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At this point it is tempting to try to extend the ideas of the previous chapter to 
heavier nuclei. Unfortunately, we run into several fundamental difficulties when 
we do. One difficulty arises from the mathematics of solving the many-body 
problem. If we again assume an oversimplified form for the nuclear potential, 
such as a square well or an harmonic oscillator, we could in principle write down 
a set of coupled equations describing the mutual interactions of the A nucleons. 
These equations cannot be solved analytically, but instead must be attacked using 
numerical methods. A second difficulty has to do with the nature of the nuclear 
force itself. There is evidence to suggest that the nucleons interact not only 
through mutual two-body forces, but through three-body forces as well. That is, 
the force on nucleon 1 not only depends on the individual positions of nucleons 2 
and 3, it contains an additional contribution that arises from the correlation of 
the positions of nucleons 2 and 3. Such forces have no classical analog. 

In principle it is possible to do additional scattering experiments in the 
three-body system to try (in analogy with the two-body studies described in 
Chapter 4) to extract some parameters that describe the three-body forces. 
However, we quickly reach a point at which such a microscopic approach 
obscures, rather than illuminates, the essential physics of the nucleus. It is 
somewhat like trying to obtain a microscopic description of the properties of a 
gas by studying the interactions of its atoms and then trying to solve the 
dynamical equations that describe the interatomic forces. Most of the physical 
insight into the properties of a gas comes from a few general parameters such as 
pressure and temperature, rather than from a detailed microscopic theory. 

We therefore adopt the following approach for nuclei. We choose a de­
liberately oversimplified theory, but one that is mathematically tractable and rich 
in physical insight. If that theory is fairly successful in accounting for at least a 
few nuclear properties, we can then improve it by adding additional terms. 
Through such operations we construct a nuclear model, a simplified view of 
nuclear structure that still contains the essentials of nuclear physics. A successful 
model must satisfy two criteria: (1) it must reasonably well account for previ­
ously measured nuclear properties, and (2) it must predict additional properties 
that can be measured in new experiments. This system of modeling complex 
processes is a common one in many areas of science; biochemists model the 
complex processes such as occur in the replication of genes, and atmospheric 
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scientists model the complex dynamics of air and water currents that affect 
climate. 

5.1 THE SHELL MODEL 

Atomic theory based on the shell model has provided remark~~le clarification of 
the complicated details of atomic structure. Nuclear phYSiCiStS therefo~e at­
t pted to use a similar theory to attack the problem of nuclear structure: 111 the 
:~e of similar success in clarifying the properties of nuclei. In the atomiC. shell 
:odel, we fill the shells with electrons in order of increasing energy,. consl~tent 
with the requirement of the Pauli principle. When we do so, we obta111 an 111ert 
core of filled shells and some number of vale?ce .electrons; the model then 
assumes that atomic properties are determined pnman~y by the val~nce electro~s. 
When we compare some measured properties of atOIll1C sys~ems With the prediC­
tions of the model, we find remarkable agreement. In parhcular, we see regular 
and smooth variations of atomic properties within a subshell, but rather sudden 
and dramatic changes in the properties when we fill one subsh~ll ~nd e~ter the 
next. Figure 5.1 shows the effects of a change in subshell on the lOlllC radlUs and 
ionization energy of the elements. . . 

When we try to carry this model over to the nuclear re~l~, we l~edlately 
encounter several objections. In the atomic case, the potenhalls su~phed by the 
Coulomb field of the nucleus; the subshells ("orbits") are es~abhshed. by an 
external agent. We can solve the Schrodinger equation for this potenhal and 
calculate the energies of the subshells into which electrons can then be placed. In 
the nucleus, there is no such external agent; the nucleons move in a potential that 
they themselves create. .., 

Another appealing aspect of atomic shell t~eory is t~e e:ustence of spat~al 
orbits. It is often very useful to describe atOIll1C properhes.111 ter~s of spahal 
orbits of the electrons. The electrons can move in tho~e orbits rel~hvely free of 
collisions with other electrons. Nucleons have a relahvely large diameter. co~­
pared with the size of the nucleus. How can we regard the nucl~~ns as m?V111g 111 
well defined orbits when a single nucleon can make many colhslOns dunng each 
orbit? , 

First let's examine the experimental evidence that supports the eX1st~nce of 
nuclear shells. Figure 5.2 shows measured proton and neutro~ sep~r.atlOn en­
ergies plotted as deviations from the predictions of the seIll1empmcal mass 
form~la, Equation 3.28. (The gross changes in nuclear binding are removed by 
plotting the data in this for~, allowi~g th~. shell effects to. become m~re 
apparent.) The similarity with Figure 5.1 is stnking-:- the separatlOn energy, like 
the atomic ionization energy, increases gradually With Nor Z except for a few 
sharp drops that occur at the same neutron and .proton numbers. We are ~ed to 
guess that the sharp discontinuities in the separ~tlOn energy correspond (as,l~ the 
atomic case) to the filling of major shells. Figure 5.3 s~ows ~ome addlho~al 
evidence from a variety of experiments; the sudden and dlsconhnuous beha~lOr 
occurs at the same proton or neutron numbers as in the case of the separatlOn 
energies. These so-called "magic numbers" (Z or N = 2, 8, 20, 28, 50, 82, and 
126) represent the effects of filled major shells, and any successful t~eory must be 
able to account for the existence of shell closures at those occupatlOn numbers. 
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Figure 5.1 Atomic radius (top) and ionization energy (bottom) of the elements. 
The ~mooth variations in these properties correspond to the gradual filling of an 
atomic shell, and the sudden jumps show transitions to the next shell. 

The question of t~e existence of a nuclear potential is dealt with by the 
fundamental assumptiOn of the shell model: the motion of a single nucleon is 
governed by a potential caused by all of the other nucleons. If we treat each 
individual nucleon in this way, then we can allow the nucleons in turn to occupy 
the energy levels of a series of subshells. 
. The existence of definite spatial orbits depends on the Pauli principle. Consider 
In a heavy nucleus a collision between two nucleons in a state near the very 
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Figure 5.2 (Top) Two-proton separation energies of sequences of isotones 
(constant N). The lowest Z member of each sequence is noted. (Bottom) Two-neu­
tron separation energies of sequences of isotopes. The sudden changes at the 
indicated "magic numbers" are apparent. The data plotted are differences between 
the measured values and the predictions of the semiempirical mass formula. 
Measured values are from the 1977 atomiC mass tables (A. H. Wapstra and K. Bos, 
Atomic Data and Nuclear Data Tables 19,215 (1977». 

bottom of the potential well. When the nucleons collide they will transfer energy 
to one another, but if all of the energy levels are filled up to the level of the 
valence nucleons, there is no way for one of the nucleons to gain energy except to 
move up to the valence level. The other levels near the original level are filled and 
cannot accept an additional nucleon. Such a transfer, from a low-lying level to 
the valence band, requires more energy than the nucleons are likely to transfer in 
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Figure 5.3 Additional evidence for nuclear shell structure. (a) Energies of a 
particles emitted by isotopes of Rn. Note the sudden increase when the daughter 
has N = 126 (i.e., when the parent has N = 128). If the daughter nucleus is more 
tightly bound, the a decay is able to carry away more energy. (b) Neutron-capture 
cross sections of various nuclei. Note the decreases by roughly two orders of 
magnitude near N = 50, 82, and 126. (c) Change in the nuclear charge radius when 
t:.. N = 2. Note the sudden jumps at 20, 28, 50, 82, and 126 and compare with Figure 
5.1. To emphasize the shell effects, the radius difference t:..R has been divided by 
the standard t:..R expected from the A1/3 dependence. From E. B. Shera et aI., 
Phys. Rev. C 14, 731 (1976). 
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a collision. Thus the collisions cannot occur, and the nucleons can indeed orbit as 
if they were transparent to one another! 

Shell Model Potential 

The first step in developing the shell model is the choice of the potential, and we 
begin by considering two potentials for which we solved the three-dimensional 
SchrOdinger equation in Chapter 2: the infinite well and the harmonic oscillator. 
The energy levels we obtained are shown in Figure 5.4. As in the case of atomic 
physics, the degeneracy of each level is the the number of nucleons that can be 
put in each level, namely 2(U+ 1). The ,factor of (U+ 1) arises from the m t 
degeneracy, and the additional factor of 2 comes from the ms degeneracy. As in 
atomic physics, we use spectroscopic notation to label the levels, with one 
important exception: the index n is not the principal quantum number, but 
simply counts the number of levels with that t value. Thus 1d means the first 
(lowest) d state, 2d means the second, and so on. (In atomic spectroscopic 
notation, there are no 1d or 2d states.) Figure 5.4 also shows the occupation 

Infinite Harmonic 
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Ip 6 )0 ~0 ~ 
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Figure 5.4 Shell structure obtained with infinite well and harmonic oscillator 
potentials. The capacity of each level is indicated to its right. Large gaps occur 
between the levels, which we associate with closed shells. The circled numbers 
indicate the total number of nucleons at each shell closure. 
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Figure 5.5 A realistic form for the shell-model potential. The "skin thickness" 
4a In 3 is the distance over which the potential changes from 0.9110 to 0.1110. 

number of each level and the cumulative number of nucleons that would 
correspond to the filling of major shells. (Neutrons and protons, being nonidenti­
cal particles, are counted separately. Thus the Is level can hold 2 protons as well 
as 2 neutrons.) It is encouraging to see the magic numbers of 2, 8, and 20 
emerging in both of these schemes, but the higher levels do not correspond at all 
to the observed magic numbers. 

As a first step in improving the model, we try to choose a. more realistic 
potential. The infinite well is not a good approximation to the nuclear potential 
for several reasons: To separate a neutron or proton, we must supply enough 
energy to take it out of the well-an infinite amount! In addition, the nuclear 
potential does not have a sharp edge, but rather closely approximates the nuclear 
charge and matter distribution, falling smoothly to zero beyond the mean radius 
R. The harmonic oscillator, on the other hand, does not have a sharp enough 
edge, and it also requires infinite separation energies. Instead, we choose an 
intermediate form: 

-v; 
V(r) = 0 

1 + exp [(r - R)/a] (5.1) 

which is sketched in Figure 5.5. The parameters R and a give, respectively, the 
mean radius and skin thickness, and their values are chosen in accordance with 
the measurements discussed in Chapter 3: R = 1.25A1/3 fm and a = 0.524 fm. 
The well depth Vo is adjusted to give the proper separation energies and is of 
order 50 MeV. The resulting energy levels are shown in Figure 5.6; the effect of 
the potential, as compared with the harmonic oscillator (Figure 5.4) is to remove 
the t degeneracies of the major shells. As we go higher in energy, the splitting 
becomes more and more severe, eventually becoming as large as the spacing 
between the oscillator levels themselves. Filling the shells in order with 2(U + 1) 
nucleons, we again get the magic numbers 2, 8, and 20, but the higher magic 
numbers do not emerge from the calculations. 
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Figure 5.6 At the left are the energy levels calculated with the potential of Figure 
5.5. To the right of each level are shown its capacity and the cumulative number of 
nucleons up to that level. The right side of the figure shows the effect of the 
spin-orbit interaction, which splits the levels with t> ° into two new levels. The 
shell effect is quite apparent, and the magic numbers are exactly reproduced. 

Spin-Orbit Potential 

How can we modify the potential to give the proper magic numbers? We 
certainly cannot make a radical change in the potential, because we do not want 
to destroy the physical content of the model-Equation 5.1 is already a very 
good guess at how the nuclear potential should look. It is therefore necessary to 
add various terms to Equation 5.1 to try to improve the situation. In the 1940s, 
many unsuccessful attempts were made at finding the needed correction; success 
was finally achieved by Mayer, Haxel, Suess, and Jensen who showed in 1949 
that the inclusion of a spin-orbit potential could give the proper separation of the 
subshells. 

Once again, we are borrowing an idea from our colleagues, the atomic 
physicists. In atomic physics the spin-orbit interaction, which causes the observed 
fine structure of spectral lines, comes about because of the electromagnetic 
interaction of the electron's magnetic moment with the magnetic field generated 
by its motion about the nucleus. The effects are typically very small, perhaps one 
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part in 105 in the spacing of atomic levels. No such electromagnetic interaction 
would be strong enough to give the substantial changes in the nuclear level 
spacing needed to generate the observed magic numbers. Nevertheless we adopt 
the concept of a nuclear spin-orbit force of the same form as the atomic 
spin-orbit force but certainly not electromagnetic in origin. In fact, we know from 
the scattering experiments discussed in Chapter 4 that there is strong evidence for 
a nucleon-nucleon spin-orbit force. 

The spin-orbit interaction is written as V"go(r)/· s, but the form of V"go(r) is not 
particularly important. It is the I· s factor that causes the reordering of the 
levels. As in atomic physics, in the presence of a spin-orbit interaction it is 
appropriate to label the states with the total angular momentum j = 1 + s. A 
single nucleon has s = t, so the possible values of the total angular momentum 
quantum number are j = 1 + t or j = 1 - t (except for 1 = 0, in which case 
only j = t is allowed). The expectation value of I· s can be calculated using a 
common trick. We first evaluate j2 = (/+ S)2: 

j2 = 12 + U. s + S2 

I.s= t(j2-/2 - S2) 
(5.2) 

Putting in the expectation values gives 

(I· s) = Hj(J + 1) - 1(/+ 1) - s(s + 1)] 1i 2 (5.3) 

Consider a level such as the 1f level (I = 3), which has a degeneracy of 
2(21 + 1) = 14. The possible j values are 1 ± t = f or I. Thus we have the levels 
1f5/2 and 1f7/ 2. The degeneracy of each level is (2) + 1), which comes from the 
m) values. (With spin-orbit interactions, ms and m( are no longer "good" 
quantum numbers and can no longer be used to label states or to count 
degeneracies.) The capacity of the 1f5/2 level is therefore 6 and that of 1f7/2 is 8, 
giving again 14 states (the number of possible states must be preserved; we are 
only grouping them differently). For the 1f5/2 and 1f7/2 states, which are known 
as a spin-orbit pair or doublet, there is an energy separation that is proportional 
to the value of (I· s) for each state. Indeed, for any pair of states with I> 0, we 
can compute the energy difference using Equation 5.3: 

(I· S»)=(+1/2 - (I· S»)=(-1/2 = HU+ 1)1i2 (5.4) 

The energy splitting increases with increasing I. Consider the effect of choosing 
V"go(r) to be negative, so that the member of the pair with the larger} is pushed 
downward. Figure 5.6 shows the effect of this splitting. The 1f7/2 level now 
appears in the gap between the second and third shells; its capacity of 8 nucleons 
gives the magic number 28. (The p and d splittings do not result in any major 
regrouping of the levels.) The next major effect of the spin-orbit term is on the Ig 
level. The 199/ 2 state is pushed down all the way to the next lower major shell; its 
capacity of 10 nucleons adds to the previous total of 40 for that shell to give the 
magic number of 50. A similar effect occurs at the top of each major shell. In 
each case the lower energy member of the spin-orbit pair from the next shell is 
pushed down into the lower shell, and the remaining magic numbers follow 
exactly as expected. (We even predict a new one, at 184, which has not yet been 
seen.) 

As an example of the application of the shell model, consider the filling of 
levels needed to produce 1~0 and 1~0. The 8 protons fill a major shell and do not 
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Figure 5.7 The filling of shells in 150 and 170. The filled proton shells do not 
contribute to the structure; the properties of the ground state are determined 
primarily by the odd neutron. 

contribute to the structure. Figure 5.7 shows the filling of levels. The extreme 
limit of the shell model asserts that only the single unpaired nucleon determines 
the properties of the nucleus. In the case of 150, the unpaired neutron is in the 
P1/2 shell; we would therefore predict that the ground state of 15 0 has spin} and 
odd parity, since the parity is determined by (-1)(. The ground state of 170 
should be characteristic of a d 5/2 neutron with spin f and even parity. These two 
predictions are in exact agreement with the observed spin-parity assignments, 
and in fact similar agreements are found throughout the range of odd-A nuclei 
where the shell model is valid (generally A < 150 and 190 < A < 220, for reasons 
to be discussed later in this chapter). This success in accounting for the observed 
ground-state spin-parity assignments was a great triumph for the shell model. 

Magnetic Dipole Moments 

Another case in which the shell model gives a reasonable (but not so exact) . 
agreement with observed nuclear properties is in the case of magnetic dipole 
moments. You will recall from Chapter 3 that the magnetic moment is computed 
from the expectation value of the magnetic moment operator in the state with 
maximum z projection of angular momentum. Thus, including both 1 and s 
terms, we must evaluate 

(5.5) 
when }z = }Ii. This cannot be evaluated directly, since I z and Sz do not have 
precisely defined values when we work in a system in which } is precisely 
defined. We can rewrite this expression, using j = 1 + s, as 

M = [g(}z + (gs - g()SzlMN/1i (5.6) 
and, taking the expectation value when }z = jli, the result is 

(M) = [g(j + (gs - g()(sz)/Ii]MN (5.7) 
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Figure 5.8 As the total angular momentum j precesses about the z axis keeping 
jz constant, the vectors t and s precess about j. The components of t and s along j 
remain constant, but t,. and Sz vary. 

The expection value of (s z > can be quickly computed by recalling that j is the 
only vector of interest in this problem-the t and s vectors are meaningful only 
in their relationship to j. Specifically, when we compute (sJ the only survi~ing 
part will be from the component of s along j, as suggested by the vector diagra'm 
of Figure 5.8. The instantaneous value of Sz varies, but its component along j 
remains constant. We therefore need an expression for the vector Sj' the compo­
nent of S along j. The unit vector along j is jl UI, and the component of S along 
j is Is' jl/ljl· The vector Sj is therefore jls • jl/ljl2, and replacing all quantities 
by their expectation values gives 

(sz> = 2j(; + 1) [j(j + 1) - t(t+ 1) + s(s + 1)] Ii (5.8) 

where s· j = s· (t+ s) is computed using Equation 5.3, Thus for j = t+ t, 
(sz> = 1i12, while for j = t- } we have (sz> = -lijI2(j + 1). The correspond­
ing magnetic moments are 

j = t+ t 

j = t- t (5.9) 

Figure 5.9 shows a comparison of these calculated values with measured values 
for shell-model odd-A nuclei. The computed values are shown as solid lines and 
are known as the Schmidt lines; this calculation was first done by Schmidt in 
1937. The experimental values fall within the limits of the Schmidt lines, but are 
generally smaller in magnitude and have considerable scatter. One defect of this 
theory is the assumption that gs for a nucleon in a nucleus is the same as gs for a 
free nucleon. We discussed in Chapter 3 how the spin g factors of nucleons differ 
considerably from the value of 2 expected for "elementary" spin- t particles. If 
we regard the substantial differences as arising from the "meson cloud" that 
surrounds the nucleon, then it is not at all surprising that the meson cloud in 
nuclei, where there are other surrounding nucleons and mesons, differs from what 
it is for free nucleons, It is customary to account for this effect by (somewhat 
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Figure 5.9 Experimental values for the magnetic moments of odd-neutron and 
odd-proton shell-model nuclei. The Schmidt lines are shown as solid for 9s = 
9s(free) and dashed for 9s = O,69s(free). 

arbitrarily) reducing the gs factor; for example, the lines for gs = O.6gs(free) are 
shown in Figure 5.9. The overall agreement with experiment is better, but the 
scatter of the points suggests that the model is oversimplifying the calculation of 
magnetic moments, Nevertheless, the success in indicating the general trend of 
the observed magnetic moments suggests that the shell model gives us at least an 
approximate understanding of the structure of these nuclei. 

Electric Quadrupole Moments 

The calculation of electric quadrupole moments in the shell model is done by 
evaluating the electric quadrupole operator, 3z 2 - r2, in a state in which the total 
angular momentum of the odd particle has its maximum projection along the z 
axis (that is, m j = + j). Let's assume for now that the odd particle is a proton. If 
its angular momentum is aligned (as closely as quantum mechanics allows) with 
the z axis, then it must be orbiting mostly in the xy plane. As we indicated in the 
discussion following Equation 3.36, this would give a negative quadrupole 
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Table 5.1 Shell-Model Quadrupole Moments 

Measured Q 

Single Particle Single Hole 
Shell-Model Calculated Q 
State (single proton) p n p n 

IP3/2 -0.013 - 0.0366CLi) + 0.0407(11 B) + 0.053(9Be) 

Ids/ 2 -0.036 -0.12e9p) - 0.026(17 0) + O.140e7AI) + 0.201e5 Mg) 

. Id 3/ 2 -0.037 - 0.0824ge5 CI) -0.064e3S) +0.056e9 K) +OA5e5S) 

1f7/2 -0.071 -0.26(43 SC) - 0.080(41 Ca) +OAOe9Co) + 0.24(49 Ti) 

2P3/2 -0.055 - 0.209(63 Cu) - 0.0285e3 Cr) + 0.195(67 Ga) +0.20e7Pe) 

1f5/2 -0.086 - 0.20(61 Ni) +0.274(85 Rb) + 0.15(67 Zn) 

199/ 2 -0.13 -0.32(93 Nb) -O.17C3 Ge) +0.86e I5 In) + OA5(85 Kr) 

197/ 2 -0.14 -OAge 23 Sb) + 0.20(139 La) 

2ds/ 2 -0.12 - 0.36e21 Sb) - 0.236C1 Zr) + OA4(1ll Cd) 

Data for this table are derived primarily from the compilation of V. S. Shirley in the Table of Isotopes, 7th 
ed. (New York: Wiley, 1978). The uncertainties in the values are typically a few parts in the last quoted 
significant digit. 

moment of the order of Q"" - (r 2
). Some experimental values of quadrupole 

moments of nuclei that have one proton beyond a filled subshell are listed in 
Table 5.1. Values of (r2) range from 0.03 b for A = 7 to 0.3 b for A = 209, and 
thus the measured values are in good agreement with our expectations. 

A more refined quantum mechanical calculation gives the single-particle 
quadrupole moment of an odd proton in a shell-model state j: 

(5.10) 

For a uniformly charged sphere, (r2) = tR2 = tR%A2/3. Using these results, we 
can compute the quadrupole moments for the nuclei shown in Table 5.1. The 
calculated values have the correct sign but are about a factor of 2-3 too small. 

A more disturbing difficulty concerns nuclei with an odd neutron. An un­
charged neutron outside a filled subshell should have no quadrupole moment at 
all. From Table 5.1 we see that the odd-neutron values are generally smaller than 
the odd-proton values, but they are most definitely not zero. 

When a subshell contains more than a single particle, all of the particles in the 
subshell can contribute to the quadrupole moment. Since the capacity of any 
subshell is 2j + 1, the number of nucleons in an unfilled subshell will range from 
1 to 2j. The corresponding quadrupole moment is 

[ 
n - 1 ] 

(Q) = (Qsp) 1 - 2 2j _ 1 (5.11) 

where n is the number of nucleons in the subshell (1 .::;; n .::;; 2j) and Qsp is the 
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Figure 5.10 Experimental values of electric quadrupole moments of odd-neutron 
and odd-proton nuclei. The solid lines show the limits Q - < r2 > expected for 
shell-model nuclei. The data are within the limits, except for the regions 60 < Z < 80, 
Z> 90, 90 < N < 120, and N> 140, where the experimental values are more than 
an order of magnitude larger than predicted by the shell model. 

single-particle quadrupole moment given in Equation 510 When n = 1 Q = Q • . 'SP' 
but when n = 2j (corresponding to a subshell that lacks only one nucleon from 
being filled), Q = - Qsp • Table 5.1 shows the quadrupole moments of these 
so-call~d "hole" states, and you can see that to a very good approximation, 
Q(parhcle) = - Q(hole). In particular, the quadrupole moments of the hole 
states are positive and opposite in sign to the quadrupole moments of the particle 
states. 

Before we are overcome with enthusiasm with the success of this simple model, 
let us look at the entire systematic behavior of the quadrupole moments. Figure 
5.10 summarizes the measured quadrupole moments of the ground states of 
odd-~ass nuclei. There is some evidence for the change in sign of Q predicted by 
EquatlOn 5.11, but the situation is not entirely symmetric-there are far more 
positive than negative quadrupole moments. Even worse, the model fails to 
predict the extremely large quadrupole moments of several barns observed for 
certain heavy nuclei. The explanations for these failures give us insight into other 
aspects of nuclear structure that cannot be explained within the shell model. We 
discuss these new features in the last two sections of this chapter. 
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Figure 5.11 Shell-model interpretation of the levels of 170 and 17F. All levels 
below about 5 MeV are shown, and the similarity between the levels of the two, 
nuclei suggests they have common structures, determined by the valence nucleons. 
The even-parity states are easily explained by the excitation of the single odd 
nucleon from the d5/ 2 g'i'ound state to 2S1/ 2 or 1d3/ 2 . The odd-parity states have 
more complicated structures; one possible configuration is shown, but others are 
also important. 

Valence Nucleons 

The shell model, despite its simplicity, is successful in accounting for the spins 
and parities of nearly all odd-A ground states, and is somewhat less successful 
(but still satisfactory) in accounting for magnetic dipole and electric quadrupole 
moments. The particular application of the shell model that we have considered 
is known as the extreme independent particle model. The basic assumption of the 
extreme independent particle model is that all nucleons but one are paired, and 
the nuclear properties arise from the motion of the single unpaired nucleon. This 
is obviously an oversimplification, and as a next better approximation we can 
treat all of the particles in the unfilled subshell. Thus in a nucleus such as i5Ca23' 
with three neutrons beyond the closed shell at N = 20, the extreme version of the 
shell model considers only the 23rd neutron, but a more complete shell model 
calculation should consider all three valence neutrons. For i~Ti23' we should take 
into account all five particles (2 protons, 3 neutrons) beyond the closed shells at 
Z = 20 and N = 20. 

If the extreme independent particle model were valid, we should be able to 
reproduce diagrams like Figure 5.6 by studying the excited states of nuclei. Let's 
examine some examples of this procedure. Figure 5.11 shows some of the excited 
states of 1~09 and 1~F8' each of which has only one nucleon beyond a doubly 
magic (Z = 8, N = 8) core. The ground state is ~ +, as expected for the d S/ 2 
shell-model state of the 9th nucleon. From Figure 5.6 we would expect to find 
excited states with spin-parity assignments of ! + and 1 +, corresponding to the 
1s1/ 2 and 1d 3/2 shell-model levels. According to this assumption, when we add 
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Figure 5.12 Energy levels of nuclei with odd particles in the 1f7/2 shell. 

energy to the nucleus, the core remains inert and the odd particle absorbs the 
energy and moves to higher shell-model levels. The expected t + shell-model state 
appears as the first excited state, and the 1 + state is much higher, but how can 
we account for t -, 1-, and ~ -? (The negative parity 2Pl/2' 2P3/2' and If5/2 
shell-model states are well above the 1d 3/2 state, which should therefore appear 
lower.) Figure 5.11 shows one possible explanation for the 1 - state: instead of 
exciting. the odd nucleon to a higher state, we break the pair in the 1Pl '2 level 
and exclt~ one of. the nucleons to pair with the nucleon in the d 5/2 level. The odd 
nucleon IS now m the 1Pl/2 state, giving us a t - excited state. (Because the 
pairing energy increases with t, it is actually energetically favorable to break an 
t= 1 pair and form an t= 2 pair.) Verification of this hypothesis requires that 
we determine by experiment whether the properties of the t - state agree with 
those expected for a P1j2 shell-model state. A similar assumption might do as 
well for the 1- state (breaking a P3/2 pair), but that still does not explain the ~ -
state or the many other excited states. 

In Figure 5.12, we show a similar situation for nuclei in the If7/2 shell. The { -
ground state (1f.4?) and the 1- excited state (2P3/2) appear as expected in the 
nucl~i 41Ca and ISC, each of which has only a single nucleon beyond a doubly 
magIC (Z = 20, N = 20) core. In 43Ca, the structure is clearly quite different 
from that of 41Ca. Many more low-lying states are present. These states come 
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from the coupling of three particles in the If7/2 shell and illustrate the difference 
between the complete shell model and its extreme independent particle limit. If 
only the odd particle were important, 43Ca should be similar to 41Ca. In 43SC, you 
can see how the 21st and 22nd neutrons, which would be ignored in the extreme 
independent particle limit, have a great effect on the structure. Similarly, the level 
scheme of 43Ti shows that the 21st and 22nd protons have a great effect on the 
shell-model levels of the 21st neutron. 

In addition to spin-parity assignments, magnetic dipole moments, electric 
quadrupole moments, and excited states, the shell model can also be used to 
.calculate the probability of making a transition from one state to another as a 
result of a radioactive decay or a nuclear reaction. We examine the shell model 
predictions for these processes in later chapters. 

Let's conclude this discussion of the shell model with a brief discussion of the 
question we raised at the beginning-how can we be sure that the very concept 
of a nucleon with definite orbital properties remains valid deep in the nuclear 
interior? After all, many of the tests of the shell model involve such nuclear 
properties as the spin and electromagnetic moments of the valence particles, all 
of which are concentrated near the nuclear surface. Likewise, many experimental 
probes of the nucleus, including other particles that feel the nuclear force, tell us 
mostly about the surface properties. To answer the question we have proposed, 
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Figure 5.13 The difference in charge density between 205TI and 206Pb, as 
determined by electron scattering. The curve marked "theory" is just the square of 
a harmonic oscillator 3s wave function. The theory reproduces the variations in the 
charge density extremely well. Experimental data are from J. M. Cavedon et aI., 
Phys. Rev. Lett. 49, 978 (1982). 
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what is needed is a probe that reaches deep into the nucleus, and we must use 
that probe to measure a nuclear property that characterizes the interior of the 
nucleus and not its surface. For a probe we choose high-energy electrons, as we 
did in studying the nuclear charge distribution in Chapter 3. The property that is 
to be measured is the charge density of a single nucleon in its orbit, which is 
equivalent to the square of its wave function, '''''2. Reviewing Figure 2.12 we 
recall that only s-state wave functions penetrate deep into the nuclear interior; 
for other states '" ~ 0 as r ~ O. For our experiment we therefore choose a 
nucleus such as 2~iTI124' which lacks a single proton in the 3S1/ 2 orbit from filling 
all subshells below the Z = 82 gap. How can we measure the contribution of just 
the 3S1/ 2 proton to the charge distribution and ignore the other protons? We can 
do so by measuring the difference in charge distribution between 20sTI and 
2~~PbI24' which has the filled proton shell. Any difference between the charge 
distributions of these two nuclei must be due to the extra 3S

1
/ 2 proton in 206Pb. 

Figure 5.13 shows the experimentally observed difference in the charge distri­
butions as measured in a recent experiment. The comparison with ,,,,,2 for a 3s 
wave function is very successful (using the same harmonic oscillator wave 
function plotted in Figure 2.12, except that here we plot ,,,,,2, not r2R2), thus 
confirming the validity of the assumption about nucleon orbits retaining their 
character deep in the nuclear interior. From such experiments we gain confidence 
that the independent-particle description, so vital to the shell model, is not just a 
convenience for analyzing measurements near the nuclear surface, but instead is a 
valid representation of the behavior of nucleons throughout the nucleus. 

5.2 EVEN·Z, EVEN·N NUCLEI AND COLLECTIVE STRUCTURE 

Now let's try to understand the structure of nuclei with even numbers of protons 
and neutrons (known as even-even nuclei). As an example, consider the case of 
13

0Sn, shown in Figure 5.14. The shell model predicts that all even-even nuclei 
will have 0+ (spin 0, even parity) ground states, because all of the nucleons are 
paired. According to the shell model, the 50 protons of 130Sn fill the g9/2 shell 
and the 80 neutrons lack 2 from filling the h11/2 shell to complete the magic 
number of N = 82. To form an excited state, we can break one of the pairs and 
excite a nucleon to a higher level; the coupling between the two odd nucleons 
then determines the spin and parity of the levels. Promoting one of the g9/2 
protons or h11/2 neutrons to a higher level requires a great deal of energy, 
because the gap between the major shells must be crossed (see Figure 5.6). We 
therefore expect that the major components of the wave functions of the lower 
excited states will consist of neutron excitation within the last occupied major 
shell. For example, if we assume that the ground-state configuration of 130Sn 
consists of filled Sl/2 and d 3/2 subshells and 10 neutrons (out of a possible 12) 
occupying the hU/2 subshell, then we could form an excited state by breaking the 
S1/2 pair and promoting one of the SI/2 neutrons to the h11/2 subshell. Thus we 
would have one neutron in the S1/2 subshell and 11 neutrons in the h11/2 
subshell. The properties of such a system would be determined mainly by the 
coupling of the Sl/2 neutron with the unpaired h11/2 neutron. Coupling angular 
momenta il and i2 in quantum mechanics gives values from the sum i1 + i2 to 
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Figure 5.14 The low-lying energy levels of 130Sn. 

the difference 'i1 - i2' in integer steps. In this case the possible resultants are 
11 + 1 = 6 and 11 - 1 = 5. Another possibility would be to break one of the 
J ~airs and ag~in place an odd neutron in the h11/2 subshell. This would give 
r;{~1ting angular momenta ranging from 1f + ~ = 7 to 1f - ~ = 4. Becau.se the 
sand d neutrons have even parity and the h11/2 neutron has odd panty, all 
1/2 3/2 .. . . . h 130S I I of these couplings wIll gIve states wlth odd panty. If we examme ten eve 

scheme we do indeed see several odd parity states with spins in the range of 4-7 
with e~ergies about 2 MeV. This energy is characteristic of what is needed to 
break a pair and excite a particle within a shell, and so we have a str?ng 
indication that we understand those states. Another possibility to form exclted 
states would be to break one of the h11/2 pairs and, keeping ?oth. members of th~ 
Pair in the h subshell, merely recouple them to a spm dlfferent from 0, 

11/2 . ·b·l· . ld b according to the angular momentum couphng rules, the POSSl 1 Itles wou e 
anything from 11 + 11 = 11 to 1f - 1f = O. The two h11/2 neutrons must be 
treated as identical p

2

articles and must therefore be described by a proper~y 
symmetrized wave function. This requirement restricts the resultant coupled spm 
to even values and thus the possibilities are 0+,2 +, 4 +,6 +, 8 +,10+. There are 
several candid~tes for these states in the 2-MeV region, and here again the shell 
model seems to give us a reasonable description of the level structure. 

A major exception to this successful interpretation is the 2 + state at ~bout 1.2 
MeV. Restricting our discussion to the neutron states, what are the posslble ways 
to couple two neutrons to get 2 +? As discussed above, the two h11/2 neutrons can 
couple to 2 +. We can also excite a pair of d 3/ 2 neutrons to the h11/2 subshell 
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(thus filling that shell and making an especially stable configuration), then break 
the coupling of the two remaining d 3/2 neutrons and recouple them to 2 +. Yet 
another possibility would be to place the pair of SI/2 neutrons into the hll/2 
subshell, and excite one of the d3/ 2 neutrons to the S1/2 subshell. We would then 
have an odd neutron in each of the d3/ 2 and S1/2 subshells, which could couple 
to 2 +. However, in all these cases we must first break a pair, and thus the 
resulting states would be expected at about 2 MeV. 

Of course, the shell-model description is only an approximation, and it is 
unlikely that" pure" shell-model states will appear in a complex level scheme. A 
better approach is to recognize that if we wish to use the shell model as a means 
to interpret the structure, then the physical states must be described as combina­
tions of shell-model states, thus: 

1/;(2+) = a1/; (Vhll/2 EEl vhll/ 2) + b1/;(vd
3

/
2 

EEl vd
3

/
2

) 

+ c1/; (vd 3/ 2 EEl VS 1/ 2 ) + . " (5.12) 

where v stands for neutron and the EEl indicates that we are doing the proper 
angular momentum coupling to get the 2 + resultant. The puzzle of the low-lying 
2 + state can now be rephrased as follows: Each of the constituent states has an 
energy of about 2 MeV. What is it about the nuclear interaction that gives the 
right mixture of expansion coefficients a, b, c, . .. to force the state down to an 
energy of 1.2 MeV? 

Our first thought is that this structure may be a result of the particular 
shell-model levels occupied by the valence particles of 130Sn. We therefore 
examine other even-even nuclei and find this remarkable fact: of the hundreds of 
known even-even nuclei in the shell-model region, each one has an "anomalous" 
2 + state at an energy at or below one-half of the energy needed to break a pair. 
In all but a very few cases, this 2 + state is the lowest excited state. The 
occurrence of this state is thus not an accident resulting from the shell-model 
structure of 130Sn. Instead it is a general property of even-Z, even-N nuclei, valid 
throughout the entire mass range, independent of which particular shell-model 
states happen to be occupied. We will see that there are other general properties 
that are common to all nuclei, and it is reasonable to identify those properties not 
with the motion of a few valence nucleons, but instead with the entire nucleus. 
Such properties are known as collective properties and their origin lies in the 
nuclear collective motion, in which many nucleons contribute cooperatively to 
the nuclear properties. The collective properties vary smoothly and gradually 
with mass number and are mostly independent of the number and kind of 
valence nucleons outside of filled subshells (although the valence nucleons may 
contribute shell structure that couples with the collective structure). 

In Figures 5.15 and 5.16 are shown four different properties of even-even 
nuclei that reveal collective behavior. The energy of the first 2 + excited state 
(Figure 5.15a) seems to decrease rather smoothly as a function of A (excepting 
the regions near closed shells). The region from about A = 150 to A = 190 shows 
values of E(2 +) that are both exceptionally small and remarkably constant. 
Again excepting nuclei near closed shells, the ratio E( 4 +)/ E(2 +) (Figure 5.15b) 
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Figure 5.15b The ratio E( 4 +) / E(2 +) for the I?West 2 + and 4 + states of even-Z, 
even-N nuclei. The lines connect sequences of Isotopes. 

is roughly 2.0 for nuclei below A = 150 and very:onstant at,3.3 for 150 < : ~a~~O 
d A > 230 The magnetic moments of the 2 states (FIgure 5.16a) a e. y 

~~nstant in ;he range 0.7-1.0, and the electric quadrupole mome?-ts (Fl~ure 
5 16b are small for A < 150 and much larger for A > 150. These 1llustratIOn~ 
suo gge~t that we must consider two types of collective structure
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Figure 5.16a Magnetic moments of lowest 2 + states of even-Z, even-N nuclei. 
Shell-model nuclei showing non collective behavior are indicated. 
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Figure 5.16b Electric quadrupole moments of lowest 2 + states of even-Z, 
even-N nuclei. The lines connect sequences of isotopes. 
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motion, and we will consider each in turn. The collective nuclear model is often 
called the "liquid drop" model, for the vibrations and rotations of a nucleus 
resemble those of a suspended drop of liquid and can be treated with a similar 
mathematical analysis. 

Nuclear Vibrations 

Imagining a liquid drop vibrating at high frequency, we can get a good idea of 
the physics of nuclear vibrations. Although the average shape is spherical, the 
instantaneous shape is not. It is convenient to give the instantaneous coordinate 
R(t) of a point on the nuclear surface at «(), </», as shown in Figure 5.17, in terms 
of the spherical harmonics YA/L ( (), </». Each spherical harmonic component will 
have an amplitude (XA/t): 

+A 
R(t) = Rav + L L (XA/L(t) YA/L(() , </» (5.13) 

A;;,l /L=-A 

The (XA/L are not completely arbitrary; reflection symmetry requires that (XA/L = 
(XA-/L' and if we assume the nuclear fluid to be incompressible, further restrictions 
apply. The constant (A. = 0) term is incorporated into the average radius R av' 

which is just RoAl/3. A typical A. = 1 vibration, known as a dipole vibration, is 
shown in Figure 5.18. Notice that this gives a net displacement of the center of 
mass and therefore cannot result from the action of internal nuclear forces. We 
therefore consider the next lowest mode, the A. = 2 (quadrupole) vibration. In 
analogy with the quantum theory of electromagnetism, in which a unit of 
electromagnetic energy is called a photon, a quantum of vibrational energy is 

Figure 5.17 A vibrating. nucleus with a spherical equilibrium shape. The time­
dependent coordinate R(t) locates a point on the surface in the direction e, <p. 
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Figure 5.18 The lowest three vibrational modes of a nucleus. The drawings 
represent a slice through the midplane. The dashed lines show the spherical 
equilibrium shape and the solid lines show an instantaneous view of the vibrating 
surface. 

called a phonon. Whenever we produce mechanical vibrations, we can equiv­
alently say that we are producing vibrational phonons. A single unit of A = 2 
nuclear vibration is thus a quadrupole phonon. 

Let's consider the effect of adding one unit of vibrational energy (a quadrupole 
phonon) to the 0+ ground state of an even-even nucleus. The A = 2 phonon 
carries 2 units of angular momentum (it adds a Y2 dependence to the nuclear 
wave function, just like a Ytm with t = 2) and even" parity, since the parity of a 
Ytm is (-I)t. Adding two units of angular momentum to a 0+ state gives only a 
2 + state, in exact agreement with the observed spin-parity of first excited states 
of spherical even-Z, even-N nuclei. (The energy of the quadrupole phonon is not 
predicted by this theory and must be regarded as an adjustable parameter.) 
Suppose now we add a second quadrupole phonon. There are 5 possible compo­
nents ft for each phonon and therefore 25 possible combinations of the Aft for 
the two phonons, as enumerated in Table 5.2. Let's try to examine the resulting 
sums. There is one possible combination with total ft = + 4. It is natural to 
associate this with a transfer of 4 units of angular momentum (a Ytm with 
m = + 4 and therefore t = 4). There are two combinations with total ft = + 3: 
(ftl = + 1, ft2 = + 2) and (ftl = + 2, ft2 = + 1). However, when we make the 
proper symmetric combination of the phonon wave functions (phonons, with 
integer spins, must have symmetric total wave functions; see Section 2.7), only 

Table 5.2 Combinations of'z Projections of Two Quadrupole Phonons 
into a Resultant Total z Component" 

ILl 

IL2 -2 -1 0 +1 +2 

-2 -4 -3 -2 -1 0 
-1 -3 -2 -1 0 +1 

0 -2 -1 0 +1 +2 
+1 -1 0 +1 +2 +3 
+2 0 +1 +2 +3 +4 
"The entries show f.L = f.L1 + f.L2' 
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one combination appears. There are three combinations that give ft = + 2: 
(ft ,ft2) = ( + 2, 0), ( + 1, + 1), and (0, + 2). The first and third must be combined 
info a symmetric wave function; the (+ 1, + 1) combination is already symmetric. 
Continuing in this way, we would find not 25 but 15 possible allowed combina­
tions: one with ft = + 4, one with ft = + 3, two with ft = + 2, two with ft = + 1, 
three with ft = 0, two with ft = - 1, two with ft = - 2, one with ft = - 3 and one 
with ft = -4. We can group these in the following way: 

t= 4 

t= 2 

t= ° 
ft = +4, +3, +2, +1,0, -1, -2, -3,-4 

ft = +2, +1,0, -1,-2 

ft=O 

Thus we expect a triplet of states with spins 0+,2 +,4 + at twice the energy of the 
first 2 + state (since two identical phonons carry twice as much energy as one). 
This 0+,2 +,4 + triplet is a common feature of vibrational nuclei and gives strong 
support to this model. The three states are never exactly at the same energy, 
owing to additional effects not considered in this simple model. A similar 
calculation for three quadrupole phonons gives states 0+,2+,3 +,4 +,6 + (see 
Problem 10). 
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Figure 5.19 The lOW-lying levels of 12oTe. The single quadrupole phonon state 
(first 2 +), the two-phonon triplet, and the three-phonon quintuplet are obviously 
seen. The 3 - state presumably is due to the octupole vibration. Above 2 MeV the 
structure becomes quite complicated, and no vibrational patterns can be seen. 
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The n~xt highest mode of vibration is the A. = 3 octupole mode, which carries 
three umts of angular momentum and negative parity. Adding a single octupole 
phono~ to. the? + ground. state gives a 3 - state. Such states are also commonly 
f~und In vlbratIOn~1 nu~lel, usually at energies somewhat above the two-phonon 
tnpl~t. As ~e ~o hIgher In energy, the vibrational structure begins to give way to 
particle excItatIOn corresponding to the breaking of a pair in the ground state. 
These excitations are very complicated to handle and are not a part of the 
collective structure of nuclei. 

The vibrational model makes several predictions that can be tested in the 
laboratory. If the equilibrium shape is spherical, the quadrupole moments of the 
first 2 + state should vanish; Figure 5.16b showed they are small and often 
vanishing in the region A < 150. The magnetic moments of the first 2 + states are 
predicted to be 2(Z/A), which is in the range 0.8-1.0 for the nuclei considered' 
this is also in reasonable agreement with experiment. The predicted rati~ 
E(4+)/E(2+) is 2.0, if the 4+ state is a member of the two-phonon triplet and 
the 2 + state is the first excited state; Figure 5.15b shows reasonable agreement 
with this pre~iction in the range A < 150. In Chapter 10 we show the good 
agreement wIth y-ray transition probabilities as well. Figure 5.19 shows an 
example of the low-lying level structure of a typical "vibrational" nucleus, and 
£?any of the p~edicted features are readily apparent. Thus the spherical vibra­
tIOnal model gives us quite an accurate picture of the structure of these nuclei. 

Nuclear Rotations 

Rotational motion can be observed only in nuclei with nonspherical equilibrium 
shapes. These nuclei can have substantial distortions from spherical shape and 
are often called deformed nuclei. They are found in the mass ranges 150< A < 190 
and A > 220 (rare earths and actinides). Figure 5.10 showed that the odd-mass 
nuclei in these regions also have quadrupole moments that are unexpectedly 
large. A c~mmo~ representation of the shape of these nuclei is that of an ellipsoid 
of revolutIOn (FIgure 5.20), the surface of which is described by 

(5.14) 

which is independent of cp and therefore gives the nucleus cylindrical symmetry. 
The deformation parameter 13 is related to the eccentricity of the ellipse as 

4 . [iT D.R 
13 = 3 V 5 Rav 

(5.15) 

where D.R is the difference between the semimajor and semiminor axes of the 
ellipse. It is customary (although not quite exaCt) to take R = R AI/3. The 

. . . av 0 
appro~matIOn .IS not ex.act 4bec~use the volume of the nucleus described by 
Equat~on 5.14.1S not qUIte 37TRav; see Problem 11. The axis of symmetry of 
EquatIOn 5.14 IS the reference axis relative to which 8 is defined. When 13 > 0, 
the nucleus has the elongated form of a prolate ellipsoid; when 13 < 0, the 
nucleus has the flattened form of an oblate ellipsoid. 

One indicator of the stable deformation of a nucleus is a large electric 
quadrupole moment, such as those shown in Figure 5.10. The relationship 
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~--71...,---_ Prolate 

Figure 5.20 Equilibrium shapes of nuclei with permanent deformations. These 
sketches differ from Figures 5.17 and 5.18 in that these do not represent snapshots 
of a moving surface at a particular instant of time, but instead show the static shape 
of the nucleus. 

between the deformation parameter and the quadrupole moment is 

3 2 
Qo = ~ RavZf3(l + 0.1613) 

v57T 
(5.16) 

The quadrupole moment Qo is known as the intrinsic quadrupole moment and 
would only be observed in a frame of reference in which the nucleus were at rest. 
In the laboratory frame of reference, the nucleus is rotating and quite a different 
quadrupole moment Q is measured. In fact, as indicated in Figure 5.21, rotating 
a prolate intrinsic qistribution about an axis perpendicular to the symmetry axis 
(no rotations can be observed parallel to the symmetry axis) gives a time-aver­
aged oblate distribution. Thus for Qo > 0, we would observe Q < O. The relation­
ship between Q and Qo depends on the nuclear angular momentum; for 2 + 
states, Q = - ~Qo. Figure 5.16b shows Q "'" - 2 b for nuclei in the region of 
stable permanent deformations (150 s A s 190), and so Qo "'" + 7 b. From 
Equation 5.16, we would deduce 13 "'" 0.29. This corresponds to a substantial 
deviation from a spherical nucleus; the difference in the lengths of the semimajor 
and semiminor axes is, according to Equation 5.15, about 0.3 of the nuclear 
radius. 



144 BASIC NUCLEAR STRUCTURE 

Figure 5.21 Rotating a static prolate distribution about an axis perpendicular to 
its symmetry axis gives in effect a smeared-out oblate (flattened) distribution. 

The kinetic energy of a rotating object is tJi'w2, where .f is the moment of 
inertia. In terms of the angular momentum t= Ji'w, the energy is t 2/2.f. Taking 
the quantum mechanical value of t2, and letting I represent the angular 
momentum quantum number, gives 

h2 

E = 2Ji'I(J + 1) (5.17) 

for the energies of a rotating object in quantum mechanics. Increasing the 
quantum number I corresponds to adding rotational energy to the nucleus and 
the nuclear excited states form a sequence known as a rotational band. (E~cited 
states in molecules also form rotational bands, corresponding to rotations of the 
molecule about its center of mass.) The ground state of an even-Z even-N 
nucleus is always a 0+ state, and the mirror symmetry of the nucleus res~ricts the 
sequence of rotational states in this special case to even values of I. We therefore 
expect to see the following sequence of states: 

and so on. 

E(O+) = 0 

E(2+) = 6(h2/2Ji') 

E(4+) = 20(h2/2Ji') 

E(6+) = 42(h2/2Ji') 

E(8+) = n(h2/2Ji') 

Figure 5.22 shows the excited states of a typical rotational nucleus. The first 
excited state is at E(2+) = 91.4 keY, and thus we have h2/2.f = 15.2 keY. The 
energies of the next few states in the ground-state rotational band are computed 
to be . 

E(4+) = 20(h2/2Ji') = 305 keY (measured 300 keY) 

E(6+) = 42(h2/2Ji') = 640 keY (measured 614 keY) 

E(8+) = n(h2/2Ji') = 1097 keY (measured 1025 keY) 

The calculated energy levels are not quite exact (perhaps because the nucleus 
behaves somewhat like a fluid of nucleons and not quite like a rigid object with a 
fixed moment of inertia), but are good enough to give us confidence that we have 
at least a rough idea of the origin of the excited levels. In particular, the predicted 
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I Energy (keY) 

Figure 5.22 The excited states resulting from rotation of the ground state in 
164Er. 

ratio E(4+)lE(2+) is 3.33, in remarkable agreement with the systematics of 
nuclear levels for 150 < A < 190 and A > 230 shown in Figure 5.15b. 

We can gain some insight into the structure of deformed nuclei by considering 
the moment of inertia in two extreme cases. A solid ellipsoid of revolution of 
mass M whose surface is described by Equation 5.14 has a rigid moment of 
inertia 

(5.18) 

which of course reduces to the familiar value for a sphere when f3 = O. For a 
typical nucleus in the deformed region (A "" 170), this gives a rotational energy 
constant 

h2 

-- ~ 6keV 
2 Ji'rigid 

which is of the right order of magnitude but is too small compared with the 
observed values (about 15 keY for E(2 +) = 90 keY). That is, the rigid moment of 
inertia is too large by about a factor of 2-3. We can take the other extreme and 
regard the nucleus as a fluid inside a rotating ellipsoidal vessel, which would give 
a moment of inertia 

from which we would estimate 

/1 2 

-- ~ 90keV 
2.ffluid 

(5.19) 
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The fluid moment inertia is thus too small, and we conclude .J;.igid > f> ffluid' 

The rotational behavior is thus intermediate between a rigid object, in which the 
particles are tightly bonded together, and a fluid, in which the particles are only 
weakly bonded. (We probably should have guessed this result, based on our 
studies of the nuclear force. Strong forces exist between a nucleon and its 
immediate neighbors only, and thus a nucleus does not show the long-range 
structure that would characterize a rigid solid.) 

Another indication of the lack of rigidity of the nucleus is the increase in the 
moment of inertia that occurs at high angular momentum or rotational frequency. 
This effect, called "centrifugal stretching," is seen most often in heavy-ion 
reactions, to be discussed in Section 11.13. 

Of course, the nucleus has no "vessel" to define the shape of the rotating fluid; 
it is the potential supplied by the nucleons themselves which gives the nucleus its 
shape. The next issue to be faced is whether the concept of a shape has any 
meaning for a rotating nucleus. If the rotation is very fast compared with the 
speed of nucleons in their "orbits" defined by the nuclear potential (as seen in a 
frame of reference in which the nucleus is at rest), then the concept of a static 
nuclear shape is not very meaningful because the motion of the nucleons will be 
dominated by the rotation. The average kinetic energy of a nucleon in a nucleus 
is of the order of 20 MeV, corresponding to a speed of approximately 0.2c. This 
is a reasonable estimate for the speed of internal motion of the nucleons. The 
angular velocity of a rotating state is w = V2Ejf, where E is the energy of the 
state. For the first rotational state, w "" 1.1 X 10 20 radjs and a nucleon near the 
surface would rotate with a tangential speed of v "" 0.002c. The rotational 
motion is therefore far slower than the internal motion. The correct picture of a 
rotating deformed nucleus is therefore a stable equilibrium shape determined by 
nucleons in rapid internal motion in the nuclear potential, with the entire 
resulting distribution rotating sufficiently slowly that the rotation has little effect 
on the nuclear structure or on the nucleon orbits. (The rotational model is 
sometimes described as "adiabatic" for this reason.) 

It is also possible to form other kinds of excited states upon which new 
rotational bands can be built. Examples of such states, known as intrinsic states 
because they change the intrinsic structure of the nucleus, are vibrational states 
(in which the nucleus vibrates about a deformed equilibrium shape) and pair­
breaking particle excitations. If the intrinsic state has spin different from zero, the 
rotational band built on that state will have the sequence of spins I, 1 + 1, 1 + 
2, .... The vibrational states in deformed nuclei are of two types: fJ vibrations, 
in which the deformation parameter fJ oscillates and the nucleus preserves its 
cylindrical symmetry, and y vibrations, in which the cylindrical symmetry is 
violated. (Picture a nucleus shaped like a football. fJ vibrations correspond to 
pushing and pulling on the ends of the football,while y vibrations correspond 
to pushing and pulling on its sides.) Both the vibrational states and the particle 
excitations occur at energies of about 1 MeV, while the rotational spacing is 
much smaller (typically /i 2j2f"" 10-20 keV). 

Figure 5.23 shows the complete low-energy structure of 164Er. Although the 
entire set of excited states shows no obvious patterns, knowing the spin-parity 
assignments helps us to group the states into rotational bands, which show the 
characteristic 1(1 + 1) spacing. Other properties of the excited states (for exam­
ple, y-ray emission probabilities) also help us to identify the structure. 
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Figure 5.23 The states of 164Er below 2 MeV. Most of the states are identifi~d 
with three rotational bands: one built on the deformed ground state, a second bUilt 
on a y-type vibration (in which the surface vibrates transverse ~o the symmetry 
axis), and a third built on a ,a-type vibration (in which the surface vlbrate~ along ~he 
symmetry axis). Many of the other excited states originate from pair-breaking 
particle excitations and their associated rotational bands. 

Both the vibrational and rotational collective motions give the nucleus a 
magnetic moment. We can regard the movement of the protons as an electric 
current, and a single proton moving with angular momentum quantum number t 
would give a magnetic moment p, = tP,N' However, the entire angular momen­
tum of a nuclear state does not arise from the protons alone; the neutrons also 
contribute and if we assume that the protons and neutrons move with identical 
collective 'motions (a reasonable but not quite exact assumption), we would 
predict that the protons contribute to the total nuclear angular momentum a 
fraction of nearly Zj A. (We assume that the collective motion of the neutrons 
does not contribute to the magnetic moment, and we also assume that the 
protons and neutrons are all coupled pairwise so that the spin magnetic moments 
do not contribute.) The collective model thus predicts for the magnetic moment 
of a vibrational or rotational state of angular momentum 1 

Z 
p,(I) = 1 A P,N (5.20) 

For light nuclei, Zj A "" 0.5 and p,(2) "" + 1p,N' whil~ for heavier n~clei, Zj A "" 
0.4 and p,(2) "" + 0.8P,N' Figure 5.16a shows that, ~lth the except~on of closed­
shell nuclei (for which the collective model is not valid), the magnetIc moments of 
the 2 + states are in very good agreement with this prediction. 
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As a ?n~l point in ~~s brief introduction to nuclear collective motion, we must 
try to Justlfy the ongm of collective behavior based on a more microscopic 
approach to nuclear structure. This is especially true for rotational nuclei with 
perm~nent deforma~ions. We have already seen how well the shell model with a 
sphencally symme~nc pot~ntial works for many nuclei. We can easily allow the 
shell-model potentIal t~ vIb:ate about equilibrium when energy is added to the 
nucleus, and so the vIbratIOnal motion can be handled in a natural way in 
the .sh~ll mode~. As ~e learned in our discussion of the 130Sn structure at the 
begmmng of thIS sectlon, we can analyze the collective vibrational structure from 
an even more mic~oscopic approach; for example, we consider all valence 
nucleons (tho~e ou~s~de cl~sed shells), find all possible couplings (including those 
that break paIrs) giVIn.g 2 resultant spins, and try to find the correct mixture of 
wav~ functlons that gIves the observed 2 + first excited state. If there are many 
pOSSIble coupl~ngs, this procedure may turn out to be mathematically complex, 
b~t the essentlals of the she~l model on which it is based are not significantly 
dIffe~ent fro~ the ~xtreme mdependent particle model we considered in the 
prevIOUS ,sectIOn. T?IS approach works for spherical nuclei, but it does not lead 
naturally to a rotatIOnal nucleus with a permanent deformation. 

He:e is the c~itical qu~stion: How do shell-model orbits, calculated using a 
sphe~lCal po~entlal, result In a nonspherical nucleus? We get a clue to the answer 
to thIS questIOn by superimposing a diagram showing the" magic numbers" on a 

~ 6°r-it--i--ir--+--~~~~ 
.0 
E 
i.? 50-t-H----,I---fI-,-+ 
" 
~ 40·1--++---I---I+I~ a. 

60 70 80 90 100 110 120 130 140 150 

Neutron number N 

Figure 5.24 The crosshatched areas show the regions far from closed shells 
where we expec~ that the cooperative effects of many single-particle shell-model 
state~ may combln~ to ~~odu~e a permanent nuclear deformation. Such deformed 
nuclei have been Identified In all of the regions where the crosshatched areas 
overlap the known nuclei. 

---- --~---
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'. _) chart of the known nuclear species, as shown in Figure 5.24. The deformed nuclei 
, exist only in regions far from filled neutron and proton shells. Just as the 

cooperative effect of a few nucleon pairs outside of a filled shell was responsible 
for the microscopic structure of the vibrations of spherical nuclei, the cooperative 
effect of many valence nucleon pairs can distort the "core" of nucleons until the 
equilibrium shape becomes strongly deformed. 

5.3 MORE REALISTIC NUCLEAR MODELS 

Both the shell model for odd-A nuclei and the collective model for even-even 
nuclei are idealizations that are only approximately valid for real nuclei, which 
are far more complex in their structure than our simple models suggest. More­
over, in real nuclei we cannot" turn off" one type of structure and consider only 
the other. Thus even very collective nuclei show single-particle effects, while the 
core of nucleons in shell-model nuclei may contribute collective effects that we 
have ignored up to this point. The structure of most nuclei cannot be quite so 
neatly divided between single-particle and collective motion, and usually we must 
consider a combination of both. Such a unified nuclear model is mathematically 
too complicated to be discussed here, and hence we will merely illustrate a few of 
the resulting properties of nuclei and try to relate them to the more elementary 
aspects of the shell and collective models. 

Many·Particle Shell Model 

In our study of the shell model, we considered only the effects due to the last 
unpaired single particle. A more realistic approach for odd-A nuclei would be to 
include all particles outside of closed shells. Let us consider for example the 
nuclei with odd Z or N between 20 and 28, so that the odd nucleons are in the 
f7/2 shell. For simplicity, we shall confine our discussion to one kind of nucleon 
only, and thus we require not only that there be an even number of the other 
kind of nucleon, but also that it be a magic number. Figure 5.25 shows the lower 
excited states of several such nuclei. The nuclei whose structure is determined by 
a single particle (41Ca and 55CO) show the expected levels-a ~ - ground state, 
corresponding to the single odd f7/2 particle (or vacancy, in the case of 55CO, 
since a single vacancy or hole in a shell behaves like a single particle in the shell), 
and a 1- excited state at about 2 MeV, corresponding to exciting the single odd 
particle to the P3/2 state. The nuclei with 3 or 5 particles in the f7/2 level show a 
much richer spectrum of states, and in particular the very low negative-parity 
states cannot be explained by the extreme single-particle shell model. If the ~­
state, for instance, originated from the excitation of a single particle to the f5/2 
shell, we would expect it to appear above 2 MeV because the f5/2 level occurs 
above the P3/2 level (see Figure 5.6); the lowest ~ - level in the single-particle 
nuclei occurs at 2.6 MeV (in 41Ca) and 3.3 MeV (in 55CO). 

We use the shorthand notation (f7/2t to indicate the configuration with n 
particles in the f7/2 shell, and we consider the possible resultant values of I for 
the configuration (f7/ 2)3. (From the symmetry between particles and holes, the 
levels of three holes, or five particles, in the f7/2 shell will be the same.) Because 
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Figure 5.25 Excited states of some nuclei with valence particles in the f7/2 shell. 
All known levels below about 2 MeV are shown. and in addition the ¥ - state is 
included. 

the nucleons have half-integral spins, they must obey the Pauli principle. and 
thus no two particles can have the same set of quantum numbers. Each particle in 
the shell model is described by the angular momentum j = I, which can have the 
pr?je~tions or ~ components corresponding to m = ± t, ± 1. ± t, ± I. The Pauli 
prmclple reqUIres that each of the 3 particles have a different value of m. 
Immediately we conclude that the maximum value of the total projection, 
M = m1 + m2 + m3, for the three particles is + I + t + 1 = + 1.2.. (Without the 
Pauli principle, the maximum would be ¥-.) We therefore expect ~o find no state 
in the configuration (f7/ 2)3 with I greater than ¥; the maximum resultant 
angular momentum is I = ¥, which can have all possible M from + ¥ to - ¥. 
The next highest possible M is ¥, which can only be obtained from + i + i +-1 
(

733' . d . 77 " 222 + 2 + 2 + 2 IS not permItte , nor IS + 2 + 2 - t). This smgle M = ¥ state 
must belong to the M states we have already assigned to the 1= 1.2. configura­
tion; thus we have no possibility to have a I = ¥ resultant. Conti~uing in this 
way, we find two possibilities to obtain M = +.1f ( + -27 + ~ + 1 and + 1 + ~ 

I - - 2 2" 
- 2); there are thus two possible M = + -¥- states, one for the I = if- configura-
tion and another that we can assign to I = -¥-. Extending this reasoning, we 
expect to find the following states for (f7/ 2 )3 or (f7/ 2 )5: 1= ¥, -¥-, 1, I, t, and ~. 
Because each of the three or five particles has negative parity, the resultant parity 
is (-1)3. The nuclei shown in Figure 5.25 show low-lying negative-parity states 
with the expected spins (and also with the expected absences-no low-lying l-
or .If - states appear). 2 
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Although this analysis is reasonably successful, it is incomplete-if we do 
indeed treat all valence particles as independent and equivalent, then the energy 
of a level should be independent of the orientation of the different m 's-that is, 
all of the resultant I's should have the same energy. This is obviously not even 
approximately true; in the case of the (f7/ 2 )3 multiplet, the energy splitting 
between the highest and lowest energy levels is 2.7 MeV, about the same energy 
as pair-breaking and particle-exciting interactions. We can analyze these energy 
splittings in terms of a residual interaction between the valence particles, and thus 
the level structure of these nuclei gives us in effect a way to probe the nucleon­
nucleon interaction in an environment different from the free-nucleon studies we 
discussed in Chapter 4. 

As a final comment, we state without proof that the configurations with n 
particles in the same shell have another common feature that lends itself to 
experimental test-their magnetic moments should all be proportional to I. That 
is, given two different states 1 and 2 belonging to the same configuration, we 
expect 

fLl 

fL2 
(5.21) 

Unfortunately, few of the excited-state magnetic moments are well enough 
known to test this prediction. In the case of 51 V, the ground-state moment is 
fL = + 5.1514 ± 0.0001 fLN and the moment of the first excited state is fL = 
+ 3.86 ± 0.33 fLN' The ratio of the moments is thus 1.33 ± 0.11, in agreement 
with the expected ratio II t = 1.4. In the case of 53Mn, the ratio of moments of 
the same states is 5.024 ± 0.007 fLN/3.25 ± 0.30 fLN = 1.55 ± 0.14. The evidence 
from the magnetic moments thus supports our assumption about the nature of 
these states. 

Single·Particle States in Deformed Nuclei 

The calculated levels of the nuclear shell model are based on the assumption that 
the nuclear potential is spherical. We know, however, that this is not true for 
nuclei in the range 150 ~ A ~ 190 and A > 230. For these nuclei we should use 
a shell-model potential that approximates the actual nuclear shape, specifically a 
rotational ellipsoid. In calculations using the Schrodinger equation with a non­
spherical potential, the angular momentum t is no longer a "good" quantum 
number; that is, we cannot identify states by their spectroscopic notation 
(s, p, d, f, etc.) as we did for the spherical shell model. To put it another way, the 
states that result from the calculation have mixtures of different t values (but 
based on consideration of parity, we expect mixtures of only even or only odd t 
values). 

In the spherical case, the energy levels of each single particle state have a 
degeneracy of (2j + 1). (That is, relative to any arbitrary axis of our choice, all 
2j + 1 possible orientations of j are equivalent.) If the potential has a deformed 
shape, this will no longer be true-the energy levels in the deformed potential 
depend on the spatial orientation of the orbit. More precisely, the energy depends 
on the component of j along the symmetry axis of the core. For example, an f7/2 
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Figure 5.26 Single-particle orbits with j = ~ and their possible projections along 
the .sy~metry axis, for

1 
prolate (top) and oblate (bottom) deformations. The possible 

pro!ect~ons are 0 1 = 2' O2 = ~, 03 = ~, and 04 = ~. (For clarity, only the positive 
projections are shown.) Note that in the prolate case, orbit 1 lies closest (on the 
avera~e~ to the core and will interact most strongly with the core; in the oblate 
case, It IS orbit 4 that has the strongest interaction with the core. 

nucleon can have eight possible components of j, ranging from -1 to + 1. This 
component of j along the symmetry axis is generally denoted by Q. Because the 
nuclei have reflection symmetry for either of the two possible directions of the 
symmetry axis, the components + Q and - Q will have the same energy, giving 
the. levels . a degeneracy of. 2. That is, what we previously called the f 7/2 state 
spilts up mto four states If we deform the central potential; these states are 
labeled Q = ~, i,!, 1 and all have negative parity. Figure 5.26 indicates the 
different possible "orbits" of the odd particle for prolate and oblate deforma­
tions. For prolate deformations, the orbit with the smallest possible Q (equal to 
D interacts most strongly with the core and is thus more tightly bound and 
lowest in energy. The situation is different for oblate deformations, in which the 
orbit with maximum Q (equal to j) has the strongest interaction with the core 
and the lowest energy. Figure 5.27 shows how the f7/2 states would split as the 
deformation is increased. 
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Figure 5.27 This shows directly the effect of the various orientations of the f7/2 
orbit. As shown in Figure 5.26, the orbit with component 0 = t along the symmetry 
axis has the strongest interaction with the prolate core and therefore lies lowest in 
energy. For an oblate core, it is the 0 = ~ component that lies lowest. 

Of course, we must keep in mind that Figures 5.26 and 5.27 are not strictly 
correct because the spherical single-particle quantum numbers t and j are not 
valid when the potential is deformed. The negative parity state with Q = !, for 
example, cannot be identified with the f7/2 state, even though it approaches that 
state as {3 ~ O. The wave function of the Q = ! state can be expressed as a 
mixture (or linear combination) of many different t and j (but only with j ~ !, 
in order to get a component of f). It is customary to make the approximation 
that states from different major oscillator shells (see Figures 5.4 and 5.6) do not 
mix. Thus, for example, the Q = ~ state that approaches the 2f7/2 level as {3 ~ 0 
will include contributions from only those states of the 5th oscillator shell (2f5j2' 
2f7/ 2, 1h9/2' 1hu / 2)' The 4th and 6th oscillator shells have the opposite parity 
and so will not mix, and the next odd-parity shells are far away and do not mix 
strongly. Writing the spherical wave functions as I/INt'j' we must have 

I/I'{Q) = La{Ntj)I/INlj 
Ij 

(5.22) 

where I/I'(Q) represents the wave function of the deformed state Q and where 
a(Ntj) are the expansion coefficients. For the Q = 1 state 

I/I'{Q) = a(53!)1/153~ + a(533)1/153~ + a{55t)1/I55~ + a{551f) 1/1 55¥- (5.23) 

The coefficients a(Ntj) can be obtained by solving the Schrodinger equation for 
the deformed potential, which was first done by S. G. Nilsson in 1955. The 
coefficients will vary with {3, and of course for {3 ~ 0 we expect a(533) to 
approach 1 while the others all approach O. For {3 = 0.3 (a typical prolate 
deformation), Nilsson calculated the values 

a{53~J = 0.267 

a{55t) = 0.415 

a{531} = 0.832 

a{551f) = -0.255 

for the Q = f level we have been considering. 
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Figure 5.28 The energy levels of 177Hf. As in the case of 164Er (Figure 5.23), 
knowledge of the spin-parity assignments helps us to group the states into rota­
tional bands. The lowest state in each band has / = n, and the higher states follow 
the /(1 + 1) energy spacing. 

Given such wave functions for single-particle states in deformed nuclei, we can 
then allow the nuclei to rotate, and we expect to find a sequence of rotational 
states, following the J(I + 1) energy spacing, built on each single-particle state. 
The lowest state of the rotational band has I = n, and as rotational energy is 
added the angular momentum increases in the sequence I = n, n + 1, n + 2, .... 
Figure 5.28 shows the energy levels of the nucleus 177Hf, in which two well-devel­
oped rotational bands have been found and several other single-particle states 
have been identified. 

To interpret the observed single-particle levels, we require a diagram similar to 
Figure 5.27 but which shows all possible single-particle states and how their 
energies vary with deformation. Such a diagram is shown in Figure 5.29 for the 
neutron states that are appropriate to the 150 :$; A :$; 190 region. Recalling that 
the degeneracy of each deformed single-particle level is 2, we proceed exactly as 
we did in the spherical shell model, placing two neutrons in each state up to 
N = 105 and two protons in each state up to Z = 72. We can invoke the pairing 
argument to neglect the single-particle states of the protons and examine the 
possible levels of the l05th neutron for the typical deformation of f3 ::::: 0.3. You 

0.1 
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Figure 5.29 Energy levels for neutrons in a prolate deformed potential. The 
deformation is measured essentially by the parameter p. The numbers in the 
brackets label the states; for our purposes, we are interested only in the first 
number, which is the principal quantum number N of the oscillator shell and 
therefore tells us the parity of the state ( - 1)N, and the last number, which is the 
component n. Solid lines show states with even parity, and dashed lines show odd 
parity. For a deformation between 0.2 and 0.3 (typical for nuclei in this region) the 
105th neutron of 177Hf would go into the state [514f], that is, an odd-parity state 
with n = f. A small excitation takes it into the state [624~], an even parity state with 
n = ~. Both intrinsic states (and their associated rotational bands) can be seen in 
Figure 5.28. Other observed states in 177Hf result from breaking a pair of neutrons 
!n a lower state and exciting one to pair with the f - neutron. In this way, for 
Instance, we could produce a single neutron in the state [512~], which gives the 
odd-parity n = ~ state in 177Hf. From C. Gustafson et aI., Ark. Fys. 36, 613 (1967). 
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can see from the diagram that the expected single-particle levels correspond 
exactly with the observed levels of 177Hf. 

The general structure of the odd-A deformed nuclei is thus characterized by 
rotational bands built on single-particle states calculated from the deformed 
shell-model potential. The proton and neutron states are filled (two nucleons per 
state), and the nuclear properties are determined in the extreme single-particle 
limit by the properties of the odd particle. This model, with the wave functions 
calculated by Nilsson, has had extraordinary success in accounting for the 
nuclear properties in this region. In general, the calculations based on the 
properties of the odd particle have been far more successful in the deformed 
region than have the analogous calculations in the spherical region. 

In this chapter we have discussed evidence for types of nuclear structure based 
on the static properties of nuclei-energy levels, spin-parity assignments, mag­
netic dipole and electric quadrupole moments. The wave functions that result 
from solving the SchrOdinger equation for these various models permit many 
other features of nuclear structure to be calculated, particularly the transitions 
between different nuclear states. Often the evidence for collective structure for 
instance, may be inconclusive based on the energy levels alone, while' the 
transition probabilities between the excited states may give definitive proof of 
collective effects. It may also be the case that a specific excited state may have 
alternative interpretations-for example, a vibrational state or a 2-particle cou­
pling. StUdying the transition probabilities will usually help us to discriminate 
between these competing interpretations. The complete study of nuclear structure 
therefore requires that we study radioactive decays, which give spontaneous 
transitions between states, and nuclear reactions, in which the experimenter can 
select the initial and final states. In both cases, we can compare calculated decay 
and reaction probabilities with their experimental values in order to draw 
conclusions about the structure of nuclear states. The methods of each of these 
areas of nuclear spectroscopy will occupy us for most of the remainder of this 
text. 
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PROBLEMS 

1. Give the expected shell-model spin and parity assignments for the ground 
states of (a) 7Li; (b) llB; (c) lSC; (d) 17F; (e) 31p; (f) 141Pr. 

2. The low-lying levels of BC are ground state, t -; 3.09 MeV, t +; 3.68 MeV, 
~ -; 3.85 MeV, ~ +. The next states are about 7 MeV and above. Interpret 
these four states according to the shell model. 

3. The level scheme of Figure 5.6 would lead us to expect T' = ¥- - for the 
ground state of 203TI (Z = 81), while the observed value is t +. A similar 
case occurs in 207Pb (N = 125) and 199Hg (N = 119), where ¥ + is expected 
but t - is observed. Given that the pairing force increases strongly with t, 
give the shell-model configurations for these nuclei that are consistent with 
the observed spin-parity assignments. 

4. Figure 5.6 is only a schematic, average representation of the shell-model 
single-particle states. The energies of the states will vary with the proton 
number and neutron number. To illustrate this effect, consider the available 
states of the 51st proton in Sb isotopes. Make a chart in the style of Figure 
5.25 showing the ~ + and t + states in 113Sb to 133Sb. (Consult the Table of 
Isotopes and the Nuclear Data Sheets for information on the energy levels.) 
Discuss the relative positions of the g7/2 and d S/ 2 proton states as a 
function of neutron number. 

5. In the single-particle shell model, the ground state of a nucleus with an odd 
proton and an odd neutron is determined from the coupling of the proton 
and neutron shell-model states: 1= jp + jn. Consider the following nuclei: 
16N - 2-; 12B - 1 +; 34p - 1 +; 28AI - 3+. Draw simple vector diagrams 
illustrating these couplings, then replace jp and jn' respectively, by tp + sp 
and tn + sn' Examine your four diagrams and deduce an empirical rule for 
the relative orientation of sp and Sn in the ground state. Finally, use your 
empirical rule to predict the T' assignments of 26Na and 28Na. 

6. (a) If the energy of a single-particle state in the absence of spin-orbit 
splitting is Eo, find the energies of the two members of the spin-orbit 
doublet whose difference is given by Equation 5.4. (b) Show that the "center 
of gravity" of the doublet is Eo. 

7. Compute the expected shell-model quadrupole moment of 209Bi (~-) and 
compare with the experimental value, - 0.37 b. 

8. Compute the values of the magnetic dipole moments expected from the shell 
model, and compare with the experimental values: 

Nuclide J'" !1(exp) (!1N) 
7SGe 1- +0.510 "2 
87Sr 2+ -1.093 

2 

91Zr 5+ -1.304 "2 
47SC 1- +5.34 2 

147Eu 11- +6.06 2 
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9. Compute the vibrational frequency associated with typical quadrupole 
vibrations. Taking typical values for decay lifetimes of 2+ states in vibra­
tional nuclei (you can find these in the Table of Isotopes, for example), 
comment on whether the decays generally occur on a shorter or longer time 
scale than the nuclear vibrations. If a represents the vibrational amplitude, 
as in Equation 5.13, could we observe quantities dependent on (a)? On 
(a 2 )? 

10. By tabulating the possible m states of three quadrupole (t = 2) phonons, 
and their symmetrized combinations, show that the permitted resultant 
states are 0+, 2+, 3+, 4+, and 6+. 

11. 
12. 

13. 

Find the volume of the nucleus whose surface is described by Equation 5.14. 

Consider a uniformly charged ellipsoidal nucleus whose surface is described 
by Equation 5.14. Show that the electric quadrupole moment, defined by 
Equation 3.36, is given by Equation 5.16. 

The levels of 174Hf show two similar rotational bands, with energies given as 
follows (in MeV): 

E(O+) E(2 +) E(4 +) E(6 +) E(8 +) E(10 +) E(12 +) 

Band 1 o 0.091 0.297 0.608 1.010 1.486 2.021 

Band 2 0.827 0.900 1.063 1.307 1.630 2.026 2.489 

Compare the moments of inertia of these two bands, and comment on any 
difference. 

14. The low-lying levels of 170 and 190 differ primarily in the presence of states 
of T" = t + and ~ + in 190; these two states have no counterparts in 170. 
Show that these two states could result from the configuration (d s/ 2)3 and 
thus are not expected in 170. 

15. The nucleus 24Mg has a 2 + first excited state at 1.369 MeV and a 4 + second 
excited state at 4.123 MeV. The 2 + state has a magnetic dipole moment of 
1.02 f-tN and an electric quadrupole moment of - 0.27 b. Which model 
would be most likely to provide an accurate description of these states? 
Justify your choice by calculating parameters appropriate to your choice of 
model. 
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