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NUCLEAR REACTIONS 

If energetic particles from a reactor or accelerator (or even from a radioactive 
source) are allowed to fall upon bulk matter, there is the possibility of a nuclear 
reaction taking place. The first such nuclear reactions were done in Rutherford's 
laboratory, using a particles from a radioactive source. In some of these early 
experiments, the a particles merely rebounded elastically from the target nuclei; 
this phenomenon, known ever since as Rutherford scattering, gave us the first 
evidence for the existence of atomic nuclei. In other experiments, Rutherford was 
able to observe a change or transmutation of nuclear species, as in this reaction 
done in 1919: 

a + I4N -) 170 + P 

The first particle accelerator capable of inducing nuclear reactions was built by 
Cockcroft and Walton, who in 1930 observed the reaction 

p + 7Li -) 4He + a 

In this chapter we discuss various types of nuclear reactions and their proper­
ties. In most cases, we deal with light projectiles, usually A :s; 4, incident on 
heavy targets; there is, however, much current interest in reactions induced by 
accelerating heavy ions (usually A :s; 40, but even beams as heavy as uranium are 
considered). We also deal only with reactions that are classified as "low energy," 
that is, of the order of 10 MeV per nucleon or less. In the range of 100 MeV-
1 GeV, called "medium energy," meson production can take place, and protons 
and neutrons can transform into each other. At "high energy," all sorts of exotic 
particles can be produced, and we can even rearrange the quarks that are the 
constituents of nucleons. We discuss these latter types of reactions in Chapters 17 
and 18. 

11.1 TYPES OF REACTIONS AND CONSERVATION LAWS 

A typical nuclear reaction is written 

a+X-)Y+b 

where a is the accelerated projectile, X is the target (usually stationary in the 
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laboratory), and Y and b are the reaction products. Usually, Y will be a heavy 
product that stops in the target and is not direcily 'observed, w~le b is a light 
particle that can be detected and measured. Genera.lly, a .and b wIll be nu~leo~s 
or light nuclei, but occasionally b will be a y ray, m whIch case the reactIOn IS 
called radiative capture. (If a is a y ray, the reaction is called the nuclear 
photoeffect.) . . . . 

An alternative and compact way of indicatmg the same reactIOn IS 

X(a, b)Y 

which is convenient because it gives us a natural way to refer to a general class of 
reactions with common properties, for example (a, n) or (n, y) reactions. 

We classify reactions in many ways. If the incident and outgoing particles are 
the same (and correspondingly X and Yare the same nucleus), it ~s a scatt~ri~g 
process, elastic if Y and b are in their ground states and i~elastic If Y or.b ~s m 
an excited state (from which it will generally decay qUlckly by y emISSIOn). 
Sometimes a and b are the same particle, but the reaction causes yet another 
nucleon to be ejected separately (so that there are three particles in the final 
state); this is called a knockout reaction. In a transfer reaction, on~ or t:vo 
nucleons are transferred between projectile and target, such as an mcommg 
deuteron turning into an outgoing proton or neutron, thereby adding one nucleon 
to the target X to form Y. Reactions can also be classified by the mechanism that 
governs the process. In direct reactions (of which tr~nsfer reac~ions ~re an 
important subgroup), only very few nucleons take part m the reactIOn, WIth. the 
remaining nucleons of the target serving as passive spectators. Such react~ons 
might insert or remove a single nucleon from a shell-model state and mIght 
therefore serve as ways to explore the shell structure of nuclei. Many excited 
states of Y can be reached in these reactions. The other extreme is the compound 
nucleus mechanism in which the incoming and target nuclei merge briefly for a 
complete sharing of energy before the outgoing nucleon is ejected, somewhat like 
evaporation of a molecule from a hot liquid. Between these two extremes are the 
resonance reactions, in which the incoming particle forms a "quasibound" state 
before the outgoing particle is ejected. 

Observables 

We have at our disposal techniques for measuring the energies of the outgoing 
particles to high precision (perhaps 10 keY resolution with a ma~netic sp~ctrome­
ter). We can determine the direction of emission of the. outgomg ~a.rtlcle, and 
observe its angular distribution (usually relative to the aXIS of the ongmal bea~) 
by counting the number emitted at various angles. T~e differen~ial cross section IS 
obtained from the probability to observe particle b WIth a cert~m energ~ and a~ a 
certain angle (0, </» with respect to the beam axis. Int~gratmg the. differentlal 
cross section over all angles, we get the total cross sectIOn for partlcle b to be 
emitted at a certain energy (which is also sometimes called a differential cross 
section). We can also integrate over all energies of b to get the absolute t?tal 
cross section, which is in effect the probability to form nucleus Y in the reactIOn. 
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This quantity is of interest in, for instance, neutron activation or radioisotope 
. production. 

By doing polarization experiments, we can deduce the spin orientation of the 
product nucleus Y or perhaps the spin dependence of the reaction cross section. 
For these experiments we may need an incident beam of polarized particles, a 
target of polarized nuclei, and a spectrometer for analyzing the polarization of 
the outgoing particle b. 

We can simultaneously observe the y radiations or conversion electrons from 
the decay of excited states of Y. This is usually done in coincidence with the 
particle b to help us decide which excited states the radiations come from. We 
can also observe the angular distribution of the y radiations, as an aid in 
interpreting the properties of the excited states, especially in deducing their 
spin-parity assignments. 

Conservation Laws 

In analyzing nuclear reactions, we apply the same conservation laws we applied 
in studying radioactive decays. Conservation of total energy and linear momentum 
can be used to relate the unknown but perhaps measurable energies of the 
products to the known and controllable energy of the projectile. We can thus use 
the measured energy of b to deduce the excitation energy of states of Y or the 
mass difference between X and Y. Conservation of proton and neutron number is a 
result of the low energy of the process, in which no meson formation or quark 
rearrangement take place. (The weak interaction is also negligible on the time 
scale of nuclear reactions, about 10- 16 to 10-22 s.) At higher energies we still 
conserve total nucleon (or, as we discuss in Chapter 18, baryon) number, but at 
low energy we conserve separately proton number and neutron number. Con­
servation of angular momentum enables us to relate the spin assignments of the 
reacting particles and the orbital angular momentum carried by the outgoing 
particle, which can be deduced by measuring its angular distribution. We can 
thus deduce the spin assignments of nuclear states. Conservation of parity also 
applies; the net parity before the reaction must equal the net parity after the 
reaction. If we know the orbital angular momentum of the outgoing particle, we 
can use the ( -1)1 rule and the other known parities in the reaction to deduce 
unknown parities of excited states. In Section 11.3 we discuss yet another 
quantity that is conserved in nuclear reactions. 

11 .2 ENERGETICS OF NUCLEAR REACTIONS 

Conservation of total relativistic energy in our basic reaction gives 

(11.1) 

where the T's are kinetic energies (for which we can use the nonrelativistic 
approximation ~mv2 at low energy) and the m's are rest masses. We define the 
reaction Q value, in analogy with radioactive decay Q values, as the initial mass 
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energy minus the final mass energy: 

= (m x + ma - my - m b )c2 (11.2) 
which is the same as the excess kinetic energy of the final products: 

Q = Tfinal - Tinitial 

(11.3) 

The Q value may be positive, negative, or zero. If Q > 0 (m, "al > m fi I or 
. . . lrutl na 

T final > Tinitial) the reactIOn IS saId to be exoergic or exothermic; in this case 
nuclear mass or binding energy is released as kinetic energy of the final products. 
When Q < 0 (minitial < m final or T final < Tinitial) the reaction is endoergic or 
endothermic, and initial kinetic energy is converted into nuclear mass or binding 
energy. The changes in mass and energy must of course be related by the familiar 
expression from special relativity, tlE = tlmc 2-any change in the kinetic energy 
of the system of reacting particles must be balanced by an equal change in its rest 
energy. 

Equations 11.1-11.3 are valid in any frame of reference in which we choose to 
work., Let's appl~ them first to the laboratory reference frame, in which the target 
nucl~I. are conSIdered to be at rest (room-temperature thermal energies are 
neghg~ble ?n the MeV .sc~le of nuclear reactions). If we define a reaction plane by 
the dlf~CtlOn of the InCIdent beam and one of the ol,ltgoing particles, then 
~onser~Ing the compone~t of momentum perpendicular to that plane shows 
ImmedIat~ly that the motIOn of the second outgoing particle must lie in the plane 
~s well. FIgure 11.1 shows the basic geometry in the reaction plane. Conserving 
hnear momentum along and perpendicular to the beam direction gives 

Pa = Pb cos (J + py cos g 

o = Pb sin (J - py sin g 
(l1.4a) 

(l1.4b) 

Regarding Q as a known quantity and Ta (and therefore Pa) as a parameter that 
we control, Equations 11.3 and l1.4a, b represent three equations in four 
unknowns ((J, g, Tb , and Ty) which have no unique solution. If, as is usually the 
case, we do not observe particle Y, we can eliminate g and Ty from the equations 

a 

Pa x 

y 

Figure 11.1 Basic reaction geometry for a + X -- b + Y, 



382 

~ 
5 
~ 

NUCLEAR REACTIONS 

9 

0.3 

8 

~ 
0.2 

7 5 
~ 0.1 

6 

1.10 1.20 1.30 
5 Ta (MeV) 

4 

3 

2 

o 2 3 4 5 6 7 8 9 10 
Ta (MeV) 

(a) 

Figure 11.2 (a) Ta vs Tb for the reaction 3H(p, n)3He. The inset shows the region 
of double-valued behavior near 1.0 MeV. 

to find a relationship between Tb and (J: 

1/2 { 2 [ ) ]} 1/2 
T:'/2= (mambTa) COS()+ mambTacos ()+(my+mb) myQ+(my-ma Ta 

my + mb 

(11.5) 

This expression is plotted in Figure l1.2a for the reaction 3H(p, n)3He, for which 
Q = -763.75 keV. Except for a very small energy region between 1.019 and 
1.147 MeV, there is a one-to-one correspondence (for a given Ta) between Tb and 
(J. That is, keeping the incident energy fixed, choosing a value of (J to observe the 
outgoing particles automatically then selects their energy. 

Several other features of Figure 11.2 are apparent, which you should be able to 
show explicitly from Equation 11.5: 

1. There is an absolute minimum value of Ta below which the reaction is not 
possible. This occurs only for Q < 0 and is called the threshold energy Tth: 

my + mb (11.6) 
Tth=(-Q)m +m -m 

y b a 

The threshold condition always occurs for (J = 0° (and therefore ~ = OO)-the 
products Y and b move in a common direction (but still as separate nuclei). 
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Figure 11.2 (b) 1"a VS Tb for the reaction 14C(p, n)14N. The inset shows the 
double-valued region. 

No energy is "wasted" in giving them momentum transverse to the beam 
direction. If Q > 0, there is no threshold condition and the reaction will "go" 
even for very small energies, although we may have to contend with Coulomb 
barriers not considered here and which will tend to keep a and X outside the 
range of each other's nuclear force. 

2. The double-valued situation occurs for incident energies between Tth and the 
upper limit 

T;=(-Q) my 
my- ma 

(11.7) 

This also occurs only for Q < 0, and is important only for reactions involving 
nuclei of comparable masses. Using Equations 11.6 and 11.7 we can ap­
proximate this range as 

(11.8) 

and you can see that if a and b have mass numbers of 4 or less and if Y is a 
medium or heavy nucleus, then the range (T; - Tth ) becomes much smaller 
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Figure 11.3 Ta vs Tb for the reactions 3He(n, p)3H and 14N(n, p)14C. No 

double-valued behavior occurs. 

than 1% of the threshold energy. Figure 11.2b shows the double-valued 

region for the reaction 14C(p, n)14N. 
3. There is also a maximum angle ()m at which this double-valued behavior 

occurs, the value for which is determined for Ta in the permitted range by the 
vanishing of the argument in the square root of Equation 11.5: 

cos 2 
() = m' 

(my + mb)[myQ + (my - ma)Ta] (11.9) 

When Ta = T:, the double-valued behavior occurs between () = 0° and 
()m = 90°; near Ta = Tth it occurs only near ()m = 0°. 

4. Reactions with Q > 0 have neither a threshold nor a double-valued behavior, 
as you can see by reversing the reactions shown in Figures 11.2a and 11.2b, 
3 He(n, p)3H and 14N(n, p)14C, for which we can in each case make the single 
transformation - Q ~ + Q. Figure 11.3 shows the Tb vs Ta graphs for these 
cases. The reactions occur down to Ta ~ 0 (no threshold), and the curves are 

single-valued for all () and Ta• 

If, for a given () and T
a

, we measure Tb , then we can determine the Q value of 
the reaction and deduce the mass relationships among the constituents. If we 
know m

a
, mb, and mx, we then have a way of determining the mass of Y. 

Solving Equation 11.5 for Q, we obtain 

This procedure is not strictly valid, for my also appears on the right side of the 
equation, but it is usually of sufficient accuracy to replace the masses with the 
integer mass numbers, especially if we measure at 90° where the last term 

vanishes. 
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Figure 11.4 Continued. 
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As an example of the application of this technique, we consider the reaction 
26MgCLi,8B)25Ne. The nucleus 26Mg already has a neutron excess, and the 
removal of two additional protons in the reaction results in the final nucleus 25Ne 
with a large excess of neutrons. Data reported by Wilcox et aI., Phys. Rev. Lett. 
30, 866 (1973), show a 8B peak about 55.8 MeV observed at a lab angle of 10° 
when the incident 7Li beam energy is 78.9 MeV. Using Equation 11.10 with mass 
numbers instead of masses gives Q = - 22.27 MeV, which gives 24.99790 u for 
the mass of 25Ne. Iterating the calculation a second time with the actual masses 
instead of the mass numbers does not change the result even at this level of 
precision. 

If the reaction reaches excited states of Y, the Q-value equation should include 
the mass energy of the excited state. 

(11.11) 

where Qo is the Q value corresponding to the ground state of Y, and where we 
have used m~c2 = myc2 + Eex as the mass energy of the excited state (Eex is the 
excitation energy above the ground state). The largest observed value of Tb is 
normally for reactions leading to the ground state, and we can thus use Equation 
11.10 to find Qo. Successively smaller values of Tb correspond to higher excited 
states, and by measuring Tb we can deduce Qex and the excitation energy Eex' 

Figure 11.4 shows an example of this kind of measurement. The peaks in the 
figure serve to determine Tb , from which the following Q values and excited-state 
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energies are obtained (energy uncertainties are about ±0.005 MeV): 

Peak Q (MeV) Ecx (MeV) 

0 3.152 0.0 

1 3.631 0.479 

2 4.122 0.970 

3 4.464 1.312 

4 4.547 1.395 

5 4.810 1.658 

6 4.884 1.732 

7 5.061 1.919 

8,9 5.090 1.938 

10 5.240 2.088 

leading to the excited states shown in the figure. The spectrum o!. the y rays 
emitted following the reaction is also shown in the figure, and tranSltion.s can be 
seen corresponding to each of the deduced values of Eex and therefore mt~rpre­
ted as direct transitions from the excited state to the ground state. Finally, 
angular distribution studies following the reaction can be used to deduce t~e 
spin-parity assignments of the excited states, leading to the level scheme shown m 
the figure. Notice how the various bits of data complement and supplement one 
another in building up the level scheme; from the y rays alone, for example, we 
cannot tell which transitions connect the ground state with an excited state and 
therefore what the energies are of the excited states. The proton spectrum, 
however, gives us the excited-state energies directly: .and turning to t~e y-ray 
energies, which can be measured with greater preclSlOn, we can obtam more 
precise values for the energies of the states. 

11.3 ISOSPIN 

The interactions of a nucleon with its surroundings (other nucleons, for instance) 
in most cases do not depend on whether the nucleon has. spin c~mponen~s 

m = + 1 or m = - 1 relative to an arbitrarily chosen z aXIS. That IS, there IS 
s 2 s 2 'b ,,'" 

no need to distinguish in the formalism of nuclear phYSICS . etw~en a . spm-up 
nucleon and a "spin-down" nucleon. The multiplicity of spm ?nentatlO~s .(two, 
for a single nucleon) may enter into the equations, for example m the statistics of 
the interaction, but the actual value of the projection does n~t appe~r. The 
exception to this situation comes about when. a m.agnetic field IS ap~hed; the 
magnetic interaction of a nucleon depends on ItS spm component relative to the 
direction of the external field. 

The charge independence of nuclear forces means that in most instances we d.o 
not need to distinguish in the formalism between neutrons and protons, and this 
leads us to group them together as members of a common family, the. n~c.leons. 
The formalism for nuclear interactions may depend on the mult1phc1ty of 
nucleon states (two) but it is independent of whether the nucleons are protons or 

NUCLEAR REACTIONS 389 

neutrons. The exception, of course, is the electromagnetic interaction, which can 
distinguish between protons and neutrons; with respect to the strong nuclear 
force alone, the symmetry between neutrons and protons remains valid. 

This two-state degeneracy leads naturally to a formalism analogous to that of 
the magnetic interaction of a spin- t particle. The neutron and proton are treated 
as two different states of a single particle, the nucleon. The nucleon is assigned a 
fictitious spin vector, called the isospin. * The two degenerate nuclear states of the 
nucleon in the absence of electromagnetic fields, like the two degenerate spin 
states of a nucleon in the absence of a magnetic field, are then "isospin-up," 
which we arbitrarily assign to the proton, and "isospin-down," me neutron.t 

That is, for a nucleon with isospin quantum number t = t, a proton has m I = + t 
and a neutron has m I = - t. These projections are measured with respect to an 
arbitrary axis called the "3-axis" in a coordiriate system whose axes are labeled 1, 
2, and 3, in order to distinguish it from the laboratory z axis of the x, y, z 
coordinate system. The isospin obeys the usual rules for angular momentum 
vectors; thus we use an isospin vector t of length Jt(t + 1) n and with 3-axis 
projections t3 = mIn. 

For a system of several nucleons, the isospin follows coupling rules identical 
with. the rules of ordinary angular momentum vectors. A two-nucleon system, for 
example, can have total isospin T of 0 or 1, corresponding (semiclassically) to the 
antiparallel or parallel orientations of the two isospin- t vectors. The 3-axis 
component of the total isospin vector, T3 , is the sum of the 3-axis components of 
the individual nucleons, and thus for any nucleus, 

T3 = HZ - N) (n.12) 

expressed in units of n which will not be shown explicitly. 
For a given nucleus, T3 is determined by the number of neutrons and protons. 

For any value of T3, the total isospin quantum number T can take any value at 
least as great as I T3 1. Two related questions that immediately follow are: Can we 
assign the quantum number T to individual nuclear states? Is such an assignment 
useful, for example, in predicting decay or reaction probabilities? 

We consider as an example the two-nucleon system, which can have T of 0 or 
1. There are thus four possible 3-axis components: T3 = + 1 (two protons), 
T3 = -1 (two neutrons), and two combinations with T3 = 0 (one proton and one 
neutron). The first two states must have T = 1, while the latter two can have 
T = 0 and T = 1. If the nuclear interaction is perfectly charge independent (and 
if we "turn off" the electromagnetic interaction), then the three 3-axis projections 
of T = 1 (+ 1, 0, -1) must have the same energy, while the single T = 0 state 
may have a different energy. In fact, we know that the isospin triplet (which is the 
I = 0 singlet of ordinary spin) is unbound, as discussed in Chapter 4. 

*Isospin is often called isotopic spin or isobaric spin, the former because the value of its projection, 
equal to ~(Z - N). distinguishes between isotopes and the latter because the isospin quantum 
number is valid to label isobaric multiplets. The name "isospin" avoids the controversy and is now 
the generally accepted term. 
t Originally. nuclear physicists defined the neutron as the isospin-up member of the nucleon family. 
Particle physicists also use isospin to label the different charge states of strongly interacting particles. 
but they stress the connection with electric charge by choosing isospin-up for the proton. This choice 
has now been accepted by nuclear physicists as well. 
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!:::.T = 0 El transition in a T3 ,= 0 nucleus, is forbidden by the isospin selection 
rule and is indeed strongly inhibited, as its longer half-life indicates. (The 
Weisskopf estimate for the half-life is about 7 X 10- 3 fs.) 

Consider also the decay of the 1 -, T = 0 level at 5.69 MeV in 14N. The El 
decay to the 1 +, T = 0 ground state should be inhibited by the selection rule, 
while the El decay to the 0+, T = 1 level at 2.31 MeV is permitted. The higher 
energy transition ought to be greater in intensity by about a factor of 5, owing to 
the E3 dependence of the El transition probability, yet the lower energy 
transition is observed to have about twice the intensity. The effect of the isospin 
selection rule is a reduction in the expected relative intensity of the 5.69-MeV El 
transition by about an order of magnitude. 

Similar selection rules operate in f3 decay. The Fermi matrix element is 
forbidden unless !:::.T = 0, which is the case in the mirror decays listed in the top 
half of Table 9.3. The nonmirror decays are those with !:::.T = 1, and the Fermi 
contribution to the transition is reduced by several orders of magnitude by the 
violation of the isospin selection rule. The 0+ to 0+ decays, which on the basis of 
ordinary angular momentum alone should be pure Fermi decays of the superal­
lowed category as in Table 9.2, are inhibited by three orders of magnitude if 
!:::.T * 0; the log It values rise from about 3.5 for the !:::.T = 0 decays permitted by 
the isospin selection rule to 7 or larger for the !:::.T * 0 isospin-forbidden decays. 

Nuclear reactions also show effects of isospin. Because the nuclear force does 
not distinguish between protons and neutrons, the isospin must be absolutely 
conserved in all nuclear reactions. The 3-axis component is automatically con­
served when the numbers of protons and neutrons remain constant, but it is also 
true that the total isospin quantum number T remains invariant in reactions, 
Consider the reaction 160 + 2H -7

14N + 4He, leading to states in 14N, All four 
reacting particles have T = 0 ground states; thus T is conserved if the product 
particles remain in their ground states. Excitation of 4He is unlikely in low­
energy reactions, for its first excited state is above 20 MeV, and thus it is 
expected that only T = 0 excited states in 14N can be reached in the reaction; the 
2.31-MeV, T = 1 state should not be populated. Any small population observed 
for that state must arise from isospin impurities in the reacting particles. The 
cross section to reach the 2.31-MeV state is observed to be about 2 orders of 
magnitude smaller than the cross sections to reach the neighboring T = 0 states, 
showing the effectiveness of the isospin selection rule. In the similar reaction 
l2C( 0:, d)14N the cross section for the 2.31-MeV state is 3 orders of magnitude 
smaller than the isospin-allowed cross sections, and in lOB(6Li, d)14N and 
l2C(

6
Li, 0:)14N it is at least two orders of magnitude smaller, By way of contrast, 

in lOBCLi,3H)14N, the T = 1 level is populated with a strength comparable to 
that of the neighboring T = 0 level; the isospin selection rule does not inhibit the 
probability to reach the T = 1 level. (The initial nuclei have a total T of t; the t 
isospin of 3H can couple to either T = 0 or T = 1 in 14N to give a resultant of t.) 

The members of an isospin multiplet, as for example pairs of mirror nuclei or a 
set of the three states connected by the dashed lines in Figure 11.5, are called 
isobaric analog states, a term which was previously introduced in the discussion of 
f3 decay in Section 9.8. The analog states in neighboring nuclei have identical 
nucleon wave functions, except for the change in the number of protons and 
neutrons. In the 14C and 140 ground states, the nucleons are strongly coupled 
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h I . 14C and two coupled neutron holes m . led proton 0 es m . f. 
Pairwise (wIth two coup . 14N must have a sirmlar wave unctIOn, 

231 MeV analog state m 14
0), and the . - d neutron hole strongly paired. 

with the odd proton hole an b . d by exchanging a proton for a neutron, they 
Because analog states are ~ ~ame decay (see Figure 9.17) and in (p, n) or (n, p) 

tend to be strongly populate m f3 I· placing a proton into a state formerly 
d· and heavy nuc e1, . Z th 

reactions. In me mm. I large energy transfer, because wIth N > e 
occupied by a neutron mvo ~es a .d bly higher shell-model state than the 

cCuples a conSl era .. 
newly placed neutron 0 ·n medium and heavy nucleI at energIes 

1 tates may appear 1 
former proton. Ana og s d h they generally do not contribute to low-energy 
of 10 MeV and above, ~n t us 
reaction and decay studIes. 

1 4 REACTION CROSS SECTIONS . . 
1 • . e nature of cross sections and the apphcatI?~ to 
In Chapter 4 we consIdered th hi t·on we give some more general defimtIOns 

t . g In t s sec 1 d· 
nucleon-nucleon scat enn. .. th t are loosely grouped under the hea mg 

f . s measurable quantItieS a o vanou 
"cross section." . . a measure of the relative probability for 

k· the cross sectIOn IS .. d· 
Roughly spea mg, d t ctor placed to record particle b ermtte m . If we have a e e 11 

the reactIOn to occur. th b am dl·rection the detector defines a sma . ) ·th espect to e e, . .d 
a direction (fJ, cj> WI r I (F1·gure 11 6) Let the current of mCl ent 

n th target nuc eus . . b N 
solid angle d ~~ at e .. nd let the target show to the eam 

f les per umt time, a . h h 
particles be.Ia par .1C If the outgoing particles appear at a rate R b , t en t e 
target nucleI per U?lt ~rea. 
reaction cross section IS 

Rb 
(J =-­

IaN 
(11.13) 

dimension of area per nucleus, but it may be very 
Defined in this way, (J has th~ trical area of the disc of the target nucleus 
much larger or smaller than t e geome 

Ia 

incident beam, target, and outgoing 
11 6 Reaction geometry showing 

Figure. I dO. at 8 <I> 
beam going into solid ang e , . 
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seen by the incoming beam. For a typical nucleus of radius R = 6 fm, the 
geometrical area 7TR2 is about 100 fm2 = 1 b; for neutron capture by 135Xe, the 
cross section is about 106 b, while for other much more improbable reactions 
the cross section may be measured in millibarns or microbarns. You should think 
of a as a quantity which has the dimension of an area, but which is proportional 
to the reaction probability. 

Our detector occupies only a small solid angle dO and therefore does not 
observe all of the outgoing particles; only a small fraction dRb are actually 
counted, and therefore only a fraction of the cross section da will be deduced. 
Moreover, the outgoing particles will not in general be emitted uniformly in all 
directions, but will have an angular distribution that will depend on 0 and 
possibly also on cj>. It we let this angular distribution function be arbitrarily 
represented by r(O,cj», then dRb = r(fJ, cj» dQ/47T. (The 47T is introduced to 
make dQ/47T a pure fraction.) Then 

da 

dO (11.14) 

The quantityda/dQ is called the differential cross section, and its measurement 
gives us important information on the angular distribution of the reaction 
products. In the literature, it is often called a(O, cj» or (J(O) or sometimes 
(unfortunately) just "cross section." (If you see a graph of "cross section" vs 0, 
you should know that what is intended is differential cross section.) Because solid 
angle is measured in steradians (the surface of a sphere sub tends a solid angle of 
47T steradians at its center), units of differential cross section are barns/steradian. 
The reaction cross section (J can be found by integrating da/dQ over all angles; 
with dQ = sin 0 dO dcj> we have* 

f da 1'lT 12'lT da a = - dQ = sin 0 dO dcj> -
dO 0 0 dQ (11.15) 

Notice that if da/dO is constant (independent of angle), the integral gives 
(J = 47T(da/dQ). This justifies the insertion of the constant 47T into Equation 
11.14, for now reO, cj» reduces to the constant Rb and Equation 11.14 agrees with 
Equation 11.13. 

In many nuclear physics applications, we are not concerned simply with the 
probability to find particle b emitted at a certain angle; we also want to find it 
with a certain energy, corresponding to a particular energy of the residual nucleus 
Y. We therefore must modify the definition of cross section to give the probabil­
ity to observe b in the angular range of dO and in the energy range dEb. This 
gives the so-called doubly differential cross section d2a/dEb dO. In the literature, 
this additional energy dependence is often not explicitly stated; usually the cross 
sections are plotted as d a/dO vs 0 leading to a specific final energy state. This is 
in reality d2a/dEb dO, although it may not be labeled as such. For discrete 
states, there may be only a single level within the energy range dEb' and the 

* An element of area on the surface of a sphere is r2 dQ or r2 sin 0 dO dq, in spherical coordinates. 
Hence dQ = sin 0 dO dq,. 
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Table 11 .1 Reaction Cross Sections 
possible 

Application 

Cross Sections 
Symbol Technique 

Shielding 

Total 
Attenuation of 

beam 

Reaction 
Integrate over 

all angles and 
all energies of 
b (all excited 
states of Y) 

Production of radioiso­
tope Y in a nuclear 
reaction 

Differential 
(Angular) 

Differential 
(Energy) 

do/dQ 

do/dE 

Observe bat 
((), cI> ) but inte­
grate over all 
energies 

Don't observe b, 
but observe 
excitation of Y 
by subsequent 
yemission 

Observe bat 

Formation of beam of b 
particles in a certain 
direction (or recoil of 
Y in a certain direc­
tion) 

Study of decay of 
excited states of Y 

Doubly 
differential 

((), cI» at a 
specific energy 

Information on excited 
states of Y by angular 
distribution of b 

. If on the other hand, we do not observe the 
distinction becomes ummportant. d'. the target area with 4'IT solid angle of 

. f fib (by surroun mg . 'al 
directIOn 0 par lC e . b t 11) then we measure yet another dIfferentI 

r by not observmg a a , . . f Y 
detectors,. 0 ere now E may represent an eXCItatIOn energy 0 '. 
croSS sectIOn do/dE, wh . th t may be of interest the total cross sectIOn 

. '11 ther cross sectIOn a '. There IS Stl ano. .' fIe add the reaction cross sectIOns (J for 
(J • Here, for a specific mClde~t par 1~. e

l 
a, ~ no matter what their direction or 

Jl possible different .ou~f~~n!o~~ ~~I~~S ;he probability for an incident particle 
energy. Such a de~enmna with the target and thus be removed from the beam .of 
to have any ~eactlOn ~t all n be deduced directly by measuring the loss in inten~lty 
incident particles. Thi.s ca . through a certain thickness of the target matenal. 
of a collimated beam m pa~~mg f then the exact meaning of the term cross 

When we discUSS a specl c reach IOn 's re Table 11 1 summarizes these 
. d d n exactly w at we mea u . . .' 

section will epen 0 he mi ht be accomplished, and the apphcatIOn. to 
different measurements, how t py g l'f we wish to produce a radioactive 

It 'ght be put or examp e, 1 . . 
which the resu ~ l' Y we have absolutely no interest in the dlfectIOn 
isotope as the resl~ual nuc eu.s the excited states of Y that may be populated, for 
of emission of particle b, nor m ., t the ground state of Y. The literature 

. . kl d cay by y elIDSSIOn 0 
they WIll qUlC ~ e. . t arefully among these definitions, and often they are 
often does not dlScfllIDn~ e ~, . almost alwa s obvious in context which cross 
called m.erely "cross sdect~n. f I:

e
lSnot strictly ~ecessary to distinguish carefully 

section IS meant, an t ere 0 

among them. 
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11 .5 EXPERIMENTAL TECHNIQUES 

A typical nuclear reaction study requires a beam of particles, a target, and a 
detection system. Beams of charged particles are produced by a variety of 
different types of accelerators (see Chapter 15), and neutron beams are available 
from nuclear reactors and as secondary beams from charged-particle accelerators. 
To do precision spectroscopy of the outgoing particle b and the residual nucleus 
Y, the beam must satisfy several criteria: 

1. It must be highly collimated and focused, so that we have a precise reference 
direction to determine 8 and <p for angular distribution measurements. 

2. It must have a sharply defined energy; otherwise, in trying to observe a 
specific excited state by finding Qex and Eex from Equation 11.5, we might 
find that variations in Ta would give two or more different Eex for the 
same T h • 

3. It must be of high intensity, so that we can gather the necessary statistics for 
precise experiments. 

4. If we wish to do timing measurements (such as to measure the lifetimes of 
excited states of Y), the beam must be sharply pulsed to provide a reference 
signal for,the formation of the state, and the pulses must be separated in time 
by at least the time resolution of the measuring apparatus and preferably by 
a time of the order of the one we are trying to measure. 

5. Under ideal circumstances, the accelerator beam should be easily select­
able-we should be able to change the incident energy Ta or even the type of 
incident particle in a reasonable time. The stringent tuning requirements of 
modern large accelerators and the demands that high currents put on ion 
sources make this requirement hard to meet in practice. Accelerator beam 
time is often scheduled far in advance (6 months to a year is common), so 
that experiments with common beam requirements can be grouped together, 
thus minimizing the beam tuning time. 

6. The intensity of the incident beam should be nearly constant and easily 
measurable, for we must know it to determine the cross section. If we move a 
detector from one position to another, we must know if the change in the 
observed rate of detection of particle b comes from the angular dependence 
of the differential cross section or merely from a change in the incident beam 
intensity. 

7. The beam may be polarized (that is, the spins of the incident particles all 
aligned in a certain direction) or unpolarized, according to the desire of the 
experimenters. 

8. The beam must be transported to the target through a high-vacuum system so 
as to prevent beam degradation and production of unwanted products by 
collisions with air molecules. 

Types of targets vary widely, according to the goals of the experiment. If we 
want to measure the yield of a reaction (that is, (J or at), perhaps through 
observation of the attenuation of the beam or the decay of radioisotope Y, then 
we may choose a thick, solid target. Such a target might degrade, scatter, or even 
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stop the outgoing particles b, which does not bother us in this kind of measure­
ment. On the other hand, if we wish to observe b unaffected by interactions in the 
target, a very thin target is required. Thin metal foils are often used as targets, 
but for nonmetals, including compounds such as oxides, the target material is 
often placed on a thin backing, which does not contribute to the reaction or 
affect the passage of particle b. For many applications, extremely rare (and often 
expensive) targets of separated isotopes are used. A high-intensity, highly focused 
beam (typically a few mm in diameter) delivers considerable thermal power to 
the target (absorption of 1 p.A of 10 MeV protons delivers 10 W), which is 
enough to burn up thin targets; therefore a way must be found to cool the target 
and extract the heat generated by the beam. As with the beam, it should be 
relatively easy to change targets so that valuable beam time is not wasted. For 
some applications, it may be desirable to polarize the spins of the target nuclei. 

The detectors may consist of some (or all) of the following: particle detectors 
or detector telescopes to determine the energy and type of the outgoing particles, 
magnetic spectrometers for good energy resolution (sometimes necessary to 
identify close-lying excited states of V), position-sensitive particle detectors (such 
as multiwire proportional counters) to do accurate angular distribution work, 
y-ray detectors to observe the de-excitation of the excited states of Y (possibly in 
coincidence with particle b), polarimeters to measure the polarization of the 
particles b, and so on. Because beam time is a precious commodity at a modern 
accelerator facility, the emphasis is always on getting the largest amount of data 
in the shortest possible time. Therefore multidetector configurations are very 
common; many signals arrive simultaneously at the detectors and are stored by 
an on-line computer system for later "re-play" and analysis. (Keeping the beam 
and the detectors going during the experiment usually demands all the attention 
of the experimenters and leaves little time for data analysis!) 

11.6 COULOMB SCATTERING 

Because the nucleus has a distribution of electric charge, it can be studied by the 
electric (Coulomb) scattering of a beam of charged particles. This scattering may 

be either elastic or inelastic. 
Elastic Coulomb scattering is called Rutherford scattering because early 

(1911-1913) experiments on the scattering of a particles in Rutherford's labora­
tory by Geiger and Marsden led originally to the discovery of the existence of the 
nucleus. The basic geometry for the scattering is shown in Figure 11.7. As is 
always the case for unbound orbits in a 1/r2 force, the scattered particle follows 
a hyperbolic path. (We will assume the target nucleus to be infinitely massive, so 
that the scattering center remains fixed.) The particle approaches the target 
nucleus along a straight line that would pass a distance b from the nucleus in the 
absence of the repulsive force; this distance is called the impact parameter. The 
scattering angle is e. Very far from the nucleus, the incident particle has 
negligible Coulomb potential energy; its total energy is thus only the incident 
kinetic energy Ta = ~mv5. Its angular momentum relative to the target nucleus is 
Ir X mvl = mVob at large distances. In passing close to the target nucleus, the 
particle reaches a minimum separation distance r min (which depends on b), the 
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v=o 
T=~mv2 

/ =mvb 

T t---l> ________ -/ / 
b ~min I 
i _ =--==1.-=--=== = - ... ~----- --

V = zZe2 1 
41TEo d 

T =0 

~d~ 

~gg~~e 1
1

1.7 The trajectory of a particle undergoing Rutherford scattering show-
e c osest approach to the target nucleus. ' 

a~solute. minimum ~alue of which occurs in a head-on collision (b = 0), in which 
t ~ p~rtIcle comes mst~nt~~e~usl~ to rest before reversing its motion. At this 
pomt It has exchanged Its mitIal kmetic energy for Coulomb potential energy: 

1 2 1 zZe 2 

zmvo = ----
4'17£0 d 

(11.16) 

where ze is. the charge of the projectile and Ze the target. The distance d is 
called the ~lstance Of cl~sest approach. At intermediate points in the tra·ector 
the enelrgy IfS part.ly kinetIc and partly potential; conservation of energy gi~es (f~; 
any va ue 0 the Impact parameter) 

1 zZe 2 

~mv5 = ~mv2 + ----
4'17£0 r 

(11.17) 

C The scatterin~ has cyli~drical symmetry about the beam axis (because the 
thoulo~b f~rce IS symmetnc), and therefore the cross section is independent of 

e aZImut. al an~le ~. We therefore work in a ring or annular geometr (Fi ure 
;~.8): PartIcles WIth Impact parameters between band b + db are scat~red 7nto 

e nng at angles between e and e + de. Let the target have n nuclei per unit 
~~~u~e, ~nd"as~ume the target to be thin enough so that it is unlikely to have any 
thi ~ owmg 0 one nucleus by another. The target is considered to be a foil of 

c. n~ss x. The~ the number of nuclei per unit area is nx, and the fraction df of 
the mCIdent partIcles that pass through the annular ring of area 2'ITb db is 

df= nX(2'ITbdb) (11.18) 

The fraction f with impact parameters less than b is 

f = nX'lTb2 (11.19) 
If . I . partIc es ~cattered With. impact parameter b emerge at angle e, then E uation 
11.19 a~so ~Ives ~he fractIOn that are scattered at angles greater than e \ut to 
carry t e dISCUSSIOn further we need a relationship between band e. (Weare 
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Figure 11.8 Particles entering the ring between band b + db are distributed 
uniformly along a ring of angular width dB. A detector is at a distance r from the 

scattering foil. 

Ipi! = mvo 

Pi 

Figure 11.9 The hyperbolic trajectory of a scattered particle. The instantaneous 
coordinates are r, {3. The change in momentum is l:i.p, in the direction of the dashed 

line that bisects ('IT - B). 

assuming that each incident particle is scattered only once-more about this 
assumption later.) 

The net linear momentum of the scattered particles changes in direction only; 
far from the scattering, the incident and the final linear momentum are both mvo· 
(This follows from the assumption that the target is so massive that it does not 
move.) The change in the momentum vector, as shown in Figure 11.9, is a vector 
of magnitude 

8 
/lp = 2mvo sin "2 (11.20) 

in the direction of the bisector of 7T - 8. According to Newton's second law in 
the form F = dp / dt, this is equal to the net impulse of the Coulomb force in that 

direction: 

f f 
zZe2 f dt 

/lp = dp = Fdt = -- - cos{3 
47T€0 r2 

(11.21) 

where {3 is the angle between the bisector and instantaneous vector r locating the 
particle. In the initial position far from the scattering, which we take to be time 
t = 0, the angle {3 has the value - ( 7T /2 - () /2); in the final position (t = 00), the 
angle {3 is + ( 7T /2 - 8/2). 
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ta~~::i~~t~~::;~~~~t~~IOCity v can be written in terms of radial (along r) and 

dr A d{3 A 

v= dtr+rTt{3 (11.22) 

where P and fj indicate unit vectors i th d· I . 
respectively. Only the tangential compo:ent ~o~r:~ut:~~o t~~!e:lall directions, 
tum about the nucleus: gu ar momen-

t- I 2d{3 - mr X vi = mr Tt (11.23) 

~;:~~~~rt:o~:~~~~ ~~~e~ngUlar momentum has the value mvob; conservation 

2 d{3 
mVob = mr -

dt 
dt df3 

? = vob (11.24) 

and substituting into Equation 11.21 gives 

/lp - zZe
2 

/+(17/2-0/2) 
- 47T€ovob -(17/2-0/2) cos f3 d{3 

zZe 2 () 

cos - ( ) 27T€ovob 2 11.25 

;~~~i~~ng this result with Equation 11.20 gives the needed relationship between 

d 8 
b = "2 cot "2 (11.26) 

E
Where. d is the distance of closest approach from Equation 1116 C b·· 

quatlOns 11.18 and 11.26, . . om mmg 

d 2 
() 8 

Id!1 = 7Tnx-cot - csc2 - d8 
4 2 2 

and the rate at which particles reach the ring, per unit solid angle, is 

r(8,cf»= lald!1 
dQ/47T 

(11.27) 

(11.28) 

~~~: ~~~~~: ;:!~ ~!17~~~~:~d;~~ar~i~e~:a)1l;~ththed~r~e2t (a~d hence lald!1 
nng g t (h . . . 1 ~~ - 7T sm () d8 for the 

eome ry t at IS, sm 8 d8 dcf> integrated over cf», the net result is 

do = (zze2)2(_1 )2_1 
dQ 4wo 4T 8 

a sin4-
2 

(11.29) 

Th· . . . 
IS IS the dIfferentIal cross section for Rutherford scattering, usually called the 
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(a) 

Figure 11.10 (a) The dependence of scattering rate on foil thickness for three 
different scattering foils. 

500L--l.--l-+-l-+-++t-+--I 
~--+--l-' ---.- - - ---

\ 

100.1 0.2 0.5 
Relative kinetic energy of ex particles 

(c) 

Figure 11.10 (c) The dependence of scatteri~g rate on the kinetic en~rgy of th: 
incident a particles for scattering by a single fOIl. Note the log-log scale, the SI~P d 
of - 2 shows that log N oc - 210g T, or N oc T - 2, as expected from the Ruther or 

formula. 
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(b) 
-. 

Figure 11.10 (b) The dependence of scattering rate on the nuclear charge Z for 
foils of different materials. The data are plotted against Z2 

Scattering angle (degrees) 

(d) 

Figure 11.10 (d) The dependence of scattering rate on the scattering angle 0, 
using a gold foil. The sin- 4(0 / 2) dependence is exactly as predicted by the 
Rutherford formula. 
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160 + 96Zr 

1.0 

cr: 0.5 

-S o 45 MeV 

.·47 MeV 

6 49 MeV 

• 60 MeV 
0.1 

0.05 I rmin = 12.15 

I 

10 15 20 

rmin (1m) 

Figure 11.11 Elastic scattering of 160 from 96Zr at several incident energies. The 
horizontal axis shows the minimum separation distance 'min between projectile and 
target, which varies with b and therefore with e. The vertical axis shows the cross 
section in terms of the calculated Rutherford cross section. Nuclear scattering 
effects appear at separations of less than 12.15 fm; this corresponds to Ro = 1.7 
fm, considerably greater than the mean radius of 1.25 fm, but consistent with a 
"skin thickness" of about 0.5 fm which allows the two nuclear distributions to 
overlap at these larger distances. From P. R. Christensen et a!., Nucl. Phys. A 207, 

33 (1973). 
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Figure 11.12 Inelastic Coulomb scattering (Coulomb excitation). The projectile 
exchanges energy with the target through the Coulomb interaction (exchanged 
photons are shown as wavy lines) and the target 240pU, originally in its ground 
state, can be driven to excited states. Several different modes of excitation are 
shown, including two-step processes. The spectrum of inelastically scattered a'S 

shows which excited states of 240pU have been excited. Data from C. E. Bemis, Jr., 
et a!., Phys. Rev. C 8, 1466 (1973). 
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. . 11 the sin -4 (0/2) dependence, which is Rutherford cross sectIOn. Note especla y 

characteristic. ..' f experiments Geiger and Marsden d' ffi lt d pamstaking senes 0 , 2 2 
In a 1 cu an therford formula: the dependence on Z , Ta- , 

verified three aspe~ts of the RU
h 

th cellent agreement with the predictions 
and sin -4 (0/2). Figure 11.10 sows e ex 

of the formula. of the scattering experiment, and the detail that 
The most noteworthy aspect lear atom is the fraction scattered at 

led Rutherford to his concept of the nU~e we con~ider a gold foil of thickness 
large ang~~s, say beyo~d ~~o J:~ :~a:~ i~cident. From Equation 11.26, we find 
2.0 X 10 cm, on w~ch . uation 1119 gives f == 7.5 X 10- 5• This is a large 
b = 14 fm, from which Eq hi' and requires a dense, compact nucleus as 
fraction to be scattered at suc ang es 

the scatterer. .' f . 11 gles For the above gold foil, there are 
Let's look a~8the slt~atlO~ or ;f~~e ~;der ~f 0.003 nm lateral spacing between 

about 12 X 10 nuc1~l/cm.' or f 1 This means about 1. of the a particles 
nuclei, a~ seen by an mcoffil;~ ;of~~co~' greater. For this im~act parameter, the 
have an Impact parameter 0 h scattering angle is of order 10 or less. To 
scattering angle is 1.6

0
. Thus t e mhean 'ther many scatterings each at a small 

t 1 angles we must ave el '. .. 1 
appear a ~rge , . lar e an Ie. Of course, if there are many mdlvldua 
angle, or a smgle scattenng at g ~ll tend to increase the net scattering angle 
scatterings o~ a random nature, s.~m; w~bserve scattering at a total angle of about 
and others will tend to d~~e~; ~~di~idual scatterings. If we observe scattering at 
NOrnean , there must be ~bl th n 10 and if we vary the thickness x of the 
a fixe~ angl~ 0 muc arger t~e robability to observe scattered particles to 
scattenng fOll, then ~e expect'n Pwhile it should vary with x in the case of 
vary as IX f?r m~ltIple scatten ~here are linearly more chances to have single 
single scattenng (~lmply becau:ber of nuclei increases). Figure 11.10a shows the 
large-angle scattenng as the nu d f les with x and the linear behavior is 
variation of the number of scattere par lC , 

quite apparent. h f d attering has been based entirely on classical 
Our treatment of Rut er or s~ 1 d d In particular the uncertainty princi-

t . quantum effects are mc u e . , . b' 
concep s, no t b d on fixed trajectories and particle or ItS. 
pIe renders doubtful any treat~~n .~ean impact parameter of arbitrarily small 
Any attempt to lo~ate a partIc e wluncertaint in the transverse momentum and 
unce~tainty would .mtrod~ce ~:r:ree not discu~sing the experimental difficulty of 
thus m the scatten~g ang e. 'fi' act parameter' the range of impact parame­
"ai~ing" a be~m wlt.h a spw. c Im:variation with '0 of da/dQ. What we discu~s 
ters IS automatically mc1udet~ m t~ a definite trajectory has introduced pathologl-
here is whether the assump lOn 0 d t' 

h d . t' of the Rutherfor cross sec lOn. 
cal errors into. t e enva lOn . t Ab in the impact parameter will be an 

Correspondmg to an uncertam y ntum of order Ii/Ab. Our classical 
uncertainty A P in the transverse mome« . 
derivation makes sense only if Ab « band /). P Ptransverse' 

b APtransverse » Ab Ap ~ Ii 

b A P transverse » 1 (11.30) 
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We consider two extreme cases: (1) 900 scattering, for which b = d/2 = 14 fm 
and /).Ptransverse = mvo = 250 MeV /c, where we have assumed 8-MeV a's incident 
on gold. For this case the ratio in Equation 11.30 is about 18, reasonably far from 
the quantum limit. (2) Small-angle scattering (0 ::::: 10), with b = 1600 fm and 
/). Ptransverse ::::: mvo tan 0 ::::: 4 MeV/c. The ratio is now about 32, again far from the 
quantum limit. 

Ultimately what justifies the classical calculation is a happy accident of 
quantum physics: the quantum calculation of the Coulomb scattering cross 
section gives the same result as the classical calculation, Equation 11.29. This is a 
peculiarity of the l/r2 force, in which the exact quantum result contains no 
factors of Ii, and thus the "classical limit" of Ii --) 0 leaves the quantum result 
unchanged. 

As we increase the energy of the incident particle, we will eventually reach a 
point where the distance of closest approach decreases to the nuclear radius, and 
thus the projectile and target feel each other's nuclear force. The Rutherford 
formula, which was derived on the basis of Coulomb interactions only, fails at 
that point to account for the cross section, as we illustrated in Figure 3.11. (The 
cross section then includes Coulomb and nuclear parts, as in the case of 
proton-proton scattering, Equation 4.43.) The internuclear separation at which 
the Rutherford formula fails is then a measure of the nuclear radius, as illustrated 
in Figure 11.11. 

Up to now we have considered only elastic Coulomb scattering. Inelastic 
Coulomb scattering is called Coulomb excitation; after the encounter the nucleus 
(and possibly, although not usually, the projectile) is left in an excited state, from 
which it decays rapidly with the emission of y rays. We can think of this process 
as the emission and absorption of virtual photons, with the most likely mode 
being E2. This process has therefore been extensively used to study the first 
excited 2 + states of even-Z, even-N nuclei. Because the 0 + --) 2 + photon absorp­
tion probability is closely related to the 2 + --) 0 + photon emission probability, 
the Coulomb excitation probability can give a measure of the half-life of the 2 + 

state. Moreover, since the 2 + state lives much longer than the time it takes for the 
encounter between target and projectile, there is a second-order interaction 
between the projectile and the excited-state nuclei of the target. This can have 
several effects, including photon absorption causing a 2 + --) 4 + upward transi­
tion and a change in the m-state population of the 2 + state from the interaction 
of its quadrupole moment with the electric field gradient of the moving projectile. 

Figure 11.12 shows some sample results from inelastic Coulomb scattering. The 
reduced energy of the detected particles exactly matches the energy simulta­
neously observed in y-ray emission from the excited states. 

11.7 NUCLEAR SCATTERING 

The elastic nuclear scattering of particles bears a strong resemblance to a familiar 
problem from optics: the diffraction of light by an opaque disk (Figures 4.3 and 
11.13). In the optical case, diffraction at the sharp edge results in a series of 
maxima and minima; the first minimum occurs at 0 - A/ R, the succeeding 
ininima are roughly (but not exactly) equally spaced, and the intervening maxima 
are of steadily and substantially decreasing intensity. 
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Figure 11.15 Elastic scattering of protons from 2oBpb. In (a), at low energy (14 
MeV), the diffraction-like behavior occurs only at large angles (beyond 60°), where 
nuclear scattering occurs, because the closest distance between projectile and 
target (12.6 fm at 60° from the Rutherford formulas) agrees with the internuclear 
distance appropriate for nuclear interactions (11.8 fm), calculated using Ro = 1.7 
fm, as in Figure 11.11. Compare this figure with that for neutron scattering at the 
same energy, Figure 11.14. In (b), the incident energy is 1050 MeV and the 
Coulomb barrier is easily penetrated, so diffraction effects occur at small angles. 
(a) From J. S. Eck and W. J. Thompson, Nucl. Phys. A 237, 83 (1975). (b) From G. 
Igo, in High Energy Physics and Nuclear Structure- 1975, edited by D. Nagle et al. 
(New York: American Institute of Physics, 1975). 
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A nucleus is a strongly absorbing object for nucleons, and thus the analogy 
with the opaque disk is quite valid. For charged particles, we must deal with the 
interference between nuclear and Coulomb scattering, as in Figure 4.9 and 
Equation 4.43. It is this effect that is responsible for the deviation of scattering 
cross sections from the Rutherford formula, as shown in Figure 11.11. If we wish 
to observe the elastic scattering of nucleons, in the form of the "diffraction-like" 
pattern, we must eliminate the effects of Rutherford scattering, which we can do 
in either of two ways. The first is to use uncharged neutrons as the scattered 
particle. Figure 11.14 shows an example of neutron elastic scattering. One 
particular difference between the nuclear scattering and optical diffraction is that 
the minima do not fall to zero. This is a direct ·result of the diffuseness of the 
nuclear surface-nuclei do not have sharp edges. 

For charged particles, we must take two steps to reduce the effect of inter­
ference with Coulomb scattering: we work at higher energy, so that the 
Rutherford cross section is small and the projectile can more easily penetrate to 
feel the nuclear interaction, and we observe at larger angles, where again the 
Rutherford cross section is small and where the small impact parameter also 
helps to guarantee nuclear penetration. An example of nucleon elastic scattering 
is shown in Figure 11.15. Again, the diffraction-like effects are apparent. 

One result of nucleon elastic scattering studies is the determination of the 
nuclear radius. Although the value may depend somewhat on the potential model 
used to analyze the scattering (such as the square well discussed in Chapter 4), 
the results are generally quite consistent with R = RoAl/3 with Ro = 1.25 fm as 
in other studies. In Section 11.9 we discuss in more detail the implication of these 
experiments on our knowledge of the potential. 

Inelastic nuclear scattering, like inelastic Coulomb scattering, results when the 
target nucleus takes energy from the projectile and reaches excited states. (It is 
also possible for projectiles to be placed in excited states; we ignore this effect for 
now.) If we measure the energy distribution of scattered projectiles at a fixed 
angle, we observe a single elastic peak, which is the highest energy scattered 
projectile. Each inelastic peak corresponds to a specific excited state of the target 
nucleus. Figure 11.4 showed an example of inelastic nuclear scattering, and 
another example is discussed in Section 11.11. From the locations of the inelastic 
peaks, we can learn the energies of the excited states; from their relative heights 
we learn the relative cross sections for excitation of each state, which tells us 
something of the wave function of the excited state. We can also measure an 
angular distribution of scattered projectiles for any excited state, from which we 
can learn the spin and parity of the excited states. 

11 .8 SCATTERING AND REACTION CROSS SECTIONS 

In this section we cover some details of reaction cross sections more thoroughly 
than in our previous discussion in Section 4.2. You may wish to review that 
discussion before proceeding. 

We take the z axis to be the direction of the incident beam and assume it can 
be represented by a plane wave eikz corresponding to momentum p = hk. The 
outgoing particles will be represented by spherical waves, and so the manipula-
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tiohns .beclome easier if we express the incident plane,wave as a superposition of 
sp enca waves: 

00 

1/;inc = Ae
ikz 

= A L it(U + 1) Jt( kr )PA cos ()) 
t=o 

(11.31) 

where A is an appropr· t 1 h . . . (k ) . Ia e y c osen normahzatlOn constant. The radial functions 
It r are sp~erzcal Bessel functions which were previously given in Table 23. 
they are solutlOns to the radial part of the Sch ··d· . .. , . . ro Inger equatlOn EquatlOn 2 60 
~~nac~~~~n/a(r fro()m) theLtarget where the n.uclear potential vanishes. The ang~la; 

t cos are egendre polynonuals: 

Po (cos ()) = 1 

PI (cos ()) = cos () (11.32) 

P2 (cos()) = t(3cos 2 () - 1) 

T~i~ expansion o~ the i~cident (and eventually, the scattered) wave is called the 
partza wave expanSIOn, wIth each partial wave corresponding to a specific ang 1 
mo~e~t~~ t. Such a procedure is valid if the nuclear potential is assumed t: :~ 
~~n ~a ·f that m~kes the m~thod useful is that it is often sufficient to consider the 
e~ 0 t ~ nuc ear potentIal on at most only a few of the lowest partial waves 

(thSUC as. 1- 0 or s-wave nucleon-nucleon scattering discussed in Chapter 4) If 
e partIc es of momentu· .. . .. . m p Interact wIth Impact parameter b then the 

(senuclassIcal) relatIve angular momentum will be ' 

th =pb 
or 

h 'A 
b = t- = t- = tA 

P 217 (11.33) 

where A =:' 'A/217 is called the reduced de Broglie wavelength. Incidently A = k-1 
AccordIng. to q~antum mechanics, t can only be defined in inte er 'uni . 

(
thus .t~e s~mIclasslcal estimate should be revised somewhat. That is, ~articl!~' :~~ 
senuc assIcal) angular momenta between Oh and 1h will interact through· t 

parameters between 0 and A d th A' • 1 Impac 
t 

\- 2· ' an us euectlVe y over an area (cross section) of 
a most 17/\ WIth h < t< 2h th ... t d·· A - - , e cross sectlOn IS a nng of inner radius A and 
~~;r ra lU~ 2 'tnd thus of area 317A2. We can thus divide the interaction area 

anum er 0 zones, each corresponding to a specific an ular 
and each having area 17[(t+ l)AF - 17(tA)2 = (U+ 1) \-2

g 
W momen~um t 

the ma . . 171\. e can estImate 
( h XImum Impa~t param.eter for nuclear scattering to be about R = R + R 
vt Ie s~~ ~f the radll of the Incident and target nuclei), and thus the maxi~um t 
a ue 1 e y to occur is RIA, and the total cross section is correspondingly 

R/A 

(J = t~o (U+ 1)17A2 = 17(R + A)2 (11.34) 

Th· . . 
bu:si:sa~;~~s~:a?le.~stImate, .for,it includes not only an interaction distance R, 
ode ~ncI ent partIcle s wave nature to spread over a distance of the 
hr er of A, makIng the effective interaction radius (R + A) We·ll I 
ow the exact calculation modifies this estimate. . WI see ater 
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When the wave is far from the nucleus, the Jr(kr) have the following 

convenient expansion: 

. sin (kr - it'7T) 
l({kr) ~ kr 

(kr» t) 

e- i(kr-(w/21 _ e+ i(kr-tw/21 
= i----------

2kr 
(11.35) 

so that 
A 00 . 

.J;inc = 2k L /+1(2t+ 1)[e- i(kr-tw/21 - e+i(kr-tw/21]pAcos 0) (11.36) 
r (=0 

The first term in brackets, involving e- ikr, represents an incoming spherical wave 
converging on the target, while the second term, in e+ ikr, represents an outgoing 
spherical wave emerging from the target nucleus. The superposition of these two 
spherical waves, of course, gives the plane wave. 

The scattering can affect only the outgoing wave, and can affect it in either of 
two ways: through a change in phase (as in the phase shift discussed in Chapter 
4), and through a change in amplitude. The change in amplitude suggests that 
there may be fewer particles coming out than there were going in, which may 
appear to be a loss in the net number of particles. However, keep in mind that 
the wave function represents only those particles of momentum lik. If there is 
inelastic scattering (or some other nuclear reaction), the energy (or even the 
identity) of the outgoing particle may change. It is therefore not surprising that 
there may be fewer particles in the eikr term following inelastic scattering. It has 
become customary to refer to a specific set of conditions (exclusive of direction of 
travel) of the outgoing particle and residual nucleus as a reaction channel. The 
reaction may thus proceed through the elastic channel or through anyone of 
many inelastic channels. Some channels may be closed to the reacting particles, if 
there is not enough energy or angular momentum to permit a specific final 

configuration to be reached. 
We account for the changes in the t th outgoing partial wave by introducing 

the complex coefficient 11r into the outgoing (e ikr ) term of Equation 11.36: 

.J; = ~ t /+1(2t+ 1)[e- i(kr-rw/21 _11re+i(kr-rw/21]p",(cosO) (11.37) 
2kr (=0 

This wave represents a superposltlOn of the incident and scattered waves: 
.J; = .J;inc + .J;sc' exactly as in Equation 4.23. To find the scattered wave itself, we 
subtract Equation 11.37 from Equation 11.36: 

A eikr co 
= - -- L (2t+ l)i(l - 11r)Pr(cos 0) 

2k r (=0 

(11.38) 
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~eca~se w~ have .ac~ounted for only those parts of .J; se with wave number k 
~denhcal.wlth the 111cldent wave, this represents only elastic scattering. As we did 
111 EquatlOn 4.24 we p.ow find the scattered current density: 

(11.39) 

(11.40) 

The incident current is identical with Equation 4.26: 

(11.41) 

and by analogy with Equation 4.27, the differential cross section is 

da 1 1 00 12 
dn = 4k2 fa (2t+ l)i(l - 11r)PAcos 0) (11.42) 

To find the total cross section, we require the integral of the Legendre polynomi­
als: 

Thus 

f pAcos O)Pr,(cos 8) sin 0 dO dcj> = ~ 
2t+ 1 

=0 

00 

ase = L '7T,\2(2t+ 1)11 - 11r12 
(=0 

if t= t' 

if t =1= t' (11.43) 

(11.44) 

. If elasti~ scattering.were the only process that could occur, then l11rl = 1 and it 
IS conventlO~al to wnte 1)r = e 2lli

/ where ~r is the phase shift of the tth partial 
wave. For thiS case, 11 - 1)r12 = 4 sin2 ~t and 

00 

ase = L 4'7T,\2(2t+ 1) sin2~t 
(=0 

which reduces directly to Equation 4.30 for t = o. 

(11.45) 

If there are .other processes i.n additio~ to elastic scattering (inelastic scattering 
or other reactlOns) then EquatlOn 11.45 IS not valid, because l1)tl < 1. We group 
all of these processes together under the term reaction cross section a where we 
ta~e "reaction:' to mean all nuclear processes except elastic scatteri~g. To find 
thIS .cross sectlOn, we must examine Equation 11.37 to find the rate at which 
partlcles ~re "disappearing" from the channel with wave number k. That is, we 
find the dIfference between the incoming current and the outgoing current using, 
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respectively, the first and second terms of Equation 11.37: 

. = IAI2Jj (\ f (2t+ l)i(+lei("/2PACOSO)\2 
IJinl - I Jout I 4mkr2 (=0 

-\ Eo (2t + l)i'''",e-'''l'p,(cos 8) i'l (11.46) 

and the reaction cross section becomes 

a
r 

= f '1Th2(2t+ 1)(1 - l'I)l) (11.47) 
(=0 

The total cross section, including all processes, is 

at = ase + ar 

(=0 

(11.48) 

You should note the following details about these results: 
. .' the absence of other processes; that 

1 It is possible to have elastlc scattenng l~ . 'bl however to 
. .' = 1 then E uation 11.47 vamshes. It IS not pO.SSl e, . ' 

IS, If 1'1) (I. '. q I h . elastic scattering; that IS, any chOIce of 'I) ( 
have r~actIOns wIthout ~ so aV1~g I wave automatically gives age =1= 0 for that 
for whIch ar =1= 0 for a gIVen pardtla

h
. 'th reference to the diffraction model 

. leW e can understan t IS WI h 
partla wav . . . S . 11 7 If particles are removed from t e 

f tt' g we conSIdered m ectIOn ., . 'd 
o sca enn ." h d "b hind the target nucleus, mCl ent 
incident beam, creatmg a s a ow e 
particles will be diffracted into the shado~. .' 11 artial waves 

2. For a "black disk" absorber, as int~~ja~on('I)11:6' ~~rw~~~p~et: absorption) 
are completely absorbed up to - ( 
and unaffected for t> Rjh ('1)(= 1), then 

age = '1T(R + h)2 (11.49) 

and 
(11'.50) 

so that 

at = 2'1T(R + h ) 2 (11.51) 

.. t . cal area' The explanation for this 
The total cross section IS twice the ge~~e r~h "sha'dow" region-the target 
nonclassical effec~ can also be foudn hm e harp shadow. It must also 
nucleus cannot SImply absorb an t row a s 
diffract into the shadow region. 

. d nuclear structure is similar to that 
The program for usmg these results to stu y t form for the 

I I scattering We can guess a a 
of Chapter 4 for nuc eon-nuc e~~ . '.. . de the interaction region 
nuclear potential, solve the Schrodmger equatIOn mSl 
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o ::::; r ::::; R, and match boundary conditions at the surface. In this way we should 
be able to calculate 'I)! and, by comparison with experimental values of a

se 
and 

ar, evaluate whether our chosen form for the potential is reasonable. In practice 
this is very difficult for all but the elastic channel because all of the inelastic and 
reaction channels are coupled together leading to a complicated system of 
coupled equations. We discuss one particular technique, the optical model for 
elastic scattering, in Section 11. 9. 

11.9 THE OPTICAL MODEL 

A simple model used to account in a general way for elastic scattering in the 
presence of absorptive effects is the optical model, so called because the calcula­
tion resembles that of light incident on a somewhat opaque glass sphere. (The 
model is also called the "cloudy crystal ball modeL") 

In this model, we represent the scattering in terms of a complex potential 
U(r): 

U(r) = V(r) + iW(r) (11.52) 

where the real functions V and Ware selected to give the potential its proper 
radial dependence. The real part, V( r), is responsible for the elastic scattering; it 
describes the ordinary nuclear interaction between target and projectile and may 
therefore be very similar to a shell-model potential. The imaginary part, W( r), is 
responsible for the, absorption. We can demonstrate this by considering a 
square-well form for U(r): 

U(r) = -Vo - iWo 

=0 

r < R 

r> R (11.53) 

The outgoing scattered wave we take to be in the form of eikrjr, with k 
= V2m(E + Vo + iWO)/Jj2, which follows from solving the Schri.:idinger equa­
tion in the usual way for this potential. The wave number k is thus complex: 
k = k r + ik i' where k rand k i are the real and imaginary parts, respectively. The 
wave function behaves like eikrr . e-k;r jr, and the radial probability density is 
proportional to e- 2k

;r. The wave is therefore exponentially attenuated as it passes 
through the nucleus. (Choosing Wo > 0 in Equation 11.53 gives a loss in 
intensity, rather than a gain.) If we assume that the absorption is relatively weak 
(that is, Wo is small compared with E + Vo), then we can use the binomial 
theorem to expand the expression for k: 

k ~ .!2m(E + Vo) + iWo _12m ( 1 ) 
V Jj2 2 V Jj2 E + Vo 

(11.54) 

The usual shell-model potential has a depth Vo of the order of 40 MeV, and we 
can take E = 10 MeV for a typical low-energy projectile. The distance over 
which the intensity is attenuated by e- 1 (a sort of mean free path) is 

1 1 Jj2(E + Vo) 
d=-=-

2ki Wo 2m 
(11.55) 
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Figure 11.16 The optical model functions VCr) and W(r) = dV / dr. Typical 
parameters chosen are \tQ = 40 MeV, R = 1.25A1

/
3

, a = 0.523 fm, and A = 64. 

If this distance is to be at most of the order of the nuclear radius (say, 3 fm) then 
Wo :::: 11 MeV. Thus for the usual case, in which absorption is relatively weaker 
than elastic scattering, we estimate I VI - 40 MeV, I WI - 10 MeV. . 

The procedure for applying the optical model might be as ~ollows: Fust, we 
must choose a form for the potential. The square-well form IS often adequate 
(with R :::: 1.4AI / 3, a bit larger than usual to account for the diffuse nuclear 
surface), but a more detailed form is often chosen: 

- Vo 
V(r) = 1 + e(r-R)/a 

(11.56) 

exactly as in the case of the shell model, Equation 5.1. The constants Va' .R, apd 
a are adjusted to give the best fits with the scattering data. The absorptIve ~art 
W( r) at low energies must have a very different fo~m. ~ecause of the ~~clusl~n 
principle, the tightly bound nucleons in the nuclear Intenor cannot partICIpate In 
absorbing incident nucleons. Only the" valence". n~cleons ne~r the surface ~an 
absorb the relatively low energy carried by the InCIdent partIcle. The functIOn 
W( r) is thus often chosen as proportional to dV / dr, which has the ~roper shape 
of being large only near the surface, as shown in Figure 11.16. (At hIgher energy, 
where the inner nucleons can also participate in absorption, ~(r) may l~ok mo~e 
like V(r).) A spin-orbit term is also included in mode~n optIcal ~otentIals. It IS 
also peaked near the surface, because the spin densI~y of ~he. Inner nu~leo~s 
vanishes. Finally, a Coulomb term must be included If the InCIdent particle IS 
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Fig.ure 11 .. 17. Magnitudes of complex scattering amplitudes 17r for scattering of 
various projectiles on a target of 58Ni. The approach of l17tl to 1 at higher energy 
~orresponds to crr ..... 0, so that few particles are absorbed and only elastic scatter­
Ing takes place. From G. R. Satchler, Introduction to Nuclear Reactions (Wiley' 
New York, 1980). . 

charg~d. For the chosen potential, the Schrodinger equation can be solved and 
equatIng boundary conditions at r = R, as we did in Chapter 4 for the nucieon­
nucleon problem, gives the complex scattering amplitudes 1]1" which can be used 
to compare calculated cross sections with experiment. Figure 11.17 shows exam­
ples of some 1] I' values. 

. The complete optical model fits to scattering data often are very impressive. 
FIgure 11:18 ~hows an example of several fits to elastic scattering cross sections 
and polanzatIOns. 

The optical .model is useful only in discussing average behavior in reactions 
such as ~cattenng. Many of the interesting features of the microscopic structure 
of. nucleI are. accounted for indirectly only in this average way. The calculation 
USIng the optI~al model, as described in this section, does not deal with where the 
absorbed partIc~es actually go; they simply disappear from the elastic channel. In 
fact, the ~any Interactions between the nucleons of the target and projectile are :0 comphc~ted that representing the~ by a singl~ potential is itself a significant 
ppr?Xlmat~on. Nevertheless, the optIcal model IS successful in accounting for 

e.lastIc and Inelastic scattering and leads us to an understanding of the interac­
tIons of nuclei. 
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Figure 11.18 Optical-model fits to differential cross sections (at left, shown as a 
ratio to the Rutherford cross section) and polarizations, for 10-MeV protons 
scattered elastically from various targets. The solid lines are the fits to the data 
using the best set of optical-model parameters. From F. D. Becchetti, Jr., and G. W. 
Greenlees, Phys. Rev. 182, 1190 (1969). 

11 .10 COMPOUND-NUCLEUS REACTIONS 

Suppose an incident particle enters a target nucleus with an impact parameter 
small compared with the nuclear radius. It then will have a high probability of 
interacting with one of the nucleons of the target, possibly through a simple 
scattering. The recoiling struck nucleon and the incident particle (now with less 
energy) can each make successive collisions with other nucleons, and after several 
such interactions, the incident energy is shared among many of the nucleons of 
the combined system of projectile + target. The average increase in energy of any 
single nucleon is not enough to free it from the nucleus, but as many more-or-Iess 
random collisions occur, there is a statistical distribution in energies and a small 
probability for a single nucleon to gain a large enough share of the energy to 
escape, much as molecules evaporate from a hot liquid. 

Such reactions have a definite intermediate state, after the absorption of the 
incident particle but before the emission of the outgoing particle (or particles). 
This intermediate state is called the compound nucleus. Symbolically then the 
reaction a + X ~ Y + b becomes 

a + X ~ C* ~ Y + b 

where C* indicates the compound nucleus. 
As might be assumed from seeing the reaction written in this form, we can 

consider a reaction that proceeds through the compound nucleus to be a two-step 
process: the formation and then the subsequent decay of the compound nucleus. 
A given compound nucleus may decay in a variety of different ways, and essential 
to the compound-nucleus model of nuclear reactions is the assumption that the 
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;z~ative probability f~r decay into any specific set of final products is independent of 
I means of formatIOn of t~e compound nucleus. The decay probability depends 

~n y on "the total energy glven to the system; in effect, the compound nucleus 
florgets the process of formation and decays governed primarily by statistical 

ru es. 
Let's consider a sp~cific example. The compound nucleus 64Zn* can be formed 

throug? severa~ reactlOn processes, including p + 63CU and (X + 6oNi. It can also 
decay m a vanety of ways, including 63Zn + n 62Zn + 2n and 62C + 
That is ' , u p + n. 

(X + 60 N i -------------

e 
c 
0 

:e 
OJ 
if) 

if) 
if) 

e 
u 
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63Zn + n 

64 Zn* ------------- , 62 _____.... Cu+n+p 

62Zn + 2n 

Energy of protons in MeV 

13 33 

~-j 

I 

.j 

Energy of a (MeV) 

~~~~:e :1.19 Cross Se?ti?ns for different reactions leading to the compound 
r us Zn show very Similar characteristics, consistent with the basic assump­
(~09~sO)~f the compound nucleus model. From S. N. Goshal, Phys. Rev. 80, 939 
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25Mg(p,p)25Mg 

Ep = 6 MeV 

1L----L----~--~----~----~--~ 
00 30° 60° 90° 120' 150' 

Oem 

Figure 11 20 The curve marked NC shows the contribution from compound­
nucleus for·mation to the cross section of the reaction 25Mg(p, p)

25
Mg. The curve 

marked ID shOws the contribution from direct reactions. Note that the direct ~art 
has a strong angular dependence, while the compound-nucleus part shOws little 
angular dependence. From A. Gallmann et al., Nucl. Phys. 88, 654 (1966). 

If this model were correct, we would expect for example that the relati:e ~ross 
sections for 63Cu(p,n)63Zn and 6°Ni(a,n)63Zn would be the same at mCldent 
energies that give the same excitation energy to 64Zn*. Figure 11.19 sh?w~ the 
cross sections for the three final states, with the energy scales for the mCldent 
protons and a'S shifted so that they correspond to a common excitation .of t~e 
compound nucleus. The agreement between the three pairs of cross sectIOns IS 
remarkably good, showing that indeed, the decay of 64Zn* into any specific final 
state is nearly independent of how it was originally for~e~. . 

The compound-nucleus model works best for low mCldent en~rgles (10-20 
MeV), where the incident projectile has a small chance of escapmg from the 
nucleus with its identity and most of its energy intact. It also works best for 
medium-weight and heavy nuclei, where the nuclear interior is large enough to 

absorb the incident energy. . . 
Another characteristic of compound-nucleus reactions is the angular dlstnbu-

tion of the products. Because of the random interactions among. the nU.cleons, we 
expect the outgoing particle to be emitted with a n~arly Isotr~plc .angu~ar 
distribution (that is, the same in all directions). This exp~ctatI~n IS qUIte 
consistent with experiment, as shown in Figure 11.20. In cases m which a heavy 
ion is the incident particle, large amounts of angular momentum can be trans­
ferred to the compound nucleus, and to extract that angular momentum the 

c: 
o :e 
5l 
<f) e 
<.l 
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Figure 11.21 At higher incident energies, it is more likely that additional neu­
trons will "evaporate" from the compound nucleus. 

emitted particles tend to be emitted at right angles to the angular momentum, 
and thus pre(erentially at 0 and 1800

• With light projectiles, this effect is 
negligible. 

The "evaporation" analogy mentioned previously is really quite appropriate. In 
fact, the more energy we give to the compound nucleus, the more particles are 
likely to evaporate. For each final state, the cross section has the Gaussian-like 
shap~ shown in Figure 11.19. Figure 11.21 shows the cross sections for (a, xn) 
reactIOns, where x = 1,2, 3, .... For each reaction, the cross section increases to 
a maximum and then decreases as the higher energy makes it more likely for an 
additional neutron to be emitted. 

11.11 DIRECT REACTIONS 

At the opposite extreme from compound-nucleus reactions are direct reactions 
in which the incident particle interacts primarily at the surface of the targe~ 
?ucleus; such reactions are also called peripheral processes. As the energy of the 
mcident particle is increased, its de Broglie wavelength decreases, until it be­
comes more likely to interact with a nucleon-sized object than with a nucleus-sized 
object. A I-MeV incident nucleon has a de Broglie wavelength of about 4 fm, and 
,thus does not "see" individual nucleons; it is more likely to interact through a 
compound-nucleus reaction. A 20-MeV nucleon has a de Broglie wavelength of 
about 1 fm and therefore may be able to participate in direct processes. Direct 
processes are most likely to involve one nucleon or very few valence nucleons 
near the surface of the target nucleus. 

Of course, it may be possible to have direct and compound-nucleus processes 
both contribute to a given reaction. How can we distinguish their contributions 
or decide which may be more important? There are two principal differences that 
can be observed ex~~rment~lly: (1) Direct processes occur very rapidly, in a time 
of the order of 10 s, while compound-nuclear processes typically take much 
longer, perhaps 10- 16 to 10-18 s. This additional time is necessary for the 
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distribution and reconcentration of the incident energy. There are ingenious 
experimental techniques for distinguishing between these two incredibly short 
intervals of time. (2) The angular distributions of the outgoing particles in direct 
reactions tend to be more sharply peaked than in the case of compound-nuclear 
reactions. 

Inelastic scattering could proceed either through a direct process or a com­
pound nucleus, largely depending on the energy of the incident particle. The 
deuteron stripping reaction (d, n), which is an example of a transfer reaction in 
which a single proton is transferred from projectile to target, may also go by 
either mechanism. Another deuteron stripping reaction (d, p) may be more likely 
to go by a direct process, for the "evaporation" of protons from the compound 
nucleus is inhibited by the Coulomb barrier. The (LX, n) reaction is less likely to be 
a direct process, for it would involve a single transfer of three nucleons into 
valence states of the target, a highly improbable process. 

One particularly important application of single-particle transfer reactions, 
especially (d, p) and (d, n), is the study of low-lying shell-model excited states. 
Several such states may be populated in a given reaction; we can choose a 
particular excited state from the energy of the outgoing nucleon. Once we have 
done so, we would like to determine just which shell-model state it is. For this we 
need the angular distribution of the emitted particles, which often give the spin 
and parity of the state that is populated in a particular reaction. Angular 
distributions therefore are of critical importance in studies of transfer reactions. 
(Pickup reactions, for example (p, d), in which the projectile takes a nucleon from 
the target, also give information on single-particle states.) 

Let's consider in somewhat more detail the angular momentum transfer in a 
deuteron stripping reaction. In the geometry of Figure 11.22, an incident particle 
with momentum P a gives an outgoing particle with momentum P b' while the 
residual nucleus (target nucleus plus transferred nucleon) must recoil with 
momentum P = Pa - Pb· In a direct process, we may assume that the transferred 
nucleon instantaneously has the recoil momentum and that it must be placed in 
an orbit with orbital angular momentum t= Rp, assuming that the interaction 

Pb 

Pa 

Pb 

Pa 

Figure 11.22 Geometry for direct reactions occurring primarily on the nuclear 
surface. 
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takes place at the surface of the nucleus. The momentum vectors are related by 
the law of cosines: 

p2 = P: + Pt - 2PaPb cos 0 

= (Pa - Pb)2 + 2PaPb(1 - cos 0) (11.57) 

Give.n the. energies of the incident and outgoing particles, we then have a direct 
relatIOnshIp betwee~ t and O-particles emerging at a given angle should 
corresp?nd to a specific angular momentum of the orbiting particle. 

ConSIder a specific exa~ple, the (d, p) reaction on 90 Zr leading to single 
neutron shell-model states In 9IZr. The Q value is about 5 MeV so an incident 
d~uteron at 5 MeV gives a proton at about 10 MeV, less any ex~itation in 9lZr. 
SInce at these energies Pa "" Pb "" 140 MeV /c, Equation 11.57 gives 

t= [2C2PaPb(2sin20/2) ]1/2 _ . 0 
/i 2c2/R2 = 8 SIn 2" 

For e~ch angular momentum transfer, we expect to find outgoing protons at the 
follo':In? angles: t= 0, 0°; t= 1, 14°; t= 2, 29°; t= 3,44°. 
T~s s1mpl~ semiclassical estimate will be changed by the intrinsic spins of the 

partIcles, WhICh we n~gle~ted. There will also be interference between scatterings 
~hat occur on OppOSIte SIdes of the nucleus, as shown in Figure 11.22. These 
Inte~ferences result in maxima and minima in the angular distributions. 

FIgure 11.23 shows the result of studies of (d, p) reactions on 90Zr. You can see 
s~verallow-Iying states in the proton spectrum, and from their angular distribu­
tIons we can assign them to specific spins and parities in 91Zr. Notice the 
appearance of maxima and minim~ in the angular distribution. The angular 
momentum transfer, as usual, also gIves us the change in parity of the reactions 
t= e:en for no change in parity and t= odd for a change in parity. If we ar~ 
studYIng shell-model states in odd-A nuclei by single-particle transfer reactions 
su~h as (d, p): we will :se an even-Z, even-N nucleus as target, and so the initial 
SpIn and panty are 0 . If the orbital angular momentum transferred is t then 
th~ final nuclear state reached will be t ± t, allowing for the contribution~f the 
~p~n 3 of t~e transfe~red nucleo~. For t = 2, for instance, we can reach states of 
] - "2 or "2, both WIth even panty. 

The complete theory of direct reactions is far too detailed for this text but we 
ca~ s.ketch the outline of the calculation as an exercise in application~ of the 
pnncipies. o.f .quantum mechanics. The transition amplitUde for the system to go 
from the Initlal state (X + a) to the final state (Y + b) is governed by the usual 
quantum mechanical matrix element: 

(11.58) 

The inter~ctio~ ~ must be a very complicated function of many nuclear coordi­
nates. A sImphfYIng assumption is the plane-wave Born approximation, in which 
0/ i' and 0/ b are treated as plane waves. Expanding the resulting exponential 
e,p·r/Ii· h . . 

. USIng a sp encal wave expanSiOn of the form of Equation 11.31 and 
making the simplifying assumption that the interaction takes place on the nuclear 



422 NUCLEAR REACTIONS 

10.0 r tozrld,pfzr 
Ed-IUIMtY ""j 

V \ ,., 
r'\ .. 

"'" 
1.0 

1/ [\ ['\ • "
V 1\ I~ ~ 

1.471 

~ .ov 
l\ r.. ~ 

.O/" ~ 
2.044 

\ j) t~ h )/ 2 .• n 
1\ I ... 

\ ~ 
...... 

3.01$ 

;; 
j 
bl3 ...... 
t 1 

.1 
ht. 

Ut2 

60 120 --+ 'eM 

1.0 

tozrld.p)"Zr 

L!-
Eo·'UOMI. , .. - l~ "( 

~t- uas 
1 

". .. ! .. . •• 1 2.'32 .. 
> .. \ ~ 2.2.' 

~ 
. 

t-; 

~ ~ ~ ~ U70 

.1 
} ~ I~ 
~ 

l-

t- l551 

10 

-: 1,0 
III 

:a 
§ 

t\ 
r\ If') 

11'0 

t 

~ 
,1 \ 

rt' 
bl3 
"" 

,0 1 

o 

1.0 

-:;; 
:a 
§ .1 

hl3 
"" 
t .01 

.01
0 

90Zrld,p)9IZr 0 I 
Ed- TS.89 MtV 

eu.e. lso 
aDOpe 

1 
'Ozrld,pl"Z, 

Ed' 15.89 "'.v 
I •• 

I\. 
1.201 

f" r\, ~ \\.' .... 
~ r 2.557 

~ 
~. 

11"- 3.314 

60 120 _a 
Clot 

9·Z,ld,p"'Z, 

Ed' 15.88"'.V 
\ .. 

2,\71 

2.322 

3.908 

4.067 

U15 

120 -ac", 

.1 
°0 60 120_ac... . 
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t as 
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predicted by Equation 11,57, See Figure 11.24 for the deduce exci e s ' 
from H, P. Blok et aI., Nuc/, Phys, A 273, 142 (1976). 
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surface, so the integral is evaluated only at r = R, the matrix element is 
proportional to it(kR) where k = pili contains the explicit angular dependence 
through Equation 11.57. The cross section then depends on [Jt(kRW, which 
gives results of the form of Figure 11.23. 

Taking this calculation one step further, we use the optical model to account 
for the fact that the incoming and outgoing plane waves are changed (or 
distorted) by the nucleus. This gives the distorted-wave Born approximation, or 
DWBA. We can even put in explicit shell-model wave functions for the final 
state, and ultimately we find a differential cross section for the reaction. Because 
there are no "pure" shell-model states, the calculated cross section may describe 
many different final states. Each will have a differential cross section whose shape 
can be accurately calculated based on this model, but the amplitude of the cross 
section for any particular state depends on the fraction of the pure shell-model 
state included in the wave function for that state. The measured cross section is 
thus reduced from the calculated shell-model single-particle value by a number 

112+ (0) 

712+ (4) 
11/2 - (5) 

312+ (2) 

7/2+ (4) 

112+ (0) 

5/2+ (2) 

I" (f) 

0% 25% 50% 75% 100% 
Fraction of shell-model wave function 

2,577 

~~~==============::::::~ 2.557 :::::::=- 2.535 
2,368 

~~~~~~~~~~~~~~~------=======-----~~; 2.359 
2.322 
2,259 

~2,201 ----_______ ~ 2,171 

~2.132 
------------- 1.885 2,044 

1.471 

1.206 

glZr 0 

E (MeV) 

Figure 11.24 Deduced level scheme for 91 Zr. Each t value (except zero) de­
duced from the angular distributions of Figure 11,23 leads to a definite parity 
aSSignment but to two possible / values, t± ~, Which one is correct must be 
determined from other experiments, The fraction of the single-particle strengths 
represented by each level is indicated by the length of the shading; thus the ground 
state is nearly pure dS / 2 shell-model state. 
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between 0 and 1 called the spectroscopic factor s: 

(:~ Leas = s( :~ true (11.59) 

A pure shell-model state would have S = 1. In practice we often find the 
shell-model wave function to be distributed over many states. Figure 11.24 shows 
examples of the spectroscopic factors measured for 91Zr. 

11.12 RESONANCE REACTIONS 

The compound-nucleus model of nuclear reactions treats the unbound nuclear 
states as if they formed a structureless continuum. That is, there may be discrete 
nuclear states, but there are so many of them and they are so close together that 
they form a continuous spectrum. Each of these supposed discrete states is 
unstable against decay and therefore has a certain width; when the states are so 
numerous that their spacing is much less than the widths of the individual states, 

the compound-nucleus continuum results. 
The bound states studied by direct reactions are at the opposite end of the 

scale. Because they are stable against particle emission, their mean lives are much 
longer (for example, characteristic of y decay) and their corresponding widths are 
much smaller. A state with a lifetime of 1 ps, for instance, has a width of about 
10- 3 eV, far smaller than the typical spacing of bound states. We are therefore 
justified in treating these as discrete states with definite wavefunctions. 

Between these two extremes is the resonance region-discrete levels in the 
compound-nucleus region. These levels have a high probability of formation 
(large cross sections), and their widths are very small because at low incident 
energy, where these resonances are most likely to occur, the quasibound state that 
is formed usually has only two modes of decay available to it-re-ejecting the 
incident particle, as in elastic or inelastic scattering, or Y emission. 

To obtain a qualitative understanding of the formation of resonances, we 
represent the nuclear potential seen by the captured particle as a square well. The 
oscillatory wave functions inside and outside the well must be matched smoothly, 
as we did in Figure 4.7a for nucleon-nucleon scattering. Figure 11.25 shows 
several examples of how this might occur. Depending on the phase of the wave 
function inside the nucleus, the smooth matching can result in substantial 
variations between the relative amplitudes of the wave functions inside and 
outside the nucleus. In case (a), the incident particle has relatively little probabil­
ity to penetrate the nucleus and form a quasibound state; in case (c), there is a 
very high probability to penetrate. As we vary the energy of the incident particle, 
we vary the relative phase of the inner and outer wave functions; the location of 
the matching point and the relative amplitudes vary accordingly. Only for certain 
incident energies do we achieve the conditions shown in part (c) of Figure 11.25. 
These are the energies of the resonances in the cross section. 

In a single, isolated resonance of energy ER and width f, the energy profile of 
the cross section in the vicinity of the resonance will have the character of the 
energy distribution of any decaying state of lifetime 'T = /i/f; see, for example, 
Equation 6.20 or Figure 6.3. The resonance will occur where the total cross 
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r = 0 r = R 

(a) 

(b) 

. (c) 

~:t~~e 11.25 (a) .Far from resonance, the exterior and interior wave functions 
. badly, a~d IIttI~ penetration of the nucleus occurs. (b) As the match 
Improves, there IS a hlgh.er .probability to penetrate. (c) At resonance the am li­
t~des match ~xactly, the inCident particle penetrates easily and the cross sect~n 
rises to a maximum. ' 

.section has a maximum· fro E t· 1148 . . . ' m qua IOn . ,assummg only one partial wave t 
IS ~portant for the .resonant state, there will be a scattering resonance where 
1/1'- -1, correspondmg to a phase shift St'= 7T/2. 

b The shape of the resonance can be obtained by expanding the phase shift 
abo~t the. value St' = 7T /2. Better convergence of the Taylor series expansion is 
o tamed If we expand the cotangent of St': 

cot SAE) = cot SAE
R

) + (E _ E R )( a cot St') 
aE E=ER 

+l(E-E )2(a
2

cotSt') 2 R 2 + ... 
aE E=ER 

(11.60) 

in which 

(11.61) 

f=2 _I' (
as) -1 

aE E=ER 
(11.62) 
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then it can be shown that the second-order term vanishes, and thus (neglecting 
higher-order terms) 

(11.63) 

Because r is the full width of the resonance, the cross section should fall to half 
of the central value at E - ER = ± f /2. From Equation 11.63, this occurs when 
cot 8t = ± 1, or 8t = 'IT/4, 3'IT/4 (compared with 8t = 'IT/2 at the center of the 
resonance). The cross section depends on sin2 8,[> which does indeed fall to half 
the central value at 8t = 'IT /4 and 3 'IT /4. The width defined by Equation 11.62 is 
thus entirely consistent with the width shown in Figure 6.3. 

From Equation 11.63, we find 

(11.64) 

and the scattering cross section becomes, using Equation 11.45 

(11.65) 

This result can be generalized in two ways. In the first place, we can account 
for the effect of reacting particles with spin. If Sa and Sx are the spins of the 
incident and target particles, and if 1 is the total angular momentum of the 
resonance, 

(11.66) 

then the factor (U+ 1) in Equation 11.65 should be replaced by the more 
general statistical factor 

21 + 1 
(11.67) 

g = (2sa + 1)(2sx + 1) 

Note that g reduces to (U + 1) for spinless particles. 
The second change we must make is to allow for partial entrance and exit 

widths. If the resonance has many ways to decay, then the total width f is the 
sum of all the partial widths fi 

(11.68) 

The r 2 factor in the denominator of Equation 11.65 is related to the decay width 
of the resonant state and therefore to its lifetime: f = Ii/T. The observation of 
only a single entrance or exit channel does not affect this facto:, f~r t~e 
resonance always decays with the same lifetime T. In the analogous sltuatlOn 10 
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Fig~re 11 .. 26 130-eV neutron resonance in scattering from 59CO. Part (a) shows 
the m~enslty of neutrons transmitted through a target of 59CO; at the resonance 
there IS the highest probability for a reaction and the intensity of the transmitted 
beam drops to a minimum. In (b), the y-ray yield is shown for neutron radiative 
capture by 59CO. Here the yield of y rays is maximum .where the reaction has the 
largest probability. From J. E. Lynn, The Theory of Neutron Resonance Reactions 
(Oxford: Clarendon, 1968). 
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radioactive decay, the activity decays with time according to the total decay 
constant, even though we might observe only a single branch with a very different 
partial decay constant. The f2 factor in the numerator, on the other hand, is 
directly related to the formation of the resonance and to its probability to decay 
into a particular exit channel. In the case of elastic scattering, for which Equation 
11.65 was derived, the entrance and exit channels are identical. That is, for the 
reaction a + X ~ a + X, we should use the partial widths faX of the entrance 
and exit channels: 

'IT (faX)2 

a = k2g (E _ ER)2 + f2/4 
(11.69) 

Similarly, for the reaction a + X ~ b + Y, a different exit width must be used: 

'IT faXfbY 

a= k2g(E-ER)2+f2/4 
(11.70) 

Equations 11.69 and 11.70 are examples of the Breit- Wigner formula for the 
shape of a single, isolated resonance. Figure 11.26 shows such a resonance with 
the Breit-Wigner shape. The cross section for resonant absorption of y radiation 
has a similar shape, as given by Equations 10.29 and 10.30. 

Many elastic scattering resonances have shapes slightly different from that 
suggested by the Breit-Wigner formula. This originates with another contribution 
to the reaction amplitude from direct scattering of the incident particle by the 
nuclear potential, without forming the resonant state. This alternative process is 
called potential scattering or shape-elastic scattering. Potential scattering and 

b I 
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I 
I 
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Figure 11.27 Interference between resonance and potential scattering produces 
resonances with this characteristic shape. 
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~esonant scattering both contribute to the elastic scattering amplitude, and 
mterference between the two processes causes variation in the cross section. 
Interference can cause the combined cross section to be smaller than it would be 
for .either process alone. It is therefore not correct simply to add the cross 
sectIOns for the two processes. We can account for the two processes by writing 

(11.71) 

where ()tR is the resonant phase shift, as in Equations 11.63 or 11.64 and 8 is 
an additional contribution to the phase shift from potential scatt~ring. F':om 
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Figure 11.~~ . Resonances in the reaction 27AI(p, p)27AI. The resonances occur in 
the nucleus SI. Note that the (p, y) yield shows a resonance at the same energy. 
From A. Tveter, Nucl. Phys. A 185,433 (1972). 
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Equation 11.44 we find the cross section 

T 12 a = ~(2t+ 1)le-2i8tp - 1 + ___ 1-,--__ 
sc k 2 (E - ER ) + if/2 

(11.72) 

Far from the resonance, (E - E R ) » f /2 and the potential scattering term 
dominates: 

4 'IT ) 2 a"'" a = -2(2t+ 1 sin SIP - pot k (11.73) 

At E = E R , the resonant term dominates and 

(11.74) 

Near the resonance there is interference between the two .terms, w~ch produces 
the characteristic shape shown in Figure 11.27. Accordmg to this model, we 
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Figure 11.29 Resonances observed in the radiative proton capture by 23Na. In 
this case the total yield of y rays in the energy range 3 -13 MeV was measured as 
a functio~ of the incident proton energy. The CI peaks appear because the target 
used was NaC!. From P. W. M. Glaudemans and P. M. Endt, Nucl. Phys. 30, 30 

(1962). 
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expect an interference "dip" on the low-E side of the resonance. The resonance 
height should decrease roughly as k- 2 (that is, as E- 1) with increasing incident 
energy, and the nonresonant "background" from potential scattering should 
remain roughly constant. Figure 11.28 shows scattering cross sections with the 
resonant structure clearly visible. The expectations of the resonance model are 
clearly fulfilled. 

Radiative capture reactions also show a resonant structure. Figure 11.29 shows 
examples of (p, y) reactions. Note that this is not a y spectrum in the conven­
tional sense-the horizontal axis shows the incident proton energy, not the 
emitted yenergy. 

Resonances observed in neutron scattering are discussed in more detail in 
Chapter 12. 

11.13 HEAVY-ION REACTIONS 

From the point of view of nuclear reactions, a heavy ion is defined to be any 
projectile with A > 4. Accelerators devoted to the study of heavy-ion reactions 
can produce beams of ions up to 238U, at typical energies of the order of 1-10 
MeV per nucleon, although much higher energies are also possible. 

The variety of processes than can occur in heavy-ion reactions is indicated 
schematically in Figure 11.30. At large impact parameters, Coulomb effects 
dominate, and Rutherford scattering or Coulomb excitation may occur. When 
the nuclear densities of the target and projectile just begin to overlap, nuclear 
reactions can occur, and at small overlap ordinary elastic or inelastic scattering 
and few-nucleon transfer through direct reactions may occur, as discussed 
previously in this chapter. 

Nuclear scattering, 
direct reactions 

------- ----- -----

~ 
(;ompound nucleus 

Figure 11.30 Processes in heavy-ion scattering depend on the impact parame­
ter, when energies are large enough to penetrate the Coulomb barrier. 
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12 . II"d· shown at various times (each unit of time 
Figure 11.31 Two C nuclei c~ I mg, sents 1 fm2). The vertical scale shows 
is 3.3 X 10- 24 s, and the area sown rep:e t T _ 11 Note the internal oscillations 
the nuclear density, which reaches ate a b a ak;apa·rt The energy of the incident 
that occur before the compound sys em re y c~sson and Joachim Maruhn, 
projectile was ~bout 700 MeV. ~cfourtesSY.Rn~~~dA~erican p. 59, December 1978.) 
Oak Ridge National Laboratory, rom cle , 

d 1 features emerge in these reac-
At small impact parameters, n~w an llunusu~h that the nuclei can overlap 

tions. If the impact param~ter is sma t~::~omplete fusion of the two nuclei, 
completely, a c~mpound .nuc eus, r~resen r to overcome the repulsive Coulomb 
can form as an mtermedlate state. oweve,. d nucleus 
barrier, the incident ion must be ~uit~ energetic, an~ thus th:~~:~~~:Us may be 
is formed with a considerable excltatlOn energy. Thls.com~o . ·th l"ght 
an unusual state of nuclear matter that cannot be achieved m reactlOns :~hie~e a 

nuclei. Because of the larg~,incide~t energy, t~e comi~:!~u~!~~:;;~r nucleon) 

density ~h~t"~::~~~~:i~ve~h~ ~~a~t:~:n ~~~e~~~t ions. The analysis of these 

~~~;:und states and their decay modes th~s re~re~e~t ~ ~h'~~:~i~a:i: ~~~~::: 
h can we extrapolate from an equatlOn 0 s a e 0 

~:~::r~ one for "extraordinary" nuclear matte~? Figure.1~3\~~=~ ~~~~~~~~ 
to calculate the intermediate states through which. the

1
;ug Y2C 

nucleus 24Mg progresses in the cour~e of the reactlOn C + h nnels available 
Once the excited compound state is. formed, .there are man~~:ri inal entrance 

for its decay. It can split more-or-less m half, either throudgh ~ 19(24Mg -'> 150 
channel e4Mg -'> 12C + 12C) or through a closely relate c anne 
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+ 9Be). For heavier nuclei, the study of the fission mode provides a check on 
theories derived from the study of the more familiar cases of transuranic fission, 
described in Chapter 13. 

A more probable means of decay of the compound nucleus is through particle 
emission, for fission is inhibited by a substantial Coulomb barrier. Emission of 
charged particles (protons or a's) is also inhibited by a Coulomb barrier. In 
reactions with heavy nuclei the compound nucleus is extremely proton rich, but 
the preferred decay mode is still neutron emission; this remains so, even for 
heavy nuclei with a proton excess of 10-20 or more. It is thus possible to study 
nuclei far from stability on the proton-rich side through (HI, xn) reactions, where 
HI indicates any heavy ion and x may be in the range 5-10. 

A particular application of these reactions is in the search for stable or nearly 
stable nuclei of superheavy elements. The transuranic atoms that have been 
studied through the neutron capture-,B-decay technique move up the atomic 
number scale in single steps, but the technique loses its applicability for the 
nuclei around Z = 104 or 105, where the half-lives become very short ( - seconds) 
for decay by spontaneous fission. As Z increases, the spontaneous fission half-life 
should continue to decrease (because the Coulomb energy, which makes the 
nucleus more unstable to fission, increases like Z2), until we approach the region 
of the next·. closed shell or "magic number" for protons, which has been 
calculated to be Z = 114 (rather than 126, as is already known for neutrons). 

It is possible to search for super heavy nuclei directly, by bombarding the 
heaviest possible quasistable targets e~§Cf, with t1/2 = 351 y) with beams such 
as 32S or 40Ca, in the hope of producing stable products around Z = 114, 
N = 164 following few-nucleon emission from the compound state. Another 
possibility would be to produce a highly unstable, extremely heavy compound 
state in a reaction such as 238U + 238U, in the hope that one of the fission decay 
channels would have a high probability of producing a stable superheavy nucleus. 
To date no success has been reported from either of these approaches, but the 
effort continues. 

Another unique feature of heavy-ion reactions is the transfer of large amounts 
of angular momentum to the compound nucleus. For example, in the reaction 

Figure 11.32 In nuclear molecule formation, there is not quite complete fusion 
of the two particles; they retain a "memory" of their previous character and break 
apart accordingly. The internal energy of the system can show rotational and 
vibrational structures, just like an ordinary molecule. 
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F" 11 33 (a) The 12C + 12C molecular states. The vertical scale shows the 
c;~:::ecti~n with the "uninteresting" Coulomb penetrability fac~or remov~d, le~v­
ing the nuclear structure factor. The resonan~es are labeled WI~ t~e s-pl~tanty 
assignments which can be grouped into r?tatlonal sequences 0 ,2 ,.4, / . '1' 
(b) Plotting the internal excitation energies of the resonances agamst I( +. ) 
reveals that the states do indeed form rotational sequences. From T. M. Cormier, 
Ann. Rev. Nucl. Particle Sci. 32, 271 (1982). 
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40Ca + 197Au, the Coulomb barrier is about 200 MeV. If we use 200 MeV incident 
40Ca, a grazing collision will provide about 1401i of angular momentum to the 
system. Even at collisions with smaller impact parameters, it would not be 
unusual to transfer an angular momentum of t'?- 401i to the compound system. 
At such rotational velocities, the nuclear force may not be able to provide the 
necessary centripetal acceleration, and the compound system may be completely 
unstable and therefore unable to form. In such a case, a new type of system is 
possible, called a nuclear molecule. Figure 11.32 illustrates the process schemati­
cally. The two nuclei do not form a compound system, corresponding to 
complete sharing of the incident energy. Instead a system analogous to a 
diatomic molecule is formed, exists for a short time, and then breaks apart in the 
same configuration as the incident particles. Because the decay occurs into the 
original particles, the combined system retains a considerable "memory" of its 
formation, contrary to the basic assumption of the compound-nucleus model. 
Evidence for such molecular states comes from observing the rotational and 
vibrational excitations that correspond closely with those observed in ordinary 
molecules. Figure 11.33 shows an example of the states observed in the l2C + l2C 
nuclear molecule. Resonances in the cross section correspond to the rotational 
and vibrational states permitted in the molecular system. 

I 

10 46 8 10 12 14 16 18 20 

0~------------------5~0-0------------------1~000 

I (I + 1) 

Figure 11.34 Rotational energies of 158Er and 174Hf. Neither case shows the 
expected linear dependence of E on 1(1 + 1), but in 174Hf the deviation is relatively 
gradual, while in 158Er there appears to be a sudden change in slope (and therefore 
in moment of inertia) in the neighborhood of I = 12 - 14. 
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In heavier nuclei, highly excited states with t ~ 40-501i can be populated in 
the compound system. The emission of a few neutrons from the excited system 
can change the angular momentum only little (a 5-MeV neutron carries at most 
only t - 31i), and following the neutron emission, excited bound states in the 
final nucleus can be formed with angular momentum quantum numbers of 40 or 
so. Assuming the product nucleus to be of the deformed even-Z, even-N variety, 
the excited states will show a rotational spectrum of the type illustrated in Figure 
5.22. The rotational energies are given by Equation 5.17: 

1i2 

E = 25I(I + 1) (11.75) 

and the states should cascade down toward the ground state through a sequence 
of E2 y transitions as in Figure 10.18. The observation of these cascade E2 
transitions provides a way to study these excited states. In particular, we can 
study whether the assumption of a fixed, constant moment of inertia 5 remains 
valid at such high excitations. One way to test this assumption is to plot the 
energies of the states against I(I + 1) and to see if the slope remains constant, as 
predicted by Equation 11.75. Figure 11.34 is an example of such a plot, and there 
appears to be some deviation from the expected linear behavior. 

There is a more instructive way to plot the data on the rotational structure. 
From Equation 11.75, the energy of a transition from state I to the next lower 
state I - 2 is 

1i 2 

E(I) - E(I - 2) = -(41 - 2) 
25 

(11.76) 

The transition energies should increase linearly with I; Figure 11.35 shows that 
this is true for the lower transitions, but becomes less valid as we go to larger I, 
and in fact the behavior changes completely at about 1= 16, but then seems to 
restore itself as we go to higher states. 

Let's assume that the moment of inertia is not constant, but increases gradually 
as we go to more rapidly rotating states; this effect, known classically as 
"centrifugal stretching," would not occur for a rigid rotor but would occur for a 
fluid. Because rotating nuclei have moments of inertia somewhere between that of 
a rigid rotor and of a fluid, as described in Equations 5.18 and 5.19, it is not 
surprising that centrifugal stretching occurs. Representing the rotational energy 
in terms of the rotational frequency 

we can then assume 5 varies either with increasing angular momentum, 

5=50 +kI(I+1) 

or with increasing rotational frequency, 

5=50 + k'w2 

(11.77) 

(11.78) 

(11.79) 

where k and k' are appropriate proportionality constants. From Equation 11.76, 

25 41 - 2 

11 = E(I) - E(I - 2) 
(11.80) 
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~~gure 11.35 y-ray spectra of transitions between rotational states in 158Er and 
~f .. For a p~~!ect rotor, t~e y-ray energies should increase monotonically with I. 

T~s IS so for Hf, but for 58Er the energy begins to decrease with I in the range 
1- 12-16, and after I = 16 the energy again begins to increase. From R. M. Lieder 
and H. Ryde, in Advances in Nuclear Physics, Vol. 10, edited by M. Baranger and E. 
Vogt (New York: Plenum, 1978). 

and plotting .5, measure? in these units, against w2, we ought to see either a 
constant 50 If no stretching occurs, or a linear behavior. Figure 11.36 shows an 
example of such a relationship. There appears to be a gradual increase in 5 
among the lower angular momentum states, then a radical change in behavior 
around 1= 16, and then a return to the gradual stretching. This effect is known 
as backbending, and occurs because the rotational energy exceeds the energy 
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Figure 11.36 Moment of inertia, from Equation 11.80, as a function of /i 2w2
, from 

the semiclassical formula HE(I) - E(I- 2)]2. Note the gradual increase in the 
moment of inertia for the lower states in both 158Er and 174Hf, and note also the 
backbending in 158Er. 

needed to break a pair of coupled nucleons. When that occurs (at an energy 
corresponding to 1= 16), the unpaired nucleons go into different orbits and 
change the nuclear moment of inertia. The situation then remains stable until 
about I = 30, where another pair is broken and another change in moment of 
inertia occurs. 

The study of the properties of nuclei at high angular momentum is another 
example of an unusual state of nuclear matter accessible only through heavy-ion 
reactions. 

A final example of the nuclear structure studies that can be done through 
heavy-ion reactions is the a-particle transfer reaction, such as e60, 12 C). In our 
discussion of a decay in Chapter 8, we alluded to the" preformation" of the a 
particle inside the nucleus. Because the a particle is such a stable structure, we 
can consider the nucleons in a nucleus to have a high probability of occasionally 
forming an a particle, even in nuclei that do not a decay. This leads to the 
a-cluster model of nuclei, in which we look for nuclear structure characteristic of 
such clusters. States populated in e60, 12C) reactions, in which four nucleons are 
simultaneously transferred to the target nucleus, might be analyzed in terms of 
the transfer of an a cluster from 160 to the target. Figure 11.37 illustrates the 
cross sections for the formation of states in 20Ne through a-transfer reactions. 
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1z'cgure 11.37 a-particle transfer reactions leading to 20Ne At top is the ob d 
spectrum and at bottom is th 20N . serve 

are labeled with . e e spectrum. Individual excited states in 20Ne 
left in its first ex~~t~~ ~:a~~s ~~ ~h:3s~c~u~ aS~igned to. reactions in which 12C is 
excited states of 20N . . e .'. n t e followmg page are shown the 
states and not others~'t~O~~~~:~ ~elect'~'ty of the reaction in populating certain 
reaction Because th~ 16 . ~nes s ow states that are not populated in the 
(Z = 8 iv _ 8) th b 0 proJectll~ and target are doubly closed-shell nuclei 
particl~ to ~ d~Ub~ 0 s~rved states m 20Ne correspond to the addition of an a 
resultant s in of y magic core; that is, the four valence nucleons are coupled to a 
subset of ~e 20Nz:~~~ut c~~ hcarry a net orbital angular momentum. Only a small 
Nucl. Phys. A 218, 606 ~~9~~). ave this character. Data from H. H. Rossner et aI., 
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PROBLEMS 

1. Complete the following reactions: 

27AI + P -7 +n 

32S + a -7 +y 

I97Au + 12C -7 206At + 

2. (a) Solve Equations 11.3 and 11.4 for cos (). (b) Determine the relationship 
between cos () and Pb for elastic scattering. (c) Show that there is a 
maximum value of () only when ma > my. (d) Find the maximum angle at 
which a particles appear after elastic scattering from hydrogen and from 
deuterium. 

3. It is desired to study the first excited state of 160, which is at an energy of 
6.049 M~V. (a) Using the (a, n) reaction on a target of l3C, what is the 
minimum energy of incident alphas which will populate the excited state? 
(b) In what direction will the resulting neutrons travel? (c) If it is desired to 
detect the neutrons at 90° to the incident beam, what is the minimum a 
energy that can result in the excited state being populated? 

4. (a) In Coulomb scattering of 7.50-MeV protons by a target of 7Li, what is 
the energy of the elastically scattered protons at 90°? (b) What is the energy 
of the inelastically scattered protons at 90° when the 7Li is left in its first 
excited state (0.477 MeV)? 

5. The (n, p) reaction can be regarded as equivalent to fJ+ decay in that the 
same initial and final nuclei are involved. Derive a general expression 
relating the Q value of the (n, p) reaction to the maximum energy release in 
fJ+ decay. Find several examples to verify your derived relationship. 

6. The Q value for the reaction 9Be (p, d)8Be is 559.5 ± 0.4 keV. Use this 
value along with the accurately known masses of 9Be, 2 H, and 1 H to find the 
mass of 8Be. 

7. (a) Calculate the Q value of the reaction p +4He -7 2H +3He. (b) What is 
the threshold energy for protons incident on He? For a's incident on 
hydrogen? 

8. For the reaction 2H + 2H -7
3He + n, plot the energy of the outgoing 

neutron as a function of angle for 2H incident on 2H at rest. Use incident 
energies of 0.00,2.50, and 5.00 MeV. 

9. Compute the Q values for the reactions (a) 6Li + P -7 3He +4He; 
(b) 59CO + P -7 n + 59Ni; (c) 40Ca + a -7 n + 43Ti. 

10. For the following endoergic reactions, find the Q value and the threshold 
kinetic energy, assuming in each case that the lighter particle is incident on 
the heavier particle at rest: (a) 7Li + P -7 7Be + n; (b) 12C + P -7 n + 12N; 
(c) 35CI + a -7 n + 38K. 
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11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 
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At threshold, the product particles Y + b move. at the same velocity. Use 
momentum conservation to derive a relationship between Ta and Tb ~t 
threshold, and then substitute your expression into Equation 11.5 to obtam 
the threshold condition (11.6). 

It is desired to study the low-lying excited states of 35Cl (1.219: 1.:63; 2.646, 
2.694,3.003,3.163 MeV) through the 32S(a, p) reaction. (a) With mCldent a 
particles of 5.000 MeV, which of these excited states ca~ be reached? 
(b) Again with 5.000-MeV incident a's, find the proton energies observed at 
0, 45, and 90°. 
In the reaction 7Li + p -) 4He + 4He (18.6 MeV protons incident on a 
lithium target) the differential cross section (in the center-of-mass system) 
reaches a maximum of about 1.67 barns/steradian at a center-of-mass an.gle 
of 75°. (a) Sketch the reaction kinematics in the laboratory sy~tem, labehng 
all momenta, directions, and energies. (b) Assuming a target thickness of 1.0 
mg/cm2 and a beam of protons of current 1.0 /LA spread over an area of 1 
cm2 find the number of a particles per second in the above geometry that 
wodld strike a detector of area 0.5 cm2 located 12.0 cm from the target. 

The radioactive isotope 150, which has important medical applications (see 
Chapter 20), can be produced in the reaction 12C (a, n). (a). T~e cross 
section reaches a peak when the laboratory energy of the mCldent a 
particles is 14.6 MeV. What is the excitation energy ~f ~he compoun~ 
nuclear state? (b) The reaction cross section at the above mCldent energy is 
25 mb. Assuming a carbon target of 0.10 mg/cm2 an~ a cu~rent. o~ 20 nA of 
a's, compute the 150 activity that results after 4.0 mm of uradlatlOn. 

In a Coulomb excitation experiment, a particles are inelastically sca~tered 
from 160Dy nuclei. (a) If the incident energy is 5.600 MeV, what is t~e 
energy of the elastically scattered a's observed at () = 150°? (b) States m 
160Dy are known at 2+(0.087 MeV), 4+(0.284 MeV), an? 2+(0.96~ MeV!. 
Considering only the E2 excitation mode, find the energies of the melasti­
cally scattered a's observed at 150°. 

What should be the incident energy of a beam of protons to be Coulomb 
scattered by gold nuclei, if it is desired that the minimum distance between 
projectile and target should correspond to the two nuclei just touching at 
their surfaces? 
Alpha particles of energy 8.0 MeV are incident at a rate of ?O x 10

7 
per 

second on a gold foil of thickness 4.0 x 10-6 m. A detector m the f?rm.of 
an annular ring is placed 3.0 cm from the scattering foil and concentnc with 
the beam direction' the annulus has an inner radius of 0.50 cm and an outer 
radius of 0.70 cm.' What is the rate at which scattered particles strike the 
detector? 
Alpha particles of energy 6.50 MeV are Coulomb scatter~d by a gold foil. 
(a) What is the impact parameter when the scattered part1c~es are observed 
at 90°? (b) Again for scattering at 90°, find the smallest distance betwe~n 
the a particles and the nucleus, and also find the kinetic and potential 
energies of the a particle at that distance. 
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19. Protons of energy 4.00 MeV are Coulomb scattered by a silver foil of 
thickness 4.0 X 10-6 m. What fraction of the incident protons is scattered 
at angles (a) beyond 90°? (b) Less than 10°? (c) Between 5 and 100? 

20. Derive Equations 11.49-11.51 for "black disk" scattering. 

21. Give. the compound nucleus resulting from protons bombarding an 
alummum target, and give at least five different ways for the compound 
nucleus to decay. 

22. For the states of 61 Cu populated in the (a, p) reaction, Figure 11.4, find the 
t transfer for each of the states. 

23. In the (d,p) reaction leading to states in 91Zr, as shown in Figures 11.23 and 
11.24, discuss the possible final angular momentum states if the reaction 
could proceed by a compound-nucleus mechanism. As an example, consider 
whether .it still is possible to associate a final r = ~ + state uniquely with 
t = 4. DiSCUSS other final states as well. 

24. The low-lying levels of 43SC were illustrated in Figure 5.12. It is desired to 
populate the states up to the ~ - excited state with the (d, n) reaction. 
Estimate the most likely angle for the outgoing neutrons for each excited 
state. (Try to estimate the excited-state energies from the figure.) 

25. The (d, p) reaction on 49Ti G - ground state) populates the "collective" 0 +, 
2 +, and 4+ states at 0.000, 1.555, and 2.675 MeV (respectively) in 50Ti. 
What are the angular momentum values transferred in the direct reaction? 
The eHe, p) reaction on an even-Z, even-N target leads to certain final 
states identified with the transfer of either t= 0,2, or 4. (a) For each choice, 
list the possible spin-parity assignments in the final nucleus. (b) In some 
cases, the analysis suggests that certain states are populated by a mixture of 
t = 0 and t = 2, while others are populated by a mixture of t = 2 and 
t = 4. Is it possible to make a unique determination of the final spin in 
either of these cases? 

The (d, p) reaction on 52Cr leads to the ~ - ground state of 53Cr. How would 
the analysis of the angular momentum transfer in this reaction differ 
between an analysis in terms of direct reactions and one in terms of 
compound-nucleus reactions? 


