transitions of different multipoJe order. 

196 Internal conversion 



il" 1 DO\,: 
I EO 
• 
~ 

~ 
j 
~ 10 .. 
0 
u 
c 

i " > E c 
0 
u 

~ 

~ ,. 
~ • 
" 0·' 

0-01 

10. 31 

10-· 

10- 51 ' ' ' " ", J 
0 -1 0.\5 0.2 0·3 0·4 0·6 1·5 2 3 4 

nuclear lIanlltion anergyl M.V 

Figure 71 K-shell internal conversion coefficients as a function of r'luclea
r 

transition energy for zirconium (Z ::: 40) 

In addition to providing valuable information about the character of radiative 
transitions, the studies of internal conversion are important in two other respectS. 
Firstly I a measurement of the energy of the emitted electron. together with a 
knowledge of the electron binding energy. permits a measurement of the transition 
energy to be made. This is a useful alternative to the methods ofy·ray energy 
measurements based on photoelectron production in materials external to the 
source. Secondly. if the transition energy is otherwise known, a measurement of 
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the electron energy pennits an accurate detennination of the electron binding 
energy_This knowledge can then be used to detennine the Z of the atom within 
which the transition took place_ The necessary experimental accuracy is set by 
the fact that there is a difference of about 2·5 keY in the binding energy of 
K.electrons in heavy nuclei differing by one in the Z·value. The importance of 
this Z-detennination lies in being able unambiguously to decide whether a y-ray 
transition took place before or after an ct- or ~.(iecay. 

Finally it is to be noted that, foUowing intemul conversion, the atom is left 
with a vacancy in one of the electron shells. There will therefore be the emission 
of an X-ray or an Auger electron. It is sometimes more convenient to detect the 
X-ray or Auger electcon rather than the conversion electron, and this infonnation 
can be used to determine Ne• due allowance being made for the X-ray fluorescence 
yield (i.e. the number of X-rays emitted per vacancy). 

Internal pair production 

According to the 'hole' theory of positrons, the excited nucleus is immersed in a 
sea of electrons occupying and completely nIUng states of negative energy which 
correspond to the negative square roots of p2C'l + m~l.4. If the transition 
energy is equal to 2mo c'l := 1-022 Me V. then sufficient energy is available to 
raise an electron from the highest of the negative-energy states to the lowest 
state in the positive continuum given by the positive square roots of p'lc1 + m~c4. 
Should this occur then a stationary electron together with a vacancy in the highest 
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Figure 72 Internal pair conversion coefficients as a function of transition energy 
for nuclei of low and high Z-value 

Intemal pair production 



negative-energy state is produced. The vacancy constitutes a positron of zero 
kinetic energy. If the transition energy is greater than 2mo c

l 
then an electron may 

be lifted from a lower·lying negative-energy state across the energy gap to a higher
lying state in the continuum. This constitutes the production of an electron-positron 
pair, the particles sharing the energy Eo - 2mocl

. The availability of electrons to 
the nucleus does not, in this phenomenon, depend on Z. In fact the process is 
more likely, other things being equal, in light as compared to heavy nuclei. Also 
the likelihood of pair production increases with increasing transition energy. It is 
also favoured for low as compared to high mullipole orders. In all these respects 
the probability of internal pair production behaves oppositely to that of internal 

conversion. 
In Figure 72 the internal pair conversion coefficient, i.e . the ratio of pairs 

produced to photons emitted, is plotted as a function of energy for different 
multipolarities. The discrimination between muttipole orders decreases with 
increasing transition energy. At higher energies, multipole orders can better be 
distinguished by the angular correlation between positron and electron, the angle 
between the particles being on average smaller the higher the multipole order. 

10.10 0 ~ 0 Transitions 
We saw that 0 ~ 0 transitions cannot take place by the radiation of photons. 
While the neld outside the nuclear volume is the same for both states, and 
therefore no electromagnetic field is generated in the transition, there can be a 
change in radius and a change in field within the nuclear volume. When there is 

no change in parity between the two states, internal conversion is a possible 
process. However, the transition rate will be small because the effective volume is 
small compared to the volume within which internal conversion can take place 
for other transitions. When the transition energy exceeds 2mo el

, internal pair 
production is also possible, the pair being produced within the nuclear volume. 
There are several examples known of 0'" ~ 0'" transitions proceeding by internal 
conversion and others of similar transition proceeding by pair production. 

In the case of 0"" ..... 0- transitions, internal conversion and pair production, as 
well as single·photon radiative transitions, are forbidden. It would appear that 
the most likely mode of decay in such a case would be two-photon emission, or 
one-photon emission together wJth one conversion electron. Processes such as 
these are physically possible in the case of all transitions but have a very low 
probability compared to the processes discussed above. 

There is no known excited state which, for lack of a possible decay mechanism, 

has an infinitely long life against de-excitation. 

10.11 The measurement of energy-level spacing 
We begin our consideration of the experimental measurements of the properties 
of excited states by surveying brieny the more important techniques which may 
be used for mapping out the energy levels. The problem is that of the accurate 
measurement of the energies of the emitted l'-rays. Many techniques are available for 
l-ray energy measurements and we proceed to outline the most important of these. 
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IO.ln eu",ed-crystal spectrometer 

The use of a crystal lattice as a diffraction grating is well established in X-ray 
technology and provides an accurate way of determining the wavelength of the 
X.ray. Fo r reflection from parallel plane.s of atoms which have a separation d, 
the Bragg angle at which reinforcement occurs is given by 

A",,2dsin 8, 

where 8 is the angle between the X-ray beam and the reflecting surface. The 
extent to which this technique can be extended in the direction of shorter 
wavelengths, i.e. higher quantum energies, is governed by the extent to which 
the crystal reflecting power falls off with increasing quantum energy and the 
extent to which the Bragg angle gets impractically small. 

While the first of these effects has to be accepted, the second can be 
ameliorated by experimental ingenuity. To see the smallness of the Bragg angle 
involved in extending the technique to y-ray measurements, let us consider the 
application of the method to the measurement of the wavelength of annihilation 
radiation. This radiation, which is emitted when positrons annihilate on electrons 
at rest, is a very convenient standard radiation with which to calibrate l'-ray 
spectrometers. When an electron of zero kinetic energy encounters a positron at 
rest it makes a transition down to the highest of the negative~nergy states. Thus 
the energy of the gap, namely 2mo c

l , is available for radiation. However, in order 
that the fmallinear momentum of the system be zero, as was the initial linear 
momentum, two oppositely directed photons have to be emitted. Each photon 
therefore has an energy of mo cl , which is equal to 510·98 keV. The wavelength 
of this annihilation radiation is therefore 

hc 
A - -- _ 2·43 x 10- 9 mm. 

mo c2 

For calcite, which has a lattice constant d = 3·02 X 10- 10 m, the Bragg angle for 
annihilation radiation is 8 = 4 X 10-3 rad. This means that a high degree of 
parallelism in the incident beam and a long distance of travel following reflection 
are necessary to separate the reinforced reflected beam from the incident beam. 

In most situations encountered in r-ray spectroscopy the radiation is emerging 
from a small specimen so that the geometry called for using an orthodox crystal 
would impose a very low solid angle for acceptance of photons, and would lead 
to very low efficiencies. An ingenious method in which the crystal is curved 
enable, the Bragg angle for photon, sent through the crystal to be kept constant 
over a larger solid angle of emission from a point source (1. W. M. Du Mond, 
ExperimentalNuciearPhysies, Volume 3, Wiley, 1959) and makes it more 
practical to screen a y-ray detector, set to detect reflected photons from the 
incident beam. Willl a curved crystal, the annihilation radiation spectrum, 
wavelength 2·43 x 1O- 1 'l m, has an instrumental full width at half-maximum of 
0·3 x 10-13 m, i.e. about J per cent of the wavelength. The accuracy of 
detennination of the position of the peak, i.e . the absolute wavelength, is believed 
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to be 0·04 per cent. Working under these c"onditions the overall detection 
efficiency is 5 x 10-8 counts per photon emitted from a point source. 

10.11.2 Magnetic spectrometers 

The y-ray energy detennination reduces to the measurement of the energy of an 
electron if advantage is taken of internal conversion or if the photons are allowed 
to interact with atomic electrons in a thin radiator and thus to produce 
photoelectrons, Compton electrons or electron-positron pairs (see Appendix C). 
The secondary electrons may then be sent into a uniform magnetic field Hand 
their curvature p in the plane perpendicular to the field measured. 

The electron momentum is then given by 30 OOOHp, where H is in gauss, pin 
metres and the momentum in eV/c. Since the electron kinetic energy is comparable 
to its rest mass in these experiments, we must use the relativistic relation 

E'_p2 c2 + m2 c"" • 0 

to find the total energy of the electron. The rest·mass energy mo c2 may be 
subtracted from this to find the kinetic energy Te. If the electron is an internal 
conversion electron or a photoelectron from the radiator, then we have simply to 
add the appropriate binding energy to Te to arrive at the transition energy. If the 
electron is a Compton electron or an electron from a pair, then the energy Te for 
a given value of H is no longer unique. A spectrum has to be measured and 
compared with theoretically predicted spectra for a range of y-ray energies. 

Energy resolution in a magnetic spectrometer can only be improved at the 
expense of reducing the solid angle of acceptance. A typical practical compromise, 
in which the electrons are bent round a semicircle from a radiator to a detector 
separated by a distance 2p, provides 1 per cent energy resolution at a photon 
energy of 1 MeV with an efficiency of 10-11 counts per photon. 

10.11.3 Proportional counters 

A proportional counter usually consists of a fine wire running coaxially along a 
sealed cylindrical metal tube and insulated from the tube. The wire is raised to a 
positive potential with respect to the tube. If any ionization takes place in the 
sealed volume of gas, the electrons produced are accelerated towards the wire. In 
the high field gradient in the neighbourhood of the wire an electron can gain 
enough energy between collisions to ionize the next gas molecule it encounters. 
In the resulting avalanche, the total charge collected by the wire can, with proper 
experimental design, be arranged to be proportional to the number of primary 
electrons produced by the ionizing particle. 

The gas amplification produced in this way can amount to 103 without any 
loss of proportionality. The collected current is then passed through a high 
resistance and the resulting voltage pulse amplifted to the height required to 
operate a pulse-height analyser. In the range of photon energies immediately 
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above the K-absorption edges of the gases used to fdlthe counter there is a high 
probability that a photon passed in through a thin window will be absorbed in the 
gas and produce a comparatively low-encrgy photoelectron, which will stop in 
\'Olume of the counter. In this way the counter, with a choice of a gas of high 
atomic number, such as xenon, for a filling, can for photons of energies of 
100 keY have a resolution of 3 per cent and an efficiency of 10 per cent. 

In some cases the sample may be in gaseous fonn and suitable for introduction 
as a counter gas. Then, for low-energy transitions, K and L internal conversion 
electrons will stop in the gas; they are detected with 100 per cent efficiency and 
a very accurate measurement. not only of the transition energy but of the ratio 
QK/aL is possible. 

10.11.4 Scintillation spectrometers 

Charged particles produce not only ionization along their tracks but leave a trail 
of excited atoms which de-excite by radiating photons in the optical range of the 
electromagnetic spectrum. The light output from the particle track is proportional 
to the energy dissipated by the particle, which will be Its total kinetic energy if the 
particle stops within the material. Certain crystals are quite transparent to this 
internally produced Ught. When this is so, the emergent light can be collected 
and passed to a photomultiplier. which will produce a charge proportional to the 
number of photons of light falling on its photocathode. This charge can be passed 
through a resistance and the voltage pulse amplified. Voltage pulses produced in 
this way and passed to a pulse.height analyser will then reproduce the energy 
spectrum of the charged particles. 

A SCintillating crystal, in addition to the necessary optical properties, requires 
to have a proportion of heavy nuclei incorporated in it if it is to efficiently convert 
incident photons into secondary electrons and stop them within its own volume. 
This condition is admirably satisfied by sodium iodide, which has found a very 
wide application in ,4ray spectroscopy. The crystal may be several centimetres in 
Unear dimension and large enough to be operated under conditions approaching 
total absorption of the incident photon. In this case, (a) when photoelectric 
absorption takes place, not only is the photoelectron stopped in the crystal but 
the subsequently emitted X-ray is also absorbed; (b) when Compton scattering 
takes place, not only is the scattered electron stopped but the degraded y-ray is 
absorbed and; (c) when pair production takes place, not only are both particles 
stopped but the annihilation quanta are also absorbed in the crystal. The crystal 
lilltt output is then proportional to the total energy of the photon and a single 
peak in the pulse distribution is observed for a single "(-ray energy. In most cases, 
however, all the secondary photons are not absorbed and subsidiary peaks, 
photon escape peaks, are observed in the spectrum. 

In the event of the source emitting two y-rays from a cascade within a time 
short compared to the resolving time of the crystal and the associated electronic 
apparatus (say 10'" s) then it is possible for both y·rays to produce light pulses 
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Figure 73 Energv spectrum of 6DCo measured with 10 cm x 10 cm Nal(TU 
crystal showing total energy peaks for the "(-rav lines at 1'17 MeV and 1'33 MeV 
together with the sum peak. The y·ravs were passed through a beryllium filter 

which add together at the photocathode of the multiplier. There is thus the 
possibility of a sum peak in the spectrum. An indication of the attainable 
perfonnance from a 10 cm x 10 cm cylindrical sodium iodide (thallium activated) 
crystal is given in Figure 73. The counts per emitted photon from a source can 
exceed 0 ·1 and, as is seen from the figure, the energy resolution is about 8 per cent. 
The energy resolution depends both on the statistical fluctuations in light emilled 
as a function of energy dissipated and in the variation of efficiency of light 

collection from different regions of the crystal. 
Scintillation counters offer very high efficiencies compared to magnetic 

spectrometers or curved..crystal spectrometers but.their resolution is considerably 

inferior. 

Solid-state detectors 

The advent of solid-state detectors has enabled y-spectroscopy to proceed with 
the high resolution of magnetic spectrometers and with an efficiency approaching 
that of heavy scintillators. This, as we shall see, has had very important 
consequences in experimental nudear physics. 
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The physical principle involved in solid-state detectors concerns electrical 
conductivity in a crystal. In the case of a perfect crystal, all the electrons are in 
the filled band which lies, with a band gap of about one electronvolt, below the 
conduction band. If two electrodes are connected to opposite faces of the crystal 
and a voltage dirrerence maintained between them, there will be no flow of 
current. However, a charged particle passing through the crystal can promote the 
electrons from the filled to the conduction band. There is a consequent flow of 
current. The energy necessary to promote an electron and thus produce an 
electron-Ohole' pair is on the average about three electronvolts, which is to be 
compared with thirty electronvolts necessary to produce an ion pair in a gas. The 
movement of the electron and the 'hole' through the crystal is very filSI compared 
with the movement of electrons and positive ions in a gas counter. It is therefore 
to be expected, because of the larger number N of electron-hole pairs produced 
compared to ion pairs for a given energy diSSipated, that the statistical variation, 
which will be proportional to I/VN will be smailer and that this will lead to 
better energy resolution. At the same time, because of the high mobility of the 
electrons and holes, the counter can have a very fast response time. 

The achievement of a practical detector based on this principle is not however 
a simple matter. In a real as distinct from an ideal crystal, the conduction band is 
never in fact completely unoccupied. Electrons are raised into it by thermal 
fluctuations and, usually more importantly I by the action of impurity centres in 
the crystal. In the semiconductors silicon and germanium, it has proved possible 
by 'doping' (Le. by introducing impurities in a controlled way) to compensate for 
the unavoidable natural imperfection of the crystal and so to approach the 
behaviour of an ideal crystal. This has been achieved by drifting lithium ions 
moving under the influence of an applied electric field into a pure silicon or 
germanium crystal. Germanium has a special interest for y-ray spectroscopy 
because of its high atomic number. In practice there is the complication that the 
crystal has to be used and stored at liquid·nitrogen temperature, otherwise its 
performance is seriously impaired by lithium diffusing out. 

Germanium crystals with a sensitive volume of a hundred cubic centimetres 
are now commercially available. Their effiCiency is such that the number of 
counts in the total absorption peak of the spectrum can be 2-3 per cent of the 
number ofy-rays falling on the detector for y·rays of two million eleclronvolts 
energy. The efficiency rises to much higher values at lower energies but falls off 
quite rapidly at higher energies. The intrinsic time resolution of the detector can 
be less than 10-8 s. 

A spectrum of 6OCo measured with a 40 cm3 lithium drifted germanium 
detector is shown in Figure 74. Comparison of this spectrum with the sodium 
iodide spectrum in Figure 73 gives a clear indication of the improvement effected 
by the development of solid·state detectors. With their help it is now poSSible, 
even when only comparatively wenk sources are available, to measure level 
spacing to five significant figures. 
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