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NUCLEAR REACTIONS

-If energetic particles from a reactor or accelerator (or even from a radioactive
source) are allowed to fall upon bulk matter, there is the possibility of a nuclear
reaction taking place. The first such nuclear reactions were done in Rutherford’s
laboratory, using « particles from a radioactive source. In some of these early
experiments, the « particles merely rebounded elastically from the target nuclei;
this phenomenon, known ever since as Rutherford scattering, gave us the first
evidence for the existence of atomic nuclei. In other experiments, Rutherford was

able to observe a change or transmutation of nuclear species, as in this reaction
done in 1919:

a+¥N -0 +p

The first particle accelerator capable of inducing nuclear reactions was built by
Cockcroft and Walton, who in 1930 observed the reaction

p+7Li »%He + a

. In this chapter we discuss various types of nuclear reactions and their proper-
ties. In most cases, we deal with light projectiles, usually 4 < 4, incident on
heavy targets; there is, however, much current interest in reactions induced by
accelerating heavy ions (usually 4 < 40, but even beams as heavy as uranium are
considered). We also deal only with reactions that are classified as “low energy,”
that is, of the order of 10 MeV per nucleon or less. In the range of 100 MeV-
1 GeV, called “medium energy,” meson production can take place, and protons
and neutrons can transform into each other. At “high energy,” all sorts of exotic
particles can be produced, and we can even rearrange the quarks that are the

constituents of nucleons. We discuss these latter types of reactions in Chapters 17
and 18,

11.1 TYPES OF REACTIONS AND CONSERVATION LAWS

A typical nuclear reaction is written

a+X->Y+b

where a is the accelerated projectile, X is the target (usually stationary in the
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laboratory), and Y and b are the reaction products. Usually, Y will be a heavy
product that stops in the target and is not direcily ‘observed, while b is a light
particle that can be detected and measured. Generally, a and b will be nucleons
or light nuclei, but occasionally b will be a y ray, in which case the reaction is
called radiative capture. (If a is a y ray, the reaction is called the nuclear
photoeffect.)

An alternative and compact way of indicating the same reaction is

X(a, b)Y

which is convenient because it gives us a natural way to refer to a general class of
reactions with common properties, for example (a,n) or (n, y) reactions.

We classify reactions in many ways. If the incident and outgoing particles are
the same (and correspondingly X and Y are the same nucleus), it is a scattering
process, elastic if Y and b are in their ground states and irelastic if Y or b is in
an excited state (from which it will generally decay quickly by y emission).
Sometimes a and b are the same particle, but the reaction causes yet another
nucleon to be ejected separately (so that there are three particles in the final
state); this is called a knockout reaction. In a transfer reaction, one or two
nucleons are transferred between projectile and target, such as an incoming
deuteron turning into an outgoing proton or neutron, thereby adding one nucleon
to the target X to form Y. Reactions can also be classified by the mechanism that
governs the process. In direct reactions (of which transfer reactions are an
important subgroup), only very few nucleons take part in the reaction, with the
remaining nucleons of the target serving as passive spectators. Such reactions
might insert or remove a single nucleon from a shell-model state and might
therefore serve as ways to explore the shell structure of nuclei. Many excited
states of Y can be reached in these reactions. The other extreme is the compound
nucleus mechanism, in which the incoming and target nuclei merge briefly for a
complete sharing of energy before the outgoing nucleon is ejected, somewhat like
evaporation of a molecule from a hot liquid. Between these two extremes are the
resonance reactions, in which the incoming particle forms a “quasibound” state
before the outgoing particle is ejected.

Observables

We have at our disposal techniques for measuring the energies of the outgoing
particles to high precision (perhaps 10 keV resolution with a magnetic spectrome-
ter). We can determine the direction of emission of the outgoing particle, and
observe its angular distribution (usually relative to the axis of the original beam)
by counting the number emitted at various angles. The differential cross section is
obtained from the probability to observe particle b with a certain energy and at a
certain angle (8, ¢) with respect to the beam axis. Integrating the differential
cross section over all angles, we get the total cross section for particle b to be
emitted at a certain energy (which is also sometimes called a differential cross
section). We can also integrate over all energies of b to get the absolute total
cross section, which is in effect the probability to form nucleus Y in the reaction.
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This quantity is of interest in, for instance, neutron activation or radioisotope
‘production. ,

By doing polarization experiments, we can deduce the spin orientation of the
product nucleus Y or perhaps the spin dependence of the reaction cross section.
For these experiments we may need an incident beam of polarized particles, a
target of polarized nuclei, and a spectrometer for analyzing the polarization of
the outgoing particle b.

We can simultaneously observe the y radiations or conversion electrons from
the decay of excited states of Y. This is usually done in coincidence with the
particle b to help us decide which excited states the radiations come from. We
can also observe the angular distribution of the y radiations, as an aid in
interpreting the properties of the excited states, especially in deducing their
spin-parity assignments.

Conservation Laws

In analyzing nuclear reactions, we apply the same conservation laws we applied
in studying radioactive decays. Conservation of total energy and linear momentum
can be used to relate the unknown but perhaps measurable energies of the
products to the known and controllable energy of the projectile. We can thus use
the measured energy of b to deduce the excitation energy of states of Y or the
mass difference between X and Y. Conservation of proton and neutron number is a
result of the low energy of the process, in which no meson formation or quark
rearrangement take place. (The weak interaction is also negligible on the time
scale of nuclear reactions, about 1071 to 10722 s.) At higher energies we still
conserve total nucleon (or, as we discuss in Chapter 18, baryon) number, but at
low energy we conserve separately proton number and neutron number. Con-
servation of angular momentum enables us to relate the spin assignments of the
reacting particles and the orbital angular momentum carried by the outgoing
particle, which can be deduced by measuring its angular distribution. We can
thus deduce the spin assignments of nuclear states. Conservation of parity also
applies; the net parity before the reaction must equal the net parity after the
reaction. If we know the orbital angular momentum of the outgoing particle, we
can use the (—1)¢ rule and the other known parities in the reaction to deduce
unknown parities of excited states. In Section 11.3 we discuss yet another
quantity that is conserved in nuclear reactions.

11.2 ENERGETICS OF NUCLEAR REACTIONS
Conservation of total relativistic energy in our basic reaction gives
myc? + Ty + mye? + T, = myc* + Ty + mye® + T, (11.1)

where the T’s are kinetic energies (for which we can use the nonrelativistic
approximation 1mv? at low energy) and the m’s are rest masses. We define the
reaction Q value, in analogy with radioactive decay Q values, as the initial mass
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energy minus the final mass energy:
Q = (Mipjm — mfina.l)éz
=(mx+m, —my—m,)c? (11.2)
which is the same as the excess kinetic energy of the final products:
0 = Thina = Tinisiat
=Ty +T,—Tx—-T, (11.3)

a

The Q value may be positive, negative, or zero. If Q > 0 (M it > M or
Tanat > Tiniiar) the reaction is said to be exoergic or exotherml;]cl';l in thiznaéase
nuclear mass or binding energy is released as kinetic energy of the final products.
When Q <0 (Mg < Mpna OF Tgna < Tiiar) the reaction is endoergic or
endothermic, and initial kinetic energy is converted into nuclear mass or binding
energy.'The changes in mass and energy must of course be related by the familiar
expression from special relativity, AE = Amc?—any change in the kinetic energy
of the system of reacting particles must be balanced by an equal change in its rest
energy.

Equations 11.1-11.3 are valid in any frame of reference in which we choose to
work._ Let’s apply them first to the laboratory reference frame, in which the target
nuclle are considered to be at rest (room-temperature thermal energies are
negligible on the MeV scale of nuclear reactions). If we define a reaction plane by
the dirf.:ction of the incident beam and one of the outgoing particles, then
conserving the component of momentum perpendicular to that plane shows
immediately that the motion of the second outgoing particle must lie in the plane
as well. Figure 11.1 shows the basic geometry in the reaction plane. Conserving
linear momentum along and perpendicular to the beam direction gives

Pa=Pycos + pycos (11.4a)
0=pysind —pysin (11.4b)

Regarding Q as a known quantity and 7, (and therefore D,) as a parameter that
we control, Equations 11.3 and 11.4a, b represent three equations in four
unknowns (8, ¢, T, and Ty) which have no unique solution. If, as is usually the
case, we do not observe particle Y, we can eliminate £ and Ty from the equations

b

Y
Figure 11.1 Basic reaction geometry fora + X - b +'Y.
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Figure 11.2 (a) T, vs T, for the reaction ®H(p, n)®He. The inset shows the region
of double-valued behavior near 1.0 MeV.

to find a relationship between T, and 6:

/2
(mﬂmh’I;)l/z cos f + {mﬂmb’l‘acosZ 0+ (my + my)[myQ + (my — m )T}
ny + my,

Tg/2 =
(11.5)

This expression is plotted in Figure 11.2a for the reaction *H(p, n)*He, for which
Q = —763.75 keV. Except for a very small energy region between 1.019 and
1.147 MeV, there is a one-to-one correspondence (for a given T,) between T, and
0. That is, keeping the incident energy fixed, choosing a value of # to observe the
outgoing particles automatically then selects their energy.

Several other features of Figure 11.2 are apparent, which you should be able to

show explicitly from Equation 11.5:

1. There is an absolute minimum value of 7, below which the reaction is not
possible. This occurs only for @ <0 and is called the threshold energy Ty,

Ty = (-Q) ‘(11-6)

my + my

my + my, — m,

The threshold condition always occurs for § = 0° (and therefore £ = 0°)—tl_16
products Y and b move in a common direction (but still as separate nucle).

o
00
8i— 0.01
s
7= 2
5
61—
0.00;
5..—

Ty (MeV)

30°
60°

NUCLEAR REACTIONS 383

90°

180°

| | I I l I | |
2 5 6.

Ty (MeV)
(b

double-valued region.

range of each other’s nuclear force.

upper limit

Ta, = (_Q)_———

my
My — M,

proximate this range as

, m mb my,
Ta _TthETth - ( )

- 11 -—4+ -
mY(mY”ma) my

Figure 11.2 (b) T, vs T, for the reaction “C(p,n)"*N. The inset shows the

No energy is “wasted” in giving them momentum transverse to the beam
direction. If Q > 0, there is no threshold condition and the reaction will “go”
even for very small energies, although we may have to contend with Coulomb
barriers not considered here and which will tend to keep a and X outside the

2. The double-valued situation occurs for incident energies between T, and the

(11.7)

This also occurs only for Q < 0, and is important only for reactions involving
nuclei of comparable masses. Using Equations 11.6 and 11.7 we can ap-

(11.8)

and you can see that if a and b have mass numbers of 4 or less and if Y is a
medium or heavy nucleus, then the range (T, — Tj,) becomes much smaller
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Figure 11.3 T, vs T, for the reactions 3He(n,p)*H and 4N(n, p)'*C. No

double-valued behavior occurs.

than 1% of the threshold energy. Figure 11.2b shows the double-valued

region for the reaction *C(p, n)*N.

3. There is also a maximum angle 6, at which this double-valued behavior
occurs, the value for which is determined for T, in the permitted range by the
vanishing of the argument in the square root of Equation 11.5:

3 (my + my)[myQ + (my — m,)T.] (11.9)
mambTa

cos? 0, =

When T, =T/, the double-valued behavior occurs between 6 =0° and
g, = 90°; near T, = Ty, it occurs only near 6, = 0°.

4. Reactions with Q > 0 have neither a threshold nor a double-valued behavior,
as you can see by reversing the reactions shown in Figures 11.2a and 11.2b,
3He(n, p)>H and ¥N(n, p)**C, for which we can in each case make the single
transformation —Q — + Q. Figure 11.3 shows the T, vs T, graphs for these
cases. The reactions occur down to T, = 0 (no threshold), and the curves are

single-valued for all § and T,.
If, for a given 6§ and T,, we measure Ty, then we can determine the Q value of

the reaction and deduce the mass relationships among the constituents. If we
know m,, m,, and my, we then have a way of determining the mass of Y.

Solving Equation 11.5 for Q, we obtain

my, m, m, my, 172
Q=T,\1+— |~ T,|1 - -2 —T,T, cos 8 (11.10)
my my my My

This procedure is not strictly valid, for my also appears on the right side of the
equation, but it is usually of sufficient accuracy to replace the masses with the
integer mass numbers, especially if we measure
vanishes.

at 90° where the last term
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Figure 11.4 (a) Spectrum of protons from i i
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, . e
proton group populates the ground state of ®Cu, while the remaining groups Iegd to exci'zgz

states (numbered 1,2, 3, ..

.). The spectra taken at angles of 90 and 154° show a very dramatic

angular dependence; note especially the change in the cross section for groups 1 and 2 at the

two angles. (b) y rays following the reaction. (¢) Deduced partial level scheme of ¢'Cu. Data

from E. J. Hoffman, D. G. Sarantites, and N.-H. Lu, Nucl. Phys. A173, 146 (1971)
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the mass energy of the excited state.

= QO - Eex

Figure 11.4

I7l'

Continued.

As an example of the application of this technique, we consider the reaction
%Mg("Li, ®B)*Ne. The nucleus Mg already has a neutron excess, and the
removal of two additional protons in the reaction results in the final nucleus > Ne
with a large excess of neutrons. Data reported by Wilcox et al., Phys. Rev. Lett.
30, 866 (1973), show a ®B peak about 55.8 MeV observed at a lab angle of 10°
when the incident "Li beam energy is 78.9 MeV. Using Equation 11.10 with mass
numbers instead of masses gives Q = —22.27 MeV, which gives 24.99790 u for
the mass of 2*Ne. Iterating the calculation a second time with the actual masses
instead of the mass numbers does not change the result even at this level of

Qex = (mX + m, — m¢ - mb)c2

where Q, is the Q value corresponding to the ground state of Y, and where we
have used m¥c? = myc? + E,, as the mass energy of the excited state (E,, is the
excitation energy above the ground state). The largest observed value of T is
normally for reactions leading to the ground state, and we can thus use Equation
11.10 to find Q,. Successively smaller values of T, correspond to higher excited
states, and by measuring T, we can deduce Q,, and the excitation energy E.,.

Figure 11.4 shows an example of this kind of measurement. The peaks in the
figure serve to determine T, from which the following Q values and excited-state

(11.11)

387

If the reaction reaches excited states of Y, the Q-value equation should include
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energies are obtained (energy uncertainties are about +0.005 MeV):

Peak  Q (MeV) E, (MeV)

0 3.152 0.0

1 3.631 0.479
2 4122 0.970
3 4.464 1.312
4 4.547 1.395
5 4.810 1.658
6 4.884 1.732
7 5.061 1.919
8,9 5.090 1.938
10 5.240 2.088

leading to the excited states shown in the figure. The spectrum qf 'the Yy rays
emitted following the reaction is also shown in the figure, and transitions can be
seen corresponding to each of the deduced values of E,, and therefore interpre-
ted as direct transitions from the excited state to the ground state. Finally,
angular distribution studies following the reacti‘on can be used to deduce the
spin-parity assignments of the excited states, leading to the level scheme shown in
the figure. Notice how the various bits of data complement and supplement one
another in building up the level scheme; from the y rays alone, foT example, we
cannot tell which transitions connect the ground state with an excited state and
therefore what the energies are of the excited states. The proton spectrum,
however, gives us the excited-state energies directly‘, gnd turning to tl}e y-ray
energies, which can be measured with greater precision, we can obtain more
precise values for the energies of the states.

11.3 ISOSPIN

The interactions of a nucleon with its surroundings (other nucleon_s, for instance)
in most cases do not depend on whether the nucleon hag spin cc.)mponen'Fs
m,= +1 or m,= —1 relative to an arbitrarily chosen z axis. That is, there is
no need to distinguish in the formalism of nuclear physics ‘t?etwqen a “spin-up
nucleon and a “spin-down” nucleon. The multiplicity of spin erentatlor}s .(two,
for a single nucleon) may enter into the equations, for example in the statistics of
the interaction, but the actual value of the projection does not appear. The
exception to this situation comes about wheq a m_agnetic field is apphed; the
magnetic interaction of a nucleon depends on its spin component relative to the
direction of the external field. . '

The charge independence of nuclear forces means that in most instances we dp
not need to distinguish in the formalism between neutrons and protons, and this
leads us to group them together as members of a common family, the. m'lc.leons.
The formalism for nuclear interactions may depend on the multiplicity of
nucleon states (two) but it is independent of whether the nucleons are protons or
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neutrons. The exception, of course, is the electromagnetic interaction, which can
distinguish between protons and neutrons; with respect to the strong nuclear
force alone, the symmetry between neutrons and protons remains valid.

This two-state degeneracy leads naturally to a formalism analogous to that of
the magnetic interaction of a spin- 1 particle. The neutron and proton are treated
as two different states of a single particle, the nucleon. The nucleon is assigned a
fictitious spin vector, called the isospin.* The two degenerate nuclear states of the
nucleon in the absence of electromagnetic fields, like the two degenerate spin
states of a nucleon in the absence of a magnetic field, are then “isospin-up,”
which we arbitrarily assign to the proton, and “isospin-down,” the neutron.
That is, for a nucleon with isospin quantum number ¢ = 3, a proton has m, = +1
and a neutron has m, = — . These projections are measured with respect to an
arbitrary axis called the “3-axis” in a coordinate system whose axes are labeled 1,
2, and 3, in order to distinguish it from the laboratory z axis of the x, y, z
coordinate system. The isospin obeys the usual rules for angular momentum
vectors; thus we use an isospin vector ¢ of length {¢(z + 1) 4 and with 3-axis
projections t; = m,h.

For a system of several nucleons, the isospin follows coupling rules identical
with the rules of ordinary angular momentum vectors. A two-nucleon system, for
example, can have total isospin 7 of 0 or 1, corresponding (semiclassically) to the
antiparallel or parallel orientations of the two isospin-1 vectors. The 3-axis
component of the total isospin vector, T3, is the sum of the 3-axis components of
the individual nucleons, and thus for any nucleus,

L,=3Z-N) (11.12)

expressed in units of 4 which will not be shown explicitly.

For a given nucleus, T, is determined by the number of neutrons and protons.
For any value of T;, the total isospin quantum number T can take any value at
least as great as |T;|. Two related questions that immediately follow are: Can we
assign the quantum number 7 to individual nuclear states? Is such an assignment
useful, for example, in predicting decay or reaction probabilities?

We consider as an example the two-nucleon system, which can have T of 0 or
1. There are thus four possible 3-axis components: T; = +1 (two protons),
T, = —1 (two neutrons), and two combinations with 7; = 0 (one proton and one
neutron). The first two states must have 7 = 1, while the latter two can have
T = 0 and T = 1. If the nuclear interaction is perfectly charge independent (and
if we “turn off” the electromagnetic interaction), then the three 3-axis projections
of T=1(+1,0, —1) must have the same energy, while the single 7 = 0 state
may have a different energy. In fact, we know that the isospin triplet (which is the
I = 0 singlet of ordinary spin) is unbound, as discussed in Chapter 4.

*Isospin is often called isotopic spin or isobaric spin, the former because the value of its projection,
equal to 3(Z — N), distinguishes between isotopes and the latter because the isospin quantum
number is valid to label isobaric multiplets. The name “isospin” avoids the controversy and is now
the generally accepted term.

1‘Originally, nuclear physicists defined the neutron as the isospin-up member of the nucleon family.
Particle physicists also use isospin to label the different charge states of strongly interacting particles,
but they stress the connection with electric charge by choosing isospin-up for the proton. This choice
has now been accepted by nuclear physicists as well.
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AT = 0 E1 transition in a T, = 0 nucleus, is forbidden by the isospin selection
rule and is indeed strongly inhibited, as its longer half-life indicates. (The
Weisskopf estimate for the half-life is about 7 X 10~3 fs.)

Consider also the decay of the 17, T = 0 level at 5.69 MeV in *N. The E1
decay to the 1*, 7 = 0 ground state should be inhibited by the selection rule,
while the E1 decay to the 0*, T =1 level at 2.31 MeV is permitted. The higher
energy transition ought to be greater in intensity by about a factor of 5, owing to
the E? dependence of the E1 transition probability, yet the lower energy
transition is observed to have about twice the intensity. The effect of the isospin
selection rule is a reduction in the expected relative intensity of the 5.69-MeV E1
transition by about an order of magnitude.

Similar selection rules operate in 8 decay. The Fermi matrix element is
forbidden unless AT = 0, which is the case in the mirror decays listed in the top
half of Table 9.3. The nonmirror decays are those with AT = 1, and the Fermi
contribution to the transition is reduced by several orders of magnitude by the
violation of the isospin selection rule. The 0+ to 0+ decays, which on the basis of
ordinary angular momentum alone should be pure Fermi decays of the superal-
lowed category as in Table 9.2, are inhibited by three orders of magnitude if
AT + 0; the log fr values rise from about 3.5 for the AT = 0 decays permitted by
the isospin selection rule to 7 or larger for the AT # 0 isospin-forbidden decays.

Nuclear reactions also show effects of isospin. Because the nuclear force does
not distinguish between protons and neutrons, the isospin must be absolutely
conserved in all nuclear reactions. The 3-axis component is automatically con-
served when the numbers of protons and neutrons remain constant, but it is also
true that the total isospin quantum number 7 remains invariant in reactions.
Consider the reaction *0 +2H — N +“He, leading to states in “N. All four
reacting particles have T = 0 ground states; thus T is conserved if the product
particles remain in their ground states. Excitation of *He is unlikely in low-
energy reactions, for its first excited state is above 20 MeV, and thus it is
expected that only T = 0 excited states in N can be reached in the reaction; the
2.31-MeV, T = 1 state should not be populated. Any small population observed
for that state must arise from isospin impurities in the reacting particles. The

cross section to reach the 2.31-MeV state is observed to be about 2 orders of
magnitude smaller than the cross sections to reach the neighboring T = 0 states,
showing the effectiveness of the isospin selection rule. In the similar reaction
2C(e, d)™N the cross section for the 2.31-MeV state is 3 orders of magnitude
smaller than the isospin-allowed cross sections, and in 1°B(°Li, d)“N and
P C(SLi, a)*N it is at least two orders of magnitude smaller. By way of contrast,
in 1°B("Li, *H)!“N, the T = 1 level is populated with a strength comparable to
that of the neighboring T = 0 level; the isospin selection rule does not inhibit the
probability to reach the 7 = 1 level. (The initial nuclei have a total T of 3; the &
isospin of *H can couple to either 7= 0 or T = 1 in N to give a resultant of 1.)

The members of an isospin multiplet, as for example pairs of mirror nuclei or a
set of the three states connected by the dashed lines in Figure 11.5, are called
isobaric analog states, a term which was previously introduced in the discussion of
B decay in Section 9.8. The analog states in neighboring nuclei have identical
nucleon wave functions, except for the change in the number of protons and
neutrons. In the C and *O ground states, the nucleons are strongly coupled




392 NUCLEAR REACTIONS

wo coupled 1 holes in 14C and two coupled neutron holes in
pairwise (with pled proton holes 1 a ple s
airwise (1 M Vle nalog state in "N must have a similar wave function,
140), and the 2.31-MeV a

tron hole strongly paired.
with the o4 PO hdixraen 2brt1§ili1;d by exchanging a proton for a neutron, they

Because anaog 0™ lated in B decay (see Figure 9.17) and in (p,n) or (n,P)

lumo n i i i merl
tend .to beIStr?negd? I; d heavy nuclei, placing a proton mto. a ‘sttat]ev f:r t };
reactl('mds.b;/l a neutron involves a large energy transfer, because w1

occupie b h Z th

neutron i h
ly placed neutro occupies a considerably higher shell-model state than the
newly pla
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reaction and decay studies.

1.4 REACTION CROSS SECTIONS e
e nature of cross sections and the apphca’ugg o
s section we give some moxe general deﬁm‘ugns
at are loosely grouped under the heading

1

In Chapter 4 we consid'ered th .
aucleon-nucleon scattering. In. t.h1 c
of various measurable quantities t

e e e 1 is a measure of the relative probability for

ing. the cross sectio : . :
Rouglz}y Slt)gag(égfr’ If we have a detector placed to record particle b emitted in
the reaction .

irecti he detector defines a small
irecti .1 respect to the beam direction, t as
. (hrectmn (0’94)) tW tlltllelz rtZrI;et nucleus (Figure 11.6). Let the current of t1)11c1der]1\§
solid ange &2 2 icles per unit time, and let the target show to the beam

pa i be I part ] X 3 the
ruc;les 01:1 ;er unit area. If the outgoing partlcles appear at a rate Rb’ then th
target nu

reaction Cross section is
i (11.13)

o= -0

IN

e dimension of area per nucleus, but it may be very

Defined in this vy« 10 thhe geometrical area of the disc of the target nucleus

much larger or smaller than t

I

1 1 . g y ! g ’ g
g

beam going into solid angle d© at 0, ¢.
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seen by the incoming beam. For a typical nucleus of radius R = 6 fm, the
geometrical area mR? is about 100 fm? = 1 b; for neutron capture by *Xe, the
cross section is about 10° b, while for other much more improbable reactions
the cross section may be measured in millibarns or microbarns. You should think
of o as a quantity which has the dimension of an area, but which is proportional
to the reaction probability.

Our detector occupies only a small solid angle d2 and therefore does not
observe all of the outgoing particles; only a small fraction dRy, are actually
counted, and therefore only a fraction of the cross section do will be deduced.
Moreover, the outgoing particles will not in general be emitted uniformly in all
directions, but will have an angular distribution that will depend on 6 and
possibly also on ¢. It we let this angular distribution function be arbitrarily

represented by r(0, ¢), then dR, = r(6, $) dQ/4n. (The 47 is introduced to
make d/4w a pure fraction.) Then

do r(0,9)
Q- 4w, N

(11.14)

The quantity do/dQ is called the differential cross section, and its measurement
gives us important information on the angular distribution of the reaction
products. In the literature, it is often called (6, ¢) or o(d) or sometimes
(unfortunately) just “cross section.” (If you see a graph of “cross section” vs g,
you should know that what is intended is differential cross section.) Because solid
angle is measured in steradians (the surface of a sphere subtends a solid angle of
47 steradians at its center), units of differential cross section are barns /steradian.

The reaction cross section o can be found by integrating do/dQ over all angles;
with dQ = sin 6 df d¢ we have* .

do T 2ar do
a=fd~gd9= [ sinddd [~ dg — (11.15)

Notice that if do/dQ is constant (independent of angle), the integral gives
0 = 4w(do/dQ). This justifies the insertion of the constant 47 into Equation
11.14, for now r(8, ¢) reduces to the constant R, and Equation 11.14 agrees with
Equation 11.13.

In many nuclear physics applications, we are not concerned simply with the
probability to find particle b emitted at a certain angle; we also want to find it
with a certain energy, corresponding to a particular energy of the residual nucleus
Y. We therefore must modify the definition of cross section to give the probabil-
ity to observe b in the angular range of df and in the energy range dE,. This
gives the so-called doubly differential cross section d%/dE, dQ. In the literature,
this additional energy dependence is often not explicitly stated; usually the cross
sections are plotted as do/dQ vs § leading to a specific final energy state. This is
in reality d’0/dE, dQ, although it may not be labeled as such. For discrete
States, there may be only a single level within the energy range dE,, and the

*An element of area on the surface of a sphere is +?dQ or ?sin 8 d6 d in spherical coordinates.
Hence dQ = sin 8 d6 ds.
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Table 11.1 Reaction Cross Sections

Possible
i lication
Cross Sections Symbol Technique Applica
TO =
G Attenuation of Shielding
Total t beam B
Integrate over Productiop of radioiso-
Reaction ’ all angles and tope Y in a nuclear
all energies of reaction
b (all excited
states of Y) . o o
Observe b at Formation of beam o
Differentie 4o/d48 (8, ¢) but inte- partic?es in a certain
(Angulas) grate over all direction (or rec_oﬂ of
energies Y in a certain direc-
tion)
f
Don’t observe b, Study of decay o
Differenté! do/de but observe excited states of Y
(Enere)) excitation of Y
by subsequent
y emission

i ited
2 bserve b at Information on exci
Ao/ By 48 ° (S; ¢)ata states of Y by angular

specific energy distribution of b

Doubly
differential

i he other hand, we do not observe the
di'stingtion P ecirgzlseul;llggosrltli?ctﬁrllféigg tthe target area with 4 solid'angle '(;ﬁ
e < %a not observing b at all), then we measure yet‘another differenti
e dy dE, where now E may represent an excitation energy of Y. .
" sec?lon‘n Zr/loth’er cross section that may be of interest, the total cross sectzfon

Tllil:;z 1iosrtla specific incident particle a, we add the react1ﬁntcizisirse§itr1§;§w:l (;
it : i i i no matter wha .
Al o dlﬁeizll}rtrﬁ?ll;iiggrllnv%ollzilc;tgfisbt,he probability for an incident partlchz
energy. Suoh 7 jion at all with the target and thus be remgved from tl}e })eam o
n I'lgvstaggr:iﬁzs This can be deduced directly by melilsurlngftgle lf;srsgg: ;Illtet:grsizly
o coll cam i i certain thickness of the .
i colllmat?_i Eﬁ?:n afpl;i?;?iiﬁl)lf}iﬁen, the exact meaning of the tfarm clrloss

ﬁgznwv;,ﬁ dlespend on exactly what we measure. Table 11.1 summarizes thesc
sec

different measurements how they might be accomplished, and the application to
ifier >

hich the result might be put. For example, if we wish to produce 2 radioactive
whic

i the residual nucleus Y, we have absolutely no interest 1 ’cheul d1::§t1f(z)r;
a0 f particle b, nor in the excited states of Y that may be populated,

o emls_s10n<_> 15 decay’by y emission to the ground state of Y. The 11teraturz
ey qulct cﬁscriminate carefully among these deﬁnitiqns, and often ‘tlllley arS
Oﬁl‘lmdd;zsrerll}? “cross section.” It is almost always obvious in context which cros
calle

. O eull
tion is meant and therefore not strictly necessary to distinguish carefully
section )

among them.
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11.5 EXPERIMENTAL TECHNIQUES

A typical nuclear reaction study requires a beam of particles, a target, and a
detection system. Beams of charged particles are produced by a variety of
different types of accelerators (see Chapter 15), and neutron beams are available
from nuclear reactors and as secondary beams from charged-particle accelerators.

To do precision spectroscopy of the outgoing particle b and the residual nucleus
Y, the beam must satisfy several criteria:

1. It must be highly collimated and focused, so that we have a precise reference
direction to determine # and ¢ for angular distribution measurements.

2. It must have a sharply defined energy; otherwise, in trying to observe a
specific excited state by finding Q,, and E,, from Equation 11.5, we might

find that variations in 7, would give two or more different E,, for the
same T,

3. It must be of high intensity, so that we can gather the necessary statistics for
precise experiments.

4. If we wish to do timing measurements (such as to measure the lifetimes of
excited states of Y), the beam must be sharply pulsed to provide a reference
signal for the formation of the state, and the pulses must be separated in time
by at least the time resolution of the measuring apparatus and preferably by
a time of the order of the one we are trying to measure.

5. Under ideal circumstances, the accelerator beam should be easily select-
able—we should be able to change the incident energy 7T, or even the type of
incident particle in a reasonable time. The stringent tuning requirements of
modern large accelerators and the demands that high currents put on ion
sources make this requirement hard to meet in practice. Accelerator beam
time is often scheduled far in advance (6 months to a year is common), so

that experiments with common beam requirements can be grouped together,
thus minimizing the beam tuning time.

6. The intensity of the incident beam should be nearly constant and easily
measurable, for we must know it to determine the cross section. If we move a
detector from one position to another, we must know if the change in the
observed rate of detection of particle b comes from the angular dependence
of the differential cross section or merely from a change in the incident beam
intensity.

7. The beam may be polarized (that is, the spins of the incident particles all
aligned in a certain direction) or unpolarized, according to the desire of the
experimenters.

8. The beam must be transported to the target through a high-vacuum system so

as to prevent beam degradation and production of unwanted products by
collisions with air molecules.

Types of targets vary widely, according to the goals of the experiment. If we
want to measure the yield of a reaction (that is, ¢ or ¢,), perhaps through
observation of the attenuation of the beam or the decay of radioisotope Y, then
we may choose a thick, solid target. Such a target might degrade, scatter, or even
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stop the outgoing particles b, which does not bother us in this kind of measure-
ment. On the other hand, if we wish to observe b unaffected by interactions in the
target, a very thin target is required. Thin metal foils are often used as targets,
but for nonmetals, including compounds such as oxides, the target material is
often placed on a thin backing, which does not contribute to the reaction or
affect the passage of particle b. For many applications, extremely rare (and often
expensive) targets of separated isotopes are used. A high-intensity, highly focused
beam (typically a few mm in diameter) delivers considerable thermal power to
the target (absorption of 1 pA of 10 MeV protons delivers 10 W), which is
enough to burn up thin targets; therefore a way must be found to cool the target
and extract the heat generated by the beam. As with the beam, it should be
relatively easy to change targets so that valuable beam time is not wasted. For
some applications, it may be desirable to polarize the spins of the target nuclei.
The detectors may consist of some (or all) of the following: particle detectors
or detector telescopes to determine the energy and type of the outgoing particles,
magnetic spectrometers for good energy resolution (sometimes necessary to
identify close-lying excited states of Y), position-sensitive particle detectors (such
as multiwire proportional counters) to do accurate angular distribution work,
y-ray detectors to observe the de-excitation of the excited states of Y (possibly in
coincidence with particle b), polarimeters to measure the polarization of the
particles b, and so on. Because beam time is a precious commodity at a modern
accelerator facility, the emphasis is always on getting the largest amount of data
in the shortest possible time. Therefore multidetector configurations are very
common; many signals arrive simultaneously at the detectors and are stored by
an on-line computer system for later “re-play” and analysis. (Keeping the beam
and the detectors going during the experiment usually demands all the attention
of the experimenters and leaves little time for data analysis!)

11.6 COULOMB SCATTERING

Because the nucleus has a distribution of electric charge, it can be studied by the
electric (Coulomb) scattering of a beam of charged particles. This scattering may
be either elastic or inelastic.

Elastic Coulomb scattering is called Rutherford scattering because early
(1911-1913) experiments on the scattering of a particles in Rutherford’s labora-
tory by Geiger and Marsden led originally to the discovery of the existence of the
nucleus. The basic geometry for the scattering is shown in Figure 11.7. As is
always the case for unbound orbits ina 1/ r2 force, the scattered particle follows
a hyperbolic path. (We will assume the target nucleus to be infinitely massive, so
that the scattering center remains fixed.) The particle approaches the target
nucleus along a straight line that would pass a distance b from the nucleus in the
absence of the repulsive force; this distance is called the impact parameter. The
scattering angle is 8. Very far from the nucleus, the incident particle has
negligible Coulomb potential energy; its total energy is thus only the incident
kinetic energy T, = imv}. Its angular momentum relative to the target nucleus is
|r X mo| = muyb at large distances. In passing close to the target nucleus, the
particle reaches a minimum separation distance ry, (which depends on b), the
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Figure 11.7 The trajectory of a particle undergoing Rutherford scattering, show-

ing the closest approach to the target nucleus.

?lll)solute.minimum \{alue of which occurs in a head-on collision (b = 0), in which
e pa}rtlcle comes 1nstgntggepusly to rest before reversing its motion. At this
point it has exchanged its initial kinetic energy for Coulomb potential energy:

1 zZe?
dme, d

1,2 _
MYy =

(11.16)

wl;ler:i: Z}f is'the charge of the projectile and Ze the target. The distance d is
called the distance of closest approach. At intermediate points in the trajectory

the energy is partly kinetic and i i
partly potential; ¢ i
any value of the impact parameter) TP onservation of encrey gives (for

2Ze?

dmey r

imoy = tmv? + (11.17)
The scattering has cylindrical symmetry about the beam axis (bec
glc;u;c;mb f}cl)rlce 18 symmetric), and therefore the cross section is incgepf:fllcllf;tﬂ(;ﬁf3
A llinutt 211 angle ¢ We therefore work in a ring or annular geometry (Figure
th. - Particles with impact parameters between b and b + db are scattered into
e ring at angles between 6 and 6 + df. Let the target have n nuclei per unit
Xo:lur(rlle, e}ncl’ ,assume the target to be thin enough so that it is unlikely to have any
t }fl Cinc;\sivmg Tﬁf one nucleus by anothfer. The target is considered to be a foil of
e s x. Then the number of nuclei per unit area is nx, and the fraction df of
e incident particles that pass through the annular ring of area 27b db is

df = nx(27b db) (11.18)
The fraction f with impact parameters less than b is

f = nxwb? (11.19)

ﬁ Iiz;rucles spattered with. impact parameter b emerge at angle 4, then Equation
. 19 also gives t.he fraction that are scattered at angles greater than 6, but to
arry the discussion further we need a relationship between » and 4. (,We are
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Figure 11.8 Particles entering the ring between b and b + db are distributed
uniformly along a ring of angular width dé. A detector is at a distance r from the

scattering foil.

Figure 11.9 The hyperbolic trajectory of a scattered particle. The instantaneous
coordinates are r, 8. The change in momentum is Ap, in the direction of the dashed

line that bisects (7 — ).

assuming that each incident particle is scattered only once—more about this
assumption later.)

The net linear momentum of the scattered particles changes in direction only;
far from the scattering, the incident and the final linear momentum are both mu,.
(This follows from the assumption that the target is so massive that it does not
move.) The change in the momentum vector, as shown in Figure 11.9, is a vector
of magnitude

0

Ap = 2mu, sin 3 (11.20)

in the direction of the bisector of 7 — 8. According to Newton’s second law in
the form F = dp/dt, this is equal to the net impulse of the Coulomb force in that
direction:

zZe? . dt
Ap = fdp= dez= . — cos B (11.21)

where B is the angle between the bisector and instantaneous vector r locating the
particle. In the initial position far from the scattering, which we take to be time
¢ = 0, the angle 8 has the value —(7/2 — 8/2); in the final position (# = o0), the
angle B is +(7/2 — 8/2).
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The instantaneous veloci i ;
| 1ty © can be written i
tangential components: in terms of radial (along r) and

dr ag
o= — =
a v u A (11.22)

Wher A . . . .
e 7 and B indicate unit vectors in the radial and tangential directions

g

d,
mugh = mr2~'8
dt
dt dp
PP vo—b (11.24)

and substituting into Equation 11.21 gives

zZe?
Ap= — +(n/2-0/2)
P daeqvob ./ cos B dp

~(n/2-6/2)
B zZe? ¢
27eqvob cos 2 (11.25)

Combining thi ; . .
b and 6: g this result with Equation 11.20 gives the needed relationship between

‘ b= d 0

= ECOtE (11.26)
where d is the distance of closest i i
Bquations 1118 and 13 26 approach from Equation 11.16. Combining

a> 0 0
d =S — — 2_
|df| = mnx 4 Cot 5 esc 5 de (11.27)
and the rate at which particles reach the ring, per unit solid angle, is
L|df|
r(8,¢) = —=
(6,9) 29,47 (11.28)

where I, is the rate at which incident i
\ a particles fall on the target (and h.
is the number that tall })etween b and b + db). With 4Q E 27(7 sin 03:;6&{? lt‘ﬂ:
Ing geometry (that is, sin 6 d6 d¢ integrated over ¢), the net result is
do 2Ze?

dQ 4e,

2 1 2 1
v (11.29)
s’ —

This is the differential cross section for Rutherford scattering, usually called the
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Number scattered

Figure 11.10 (a) The dependence of scattering rate on foil thickness for three

different scattering foils.
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Figure 11.10 (c) The dependence of scattering rate on the kinetic energy of the
incident a particles for scattering by a single foil. Note the log-log scale; the slope
of —2 shows that logN o« —2logT, or N « T-2, as expected from the Rutherford

formula.

0.2
Relative kinetic energy of a particles

(c)

0.5

NUCLEAR REACTIONS 401

[0
(=]

~
(o]
D

4 Ag

Number scattered (thousands)
()]
(]

Qu
N
0 1000 2000 3000 4000 500606060

72

(%)

Figure 11 10 (b) The dependencewof i :
! _ : scattering rate on the nucle
foils of different materials. The data are plotted against Z2 Arharge 2 for

105

104 \

102 .

Number scattered

—————

20 40 60 80 100

Scattering angle (degrees)
(d)
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Figure 11.11 Elastic scattering of *°O from 967 at several incident energies. The Lol 18 03
horizontal axis shows the minimum separation distance fyin between projectile and :*;: N | .2
target, which varies with b and therefore with 8. The vertical axis shows the cross | - ¢ .’{ ‘.. 3=
section in terms of the calculated Rutherford cross section. Nuclear scattering R — g 8
effects appear at separations of less than 12.15 fm: this corresponds to R, = 1.7 - 27 ‘:* - R
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“skin thickness” of about 0.5 fm which allows the two nuclear distributions to Sl _ s
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Figure 11.12 Inelastic Coulomb scattering (Coulomb excitation). The projectile
exchanges energy with the target through the Coulomb interaction (exchanged
photons are shown as wavy lines) and the target 240py, originally in its ground
state, can be driven to excited states. Several different modes of excitation are
shown, including two-step processes. The spectrum of inelastically scattered a’s
shows which excited states of 24°Pu have been excited. Data from C. E. Bemis, Jr.,

et al., Phys. Rev. C 8, 1466 (1973).
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Rutherford cross section. Note especially the sin~*(6/2) dependence, which is

istic. _ _ . ten
Ch?;aieillisi}ﬁcult and painstaking series of experiments, Geiger and Mars

2 -2
verified three aspects of the Rutherford formula: the dependence on Z°, T.°°,

ent with the predictions
and sin—* (/2). Figure 11.10 shows the excellent agreem

la. . ' .
Of’;}klli frilrc:?tu noteworthy aspect of the scattering experiment, and the detail that

i om, is the fraction scattered at

e t(l)) hl(smc(;) r;((:)ipthZ)fr g:a;l;(;ifa\ilea::onsider a golq foil of thickness
;.a(r)g; alrz)g‘l?‘sc,:rfla};n ?’Ihich 8.0 i\/IeV «’s are incident. From E;lgatslorr} }113.2'63’ \;vel ::;2

: . i = - s i
- ich Equation 11.19 gives f— 75X .

?r;:t}cfnfg’bgzrcr;t:;lrléd at (sluch angles and requires a dense, compact nucleus as
o ook ituati : s. For the above gold foil, there are
e IO'Ok ?)gsthe 211;1;::1;)12 f)(;rosfnzﬁg (??dg;re of 0.003 nm lateral spacing betvgeen
abOUt_ P b nun incomi’ng o particle. This means abogt 2 of the « particles
v s " npact aameter of 0.001 nm or greater. For this impact paorameter, the
o i lmpafit I')arl 6°. Thus the mean scattering angle is of order 1° or less. To
apear o ?ng N lsn 'les. we must have either many scatterings, each a}t a §mall
e or: a'rgel y citte’ring at large angle. Of course, if there are many 11}d1v1dua1
e ngs of & rar dom nature, some will tend to increase the net scattering angle
and thess Of'1211 l.and to decreas’e it. To observe scattering at a total angle of gbout
o tertl be about N? individual scatterings. If we obs_erve scattering at
N Cale 0 eh larger than 1° and if we vary the thickness x'of the
e e o e on probability to observe scattered particles to

ing foil, then we expect the babi : : :
f/i?;te;n% for multiple scattering, while it should vary with x in the case o

. nole
i i i are linearly more chances to have sing
single scattering (snpY becausebgrliff nuclei increases). Figure 11.10a shows the

-angle scattering as the num . ! . s the
laarrgizt?:r% of the nun%ber of scattered particles with x, and the linear behavior i
v

i rent. . . ical
qugira F:f:atment of Rutherford scattering has been based entirely on classica

i i inty princi-
luded. In particular, the uncertain ‘

: no quantum effects are nch : ' : '
C(I)nceﬁzlsér: dO?lbtful any treatment based on fixed trajectories and Egruq;a 0;211;?1
ifx rea\ttempt to locate a particle with an impac.:t parameter of ar 1trar1u)lrm nall

)Zartainty would introduce a large uncertainty in the transvc.:rse molnclle.:gi n and
ul?c in the scattering angle. We are not discussing the experlmer}ta ifficulty of
‘t‘ in %n » a beam with a specific impact parameter; the range of impact pg‘racmSs

l . . . u
te?sr?s futomatically included in the variation wgth 0 of do /d Q. (\;Vhaz1 wztht)slogi_
here is whether the assumption of a definite trajectory has introduced p

e .
cal errors into the derivation of the Rlztl}:el'rfortc:l :r?;lspze:;ucéz.rameter il bo an
i inty in .
responding to an uncertain an
unf::eorrtainlzy A pgin the transverse momentum of order A/Ab. Our classi
derivation makes sense-only if Ab < b and Ap < Prangverse’
b Aptransverse >> Ab Ap Z h

b Aptransverse
h

> 1 (11.30)
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We consider two extreme cases: (1) 90° scattering, for which b = d/2 =14 fm
and Ap,.icerse = M0y = 250 MeV /c, where we have assumed 8-MeV «’s incident
on gold. For this case the ratio in Equation 11.30 is about 18, reasonably far from
the quantum limit. (2) Small-angle scattering (6 =~ 1°), with b = 1600 fm and
AP ansverse = MUy tand = 4 MeV /c. The ratio is now about 32, again far from the
quantum limit.

Ultimately what justifies the classical calculation is a happy accident of
Quantum physics: the quantum calculation of the Coulomb scattering cross
section gives the same result as the classical calculation, Equation 11.29. This is a
peculiarity of the 1/r2 force, in which the exact quantum result contains no
factors of A, and thus the “classical limit” of % — 0 leaves the quantum result
unchanged.

As we increase the energy of the incident particle, we will eventually reach a
point where the distance of closest approach decreases to the nuclear radius, and
thus the projectile and target feel each other’s nuclear force. The Rutherford
formula, which was derived on the basis of Coulomb interactions only, fails at
that point to account for the cross section, as we illustrated in Figure 3.11. (The
cross section then includes Coulomb and nuclear parts, as in the case of
proton-proton scattering, Equation 4.43.) The internuclear separation at which
the Rutherford formula fails is then a measure of the nuclear radius, as illustrated
in Figure 11.11,

Up to now we have considered only elastic Coulomb scattering. Inelastic
Coulomb scattering is called Coulomb excitation; after the encounter the nucleus
(and possibly, although not usually, the projectile) is left in an excited state, from
which it decays rapidly with the emission of Yy rays. We can think of this process
as the emission and absorption of virtual photons, with the most likely mode
being E2. This process has therefore been extensively used to study the first
excited 2* states of even-Z, even-N nuclei. Because the 0" — 2* photon absorp-
tion probability is closely related to the 2+ — 0+ photon emission probability,
the Coulomb excitation probability can give a measure of the half-life of the 2+
state. Moreover, since the 2+ state lives much longer than the time it takes for the
encounter between target and projectile, there is a second-order interaction
between the projectile and the excited-state nuclej of the target. This can have
several effects, including photon absorption causing a 2% — 4+ upward transi-
tion and a change in the m-state population of the 2% state from the interaction

of its quadrupole moment with the electric field gradient of the moving projectile.

Figure 11.12 shows some sample results from inelastic Coulomb scattering. The
reduced energy of the detected particles exactly matches the energy simulta-
neously observed in y-ray emission from the excited states.

11.7 NUCLEAR SCATTERING

The elastic nuclear scattering of particles bears a strong resemblance to a familiar
problem from optics: the diffraction of light by an opaque disk (Figures 4.3 and
11.13). In the optical case, diffraction at the sharp edge results in a series of
maxima and minima; the first minimum occurs at 6 ~ A/R, the succeeding
minima are roughly (but not exactly) equally spaced, and the intervening maxima
are of steadily and substantially decreasing intensity.
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Figure 11.15 Elastic scattering of protons from 2°8Pb, In (a), at low energy (14
MeV), the diffraction-like behavior occurs only at large angles (beyond 60°), where
nuclear scattering occurs, because the closest distance between projectile and
target (12.6 fm at 60° from the Rutherford formulas) agrees with the internuclear
distance appropriate for nuclear interactions (11.8 fm), calculated using R, = 1.7
fm, as in Figure 11.11. Compare this figure with that for neutron scattering at the
same energy, Figure 11.14. In (b), the incident energy is 1050 MeV and the
Coulomb barrier is easily penetrated, so diffraction effects occur at small angles.
(a) From J. S. Eck and W. J. Thompson, Nucl. Phys. A 237, 83 (1975). (b) From G.
lgo, in High Energy Physics and Nuclear Structure — 1975, edited by D. Nagle et al.

(New York: American Institute of Physics, 1975).

®




408 NUCLEAR REACTIONS

A nucleus is a strongly absorbing object for nucleons, and thus the analogy
with the opaque disk is quite valid. For charged particles, we must deal with the
interference between nuclear and Coulomb scattering, as in Figure 4.9 and
Equation 4.43. It is this effect that is responsible for the deviation of scattering
cross sections from the Rutherford formula, as shown in Figure 11.11. If we wish
to observe the elastic scattering of nucleons, in the form of the “diffraction-like”
pattern, we must eliminate the effects of Rutherford scattering, which we can do
in either of two ways. The first is to use uncharged neutrons as the scattered
particle. Figure 11.14 shows an example of neutron elastic scattering. One
particular difference between the nuclear scattering and optical diffraction is that
the minima do not fall to zero. This is a direct Tesult of the diffuseness of the
nuclear surface—nuclei do not have sharp edges.

For charged particles, we must take two steps to reduce the effect of inter-
ference with Coulomb scattering: we work at higher energy, so that the
Rutherford cross section is small and the projectile can more easily penetrate to
feel the nuclear interaction, and we observe at larger angles, where again the
Rutherford cross section is small and where the small impact parameter also
helps to guarantee nuclear penetration. An example of nucleon elastic scattering
is shown in Figure 11.15. Again, the diffraction-like effects are apparent.

One result of nucleon elastic scattering studies is the determination of the
nuclear radius. Although the value may depend somewhat on the potential model
used to analyze the scattering (such as the square well discussed in Chapter 4),
the results are generally quite consistent with R = R,A4Y? with Ry = 1.25 fm as
in other studies. In Section 11.9 we discuss in more detail the implication of these
experiments on our knowledge of the potential.

Inelastic nuclear scattering, like inelastic Coulomb scattering, results when the
target nucleus takes energy from the projectile and reaches excited states. (It is
also possible for projectiles to be placed in excited states; we ignore this effect for
now.) If we measure the energy distribution of scattered projectiles at a fixed
angle, we observe a single elastic peak, which is the highest energy scattered
projectile. Each inelastic peak corresponds to a specific excited state of the target
nucleus. Figure 11.4 showed an example of inelastic nuclear scattering, and
another example is discussed in Section 11.11. From the locations of the inelastic
peaks, we can learn the energies of the excited states; from their relative heights
we learn the relative cross sections for excitation of each state, which tells us

something of the wave function of the excited state. We can also measure an
angular distribution of scattered projectiles for any excited state, from which we
can learn the spin and parity of the excited states.

11.8 SCATTERING AND REACTION CROSS SECTIONS

In this section we cover some details of reaction cross sections more thoroughly
than in our previous discussion in Section 4.2. You may wish to review that
discussion before proceeding.

We take the z axis to be the direction of the incident beam and assume it can
be represented by a plane wave e'** corresponding to momentum p = hk. The
outgoing particles will be represented by spherical waves, and so the manipula-
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[ee]
— ikz _ : :
Vine = de'** = 4 Eozf(zm 1) j,(kr)P,(cos 8) (11.31)

;v?z;e): ,;Iris ar;q apprlo%riatelb} chosen normalization constant. The radial functions
A spherical Bessel functions which were previously gi i
they are solutions to the radial > breviously given in Table 2.3;
: _ part of the Schrodinger equation, Equation 2.6
, .60
;n a region far from the target where the nuclear potential vanishes.the an ula;
unctions P,(cos §) are Legendre polynomials: *

Py(cosf) =1
P(cos @) = cos b (11.32)
Py(cos8) = £(3cos?8 — 1)

Thls expansion of the incident (and eventually, the scattered) wave is called th
ﬁz‘rtlzlcé; vtvave ;xpéan;ion, with each partial wave corresponding to a specific angula:
um ¢. Such a procedure is valid if the nuclear potential is assumed to
zgziial.fWJ}gt makes the me_thod useful is that it is often sufficient to consider tEZ
o o t/ E nuclear potential on at most only a few of the lowest partial waves
(su :st_ l— 0 or s-wave nucleon-‘nucleon scattering discussed in Chapter 4). If
particles of momentum p interact with impact parameter b, then th
(semiclassical) relative angular momentum will be , )

£h = pb
or

b=¢ ’ 4 A
i Ty 7 (11.33)
le:re 7&; A/2m is called the reduced de Broglie wavelength. Incidently, X = k1
" cc}:)r ing to qgantun? mechanics, £ can only be defined in integer ,units anci
us t le Sf':mlclass1ca1 estimate should be revised somewhat. That is, particles, with
(semiclassical) angular momenta between 0% and 1% will interact through impact
sslrrir:;t:; ;t)e:‘;x_/f}elnhO al}d A, and thus effectively over an area (cross section) of
. Wi < £< 25, the cross section is a ring of in di
outer radius 2A, and thus of area 37A2. We ¢ vide the ntoract e
( R . an thus divide the interaction
;nt((; a numbef of zones, each corresponding to a specific angular momentui;ea/
t}? cach hav1pg area w[(£+ 1)A]> — m(¢X)? = 2/ + 1)7A%. We can estimate
, }f maximum impact parameter for nuclear scattering to be about R = R, + R
S, 1e s11111r(1 of the radii _of the incident and target nuclei), and thus the maxi;num j’
alue likely to occur is R/A, and the total cross section is correspondingly
R/A
o= Y (2¢+ 1)aX?> = (R + A)?
P ) ( ) (11.34)

This ; . .
X 1llltlsi tlS ﬁ reasonal.)le'estlmate, for it includes not only an interaction distance R
allows the incident particle’s wave nature to spread over a distance of the,z

order of X, making the effective i i i
, ¢ interaction radius (R + X). We wi
how the exact calculation modifies this estimate. ( - We wil see later
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When the wave is far from the nucleus, the j,(kr) have the following
convenient expansion:

sin ( kr — $¢m)

jolkr) = o (kr>?¢)
e—i(kr—/’vr/Z) _ e+i(kr—{’17'/2)
=i (11.35)
2kr
so that
A & ) L
‘Pinc = EI_ Z I'/+1(2/+ 1)[6,—1(1\'1'—/11/2) — e+1(kr‘(’w/2)]P/(Cosa) (1136)
=0

The first term in brackets, involving e’ kr represents an incoming spherical wave
converging on the target, while the second term, in e*A’, represents an outgoing
spherical wave emerging from the target nucleus. The superposition of these two
spherical waves, of course, gives the plane wave.

The scattering can affect only the outgoing wave, and can affect it in either of
two ways: through a change in phase (as in the phase shift discussed in Chapter
4), and through a change in amplitude. The change in amplitude suggests that
there may be fewer particles coming out than there were going in, which may
appear to be a loss in the net number of particles. However, keep in mind that
the wave function represents only those particles of momentum hk. If there is
inelastic scattering (or some other nuclear reaction), the energy (or even the
identity) of the outgoing particle may change. It is therefore not surprising that
there may be fewer particles in the /%" term following inelastic scattering. It has
become customary to refer to a specific set of conditions (exclusive of direction of
travel) of the outgoing particle and residual nucleus as a reaction channel. The
reaction may thus proceed through the elastic channel or through any one of
many inelastic channels. Some channels may be closed to the reacting particles, if
there is not enough energy or angular momentum to permit a specific final
configuration to be reached.

We account for the changes in the £th outgoing partial wave by introducing
the complex coefficient 7, into the outgoing (e'*") term of Equation 11.36:

A & ) )
iy Y it 22+ 1)[en D — npe* 1 kr= /2] P(cos 8) (11.37)
/=0
incident and scattered waves:

This wave represents a superposition of the
nd the scattered wave itself, we

Y = Yo T ¥ exactly as in Equation 4.23. To fi
subtract Equation 11.37 from Equation 11.36:

A = .
b= S S e 1)L - )€ PE (co86)
Foreg
A ei/\'!' o0
¥ ¢+ 1)i(1 — n,) Pr(cos 8)

2k r sy

(11.38)

il
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%ecagsel we have 'acc_ounted for only those parts of i, with wave number k
i egtlca .w1th the incident wave, this represents only elastic scattering. As we did ‘
in Equation 4.24 we now find the scattered current density:

o= LN L L
sc Imi € o - dr sc) (1139)
) [~} 2 i §
= ] dmkr? Eo<2/+ 1)i(1 = n,) Ps(cos §) (11.40)

The incident current is identical with Equation 4.26:

o 2
]mc m |A| (11'41)
and by analogy with Equation 4.27, the differential cross section is

0 2 ‘

/=0(2{+ 1)i(1 — n,) P,(cos §) (11.42)

do
dQ 4k

To find the total i i i
I otal cross section, we require the integral of the Legendre polynomi-

4z
20+ 1

fP/(cosﬁ)Pf,(cos 0)sinfdfde if = ¢’

=0 if £ ¢ (11.43)

o, = 2, TA*(2¢+ 1|1 = q,f
/=0

(11.44)

y if elastltc_ scalttering were the c;nsly process that could occur, then |7,] = 1 and it
onventional to write n,= e*° where §, is th ; i

. 2 e phase shift of th
wave. For this case, |1 — 3, = 4sin*§, and g 4 ° £th paril

[e]
0. = 2, 4TA*(2¢+ 1)sin® s,
/=0

(11.45)

which reduces directly to Equation 4.30 for /= 0.
If there are'other processes in addition to elastic scattering (inelastic scatterin
or other reactions) then Equation 11.45 is not valid, because |g,| < 1. We roug
all of“these 'prc,)’cesses together under the term reaction cross sec;ion o. whe%e wI;
:?11'(6 reactlon' to mean all nuclqar processes except elastic scatterigg. To find

is cross sec“txc?n, we must examine Equation 11.37 to find the rate at which
garucles are disappearing” from the channel with wave number k. That is, we
nd the difference between the incoming current and the outgoing current us’ing,
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0 < r < R, and match boundary conditions at the surface. In this way we should Bk

i 37: ) . .
and second terms of Equation 11 be able to calculate 1, and, by comparison with experimental values of o,. and

respectively, the first

5 " 2 o,. evaluate whether our chosen form for the potential is reasonable. In practice L
, oM h Y 2+ 1)i¢+lei"/*P,(cos 0)\ this is very difficult for all but the elastic channel because all of the inelastic and ‘
Linl = Vowl = 4ir? = reaction channels are coupled together leading to a complicated system of

coupled equations. We discuss one particular technique, the optical model for E I
elastic scattering, in Section 11.9. ‘

2} (11.46)

[v e .
Y (204 1)i®*tn e ?Py(cos )
£=0

and the reaction cross section becomes 11.9 THE OPTICAL MODEL

i ‘ 2 (11.47) A simple model used to account in a general way for elastic scattering in the
o, = Y, ak2(2¢+ 1)(1 — |n¢| ) ’ presence of absorptive effects is the optical model, so called because the calcula-
=0

tion resembles that of light incident on a somewhat opaque glass sphere. (The
model is also called the “cloudy crystal ball model.”)

In this model, we represent the scattering in terms of a complex potential
U(r):

The total cross section, including all processes, 18

6, = 6, t O,

= f‘, 27A2(2¢+ 1)(1 — Rem,) (11.48)
¢=0

U(r) =v(r) +iw(r) (11.52)

where the real functions ¥ and W are selected to give the potential its proper ‘
radial dependence. The real part, ¥(r), is responsible for the elastic scattering; it o
describes the ordinary nuclear interaction between target and projectile and may o
therefore be very similar to a shell-model potential. The imaginary part, W(r), is }

responsible for the absorption. We can demonstrate this by considering a |
square-well form for U(r): ‘

You should note the following details about these results:

attering in the absence of othgr processes; that
11.47 vanishes. It is not possible, hovs{ever, to
astic scattering; that is, any choice of 1,
automatically gives o, # 0 for that

1. TItis possible to have elastif: sC
is, if |n,| = 1, then Equation 1.
have reactions without also havmg el
for which o, # 0 for a given partial wave

artial wave. We can understand this with reference to the diffractéOfI;OI:angi U(r) = =V, — iW, r<R

. . . ' ve ;‘

gf scattering we considered in Section 11.7. ‘If particles are rem? e dent -0 r> R (11.53) g
incident beam, creating a “shadow” behind the target nucleus,

The outgoing scattered wave we take to be in the form of e’ /r, with k
= \/Zm(E + Vo + iW,)/h*, which follows from solving the Schrodinger equa-
tion in the usual way for this potential. The wave number k is thus complex:
k =k, + ik;, where k and k; are the real and imaginary parts, respectively. The
wave function behaves like e’ . e=%"/r, and the radial probability density is

rticles will be diffracted into the shadow. ' . .
2 gir a “black disk” absorber, as in Equation 11.34, in which ailll part:ls?)lr“i?gii
‘ are completely absorbed up to ¢=R/X (n,= 0 for complete absorp

and unaffected for £> R/A (n,= 1), then

o.=m(R+ x)z (11.49) proportional to e~ 24", The wave is therefore exponentially attenuated as it passes
through the nucleus. (Choosing W, > 0 in Equation 11.53 gives a loss in
and intensity, rather than a gain.) If we assume that the absorption is relatively weak
6. = a(R + X)’ (11:50) (that is, W, is small compared with E + V,), then we can use the binomial
f theorem to expand the expression for k:
so that [2m(E+V,) W, [2m[ 1
o, =2m(R+ ) (11.51) k= T Yt Ve A (11.54)

i i his
The total cross section is twice the geometrical area! Thf,:, expl.anat1cgllefotra :get
nonclassical effect can also be found in the “shadow ;eglonlz—must reet
nucleus cannot simply absorb and throw a sharp shadow.
diffract into the shadow region. N
ese results to study nuclear structure 18 similar to that

i at a form for the
ucleon scattering. We can guess d : .
y inside the interaction region

The usual shell-model potential has a depth ¥, of the order of 40 MeV, and we
can take E =10 MeV for a typical low-energy projectile. The distance over
which the intensity is attenuated by e~ ! (a sort of mean free path) is

1 1 [A(E+V,)
- = _\/ — % 11.55
d 2k, W, 2m ( )

The program for using th
of Chapter 4 for nucleon- m | .
nuclear potential, solve the Schrodinger equation
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Figure 11.16 The optical model functions V(r) and W(r) = dV /dr. Typical
parameters chosen are V, = 40 MeV, R = 1.25A4/%, a = 0.523 fm, and A = 64.

If this distance is to be at most of the order of the nuclear radius (say, 3 fm) then
W, = 11 MeV. Thus for the usual case, in which absorption is relatively weaker
than elastic scattering, we estimate | V| ~ 40 MeV, | W] ~ 10 MeV.

The procedure for applying the optical model might be as follows: First, we
must choose a form for the potential. The square-well form is often adequate
(with R = 1.44'/3, a bit larger than usual to account for the diffuse nuclear
surface), but a more detailed form is often chosen:

V(r) = 1—+e—(f’T)/— (11.56)
exactly as in the case of the shell model, Equation 5.1. The constants Vs, R, and
a are adjusted to give the best fits with the scattering data. The absorptive part
W(r) at low energies must have a very different form. Because of the exclusion
principle, the tightly bound nucleons in the nuclear interior cannot participate in
absorbing incident nucleons. Only the “valence” nucleons near the surface can
absorb the relatively low energy carried by the incident particle. The function
W(r) is thus often chosen as proportional to d¥/dr, which has the proper shape
of being large only near the surface, as shown in Figure 11.16. (At higher energy,
where the inner nucleons can also participate in absorption, W{(r) may look more
like ¥(r).) A spin-orbit term is also included in modern optical potentials. It is
also peaked near the surface, because the spin density of the inner nucleons
vanishes. Finally, a Coulomb term must be included if the incident particle is
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Figure 11.18 Optical-model fits to differential cross sections (at left, shown as a
ratio to the Rutherford cross section) and polarizations, for 10-MeV protons
scattered elastically from various targets. The solid lines are the fits to the data
using the best set of optical-model parameters. From F. D. Becchetii, Jr., and G. W.
Greenlees, Phys. Rev. 182, 1190 (1969).

11.10 COMPOUND-NUCLEUS REACTIONS

Suppose an incident particle enters a target nucleus with an impact parameter
small compared with the nuclear radius. It then will have a high probability of
interacting with one of the nucleons of the target, possibly through a simple
scattering. The recoiling struck nucleon and the incident particle (now with less
energy) can each make successive collisions with other nucleons, and after several
such interactions, the incident energy is shared among many of the nucleons of
the combined system of projectile + target. The average increase in energy of any
single nucleon is not enough to free it from the nucleus, but as many more-or-less
random collisions occur, there is a statistical distribution in energies and a small
probability for a single nucleon to gain a large enough share of the energy to
escape, much as molecules evaporate from a hot liquid.

Such reactions have a definite intermediate state, after the absorption of the
incident particle but before the emission of the outgoing particle (or particles).
This intermediate state is called the compound nucleus. Symbolically then the
reaction a + X = Y + b becomes

a+X->C*>Y+b

where C* indicates the compound nucleus.
As might be assumed from seeing the reaction written in this form, we can

consider a reaction that proceeds through the compound nucleus to be a two-step
process: the formation and then the subsequent decay of the compound nucleus.
A given compound nucleus may decay in a variety of different ways, and essential
to the compound-nucleus model of nuclear reactions is the assumption that the
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;Zlative probability fqr decay into any specific set of final products is independent of

e1 means of formation of t'he compound nucleus. The decay probability depends

S?Oi,gg?’ ’tlzi total energy given to the system; in effect, the compound nucleus
s the bro . D -

ore process of formation and decays governed primarily by statistical

hLet’s consider a spe_:ciﬁc example. The compound nucleus *Zn* can be formed

through several reaction processes, including p +%Cu and a +%Ni. It can also

decay in a variety of i s 63 6
That is y of ways, including Zn + n, ®Zn + 2n, and ®Cu +p + n.

p +63Cu 63Z
n+n
64Zn* / 62Cu +n+ p
a +%Ni — I ©Zn + 2n

Energy of protons in MeV
5 9 13 17 21 25 29 33

i H i H
: i

80Ni (e, pn) $2Cu

83Cu (p, pn) $2Cu

" 60N (@, n) 83Zn

Cross section (b)

60Ni (o, 2n) 62Zn

83Cu (p, 2n)*2Zn

Energy of & (MeV)

::chlll;'e ! 41.19 Cross septipns for different reactions leading to the compound
us "“Zn show very similar characteristics, consistent with the basic assump-

tions of the compound
(1950). p nucleus model. From S. N. Goshal, Phys. Rev. 80, 939
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Figure 11.20 The curve marked NC shows the contribution from compound-
nucleus formation to the cross section of the reaction 2°Mg(p, p)*°Mg. The curve
marked ID shows the contribution from direct reactions. Note that the direct part
has a strong angular dependence, while the compound-nucleus part shows little
angular dependence. From A. Galimann et al., Nucl. Phys. 88, 654 (1 966).

If this model were correct, we would expect for example that the relative cross
sections for Cu(p,n)®Zn and “Ni(a, n)%3Zn would be the same at incident
energies that give the same excitation energy to #Zn*. Figure 11.19 shows the
cross sections for the three final states, with the energy scales for the incident

protons and a’s shifted so that they correspond to a common excitation of the
compound nucleus. The agreement between the three pairs of cross sections is
remarkably good, showing that indeed, the decay of %Zn* into any specific final
state is nearly independent of how it was originally formed.

The compound-nucleus model works best for low incident energies (10-20
MeV), where the incident projectile has a small chance of escaping from the
nucleus with its identity and most of its energy intact. It also works best for
medium-weight and heavy nuclei, where the nuclear interior is large enough to

absorb the incident energy.
Another characteristic of compound-nucleus reactions is the angular distribu-

tion of the products. Because of the random interactions among the nucleons, we

expect the outgoing particle to be emitted with a nearly isotropic angular

distribution (that is, the same in all directions). This expectation is quite
consistent with experiment, as shown in Figure 11.20. In cases in which a heavy
ion is the incident particle, large amounts of angular momentum can be trans-
ferred to the compound nucleus, and to extract that angular momentum the
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. Theh evaporation” analogy mentioned previously is really quite appropriate. In
1'2;:tl’ the more energy we give to the compound nucleus, the more particles are
1h ely to evaporate. For each final state, the cross section has the Gaussian-like
shape shown in Figure 11.19. Figure 11.21 shows the cross sections for («, xn)
;e?;;;(;?: gheriz1 )tch= 1(,12, 3,... . For each reaction, the cross section increases to
um and then decreases as the higher energy makes it more li
additional neutron to be emitted. ® Hely for an

11.11 DIRECT REACTIONS

At thf{ opposit.e extreme from compound-nucleus reactions are direct reactions
in which the incident particle interacts primarily at the surface of the tar et’
puc;leus; such reactions are also called peripheral processes. As the energy of tghe
incident particle is increased, its de Broglie wavelength decreases unti}ll it be-
comes more likely to interact with a nucleon-sized object than with a ,nucleus-sized
object. A 1-MeV incident nucleon has a de Broglie wavelength of about 4 fm, and
thus does not “see” individual nucleons; it is more likely to interact throu,gh a
compound-nucleus reaction. A 20-MeV nucleon has a de Broglie wavelength of
about 1 fm and therefore may be able to participate in direct processes. Direct
processes are most likely to involve one nucleon or very few valence n.ucle
near the surface of the target nucleus. o
bo(tif é:grllltrrsl% 1tt may bf? possible to have direct and compound-nucleus processes
ooth contrt h? }ei toa ﬁlven reaction. How can we distinguish their contributions
o dec Observcd may be more 1mportapt? There are two principal differences that
o Obser (ff 1e())({)g:znmentz?lly: (1) Direct processes occur very rapidly, in a time
e _165, wmle_compouqd-nuclfear processes typically take much
ger, perhaps 10 to 107'® s. This additional time is necessary for the
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distribution and reconcentration of the incident energy. There are ingenious
experimental techniques for distinguishing between these two incredibly short
intervals of time. (2) The angular distributions of the outgoing particles in direct
reactions tend to be more sharply peaked than in the case of compound-nuclear
reactions.

Inelastic scattering could proceed either through a direct process or a com-
pound nucleus, largely depending on the energy of the incident particle. The
deuteron stripping reaction (d,n), which is an example of a transfer reaction in
which a single proton is transferred from projectile to target, may also go by
either mechanism. Another deuteron stripping reaction (d, p) may be more likely
to go by a direct process, for the “evaporation” of protons from the compound
nucleus is inhibited by the Coulomb barrier. The («, n) reaction is less likely to be
a direct process, for it would involve a single transfer of three nucleons into
valence states of the target, a highly improbable process.

One particularly important application of single-particle transfer reactions,
especially (d,p) and (d,n), is the study of low-lying shell-model excited states.
Several such states may be populated in a given reaction; we can choose a
particular excited state from the energy of the outgoing nucleon. Once we have
done so, we would like to determine just which shell-model state it is. For this we
need the angular distribution of the emitted particles, which often give the spin
and parity of the state that is populated in a particular reaction. Angular
distributions therefore are of critical importance in studies of transfer reactions.
(Pickup reactions, for example (p, d), in which the projectile takes a nucleon from
the target, also give information on single-particle states.)

Let’s consider in somewhat more detail the angular momentum transfer in a
deuteron stripping reaction. In the geometry of Figure 11.22, an incident particle
with momentum p, gives an outgoing particle with momentum p,, while the
residual nucleus (target nucleus plus transferred nucleon) must recoil with
momentum p = p, — p,. In a direct process, we may assume that the transferred
nucleon instantaneously has the recoil momentum and that it must be placed in
an orbit with orbital angular momentum = Rp, assuming that the interaction

Pa

Pa

Figure 11.22 Geometry for direct reactions occurring primarily on the nuclear
surface.
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takes place at the surface of the nucleus. The momentum vectors are related by
the law of cosines:

p*=p2+pl—2p,pycosh

= (P = Py)" + 2p,p,(1 — cos ) (11.57)

lee_n the energies of the incident and outgoing particles, we then have a direct
relationship between ¢ and §—particles emerging at a given angle should
corresp(_)nd to a specific angular momentum of the orbiting particle.

Consider a specific example, the (d,p) reaction on %Zr leading to single
neutron shell-model states in **Zr. The Q value is about 5 MeV, so an incident
dF:uteron at 5 MeV gives a proton at about 10 MeV, less any excitation in *'Zr.
Since at these energies p, ~ Py, = 140 MeV /¢, Equation 11.57 gives

o 2¢%p, py(2sin®6,2) |12
h*c?/R?

= 8sin 3
For each angular momentum transfer, we expect to find outgoing protons at the
following angles: /= 0, 0°; /= 1,14°; £=2,29°; /= 3, 44°,

TI}is simple semiclassical estimate will be changed by the intrinsic spins of the
particles, which we neglected. There will also be interference between scatterings
Fhat occur on opposite sides of the nucleus, as shown in Figure 11.22. These
mteﬁerences result in maxima and minima in the angular distributions.

Figure 11.23 shows the result of studies of (d, p) reactions on *°Zr. You can see
geveral low-lying states in the proton spectrum, and from their angular distribu-
tions we can assign them to specific spins and parities in *'Zr. Notice the
appearance of maxima and minima in the angular distribution. The angular
momentum transfer, as usual, also gives us the change in parity of the reactions
/= even for no change in parity and Z= odd for a change in parity. If we aré
studying shell-model states in odd-4 nuclei by single-particle transfer reactions
suf:h as (d, p), we will use an even-Z, even-N nucleus as target, and so the initial
spin and parity are 0*. If the orbital angular momentum transferred is Z, then
th§ final nuclear state reached will be ¢ + 3, allowing for the contribution;)f the
spin of the transferred nucleon. For ¢#= 2, for instance, we can reach states of
J = 3 or 3, both with even parity.

The complete theory of direct reactions is far too detailed for this text, but we
can s.ketch the outline of the calculation as an exercise in applications of the
principles of quantum mechanics. The transition amplitude for the system to go
from the initial state (X + a) to the final state (Y + b) is governed by the usual
quantum mechanical matrix element:

M= [Y34iVsch, do (11.58)

The interaction ¥ must be a very complicated function of many nuclear coordi-
nates. A simplifying assumption is the plane-wave Born approximation, in which
‘Pf,‘; -f/l}zd 4{1, are treatfad as plane waves. Expanding the resulting exponential
€” 7 using a spherical wave expansion of the form of Equation 11.31 and
making the simplifying assumption that the interaction takes place on the nuclear
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Figure 11.23 (top) Proton spectrum from *°Zr(d, p)*’ Ztrh Pelal;ts iirc-,;rig;nt{;fiigrvgg:
i ak at the le

the final states in ®'Zr populated. The large pe . om a carbon
i i istributions fitted to determine the £ value.

impurity. (bottom) Angular dlgtrlbu ' e oroasing 7. a5

location of the first maximum shifts to larger ang :

g‘ericted by Equation 11.57. See Figure 11.24 for the deduced excited states. Data
from H. P. Blok et al., Nucl. Phys. A 273, 142 (1976).
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surface, so the integral is evaluated only at r = R, the matrix element is
proportional to j,(kR) where k = p/h contains the explicit angular dependence
through Equation 11.57. The cross section then depends on [j,(kR)]? which
gives results of the form of Figure 11.23.

Taking this calculation one step further, we use the optical model to account
for the fact that the incoming and outgoing plane waves are changed (or
distorted) by the nucleus. This gives the distorted-wave Born approximation, or
DWBA. We can even put in explicit shell-model wave functions for the final
state, and ultimately we find a differential cross section for the reaction. Because
there are no “pure” shell-model states, the calculated cross section may describe
many different final states. Each will have a differential cross section whose shape
can be accurately calculated based on this model, but the amplitude of the cross
section for any particular state depends on the fraction of the pure shell-model
state included in the wave function for that state. The measured cross section is
thus reduced from the calculated shell-model single-particle value by a number

L | [ [ J
0% 25% 50% ) 75% 100%
Fraction of shell-model wave function

1/2% (0)  c——

712+ @)
11/2- (5)

3/2% (2)
7/12% (4)

172+ (0)

5/2+ (2)
@ Sizr 0
E (MeV)
Figure 11.24 Deduced level scheme for ®'Zr. Each ¢ value (except zero) de-
duced from the angular distributions of Figure 11.23 leads to a definite parity
assignment but to two possible / values, 7+ 7. Which one is correct must be
determined from other experiments. The fraction of the single-particle strengths
répresented by each level is indicated by the length of the shading; thus the ground
state is nearly pure d, /2 shell-model state.




424 NUCLEAR REACTIONS

between 0 and 1 called the spectroscopic factor S

do do

—_ —_ S —

aQ meas d Q calc
A pure shell-model state would have S = 1. In practice we often find the
shell-model wave function to be distributed over many states. Figure 11.24 shows

examples of the spectroscopic factors measured for *'Zr.

(11.59)

11.12 RESONANCE REACTIONS

The compound-nucleus model of nuclear reactions treats the unbound nuclear
states as if they formed a structureless continuum. That is, there may be discrete
nuclear states, but there are so many of them and they are so close together that
they form a continuous spectrum. Fach of these supposed discrete states is
unstable against decay and therefore has a certain width; when the states are so
numerous that their spacing is much less than the widths of the individual states,
the compound-nucleus continuum results.

The bound states studied by direct reactions are at the opposite end of the

scale. Because they are stable against particle emission, their mean lives are much
) and their corresponding widths are

longer (for example, characteristic of y decay

much smaller. A state with a lifetime of 1 ps, for instance, has a width of about
10-3 eV, far smaller than the typical spacing of bound states. We are therefore

justified in treating these as discrete states with definite wavefunctions.

Between these two extremes is the resonance region— discrete levels in the

compound-nucleus region. These levels have a high probability of formation

(large cross sections), and their widths are very small because at low incident
energy, where these resonances are most likely to occur, the quasibound state that
is formed usually has only two modes of decay available to it—re-gjecting the
incident particle, as in elastic or inelastic scattering, or Y emission.

To obtain a qualitative understanding of the formation of resonances, we
represent the nuclear potential seen by the captured particle as a square well. The
oscillatory wave functions inside and outside the well must be matched smoothly,
as we did in Figure 4.7a for aucleon-nucleon scattering. Figure 11.25 shows
several examples of how this might occur. Depending on the phase of the wave
function inside the nucleus, the smooth matching can result in substantial
variations between the relative amplitudes of the wave functions inside and

outside the nucleus. In case (a), the incident particle has relatively little probabil-

ity to penetrate the nucleus and form a quasibound state; in case (c), there is a
the energy of the incident particle,

very high probability to penetrate. As we vary
we vary the relative phase of the inner and outer wave functions; the location of
the matching point and the relative amplitudes vary accordingly.
incident energies do we achieve the conditions shown in part (¢) of Figure 11.25.

These are the energies of the resonances in the cross section.

In a single, isolated resonance of energy Ey and width T', the energy profile of
e will have the character of the

lifetime = = #/T; see, for example,
Equation 6.20 or Figure 6.3. The resonance will occur where the total cross

the cross section in the vicinity of the resonanc
energy distribution of any decaying state of

Only for certain
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®

ATAN/N
VUL, S

:]Igtu;e b'l 1.25 (a) _Far from resonance, the exterior and interior wave functions
imac adly, aqd Ilttlfe penetration of the nucleus occurs. (b) As the match
o é);:v::t (::eer: |sﬂa ?r:gher probability to penetrate. (¢) At resonance the ampli-
actly, the incident particl i i
o oo exacty particle penetrates easily, and the cross section

section has a maximum; from Equation 11.48, assuming only one partial wave ¢
is important for the resonant state, there will be a scattering resonance wher
n,= —1, corresponding to a phase shift §,= =/2. )
The shape of the resonance can be obtained by expanding the phase shift
about the value §,= 7 /2. Better convergence of the Taylor series expansion is

obtained if we expand the cotangent of §,:
d
cot 8,(E) = cot 8,( Ey) + (E — ER)(&S‘)
E

JE

=ER

d%cot 8
+H(E - BEp)Y| —5—~
| 3( R) ( 9E? )E_ER + (11.60)
in which
( dcot d, 98,
a 5 )eoss” (s e
Defining the width T as
- d6,\ !
_ _aE)E=ER (11.62)




426 NUCLEAR REACTIONS

then it can be shown that the second-order term vanishes, and thus (neglecting
higher-order terms) :

(E — Eg)

0 (11.63)

cot§,= —

Because T is the full width of the resonance, the cross section should fall to half
of the central value at E — Ep = +I'/2. From Equation 11.63, this occurs when
cot§,= +1, or 8,= m/4, 3m/4 (compared with §,= 7/2 at the center of the
resonance). The cross section depends on sin’8,, which does indeed fall to half
the central value at 8,= 7/4 and 37 /4. The width defined by Equation 11.62 is
thus entirely consistent with the width shown in Figure 6.3.

From Equation 11.63, we find

r/2

sind, = (11.64)
© (B - B+ T4
and the scattering cross section becomes, using Equation 11.45
" 2+ 1) r (11.65)
0. = 75 + .
k? (E — Eg)* + T%/4

This result can be generalized in two ways. In the first place, we can account
for the effect of reacting particles with spin. If s, and sy are the spins of the
incident and target particles, and if I is the total angular momentum of the

resonance,

I=s,+sx+/¢ (11.66)
then the factor (2/+ 1) in Equation 11.65 should be replaced by the more
general statistical factor

2 +1
8= s, + D(2sg + 1)

(11.67)

Note that g reduces to (2¢+ 1) for spinless particles.

The second change we must make is to allow for partial entrance and exit
widths. If the resonance has many ways to decay, then the total width T' is the
sum of all the partial widths T

r=Xxr, (11.68)

The T2 factor in the denominator of Equation 11.65 is related to the decay width
of the resonant state and therefore to its lifetime: T’ = //7. The observation of
only a single entrance or exit channel does not affect this factor, for the
resonance always decays with the same lifetime 7. In the analogous situation in
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Transmission

0.2 [ I
150 140 130 120

E (ev)
(a)

y-ray yield

E (eV)
(®
:’higlfre 11.26 130-eV neutron resonance in scattering from *°Co. Part (a) shows
he |n'fen3|ty gf neutrons transmitted through a target of 59Co; at the resonance
L :ar:) |§rz’he hlghest_ probability for a reaction and the intensity of the transmitted
oo b_pssgto a mlmmum._ln (b), the y-ray yield is shown for neutron radiative

pture by *“Co. Here the yield of y rays is maximum where the reaction has the

largest probability. From J. E. L
. . E. Lynn, The Theory of Neutro ]
(Oxford: Clarendon, 1968). Y " Fesonance Reactions
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radioactive decay, the activity decays with time according to the total decay
constant, even though we might observe only a single branch with a very different
partial decay constant. The I'2 factor in the numerator, on the other hand, is
directly related to the formation of the resonance and to its probability to decay
into a particular exit channel. In the case of elastic scattering, for which Equation
11.65 was derived, the entrance and exit channels are identical. That is, for the
reaction a + X — a + X, we should use the partial widths T,y of the entrance
and exit channels:

T (rax)2
_m 11.69
O T K BB ) + T4 (11.69)

Similarly, for the reaction a + X » b + Y, a different exit width must be used:

T 11aLx rbY

o 11.70
K28 (B E ) +T%/4 (11.70)

Equations 11.69 and 11.70 are examples of the Breit-Wigner formula for the
shape of a single, isolated resonance. Figure 11.26 shows such a resonance with
the Breit-Wigner shape. The cross section for resonant absorption of y radiation
has a similar shape, as given by Equations 10.29 and 10.30.

Many elastic scattering resonances have shapes slightly different from that
suggested by the Breit-Wigner formula. This originates with another contribution
to the reaction amplitude from direct scattering of the incident particle by the
nuclear potential, without forming the resonant state. This alternative process is
called potential scattering or shape-elastic scattering. Potential scattering and

N 2@ +1)
~

Figure 11.27 Interference between resonance and potential scattering produces
resonances with this characteristic shape.
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resonant scattering both contribute to the elastic scattering amplitude, and
interference between the two processes causes variation in the cross se::tion
Interf_erence can cause the combined cross section to be smaller than it would bf;
for .elther process alone. It is therefore not correct simply to add the cross
sections for the two processes. We can account for the two processes by writing

n,= e2i(®r+8,p) (1171)

where 8."3 is the resonant phase shift, as in Equations 11.63 or 11.64, and §,, is
an additional contribution to the phase shift from potential scattering. From

! I l

1.1 — fem = 92.1° 2

7Al(p,p)27Al
1.0 [— ;{-I-D—W \\....' eanssta, —]
[]

fcm = 131.6°

Ry

Oem = 141.4°

Normalized cross section

27Al(p.'y)288i

1115 1120 1125
E; (keV)
Figure 11.28 Resonances in the reaction 27Al(p, p)2Al. The resonances occur in

the nucleus ?Si. Note that the (p, v) yield shows a resonance at the same energy.
From A. Tveter, Nucl. Phys. A185, 433 (1972).
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Equation 11.44 we find the cross section

T
i ~2byp _ : 11.72
00=F(2t’+1)e e 1+(E—ER)+1T/2 ( )

Far from the resonance, (E — Eg) > I'/2 and the potential scattering term
dominates:

4
0=0,,= F(2/+ 1) sin®8,p (11.73)
At E = Eg, the resonant term dominates and
4m (11.74)
azoms=ﬁ(2f+ 1) .

Near the resonance there is interference between the two terms, whjch produces
the characteristic shape shown in Figure 11.27. According to this model, we

7t

" 4 ' ' ' 676 |
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Figure 11.29 Resonances observed in the radiative proton capture by 23N2. in
this case, the total yield of y rays in the energy range 3-13 MeV was measure as:[
a function of the incident proton energy. The C! peaks appear because the targ:;aO
used was NaCl. From P. W. M. Glaudemans and P. M. Endt, Nucl. Phys. 30,

(1962).
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expect an interference “dip” on the low-E side of the resonance. The resonance
height should decrease roughly as k=2 (that is, as E~1) with increasing incident
energy, and the nonresonant “background” from potential scattering should
remain roughly constant. Figure 11.28 shows scattering cross sections with the
resonant structure clearly visible. The expectations of the resonance model are
clearly fulfilled.

Radiative capture reactions also show a resonant structure. Figure 11.29 shows
examples of (p, y) reactions. Note that this is not a y spectrum in the conven-
tional sense—the horizontal axis shows the incident proton energy, not the
emitted y energy.

Resonances observed in neutron scattering are discussed in more detail in
Chapter 12.

11.13 HEAVY-ION REACTIONS

From the point of view of nuclear reactions, a heavy ion is defined to be any
projectile with 4 > 4. Accelerators devoted to the study of heavy-ion reactions
can produce beams of ions up to 28U, at typical energies of the order of 1~10
MeV per nucleon, although much higher energies are also possible.

The variety of processes than can occur in heavy-ion reactions is indicated
schematically in Figure 11.30. At large impact parameters, Coulomb effects
dominate, and Rutherford scattering or Coulomb excitation may occur. When
the nuclear densities of the target and projectile just begin to overlap, nuclear
reactions can occur, and at small overlap ordinary elastic or inelastic scattering
and few-nucleon transfer through direct reactions may occur, as discussed
previously in this chapter.

Nuclear scattering,
direct reactions

compound nucleus

Coulomb
scattering

Figure 11.30 Processes in heavy-ion scattering depend on the impact parame-
ter, when energies are large enough to penetrate the Coulomb barrier.
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+°Be). For heavier nuclei, the study of the fission mode provides a check on
theories derived from the study of the more familiar cases of transuranic fission,
described in Chapter 13.

A more probable means of decay of the compound nucleus is through particle
emission, for fission is inhibited by a substantial Coulomb barrier. Emission of
charged particles (protons or a’s) is also inhibited by a Coulomb barrier. In
reactions with heavy nuclei the compound nucleus is extremely proton rich, but
the preferred decay mode is still neutron emission; this remains so, even for
heavy nuclei with a proton excess of 10-20 or more. It is thus possible to study
nuclei far from stability on the proton-rich side through (HI, xn) reactions, where
HI indicates any heavy ion and x may be in the range 5-10.

A particular application of these reactions is in the search for stable or nearly
stable nuclei of superheavy elements. The transuranic atoms that have been
studied through the neutron capture—B-decay technique move up the atomic
number scale in single steps, but the technique loses its applicability for the
nuclei around Z = 104 or 105, where the half-lives become very short (~ seconds)
for decay by spontaneous fission. As Z increases, the spontaneous fission half-life
should continue to decrease (because the Coulomb energy, which makes the
nucleus more unstable to fission, increases like Z?), until we approach the region
of the next.closed shell or “magic number” for protons, which has been
calculated to be Z = 114 (rather than 126, as is already known for neutrons).

It is possible to search for superheavy nuclei directly, by bombarding the
heaviest possible quasistable targets (%§Cf, with ¢, ,2 = 351 y) with beams such
as *2S or “°Ca, in the hope of producing stable products around Z = 114,
N = 164 following few-nucleon emission from the compound state. Another
possibility would be to produce a highly unstable, extremely heavy compound
state in a reaction such as 2*U + U, in the hope that one of the fission decay
channels would have a high probability of producing a stable superheavy nucleus.
To date no success has been reported from either of these approaches, but the
effort continues.

Another unique feature of heavy-ion reactions is the transfer of large amounts
of angular momentum to the compound nucleus. For example, in the reaction

%% // *

Figure 11.32 In nuclear molecule formation, there is not quite complete fusion
of the two particles; they retain a “memory” of their previous character and break
apart accordingly. The internal energy of the system can show rotational and
vibrational structures, just like an ordinary molecule.
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Figure 11.33 (a) The 2C +'™C molecular states. The.\{ertica| scale shodwsl;et:f
cross section with the “‘uninteresting” Coulomb penetrability fact‘or remove : "
ing the nuclear structure factor. The resonanf:es are labeled WI'[+h 2trle4sP|2 +p
assignments which can be grouped into rptat|onal sequences 07, ’inst’ /(1,4._..1 )
(b) Plotting the internal excitation energies of the resonances agaM R
reveals that the states do indeed form rotational sequences. From T. M. )
Ann. Rev. Nucl. Particle Sci. 32, 271 (1982).
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“Ca + 1Ay, the Coulomb barrier is about 200 MeV. If we use 200 MeV incident
“Ca, a grazing collision will provide about 140% of angular momentum to the
system. Even at collisions with smaller impact parameters, it would not be
unusual to transfer an angular momentum of £> 40% to the compound system.
At such rotational velocities, the nuclear force may not be able to provide the
necessary centripetal acceleration, and the compound system may be completely
unstable and therefore unable to form. In such a case, a new type of system is
possible, called a nuclear molecule. Figure 11.32 illustrates the process schemati-
cally. The two nuclei do not form a compound system, corresponding to
complete sharing of the incident energy. Instead a system analogous to a
diatomic molecule is formed, exists for a short time, and then breaks apart in the
same configuration as the incident particles. Because the decay occurs into the
original particles, the combined system retains a considerable “memory” of its
formation, contrary to the basic assumption of the compound-nucleus model.
Evidence for such molecular states comes from observing the rotational and
vibrational excitations that correspond closely with those observed in ordinary
molecules. Figure 11.33 shows an example of the states observed in the 2C + 12C

nuclear molecule. Resonances in the cross section correspond to the rotational
and vibrational states permitted in the molecular system.
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Figure 11.34 Rotational energies of "S8Er and 7*Hf. Neither case shows the
expected linear dependence of £ on I(/ + 1), but in 4Hf the deviation is relatively
gradual, while in "8Er there appears to be a sudden change in slope (and therefore

in moment of inertia) in the neighborhood of / = 12— 14.
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In heavier nuclei, highly excited states with ¢ 2 40-504 can be populated in
the compound system. The emission of a few neutrons from the excited system
can change the angular momentum only little (a 5-MeV neutron carries at most
only £~ 3h), and following the neutron emission, excited bound states in the
final nucleus can be formed with angular momentum quantum numbers of 40 or
so. Assuming the product nucleus to be of the deformed even-Z, even-N variety,
the excited states will show a rotational spectrum of the type illustrated in Figure
5.22. The rotational energies are given by Equation 5.17:

h2
= — 11.
E=—I(I+1) (11.75)

and the states should cascade down toward the ground state through a sequence
of E2 y transitions as in Figure 10.18. The observation of these cascade E2
transitions provides a way to study these excited states. In particular, we can
study whether the assumption of a fixed, constant moment of inertia # remains
valid at such high excitations. One way to test this assumption is to plot the
energies of the states against I(I + 1) and to see if the slope remains constant, as
predicted by Equation 11.75. Figure 11.34 is an example of such a plot, and there
appears to be some deviation from the expected linear behavior.

There is a more instructive way to plot the data on the rotational structure.
From Equation 11.75, the energy of a transition from state I to the next lower

state I — 2 is
h2
E(I)—E(I—2)=5}(4I—2) (11.76)

The transition energies should increase linearly with I; Figure 11.35 shows that
this is true for the lower transitions, but becomes less valid as we go to larger I,
and in fact the behavior changes completely at about I = 16, but then seems to
restore itself as we go to higher states.

Let’s assume that the moment of inertia is not constant, but increases gradually
as we go to more rapidly rotating states; this effect, known classically as
“centrifugal stretching,” would not occur for a rigid rotor but would occur for a
fluid. Because rotating nuclei have moments of inertia somewhere between that of
a rigid rotor and of a fluid, as described in Equations 5.18 and 5.19, it is not
surprising that centrifugal stretching occurs. Representing the rotational energy
in terms of the rotational frequency

E = 19u? (11.77)

we can then assume £ varies either with increasing angular momentum,
F=F,+ kI(I+1) (11.78)

or with increasing rotational frequency,
F=Sy+ ko’ (11.79)
where k and k' are appropriate proportionality constants. From Equation 11.76,
25 41 -2

(11.80)

W T E(I) -E(I-2)
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1I:!‘gure 11.35 y-ray spectra of transitions between rotational states in °8Er and
!—lf.ﬁ For a p?xect rotor, the y-ray energies should increase monotonically with /.
Thls is so for 7*Hf, but for >8Er the energy begins to decrease with / in the range
a:d1: _F:?:i arjnd Zf;er I = 16 the energy again begins to increase. From R. M. Lieder
- Ryde, in Advances in Nuclear Physics, Vol. 10, edited by M. Baranger and E

Vogt (New York: Plenum, 1978). ! ° '

and plotting .#, measured in these units, against w? we ought to see either a
constant ., if no stretching occurs, or a linear behavior. Figure 11.36 shows an
example of such a relationship. There appears to be a gradual increase in %
among the lower angular momentum states, then a radical change in behavior
around I = 16, and then a return to the gradual stretching. This effect is known
as backbending, and occurs because the rotational energy exceeds the energy
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Figure 11.36 Moment of inertia, from Equation 11.80, as a function of #%w?, from
the semiclassical formula 1[E(/) — E(/ — 2)]°. Note the gradual increase in the
moment of inertia for the lower states in both 8Er and "“Hf, and note also the
backbending in **8Er.

needed to break a pair of coupled nucleons. When that occurs (at an energy
corresponding to I = 16), the unpaired nucleons go into different orbits and
change the nuclear moment of inertia. The situation then remains stable until
about I = 30, where another pair is broken and another change in moment of
inertia occurs.

The study of the properties of nuclei at high angular momentum is another
example of an unusual state of nuclear matter accessible only through heavy-ion
reactions.

A final example of the nuclear structure studies that can be done through
heavy-ion reactions is the a-particle transfer reaction, such as (*0,>C). In our
discussion of a decay in Chapter 8, we alluded to the “preformation” of the «
particle inside the nucleus. Because the a particle is such a stable structure, we
can consider the nucleons in a nucleus to have a high probability of occasionally
forming an a particle, even in nuclei that do not a decay. This leads to the
a-cluster model of nuclei, in which we look for nuclear structure characteristic of
such clusters. States populated in (1°0, 2C) reactions, in which four nucleons are
simultaneously transferred to the target nucleus, might be analyzed in terms of
the transfer of an a cluster from 'O to the target. Figure 11.37 illustrates the
cross sections for the formation of states in 2°Ne through a-transfer reactions.
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York: Plenum, 1978); see also the brief review by R. M. Diamond and F. S.
Stephens, Nature 310, 457 (1984).

Complete the following reactions:
Al+p - +n
2S+a - +v
Au +12C - 67 4+
USn +  >Wsn +p

(2) Solve Equations 11.3 and 11.4 for cos 6. (b) Determine the relationship
between cos§ and p, for elastic scattering. (c) Show that there is a
maximum value of 4 only when m, > my. (d) Find the maximum angle at
which a particles appear after elastic scattering from hydrogen and from
deuterium.

It is desired to study the first excited state of 50, which is at an energy of
6.049 MeV. (a) Using the (a,n) reaction on a target of *C, what is the
minimum energy of incident alphas which will populate the excited state?
(b) In what direction will the resulting neutrons travel? (c) If it is desired to
detect the neutrons at 90° to the incident beam, what is the minimum «
energy that can result in the excited state being populated?

(a) In Coulomb scattering of 7.50-MeV protons by a target of "Li, what is
the energy of the elastically scattered protons at 90°? (b) What is the energy
of the inelastically scattered protons at 90° when the "Lj is left in its first
excited state (0.477 MeV)?

The (n, p) reaction can be regarded as equivalent to B* decay in that the
same initial and final nuclei are involved. Derive a general expression
relating the Q value of the (n, p) reaction to the maximum energy release in
B* decay. Find several examples to verify your derived relationship.

The Q value for the reaction °Be(p,d)*Be is 559.5 + 0.4 keV. Use this

value along with the accurately known masses of °Be, 2H, and 'H to find the
mass of Be.

(2) Calculate the Q value of the reaction p +*He —2H +3He. (b) What is
the threshold energy for protons incident on He? For a’s incident on
hydrogen?

For the reaction 2H +2H —3He + n, plot the energy of the outgoing
neutron as a function of angle for 2H incident on 2H at rest. Use incident
energies of 0.00, 2.50, and 5.00 MeV.

Compute the Q values for the reactions (a) SLi + p —*He +*He;
(b) ¥Co + p »> n +¥Ni; (¢) “Ca + « — n +4Ti.

For the following endoergic reactions, find the Q value and the threshold
kinetic energy, assuming in each case that the lighter particle is incident on
the heavier particle at rest: (a) 'Li + p —Be + n; (b) 2C + p —» n +12N;
(©)¥Cl + a - n +3¥K,
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12.

13.

14.

15.

16.

17.

18.
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At threshold, the product particles Y + b move at the same velocity. Use
momentum conservation to derive a relationship between T, and T at
threshold, and then substitute your expression into Equation 11.5 to obtain
the threshold condition (11.6).

It is desired to study the low-lying excited states of 3C1(1.219, 1.763, 2.646,
2.694, 3.003, 3.163 MeV) through the *S (a, p) reaction. (2) With incident «
particles of 5.000 MeV, which of these excited states can be reached?
(b) Again with 5.000-MeV incident a’s, find the proton energies observed at
0, 45, and 90°.

In the reaction "Li + p —*He +*He (18.6 MeV protons incident on a
lithium target) the differential cross section (in the center-of-mass system)
reaches a maximum of about 1.67 barns/steradian at a center-of-mass angle
of 75°. (a) Sketch the reaction kinematics in the laboratory system, labeling
all momenta, directions, and energies. (b) Assuming a target thickness of 1.0
mg/cm? and a beam of protons of current 1.0 pA spread over an area of 1
cm?, find the number of a particles per second in the above geometry that
would strike a detector of area 0.5 cm? located 12.0 cm from the target.

The radioactive isotope O, which has important medical applications (see
Chapter 20), can be produced in the reaction 2C(a,n). (a) The cross
section reaches a peak when the laboratory enmergy of the incident «
particles is 14.6 MeV. What is the excitation energy of the compound
nuclear state? (b) The reaction cross section at the above incident energy is
25 mb. Assuming a carbon target of 0.10 mg/ cm? and a current of 20 nA of
«’s, compute the 1O activity that results after 4.0 min of irradiation.

In a Coulomb excitation experiment, a particles are inelastically scattered
from $°Dy nuclei. (a) If the incident energy is 5.600 MeV, what is the
energy of the elastically scattered a’s observed at 8 = 150°? (b) States in
160Dy are known at 2+(0.087 MeV), 4¥(0.284 MeV), and 27(0.966 MeV).
Considering only the E2 excitation mode, find the energies of the inelasti-
cally scattered a’s observed at 150°.

What should be the incident energy of a beam of protons to be Coulomb
scattered by gold nuclei, if it is desired that the minimum distance between
projectile and target should correspond to the two nuclei just touching at
their surfaces?

Alpha particles of energy 8.0 MeV are incident at a rate of 3.0 X 107 per
second on a gold foil of thickness 4.0 X 10~% m. A detector in the form of
an annular ring is placed 3.0 cm from the scattering foil and congcentric with
the beam direction; the annulus has an inner radius of 0.50 cm and an outer
radius of 0.70 cm. What is the rate at which scattered particles strike the
detector?

Alpha particles of energy 6.50 MeV are Coulomb scattered by a gold foil.
(a) What is the impact parameter when the scattered particles are observed
at 90°7 (b) Again for scattering at 90°, find the smallest distance between
the « particles and the nucleus, and also find the kinetic and potential
energies of the a particle at that distance.

19.

20.
21.

22,

23.

25.

26.

27.

NUCLEAR REACTIONS 443

F;otlz)ns of energy_;l.OO MeV are Coulomb scattered by a silver foil of
ickness 4.0 X 10~® m. What fraction of the incident protons is scattered
at aTlgles (a) beyond 90°7 (b) Less than 10°? (c) Between 5 and 10°?
Derive Equations 11.49-11.51 for “black disk” scattering,. .

Give the compound nucleus resulting from protons bombarding an

]

For the states of ®Cu populated in th i i
¢ (a, p) reaction, F
¢ transfer for each of the states. P " Tigwe 114, find the
E the (d,’ p) reaction legding to states in *1Zr, as shown in Figures 11.23 and
214:1, discuss the possible final angular momentum states if the reaction
could proceed by a compound-nucleus mechanism. As an example, consider

whether it still is possible to associ
. ate a final I” = 17 state uni i
£ = 4. Discuss other final states as well. ’ auely with

The low-lying levels of “*Sc were illustrated in Figure 5.12. It is desired to
Iéopulate the states'up to the 1~ excited state with the (d,n) reaction.
stimate the most likely angle for the outgoing neutrons for each excited
state. (Try to estimate the excited-state energies from the figure.)
"2F£1e d,p) -ieactlon on *Ti (3~ ground state) populates the “collective” 0+
o and 4% states at 0.000, 1.555, and 2.675 MeV (respectively) in SOy,
g at( 3aIer the angular momentum values transferred in the direct reaction?
e ¢,p) reaction on an even-Z, even-N tar i .
' : . . get leads to certain final
1s‘tates 1dent1ﬁed w1th the transfer of either £= 0, 2, or 4. (a) For each cr:lhoir:::
ist the posmble.spm-parity assignments in the final nucleus. (b) In somé
;a_ses, the analysis suggests that certain states are populated by a mixture of
/- 2 z}nqt/ = 23b;vh11e others are populated by a mixture of =2 and
=4 Is 1t possible to make a unique determinati in i
it of thebossible q etermination of the final spin in
The (4, p) reaction on %2Cr leads to the 2~ ground state of 53Cr. How would
the analysis of the angular momentum transfer in this reaction differ

between an analysis in terms of direct reactions and one in terms of
compound-nucleus reactions?




