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Chapter 1 
Introduction 

1.1 Historical introduction 

By the end of the nineteenth century, the successful development of chemical 
science had firmly established the concepts of molecule and atom. A sample of 
a chemical compound, it was believed, could be divided into parts, the parts 
having the same chemical behaviour as the original sample. Subdivision could 
continue without change in the chemical behaviour until the resulting specimen 
consisted of a single molecule, but if subdivision continued beyond this stage 
the chemical behaviour was no longer unaffected. Molecules were believed to be 
assemblies of a comparatively small number of atoms of which about ninety 
different types were thought to exist, each type corresponding to a chemical 
element. To take a simple example, the molecule of water was considered to be 
built from three atoms, two corresponding to the element hydrogen and one to 
the element oxygen. Its behaviour was that of water (or water vapour) unless it 
was dissociated into its component atoms, in which case it behaved as a mixture 
of the gaseous elements oxygen and hydrogen. Each type of atom was believed 
to be of different structure, and this structure in some way determined the 
chemical behaviour of the element with which the atom was associated. 

Shortly before the beginning of the present century, there were indications 
that, just as molecules had internal structure in the sense of being constructed 
from atoms, so atoms themselves had structure and were built from more 
fundamental entities. The discovery of the electron (J. J. Thomson, 1897), which 
was found to be associated with .!l wide range of materials of different chemical 
behaviour, and the realization that its mass was very much less than that of the 
lightest atom, provided an early example of a possible 'subatomic' particle. At 
this time too, the study of radioactivity, a phenomenon Becquerel had stumbled 
upon, in 1896, in an investigation into the fluorescence of uranium salts follOWing 
the then recent discovery of X-rays, provided examples of parts of atoms being 
ejected in some form of internal reorganization. Various models conferring 
internal structure on the atom were current in the first decade of this century. 
Rutherford in 1911, on the basis of alpha·particle scattering (which is discussed 
in detail in Chapter 3), proposed a new model. This model, with features added 
by Bohr in 19\3, remains the basis of present-day theory. 
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1.2 The Rutherford-Bohr atom 

According to the currently accepted picture, the atom is a compuatively diffuse 
empty structure, having a concentrated core or nuc/euJ. Orbiting around the 
nucleus at distances very much greater than nuclear dimensions are electrons. 
The dimensions of the outennost electron orbit! set the size of the atom. as 
strong repulsive forces operate when atoms come so close together that their 
electron orbits overlap. The mass of the electrons represents a very small fraction 
of the total mass of the atom. They are held in their orbits by the Coulomb force 
of attraction between their negative electric charge and a positive charge which 
is assumed to reside in the nucleus. At distances greater than atomic dimensions, 
the positive ebarge in the nucleus will be 'screened' by the negatively ebarged 
orbiting electrons. If the screening is not complete, that is, the charge in the 
nucleus is not completely compensated by the charge of the electrons. then 
additional electrons will be coUected from the surroundings until the neutralization 
is exact. 

Moseley 's work (1913) on X.rays enabled the chemical elements to be placed 
precisely in order of increasing frequency of characteristic X-radiation. This 
order also gave the best fit of the elements into the periodic table, which had 
been developed as a means of revealing the pattern of chemical behaviour in the 
progression from lighter to heavier elements. The position of an element in this 
order fixes its atomic number (or chorge number) which is denoted by Z. This 
number ranges from J for hydrogen to 92 for uranium, the highest value for a 
naturally occurring element (see Appendix E). The simple hypothesis that the 
number of orbiting electrons in an atom may be equated with Z turns au t to be 
tenable. This hypothesis demands that the nuclear charge be + Ze, where e is 
the electric charge on an electron. By alpha-particle-scattering experiments 
Chadwick (1920) was able to measure the charges on the nuclei of platinum, 
silver and copper. The values found experimentally were in good agreement with 
+ Ze in each case. 

1.3 The mass of the atom 

Appeal to Avogadro'S hypothesis, that 'equal volumes of all gases under the same 
conditions of temperature and pressure contain the same number of molecules" 
enables the relative weights (and hence masses) of molecules to be obtained from 
a comparison of gas densities. From a knowledge of molecular composition, in 
terms of constituent atoms, relative atomic weights may then be deduced. 
Standard atomic weights, as used in chemistry, are obtained from these relative 
values by derll1ing the atomic weight of oxygen to be 16. 

If the mass of an atom in absolute terms is required, then the total number of 
molecules in a given volwne must be known. Usually the volume chosen is the 
gramme-molecular volume, which is 22·4 l. At 0 lie and one atmosphere pressure 
the number of molecules in this volume is known asA vogadro's constant. By 
several independent experimental methods estimates have been made of this 
number and the results are all in good agreement with the value 6·023 x 1023. 
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Since 22·41 of hydrogen at O·C and one atmosphere pressure weigh 2 g, and 
since there are two hydrogen atoms per molecule, it foUows that the mass of the 
hydrogen atom Is 1·67 x 10-" g. Numerically this is the reciprocal of Avogadro's 
constant. 

Some, but not all, ebemical atomic masses are close to integral multiples of 
the hydrogen mass. ThIs led to the very early suggestion, made by Prout in 1815, 
that the atoms of all elements are combinations of hydrogen atoms. 
Unfortunately the existence of elements whose ebemical atomic masses feU half· 
way between integral multiples of the hydrogen atomic mass constituted an 
insuperable objection to this simple hypothesis. However t the situation was 
basically altered by the discovery of the existence of is%pes. This discovery 
arose in the chemical investigation (Soddy, 1906-13) of the products of 
radioactive decay. To take one instance, lead was produced by the decay of 
radium F. Lead was also produced by the decay of thorium C'. The two forms 
of lead were chemically indistinguishable from eaeb other (and from ordinary 
lead) but one was found to have atomic mass 206, the other 208. These were 
then said to constitute two different isotopes oflead. The work of J. J. Thomson 
(1913) on positive ionsrevealed that there were two distinct isotopes of different 
mass present also in neon. It is now known that very many of the chemical 
elements occurring in their natural fonn, including hydrogen and oxygen, consist 
of a mixture of isotopes (see Appendix A). The chemical atomic mass, in the case 
of an element which has two or more stable isotopes. is an average value which 
depends on the relative abundance of the isotopes. If now we consider the isotopic 
masses instead of the chemical atomic masses, then, as win be discussed in detail 
later, a mass scale can be dermed on which all isotopic masses have a value lying 
close to an integral number. For any particular isotope this integral number is 
called the tnIlSS number and is denoted by A . 

1.4 The size of the atom 

Since the atomic weight of oxygen is sixteen, the weight of a water molecule is 
approximately eighteen times the weight of a hydrogen atom, l.e. it is about 
30 x 10->4 g.ln I em' of water, which weighs I g, there are thus 1024/30 
molecules. Each molecule therefore occupies 30 x 10-30 m3, and so the 
molecular linear dimension must be approximately 3 x 10-10 m. By simple 
arguments of this kind the atomic radius, assuming the atom to be spherical, 
is deduced to be of the order of 10-10 m. Alpha-particle.scattering experiments 
show the uranium nucleus on the other hand to have a radius smaller than 
3 x 10-14 m. We thus see the extent to which the atom is 'a diffuse empty 
structure', The radius of the nucleus is about 10-4 times the radius of the atom. 
If the nucleus is scaled to the size of the earth (6400 km radius) then the atom 
would extend to ahout 64 x 106 Jun, that is, to a distance comparable to the 
sun's distance from the Earth. 
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I .S Constitution of the nucleus 

We have seen in section 1.3 that the atom of an isotope of mass number A is 
quite closely A times the mass of the lightest hydrogen Isotope. In so far as the 
mass of the atomic electrons is negligible compared to the mass of the nucleus, 
this means that the mass of the nucleus is about A times the mass of the nucleus 
of the lightest hydrogen isotope. The latter nucleus, which we would expect to 
be the simplest of all nuclei, is given the name prolon; it has A = I and Z = 1. 
A simple hypothesis which suggests itself is that the general nucleus consists of 
A protons andA Z electrons, thus having a mass approximately A times the 
mass of the proton, and a net positive charge of Ze . However. as we shall see 
when we come to discuss intrinsic angular momentum or ·spin'. such a 
hypothetical assembly in certain cases does not have a spin in agreement with 
the measured nuclear spin. There are additional objections based on the high 
energy that electrons would necessarily have if confined to a volume of nuclear 
dimensions. With the discovery of the neutron (Chadwick, 1932) another and, 
as it proved, satisfactory hypothesis could be made. The neutron has no charge 
and has a mag; almost, but not quite, equal to that of the proton. It is convenient 
to introduce nucleon as a generic term for a particle which is either a proton or a 
neutron. We can then consider a nucleus to be built from Z protons and N 
neutroRS. It will have a mass number A provided Z + N· A. In other words it 
contains A nucleons. It is in these terms that the nucleus is presently pictwed. 

Any two of the three integersZ,N,A completely determine the nuclear species 
or nuclide under discussion. A nuclide is usually denoted by its chemical symbol 
with a prefiX indicating theA-value. A second lower prefix may be used to 
indicate the Z-value, though this of course is not necessary because the Z-value is 
already fIXed by the chemical symbol. Thus the lighter of the stable helium 
isotopes is denoted by 3He or by ~He. 

A useful plot in common use on which to present nuclear properties' is shown 
in part in Figure 1. With N as abscissa and Z as ordinate, each nuclide has its own 
square on the chart. Since the chemical behaviour is determined by the number 
of orbiting electrons (Le. the Z-value) all the isotopes of a given chemical element, 
having the same Z-value, lie on a horizontalUne. Nuclides having the same N-value, 
called isotones,lie on a vertical line, while nuclides having the same A -value, 
called isobars,lie on a Une with a backward slope of 4S·. 

1.6 Units 

Having outlined the nature, size and mass of the structure, the atomic nucleus, 
which is the subject of our study, we conclude these in troductory paragraphs 
with a few remarks concerning the units to be employed. 

The praiseworthy attempt to achieve a standardized set of units in all 
scientific applications by the adoption of the SI (Systeme International d'Uniles) 
units (International Conference on Weights and Measures 1960) has not yet led 
to the displacement of the units introduced by the pioneers in nuclear physics. 
The natural resistance to change, however trivial, in mental habits is-supported 
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in some instances by the requirement for special units (for example nuclear 
magneton) which are not likely to have applications in outside fields. The 
relationships to the SI units are usually straightforward and these are included 
in Appendix D. 

It is a happy coincidence that the unit of lenglh , the femlomeler (1O- lS m), 
abbreviated to fm, which is the order of size of the nucleus, allows, without 
causing confusion, the continuation in the use of the name 'fermi' for this unit 
in honour of the Italian physicist who pioneered mnjor developments in both 
theoretical and experimental nuclear physics. 

The continued development of experimental techniques has brought the 
requirement for the general use of decreasingly smaller units of time. Having 
left microseconds (10-6 s) and nanoseconds (10-0 s) behind we are passing into, 
and no doubt through, the era of picoseconds (10- 12 s). As will later be 
discussed, even this unit is long on the natural nuclear time scale. 

The size of the useful energy unit is set by the binding energy of the nuclear 
components. This is about a million times greater than the binding energy of the 
valence atomic electrons. The unit which had been used in atomic physics was 
the electronvolt, defined as the change in kinetic energy of an electron moving 
in vacuum through a potential difference of one volt. It was therefore natural 
in nuclear physics to adopt a million electronvolts (MeV) equal to 106 eV as the 
unit of energy. 

The charge on the nucleus is customarily expressed in electrostatic units (e.s.u.). 
This leads to the necessary introduction of the velocity of light in some symbolic 
electromagnetic fonnulae (e.g. nuclear magneton) which have become traditional 
in the subject. The only other unit we need mention is the gauss (G). which is 
used for the quantity loosely referred to as the magnetic field This expression 
will normally refer to the magnetic nux density, the S[ unit for which is the 
weber per metre squared which equals 104 gauss. The reader is referred to Basic 
Electricity by W. M. Gibson in the Penguin Library of Physical Sciences for a 
discussion of these and the other electromagnetic units. 
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2.2 

Chapter 2 
Radioactive Decay Laws 

Introduction 

The fact that the atoms of most materials do not spontaneously change their 
nuclear or chemical properties indicates that certain assemblies of nucleons with 
particular Z- and N-values, under the action we must aSSUme of internal attractive 
forces, form stable structures. By no means all nucleon assemblies are stable. 
Some are so far from stability that, immediately after formation, one or more 
nucleons may be emitted and the grouping changed. However there exist certain 
assemblies that are very close to stability but are still not strictly speaking stable. 
They do not have enough excess energy to pennit the immediate emission of even 
one nucleon and they exist for appreciable times before stabilizing by undergoing 
a transformation constituting one of the modes of radioactive decay and thereby 
altering their Z- and N-numbers. Before discussing in detail the various modes of 
radioactive decay, from which we derive considerable insight into the physical 
conditions within and around the nuc1eus, it is convenient to collect together 
cerlain mathematical results which are applicable to aU modes of radioactive decay. 

The exponential decay law 

We start from the assertion that the probability that a particular nucleus 
undergoes radioactive decay in a time interval dt is ).dt, where, for It particular 
nucUde, ~ is a constant caUed the decay constant. This assertion implies that 
the previous history of the nucleus has no bearing on its probability of decay 
at a particular time. For example, it means that when radioactive nuclei are 
being produced artificially, in, say, a reactor over a period of time, the 'older' 
nuclei at Bny instant are no more likely to decay than those more recently 
formed. 

If now we consider a large number N of similar radioactive nuclei in a 
sample and if - d.N of these decay in an interval dt then, providing N is very 
large, by definition the probability that anyone nucleus decays in the interval 
is - tiN/N. From the dermilion of the decay constant this probabiJity is abo 
X dt. Therefore 

tiN 
dt - -).N. 

The general solution of this equation is 
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In N = - At + constant. 

Choosing the constant of integration to suit the initial condition that there be No 
nuclei originally in the sample, we have 

N- Noe- Al
• 2.1 

Experimentally. radioactivity is usually investigated by detecting the products 
of the decay. It is thus the number of decays per unit time, defined as the 
activity of the sample, which is of experimental relevance. In the present case, if 
we denote the activity by A. then by delinition 

dN AI 
A ----AN.oe-

dt • 

from 2.1. 
This may be written 

If = Aoe- At , 2.2 

where Ao is the initial activity. 
The justification for the original assertion will now lie in the accuracy with 

which this exponential law describes the observed decrease in activity with time. 
In practice it may be tested by plotting In A against t, when, if the assertion is 
valid, a straight line of negative slope X should result. In the case of sources of 
reasonably high activity, such a linear plot is found to result and this is a 
recognized way of detennining X. 

Holr~ire and mean lire 

Very often, instead of X. an eqUivalent quantity, the halflife, denoced by T~ is 
used. It is defined as the time taken for the activity to fall to one half of its 
original value. From this definition and equati9n 2.2 we see that 

tAo - Aoe- ATt. 

and therefore 
In 2 0·693 

Tt=-- ---
A A 

T~ has the dimension of tirne; A has the dimension of reciprocal time. 
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The mean life T, in the ordinary sense of the average life of all nuclei in a large 
assembly, is also of interest. The number of nuclei in the assembly having life t 
will be the number which decay in the interval from t to t + dt. This is A N(t) dt. 
Fonning the average in the usual way we then have 

• J A N(t)t tit 
o .-"----

No 

Substituting for N(t) from equation 2.1 and carrying out the integration it 
follows that 
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2.4 

and 

,h-I 

Ti 
T=-· 

In 2 

Series decay 

1.4 

It may be that the daughter nucleus, which is formed as the result of the decay of 
the parent nucleus, is itself radioactive with its own decay constant and half.life. 
Its subsequent decay may be experimentally distinguishable from that of its 
parent. In this circumstance, the two activities can be measured separately as 
functions of time. 

Let N(t) be the number or parent nuclei present at a given time and net) the 
number of daughter nuclei at the same time. Let AP and AD be the respective 
decay constants. Then, as before, for the parent 

dN(t) =-Ap N(t) dt. 2.5 
For the daughter, however, the population is now increased by the decay of the 
parent as well as decreased by its own decay. Thus 

dn(t) = -AD net) dt + Ap N(t) dt. 

From equation 2.S, as before, 

N(t) = NO.-Ap'. 

2.6 

Substituting this value into equation 2.6 and mUltiplying throughout by exp(),o t) 
we have 

d 
- [eAD' net)] = ApNoe(AD-Aplr. 
dt 

It rollows by integration that 

ApNo 
"D' net) - ___ .(AD-Aplr + constant. 

AD- Ap 

If now the original conditions are that no daughter nuclei are present, i.e. n(O) = 0, 
then the constant of integration is such that 

[ 
.-Ap' e-AD' ] 

n(t)=ApNo ~+~. 
D- P I\p D 

1.7 

Since n(/) starts from zero at I = 0 and must fall to zero 3S t approaches 
infinity, there must be at least one intermediate maximum value. Differentiating 
equation 2.7 with respect to t and equating dn/dt to zero we find 

1n(Ap/AD) t_. - A A 2.8 
p- D 
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2.4.1 

It is important to note that in this case the activity is not equal to dn(t)ldt. 
The number or nuclei decaying in time dt is not dn(t) as given in equation 2.6 
but only the first term on the right.hand side or that equation. Thus 

[ 
.-Ap' .-Ao' ] 

aCt) - ADn(t) = ADAo + -- . 2.9 
AD - Ap Ap - AD 

The activity of the daughter, therefore, also builds up from zero to reach a 
maximum value at a time given by equation 2.S, then falls off as the difference 
between two exponentials. 

Two cases oCpractical interest arise. 

Short·lived parent 

If the half·life of the parent is very short in comparison with that of the daughter 
nuclide, then Ap > AD. In this case exp( - Apt) becomes quickly negligible 
compared to exp(- Aot). If we also neglect Ao in the denominator of equation 
2.9 then the equation giving the long-term behaviour of the daughter activity is 

A 
aCt) - '-£AO.-AD· 

Ap 
2.10 

Note that to this approximation the parent nuclei transform inslllJltaneously into 
the daughter nuclei. 

In Figure 2 the parent and daughter activities corresponding to the case where 
Ap = 10 X AD are plotted as functions of time. 

~ A, 
.~ 

.~ 10A(t) 

o 2 4 6 8 ,0 12 

time (in half-lives of parent nucleus) 

Figure 2 Plot of the variation with time of the radioactivities of shart·lived parent 
and lang·lived daughter materials in a source which initially contained only the 
parent material. The half-lives are taken to be in the ratio 1: 10 
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