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RADIOACTIVE DECAY

The radioactive decays of naturally occurring minerals containing uranium and
thorium are in large part responsible for the birth of the study of nuclear physics.
These decays have half-lives that are of the order of the age of the Earth,
suggesting that the materials are survivors of an early period in the creation of
matter by aggregation of nucleons; the shorter-lived nuclej have long since
decayed away, and we observe today the remaining long-lived decays. Were it not
for the extremely long half-lives of 25U and U, we would today find no
uranium in nature and would probably have no nuclear reactors or nuclear
weapons.

In addition to this naturally occurring radioactivity, we also have the capability
to produce radioactive nuclei in the laboratory through nuclear reactions. This

producing the isotope *P, which they observed to decay through positron
emission with a half-life of 2.5 min. In their words:

Our latest experiments have shown a very striking fact: when an aluminum foil
is irradiated on a polonium preparation, the emission of positrons does not
cease immediately when the active preparation is removed. The foil remains

radioactive and the emission of radiation decays exponentially as for an
ordinary radioelement.

For this work on artificially produced radioactivity the Joliot-Curie team was
awarded the 1935 Nobel Prize in Chemistry (following a family tradition— Irene’s
parents, Pierre and Marie Curie, shared with Becquerel the 1903 Nobel Prize in
Physics for their work on the natural radioactivity of the element radium, and
Marie Curie became the first person twice honored, when she was awarded the
1911 Nobel Prize in Chemistry). ;

In this chapter we explore the physical laws governing the production and
decay of radioactive materials, which we take to mean those substances whose
nuclei spontaneously emit radiations and thereby change the state of the nucleus.
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6.1 THE RADIOACTIVE DECAY LAW

T hree years following the 1896 discovery of radioactivi'ty it' was noteg tha}[to t;el:
decay rate of a pure radioactive substance decregses with t1;ne according
o nential law. It took several more years to realize that radioactivity represents
zl)igx(l)ges in the individual atoms and not a chang,e in t‘hg sarpple as a Wll;lotle'.t ;t
took another two years to realize that the decay is stat_ls.tlcal in natuz:, th at 1t hiz
impossible to predict when any given_ atom w1ll' dlsmtegrate,. anl).l.tt a s
hypothesis leads directly to the exponential law. ThlS. lac}c of predlc’:)a ili h}II o o
behavior of single particles does not bother most scientists today, but this e t1y
instance of it, before the development. of quantum th'eory, was appilre? tg
difficult to accept. Much labor was r_zqulrcf:d :)f these dedicated investigator
i at now may seem like evident facts. . .
eStIafblll\sfh r‘zgioactive milclei are present at time ¢ and 1f‘ no new pucleld tage
introduced into the sample, then the number dN decaying in a time is
proportional to N, and so
~ (dN/dt) 6.1)
N

in which A is a constant called the disintegration or decay constant. The right side
of Equation 6.1 is the probability per unit time for the decay of an.atom. Thqt
this probability is constant, regardless of the age of the atoms, is thed baszi
assumption of the statistical theory of radioactive decay. (Human lifetimes do no
follow this law!) . o

Integrating Equation 6.1 leads to the exponential law of radioactive decay

N(t) = Nje™ (6.2)

where N, the constant of integration, gives the original number of nuc!ei present
at ¢ = 0. The half-life ¢, ,, gives the time necessary for half of the nuclei to decay.
Putting N = N,/2 in Equation 6.2 gives

tiyy = 0-6% (6.3)
A
It is also useful to consider the mean lifetime (sometim(?s f:alled just t.he
lifetime) 7, which is defined as the average timg that_a pucleus is likely to survll)ve
before it decays. The number that survive to time ¢ is just {V(t_), aqd t}llle number
that decay between ¢ and ¢ + dt is |dN /dt| dt. The mean lifetime is then

®11dN /dt| dt
f"tl 4 (6.4)

T =

f *|dN /dt| dt
0

where the denominator gives the total number of decays. Evaluating the integrals
gives

T= (6.5)
A

Thus the mean lifetime is simply the inverse of the decay constant.

\
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Equation 6.2 allows us to predict the number of undecayed nuclei of a given
type remaining after a time ¢. Unfortunately, the law in that form is of limited
usefulness because N is a very difficult quantity to measure. Instead of counting
the number of undecayed nuclei in a sample, it is easier to count the number of
decays (by observing the emitted radiations) that occur between the times t; and
1, If we deduce a change AN in the number of nuclei between ¢ and ¢ + A¢, then

|JAN| = N(t) = N(t + At) = Nye ™M(1 — e~221) (6.6)
If the interval At during which we count is much smaller than A~! (and thus, in

effect, Ar <1, ,), we can ignore higher order terms in the expansion of the
second exponential, and

|AN| = ANye M A¢ (6.7)
Going over to.the differential limit gives
dN '
E = )\Noe_“ (6.8)
Defining the activity &/ to be the rate at which decays occur in the sample,
#(t) = AN(1) = sy o™ (6.9)

The initial activity at ¢ = 0 is 2/, = AN,

Actually, we could have obtained Equation 6.8 by differentiating Equation 6.2
directly, but we choose this more circuitous path to emphasize an important but
often overlooked point: Measuring the number of counts AN in a time interval At
gives the activity of the sample only if At < ¢, ,2- The number of decays in the
interval from # to ¢, is

AN = [* " (6.10)
h

which equals /At only if At < ¢, s2- (Consider an extreme case—if ¢, , = 15,
we observe the same number of counts in 1 min as we do in 1 h.) See Problem 1
at the end of this chapter for more on the relation between 7 and AN.

The activity of a radioactive sample is exactly the number of decays of the
sample per unit time, and decays/s is a convenient unit of measure. Another unit
for measuring activity is the curie (Ci), which originally indicated the activity of
one gram of radium but is now defined simply as

1 Ci = 3.7 X 10 decays /s

Most common radioactive sources of strengths typically used in laboratories have
activities in the range of microcuries to millicuries. The SI unit for activity is the
becquerel (Bq), equal to one decay per second; however, the curie is so firmly in
place as a unit of activity that the becquerel has not yet become the commonly
used unit.

Note that the activity tells us only the number of disintegrations per second; it
says nothing about the kind of radiations emitted or their energies. If we want to
know about the effects of radiation on a biological system, the activity is not a
useful quantity since different radiations may give different effects. In Section 6.8
we discuss some alternative units for measuring radiation that take into account
their relative biological effects.
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Figure 6.1 The exponential decay of activity. (a) Linear plot. (b) Semilog
plot.

Equation 6.9 shows that the activity decays exponentially with time. We can
thus measure the activity as a function of time by counting the number. of decays
in a sequence of short time intervals Az. Plotting these data on a semilog graph
(that is, In &/ vs t) should give a straight line of slope —)\._ Figure 6.1 is an
example of this kind of experiment, from which one can determine the half-life of

a radioactive decay. ) .
This method of measurement is useful only for half-lives that are neither too

short nor too long. The half-life must be short enough that we can see the sample
decaying—for half-lives far greater than a human lifetime, we would not be able
to observe any substantial reduction in activity. For such cases, we can use
Equation 6.1 directly, by measuring dN/d¢ (which is just the activity in this
simple decay process) and by determining the number of atoms (such as by
weighing a sample whose chemical composition is accurately known). ‘

For half-lives that are very short (say, small compared with 1 s), observing Fhe
successive disintegration rates is also not useful, for the activity decays to nothing
in the time that it would take to switch the counting apparatus on and off. F_or
these cases we use a more precise technique, described in Chapter 7, that permits
the routine measurement of half-lives down to nanoseconds (107° s) and even
picoseconds (1071% s).
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It is important to keep in mind that the simple exponential law of radioactive
decay applies only in a limited set of circumstances—a given initial quantity of a
substance decays (by emitting radiation) to a stable end product. Under these
circumstances, when radioactive nucleus 1 decays with decay constant A; to
stable nucleus 2, the number of nuclei present is

N, = Nye™™¢ (6.11a)
N, = Ny(1 — e7™) (6.11p)

Note that the number of nuclei of type 2 starts out at 0 and approaches N, as
t = oo (all of type 1 eventually end as type 2) and also note that N, + N, = N,
(the total number of nuclei is constant). If nuclei of type 2 are themselves
radioactive, or if nuclei of type 1 are being produced (as a result of a nuclear
reaction, for instance) then Equations 6.11 do not apply. We consider these cases
in Sections 6.3 and 6.4.

Often it will happen that a given initial nucleus can decay in two or more
different ways, ending with two different final nuclei. Let’s call these two decay
modes a and b. The rate of decay into mode a, (dN/dt),, is determined by the
partial decay constant A ,, and the rate of decay into mode b, (dN/dt),, by Ayt

A _(dN/dt)a

STy
6.12
—(dN/dr), ( )

Apy=—"—"—

N
The total decay rate (dN/dt), is

N N il N(A,+A NA, - 6.13
(dt)f‘(dt)a‘(ﬁ)b‘ (BatAe) =0 7 (613)

where A = A, + A, is the fotal decay constant. The nuclei therefore decay
according to N = Nye™™, and the activity |dN/dt| decays with decay constant
A .. Whether we count the radiation leading to final states a or b, we observe only the
total decay constant A; we never observe an exponential decay of the activity
with constants A, or A,. The relative decay constants A, and A, determine the
probability for the decay to proceed by mode a or b. Thus a fraction A, /A, of
the nuclei decay by mode a and a fraction A, /A, decay by mode b, so that

Nl = Noe_xl.t’
N2,a = (AJAt)NO(l - e_)‘l.tt) (614)
N2.b = (Ab/}‘t)No(]- — g_}‘l.tt)

The separate factors A, or A, never appear in any exponential term; we cannot
“turn off”” one decay mode to observe the exponential decay of the other.
Another special case is that of a sample with two or more radionuclei with
genetically unrelated decay schemes. Consider a mixture of Cu (12.7 h) and
81Cu (3.4 h); such mixtures cannot be chemically separated of course. The
activity of a particular mixture is plotted against time on semilog paper in Figure
6.2. At the right end of the curve we assume (because the curve is linear) that
only one activity is present; the limiting slope shows a 12.7-h half-life. By (1)
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Figure 6.2 Decay curve for a sample containing a mixture of ®4Cu (12.7 h) and
81Cu (3.4 h).

extending this limiting slope backward, (2) taking differences between the curve
and this straight line at various abscissas, and (3) plotting these differences on the
same scale, we get the dot-dashed straight line that represents the 3.4-h half-life.
The intercepts of both straight lines on the vertical axis give the initial counting
rates for each component. This method can be extended to mixtures with more
than two components, if the half-lives are sufficiently different from one another.

6.2 QUANTUM THEORY OF RADIATIVE DECAYS

The energy levels we obtain by solving the Schrédinger equation for various
time-independent potentials share one property—they are stationary states. A
quantum system that is originally in a particular stationary state will remain in
that state for all times and will not make transitions to (i.e., decay to) other
states. We can allow a quantum system to be found sometimes in one state and
sometimes in another by making a mixture of two or more states, such as
¥ = c;¥, + c,¥, which has the probability |¢;|? to be found in state 1 and |c,|?
to be found in state 2. For time-independent potentials, ¢; and ¢, are indepen-
dent of time, which does not correspond with observations for decaying states, in
which the probability to find one state decays with time. Moreover, on a
philosophical level, we should be forced to abandon the notion of pure states
with well-defined wave functions, making the interpretation of nuclear structure
very difficult indeed.

We therefore adopt the following approach: The potential is assumed to be of
the form V + V7, where V is the nuclear potential that gives the stationary states
and V" is a very weak additional potential that can cause transitions between the
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states. For the moment neglecting V’, we solve the Schrédinger equation for the
potential V" and obtain the static nuclear wave functions. We then use those wave
functions to calculate the transition probability between the “stationary states”
under the influence of V. This transition probability is just the decay constant A,
which is given by Fermi’s Golden Rule as discussed in Section 2.8:

27
= IVl p(E,) (6.15)

where
Vi= [$1vy, do (6.16)

Given the initial and final wave functions ¥; and , we can evaluate the “matrix
element” of ¥’ and thus calculate the transition probability (which can then be
compared with its experimental value).

The transition probability is also influenced by the density of final states p(E;)
—within an energy interval dE;, the number of final states accessible to the
system is dn; = p(E;) dE;. The transition probability will be large if there is a
large number of final states accessible for the decay. There are two contributions
to the density of final states because the final state after the decay includes two
components—the final nuclear state and the emitted radiation. Let’s consider in
turn each of these two components, beginning with the nuclear state.

Solving the Schrddinger equation for the time-independent potential ¥ gives us
the stationary states of the nucleus, ¥a(r). The time-dependent wave function
W, (r, t) for the state a is

V. (r,t) =y, (r) e iEat/h . © (6.17)

where E, is the energy of the state. The probability of finding the system in the
state a is |¥,(r, 1) [, which is independent of time for a stationary state. To be
consistent with the radioactive decay law, we would like the probability of
finding our decaying system in the state a to decrease with time like e~/

1% () =,(1 = 0) " e~/ (6.18)

where 7, = 1/A_ is the mean lifetime of the state whose decay constant is A,. We
should therefore have written Equation 6.17 as

V. (r, 1) =y, (r) e PEat/h g=1/27, (6.19)

The price we pay for including the real exponential term in ¥, is the loss of the
ability to determine exactly the energy of the state—we no longer have a
stationary state. (Recall the energy-time uncertainty relationship, Equation 2.2, If
a state lives forever, Ar > oo and we can determine its energy exactly, since
AE = 0. If a state lives on the average for a time 7, we cannot determine its
energy except to within an uncertainty of AE ~ h/r) We can make this
discussion more rigorous by calculating the distribution of energy states (actually
the Fourier transform of e~'/2™). The probability to observe the system in the
energy interval between E and E + dE in the vicinity of E, is given by the
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Figure 6.3 Probability to observe the energy of an unstable state of width T.

square of this distribution:

dE
E) dE = 6.20
P(E)d (E-E,) +T?/4 (620)

where I', = A /7, is the width of the state a. Figure 6.3 shows the function P(E).
If we measure the energy of this system, we may no longer find _the value_ E,
(although the average of many measurements gives E,). The width T, is a
measure of our inability to determine precisely the energy of the state (throggh
no fault of our own—nature imposes the limit of uncertainty, not our measuring
instruments; as indicated by Figure 6.3, a state with the “exact” energy E, cannot
be observed). -

If nuclear states do not have exact energies, can we speak of transitions
between distinct levels? We can, because the widths of the low-lying nzfclear levels
are small compared with their energy spacing. Nuclear states typlcally_ have
lifetimes greater than 10712 s, corresponding to I' < 1071 MeV. The discrete
low-lying nuclear states that are populated in ordinary decays (3and many nuclear
reactions, as well) have typical separations of the order of 107? MeV and larger.
Thus if we were to measure the energy of a final nuclear state after 'a.decay
process (by measuring the energy of the emitted radiation, foT example), it is very
unlikely that the overlap of the energy distributions of two different ﬁnal states a
and b could cause confusion as to the final “stationary” state resulting from the
decay (see Figure 6.4). _

We therefore conclude that it is reasonable to speak of discrete pseudo-sta-
tionary states because their separation is far greater than their w'idth, and we also
conclude that such nuclear states do not contribute to the density of ﬁnal states
because there is only one nuclear state that can be reached in a given decay
process. .

It is thus only the radiation field that contributes to the density of states, and
we must consider the properties of the emitted radiations in calcu_latmg p(Ep).
For the present, we will only make some general comments regarding p(E;). If
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Figure 6.4 When the widths of unstable states are small compared with their
separation, as in (&), the states are distinct and observable. In (b), the states a and
b overlap and are strongly mixed; these states do not have distinctly observable
wave functions.

we observe only the probability to form the nuclear state E,, then we must
consider all possible radiations of energy E; — E|. Specifically, the radiation can
be emitted in any direction and in any state of polarization (if the radiation
consists of a particle with spin, the spin may have any possible orientation),
assuming of course that we do not observe the direction of the radiation or its
polarization. It is this process of counting the number of accessible final states
that gives the density of states, which we consider further when we discuss
specific radiation types in Chapters 8-10. v

In solving the differential equation (6.1) to obtain the radioactive decay law, we
assumed the decay probability A to be (1) small and (2) constant in time, which
happen to be the same assumptions made in deriving Fermi’s Golden Rule. If ¥’
is independent of time, then A calculated according to Equation 6.15 will also be
independent of time. Under such a condition, the effect of ¥’ on the stationary
states a and b of V is 4

!
Vba

a

'4Ja - llja + 1l,/b
and the system formerly in the state a has a probability proportional to VL2 to
be found in the state b. We observe this as a “decay” from a to b.

To apply Fermi’s Golden Rule, the probability for decay must also be small, so
that the amplitude of ¥, in the above expression is small. It is this requirement
that gives us a decay process. If the decay probability were large, then there
would be enough radiation present to induce the reverse transition b — a
through the process of resonant absorption. The system would then oscillate
between the states a and b, in analogy with a classical system of two coupled
oscillators. A

The final connection between the effective decay probability for an ensemble of
a large number of nuclei and the microscopic decay probability computed from
the quantum mechanics of a single nucleus requires the assumption that each
nucleus of the ensemble emits its radiation independently of all the others. We
assume that the decay of a given nucleus is independent of the decay of its
neighbors. This assumption then permits us to have confidence that the decay
constant we measure in the laboratory can be compared with the result of our
quantum mechanical calculation.
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6.3 PRODUCTION AND DECAY OF RADIOACTIVITY

It quite frequently happens that a ba§ic conditiqn imposed in Qeriving the
exponential law, that no new nuclei are introduced into the sar.nple, is not valid.
In solving Equation 6.1 we obtained a fixed number N, of nuclei present at ¢ = 0.
In many applications, however, we produce activity continuously, such as by a
nuclear reaction. In this case, Equation 6.2 is no longer valid and we must
consider in more detail the processes that occur in the production and decay of
the activity.

Let’s assume that we place a target of stable nuclei into a reactor or an
accelerator such as a cyclotron. The nuclei of the target will capture a neutron or
a charged particle, possibly leading to the production of a radioactive species.
The rate R at which this occurs will depend on the number N, of target atoms
present, on the flux or current I of incident particles, and on the reaction Cross
section o (which measures the probability for one incident particle to react with
one target nucleus). A typical flux of particles in a reactor or cyclotron might be
of the order of 10'*/s - cm?, and typical cross sections are at most of the order of
barns (10724 cm?). Thus the probability to convert a target particle from stable to
radioactive is about 10710/s, Even if the reaction is allowed to continue for
hours, the absolute number of converted target particles is small (say, less than
1076 of the original number). We can therefore, to a very good approximation,
regard the number of target nuclei as constant, and under this approximation the
rate R is constant. (As we “burn up” target nuclei, N, will decrease by a small
amount and the rate may therefore similarly decrease with time. Obviously N,
must g0 to zero as ¢ — oo, but for ordinary reaction times and typical cross
sections we ignore this very small effect.) Thus

R = NyoI (6.21)

is taken to be a constant giving the rate at which the radioactive product nuclei
are formed.

Let’s denote by N, the number of radioactive nuclei that are formed as a result
of the reaction. These nuclei decay with decay constant A; to the stable nuclei
denoted by N,. Thus the number of nuclei N, present increases owing to the
production at the rate R and decreases owing to the radioactive decay:

dN, = Rdt — A\, N, di (6.22)

and the solution to this equation is easily obtained
R
Ny(2t) = ->\—(1 —e™h) (6.23)
1

and
(1) = NN (2) = R(1 — e™™) (6.24)
If the irradiation time is short compared with one half-life, then we can expand
the exponential and keep only the term linear in #:
o (1) =R At 1<ty , (6.25)

JFor small times, the activity thus increases at a constant rate. This corresponds to
the linear (in time) accumulation of product nuclei, whose number is not yet
seriously depleted by radioactive decays.
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Figure 6.5 A piot of the number of radioactive *'Cu atoms present in a Ni target
at various times during and after bombardment with deuterons in a cyclotron.
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For times long compared with the half-life the exponential approaches zero
and the activity is approximately constant:

(t)=R >4, (6.26)

In this case new activity is being formed at the same rate at which the older
activity decays. This is an example of secular equilibrium which we discuss in
more detail in the next section.

If we irradiate the sample for a time #; and then remove it from the accelerator
or reactor, it will decay according to the simple exponential law, since no new
activity is being formed. Figure 6.5 shows the activity resulting from the deuteron
bombardment of *'Ni to form ®Cu (¢, , = 3.4 h).

From Equation 6.24 we see that we produce 75% of the maximum possible
activity by irradiating for two half-lives and 87.5% by irradiating for three
half-lives. Further irradiation increases the activity by a steadily diminishing
amount, so that we gain relatively little additional activity by irradiating for more
than 2-3 half-lives. In fact, since the cost of using a reactor or accelerator is
usually in direct proportion to the irradiation time, the best value (maximum
activity per unit cost) is obtained by remaining close to the linear regime
(t <1),).

6.4 GROWTH OF DAUGHTER ACTIVITIES

Another common situation occurs when a radioactive decay results in a product
nucleus that is also radioactive. It is thus possible to have series or chains of
radioactive decays 1 = 2 — 3 — 4..., and it has become common to refer to the
original nucleus (type 1) as the parent and the succeeding “generations” as
daughter (type 2), granddaughter (type 3), and so on.
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We assume that we begin with N, atoms of the parent at ¢t = 0 and that no
atoms of the decay products are originally present:

N(t=0) =N,
Ny(t=0)=Ny(r=0)= -+ =0 (6.27)

The various decay constants are represented by A, A,, A5, ... . For the present
calculation, we will assume that the granddaughter is the stable end-product of
the decay. The number of parent nuclei decreases with time according to the
usual form

dN, = —\N, dt (6.28)

The number of daughter nuclei increases as a result of decays of the parent and
decreases as a result of its own decay:

The number of parent nuclei can be found directly from integrating Equation
6.28:

N,(t) = Nye™™! (6.30)

To solve Equation 6.29, we try a solution of the form N,(t) = Ae M + Be™?
and by substituting into Equation 6.29 and using the initial condition N,(0) = 0
we find

Ay

= —~Mt _ At 6.31
N2(t) N0A2_A1(e e ) ( )

(1) = A, Ny(2) = NO}\z — )\1(
Note that Equation 6.31 reduces to Equation 6.115 if nuclei of type 2 are stable
(A, — 0). We can also include the results of the previous section as a special case
of Equation 6.31. Let’s suppose that A, is very small (but not quite zero), so that
N; = N, — NyAt. In a nuclear reaction, the number of target nuclei decreases at
the rate R according to N, — Rt, and thus identifying NyA; with R and
neglecting A, in comparison with A,, Equation 6.31 reduces to Equation 6.24 for
the activity of type 2.

e™M — g7 (6.32)

N <<,

In this case the parent is so long-lived that it decays at an essentially constant
rate; for all practical times e ™’ = 1 and

A
Ny(t) = NO}\—‘(1 — e7hat) (6.33)
2

which is of the same form as Equation 6.24. Thus the activity &/, approaches the
limiting value NyA, as was shown in Figure 6.5.

This is another example of secular equilibrium, where as ¢ becomes large nuclei
of type 2 are decaying at the same rate at which they are formed: A,N, = A\ N,.
(Note that Equation 6.29 shows immediately that dN,/dt = 0 in this case.)
Figure 6.6 shows an example of approximate secular equilibrium.
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Figure 6.6 In the decay *2Te (78 h) —™2| (2.28 h) —®2Xe, approximate secular
equilibrium is reached at about 12 h.

M <N
From Equations 6.30 and 6.31 we can calculate the ratio of the two activities:
AN, A,
= —_——— —_ _(AZ_A )i
WA W (1-e 1) (6.34)

As ¢ increases, the exponential term becomes smaller and the ratio <, A2
approaches the limiting constant value A,/(A, — A,). The activities themselves
are not constant, but the nuclei of type 2 decay (in effect) with the decay constant
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Figure 6.7 An example of equilibrium in the decays of 234U (2.45 X 10° y) to
230Th (8.0 X 10* y). The ratio &, /o, approaches the constant value 1.48.
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of type 1. This situation is known as transient equilibrium and is illustrated in
Figure 6.7.

)\1>}\2

In this case the parent decays quickly, and the daughter activity rises to a
maximum and then decays with its characteristic decay constant. When this
occurs the number of nuclei of type 1 is small and nearly insignificant. If ¢ is so
long that e~™ effectively vanishes, then Equation 6.31 becomes

N,(t) = N, —~}\—1—— e M (6.35)

: - O>\1 -\, .
which reveals that the type 2 nuclei decay approximately according to the
exponential law.

Series of Decays

If we now assume that there are several succeeding generations of radioactive
nuclei (that is, the granddaughter nuclei type 3 are themselves radioactive, as are
types 4,5, 6,...), we can then easily generalize Equation 6.29 since each species is
populated by the preceding one:

AN, = \,_,N_, dt — \,N,dt (6.36)

-A general solution, for the case of N, nuclei of type 1 and none of the other types

initially present, is given by the Bateman equations, in which the activity of the
nth member of the chain is given in terms of the decay constants of all preceding

members:
n

= —At
&, =Ny Y c,e™™
i=1

=No(cre™ + ¢ e™™ 4 oot e o)

- A
= - (6.38)
(}\1 - )\m)(>\2 - Am) e (>\n - }\m)
where the prime on the lower product indicates we omit the term with i = m.
It is also possible to have secular equilibrium in this case, with A;N, =
AN, = --+ =\,N,.

6.5 TYPES OF DECAYS

The three primary decay types, to be discussed in greater detail in Chapters 8, 9,
and 10, are a, B, and y decays. In a- and B-decay processes, an unstable nucleus
emiits an « or a § particle as it tries to become a more stable nucleus (that is, to
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approach the most stable isobar for the resulting mass number). In v-decay

processes, an excited state decays toward the ground state without changing the
nuclear species.

o Decay

In this process, a nucleus emits an « particle (which Rutherford and his
co-workers showed to be a nucleus of helium, §He,). The “He nucleus is chosen
as the agent for this process because it is such a tightly bound system, and thus
the kinetic energy released in the decay is maximized. Such decays are favored, as
we shall discuss in Chapter 8. The decay process is

y A—4 4
ZzXn 2 223Xy, +3He,

whe're X and X’ represent the chemical symbols of the initial and final nuclei.
Notice that the number of protons and the number of neutrons must separately
be conserved in the decay process. An example of an a-decay process is

26 22
ssRa13s = gRnpz6 + @

in which the half-life is 1600 years and the « particle appears with a kinetic
energy of about 4.8 MeV.

B Decay

Here the gucleus can correct a proton or a neutron excess by directly converting
a proton into a neutron or a neutron into a proton. This process can occur in
three possible ways, each of which must involve another charged particle to
conserve electric charge (the charged particle, originally called a B8 particle, was
later shown to be identical with ordinary electrons).

n—-p+e” B~ decay
p—on+e*  B* decay
p+e —n electron capture (&)

The first process is known as negative 8 decay or negatron decay and involves the
creation and emission of an ordinary electron. The second process is positive 8
decay or positron decay, in which a positively charged electron is emitted. In the
third process, an atomic electron that strays too close to the nucleus is swallowed
allowing the conversion of a proton to a neutron. ’

‘ In all three processes, yet another particle called a neutrino is also emitted, but
since the neutrino has no electric charge, its inclusion in the decay process does
not affect the identity of the other final particles.

Note that in positive and negative 8 decay, a particle is created (out of the
Flegay energy, according to m = E/c?). The electron or positron did not exist
inside the nucleus before the decay. (Contrast the case of « decay, in which the
emitted nucleons were inside the nucleus before the decay.)

RADIOACTIVE DECAY

Some representative B-decay processes are

131 131 —
salag /3_2 saXey; Ly = 8.0d

$3Al, B_") $Mgy, typ=T72s

23Mn 5 2 33Crsg t,,=312d

In these processes, Z and N each change by one unit, but the total mass number
Z + N remains constant.

vy Decay

Radioactive y emission is analogous to the emission of atomic radiations such as
optical or X-ray transitions. An excited state decays to a lower excited state or
possibly the ground state by the emission of a photon of y radiation of energy
equal to the difference in energy between the nuclear states (less a usually
negligible correction for the “recoil” energy of the emitting nucleus). Gamma
emission is observed in all nuclei that have excited bound states (4 > 5), and
usually follows & and 8 decays since those decays will often lead to excited states
in the daughter nucleus.

The half-lives for y emission are usually quite short, generally less than 1077 s,
but occasionally we find half-lives for y emission that are significantly longer,
even hours or days. These transitions are known as isomeric transitions and the
long-lived excited states are called isomeric states or isomers (Or sometimes
metastable states). There is no clear criterion for classifying a state as isomeric or
not; the distinction was originally taken to be whether or not the half-life was
directly measurable, but today we can measure half-lives well below 107° s.
Clearly a state with , , = 107° s is an isomer and one with 7, ,, = 10712 5 is not,
but in between the boundary is rather fuzzy. We usually indicate metastable
states with a superscript m, thus: 1%Ag™ or 11%"Ag.

A process that often competes with y emission is internal conversion, in which
the nucleus de-excites by transferring its energy directly to an atomic electron,
which then appears in the laboratory as a free electron. (This is very different
from B decay in that no change of Z or N occurs, although the atom becomes
ionized in the process.)

Spontaneous Fission

We usually think of fission as occurring under very unnatural and artificial
conditions, such as in a nuclear reactor. There are, however, some nuclei that
fission spontaneously, as a form of radioactive decay. This process is similar to
the neutron-induced fission that occurs in reactors, with the exception that no
previous neutron capture is needed to initiate the fission. In the process, a heavy
nucleus with an excess of neutrons splits roughly in half into two lighter nuclei,
the final nuclei are not rigidly determined, as they are in « or 8 decay, but are
statistically distributed over the entire range of medium-weight nuclei. Examples
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of spontaneously fissioning nuclei are **Fm (¢, ,, = 2.6 h) and 2*Cf (1, ,, = 60.5
days).

Nucleon Emission

As we move further and further from the “valley” of stable nuclei, the energy
differences between neighboring isobars increases (recall the mass parabolas of
constant A of Figure 3.18). Eventually the difference exceeds the nucleon binding
energy (about 8 MeV, on the average) and it becomes possible to have radioactive
decay by nucleon emission. This type of decay occurs most frequently in fission
products, which have a very large neutron excess, and it is responsible for the
“delayed” neutrons (that is, delayed by the half-life of the decay) that are used to
control nuclear reactors. For example, 31 8 decays with a half-life of 6.5 s to
¥ Xe. Most of the B decays populate low excited states in 13¥Xe, but about 5% of
the "*I decays populate states in **Xe at about 6.5 MeV; these states decay by
direct neutron emission to *"Xe. Similarly, 0.7% of the ’Kr g+ decays (1, o=
27 s) go to states in "Br at about 5 MeV; these states decay by proton emission
to states in *Se.

Branching Ratios and Partial Half-lives

Figure 6.8 summarizes a variety of different decay processes, and Figure 6.9
shows a small section of the chart of stable and radioactive nuclei (Figure 1.1)
with several decay processes indicated. Some nuclei may decay only through a
single process, but more often decay schemes are very complicated, involving the
emission of a’s, B’s, and y’s in competing modes. We specify the relative
intensities of the competing modes by their branching ratios. Thus *Ra a decays
to the ground state of *?Rn with a branching ratio of 94% and to the first excited
state with a branching ratio of 6%. Often different decay modes can compete:
?2°Ac decays by a emission (0.006%), 8~ emission (83%), and e (17%); 12Cs
decays by B~ emission (2%) and by 8* and & (98%); the metastable state *™Nb
decays by B~ emission (2.5%) or by an isomeric transition (97.5%). The isomeric
transition itself includes a 27% branch by y emission and a 73% branch by
internal conversion.

Frequently, we specify the branching ratio by giving the partial decay constant
or partial half-life. For example, we consider the decay of **Ac (1, ,, = 29 h).
The total decay constant is

0.693
A = =0.024h ! =6.6 x 10651
i .

The partial decay constants are
Ag=083A,=55%x10"6s"1
A, =017, =11 Xx10"¢s7!

Ag=6X107°A, =4 x 1071051
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Figure 6.8 A variety of different decay processes.

and the partial half-lives are

0.693
= =13x%x10%s=35h

B

0.693
Ly e™

hy2,8

=6.1X10°s =170h

E

3
Hra =17x10°s =55y
The partial half-life is merely a convenient way to represent branching ratios; a
glance at the above figures shows that « emission is far less probable tban B
emission for *?Ac. However, the activity would be observed to decay only with the

total half-life. Even if we were to observe the decay of *°Ac by its & emission, the
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Figure 6.9 The initial nucleus 4X, can reach different final nuclei through a
variety of possible decay processes.

activity would decay with time according to a half-life of 29 h. (Imagine if this
were not so, and two observers were studying the decay of 2Ac, one by
observing the B’s and the other by observing the a’s. Since the radioactive decay
law gives the number of undecayed nuclei, the 8 observer would conclude that
half of the original **Ac nuclei remained after 35 h, while the a observer would
have to wait 35 years similarly to observe half of the nuclej undecayed! In reality,

half of the nuclei decay every 29 h, no matter what method we use to observe
those decays.)

6.6 NATURAL RADIOACTIVITY

The Earth and the other planets of our solar system formed about 4.5 X 10% y
ago out of material rich in iron, carbon, oxygen, silicon, and other medium and
heavy elements. These elements in turn were created from the hydrogen and
helium that resulted from the Big Bang some 15 X 10° y ago. During the
10 X 10° y from the Big Bang until the condensation of the solar system, the
hydrogen and helium were “cooked” into heavier elements in stellar interiors,
novas, and supernovas; we are made of the recycled debris of these long dead
stars. Most of the elements thus formed were radioactive, but have since decayed
to stable nuclei. A few of the radioactive elements have half-lives that are long
compared with the age of the Earth, and so we can still observe their radioactiv-
ity. This radioactivity forms the major portion of our natural radioactive environ-
ment, and is also probably responsible for the inner heating of the terrestrial
planets.
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‘rable 6.1 Some Characteristics of the Disintegration Series
of the Heavy Elements

Longest-Lived Member

Final
Nucleus Half-Life,
Name of Series Type® (Stable) Nucleus )

- Thorium 4n W8 pp B2Th 1.41 X 10%
Neptunium 4n+1 9B =7Np 2.14 x 10°
Uranium 4n 4+ 2 206pp By 4.47 X 10°
Actinium 4n+3 207pp, 5y 7.04 X 10

2, is an integer.

Although there are long-lived natural radioactive elements of other varieties,
most of those observed today originate with the very heavy elements, which have
no stable isotopes at all. These nuclides decay by « and 8 emission, decreasing Z
and 4 until a lighter, stable nucleus is finally reached. Alpha decay changes 4 by
four units and B decay does not change 4 at all, and so therefore we have four
independent decay chains with mass numbers 4n, 4n + 1, 4n + 2, and 4n + 3,
where #n is an integer. The decay processes will tend to concentrate the nuclei in
the longest-lived member of the chain, and if the lifetime of that nuclide is at
least of the order of the age of the Earth, we will observe that activity today. The
four series are listed in Table 6.1. Notice that the longest-lived member of the
neptunium series has far too short a half-life to have survived since the formation
of the Earth; this series is not observed in natural material.

Consider, for example, the thorium series illustrated in Figure 6.10. Let us
assume that we had created, in a short period of time, a variety of plutonium (Pu)
isotopes. The isotopes *?Pu and *Pu decay rapidly to 72-y %**U and other
species of much shorter half-lives. Thus in a time long compared with 72 y (say,
103 ), all traces of these isotopes have vanished, leaving only the stable end
product 28Pb, The isotopes *°Pu and 2**Pu decay much more slowly, the former
comparatively quickly and the latter very slowly to #*U, which in turn decays to
the longest-lived member of the series, 22Th. In a time greater than 81 X 10% y
but less than 14 X 10° y, the original 2°Pu and ?**Pu (and the intermediate 236U)
will all have decayed to 2*2Th, the decay of which we still observe today.

These radioactive isotopes are present in material all around us, especially in
rocks and minerals that condensed with the Earth 4.5 X 10° y ago. (In fact, their
decays provide a reliable technique for determining the time since the con-
densation of the rocks and thus the age of the Earth; see Section 6.7 and Chapter
19 for discussions of these techniques.) In general the radioactive elements are
tightly bound to the minerals and are not hazardous to our health, but all of the
natural radioactive series involve the emission of a gaseous radioactive element,
radon. This element, if formed deep within rocks, normally has litile chance to
migrate to the surface and into the air before it decays. However, when rocks are
fractured, the radon gas can escape (in fact the presence of radon gas has in
recent years been observed as a precursor of earthquakes). There is also the
possibility of escape of radon from the surface of minerals, and particularly those
that are used in the construction of buildings. Inhalation of this radioactive gas
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208p; 212At 216F; 220p,
0.37My, 0.30s 0.70 ps 26 ms

212p, 216g, 220g, 227 228y, 232p,,
0.30 ps| 45 s 23 ms 10s 9.1m 34m
2087 212p; 21651 220F, 224pc 228p, 232Np
3.1m 61 m 0.30ms| 27 s 29h 22h 15m
212Pb L 216pq 220Rn 224Ra 2287 232 236Pu 2400 lce] 2440¢
11 h 0.16s 56 s 3.7d 1.9y 72y 29h 27 d 19m
224, 228y, 232p,, 296y, 2407 2445,
27m] |61h[=]13d] |01~ 51h [ <] 4.4h
2245, 228, ' 236y 240p,, 2840
8- 1.8 h 58y 23 My 6600y 18y
o == 232y, 240y 28400
35s 67 m 10 h
+ .
B« 240y, 284p,,
14 h 81 My

Flgure 6.10 The thorium series of naturally occurring radioactive decays. Some
half-lives are indicated in My (10° y) and Gy (10° y). The shaded members are the
longest-lived radioactive nuclide in the series (Th, after which the series is named)
and the stable end product.

Table 6.2 Some Natural Radioactive

Isotopes

ISOtOpe t1/2 (y)

oK 1.28 x 10°
¥Rb 4.8 x 10'°
3¢d 9 x 101
51n 44 x 10
1381 4 1.3 x 101
17610 3.6 X 10°
187Re 5 x 10'°
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‘could possibly be responsible for many lung cancers, and there is a current
suspicion that smoking may accelerate this process by causing the accumulation
of these radioactive products in the lungs. It is perhaps ironic that the recent
trends toward well insulated and tightly sealed buildings to conserve energy may
be responsible for an increased concentration of radon gas, and as of this writing
there is active research on the problem, including measurement of radon gas
accumulation in buildings.

The heavy element series are not the only sources of naturally occurring
radioactive isotopes of half-lives long enough to be present in terrestrial matter.
Table 6.2 gives a partial list of others, some of which can also be used for
radioactive dating.

There are also other natural sources of radioactivity of relatively short half-lives,
which are not remnants of the production of elements before the Earth formed,
but instead are being formed continuously today. These elements include *H and
14C, which are formed in the upper atmosphere when cosmic rays (high-energy
protons) strike atoms of the atmosphere and cause nuclear reactions. The isotope
14C has had important applications in radioactive dating.

6.7 RADIOACTIVE DATING

Although we cannot predict with certainty when an individual nucleus will decay,
we can be very certain how long it will take for half of a large number of nuclei
to decay. These two statements may seem inconsistent; their connection has to do
with the statistical inferences that we can make by studying random processes. If
we have a room containing a single gas molecule, we cannot predict with
certainty whether it will be found in the left half of the room or the right half. If
however we have a room containing a large number N of molecules (N ~ 10%4),
then we expect to find on the average N /2 molecules in each half. Furthermore,
the fluctuations of the number in each half about the value N /2 are of the order
of YN; thus the deviation of the fraction in each half from the value 0.5
is about YN /N = 107! The fraction in each half is thus 0.500000000000 +
0.0000000000001. This extreme (and unreasonable) precision comes about be-
cause N is large and thus the fractional error N~1/% is small.

A similar situation occurs for radioactive decay. (The laws of counting statis-
tics are discussed in detail in Chapter 7.) If we had at ¢ = 0 a collection of a large
number N, of radioactive nuclei, then after a time equal to one half-life, we
should find that the remaining fraction is 3 + N; '/% Thus despite the apparently
random nature of the decay process, the decay of radioactive nuclei gives us a
very accurate and entirely reliable clock for recording the passage of time. That
is, if we know the decay constant A, the exponential decrease in activity of a
sample can be used to measure time.

The difficulty in using this process occurs when we try to apply it to decays
that occur over geological times (~ 10° y) because in this case we do not measure
the activity as a function of time. Instead, we use the relative number of parent
and daughter nuclei observed at time #; (now) compared with the relative number
at time ¢, (when the “clock” started ticking, usually when the material such as a
rock or mineral condensed, trapping the parent nuclei in their present sites). In
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principle this process is rather simple. Given the decay of parent isotope P to
daughter isotope D, we merely count (by chemical means, for instance) the
present numbers of P and D atoms, Np(#,) and Np(t,):

Np(4,) + Np(t,) = Np(1,) (6.39)
Np(1) = Np(1,) e M=) (6.40)

At=t -ty = : In Nelto)

A Np(1y)

At=—In|1

A ( Np(1,) (6.41)
Given the, decay constant (which we can measure in the laboratory) and the
present ratio of daughter to parent nuclei, the age of the sample is directly found
with a precision determined by our knowledge of A and by the counting Statistics’
for Np and Np.

Equations 6.39 and 6.40 contain assumptions that must be carefully tested
before we can apply Equation 6.41 to determine the age of a sample. Equation
6.39 assumes that Np(¢5) = 0—no daughter atoms are pregent at t,—and also
that the total number of atoms remains constant—no parent or daughter atoms
escape from the mineral or solid in which they were originally contained. As we
discuss below, we can modify the derivation of A¢ to account for the daughter
atoms present at f, (even though when we analyze the sample today at time t
we cannot tell which daughter atoms were originally present and which resulte(i
from decays during Az). Equation 6.40 assumes that the variation in Np comes
only from the decay—no new parent atoms are introduced (by a previous decay
or by nuclear reactions induced by cosmic rays, for example). :

Let’s relax the assumption of Equation 6.39 and permit daughter nuclei to be
present at ¢ = #o. These daughter nuclei can be formed from the decay of parent
nuclei at times before ¢y or from the process that formed the original parent
nuclei (a supernova explosion, for example); the means of formation of these
original daughter nuclei is of no importance for our calculation. We therefore
take

ND(t‘l))

Np(11) + Np(t1) = Np(t,) + Np(z,) (6.42)

Because we have introduced another unknown, Np,(¢,), we can no longer solve
directly for the age At. If, however, there is also present in the sample a different
isotope of the daughter, D', which is neither radioactive nor formed from the
decay of a long-lived parent, we can again find the age of the sample. The
population of this stable isotope is represented by Ny, and if D’ is stable then
Np(#;) = Np:(%), in which case

ND(tl). + Np(1;) _ Np (o) + NP(tol)

Np (#) Np(to) (6.43)
which can be written as
Ny(t N,
(1) _ P.(tl) [0 1) Np(ty) (6.44)
Np(t))  Np(t) N ()
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(sr®7/5r86)g = 0.7003 + 0.0004 (20)

IIlITI!l|IIII|Il|f]lIII| [

N N TR I ISR S

05 10 15 20 25 30 35 40
RbB7/5r86

Figure 6.11 The Rb-Sr dating method, allowing for the presence of some initial
87gr. The linear behavior is consistent with Equation 6.44. From G. W. Wetherill,
Ann. Rev. Nucl. Sci. 25, 283 (1975).
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The ratios Np(#,)/Np(#;) and Np(#,)/Np.(#;) can be measured in the labora-
tory, but that still leaves two unknowns in Equation 6.44: the age At and the
initial isotopic ratio Np(ty)/Np.(t,). Minerals that crystallize from a common
origin should show identical ages and identical isotopic ratios Np(tq)/Np.(¢y),
even though the original Np(#,) may be very different (from differing chemical
compositions, for example). If these hypotheses are correct, we expect to observe
today minerals with various ratios Np(#;)/Np.(#;) and Nyp(t,)/Np(t,) corre-
sponding to common values of At and Np(#,)/Np(t,). We can test these
assumptions by plotting y = Np(t,)/Np.(t;) against x = Np(t,)/Np(t,) for a
variety of minerals. Equation 6.44 is of the form y = mx + b, a straight line with
slope m = eM17% — 1 and intercept b = Np(#,)/Np(t,). Figure 6.11 is an
example of such a procedure for the decay ¥’Rb —*Sr (1, , = 4.8 X 10' y), in
which the comparison is done with stable ®Sr. Even though the present ratio of
8Rb to %6Sr varies by more than an order of magnitude, the data indicate a
common age of the Earth, At = 4.5 X 10° y. The good linear fit is especially
important, for it justifies our assumptions of no loss of parent or daughter nuclei.

Other similar methods for dating minerals from the Earth, Moon, and
meteorites give a common age of 4.5 X 10° y. These methods include the decay
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of K to “Ar, the decay of 25U and 2*U to 27pb and 2%Pb, and the
spontaneous fission of **U and 2**Pu, which are analyzed either by chemical
separation of the fission products or by microscopic observation of the tracks left
in the minerals by the fission fragments.

For dating more recent samples of organic matter, the 4C dating method is
used. The CO, that is absorbed by organic matter consists almost entirely of
stable 12C (98.89%), with a small mixture of stable 1C (1.11%). Radioactive *C
is being continuously formed in the upper atmosphere as a result of cosmic-ray
bombardment of atmospheric nitrogen, and thus all living matter is slightly
radioactive owing to its '“C content. Because the production rate of *C by
cosmic rays has been relatively constant for thousands of years, living organic
material reaches equilibrium of its carbon with atmospheric carbon, with about 1
atom of C for every 1012 atoms of 12C. The half-life of C is 5730 y, and thus
each gram of carbon shows an activity of about 15 decays per minute. When an
organism dies, it goes out of equilibrium with atmospheric carbon; it stops
acquiring new '*C and its previous content of C decreases according to the
radioactive decay law. We can therefore determine the age of samples by
measuring the specific activity (activity per gram) of their carbon content. This
method applies as long as we have enough C intensity to determine the activity;
from matter that has decayed for 10 or more half-lives, the decay is so weak that
the *C method cannot be used. Recent techniques using accelerators as mass
spectrometers have the potential to exceed this limit by counting #C atoms
directly; these techniques are discussed in Chapter 20.

The major assumption of this method is the relatively constant production of
14C by cosmic rays over the last 50,000 y or so. We can test this assumption by
comparing the ages determined by radiocarbon dating with ages known or
determined by independent means (historical records or tree-ring counting, for
example). These comparisons show very good agreement and support the as-
sumption of a relatively uniform flux of cosmic rays.

In later millennia, the radiocarbon method may no longer be applicable.
During the last 100 years, the burning of fossil fuels has upset the atmospheric
balance by diluting the atmosphere with stable carbon (the hydrocarbons of fossil
fuels are old enough for all of their C to have decayed away). During the 1950s
and 1960s, atmospheric testing of nuclear weapons has placed additional #C in

the atmosphere, perhaps doubling the concentration over the equilibrium value
from cosmic-ray production alone.

6.8 UNITS FOR MEASURING RADIATION

The activity of a radioactive sample (in curies or in decays per second) does not
depend on the type of radiation or on its energy. Thus the activity may be a
useful means to compare two different sources of the same decaying isotope (10
mCi of ®Co is stronger than 1 mCi of ®Co), but how can we compare different
decays? For instance, how does a 10-mCi source of 89Co compare in strength
with 10 mCi of C, or how does a 10-p.Ci y emitter compare in strength with a

10-mCi a emitter? And just what exactly do we mean by the “strength” of a
source of radiation?
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One common property of nuclear radiations is their 'ability to ionize (knqck
clectrons from) atoms with which they interact: (For this reason, nuclear radla}
tion is often called ionizing radiation'.) We begin by cpnmdermg the Passage‘oh
X-ray and y-ray photons through air. The photons interact many tlmes1 witl
atoms in the air through a variety of processes (Comptpn scattering, photoelectric
effect, electron-positron pair production), each of which creates a free electron,
often of reasonably high energy. These secondary electrops can themselves
produce ionization (and additional electrons). The total electric charge Q on the
ions produced in a given mass m of air is callfad the exposure X, and we may take
y-ray sources as being of the same strength if they.rés.ult in the same exposure,
even though the energies of the y rays apd the activities of the sources may be
quite different. Specifically, the exposure is

X= g (6.45)
m
and is measured in the SI units of coulomb per kilogram. More freqqently we
encounter the roentgen unit (R), which is defined as the exposure resultlpg in an
ionization charge of 1 electrostatic unit (the cgs unit of ClE;CtI‘lC. ch_arge, m3 terms
of which the electronic charge e is 4.80 X 10710 electrostatic unit) in 1 cm’ of air
at 0°C and 760 mm pressure (corresponding to a mass of 0.001293 g). Thus

lesu

1R = 5601203 g

=258 x107* C/kg

Assigning one unit of electric charge to each ion, an exposure of 1 R means that
(2.58 X 10™* C/kg)/1.60 X 1071 C = 1.61 X 10 ions are formed per kg of
air, or 2.08 X 10? ions per cm’. It takes on the average about 34 eV to form an
ion in air, and thus an exposure of 1 R results in an energy absorption by the air
of 7.08 X 10'% eV /cm® or 0.113 erg/cm?, or 88 erg/g. ‘

The ionization produced by a y ray depends on its energy. With about 34 eV -
needed to produce each ion in air, a 1-MeV y ray can be expect(_ed to prqd_uce, on
the average, about 30,000 ions. A radioactive source Qf a given activity Wlll
generally produce many different y rays with different intensities and energies.
The exposure resulting from this source will depend on the number of decays and
also on the intensities and energies of each of the y rays, and the exposure rate
(exposure per unit time) will depend on the acti_vity pf the source. It will also
depend on how far we are from the source; if we imagine that we are to measure
the ionization produced in 1 cm? of air, that ionization w11'1 obYlously depend on
whether we hold that volume of air very close to the radioactive source or very
far away. We can therefore write

—A—X = I‘f (6.46)
At d?
where A X /At is the exposure rate, & is the activity, d is th_e distance from the
source, and T is a constant, the specific y-ray constant, which depends: on the
details of y-ray emission of each radionuclide (the fraction of Y 1ays with each
particular energy and the ionizing ability of photons of that partlpular energy). It
is customary to take d = 1 m as a standard distance for measuring the relation-
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Table 6.3 Specific y-Ray Constants for Various Radioisotopes?

¥-Ray Energy (MeV)

Nuclide L and Abundance (%) r
2N, 26y 0511 (181),1.275 (100) 1.20
24N, 1502h 1369 (100),2.754 (100) 1.84
e 446d 0143 (1),0192 (3),1.099 (56),1.292 (44)  0.60
7Co 270d 0014 (9),0.122 (85),0.136 (11) 0.059
0 Co 527y 1173 (100),1.333 (100) 1.28

131 806d  0.08(2),0.284 (6),0.364 (82), 022

0.637 (7),0.723 (2)

137 301y 0.032 (8),0.662 (85) 0.32

1984, 27d 0412 (95),0.676 (1) 0.23

226Ra and daughters 0.84

aUnits for T are R - m*/h - Ci. Note the relationship between I and the energy and intensity of the
y rays.

ship between exposure rate and activity, and thus T has units of (R/h)/(Ci/m?).
Some representative values of I" are given in Table 6.3.

Materials other than air exposed to ionizing radiation will differ in their rate of
energy absorption. It is therefore necessary to have a standard for defining the
energy absorption by ionization in different materials. This quantity is called the
absorbed dose D of the material and measures the energy deposited by ionizing
radiation per unit mass of material. The commonly used unit of absorbed dose is
the rad (radiation absorbed dose) equal to an energy absorption of 100 ergs per
gram of material. (Thus 1 R = 0.88 rad in air.) The SI unit for absorbed dose is
the gray (Gy), equal to the absorption of 1 joule per kilogram of material, and so
1 Gy = 100 rad.

To define standards for radiation protection of human beings, it is necessary to
have some measure of the biological effects of different kinds of radiations. That
is, some radiations may deposit their energy over a very long path, so that
relatively little energy is deposited over any small interval (say, of the size of a
typical human cell); 8 and y rays are examples of such radiations. Other types of
radiations, a particles for instance, lose energy more rapidly and deposit essen-
tially all of their energy over a very short path length. The probability of cell
damage from 1 rad of & radiation is thus far greater than that from 1 rad of Y
radiation. To quantify these differences, we define the relative biological effective-
ness (RBE), as the ratio of the dose of a certain radiation to the dose of X rays
that produces the same biological effect. Values of the RBE range from 1 to about
20 for « radiation. Since the RBE is a relatively difficult quantity to measure, it is
customary to work instead with the quality factor (QF), which is calculated for a
given type (and energy) of radiation according to the energy deposited per unit
path length. Radiations that deposit relatively little energy per unit length (B’s
and y’s) have QF near 1, while radiations that deposit more energy per unit
length (a’s) have QF ranging up to about 20. Table 6.4 shows some representa-
tive values of QF.

RADIOACTIVE DECAY

Table 6.4 Quality Factors for Absorbed Radiation

Radiation QF

X rays, B, v 1
Low-energy p,n (~ keV) 2-5
Energetic p,n (~ MeV)

a 20

Table 6.5 Quantities and Units for Measuring Radiation

Quantity Measure of Traditional Unit SI Unit

Activity (/) Decay rate curie (Ci) becquerel (Bg)

Exposure (X) Ionization in air roentgen (R) coulomb per
kilogram (C /kg)

Absorbed dose (D) Energy absorption rad gray (Gy)

Dose equivalent (DE) ~ Biological
effectiveness rem sievert (Sv)

The effect of a certain radiation on a biological system then depends on the
absorbed dose D and on the quality factor QF of the radiation. The dose
equivalent DE is obtained by multiplying these quantities together:

DE =D - QF (6.47)

The dose equivalent is measured in units of rem (roentgen equivalent man) when
the dose D is in rads. When the SI unit of gray is used for D, then the dose
equivalent is in sievert (Sv). Previously we noted that 1 Gy = 100 rad, and so it
follows that 1 Sv = 100 rem.

We therefore see that “strength” of radiation has many different ways of being
defined, depending on whether we wish to merely count the rate at which the
decays occur (activity) or to measure the effect on living systems (dose equiv-
alent). Table 6.5 summarizes these various measures and the traditional and SI
units in which they are expressed.

Standards for radiation exposure of the general public and of radiation
workers are specified in rems over a certain period of time (usually per calendar
quarter and per year). From natural background sources (cosmic rays and
naturally occurring radioactive isotopes, such as the uranium and thorium series
and “K) we receive about 0.1-0.2 rem per year. The International Commission
on Radiation Protection (ICRP) has recommended limiting annual whole-body
absorbed dose to 0.5 rem per year for the general public and 5 rem per year for
those who work with radiation. By way of contrast, the dose absorbed by a
particularly sensitive area of the body, the bone marrow, is about 0.05 rem for a
typical chest X ray and 0.002 rem for dental X rays. Unfortunately, the
physiological effects of radiation exposure are difficult to calculate and to
measure, and so the guideline must be to keep the exposure as low as possible.
(For this reason, many physicians no longer recommend chest X rays as a part of
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the regular annual physical examination, and dentists often place a lead apron
over the sensitive areas of a patient’s body while taking X-ray pictures of th

mouth.) Although the evidence is not conclusive, there is reason to believe th Et:
the risk of radiation-induced cancers and genetic damage remains at even ve:

low doses while other effects, such as cataracts and loss of fertility, may show !
definite threshold of exposure below which there is no risk at all. ,Muc}}ll of oui
knowledge in this area comes from studies of the survivors of the nuclear
weapons exploded over Hiroshima and Nagasaki in World War IL. from which
we know that there is virtual certainty of death following a short-’term dose of
100 rem, but the evidence regarding the linear relationship between dose and risk
is'liss clear. The effects of lo?g-term, low-level doses are still under active debate

with serious consequences for standards of radiati i ;
health of the general public. adiation protection and for the
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PROBLEMS

1. Three radioactive sources each have activities of 1.0 4Cj -
. : O uCiat t=0. Th

half—lfves are, respectively, 1.0's, 1.0 h, and 1.0 d. (a) How many radioactiei
nuclei are pre;ent at ¢ =0 in each source? (b) How many nuclei of each
source decay between =0 and r =1 s? (¢c) How
t=0and r=1h (¢) How many decay between

2, {\Iaturally_occurring samarium includes 15.1% of -the radioactive isotope
#1Sm, which decays by « emission. One gram of natural Sm gives 89 + 5 «
decays per second. From these data calculate the half-life of the isgtope
147Sm and give its uncertainty.

3. Arnpng the radiloactive products emitted in the 1986 Chernobyl reactor
accident were ' (¢, ,, = 8.0 d) and 1¥Cs (t, = 30 y). There are about
five times as many *’Cs atoms as *'I atoms produced in fission. (a) Which
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jsotope contributes the greater activity to the radiation cloud? Assume the
reactor had been operating continuously for several days before the radia-
tion was released. (b) How long after the original incident does it take for
the two activities to become equal? (c) About 1% of fission events produce
1311 and each fission event releases an energy of about 200 MeV. Given a
reactor of the Chernobyl size (1000 MW), calculate the activity in curies of
1T after 24 h of operation.

Consider a chain of radioactive decays 1 — 2 — 3, where nuclei of type 3
are stable. (a) Show that Equation 6.31 is the solution to Equation 6.29. (b)
Write a differential equation for the number of nuclei of type 3 and solve the
differential equation for N,(¢). (c) Evaluate Ny(z) + N,(¢) + N;(¢) and
interpret. (d) Examine N, N,, and N; at small #, keeping only linear terms.
Interpret the results. (¢) Find the limits of N;, N,, and N, as ¢t — oo and
interpret.

The human body contains on the average about 18% carbon and 0.2%
potassium. Compute the intrinsic activity of the average person from *C
and “°K.

A radioactive isotope is prepared by a nuclear reaction in a cyclotron. At
the conclusion of the irradiation, which lasts a very short time in compari-
son with the decay half-life, a chemical procedure is used to extract the
radioactive isotope. The chemical procedure takes 1 h to perform and is
100% efficient in recovering the activity. After the chemical separation, the
sample is counted for a series of 1-min intervals, with the following results
(¢t = 0 is taken to be the conclusion of the irradiation):

Decays / Decays / Decays /

t (min) min t (min) min t (min) min

62.0 592 112.0 290 163.0 125

68.0 527 1200 242 170.0 110

73.0 510 125.0 215 175.0 109

85.0 431 130.0 208 180.0 100
90.0 380 138.0 187
97.0 353 144.0 177
101.0 318 149.0 158
105.0 310 156.0 142

(a) Plot these data on semilog paper and determine the half-life and initial
(¢ = 0) activity from your graph. Show the range of uncertainty of each data
point, and try to estimate the resulting uncertainty in the half-life. (b) Use
an analytic procedure to do a linear least-squares fit of the data (in the form
of log N vs t) and determine the half-life and its uncertainty. Formulas for
linear least-squares fits can be found in K. S. Krane and L. Schecter, Am.
J. Phys. 50, 82 (1982).

A sample of a certain element with two naturally occurring isotopes
becomes activated by neutron capture. After 1 h in the reactor, it is placed
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10.

11.

in a counting room, in which the total number of decays in 1 h is recorded
at daily intervals. Here is a summary of the recorded data:

Time (d) No. Decays Time (d) No. Decays
0 102,515 20 2372
1 79,205 40 1421
2 61,903 60 1135
3 48,213 .80 862
4 37,431 100 725
5 29,367 120 551
6 23,511 140 462
7 18,495 160 359
8 14,829 180 265
9 11,853 200 225

10 9,595

From these data, determine the half-lives and initial activities of the two
components. What is the element?

Consider a simple decay process in which an initial number N, of radioac-
tive nuclei of type A decay to stable nuclei of type B. In a time interval from
t) to #; + Az, how many decays will occur? Solve this problem in two ways:
(1) use Equation 6.10, and (2) use the difference between N(¢;) and

N(#; + At). Note: Only the first of these methods is correct in general; see
the next problem.

Consider a decay process A — B — C, in which Ny(t = 0) = N,, and
Ng(t = 0) = N.(t = 0) = 0. How many decays of type B nuclei will be
observed between ¢, and ¢, + Ar? (Hint: See the previous problem, and

explain why method (2) will not work in this case. Figures 6.6 and 6.7 may
also provide convincing evidence.)

Nuclei of type A, produced at a constant rate R in a nuclear reaction, decay
to type B which in turn decay to stable nuclei C. (a) Set up and solve the
differential equations for N,, N, and N as functions of the time during

which the reaction occurs. (b) Evaluate the sum N, + Ny + N and inter-
pret.

The radioactive isotope **Pa (1, ,, = 27.0 d) can be produced following
neutron capture by **Th. The resulting #3Th decays to 2*Pa with a
half-life of 22.3 min. Neutron capture in 1 g of 2*2Th, in the neutron flux
from a typical reactor, produces 2*Th at a rate of 2.0'X 101 g~1. (a) At the
end of 1 h of irradiation, what are the resulting activities of 2*Th and
>3pa? (b) After 1 h of irradiation, the sample is placed in storage so that the
*Th activity can decay away. What are the 2*Th and 2*Pa activities after
24 h and after 48 h of storage? (c) The 33Pa decay results in 23U, which is
itself radioactive (¢, 2= 1.6 X 10° y). After the above sample has been
stored for 1 year, what is the 23U activity? (Hint: It should not be necessary
to set up an additional differential equation to find the *3U activity.)
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An initial activity of nucleus A decays to B, which in turn decays.to stable
nucleus C. (a) Discuss qualitatively why it must be true at short times t.hat
&, > Ay, while at long times &/ > &/,. (b) There must therefore be a time
T at which &7, = /5. Find T in terms of the decay constants }\ A and Aj.
The decay chain *°Cs —!¥Ba —!*La is observed from an initially pure
sample of 1 mCi of 1*Cs. The half-lives are '*Cs, 9.5 min; °”Ba, 8.2.9 min;
1391 a, stable. What is the maximum **°Ba activity and when does it occur?
In the decay process 25U —#'Th —»>'Pa (¢, ,, = 7.04 X 10% y for.235U;
t1, = 25.5 h for ®'Th) plot the *’U and *'Th activities as a function of
time from ¢ = 0 to ¢ = 100 h. Assume the sample in1t1a‘lly consists of 1.0
mCi of #*’U. Discuss the condition of secular equilibrium in this decay
Tho o ? d *Th. A sample
The a decay of 2*U (¢, ,, = 4.47 X 10% y) leads to 24.1-d **Th. A samp
of uranium ore should reveal **Th activity in secular equilibrium with the
parent. What would be the **Th activity in each gram of uranium?
Prepare a diagram similar to Figure 6.10 showing the 4n + 2 natural
radioactive series. .
The radioactive decay of *2Th leads eventually to stable *®*Pb. A rock is
determined to contain 3.65 g of ?*2Th and 0.75 g of 2Pb. (a) What is the
age of the rock, as deduced from the Th/Pb ratio? (b) If the rock is large,
the a particles emitted in the decay processes remain trapped. If the rock
were pulverized, the a’s could be collected as helium gas. At 760 mm and
0°C, what volume of helium gas could be collected from this rock?
It is desired to determine the age of a wood timber used to construct an
ancient shelter. A sample of the wood is analyzed for its **C content and
gives 2.1 decays per minute. Another sample of the same size frgm a
recently cut tree of the same type gives 5.3 decays per minute. What is the
age of the sample? o N
Show that the present ¥C content of organic material gives it an activity of
.about 15 decays per minute per gram of carbon. .
What is the probability of a **C decay taking place in the l_ungs during a
single breath? The atmosphere is about 0.03% CO,, and in an average
breath we inhale about 0.5 liter of air and exhale it about 3.5 s later.
(a) What is the y-ray flux (y’s per unit area) a distance of 1.0 m from a
7.5-mCi source of %°Co? :

(b) How many ions per minute are produced in a cubic centimeter of air at
that distance?




