Student ID:...... Student Name:....

Q1. Q16. A 70 N block A and a 35 N block B are connected by a string, as shown in Fig 3. If the pulley is massless and the surface is frictionless, the magnitude of the acceleration of the 35 N block is: A) 3.3 m/s2

$$T = \frac{70}{9.8} x = 7.149$$

$$T = \frac{35}{9.8} = \frac{35}{9.8} = \frac{35}{9.8} = \frac{35}{3.579}$$

$$T = \frac{35}{35} = \frac{3.579}{3.579}$$

$$T = \frac{35}{35} = \frac{3.579}{3.579} = \frac{35}{3.579} = \frac{3.5}{3.579} = \frac{3.$$

Q#2. <u>Q13.</u> A constant force F of magnitude 20 N is applied to block A of mass m = 4.0 kg, which pushes block B as shown in Fig. 5. The block slides over a frictionless flat surface with an acceleration of 2.0 m/s^2 . What is the net force on block B? (Ans:12 N)

Student ID: Student Name:

Q#1. Q13. A 4.0 kg block is pushed upward a 30° inclined frictionless plane with a constant horizontal force F (Fig 4). If the block moves with a constant speed find the magnitude of the force F. (A: 23 N)

Fard - wg
$$6=8=0$$

F = wg $\frac{h}{C}$ = wg $\frac{h}{C}$ wg $\frac{h}{C}$ wg $\frac{h}{C}$ $\frac{h}{C}$ $\frac{h}{C}$ = $\frac{4 \times 9.8 \times tan 30}{23.0}$ Figure 4

Q#2. A 2.00-kg mass is hanging from the ceiling of an elevator accelerating upward at $a = 2.50 \, m/s^2$ (see Fig. 6). What is the tension T in the string? (Ans: 24.6 N)

T-wg=wg

T-wg=mg

$$T = m(g+a)$$
 $T = 2x(9.8+2.50)$

Figure 6

Student ID: Student Name:

Q#1:. Q17: Two masses m1 (= 2.0 kg) and m2 (= 3.0 kg) are connected as shown in Fig 4. Find the tension T2 if the tension T1 = 50.0 N. (A1) 30.0 N

 $T = (M_1 + M_2) Q$ $Q = \frac{50}{M_1 + M_2} = \frac{50}{2 + 3} = 10 \text{ m/s}$ $M_2 = \frac{50}{N_2} = 10 \text{ m/s}$ $M_3 = \frac{50}{N_3} = \frac{10}{N_3} = \frac{10}{N_3}$

Q1... A block of mass m1=5.7 kg on a frictionless 30° inclined plane is connected by a cord over a massless, frictionless pulley to a second block of mass m2=3.5 kg hanging vertically as shown in Fig 4. The acceleration of m2 is:(Ans: 0.69 m/s downward)

 f_{n} w_{1} f_{n} w_{2} f_{n} $f_{$

Q14. An elevator cab with a total mass of 2000 kg is pulled upward by a cable. If the elevator accelerates at 2.00 m/s upward, find the tension in the cable. (Ans: 2.36×10^{4} N)

= 0.69 m/s

Student ID: Student Name:

Q2.: Q#20. Three equal mass blocks each of mass =2.0 kg can move together over a horizontal frictionless surface. Two forces, $F_1 = 40 \, i \, N$ and $F_2 = -10 \, i \, N$ are applied on the three masses system as shown in the Fig 7. The net force on the middle mass is: (Ans: $10i \, N$)

$$40i - 10i = 6 \times 0$$

$$0 = \frac{30i}{6} = 5 \text{ m/s}^{2}$$

$$0 = \frac{30i}{6} = 5 \text{ m/s}^{2}$$

$$0 = 10 \text{ Ni}$$

Q1 Two blocks of mass $m_1 = 24.0$ kg and m_2 , respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string is T = 294 N. Find the value of m_2 . (Ignore friction) (Ans: 40.0 kg)

From
$$M_1$$
 $T = M_1 R = M_1 Q$
 $Q = \frac{T - M_1 Q}{M_1} = \frac{2048}{4}$
 $Q = \frac{T - M_1 Q}{M_1} = \frac{2048}{4}$
 $M_1 = \frac{24.0 \text{ kg}}{T}$
 $M_1 = \frac{24.0 \text{ kg}}{T}$
 $M_2 = \frac{294}{294}$
 $M_2 = \frac{294}{294}$
 $M_2 = \frac{7}{294}$
 $M_2 = \frac{7}{294}$
 $M_2 = \frac{7}{294}$
 $M_3 = \frac{7}{294}$
 $M_4 = \frac{7}{294}$

Student ID:..... Student Name:.....

Q2. Q14: In the system shown in Figure 5, a horizontal force (F) acts on M1(=2.0 kg). If the acceleration of the system has a value of $a = 3.5 \text{ m/s}^{**}2$, find the value of (F). (Ignore force of friction). (A1) 60.2 N

Q2. Q17 A 90-kg man stands in an elevator that is moving up at a constant speed of 5.0 m/s. The magnitude of the force exerted by him on the floor is: (A1) 882 N. $N = iM(g+g) = Mg(g+g) = 90 \times 978 = 882 N$

Q#1: Q15: Two blocks of masses M1 = 2.0 kg and M2 = 4.0 kg are in contact with each other and move on a frictionless horizontal surface under the action of a horizontal force F = 60 N (see Figure 6). Find the magnitude of the force that M1 exerts on M2. (A1) 40 N.

$$\alpha = \frac{F}{M_1 + M_2} = \frac{60}{6}$$

$$= 10 \text{ m/s}$$

Student ID: Student Name:

Q2.: Q13: A block of mass m = 4.0 kg is pushed up a smooth 30 deg inclined plane, by a constant force F of magnitude 40 N and parallel to the incline. Find the magnitude of the acceleration of the block. (A1) 5.1 m/s**2

$$F = mg hid = + ma$$
 $Q = \frac{F - mg hid}{m}$
 $= \frac{40 - 4 \times 9.8 \times 630}{4}$
 $= \frac{40 - 4 \times 9.8 \times 630}{4}$
 $= \frac{5.1 \text{ m/s}}{300}$

Q2. Q17: Two masses m1 = 2kg, m2 = 4kg are connected by a light string Q0 that passes over a frictionless and massless pulley (see Fig. 5). Find the magnitude of the acceleration of the masses. (A1) 3.27 m/s**2

$$Q = \frac{(M_2 - M_1)}{(M_2 + M_1)} q$$

$$= \frac{(M - 2)}{(M + 2)} q.8$$

$$= \frac{(M - 2)}{(M + 2)} q.8$$

$$= \frac{2}{3} \times q.7 = 3.27 \text{ m/s}$$

$$= \frac{2}{3} \times q.7 = 3.27 \text{ m/s}$$

Q#2: . : Q15 A 700-kg elevator accelerates downward at 3.8 m/s**2. The tension force of the cable on the elevator is: (A1) 4.2 kN, up

Student ID: Student Name:

Q#1: Q21 A monkey hangs vertically from a rope in a descending elevator that decelerates at 2.4 m/s**2.If the tension in the rope is 400 N, find the mass of the monkey. (A1) 33 kg.

T-
$$m \times g = m \times q$$
 $T = m m m (g+q)$
 $m m m m = \frac{400}{g+a}$
 $m m m \times g$

Q2. Q16Two blocks, of equal mass = M, rest on frictionless surfaces, as shown in Fig 3. Assuming the pulleys to be light and frictionless, calculate the time required for block A to move 0.5 m down the plane, starting from rest. (Ans: 0.64 s)

T=
$$m_B a$$
.

T- $m_g k d = -m_q q$

T= $m_A (g m d - a)$
 $m_B a = m_A (g m d - a)$
 $m_B a = m_A (g m d - a)$
 $m_B + m_A = m_A g m d$
 $m_B + m_A = m_B - M$
 $m_B + m_B + m_A = m_B - M$
 $m_B + m_B +$

Student ID: Student Name:

Q1) Q16. A 5.0-kg block and a 10-kg block are connected by a light string as shown in Figure 3. If the pulley is massless and the surface is frictionless, the magnitude of the acceleration of the 5.0 kg block is (Ans: 6.5 m/s²)

Q2: Two blocks of masses M1 = 2.0 kg and M2 = 4.0 kg are in contact with each other and move on a frictionless horizontal surface under the action of a horizontal force F = 60 N (see Figure 6). Find the magnitude of the force that M1 exerts on M2. (A1) 40 N.

$$Q = \frac{60}{M_{1}+M_{2}} = \frac{60}{6} = \frac{10 \, \text{m/s}}{6}$$

$$F_{21} = \frac{M_{2}a}{40N}$$

$$|F_{12}| = |F_{21}| = 40N$$

Figure 6

Student ID:..... Student Name:.....

Q1 Q14: A 2.0 kg box slides down a frictionless vertical wall while you push on it with a force F at a 30 degrees angle with the vertical (see Fig 3). What is the magnitude of the normal force of the wall on the box if it is to slide down at a constant speed? (A1) 11.3 N

. Q2016 Two blocks weighing 25 kg and 35 kg respectively, are connected by a string that passes over a mass less pulley as shown in Fig. 5. The tension in the string is: (A1) 286 N.

$$Q = \left(\frac{35 - 25}{35 + 25}\right) \times 9.8$$

$$= 16.33 \text{ m/s}$$

$$= 25 \times 9.8 = 25 \times 0.$$

$$= 25 \times 9.8 + 25 \times 16.33$$

$$= 285.8 = 286 \text{ N}$$

Student ID: Student Name:

Q1: Q17 Three blocks (A,B,C), each having mass M, are connected by strings as shown in Fig.4. Block C is pulled to the right by a force F = 10 N that causes the entire system to accelerate. Neglecting friction, the tension T1 between blocks B and C is: (A1) 6.67 N.

Q14: In the system shown in Figure 5, a horizontal force (F) acts on M1(=2.0 kg). If the acceleration of the system has a value of a = 3.5 m/s**2, find the value of (F). (Ignore force of friction). (A1) 60.2 N.

