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RADIOACTIVE DECAY 

The radioactive decays of naturally occurring minerals containing uranium and 
thorium are in large part responsible for the birth of the study of nuclear physics. 
These decays have half-lives that are of the order of the age of the Earth, 
suggesting that the materials are survivors of an early period in the creation of 
matter by aggregation of nucleons; the shorter-lived nuclei have long since 
decayed away, and we observe today the remaining long-lived decays. Were it not 
for the extremely long half-lives of 235U and 238U, we would today find no 
uranium in nature and would probably have no nuclear reactors or nuclear 
weapons. 

In addition to this naturally occurring radioactivity, we also have the capability 
to produce radioactive nuclei in the laboratory through nuclear reactions. This 
was first done in 1934 by Irene Curie and Pierre 10liot, who used a particles from 
the natural radioactive decay of polonium to bombard aluminum, thereby 
producing the isotope 30p, which they observed to decay through positron 
emission with a half-life of 2.5 min. In their words: 

Our latest experiments have shown a very striking fact: when an aluminum foil 
is irradiated on a polonium preparation, the emission of positrons does not 
cease immediately when the active preparation is removed. The foil remains 
radioactive and the emission of radiation decays exponentially as for an 
ordinary radioelement. 

For this work on artificially produced radioactivity the 10liot-Curie team was 
awarded the 1935 Nobel Prize in Chemistry (following a family tradition-Irene's 
parents, Pierre and Marie Curie, shared with Becquerel the 1903 Nobel Prize in 
Physics for their work on the natural radioactivity of the element radium, and 
Marie Curie became the first person twice honored, when she was awarded the 
1911 Nobel Prize in Chemistry). 

In this chapter we explore the physical laws governing the production and 
decay of radioactive materials, which we take to mean those substances whose 
nuclei spontaneously emit radiations and thereby change the state of the nucleus. 
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6~1 THE RADIOACTIVE DECAY LAW 

. f llowing the 1896 discovery of radioactivity it was noted that the Three years 0 .. d' t 
. ca rate of a pure radioactive substance decreases wIth tI~e a.c~or mg 0 an 

de y t' llaw It took several more years to realize that radiOaCtivIty represents exponen 1a . 'h 1 hIlt 
. the individual atoms and not a change m t e samp e as a w o~. . 

cha;ges ~~er two years to realize that the decay is statistical in nature, that It ~s 
:: 0:s7~le to predict when any given atom will disintegrate" and, ~hat this 
h p thesis leads directly to the exponential law. This lack of pred1ctab1ht~ of the 
b~h~vior of single particles does not bother most scientists today, but this early 
, of l't before the development of quantum theory, was apparently 
mstance , d' d . f t to 
difficult to accept. Much labor was required of these de 1cate mves 19a ors 
establish what now may seem like evident fac~s.. . 

If N radioactive nuclei are present at time t and If. no . new ~ucle1 a~e 
introduced into the sample, then the number dN decaymg m a time dt IS 
proportional to N, and so 

A= 
(dN/dt) 

(6.1) 
N 

. hich A is a constant called the disintegration or decay constant. The right side 
~~ ~quation 6.1 is the probability per unit time for the decay of an, atom. Th~t 
this probability is constant, regardless of the age of the atom~, ~s the baSIC 
assumption of the statistical theory of radioactive decay. (Human hfetImes do not 
follow this law!) . . d 

Integrating Equation 6.1 leads to the exponential law of radlOactwe ecay 

N(t) = Noe- At (6.2) 

where No, the constant of integration, gives the original number of nuc~ei present 
at t = O. The half-life t1/2 gives the time necessary for half of the nucleI to decay. 
Putting N = No/2 in Equation 6.2 gives 

0.693 
t1/2 = -A- (6.3) 

It is also useful to consider the mean lifetime (sometim~s ~alled just ~he 
l'f t') hich is defined as the average time that a nucleus IS hkely to surViVe 
1 e 1me T, W ,. N() d the number before it decays. The number that survive to time t IS Just. t,' a~ 
that decay between t and t + dt is I dN / dt I dt. The mean hfetIme IS then 

1000t IdN/dtl dt 
T= 

10
00 

IdN /dtl dt 
(6.4) 

where the denominator gives the total number of decays. Evaluating the integrals 
gives 

1 
T = >: (6.5) 

Thus the mean lifetime is simply the inverse of the decay constant. 
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Equatio~ .6.2 allows u~ to predict the number of undecayed nuclei of a given 
type remammg after a tIme t. Unfortunately, the law in that form is of limited 
usefulness because N is a very difficult quantity to measure. Instead of counting 
the number of undecayed nuclei in a sample, it is easier to count the number of 
decays (by observing the emitted radiations) that occur between the times t and 
t2· If we deduce a change I:::.N in the number of nuclei between t and t + 1:::./ then , 

II:::.NI = N(t) - N(t + !:::.t) = Noe- XI (l - e- Xtol ) (6.6) 

If the interval !:::.t during which we count is much smaller than A-I (and thus, in 
effect, I:::.t« t1/ 2), we can ignore higher order terms in the expansion of the 
second exponential, and 

II:::.NI = ANoe-xl!:::.t 

Going over to the differential limit gives 

I dN I = AN. e- xI 
dt 0 

Defining the activity d to be the rate at which decays occur in the sample, 

d(t) == AN(t) = do e- xI 

The initial activity at t = 0 is do = ANo. 

(6.7) 

(6.8) 

(6.9) 

. Actually, we could have obtained Equation 6.8 by differentiating Equation 6.2 
dIrectly, but we choose this more circuitous path to emphasize an important but 
often overlooked point: Measuring the number of counts I:::.N in a time interval !:::.t 
gives the activity of the sample only if!:::.t « tl / 2 • The number of decays in the 
interval from tl to t2 is 

AN 1/2=11 +~I 
L.1 = ddt 

11 
(6.10) 

which equals d!:::.t only if I:::.t « t1/ 2. (Consider an extreme case-if tl/2 = 1 s, 
we observe the same number of counts in 1 min as we do in 1 h.) See Problem 1 
at the end of this chapter for more on the relation between d and I:::.N. 

The activit~ o~ a radioactive sample is exactly the number of decays of the 
sample per umt tIme, and decays/s is a convenient unit of measure. Another unit 
for measuring a~tivity is ~he curie (Ci), which originally indicated the activity of 
one gram of radIUm but IS now defined simply as 

1 Ci = 3.7 X 1010 decays/s 

Most common radioactive sources of strengths typically used in laboratories have 
activities in the range of microcuries to millicuries. The SI unit for activity is the 
becquerel (Bq), equal to one decay per second; however, the curie is so firmly in 
place as a unit of activity that the becquerel has not yet become the commonly 
used unit. 

Note t~at the activity tells us only the number of disintegrations per second; it 
says nothing about the kind of radiations emitted or their energies. If we want to 
know about. the effects of radiation on a biological system, the activity is not a 
useful quantIty since different radiations may give different effects. In Section 6.8 
we discuss some alternative units for measuring radiation that take into account 
their relative biological effects. 
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Figure 6.1 The exponential decay of activity. (8) Linear plot. (b) Semilog 
plot. 

Equation 6.9 shows that the activity decays exponentially with time. We can 
thus measure the activity as a function of time by counting the number of decays 
in a sequence of short time intervals !:::.t. Plotting these data on a semilog graph 
(that is, In d vs t) should give a straight line of slope -A. Figure 6.1 is an 
example of this kind of experiment, from which one can determine the half-life of 
a radioactive decay. 

This method of measurement is useful only for half-lives that are neither too 
short nor too long. The half-life must be short enough that we can see the sample 
decaying-for half-lives far greater than a human lifetime, we would not be able 
to observe any substantial reduction in activity. For such cases, we can use 
Equation 6.1 directly, by measuring dN/dt (which is just the activity in this 
simple decay process) and by determining the number of atoms (such as by 
weighing a sample whose chemical composition is accurately known). 

For half-lives that are very short (say, small compared with 1 s), observing the 
successive disintegration rates is also not useful, for the activity decays to nothing 
in the time that it would take to switch the counting apparatus on and off. For 
t~ese cases we use a more precise technique, described in Chapter 7, that permits 
the routine measurement of half-lives down to nanoseconds (10- 9 s) and even 
picoseconds (10- 12 s). 
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It is important to keep in mind that the simple exponential law of radioactive 
decay applies only in a limited set of circumstances-a given initial quantity of a 
substance decays (by emitting radiation) to a stable end product. Under these 
circumstances, when radioactive nucleus 1 decays with decay constant Al to 
stable nucleus 2, the number of nuclei present is 

Nl = Noe- Alt 

N2 = NoU - e- Alt ) 

(6.11a) 

(6.11b) 
Note that the number of nuclei of type 2 starts out at 0 and approaches No as 
t ~ 00 (all of type 1 eventually end as type 2) and also note that Nl + N2 = No 
(the total number of nuclei is constant). If nuclei of type 2 are themselves 
radioactive, or if nuclei of type 1 are being produced (as a result of a nuclear 
reaction, for instance) then Equations 6.11 do not apply. We consider these cases 
in Sections 6.3 and 6.4. 

Often it will happen that a given initial nucleus can decay in two or more 
different ways, ending with two different final nuclei. Let's call these two decay 
modes a and b. The rate of decay into mode a, (dN I dt) a' is determined by the 
partial decay constant Aa, and the rate of decay into mode b, (dNldth, by Ab: 

A = - (dNldt)a 
a N 

-(dNldt)b 
Ab= ----­

N 

The total decay rate (dN I dt) t is 

_ ( dN) = _ ( dN) _ (dN) = N( A + A ) = NA 
dt t dt a dt b a b t 

(6.12) 

(6.13) 

where At = Aa + Ab is the total decay constant. The nuclei therefore decay 
according to N = Noe- Att, and the activity IdNldtl decays with decay constant 
A t. Whether we count the radiation leading to final states a or b, we observe only the 
total decay constant A t; we never observe an exponential decay of the activity 
with constants Aa or Ab. The relative decay constants Aa and Ab determine the 
probability for the decay to proceed by mode a or b. Thus a fraction A alA t of 
the nuclei decay by mode a and a fraction Ab/At decay by mode b, so that 

Nl = Noe-Al,tt 

N2• a = (Aa/At)NoU - e- Al.tt ) 

N2• b = (Ab/At)NoU - e- Al .tt ) 

(6.14) 

The separate factors Aa or Ab never appear in any exponential term; we cannot 
"turn off" one decay mode to observe the exponential decay of the other. 

Another special case is that of a sample with two or more radionuclei with 
genetically unrelated decay schemes. Consider a mixture of 64Cu (12.7 h) and 
61CU (3.4 h); such mixtures cannot be chemically separated of course. The 
activity of a particular mixture is plotted against time on semilog paper in Figure 
6.2. At the right end of the curve we assume (because the curve is linear) that 
only one activity is present; the limiting slope shows a 12.7-h half-life. By (1) 
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Figure 6.2 Decay curve for a sample containing a mixture of 64CU (12.7 h) and 
61CU (3.4 h). 

extending this limiting slope backward, (2) taking differences between the curve 
and this straight line at various abscissas, and (3) plotting these differences on the 
same scale, we get the dot-dashed straight line that represents the 3.4-h half-life. 
The intercepts of both straight lines on the vertical axis give the initial counting 
rates for each component. This method can be extended to mixtures with more 
than two components, if the half-lives are sufficiently different from one another. 

6.2 QUANTUM THEORY OF RADIATIVE DECAYS 

The energy levels we obtain by solving the Schrodinger equation for various 
time-independent potentials share one property-they are stationary states. A 
quantum system that is originally in a particular stationary state will remain in 
that state for all times and will not make transitions to (i.e., decay to) other 
states. We can allow a quantum system to be found sometimes in one state and 
sometimes in another by making a mixture of two or more states, such as 
1/; = c11/;1 + c21/;2 which has the probability Ic112 to be found in state 1 and IC212 
to be found in state 2. For time-independent potentials, c1 and C2 are indepen­
dent of iime, which does not correspond with observations for decaying states, in 
which the probability to find one state decays with time. Moreover, on a 
philosophical level, we should be forced to abandon the notion of pure states 
with well-defined wave functions, making the interpretation of nuclear structure 
very difficult indeed. 

We therefore adopt the following approach: The potential is assumed to be of 
the form V + V', where V is the nuclear potential that gives the stationary states 
and V'is a very weak additional potential that can cause transitions between the 
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states. For the moment neglecting V', we solve the Schr6dinger equation for the 
potential V and obtain the static nuclear wave functions. We then use those wave 
functions to calculate the transition probability between the "stationary states" 
under the influence of V'. This transition probability is just the decay constant A, 
which is given by Fermi's Golden Rule as discussed in Section 2.8: 

27T 
A = hi Vfil 2 

P(Ef) (6.15) 

where 

(6.16) 

Given the initial and final wave functions 1/;i and 1/;f' we can evaluate the "matrix 
element" of V' and thus calculate the transition probability (which can then be 
compared with its experimental value). 

The transition probability is also influenced by the density offinal states p(Ef) 
-within an energy interval dEf , the number of final states accessible to the 
system is dn f = p(Ef) dEf. The transition probability will be large if there is a 
large number of final states accessible for the decay. There are two contributions 
to the density of final states because the final state after the decay includes two 
components-the final nuclear state and the emitted radiation. Let's consider in 
turn each of these two components, beginning with the nuclear state. 

Solving the Schr6dinger equation for the time-independent potential V gives us 
the stationary states of the nucleus, 1/;a(r). The time-dependent wave function 
'Va (r, t) for the state a is 

(6.17) 

where Ea is the energy of the state. The probability of finding the system in the 
state a is I 'Va (r, t) 1

2
, which is independent of time for a stationary state. To be 

consistent with the radioactive decay law, we would like the probability of 
finding our decaying system in the state a to decrease with time like e-t/Ta: 

(6.18) 

where Ta = 1/Aa is the mean lifetime of the state whose decay constant is Aa. We 
should therefore have written Equation 6.17 as 

(6.19) 

The price we pay for including the real exponential term in 'Va is the loss of the 
ability to determine exactly the energy of the state-we no longer have a 
stationary state. (Recall the energy-time uncertainty relationship, Equation 2.2. If 
a state lives forever, At -) 00 and we can determine its energy exactly, since 
AE = O. If a state lives on the average for a time T, we cannot determine its 
energy except to within an uncertainty of AE - niT.) We can make this 
discussion more rigorous by calculating the distribution of energy states (actually 
the Fourier transform of e- t

/
2Ta ). The probability to observe the system in the 

energy interval between E and E + dE in the vicinity of Ea is given by the 

Ea 

Energy 
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Figure 6.3 Probability to observe the energy of an unstable state of width fa' 

square of this distribution: 

(6.20) 

where ra = niTa is the width of the state a. Figure 6.3 shows the function peE). 
If we measure the energy of this system, we may no longer find the value Ea 
(although the average of many measurements gives Ea). The width ra is a 
measure of our inability to determine precisely the energy of the state (through 
no fault of our own-nature imposes the limit of uncertainty, ~ot our mel;lsuring 
instruments; as indicated by Figure 6.3, a state with the "exact'" energy Ea cannot 
be observed). . . 

If nuclear states do not have exact energies, can we speak of transItIOns 
between distinct levels? We can, because the widths of the low-lying nuclear levels 
are small compared with their energy spacing. Nuclear states typically, have 
lifetimes greater than 10-12 s, corresponding to r < 10-10 MeV. The dIscrete 
low-lying nuclear states that are populated in ordinary decays (and many nuclear 
reactions, as well) have typical separations of the order of 10- 3 MeV and larger. 
Thus if we were to measure the energy of a final nuclear state after a decay 
process (by measuring the energy of the emitted radiation, for example), it is very 
unlikely that the overlap of the energy distributions of two different final states a 
and b could cause confusion as to the final "stationary" state resulting from the 
decay (see Figure 6.4). , 

We therefore conclude that it is reasonable to speak of dIscrete pseudo-sta­
tionary states because their separation is far greater than their width, and we also 
conclude that such nuclear states do not contribute to the density of final states 
because there is only one nuclear state that can be reached in a given decay 
process. 

It is thus only the radiation field that contributes to the density of states, and 
we ~ust consider the properties of the emitted radiations in calculating p(Ef ). 

For the present, we will only make some general comments regarding P(Ef). If 
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(a) (b) 

Ea 

Figure 6.4 When the widths of unstable states are small compared with their 
separation, as in (a), the states are distinct and observable. In (b), the states a and 
b overlap and are strongly mixed; these states do not have distinctly observable 
wave functions. 

we observe only the probability to form the nuclear state Ee, then we must 
consider all possible radiations of energy E j - Ee. Specifically, the radiation can 
be emitted in any direction and in any state of polarization (if the radiation 
consists of a particle with spin, the spin may have any possible orientation), 
assuming of course that we do not observe the direction of the radiation or its 
polarization. It is this process of counting the number of accessible final states 
that gives the density of states, which we consider further when we discuss 
specific radiation types in Chapters 8-10. 

In solving the differential equation (6.1) to obtain the radioactive decay law, we 
assumed the decay probability A to be (1) small and (2) constant in time, which 
happen to be the same assumptions made in deriving Fermi's Golden Rule. If V' 
is independent of time, then A calculated according to Equation 6.15 will also be 
independent of time. Under such a condition, the effect of V' on the stationary 
states a and b of V is . 

and the system formerly in the state a has a probability proportional to I Vba l2 to 
be found in the state b. We observe this as a "decay" from a to b. 

To apply Fermi's Golden Rule, the probability for decay must also be small, so 
that the amplitude of l/Ib in the above expression is small. It is this requirement 
that gives us a decay process. If the decay probability were large, then there 
would be enough radiation present to induce the reverse transition b ~ a 
through the process of resonant absorption. The system would then oscillate 
between the states a and b, in analogy with a classical system of two coupled 
oscillators. 

The final connection between the effective decay probability for an ensemble of 
a large number of nuclei and the microscopic decay probability computed from 
the quantum mechanics of a single nucleus requires the assumption that each 
nucleus of the ensemble emits its radiation independently of all the others. We 
assume that the decay of a given nucleus is independent of the decay of its 
neighbors. This assumption then permits us to have confidence that the decay 
constant we measure in the laboratory can be compared with the result of our 
quantum mechanical calculation. 
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6.3 PRODUCTION AND DECAY OF RADIOACTIVITY 

It quite frequently happens that a basic condition imposed in deriving the 
exponential law,. that no new n~clei are introduced into the saI?ple, is not valid. 
In solving EquatIOn 6.1 we obtamed a fixed number No of nucleI present at t = O. 
In many applications, however, we produce activity continuously, such as by a 
nuclear reaction. In this case, Equation 6.2 is no longer valid and we must 
consider in more detail the processes that occur in the production and decay of 
the activity. 

Let's assume that we place a target of stable nuclei into a reactor or an 
accelerator such as a cyclotron. The nuclei of the target will capture a neutron or 
a charged particle, possibly leading to the production of a radioactive species. 
The rate R at which this occurs will depend on the number No of target atoms 
present, on the flux or current J of incident particles, and on the reaction cross 
section 0 (which measures the probability for one incident particle to react with 
one target nucleus). A typical flux of particles in a reactor or cyclotron might be 
of the order of 1014/S . cm2, and typical cross sections are at most of the order of 
barns (10- 24 cm2 ). Thus the probability to convert a target particle from stable to 
radioactive is about lO- lO/s. Even if the reaction is allowed to continue for 
hours, the absolute number of converted target particles is small (say, less than 
10-6 of the original number). We can therefore, to a very good approximation, 
regard the number of target nuclei as constant, and under this approximation the 
rate R is constant. (As we "burn up" target nuclei, No will decrease by a small 
amount and the rate may therefore similarly decrease with time. Obviously No 
must go to zero as t --) 00, but for ordinary reaction times and typical cross 
sections we ignore this very small effect.) Thus 

R = NooJ (6.21) 

is taken to be a constant giving the rate at which the radioactive product nuclei 
are formed. 

Let's denote by Nl the number of radioactive nuclei that are formed as a result 
of the reaction. These nuclei decay with decay constant Al to the stable nuclei 
denoted by· N2. Thus the number of nuclei Nl present increases owing to the 
production at the rate R and decreases owing to the radioactive decay: 

dNI = Rdt - AINI dt (6.22) 

and the solution to this equation is easily obtained 

R 
N1(t) = >:(1 - e- Ajt

) 

1 

(6.23) 

and 

(6.24) 

If the irradiation time is short compared with one half-life, then we can expand 
the exponential and keep only the term linear in t: 

JI1\(t) == RAlt t « tl/2 (6.25) 

,For small times, the activity thus increases at a constant rate. This corresponds to 
the linear (in time) accumulation of product nuclei, whose number is not yet 
seriously depleted by radioactive decays. 
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Figure 6.5 A plot of the number of radioactive 61CU atoms present in a Ni target 
at various times during and after bombardment with deuterons in a cyclotron. 

For times long compared with the half-life the exponential approaches zero 
and the activity is approximately constant: 

(6.26) 

In this case new activity is being formed at the same rate at which the older 
activity decays. This is an example of secular equilibrium which we discuss in 
more detail in the next section. 

If we irradiate the sample for a time t1 and then remove it from the accelerator 
or reactor, it will decay according to the simple exponential law, since no new 
activity is being formed. Figure 6.5 shows the activity resulting from the deuteron 
bombardment of 61Ni to form 61Cu (t1/2 = 3.4 h). 

From Equation 6.24 we see that we produce 75% of the maximum possible 
activity by irradiating for two half-lives and 87.5% by irradiating for three 
half-lives. Further irradiation increases the activity by a steadily diminishing 
amount, so that we gain relatively little additional activity by irradiating for more 
than 2-3 half-lives. In fact, since the cost of using a reactor or accelerator is 
usually in direct proportion to the irradiation time, the best value (maximum 
activity per unit cost) is obtained by remaining close to the linear regime 
(t « t1/ 2 ). 

6.4 GROWTH OF DAUGHTER ACTIVITIES 

Another common situation occurs when a radioactive decay results in a product 
nucleus that is also radioactive. It is thus possible to have series or chains of 
radioactive decays 1 ~ 2 ~ 3 ~ 4 ... , and it has become common to refer to the 
original nucleus (type 1) as the parent and the succeeding "generations" as 
daughter (type 2), granddaughter (type 3), and so on. 
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We assume that we begin with No atoms of the parent at t = 0 and that no 
atoms of the decay products are originally present: 

N1(t = 0) = No 

N2 (t = 0) = N3 (t = 0) = ... = 0 (6.27) 

The various decay constants are represented by AI' A2 , A3 , •••. For the present 
ca1Gulation, we will assume that the granddaughter is the stable end-product of 
the decay. The number of parent nuclei decreases with time according to the 
usual form 

(6.28) 

The number of daughter nuclei increases as a result of decays of the parent and 
decreases as a result of its own decay: 

dN2 = A1N1dt - A2N2dt (6.29) 

The number of parent nuclei can be found directly from integrating Equation 
6.28: 

(6.30) 

To solve Equation 6.29, we try a solution of the form N2(t) = A e- A11 + B e- A21 

and by substituting into Equation 6.29 and using the initial condition N2(0) = 0 
we find 

(6.31) 

(6.32) 

Note that Equation 6.31 reduces to Equation 6.11b if nuclei of type 2 are stable 
(A 2 ~ 0). We can also include the results of the previous section as a special case 
of Equation 6.31. Let's suppose that Al is very small (but not quite zero), so that 
N1 ::::: No - NoAlt. In a nuclear reaction, the number of target nuclei decreases at 
the rate R· according to No - Rt, and thus identifying NOA1 with Rand 
neglecting Al in comparison with A2 , Equation 6.31 reduces to Equation 6.24 for 
the activity of type 2. 

~l «~2 

In this case the parent is so long-lived that it decays at an essentially constant 
rate; for all practical times e- A11 ::::: 1 and 

A 
N2(t) ~ No~(1 - e-A21

) (6.33) 
A2 

which is of the same form as Equation 6.24. Thus the activity d 2 approaches the 
limiting value NOA1 as was shown in Figure 6.5. 
, This is another example of secular equilibrium, where as t becomes large nuclei 
of type 2 are decaying at the same rate at which they are formed: A2N2 = A1N1. 
(Note that Equation 6.29 shows immediately that dN2/dt = 0 in this case.) 
Figure 6.6 shows an example of approximate secular equilibrium. 
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Figure 6.6 In the decay 132Te (78 h) ..... 132 1 (2.28 h) ..... 132 Xe, approximate secular 
equilibrium is reached at about 12 h. 

hl < h2 

From Equations 6.30 and 6.31 we can calculate the ratio of the two activities: 

X N X 
~ = 2 (1 - e-(A2-A1)1) (6.34) 
X1N1 X2 - Xl 

As t increases, the exponential term becomes smaller and the ratio d
2
/d

l 
approaches the limiting constant value X2/(X 2 - Xl)' The activities themselves 
are not constant, but the nuclei of type 2 decay (in effect) with the decay constant 

0.01 ~::---=-::-~--:l:---:l---.JL--L-L........l.._L--L_L-1.----.J 
o 70 80 90 100 110 120 130 140 150 

Time 004 y) 

Figure 6.7 An example of equilibrium in the decays of 234U (2.45 X 105 y) to 
230Th (8.0 X 104 y), The ratio d 2 / d 1 approaches the constant value 1.48. 
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of type 1. This situation is known as transient equilibrium and is illustrated in 
Figure 6.7. 

hl > h2 

In this case the parent decays quickly, and the daughter activity rises to a 
maximum and then decays with its characteristic decay constant. When this 
occurs the number of nuclei of type 1 is small and nearly insignificant. If t is so 
long that e- A11 effectively vanishes, then Equation 6.31 becomes 

Xl 
N (t) ::: N e- A21 (6.35) 

2 °i\ - A2 

which reveals that the type 2 nuclei decay approximately according to the 
exponential law. 

Series of Decays 

If we now assume that there are several succeeding generations of radioactive 
nuclei (that is, the granddaughter nuclei type 3 are themselves radioactive, as are 
types 4, 5, 6, ... ), we can then easily generalize Equation 6.29 since each species is 
populated by the preceding one: 

dNi = Ai-l!V;-l dt - AiNi dt (6.36) 

A general solution, for the case of No nuclei of type 1 and none of the other types 
initially present, is given by the Bateman equations, in which the activity of the 
nth member of the chain is given in terms of the decay constants of all preceding 
members: 

where 

n 

d = N. " c, e-Ail 
nO£.... I 

i=1 

= NO(Cle-A1I + c 2 e- A21 + ... +cne- Anl ) 

(AI - Am)(A2 - Xm) '" (An - Am) 

(6.37) 

(6.38) 

where the prime on the lower product indicates we omit the term with i = m. 
It is also possible to have secular equilibrium in this case, with Xl Nl = 

A2N2 = '" = AnNn' 

6.5 TYPES OF DECAYS 

The three primary decay types, to be discussed in greater detail in Chapters 8, 9, 
and 10, are (x, [J, and y decays. In (X- and [J-decay processes, an unstable nucleus 
emits an a or a [J particle as it tries to become a more stable nucleus (that is, to 
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approach the most stable isobar for the resulting mass number). In y-decay 
processes, an excited state decays toward the ground state without changing the 
nuclear species. 

IX Decay 

In this process, a nucleus emits an a particle (which Rutherford and ,his 
co-workers showed to be a nucleus of helium, iHe2 ). The 4He nucleus is chosen 
as the agent for this process because it is such a tightly bound system, and thus 
the kinetic energy released in the decay is maximized. Such decays are favored, as 
we shall discuss in Chapter 8. The decay process is 

AX A- 4 X' +4H 2 N ~ 2-2 N-2 2 e2 

where X and X' represent the chemical symbols of the initial and final nuclei. 
Notice that the number of protons and the number of neutrons must separately 
be conserved in the decay process. An example of an a-decay process is 

226R 222Rn 
88 a138 ~ 86 136 + a 

in which the half-life is 1600 years and the a particle appears with a kinetic 
energy of about 4.8 MeV. 

f3 Decay 

Here the nucleus can correct a proton or a neutron excess by directly converting 
a proton into a neutron or a neutron into a proton. This process can occur in 
three possible ways, each of which must involve another charged particle to 
conserve electric charge (the charged particle, originally called a {3 particle, was 
later shown to be identical with ordinary electrons). 

{3- decay 

{3+ decay 

electron capture (e) 

The first process is known as negative {3 decay or negatron decay and involves the 
creation and emission of an ordinary electron. The second process is positive {3 
decay or positron decay, in which a positively charged electron is emitted. In the 
third process, an atomic electron that strays too close to the nucleus is swallowed, 
allowing the conversion of a proton to a neutron. 

In all three processes, yet another particle called a neutrino is also emitted, but 
since the neutrino has no electric charge, its inclusion in the decay process does 
not affect the identity of the other final particles. 

Note that in positive and negative {3 decay, a particle is created (out of the 
decay energy, according to m = E/c 2 ). The electron or positron did not exist 
inside the nucleus before the decay. (Contrast the case of ex decay, in which the 
emitted nucleons were inside the nucleus before the decay.) 
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Some representative {3-decay processes are 

1nI78;- 1~~Xe77 t1/2 = 8.0 d 

54M 54C 
25 n 29 -: 24 r30 t1/2 = 312 d 

In these processes, Z and N each change by one unit, but the total mass number 
Z + N remains constant. 

y Decay 

Radioactive y emission is analogous to the emission of atomic radiations such as 
optical or X-ray transitions. An excited state decays to a lower excited state or 
possibly the ground state by the emission of a photon of y radiation of energy 
equal to the difference in energy between the nuclear states (less a usually 
negligible correction for the "recoil" energy of the emitting nucleus). Gamma 
emission is observed in all nuclei that have excited bound states (A > 5), and 
usually follows ex and {3 decays since those decays will often lead to excited states 
in the daughter nucleus. 

The half-lives for y emission are usually quite short, generally less than 10- 9 s, 
but occasionally we find half-lives for y emission that are significantly longer, 
even hours or days. These transitions are known as isomeric transitions and the 
long-lived excited states are called isomeric states or isomers (or sometimes 
metastable states). There is no clear criterion for classifying a state as isomeric or 
not; the distinction was originally taken to be whether or not the half-life was 
directly measurable, but today we can measure half-lives well below 10- 9 s. 
Clearly a state with t1/2 = 10- 6 S is an isomer and one with t1/2 ~ 10-12 

S is not, 
but in between the boundary is rather fuzzy. We usually mdlcate metastable 
states with a ·superscript m, thus: llOAg m or llOmAg. 

A process that often competes with y emission is internal conversion, in which 
the nucleus de-excites by transferring its energy directly to an atomic electron, 
which then appears in the laboratory as a free electron. (This is very different 
from {3 decay in that no change of Z or N occurs, although the atom becomes 
ion~zed in the process.) 

Spontaneous Fission 

We usually think of fission as occurring under very unnatural and artificial 
conditions, such as in a nuclear reactor. There are, however, some nuclei that 
fission spontaneously, as a form of radioactive decay. This process is similar to 
the neutron-induced fission that occurs in reactors, with the exception that no 
previous neutron capture is needed to initiate the fission. In the process, a heavy 
nucleus with an excess of neutrons splits roughly in half into two lighter nuclei; 
the final nuclei are not rigidly determined, as they are in ex or {3 decay, but are 
statistically distributed over the entire range of medium-weight nuclei. Examples 
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of spontaneously fissioning nuclei are 256Fm (t1/2 = 2.6 h) and 254Cf (t1/2 = 60.5 
days). 

Nucleon Emission 

As we move further and further from the "valley" of stable nuclei, the energy 
differences between neighboring isobars increases (recall the mass parabolas of 
constant A of Figure 3.18). Eventually the difference exceeds the nucleon binding 
energy (about 8 MeV, on the average) and it becomes possible to have radioactive 
decay by nucleon emission. This type of decay occurs most frequently in fission 
products, which have a very large neutron excess, and it is responsible for the 
"delayed" neutrons (that is, delayed by the half-life of the decay) that are used to 
control nuclear reactors. For example, 1381 [3 decays with a half-life of 6.5 s to 
138Xe. Most of the [3 decays populate low excited states in 138Xe, but about 5% of 
the 1381 decays populate states in 138Xe at about 6.5 MeV; these states decay by 
direct neutron emission to 137Xe. Similarly, 0.7% of the 73Kr [3+ decays (t1/2 = 
27 s) go to states in 73Br at about 5 MeV; these states decay by proton emission 
to states in 72Se. 

Branching Ratios and Partial Half-lives 

Figure 6.8 summarizes a variety of different decay processes, and Figure 6.9 
shows a small section of the chart of stable and radioactive nuclei (Figure 1.1) 
with several decay processes indicated. Some nuclei may decay only through a 
single process, but more often decay schemes are very complicated, involving the 
emission of a's, {3's, and y's in competing modes. We specify the relative 
intensities of the competing modes by their branching ratios. Thus 226Ra a decays 
to the ground state of 222Rn with a branching ratio of 94% and to the first excited 
state with a branching ratio of 6%. Often different decay modes can compete: 
226Ac decays by a emission (0.006%), [3- emission (83%), and e (17%); 132Cs 
decays by [3- emission (2%) and by [3+ and e (98%); the metastable state 95mNb 
decays by {3- emission (2.5%) or by an isomeric transition (97.5%). The isomeric 
transition itself includes a 27% branch by y emission and a 73% branch by 
internal conversion. 

Frequently, we specify the branching ratio by giving the partial decay constant 
or partial half-life. For example, we consider the decay of 226Ac (t1/2 = 29 h). 
The total decay constant is 

0.693 
At = -- = 0.024 h -1 = 6.6 X 10-6 s-l 

t1/2 

The partial decay constants are 

Ap = 0.83A t = 5.5 X 10-6 S-l 

A. = 0.17A t = 1.1 X 10-6 S-l 

Aa = 6 X 1O- 5A
t 

= 4 X 10- 10 S-l 

0.186 MeV 0.3 ns 
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2~~Ac137 
29 h 

rr 83% 

1.1~=~= 1600 Y 0.64 MeV 

5.5 MeV 

0.006% 

o I 

2~~RnI36 

27 s 

I 
§~Se38 

Figure 6.8 A variety of different decay processes. 

and the partial half-lives are 

0.693' 5 _ 
t1/ 2 ,P = -A- = 1.3 X 10 s - 35h 

p 

0.693 
t1/ 2 •• = -A- = 6.1 X 105 s = 170h 

• 
0.693 9 _ 

t1/ 2 ,a = -A- = 1.7 X 10 s - 55y 
a 

The partial half-life is merely a convenient way to represent branching ratios; a 
glance at the above figures shows that a emission is far less probable than [3 
emission for 226Ac. However, the activity would be observed to decay only with the 

226 . .. h total half-life. Even if we were to observe the decay of i\c by Its a effilSSlOn, t e 
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z 

N 
Figure 6.9 The initial nucleus ~XN can reach different final nuclei through a 
variety of possible decay processes. 

activity would decay with time according to a half-life of 29 h. (Imagine if this 
were not so, and two observers were studying the decay of 226Ac, one by 
observing the f3 's and the other by observing the a's. Since the radioactive decay 
law gives the number of undecayed nuclei, the f3 observer would conclude that 
half of the original 226Ac nuclei remained after 35 h, while the a observer would 
have to wait 55 years similarly to observe half of the nuclei undecayed! In reality, 
half of the nuclei decay every 29 h, no matter what method we use to observe 
those decays.) 

6.6 NATURAL RADIOACTIVITY 

The Earth and the other planets of our solar system formed about 4.5 X 10 9 Y 
ago out of material rich in iron, carbon, oxygen, silicon, and other medium and 
heavy elements. These elements in turn were created from the hydrogen and 
helium that resulted from the Big Bang some 15 X 109 y ago. During the 
10 X 109 y from the Big Bang until the condensation of the solar system, the 
hydrogen and helium were "cooked" into heavier elements in stellar interiors, 
novas, and supernovas; we are made of the recycled debris of these long dead 
stars. Most of the elements thus formed were radioactive, but have since decayed 
to stable nuclei. A few of the radioactive elements have half-lives that are long 
compared with the age of the Earth, and so we can still observe their radioactiv­
ity. This radioactivity forms the major portion of our natural radioactive environ­
ment, and is also probably responsible for the inner heating of the terrestrial 
planets. 
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Table 6.1 Some Characteristics of the Disintegration Series 
of the Heavy Elements 

Longest-Lived Member 
Final 

Nucleus Half-Life, 
N arne of Series Type" (Stable) Nucleus (y) 

Thorium 4n 20Hpb 232Th 1.41 X 1010 

Neptunium 4n + 1 209Bi 237Np 2.14 X 106 

Uranium 4n + 2 206Pb 238U 4.47 X 109 

Actinium 4n + 3 207Pb 235U 7.04 X 108 

a II is an integer. 

Although there are long-lived natural radioactive elements of other varieties, 
most of those observed today originate with the very heavy elements, which have 
no stable isotopes at all. These nuclides decay by a and f3 emission, decreasing Z 
and A until a lighter, stable nucleus is finally reached. Alpha decay changes A by 
four units and f3 decay does not change A at all, and so therefore we have four 
independent decay chains with mass numbers 4n, 4n + 1, 4n + 2, and 4n + 3, 
where n is an integer. The decay processes will tend to concentrate the nuclei in 
the longest-lived member of the chain, and if the lifetime of that nuclide is at 
least of the order of the age of the Earth, we will observe that activity today. The 
four series are listed in Table 6.1. Notice that the longest-lived member of the 
neptunium series has far too short a half-life to have survived since the formation 
of the Earth; this series is not observed in natural material. 

Consider, for example, the thorium series illustrated in Figure 6.10. Let us 
assume that we had created, in a short period of time, a variety of plutonium (Pu) 
isotopes. The isotopes 232pu and 236pU decay rapidly to 72-y 232U and other 
species of much shorter half-lives. Thus in a time long compared with 72 y (say, 
103 y), all traces of these isotopes have vanished, leaving only the stable end 
product 208Pb. The isotopes 240pU and 244pU decay much more slowly, the former 
comparatively quickly and the latter very slowly to 236U, which in turn decays to 
the longest-lived member of the series, 232Th. In a time greater than 81 X 106 Y 
but less than 14 X 109 y, the original 240pU and 244pU (and the intermediate 236U) 
will all have decayed to 232Th, the decay of which we still observe today. 

These radioactive isotopes are present in material all around us, especially in 
rocks and minerals that condensed with the Earth 4.5 X 109 Y ago. (In fact, their 
decays provide a reliable technique for determining the time since the con­
densation of the rocks and thus the age of the Earth; see Section 6.7 and Chapter 
19 for discussions of these techniques.) In general the radioactive elements are 
tightly bound to the minerals and are not hazardous to our health, but all of the 
natural radioactive series involve the emission of a gaseous radioactive element, 
radon. This element, if formed deep within rocks, normally has little chance to 
migrate to the surface and into the air before it decays. However, when rocks a:e 
fractured, the radon gas can escape (in fact the presence of radon gas has III 

recent years been observed as a precursor of earthquakes). There is also the 
possibility of escape of radon from the surface of minerals, and particularly those 
that are used in the construction of buildings. Inhalation of this radioactive gas 
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Figure 6.10 The thorium series of naturally occurring radioactive decays. Some 
half-lives are indicated in My (106 y) and Gy (109 y). The shaded members are the 
longest-lived radioactive nuclide in the series (Th, after which the series is named) 
and the stable end product. 

Table 6.2 Some Natural Radioactive 
Isotopes 

Isotope tl/2 (y) 

40K 1.28 X 109 

87Rb 4.8 X lOlD 

113ed 9 X 1015 

115 In 4.4 X 1014 

138 La 1.3 X 1011 
176Lu 3.6 X lOlD 

187Re 5 X lOlD 
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could possibly be responsible for many lung cancers, and there is a current 
suspicion that smoking may accelerate this process by causing the accumulation 
of these radioactive products in the lungs. It is perhaps ironic that the recent 
trends toward well insulated and tightly sealed buildings to conserve energy may 
be responsible for an increased concentration of radon gas, and as of this writing 
there is active research on the problem, including measurement of radon gas 
accumulation in buildings. 

The heavy element series are not the only sources of naturally occurring 
radioactive isotopes of half-lives long enough to be present in terrestrial matter. 
Table 6.2 gives a partial list of others, some of which can also be used for 
radioactive dating. 

There are also other natural sources of radioactivity of relatively short half-lives, 
which are not remnants of the production of elements before the Earth formed, 
but instead are being formed continuously today. These elements include 3H and 
14C, which are formed in the upper atmosphere when cosmic rays (high-energy 

\ protons) strike atoms of the atmosphere and cause nuclear reactions. The isotope 
14 C has had important applications in radioactive dating. 

6.7 RADIOACTIVE DATING 

Although we cannot predict with certainty when an individual nucleus will decay, 
we can be very certain how long it will take for half of a large number of nuclei 
to decay. These two statements may seem inconsistent; their connection has to do 
with the statistical inferences that we can make by studying random processes. If 
we have a room containing a single gas molecule, we cannot predict with 
certainty whether it will be found in the left half of the room or the right half. If 
however we have a room containing a large number N of molecules (N - 10 24 ), 

then we expect to find on the average N 12 molecules in each half. Furthermore, 
the fluctuations of the number in each half about the value N 12 are of the order 
of IN; thus the deviation of the fraction in each half from the value 0.5 
is about IN IN:;:: 10-12• The fraction in each half is thus 0.500000000000 ± 
0.0000000000001. This extreme (and unreasonable) precision comes about be­
cause N is large and thus the fractional error N- 1

/
2 is small. 

A similar situation occurs for radioactive decay. (The laws of counting statis­
tics are discussed in detail in Chapter 7.) If we had at t = 0 a collection of a large 
number No of radioactive nuclei, then after a time equal to one half-life, we 
should find that the remaining fraction is ~ ± NO-1/2. Thus despite the apparently 
random nature of the decay process, the decay of radioactive nuclei gives us a 
very accurate and entirely reliable clock for recording the passage of time. That 
is, if we know the decay constant A, the exponential decrease in activity of a 
sample can be used to measure time. 

The difficulty in using this process occurs when we try to apply it to decays 
that occur over geological times (- 10 9 y) because in this case we do not measure 
the activity as a function of time. Instead, we use the relative number of parent 
and daughter nuclei observed at time t1 (now) compared with the relative number 
at time to (when the "clock" started ticking, usually when the material such as a 
rock or mineral condensed, trapping the parent nuclei in their present sites). In 
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principle this process is rather simple. Given the decay of parent isotope P to 
daughter isotope D, we merely count (by chemical means, for instance) the 
present numbers of P and D atoms, Np(tl ) and NO(tI): 

NO(tl ) + Np(tl ) = Np(to) (6.39) 

( 6.40) 

(6.41) 

Given the. decay constant (which we can measure in the laboratory) and the 
p~esent rati.o.of daught~r to parent nuclei, the age of the sample is directly found, 
wIth a preclSlon determIned by our knowledge of A. and by the counting statistics 
for Np and No· 

Equations 6.39 and 6.40. contain assumptions that must be carefully tested 
before we can apply EquatIOn 6.41 to determine the age ota sample. Equation 
6.39 assumes that No(to) = O-no daughter atoms are present at to-and also 
that the total num?er of atom~ r~mains constant-no parent or daughter atoms 
escape from the mIneral or sohd In which they were originally contained. As we 
discuss below, we can modify the derivation of !:::..t to account for the daughter 
atoms present at to (even though when we analyze the sample today at time t 
we cannot tell which daughter atoms were originally present and which resulted 
from decays during I:!.t). Equation 6.40 assumes that the variation in N comes 
only from the decay-no new parent atoms are introduced (by a previOl~ decay 
or by nuclear reactions induced by cosmic rays, for example). 

Let's relax the assumption of Equation 6.39 and permit daughter nuclei to be 
prese~t at ~ = to' These daughter nuclei can be formed from the decay of parent 
nucle~ at times before to ~r from the process that formed the original parent 
nucleI (a supernova explOSIOn, for example); the means of formation of these 
original daughter nuclei is of no importance for our calculation. We therefore 
take 

( 6.42) 

Because we have introduced another unknown, No(to), we can no longer solve 
directly for the age !:::..t. If, however, there is also present in the sample a different 
isotope of the daughter, D', which is neither radioactive nor formed from the 
decay ~f a long~lived pa.rent, w~ can again find the age of the sample. The 
population of thIS stable Isotope IS represented by No" and if D' is stable then 
NO ,(t1) = No,(to), in which case 

NO (t1) + Np(t1) 

No'( t1) 

No(to) + Np(to) 

No,(to) ( 6.43) 

( 6.44) 

1.00 
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Age = 4.53 x 109 y 
2<1 = 0.04 x 109 y 

(Sr87/Sr86)o = 0.7003 ± 0.0004(2<1) 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Rb87/Sr86 

Figure 6.11 The Rb-Sr dating method, allowing for the presence of some initial 
87Sr. The linear behavior is consistent with Equation 6.44. From G. W. Wetherill, 
Ann. Rev. Nucl. Sci. 25, 283 (1975). 

The ratios NO(t1)jNo,(tI) and Np(tl)jNo,(tI) can be measured in the labora­
tory, but that still leaves two unknowns in Equation 6.44: the age D.t and the 
initial isotopic ratio No(to)jNo,(to). Minerals that crystallize from a common 
origin should show identical ages and identical isotopic ratios No(to)jNo,(to), 
even though the original Np(to) may be very different (from differing chemical 
compositions, for example). If these hypotheses are correct, we expect to observe 
today minerals with various ratios NO(tI)jNo,(tI) and Np(tl)/No,(tl) corre­
sponding to common values of D.t and No(to)jNo,(to). We can test these 
assumptions by plotting y = NO(tI)jNo,(tI) against x = Np(tl)jNo,(tI) for a 
variety of minerals. Equation 6.44 is of the form y = mx + b, a straight line with 
slope m = eA(t,-to) - 1 and intercept b = No(to)jNo,(to)' Figure 6.11 is an 
example of such a procedure for the decay 87Rb ~ 87 Sr (t1/2 = 4.8 X 1010 y), in 
which the comparison is done with stable 86Sr. Even though the present ratio of 
87Rb to 86Sr varies by more than an order of magnitude, the data indicate a 
common age of the Earth, !:::..t = 4.5 X 109 y. The good linear fit is especially 
important, for it justifies our assumptions of no loss of parent or daughter nuclei. 

Other similar methods for dating minerals from the Earth, Moon, and 
meteorites give a common age of 4.5 x 109 y. These methods include the decay 
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of 40K to 4oAr, the decay of 235U and 238U to 207Pb and 206Pb and the 
sponta~eous fission ?f 238U and 244pU, which are analyzed either b; chemical 
separatIOn of the fissIOn products or by microscopic observation of the tracks left 
in the minerals by the fission fragments. 

For dating more recent samples of organic matter, the 14C dating method is 
used. The CO2 that is absorbed by organic matter consists almost entirely of 
~tabl~ 12C (9~.89%), with a small mixture of stable l3C (1.11%). Radioactive 14C 
IS beIng contInuously formed in the upper atmosphere as a result of cosmic-ray 
bo~bar~ment .of atm?sp~;ric nitrogen, and thus all living matter is slightly 
radIO~chve OWIng to ItS .C content. Because the production rate of 14C by 
cosnu~ rays has bee~. re.lahvely constant for thousands of years, living organic 
matenal [;aches eqUIlIbnum of its carbon with atmospheric carbon, with about 1 
atom of C for every 1012 atoms of 12C. The half-life of 14C is 5730 y, and thus 
each gram of carbon shows an activity of about 15 decays per minute. When an 
orga~i~m dies, l~t goes ?ut of ~quilibrium with atmospheric carbon; it stops 
acq~1f1n~ new C and ItS prevIOus content of 14C decreases according to the 
radIOac.hve decay law. We can therefore determine the age of samples by 
measunng the specific activity (activity per gram) of their carbon content. This 
method applies as long as we have enough 14C intensity to determine the activity; 
from matter that has decayed for 10 or more half-lives, the decay is so weak that 
the 14C method cannot be used. Recent techniques using accelerators as mass 
s~ectrometers have .the potential to exceed this limit by counting 14C atoms 
dIrectly; these techmques are discussed in Chapter 20. 

The major assumption of this method is the relatively constant production of 
14C b . 

y.cosnuc rays over the last 50,000 y or so. We can test this assumption by 
compa~Ing the. ages determined by radiocarbon dating with ages known or 
determIned by Independent means (historical records or tree-ring counting for 
examp.le). These c~mparis~ns show very good agreement and support th~ as­
sumptIOn of a relatIvely umform flux of cosmic rays. 

I~ later millennia, the radiocarbon method may no longer be applicable. 
DurIng the l~st .100 years, the burning of fossil fuels has upset the atmospheric 
balance by dIlutIng the atmosphere with stable carbon (the hydrocarbons of fossil 
fuels are old enough for all of their 14C to have decayed away). During the 1950s 
and 1960s, atmospheric testing of nuclear weapons has placed additional 14C in 
the atmosphere, perhaps doubling the concentration over the equilibrium value 
from cosmic-ray production alone. 

6.8 UNITS FOR MEASURING RADIATION 

The activity of a radioactive sample (in curies or in decays per second) does not 
depend on the type of radiation or on its energy. Thus the activity may be a 
useful means to compare two different sources of the same decaying isotope (10 
mCi of 60Co is stronger than 1 mCi of 6OCO), but how can we compare different 
decays? For instance, how does a 10-mCi source of 60Co compare in strength 
with 10 mCi of 14C, or how does a 10-p.Ci y emitter compare in strength with a 
10-mCi a emitter? And just what exactly do we mean by the "strength" of a 
source of radiation? 
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One common property of nuclear radiations is their ability to ionize (knock 
electrons from) atoms with which they interact. (For this reason, nuclear radia­
tion is often called ionizing radiation.) We begin by considering the passage of 
X-ray and y-ray photons through air. The photons interact many times with 
atoms in the air through a variety of processes (Compton scattering, photoelectric 
effect, electron-positron pair production), each of which creates a free electron, 
often of reasonably high energy. These secondary electrons can themselves 
produce ionization (and additional electrons). The total electric charge Q on the 
ions produced in a given mass m of air is called the exposure X, and we may take 
y-ray sources as being of the same strength if they result in the same exposure, 
even though the energies of the y rays and the activities of the sources may be 
quite different. Specifically, the exposure is 

Q 
X=­

m 
(6.45) 

and is measured in the SI units of coulomb per kilogram. More frequently we 
encounter the roentgen unit (R), which is defined as the exposure resulting in an 
ionization charge of 1 electrostatic unit (the cgs unit of electric charge, in terms 
of which the electronic charge e is 4.80 X 10-10 electrostatic unit) in 1 cm3 of air 
at O°C and 760 mm pressure (corresponding to a mass of 0.001293 g). Thus 

1 esu 
1 R = = 2.58 X 10-4 C/kg 

0.001293 g 

Assigning one unit of electric charge to each ion, an exposure of 1 R means that 
(2.58 X 10-4 C/kg)j1.60 X 10-19 C = 1.61 X 1015 ions are formed per kg of 
air, or 2.08 X 109 ions per cm3. It takes on the average about 34 eV to form an 
ion in air, and thus an exposure of 1 R results in an energy absorption by the air 
of 7.08 X 1010 eV /cm3 or 0.113 erg/cm3

, or 88 erg/g. 
The ionization produced by a y ray depends on its energy. With about 34 eV 

needed to produce each ion in air, a I-MeV y ray can be expected to produce, on 
the average, about 30,000 ions. A radioactive source of a given activity will 
generally produce many different y rays with different intensities and energies. 
The exposure resulting from this source will depend on the number of decays and 
also on the intensities and energies of each of the y rays, and the exposure rate 
(exposure per unit time) will depend on the activity of the source. It will also 
depend on how far we are from the source; if we imagine that we are to measure 
the ionization produced in 1 cm3 of air, that ionization will obviously depend on 
whether we hold that volume of air very close to the radioactive source or very 
far away. We can therefore write 

!::.X .9f 
-=f-
!::.t d 2 

( 6.46) 

where !::.X/!::.t is the exposure rate, .9f is the activity, d is the distance from the 
source, and f is a constant, the specific y-ray constant, which depends on the 
details of y-ray emission of each radionuclide (the fraction of y rays with each 
particular energy and the ionizing ability of photons of that particular energy). It 
is customary to take d = 1 m as a standard distance for measuring the relation-
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Table 6.3 Specific y-Ray Constants for Various Radioisotopesa 

y-Ray Energy (MeV) 
Nuclide tl/2 and Abundance (%) r 
22Na 2.6 y 0.511 (181),1.275 (100) 1.20 
24Na 15.02 h 1.369 (100),2.754 (100) 1.84 
59Pe 44.6 d 0.143 (1),0.192 (3),1.099 (56),1.292 (44) 0.60 
57CO 270 d 0.014 (9),0.122 (85),0.136 (11) 0.059 
6OCo 5.27y 1.173 (100),1.333 (100) 1.28 

131 I 8.06 d 0.08 (2),0.284 (6),0.364 (82), 0.22 
0.637 (7),0.723 (2) 

137CS 30.1 Y 0.032 (8),0.662 (85) 0.32 
I 98Au 2.7 d 0.412 (95),0.676 (1) 0.23 
226 Ra and daughters 0.84 

"Units for rare R . m2/h . Ci. Note the relationship between r and the energy and intensity of the 
y rays. 

ship between exposure rate and activity, and thus r has units of (Rjh)j(Cijm2). 
Some representative values of r are given in Table 6.3. 

Materials other than air exposed to ionizing radiation will differ in their rate of 
energy absorption. It is therefore necessary to have a standard for defining the 
energy absorption by ionization in different materials. This quantity is called the 
absorbed dose D of the material and measures the energy deposited by ionizing 
radiation per unit mass of material. The commonly used unit of absorbed dose is 
the rad (radiation absorbed dose) equal to an energy absorption of 100 ergs per 
gram of material. (Thus 1 R= 0.88 rad in air.) The SI unit for absorbed dose is 
the gray (Gy), equal to the absorption of 1 joule per kilogram of material, and so 
1 Oy = 100 rad. 

To define standards for radiation protection of human beings, it is necessary to 
have some measure of the biological effects of different kinds of radiations. That 
is, some radiations may deposit their energy over a very long path, so that 
relatively little energy is deposited over any small interval (say, of the size of a 
typical human cell); f3 and y rays are examples of such radiations. Other types of 
radiations, a particles for instance, lose energy more rapidly and deposit essen­
tially all of their energy over a very short path length. The probability of cell 
damage from 1 rad of a radiation is thus far greater than that from 1 rad of y 
radiation. To quantify these differences, we define the relative biological effective­
ness (RBE), as the ratio of the dose of a certain radiation to the dose of X rays 
that produces the same biological effect. Values of the RBE range from 1 to about 
20 for a radiation. Since the RBE is a relatively difficult quantity to measure, it is 
customary to work instead with the quality Jactor (QF), which is calculated for a 
given type (and energy) of radiation according to the energy deposited per unit 
path length. Radiations that deposit relatively little energy per unit length ({3's 
and y's) have QF near 1, while radiations that deposit more energy per unit 
length (a's) have QF ranging up to about 20. Table 6.4 shows some representa­
tive values of QF. 
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Table 6.4 Quality Factors for Absorbed Radiation 

Radiation 

X rays, /3, y 

Low-energy p, n (- keV) 

Energetic p, n (- MeV) 

a 

QP 

1 
2-5 

5-10 

20 

Table6.S Quantities and Units for Measuring Radiation 

Quantity Measure of Traditional Unit 

Activity (d) Decay rate curie (Ci) 

Exposure (X) Ionization in air roentgen (R) 

Absorbed dose (D) Energy absorption rad 

Dose equivalent (DE) Biological 
effectiveness rem 

SI Unit 

becquere1 (Bq) 

coulomb per 
kilogram (Cjkg) 

gray (Gy) 

sievert (Sv) 

The effect of a certain radiation on a biological system then depends on the 
absorbed dose D and on the quality factor QF of the radiation. The dose 
equivalent DE is obtained by multiplying these quantities together: 

DE= D· QF (6.47) 

The dose equivalent is measured in units of rem (roentgen equivalent man) when 
the dose D is in rads. When the SI unit of gray is used for D, then the dose 
equivalent is in sievert (Sv). Previously we noted that 1 Gy = 100 rad, and so it 
follows that 1 Sv = 100 rem. 

We therefore see that "strength" of radiation has many different ways of being 
defined, depending on whether we wish to merely count the rate at which the 
decays occur (activity) or to measure the effect on living systems (dose equiv­
alent). Table 6.5 summarizes these various measures and the traditional and SI 
units in which they are expressed. 

Standards for radiation exposure of the general public and of radiation 
workers are specified in rems over a certain period of time (usually per calendar 
quarter and per year). From natural background sources (cosmic rays and 
naturally occurring radioactive isotopes, such as the uranium and thorium series 
and 4oK) we receive about 0.1-0.2 rem per year. The International Commission 
on Radiation Protection (ICRP) has recommended limiting annual whole-body 
absorbed dose to 0.5 rem per year for the general public and 5 rem per year for 
those who work with radiation. By way of contrast, the dose absorbed by a 
particularly sensitive area of the body, the bone marrow, is about 0.05 rem for a 
typical chest X ray and 0.002 rem for dental X rays. Unfortunately, the 
physiological effects of radiation exposure are difficult to calculate and to 
measure, and so the guideline must be to keep the exposure as low as possible. 
(For this reason, many physicians no longer recommend chest X rays as a part of 
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the regular annual physical examination, and dentists often place a lead apron 
over the sensitive areas of a patient's body while taking X-ray pictures of the 
mouth.) Although the evidence is not conclusive, there is reason to believe that 
the risk of radiation-induced cancers and genetic damage remains at even very 
low doses while other effects, such as cataracts and loss of fertility, may show a 
definite threshold of exposure below which there is no risk at all. Much of our 
knowledge in this area comes from studies of the survivors of the nuclear 
weapons exploded over Hiroshima and Nagasaki in W orId War II, from which 
we know that there is virtual certainty of death following a short-term dose of 
100 rem, but the evidence regarding the linear relationship between dose and risk 
is less clear. The effects of long-term, low-level doses are still under active debate, 
with serious consequences for standards of radiation protection and for the 
health of the general public. 
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PROBLEMS 

1. Three radioactive sources each have activities of 1.0 /lCi at t = O. Their 
half-lives are, respectively, 1.0 s, 1.0 h, and 1.0 d. (a) How many radioactive 
nuclei are present at t = 0 in each source? (b) How many nuclei of each 
source decay between t = 0 and t = 1 s? (c) How many decay between 
t = 0 and t = 1 h? 

2. Naturally occurring samarium includes 15.1 % of the radioactive isotope 
147Sm, which decays by a emission. One gram of natural Sm gives 89 ± 5 a 
decays per second. From these data calculate the half-life of the isotope 
147Sm and give its uncertainty. 

3. Among the radioactive products emitted in the 1986 Chernobyl reactor 
accident were 1311 (tl/2 = 8.0 d) and l37Cs (tl/2 = 30 y). There are about 
five times as many l37Cs atoms as 1311 atoms produced in fission. (a) Which 
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isotope contributes the greater activity to the radiation cloud? Assume t.he 
tor had been operating continuously for several days before .the radla­

~~:~ was released. (b) How long after the original incid~nt does It take for 
the two activities to become equal? (c) About 1 % of fissIOn events pr.oduce 
1311, and each fission event releases an energy of about 20? !"Ie~. Gl~en a 
reactor of the Chernobyl size (1000 MW), calculate the actlVlty m cunes of 
131 I after 24 h of operation. 

Consider a chain of radioactive decays 1 ~ 2 ~ 3, where nUcl.ei of type 3 
are stable. (a) Show that Equation 6.31 is the soluti~n to EquatIOn 6.29. (b) 
Write a differential equation for the number of nucleI of type 3 and solve the 
differential equation for N3(t). (c) Evaluate N1(t) + N2(t) + N3(t) and 
interpret. (d) Examine N1, N2 , and N3 at small t, keeping only linear terms. 
Interpret the results. (e) Find the limits of N1, N2 , and N3 as t ~ 00 and 
interpret. 
The human body contains on the average about 18% carbon and 0.2% 
potassium. Compute the intrinsic activity of the average person from 14C 
and 40K. 

A radioactive isotope is prepared by a nuclear reaction in. a c~clotron. ~t 
the conclusion of the irradiation, which lasts a very short tIme m compan­
son with the decay half-life, a chemical procedure is used to extract t~e 
radioactive isotope. The chemical procedure takes 1 h .to perform. and IS 
100% efficient in recovering the activity. After the cheffilcal sepa~atIOn, the 
sample is counted for a series of I-min int~rval~, ,,:ith the followmg results 
(t = 0 is taken to be the conclusion of the madlatIOn): 

Decays/ Decays/ Decays/ 
t (min) min t (min) min t (min) min 

62.0 592 112.0 290 163.0 125 

68.0 527 120.0 242 170.0 110 

73.0 510 125.0 215 175.0 109 

85.0 431 130.0 208 180.0 100 

90.0 380 138.0 187 

97.0 353 144.0 177 

101.0 318 149.0 158 

105.0 310 156.0 142 

(a) Plot these data on semilog paper and determine the half-life and initial 
(t = 0) activity from your graph. Show the range of ~ncertainty ~f each data 
point, and try to estimate the resulting uncertainty m the half-h.fe. (b) Use 
an analytic procedure to do a linear least-squar~s fit of th~ data (m the form 
of log N vs t) and determine the half-life and ItS uncertamty. Formulas for 
linear least-squares fits can be found in K. S. Krane and L. Schecter, Am. 
J. Phys. 50, 82 (1982). 

A sample of a certain element with two naturally occurri~g. isotopes 
becomes activated by neutron capture. After 1 h in the reactor, It IS placed 
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in a counting room, in which the total number of decays in 1 h is recorded 
at daily intervals. Here is a summary of the recorded data: 

Time (d) No. Decays Time (d) No. Decays 
0 102,515 20 2372 
1 79,205 40 1421 
2 61,903 60 1135 
3 48,213 80 862 
4 37,431 100 725 
5 29,367 120 551 
6 23,511 140 462 
7 18,495 160 359 
8 14,829 180 265 
9 11,853 200 225 

10 9,595 

From these data, determine the half-lives and initial activities of the two 
components. What is the element? 

8. Consider a simple decay process in which an initial number N. of radioac­
tive nuclei of type A decay to stable nuclei of type B. In a time i~terval from 
tl to tl + I:::.t, ~ow many decays will occur? Solve this problem in two ways: 
(1) use EquatIon 6.10, and (2) use the difference between N(tI) and 
N(ti + I:::.t). Note: Only the first of these methods is correct in general' see 
the next problem. ' 

9. Consider a decay process A ~ B ~ C, in which NA(t = 0) = No, and 
NB(t = 0) = Ndt = 0) = O. How many decays of type B nuclei will be 
obser:ed between tl and tl + I:::.t? (Hint: See the previous problem, and 
explam why method (2) will not work in this case. Figures 6.6 and 6.7 may 
also provide convincing evidence.) 

10. Nuclei of typ~ A,.produced at a constant rate R in a nuclear reaction, decay 
t~ type ~ which ~n turn decay to stable nuclei C. (a) Set up and solve the 
dIfferentIal equatIOns for NA, NB, and Nc as functions of the time during 
which the reaction occurs. (b) Evaluate the sum NA + NB + Nc and inter­
pret. 

11 Th d' " 233 . e ra lOactIve Isotope Pa (t i / 2 = 27.0 d) can be produced following 
neutron capture by 232Th. The resulting 233Th decays to 233Pa with a 
half-life of 22.3 min. Neutron capture in 1 g of 232Th, in the neutron flux 
from a typical r~acto~, ~roduces 233Th at a rate of 2.0 X 1011 S-I. (a) At the 
end of 1 h of IrradIatIOn, what are the resulting activities of 233Th and 
233Pa? (b) After 1 h of irradiation, the sample is placed in storage so that the 
233Th .. d actlVlty can ecay away. What are the 233Th and 233Pa activities after 
24 h and after 48 h of storage? (c) The 233Pa decay results in 233U which is 
itself radioactive (tl/2 = 1.6 X 105 y). After the above sample 'has been 
stored for 1 year, what is the 233U activity? (Hint: It should not be necessary 
to set up an additional differential equation to find the 233U activity.) 
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An initial activity of nucleus A decays to B, which in turn decays to stable 
nucleus C. (a) Discuss qualitatively why it must be true at short times that 
d A > dB' while at long times dB > dA' (b) There must therefore be a time 
T at which d A = dB' Find T in terms of the decay constants A.A and A.B' 
The decay chain l39Cs ~ l39Ba ~ 139La is observed from an initially pure 
sample of 1 mCi of l39Cs. The half-lives are l39Cs, 9.5 min; l39Ba, 82.9 min; 
139La, stable. What is the maximum l39Ba activity and when does it occur? 
In the decay process 235U ~23ITh ~231Pa (tl/2 = 7.04 X 108 y for 235U; 
ti/2 = 25.5 h for 23ITh) plot the 235U and 23ITh act~v~t~es as a f~nction of 
time from t = 0 to t = 100 h. Assume the sample InItIally conSIsts of 1.0 
mCi of 235U. Discuss the condition of secular equilibrium in this decay 
process. 
The a decay of 238U (t i / 2 = 4.47 X 109 y) leads to 24.1-d 234Th. A sample 
of uranium ore should reveal 234Th activity in secular equilibrium with the 
parent. What would be the 234Th activity in each gram of uranium? 
Prepare a diagram similar to Figure 6.10 showing the 4n + 2 natural 
radioactive series. 
The radioactive decay of 232Th leads eventually to stable 208Pb. A rock is 
determined to contain 3.65 g of 232Th and 0.75 g of 208Pb. (a) What is the 
age of the rock, as deduced from the Th/Pb ratio? (b) If the rock is large, 
the a particles emitted in the decay processes remain trapped. If the rock 
were pulverized, the a's could be collected as helium gas. At 760 mm and 
O°C, what volume of helium gas could be collected from this rock? 
I t is desired to determine the age of a wood timber used to construct an 
ancient shelter. A sample of the wood is analyzed for its 14C content and 
gives 2.1 decays per minute. Another sample of the same size from a 
recently cut tree of the same type gives 5.3 decays per minute. What is the 
age of the sample? 
Show that the present 14C content of organic material gives it an activity of 
about 15 decays per minute per gram of carbon. 
What is the probability of a 14C decay taking place in the lungs during a 
single breath? The atmosphere is about 0.03% CO2, and in an average 
breath we inhale about 0.5 liter of air and exhale it about 3.5 slater. 
(a) What is the y-ray flux (y's per unit area) a distance of 1.0 m from a 

7.5-mCi source of 60Co? 
(b) How many ions per minute are produced in a cubic centimeter of air at 

that distance? 


