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At this point it is tempting to try to extend the ideas of the previous chapter to
heavier nuclei. Unfortunately, we run into several fundamental difficulties when
we do. One difficulty arises from the mathematics of solving the many-body
problem. If we again assume an oversimplified form for the nuclear potential,
such as a square well or an harmonic oscillator, we could in principle write down
a set of coupled equations describing the mutual interactions of the 4 nucleons.
These equations cannot be solved analytically, but instead must be attacked using
numerical methods. A second difficulty has to do with the nature of the nuclear
force itself. There is evidence to suggest that the nucleons interact not only
through mutual two-body forces, but through three-body forces as well. That is,
the force on nucleon 1 not only depends on the individual positions of nucleons 2
and 3, it contains an additional contribution that arises from the correlation of
the positions of nucleons 2 and 3. Such forces have no classical analog,

In principle it is possible to do additional scattering experiments in the
three-body system to try (in analogy with the two-body studies described in
Chapter 4) to extract some parameters that describe the three-body forces.
However, we quickly reach a point at which such a microscopic approach
obscures, rather than illuminates, the essential physics of the nucleus. It is
somewhat like trying to obtain a microscopic description of the properties of a
gas by studying the interactions of its atoms and then trying to solve the
dynamical equations that describe the interatomic forces. Most of the physical
insight into the properties of a gas comes from a few general parameters such as
pressure and temperature, rather than from a detailed microscopic theory.

We therefore adopt the following approach for nuclei. We choose a de-
liberately oversimplified theory, but one that is mathematically tractable and rich
in physical insight. If that theory is fairly successful in accounting for at least a
few nuclear properties, we can then improve it by adding additional terms.
Through such operations we construct a nuclear model, a simplified view of
nuclear structure that still contains the essentials of nuclear physics. A successful
model must satisfy two criteria: (1) it must reasonably well account for previ-
ously measured nuclear properties, and (2) it must predict additional properties
that can be measured in new experiments. This system of modeling complex
processes is a common one in many areas of science; biochemists model the
complex processes such as occur in the replication of genes, and atmospheric
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scientists model the complex dynamics of air and water currents that affect
climate.

5.1 THE SHELL MODEL

Atomic theory based on the shell model has provided remarkgble cla}rllﬁc?‘uon cg
the complicated details of atomic structure. Nuclear physicists t ::re OF:I t?l -
tempted to use a similar theory to attack the prqblem of nuc;lelzlr s}tlructulr‘];cl,i (:  he
hope of similar success in clarifying the properties of nuclei. In the ato

‘model, we fill the shells with electrons in order of increasing energy, consistent
4

with the requirement of the Pauli principle. When we do so, V.Ve I(ibtam dal} 1:11::2
core of filled shells and some number Qf valepce .electrons, the molet o
assumes that atomic properties are deternnped pr1mar1¥y by the vale?nli:e 1? ec r(()1 .
When we compare some measured properties of atomic systems with the pre l1cr
tions of the model, we find remarkable agreemept. In particular, we }slee I'e%ilcll a
and smooth variations of atomic properties within a subshell, but rather su t;:ln
and dramatic changes in the properties when we fill one subshe}l a}nd eCIQter ;:
next. Figure 5.1 shows the effects of a change in subshell on the ionic radius an
ionizati rgy of the elements. . ‘
lorxﬁ;flzvzn::r)% );o carry this model over to the nuclear regqu, we 1m_meci)1ate}11y
encounter several objections. In the atomic case, the .pc,J,tenual is supphed by the
Coulomb field of the nucleus; the subshells (“orb1t§ ) are es.tabhshed. 1y ag
external agent. We can solve the Schrédinggr equation for this potenlua da1}
calculate the energies of the subshells into which electrons can 1‘;hen bep apci h n
the nucleus, there is no such external agent; the nucleons move in a potential that
elves create. . .
thilntohtel:lr:rs appealing aspect of atomic shell th_eory is thﬁ: existence off spagal1
orbits. It is often very useful to describe atomic properties in terms of spa 1af
orbits of the electrons. The electrons can move m thqse orbits relqtlvely free o
collisions with other electrons. Nucleons have a relatively large dlameter‘corp-
pared with the size of the nucleus. How can we regard the nuclfa(?ns as moving 11111
well defined orbits when a single nucleon can make many collisions during eac
o |
ortf)’litr.st let’s examine the experimental evidence that supports the ex1st§:nce of
nuclear shells. Figure 5.2 shows measured p.ro.ton and neutroq sepe‘lr.au;)n en-
ergies, plotted as deviations from the pred_lcuons of the semiempirica I(;la].jss
formula, Equation 3.28. (The gross chal}ges in nuclear binding are remove rZ
plotting the data in this form, allowm'g thf: .shell effects to. become ml(l)k °
apparent.) The similarity with Figure 5.1 is strlkmg.—the separation en;:rgy, ;
the atomic ionization energy, increases gradually with N or Z except for lade:v
sharp drops that occur at the same neutron and 'proton numbers. Wed are le th(:;
guess that the sharp discontinuities in the separation energy correspon (;13? 1
atomic case) to the filling of major shells. Figure 5.3 shows some ab ;1 iona
evidence from a variety of experiments; the sudden‘ and discontinuous behavior
occurs at the same proton or neutron numbers as in the case of the %epéizratmg
energies. These so-called “magic nurpbers” (Z or N=2,8, 20,12t81, 50, I;S?rll)e
126) represent the effects of filled major shells, and any successful t eory m §
able to account for the existence of shell closures at those occupation numbers.
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Figure 5.1 Atomic radius (top) and ionization energy (bottom) of the elements.

The gmooth variations in these properties correspond to the gradual filling of an
atomic shell, and the sudden jumps show transitions to the next shell.

The question of the existence of a nuclear potential is dealt with by the
fundamental assumption of the shell model: the motion of a single nucleon is
.gov‘er.ned by a potential caused by all of the other nucleons. If we treat each
individual nucleon in this way, then we can allow the nucleons in turn to occupy
the energy levels of a series of subshells.

' The existence of definite spatial orbits depends on the Pauli principle. Consider
in a heavy nucleus a collision between two nucleons in a state near the very
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Figure 5.2 (Top) Two-proton separation energies of sequences of isotones
(constant N). The lowest Z member of each sequence is noted. (Bottom) Two-neu-
tron separation energies of sequences of isotopes. The sudden changes at the
indicated “magic numbers” are apparent. The data plotted are differences between
the measured values and the predictions of the semiempirical mass formula.
Measured values are from the 1977 atomic mass tables (A. H. Wapstra and K. Bos,
Atomic Data and Nuclear Data Tables 19, 215 (1977)).

bottom of the potential well. When the nucleons collide they will transfer energy
to one another, but if all of the energy levels are filled up to the level of the
valence nucleons, there is no way for one of the nucleons to gain energy except to
move up to the valence level. The other levels near the original level are filled and
cannot accept an additional nucleon. Such a transfer, from a low-lying level to
the valence band, requires more energy than the nucleons are likely to transfer in
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— II ‘. — a collision. Thus the collisions cannot occur, and the nucleons can indeed orbit as I !w
E - | * .. ] if they were transparent to one another! | ]
;S; o o I 4 . ] |
el f . Shell Model Potential |
5| | L | | The first step in developing the shell model is the choice of the potential, and we I "
115 120 125 130 135 begin by considering two potentials for which we solved the three-dimensional |
Ne“t"zz)”“"‘be' Schrodinger equation in Chapter 2: the infinite well and the harmonic oscillator. |
The energy levels we obtained are shown in Figure 5.4. As in the case of atomic ;
' physics, the degeneracy of each level is the the number of nucleons that can be i
put in each level, namely 2(2¢+ 1). The factor of (2£+ 1) arises from the m,
100.0 degeneracy, and the additional factor of 2 comes from the m degeneracy. As in d .;
' He atomic physics, we use spectroscopic notation to label the levels, with one
Pt important exception: the index n is not the principal quantum number, but
simply counts the number of levels with that £ value. Thus 1d means the first
(lowest) d state, 2d means the second, and so on. (In atomic spectroscopic
5 100 _ notation, there are no 1d or 2d states.) Figure 5.4 also shows the occupation
£
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Figt_lre 5.3. Addlthnal evidence for nuclear shell structure. (a) Energies of « i $
particles emitted by isotopes of Rn. Note the sudden increase when the daughter i P ¢ @ ¢ @ E
has N = 126 (i.e., when the parent has N = 128). If the daughter nucleus is more 3 1s 2 1s 2
tightly boupd, the a decay is able to carry away more energy. (b) Neutron-capture
cross sections of various nuclei. Note the decreases by roughly two orders of ?

magnitude near N = 50, 82, and 126. (c) Change in the nuclear charge radius when 5
AN = 2. Note the sudden jumps at 20, 28, 50, 82, and 126 and compare with Figure %
5.1. To emphasize the shell effects, the radius difference AR has been divided by !
the standard AR expected from the A3 dependence. From E. B. Shera et al., g
i
b

Figure 5.4 Shell structure obtained with infinite well and harmonic oscillator
potentials. The capacity of each level is indicated to its right. Large gaps occur
between the levels, which we associate with closed shells. The circled numbers

indicate the total number of nucleons at each shell closure. !
Phys. Rev. C 14, 731 (1976).
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Figure 5.5 A realistic form for the shell-model potential. The “‘skin thickness”
4alin 3 is the distance over which the potential changes from 0.9V, to 0.1y

number of each level and the cumulative number of nucleons that would
correspond to the filling of major shells. (Neutrons and protons, being nonidenti-
cal particles, are counted separately. Thus the 1s level can hold 2 protons as well
as 2 neutrons.) It is encouraging to see the magic numbers of 2, 8, and 20
emerging in both of these schemes, but the higher levels do not correspond at all
to the observed magic numbers.

As a first step in improving the model, we try to choose a more realistic
potential. The infinite well is not a good approximation to the nuclear potential
for several reasons: To separate a neutron or proton, we must supply enough
energy to take it out of the well—an infinite amount! In addition, the nuclear
potential does not have a sharp edge, but rather closely approximates the nuclear
charge and matter distribution, falling smoothly to zero beyond the mean radius
R. The harmonic oscillator, on the other hand, does not have a sharp enough

edge, and it also requires infinite separation energies. Instead, we choose an
intermediate form:

Vo (5.1
1+exp[(r—R)/a] 1)

which is sketched in Figure 5.5. The parameters R and a give, respectively, the
mean radius and skin thickness, and their values are chosen in accordance with
the measurements discussed in Chapter 3: R = 1.254'/% fm and @ = 0.524 fm.
The well depth ¥, is adjusted to give the proper separation energies and is of
order 50 MeV. The resulting energy levels are shown in Figure 5.6; the effect of
the potential, as compared with the harmonic oscillator (Figure 5.4) is to remove
the ¢ degeneracies of the major shells. As we go higher in energy, the splitting
becomes more and more severe, eventually becoming as large as the spacing
between the oscillator levels themselves. Filling the shells in order with 2(2¢+ 1
nucleons, we again get the magic numbers 2, 8, and 20, but the higher magic
numbers do not emerge from the calculations.
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Figure 5.6 At the left are the energy levels calculated with the potential of Figure
5.5. To the right of each level are shown its capacity and the cumulative number of
nucleons up to that level. The right side of the figure shows the effect of the
spin-orbit interaction, which splits the levels with £> 0 into two new levels. The
shell effect is quite apparent, and the magic numbers are exactly reproduced.

Spin-Orbit Potential

How can we modify the potential to give the proper magic numbers? We
certainly cannot make a radical change in the potential, becaussa we do not want
to destroy the physical content of the model——Equatiqn 5.1 is already a very
good guess at how the nuclear potential should look. It is therefore necessary to
add various terms to Equation 5.1 to try to improve the situation. II:l the 1940s,
many unsuccessful attempts were made at finding the needed correction; success
was finally achieved by Mayer, Haxel, Suess, and Jensen who showec} in 1949
that the inclusion of a spin-orbit potential could give the proper separation of the
subshells. B

Once again, we are borrowing an idea from our c_olleagues, the atomic
physicists. In atomic physics the spin-orbit interaction, which causes the observgd
fine structure of spectral lines, comes about because of the electromagnetic
interaction of the electron’s magnetic moment with the magnetic field generated
by its motion about the nucleus. The effects are typically very small, perhaps one
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part in 10° in the spacing of atomic levels. No such electromagnetic interaction
would be strong enough to give the substantial changes in the nuclear level
spacing needed to generate the observed magic numbers. Nevertheless we adopt
the concept of a nuclear spin-orbit force of the same form as the atomic
spin-orbit force but certainly not electromagnetic in origin. In fact, we know from
the scattering experiments discussed in Chapter 4 that there is strong evidence for
a nucleon—nucleon spin-orbit force.

The spin-orbit interaction is written as Veo(#)Z* s, but the form of ¥, (r) is not
particularly important. It is the #+s factor that causes the reordering of the
levels. As in atomic physics, in the presence of a spin-orbit interaction it is
appropriate to label the states with the toral angular momentum j = {+s. A
single nucleon has s = 1, so the possible values of the total angular momentum
quantum number are j = /+ 3 or j=¢— 1 (except for =0, in which case
only j = 1 is allowed). The expectation value of Z+ s can be calculated using a
common trick. We first evaluate j2 = (£/+ 5)2

JP=04 25+ 52
b5 = (-0~ 57)
Putting in the expectation values gives
(Losy =L[j(j+1) = £(¢+1) — s(s + 1)] #? (5.3)

Consider a level such as the 1f level (/= 3), which has a degeneracy of
2(2¢+ 1) = 14. The possible j values are £+ 1= 2 or 1. Thus we have the levels
1f;,, and 1f, ,,. The degeneracy of each level is (2 + 1), which comes from the
m; values. (With spin-orbit interactions, m, and m, are no longer “good”
quantum numbers and can no longer be used to label states or to count
degeneracies.) The capacity of the 1f; /, level is therefore 6 and that of 1f, /2 18 8,
giving again 14 states (the number of possible states must be preserved; we are
only grouping them differently). For the 1f, ,2 and 1f, , states, which are known
as a spin-orbit pair or doublet, there is an energy separation that is proportional
to the value of (¢* s) for each state. Indeed, for any pair of states with #> 0, we
can compute the energy difference using Equation 5.3:

(£ s>j=t’+1/2 — (¢ s>j=t’—1/2 = %(2/"' l)hz (5~4)
The energy splitting increases with increasing ¢. Consider the effect of choosing
Vio(r) to be negative, so that the member of the pair with the larger j is pushed
downward. Figure 5.6 shows the effect of this splitting. The 1f,,, level now
appears in the gap between the second and third shells; its capacity of 8 nucleons
gives the magic number 28. (The p and d splittings do not result in any major
regrouping of the levels.) The next major effect of the spin-orbit term is on the 1g
level. The 1g, /2 State is pushed down all the way to the next lower major shell; its
capacity of 10 nucleons adds to the previous total of 40 for that shell to give the
magic number of 50. A similar effect occurs at the top of each major shell. In
each case the lower energy member of the spin-orbit pair from the next shell is
pushed down into the lower shell, and the remaining magic numbers follow
exactly as expected. (We even predict a new one, at 184, which has not yet been
seen.)
As an example of the application of the shell model, consider the filling of
levels needed to produce '30 and }O. The 8 protons fill 2 major shell and do not

(5.2)
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Figure 5.7 The filling of shells in O and 0. The filled proton shelis do not
contribute to the structure; the properties of the ground state are determined
primarily by the odd neutron.

contribute to the structure. Figure 5.7 shows the filling of levels. The extreme
limit of the shell model asserts that only the single unpaired nucleon determines
the properties of the nucleus. In the case of >0, the unpaired neutron is in the
P1/, shell; we would therefore predict that the ground state of 1*O has spin 1 and

- odd parity, since the parity is determined by (—1)%. The ground state of ’Q

should be characteristic of a d ,, neutron with spin $ and even parity. These two
predictions are in exact agreement with the observed spin-parity assignments,
and in fact similar agreements are found throughout the range of odd-4 nuclei
where the shell model is valid (generally 4 < 150 and 190 < 4 < 220, for reasons
to be discussed later in this chapter). This success in accounting for the observed
ground-state spin-parity assignments was a great triumph for the shell model.

Magnetic Dipole Moments

Another case in which the shell model gives a reasonable (but not so exact)
agreement with observed nuclear properties is in the case of magnetic dipole
moments. You will recall from Chapter 3 that the magnetic moment is computed
from the expectation value of the magnetic moment operator in the state with
maximum z projection of angular momentum. Thus, including both ¢ and s
terms, we must evaluate

n=pn(8l, + 8,5.)/h (5.5)
when j, = jh. This cannot be evaluated directly, since ¢, and s, do not have
precisely defined values when we work in a system in which j is precisely
defined. We can rewrite this expression, using j = £+ s, as

p= [gt’jz + (gs_gt’)sz]y'N/h (56)
and, taking the expectation value when j, = jA, the result is

(wy=1lg.j+ (8 — g )s.)/h] (5.7)
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Figure 5.8 As the total angular momentum j precesses about the z axis keeping
/> constant, the vectors #and s precess about J. The components of £and s along j
remain constant, but 4 and s, vary.

The expection value of ¢ s,) can be quickly computed by recalling that j is the
only vector of interest in this problem—the ¢ and s vectors are meaningful only
in their relationship to j. Specifically, when we compute (s,) the only surviving
part will be from the component of s along j, as suggested by the vector diagram
of Figure 5.8. The instantaneous value of s, varies, but its component along j
remains constant. We therefore need an expression for the vector s ;> the compo-
nent of s along j. The unit vector along j is j/| j|, and the component of s along
Jis |s « j| /| j|. The vector s ; is therefore j|s « j| /| j|?, and replacing all quantities
by their expectation values gives

6O = o U+ D - e D s+ ln (8)

where s+j=5({+35) is computed using Equation 5.3. Thus for Jj=7¢+ 35,
(s,) = h/2, while for j = ¢£/— 3 we have (s,) = —Hk/2(j + 1). The correspond-
ing magnetic moments are

j=/+% <‘u‘>=[g/(j—%)+%gs]“N
N I L B )
j=7 2 <P‘> [gf (j+1) 2j+1gs fin

Figure 5.9 shows a comparison of these calculated values with measured values
for shell-model odd-4 nuclei. The computed values are shown as solid lines and
are known as the Schmidt lines; this calculation was first done by Schmidt in
1937. The experimental values fall within the limits of the Schmidt lines, but are
generally smaller in magnitude and have considerable scatter. One defect of this
theory is the assumption that 8, for a nucleon in a nucleus is the same as g, fora
free nucleon. We discussed in Chapter 3 how the spin g factors of nucleons differ
considerably from the value of 2 expected for “elementary” spin- 1 particles. If
we regard the substantial differences as arising from the “meson cloud” that
surrounds the nucleon, then it is not at all surprising that the meson cloud in
nuclei, where there are other surrounding nucleons and mesons, differs from what
it is for free nucleons. It is customary to account for this effect by (somewhat
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" Figure 5.9 Experimental values for the magnetic moments of odd-neutron and

odd-proton shell-model nuclei. The Schmidt lines are shown as solid for gs =
gs(free) and dashed for g, = 0.6¢_(free). »

arbitrarily) reducing the g factor; for example, the lines for g, = 0.6g (free) are
shown in Figure 5.9. The overall agreement with experiment is better, but the
scatter of the points suggests that the model is oversimplifying the calculation of
magnetic moments. Nevertheless, the success in indicating the general trend of
the observed magnetic moments suggests that the shell model gives us at least an
approximate understanding of the structure of these nuclei.

Electric Quadrupole Moments

The calculation of electric quadrupole moments in the shell model is done by
evaluating the electric quadrupole operator, 322 — r2, in a state in which the total
angular momentum of the odd particle has its maximum projection along the z
axis (that is, m; = +j). Let’s assume for now that the odd particle is a proton.. If
its angular momentum is alighed (as closely as quantum mechanics allows) with
the z axis, then it must be orbiting mostly in the xy plane. As we indicated in the
discussion following Equation 3.36, this would give a negative quadrupole
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Table 5.1 Sheli-Model Quadrupole Moments

Measured Q

0dd proton

Single Particle Single Hole

Shell-Model ~ Calculated Q
State (single proton) p n p n

1ps —0013  —0.0366("Li) +0.0407("'B) +0.053CBe)
1ds ., -0036  —012(°F)  —0.026(70) +0140"AD) +0.201(*Mg)
1ds5 ., ~0037  —0.08249C5Cl) —0.064C>S)  +0.056(°K) +0.45(S)
L —0071  -026("S)  —0.080("Ca) +0.40(°Co) +024(“Ti)
2P/ —0055  —0209(**Cu) —0.0285(*Cr) +0.195("Ga) +0.20("Fe)
s/ —0.086 ~0.20°'Ni)  +0.274(*Rb) +0.15("Zn)
1892 —013  -032®Nb) —017("Ge) +0.86("°In) +0.45(*Kr)
g7, -0.14 —0.49('*Sb) +0.20(*La)

2ds -0.12 —0.36(*'Sb)  —0.236("'Zr) 04401 Cd)

Data for this table are derived primarily from the compilation of V. S. Shirley in the Tuble of Isotopes, 7th
ed. (New York: Wiley, 1978). The uncertainties in the values are typically a few parts in the last quoted
significant digit.

moment of the order of Q = —(r?). Some experimental values of quadrupole
moments of nuclei that have one proton beyond a filled subshell are listed in
Table 5.1. Values of (r?) range from 0.03b for 4 = 7 to 0.3b for 4 = 209, and
thus the measured values are in good agreement with our expectations.

A more refined quantum mechanical calculation gives the single-particle
quadrupole moment of an odd proton in a shell-model state j:

‘o.o\
o
o

~
* oo,
~N

2j-1

(Qw) = =307 ¢ (5.10)
For a uniformly charged sphere, (r2) = $R? = 1R} 4%/, Using these results, we
can compute the quadrupole moments for the nuclei shown in Table 5.1. The
calculated values have the correct sign but are about a factor of 2-3 too small.

A more disturbing difficulty concerns nuclei with an odd neutron. An un-
charged neutron outside a filled subshell should have no quadrupole moment at
all. From Table 5.1 we see that the odd-neutron values are generally smaller than
the odd-proton values, but they are most definitely not zero.

When a subshell contains more than a single particle, all of the particles in the
subshell can contribute to the quadrupole moment. Since the capacity of any
subshell is 2j + 1, the number of nucleons in an unfilled subshell will range from
1 to 2. The corresponding quadrupole moment is

L I l | | I
172 32 5/2 712 9r2 1172

Figure 5.9 Continued.

n—1
(@) = <Qsp>[l - 22j — 1] (5.11)

It
i

where n is the number-of nucleons in the subshell (1 <7 < 2j) and Q, is the
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Figure 5.10 Experimental values of electric quadrupole moments of odd-neutron
and odd-proton nuclei. The solid lines show the limits Q ~ <,2>' expected for
shell-model nuclei. The data are within the limits, except for the regions 60 < Z < 80,
Z> 90, 90 < N < 120, and N > 140, where the experimental values are more than
an order of magnitude larger than predicted by the shell model.

single-particle quadrupole moment given in Equation 5.10. When n = 1, Q = Qsps
but when n = 2 (corresponding to a subshell that lacks only one nucleon from
being filled), 0 = —Q,,. Table 5.1 shows the quadrupole moments of these
so-called “hole” states, and you can see that to a very good approximation,
Q(particle) = —Q(hole). In particular, the quadrupole moments of the hole
states are positive and opposite in sign to the quadrupole moments of the particle
states.

Before we are overcome with enthusiasm with the success of this simple model,
let us look at the entire systematic behavior of the quadrupole moments. Figure
5.10 summarizes the measured quadrupole moments of the ground states of
odd-mass nuclei. There is some evidence for the change in sign of Q predicted by
Equation 5.11, but the situation is not entirely symmetric—there are far more
positive than negative quadrupole moments. Even worse, the model fails to
predict the extremely large quadrupole moments of several barns observed for
certain heavy nuclei. The explanations for these failures give us insight into other
aspects of nuclear structure that cannot be explained within the shell model. We
discuss these new features in the last two sections of this chapter.

?
§
1_
B
i
t
.
]
8

NUCLEAR MODELS 131

5— 3/2+ ——— e e e e e e e =
Yo e e = :
B
41— e e e e — et e e e
5/2 /,______________ 1 I |
7 1dgyo| 0000 | | ~e00e— —ecce—
3 — 12~ ” (
S1/2| —ee— | | —ee— | | —e0— | | —00— T
lds/2 A X }% 3
21— 1pip| —ee— || —e0— | | —e0— | | —o0— | | —00— | | —00—
1p3jp| —eeee- | | -eeee- | | —eses- | [ -seee- | [ —sess- [ | —sese-
1s1/2| —ee— | | —ee— —eo— || —o0— || —— | | —00—
| | |
= e— 12+ | |
—_— e d
|
ol 5/2+ _—d

17 17
809 oFg
Figure 5.11 Shell-model interpretation of the levels of 7O and "F. All levels

below about 5 MeV are shown, and the similarity between the levels of the two .

nuclei suggests they have common structures, determined by the valence nucleons.
The even-parity states are easily explained by the excitation of the single odd
nucleon from the d,, ground state to 2s, ,, or 1dz,,. The odd-parity states have
more complicated structures; one possible configuration is shown, but others are
also important.

Valence Nucleons

The shell model, despite its simplicity, is successful in accounting for the spins
and parities of nearly all odd-4 ground states, and is somewhat less successful
(but still satisfactory) in accounting for magnetic dipole and electric quadrupole
moments. The particular application of the shell model that we have considered
is known as the extreme independent particle model. The basic assumption of the
extreme independent particle model is that all nucleons but one are paired, and
the nuclear properties arise from the motion of the single unpaired nucleon. This
is obviously an oversimplification, and as a next better approximation we can
treat all of the particles in the unfilled subshell. Thus in a nucleus such as $3Ca ,,
with three neutrons beyond the closed shell at N = 20, the extreme version of the
shell model considers only the 23rd neutron, but a more complete shell model
calculation should consider all three valence neutrons. For $3Ti,;, we should take
into account all five particles (2 protons, 3 neutrons) beyond the closed shells at
Z =20 and N =20.

If the extreme independent particle model were valid, we should be able to
reproduce diagrams like Figure 5.6 by studying the excited states of nuclei. Let’s
examine some examples of this procedure. Figure 5.11 shows some of the excited
states of 170, and !7F;, each of which has only one nucleon beyond a doubly
magic (Z = 8, N = 8) core. The ground state is 2™, as expected for the d; 2
shell-model state of the 9th nucleon. From Figure 5.6 we would expect to find
excited states with spin-parity assignments of 1 and 27, corresponding to the
1s, , and 1d, , shell-model levels. According to this assumption, when we add
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Figure 5.12 Energy levels of nuclei with odd particles in the 1f; ,, shell.

energy to the nucleus, the core remains inert and the odd particle absorbs the
energy and moves to higher shell-model levels. The expected 1* shell-model state
appears as the first excited state, and the 2 state is much higher, but how can
we account for 37, 37, and 377 (The negative parity 2p, /20 2P32, and 1f;
shell-model states are well above the 1d, , state, which should therefore appear
lower.) Figure 5.11 shows one possible explanation for the 3 state: instead of
exciting the odd nucleon to a higher state, we break the pair in the 1py,» level
and excite one of the nucleons to pair with the nucleon in the ds, level. The odd
nucleon is now in the lp, , state, giving us a 1~ excited state. (Because the
pairing energy increases with ¢, it is actually energetically favorable to break an
¢=1 pair and form an ¢= 2 pair.) Verification of this hypothesis requires that
we determine by experiment whether the properties of the 3 state agree with
those expected for a p, ,2 shell-model state. A similar assumption might do as
well for the 3 state (breaking a p, /2 pair), but that still does not explain the -
state or the many other excited states.

In Figure 5.12, we show a similar situation for nuclei in the 1f, > shell. The 3~
ground state (1f7/2) and the 7 excited state (2p, ,2) appear as expected in the
nuclei *'Ca and “'Sc, each of which has only a single nucleon beyond a doubly
magic (Z = 20, N = 20) core. In “Ca, the structure is clearly quite different
from that of Ca. Many more low-lying states are present. These states come
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from the coupling of three particles in the 1f; ,, shell and illustrate the diﬁ“ergnce
between the complete shell model and its extreme independent particle limit. If
only the odd particle were important, *Ca should be similar to #*Ca. In *Sc, you
can see how the 21st and 22nd neutrons, which would be ignored in the extreme
independent particle limit, have a great effect on the structure. Similarly, the level
scheme of “*Ti shows that the 21st and 22nd protons have a great effect on the
shell-model levels of the 21st neutron.

In addition to spin-parity assignments, magnetic dipole moments, electric
quadrupole moments, and excited states, the shell model can also be used to

calculate the probability of making a transition from one state to another as a

result of a radioactive decay or a nuclear reaction. We examine the shell model
predictions for these processes in later chapters. _ '

Let’s conclude this discussion of the shell model with a brief discussion of the
question we raised at the beginning—how can we be sure that the very concept
of a nucleon with definite orbital properties remains valid deep in the nuclear
interior? After all, many of the tests of the shell model involve such nuclear
properties as the spin and electromagnetic moments of the valence particles, all
of which are concentrated near the nuclear surface. Likewise, many experimental
probes of the nucleus, including other particles that feel the nuclear force, tell us
mostly about the surface properties. To answer the question we have proposed,

0.01

0.006

Charge density difference (e/fm3)

0.002

Radius {fm)
Figure 5.13 The difference in charge density between 2°°Tl and 2°®Pb, as
determined by electron scattering. The curve marked *“theory” is just the square of
a harmonic oscillator 3s wave function. The theory reproduces the variations in the
charge density extremely well. Experimental data are from J. M. Cavedon et al.,
Phys. Rev. Lett. 49, 978 (1982).
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what is needed is a probe that reaches deep into the nucleus, and we must use
that probe to measure a nuclear property that characterizes the interior of the
nucleus and‘not its surface. For a probe we choose high-energy electrons, as we
did in studying the nuclear charge distribution in Chapter 3. The property, that is
to be measured is the charge density of a single nucleon in its orbit, which is
equivalent to the square of its wave function, |¥]% Reviewing Figur:e 2.12 we
recall that only s-state wave functions penetrate deep into the nuclear interior;
for other states Y - 0 as r — 0. For our experiment we therefore choose 2’1
nucleus such as Tl,,,, which lacks a single proton in the 3s, ,, orbit from filling
all subshells below the Z = 82 gap. How can we measure the contribution of just
the 3s, ,, proton to the charge distribution and ignore the other protons? We can
902 so by measuring the difference in charge distribution between 25Tl and
s_zPl?124{ which has the filled proton shell. Any difference between the charge
distributions of these two nuclei must be due to the extra 3s, ,, proton in 26Pb

Figure 5.13 shows the experimentally observed difference in/ the charge distri:
butions as I_neasured in a recent experiment. The comparison with [¢]? for a 3s
wave function is very successful (using the same harmonic oscillator wave
function plotted in Figure 2.12, except that here we plot |¢|2, not r?R?), thus
confirming the validity of the assumption about nucleon orbits retaining’ their
character deep in the nuclear interior. From such experiments we gain confidence
that thf: independent-particle description, so vital to the shell model, is not just a
convenience for analyzing measurements near the nuclear surface, but instead is a
valid representation of the behavior of nucleons throughout the nucleus.

5.2 EVEN-Z, EVEN-N NUCLEI AND COLLECTIVE STRUCTURE

Now let’s try to understand the structure of nuclei with even numbers of protons
?31(1)d neutrons (knqwn as even-even nuclei). As an example, consider the case of
Sn, shown in Figure 5.14. The shell model predicts that all even-even nuclei
will have 0 (spin 0, even parity) ground states, because all of the nucleons are
paired. According to the shell model, the 50 protons of 1*°Sn fill the gy,, shell
and the 80 neutrons lack 2 from filling the h,, ,2 shell to complete the/ 2magic
number of N = 82. To form an excited state, we can break one of the pairs and
excite a nucleon to a higher level; the coupling between the two odd nucleons
then determines the spin and parity of the levels. Promoting one of the g,
protons or hy, , neutrons to a higher level requires a great deal of energ§
because the gap between the major shells must be crossed (see Figure 5.6). We,
therefore expect that the major components of the wave functions of the lower
excited states will consist of neutron excitation within the last occupied major
shell. For example, if we assume that the ground-state configuration of 19Sn
consists of filled s, , and d, ,»2 Subshells and 10 neutrons (out of a possible 12)
occupy%ng the hy; , subshell, then we could form an excited state by breaking the
s, pair and promoting one of the s, ,2 neutrons to the h,, ,, subshell. Thus we
would have one neutron in the s, ,2 subshell and 11 neutrons in the h
subshell. The properties of such a system would be determined mainly by 1tlh/;
coupling of the s, ,, neutron with the unpaired hy; , neutron. Coupling angular
momenta j; and j, in quantum mechanics gives values from the sum J1+Jj, to
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Figure 5.14 The low-lying energy levels of 3%gn.

the difference |/, — j,| in integer steps. In this case the possible resultants are
L+ 1=6and I — 5= 5. Another possibility would be to break one of the
d; ,, pairs and again place an odd neutron in the h;, ,, subshell. This would give
resulting angular momenta ranging from i + 2= 7 to 4 —~ 3= 4. Because the
s1,, and d; ,, neutrons have even parity and the hy; , neutron has odd parity, all
of these couplings will give states with odd parity. If we examine the *°Sn level

" scheme, we do indeed see several odd parity states with spins in the range of 4-7

with energies about 2 MeV. This energy is characteristic of what is needed to
break a pair and excite a particle within a shell, and so we have a strong
indication that we understand those states. Another possibility to form excited
states would be to break one of the hy; ,, pairs and, keeping both members of the
pair in the hy; , subshell, merely recouple them to a spin different from 0;
according to the angular momentum coupling rules, the possibilities would be
anything from 4 + 4 =11 to 4 — 4 =0. The two hy; , neutrons must be
treated as identical particles and must therefore be described by a properly
symmetrized wave function. This requirement restricts the resultant coupled spin
to even values, and thus the possibilities are 0%,2%,4%,6",8*,10". There are
several candidates for these states in the 2-MeV region, and here again the shell
model seems to give us a reasonable description of the level structure.

A major exception to this successful interpretation is the 2* state at about 1.2
MeV. Restricting our discussion to the neutron states, what are the possible ways
to couple two neutrons to get 27?7 As discussed above, the two hy; ,, neutrons can
couple to 2*. We can also excite a pair of d,, neutrons to the hy; ,, subshell
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(thus filling that shell and making an especially stable configuration), then break
the coupling of the two remaining d, ,, neutrons and recouple them to 2+, Yet
another possibility would be to place the pair of s, ,2 Deutrons into the hy, 2
subshell, and excite one of the d; ;, neutrons to the s, ,2 subshell. We would then
have an odd neutron in each of the d;, and s, /2 Subshells, which could couple
to 2*. However, in all these cases we must first break a pair, and thus the
resulting states would be expected at about 2 MeV.

Of course, the shell-model description is only an approximation, and it is
unlikely that “pure” shell-model states will appear in a complex level scheme. A
better approach is to recognize that if we wish to use the shell model as a means
to interpret the structure, then the physical states must be described as combina-
tions of shell-model states, thus:

yp(2%) = a‘l’(”hlvz ® Vh11/2) + bl[’(”da/z & ”d3/2)
+ey(vds ), @ vsy ) + - : (5.12)

where » stands for neutron and the @ indicates that we are doing the proper
angular momentum coupling to get the 2+ resultant. The puzzle of the low-lying
27 state can now be rephrased as follows: Each of the constituent states has an
energy of about 2 MeV. What is it about the nuclear interaction that gives the
right mixture of expansion coefficients a,b,c,... to force the state down to an
energy of 1.2 MeV?

Our first thought is that this structure may be a result of the particular
shell-model levels occupied by the valence particles of 3°Sn. We therefore
examine other even-even nuclei and find this remarkable fact: of the hundreds of
known even-even nuclei in the shell-model region, each one has an “anomalous”
27" state at an energy at or below one-half of the energy needed to break a pair.
In all but a very few cases, this 2* state is the lowest excited state. The
occurrence of this state is thus not an accident resulting from the shell-model
structure of *°Sn. Instead it is a general property of even-Z, even-N nuclei, valid
throughout the entire mass range, independent of which particular shell-model
states happen to be occupied. We will see that there are other general properties
that are common to all nuclei, and it is reasonable to identify those properties not
with the motion of a few valence nucleons, but instead with the entire nucleus.
Such properties are known as collective Properties and their origin lies in the
nuclear collective motion, in which many nucleons contribute cooperatively to
the nuclear properties. The collective properties vary smoothly and gradually
with mass number and are mostly independent of the number and kind of
valence nucleons outside of filled subshells (although the valence nucleons may
contribute shell structure that couples with the collective structure).

In Figures 5.15 and 5.16 are shown four different properties of even-even
nuclei that reveal collective behavior. The energy of the first 2+ excited state
(Figure 5.15a) seems to decrease rather smoothly as a function of 4 (excepting
the regions near closed shells). The region from about 4 = 150 to A =190 shows
values of E(2%) that are both exceptionally small and remarkably constant.
Again excepting nuclei near closed shells, the ratio E(4+)/E (2") (Figure 5.15b)
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Figure 5.15a Energies of lowest 2" states of even-Z, even-N nuclei. The lines
connect sequences of isotopes.
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Figure 5.15b The ratio E(47) / E(2%) for the lowest 2* and 4" states of even-Z,
even-N nuclei. The lines connect sequences of isotopes.

i = tant at 3.3 for 150 < 4 < 190
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lasnr(;)u/% >y230. The magnetic moments of the 2% states (Figure 5.16a) are fa1rly
constant in the range 0.7-1.0, and the electric quadrupole moments (Flgure
5.16b) are small for 4 < 150 and much larger for A > 150. These 1llustrat101n§
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Figure 5.16a Magnetic moments of lowest 2* states of even-Z , even-N nuclei.
Shell-model nuclei showing noncollective behavior are indicated.
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Figure 5.16P Electric quadrupole moments of lowest 2+ states of even-Z,
even-N nuclei. The lines connect sequences of isotopes.
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motion, and we will consider each in turn. The collective nuclear model is often
called the “liquid drop” model, for the vibrations and rotations of a nucleus
resemble those of a suspended drop of liquid and can be treated with a similar

mathematical analysis.

Nuclear Vibrations

Imagining a liquid drop vibrating at high frequency, we can get a good idea of
the physics of nuclear vibrations. Although the average shape is spherical, the
‘instantaneous shape is not. It is convenient to give the instantaneous coordinate
R(¢) of a point on the nuclear surface at (8, ¢), as shown in Figure 5.17, in terms
of the spherical harmonics Y,,(0, ). Each spherical harmonic component will
have an amplitude a, ,(¢):

+A
R(t) =Ry + 2 X an()Y5,(0,9) (5.13)

Azl p=-X

The a,, are not completely arbitrary; reflection symmetry requires that a,, =
a,_,, and if we assume the nuclear fluid to be incompressible, further restrictions
apply. The constant (A = 0) term is incorporated into the average radius R,,,
which is just R,4'3. A typical A = 1 vibration, known as a dipole vibration, is
shown in Figure 5.18. Notice that this gives a net displacement of the center of
mass and therefore cannot result from the action of internal nuclear forces. We
therefore consider the next lowest mode, the A = 2 (quadrupole) vibration. In
analogy with the quantum theory of electromagnetism, in which a unit of
electromagnetic energy is called a photon, a quantum of vibrational energy is
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Figure 5.17 A vibrating nucleus with a spherical equilibrium shape. The time-
dependent coordinate R(t) locates a point on the surface in the direction 4, ¢.
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(Dipole) (Quadrupole) (Octupole)
Figure 5.18 The lowest three vibrational modes of a nucleus. The drawings
represent a slice through the midplane. The dashed lines show the spherical

equilibrium shape and the solid lines show an instantaneous view of the vibrating
surface.

called a phonon. Whenever we produce mechanical vibrations, we can equiv-
alently say that we are producing vibrational phonons. A single unit of A =2
nuclear vibration is thus a quadrupole phonon.

Let’s consider the effect of adding one unit of vibrational energy (a quadrupole
phonon) to the 0% ground state of an even-even nucleus. The A = 2 phonon
carries 2 units of angular momentum (it adds a Y,, dependence to the nuclear
wave function, just like a Y, with #= 2) and even parity, since the parity of a
Y,,. is (—1)% Adding two units of angular momentum to a 0™ state gives only a
2% state, in exact agreement with the observed spin-parity of first excited states
of spherical even-Z, even-N nuclei. (The energy of the quadrupole phonon is not
predicted by this theory and must be regarded as an adjustable parameter.)
Suppose now we add a second quadrupole phonon. There are 5 possible compo-
nents p for each phonon and therefore 25 possible combinations of the Ap for
the two phonons, as enumerated in Table 5.2. Let’s try to examine the resulting
sums. There is one possible combination with total p = +4. It is natural to
associate this with a transfer of 4 units of angular momentum (a Y,,, with
m = +4 and therefore £/= 4). There are two combinations with total p= +3:
(py = +1, p, = +2) and (= +2, p, = +1). However, when we make the
proper symmetric combination of the phonon wave functions (phonons, with
integer spins, must have symmetric total wave functions; see Section 2.7), only

Table 5.2 Combinations of z Projections of Two Quadrupole Phonons
into a Resultant Total z Component?

151
I -2 -1 0. +1 +2
-2 -4 -3 -2 -1 0
-1 -3 -2 -1 0 +1
0 -2 -1 0 +1 +2
+1 -1 0 +1 +2 +3
+2 0 +1 +2 +3 +4

“The entries show p = p; + p,.
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one combination appears. There are three combinations that give u = + 2:
(s p2) = (+2,0), (+1, +1), and (0, +2). The first and third must be combm(_ed
into a symmetric wave function; the (+1, + 1) combination is already symme'tnc.
Continuing in this way, we would find not 25 but 15 possible allowe.d combina-
tions: one with p = +4, one with g = +3, two with u = +2, two with p = +1,
three with p = 0, two with p = —1, two with p = —2, one with p = —3 and one
with p = —4. We can group these in the following way:

£=4 p= +45+3,+2,+170’_15_27——3>_4

£=2 p=+2,+1,0,-1,-2

=0 p=0

Thus we expect a triplet of states with spins 0*,2%,4* at twice the energy of the
first 2% state (since two identical phonons carry twice as much energy as one).
This 0%,27%,4% triplet is a common feature of vibrational nuclei and gives strong
support to this model. The three states are never exactly at the same energy,
owing to additional effects not considered in this simple model. A similar
calculation for three quadrupole phonons gives states 01,2%,3%,4% 6% (see
Problem 10).

E (MeV)

2+

ol 0*
1207,

Figure 5.19 The low-lying levels of *°Te. The single quadrupole phonon state
(first 27), the two-phonon triplet, and the three-phonon quintuplet are obviously
seen. The 3~ state presumably is due to the octupole vibration. Above 2 MeV the
structure becomes quite complicated, and no vibrational patterns can be seen.
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The next highest mode of vibration is the A = 3 octupole mode, which carries
three units of angular momentum and negative parity. Adding a single octupole
phonon to the 0* ground state gives a 3~ state. Such states are also commonly
found in vibrational nuclei, usually at energies somewhat above the two-phonon
triplet. As we go higher in energy, the vibrational structure begins to give way to
particle excitation corresponding to the breaking of a pair in the ground state.
These excitations are very complicated to handle and are not a part of the
collective structure of nuclei.

The vibrational model makes several predictions that can be tested in the
laboratory. If the equilibrium shape is spherical, the quadrupole moments of the
first 2% state should vanish; Figure 5.16b showed they are small and often
vanishing in the region 4 < 150. The magnetic moments of the first 2+ states are
predicted to be 2(Z/A), which is in the range 0.8-1.0 for the nuclei considered;
this is also in reasonable agreement with experiment. The predicted ratio
E(4%)/E(Q27%) is 2.0, if the 4% state is a member of the two-phonon triplet and
the 2* state is the first excited state; Figure 5.15b shows reasonable agreement
with this prediction in the range 4 < 150. In Chapter 10 we show the good
agreement with y-ray transition probabilities as well. Figure 5.19 shows an
example of the low-lying level structure of a typical “vibrational” nucleus, and
many of the predicted features are readily apparent. Thus the spherical vibra-
tional model gives us quite an accurate picture of the structure of these nuclei.

Nuclear Rotations

Rotational motion can be observed only in nuclei with nonspherical equilibrium
shapes. These nuclei can have substantial distortions from spherical shape and
are often called deformed nuclei. They are found in the mass ranges 150 < 4 < 190
and A4 > 220 (rare earths and actinides). Figure 5.10 showed that the odd-mass
nuclei in these regions also have quadrupole moments that are unexpectedly
large. A common representation of the shape of these nuclei is that of an ellipsoid
of revolution (Figure 5.20), the surface of which is described by

R(e, ¢) = Rav[1 + BYZO(a’ d))] (514)

which is independent of ¢ and therefore gives the nucleus cylindrical symmetry.
The deformation parameter B is related to the eccentricity of the ellipse as

4\/7AR (515)
F=3 5 R, '

where AR is the difference between the semimajor and semiminor axes of the
ellipse. It is customary (although not quite exact) to take R,, = R,A43. The
approximation is not exact because the volume of the nucleus described by
Equation 5.14 is not quite 4mR3 ; see Problem 11. The axis of symmetry of
Equation 5.14 is the reference axis relative to which 6 is defined. When B >0,
the nucleus has the elongated form of a prolate ellipsoid; when B < 0, the
nucleus has the flattened form of an oblate ellipsoid.

One indicator of the stable deformation of a nucleus is a large electric
quadrupole moment, such as those shown in Figure 5.10. The relationship
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Figure 5.20 Equilibrium shapes of nuclei with permanent deformations. These
sketches differ from Figures 5.17 and 5.18 in that these do not represent sqapshots
of a moving surface at a particular instant of time, but instead show the static shape
of the nucleus.

between the deformation parameter and the quadrupole moment is

> R 5.16
Qo= == R3ZB(1 +0.168) (5.16)
The quadrupole moment Q, is known as the intrinsic quadrupole moment and
would only be observed in a frame of reference in which the nucleug were at rest.
In the laboratory frame of reference, the nucleus is rotatir}g agd quite a dlﬁ‘er(?nt
quadrupole moment Q is measured. In fact, as indica'ted in Figure 5.21, rotating
a prolate intrinsic distribution about an axis perpendicular to tl}e symmetry axis
(no rotations can be observed parallel to the symmetry axis) gives a time-aver-
aged oblate distribution. Thus for Q, > 0, we would observe Q < 0. The relat10n+-
ship between Q and Q, depends on the nuclear angular momentum; fpr 2
states, Q = — 2Q,. Figure 5.16b shows Q = —2b for nuclei in the region of
stable permanent deformations (150 < 4 < 190), and so Q,= +7b. Frqm
Equation 5.16, we would deduce § = 0.29. This corresponds to a subsFant}al
deviation from a spherical nucleus; the difference in the lengths of the semimajor
and semiminor axes is, according to Equation 5.15, about 0.3 of the nuclear
radius.
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Flgure 5.21 Rotating a static prolate distribution about an axis perpendicular to
its symmetry axis gives in effect a smeared-out oblate (flattened) distribution.

The kinetic energy of a rotating object is 1#w?, where # is the moment of
inertia. In terms of the angular momentum ¢ = Sw, the energy is £2/2.#. Taking
the quantum mechanical value of ¢% and letting I represent the angular
momentum quantum number, gives

hz

E= —I(I+1) (5.17)

for the energies of a rotating object in quantum mechanics. Increasing the
quantum number I corresponds to adding rotational energy to the nucleus, and
the nuclear excited states form a sequence known as a rotational band. (Excited
states in molecules also form rotational bands, corresponding to rotations of the
molecule about its center of mass.) The ground state of an even-Z, even-N
nucleus is always a 0* state, and the mirror symmetry of the nucleus restricts the
sequence of rotational states in this special case to even values of I. We therefore
expect to see the following sequence of states:

E(0*)=0
E(2%) = 6(h*/25)
E(4%) =20(h%/2.5)
E(6%) = 42(h?/25)
E(8%) = 72(#%*/25)
and so on.
Eigqre 5.22 shows the excited states of a typical rotational nucleus. The first
excited state is at E(2*) = 91.4 keV, and thus we have %#2/2.# = 15.2 keV. The

energies of the next few states in the ground-state rotational band are computed
to be '

E(4%) =20(#*/2#) = 305keV  (measured 300 keV)
E(6%) = 42(h?/25) = 640 keV (measured 614 keV)
E(8%) =T72(h*/24) =1097keV  (measured 1025 keV)

The calculated energy levels are not quite exact (perhaps because the nucleus
behaves somewhat like a fluid of nucleons and not quite like a rigid object with a
fixed moment of inertia), but are good enough to give us confidence that we have
at least a rough idea of the origin of the excited levels. In particular, the predicted
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Figure 5.22 The excited states resulting from rotation of the ground state in
164Er.

ratio E(4*)/E(2") is 3.33, in remarkable agreement with the systematics of
nuclear levels for 150 < 4 < 190 and A > 230 shown in Figure 5.15b.

We can gain some insight into the structure of deformed nuclei by considering
the moment of inertia in two extreme cases. A solid ellipsoid of revolution of
mass M whose surface is described by Equation 5.14 has a rigid moment of
inertia
Frigia = ZMR2,(1 + 0.318) (5.18)

11,

which of course reduces to the familiar value for a sphere when B = 0. For a
typical nucleus in the deformed region (4 = 170), this gives a rotational energy

constant
2

Y = 6 keV
‘ rigid
which is of the right order of magnitude but is too small compared with the
observed values (about 15 keV for E(2*) = 90 keV). That is, the rigid moment of
inertia is too large by about a factor of 2-3. We can take the other extreme and
regard the nucleus as a fluid inside a rotating ellipsoidal vessel, which would give

a moment of inertia

9
Fiivia = —8;MR32\V:B (5.19)

from which we would estimate
2
= 90 keV
2 fluid
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The fluid moment inertia is thus too small, and we conclude Frigid > I > Fpuia-
The rotational behavior is thus intermediate between a rigid object, in which the
particles are tightly bonded together, and a fluid, in which the particles are only
weakly bonded. (We probably should have guessed this result, based on our
studies of the nuclear force. Strong forces exist between a nucleon and its
immediate neighbors only, and thus a nucleus does not show the long-range
structure that would characterize a rigid solid.)

Another indication of the lack of rigidity of the nucleus is the increase in the
moment of inertia that occurs at high angular momentum or rotational frequency.
This effect, called “centrifugal stretching,” is seen most often in heavy-ion
reactions, to be discussed in Section 11.13. '

Of course, the nucleus has no “vessel” to define the shape of the rotating fluid;
it is the potential supplied by the nucleons themselves which gives the nucleus its
shape. The next issue to be faced is whether the concept of a shape has any
meaning for a rotating nucleus. If the rotation is very fast compared with the
speed of nucleons in their “orbits” defined by the nuclear potential (as seen in a
frame of reference in which the nucleus is at rest), then the concept of a static
nuclear shape is not very meaningful because the motion of the nucleons will be
dominated by the rotation. The average kinetic energy of a nucleon in a nucleus
is of the order of 20 MeV, corresponding to a speed of approximately 0.2¢. This
is a reasonable estimate for the speed of internal motion of the nucleons. The
angular velocity of a rotating state is w = V2E/S, where E is the energy of the
state. For the first rotational state, w =~ 1.1 X 10%° rad/s and a nucleon near the
surface would rotate with a tangential speed of v =~ 0.002¢. The rotational
motion is therefore far slower than the internal motion. The correct picture of a
rotating deformed nucleus is therefore a stable equilibrium shape determined by
nucleons in rapid internal motion in the nuclear potential, with - the entire
resulting distribution rotating sufficiently slowly that the rotation has little effect
on the nuclear structure or on the nucleon orbits. (The rotational model is
sometimes described as “adiabatic” for this reason.)

It is also possible to form other kinds of excited states upon which new
rotational bands can be built. Examples of such states, known as intrinsic states
because they change the intrinsic structure of the nucleus, are vibrational states
(in which the nucleus vibrates about a deformed equilibrium shape) and pair-
breaking particle excitations. If the intrinsic state has spin different from zero, the
rotational band built on that state will have the sequence of spins I, T + 1, I +
2,... . The vibrational states in deformed nuclei are of two types: B vibrations,
in which the deformation parameter 8 oscillates and the nucleus preserves its
cylindrical symmetry, and y vibrations, in which the cylindrical symmetry is
violated. (Picture a nucleus shaped like a football. B vibrations correspond to
pushing and pulling on the ends of the football, while y vibrations correspond
to pushing and pulling on its sides.) Both the vibrational states and the particle
excitations occur at energies of about 1 MeV, while the rotational spacing is
much smaller (typically 42/2.% = 10-20 keV).

Figure 5.23 shows the complete low-energy structure of “FEr. Although the
entire set of excited states shows no obvious patterns, knowing the spin-parity
assignments helps us to group the states into rotational bands, which show the
characteristic /(1 + 1) spacing. Other properties of the excited states (for exam-
ple, y-ray emission probabilities) also help us to identify the structure,
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Figure 5.23 The states of '®4Er below 2 MeV. Most of the states are identified
with three rotational bands: one built on the deformed ground state, a second built
on a y-type vibration (in which the surface vibrates fransverse to the symmetry
axis), and a third built on a S-type vibration (in which the surface vibrate_s along f(he
symmetry axis). Many of the other excited states originate from pair-breaking
particle excitations and their associated rotational bands.

Both the vibrational and rotational collective motions give the nucleus a
magnetic moment. We can regard the movement of the protons as an electric
current, and a single proton moving with angular momentum quantum number #
would give a magnetic moment y = £u,. However, the entire angular momen-
tum of a nuclear state does not arise from the protons alone; the neutrons also
contribute, and if we assume that the protons and neutrons move with identical
collective motions (a reasonable but not quite exact assumption), we would
predict that the protons contribute to the total nuclear angular momentum a
fraction of nearly Z/A4. (We assume that the collective motion of the neutrons
does not contribute to the magnetic moment, and we also assume that the
protons and neutrons are all coupled pairwise so that the spin magnetig moments
do not contribute.) The collective model thus predicts for the magnetic moment
of a vibrational or rotational state of angular momentum 7

W(1) = 12y (5.20)

For light nuclei, Z/4 = 0.5 and p(2) = +1py, while for heavier n}lclei, Z/A =
0.4 and p(2) = +0.8py. Figure 5.16a shows that, with the exception of closed-
shell nuclei (for which the collective model is not valid), the magnetic moments of
the 2% states are in very good agreement with this prediction.
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As a .ﬁna.l point in this brief introduction to nuclear collective motion, we must
try to justify the origin of collective behavior based on a more mi’croscopic
approach to nuclear structure. This is especially true for rotational nuclei with
permanent deformations. We have already seen how well the shell model with a
spherically symmetric potential works for many nuclei. We can easily allow the
shell-model potential to vibrate about equilibrium when energy is added to the
nucleus, and so the vibrational motion can be handled in a natural way in
the_shgll modeI.. As we learned in our discussion of the 30Sn structure atythe
beginning of this Sfaction, we can analyze the collective vibrational structure from
an even more microscopic approach; for example, we consider all valence
nucleons (those outside closed shells), find all possible couplings (including those
that break pairs) giving 2% resultant spins, and try to find the correct mixture of
wave functions that gives the observed 2* first excited state. If there are many
possible couplings, this procedure may turn out to be mathematically complex
b.ut the essentials of the shell model on which it is based are not signiﬁcantl’
dlﬁ"e.rent fr01fn the extreme independent particle model we considered in thz
previous section. This approach works for spherical nuclei, but it does not lead
naturally to a rotational nucleus with a permanent deformation.

He're is the critical question: How do shell-model orbits, calculated using a
SphCI:lC&l pofential, result in a nonspherical nucleus? We get a clue to the answer
to this question by superimposing a diagram showing the “magic numbers” on a
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Figure 5.24 The crosshatched areas show the regions far from closed shells
where we expect that the cooperative effects of many single-particle shell-model
states may combine to produce a permanent nuclear deformation. Such deformed

nuclei have been identified in all of the re ions
where
overlap the known nuclei. J fhe crosshatched areas
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chart of the known nuclear species, as shown in Figure 5.24. The deformed nuclei
exist only in regions far from filled neutron and proton shells. Just as the
cooperative effect of a few nucleon pairs outside of a filled shell was responsible
for the microscopic structure of the vibrations of spherical nuclei, the cooperative
effect of many valence nucleon pairs can distort the “core” of nucleons until the
equilibrium shape becomes strongly deformed.

5.3 MORE REALISTIC NUCLEAR MODELS

Both the shell model for odd-4 nuclei and the collective model for even-even
nuclei are idealizations that are only approximately valid for real nuclei, which
are far more complex in their structure than our simple models suggest. More-
over, in real nuclei we cannot “turn off” one type of structure and consider only
the other. Thus even very collective nuclei show single-particle effects, while the
core of nucleons in shell-model nuclei may contribute collective effects that we
have ignored up to this point. The structure of most nuclei cannot be quite so
neatly divided between single-particle and collective motion, and usually we must
consider a combination of both. Such a unified nuclear model is mathematically
too complicated to be discussed here, and hence we will merely illustrate a few of
the resulting properties of nuclei and try to relate them to the more elementary
aspects of the shell and collective models.

Many-Particle Sheill Model

In our study of the shell model, we considered only the effects due to the last
unpaired single particle. A more realistic approach for odd-4 nuclei would be to
include all particles outside of closed shells. Let us consider for example the
nuclei with odd Z or N between 20 and 28, so that the odd nucleons are in the
f;,, shell. For simplicity, we shall confine our discussion to one kind of nucleon
only, and thus we require not only that there be an even number of the other
kind of nucleon, but also that it be a magic number. Figure 5.25 shows the lower
excited states of several such nuclei. The nuclei whose structure is determined by
a single particle (*!Ca and *Co) show the expected levels—a 1~ ground state,
corresponding to the single odd f; , particle (or vacancy, in the case of **Co,
since a single vacancy or hole in a shell behaves like a single particle in the shell),
and a 27 excited state at about 2 MeV, corresponding to exciting the single odd
particle to the p; ,, state. The nuclei with 3 or 5 particles in the f, , level show a
much richer spectrum of states, and in particular the very low negative-parity
states cannot be explained by the extreme single-particle shell model. If the 3~
state, for instance, originated from the excitation of a single particle to the f; ,
shell, we would expect it to appear above 2 MeV because the f; , level occurs
above the p, ,, level (see Figure 5.6); the lowest 3~ level in the single-particle
nuclei occurs at 2.6 MeV (in “*Ca) and 3.3 MeV (in 33Co).

We use the shorthand notation (f, ;)" to indicate the configuration with n
particles in the f, , shell, and we consider the possible resultant values of I for
the configuration (f, /2)3. (From the symmetry between particles and holes, the
levels of three holes, or five particles, in the f; , shell will be the same.) Because
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Figure 5.25 Excited states of some nuclei with valence particles in the t;,2 shell.
All known levels below about 2 MeV are shown, and in addition the 2 state is
included.

the nucleons have half-integral spins, they must obey the Pauli principle, and
thus no two particles can have the same set of quantum numbers. Each particle in
the shell model is described by the angular momentum j = 1, which can have the
projections or z components corresponding to m = + 31, + 2, + 3, + . The Pauli
principle requires that each of the 3 particles have a different value of m.
Immediately we conclude that the maximum value of the total projection,
M = m; + m, + m, for the three particlesis +2 + 5 + 2= + 13 (Without the
Pauli principle, the maximum would be 4.) We therefore expect to find no state
in the configuration (f, /2)3 with I greater than %; the maximum resultant
angular momentum is 7 = 4}, which can have all possible M from + % to — 1,
The next highest possible M is 4, which can only be obtained from + ; + 3 +1
(+3+ 3 + 3 is not permitted, nor is +3 +  — 1). This single M = % state

must belong to the M states we have already assigned to the I = L configura-

tion; thus we have no possibility to have a I = L resultant. Continuing in this

way, we find two possibilities to obtain M = + 2. (+2+ 2+ Land +2 + 3

— 3); there are thus two possible M = + i states, one for the I = is conﬁ_guraL-

tion and another that we can assign to I = 4. Extending this reasoning, we
- 15 11 9 7 3§

expect to find the following states for (f, ,)° or (£, ) I=1 1 3 78 and 3,

Because each of the three or five particles has negative parity, the resultant parity
is (— 1), The nuclei shown in Figure 5.25 show low-lying negative-parity states
with the expected spins (and also with the expected absences—no low-lying 1~
or L7 states appear). ’
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Although this analysis is reasonably successful, it is incomplete—if we do
indeed treat all valence particles as independent and equivalent, then the energy
of a level should be independent of the orientation of the different 7 ’s—that is,
all of the resultant I’s should have the same energy. This is obviously not even
approximately true; in the case of the (f, /2)3 multiplet, the energy splitting
between the highest and lowest energy levels is 2.7 MeV, about the same energy
as pair-breaking and particle-exciting interactions. We can analyze these energy
splittings in terms of a residual interaction between the valence particles, and thus
the level structure of these nuclei gives us in effect a way to probe the nucleon—
nucleon interaction in an environment different from the free-nucleon studies we
discussed in Chapter 4.

As a final comment, we state without proof that the configurations with »
particles in the same shell have another common feature that lends itself to

_experimental test—their magnetic moments should all be proportional to I. That

is, given two different states 1 and 2 belonging to the same configuration, we
expect

(5.21)

Unfortunately, few of the excited-state magnetic moments are well enough
known to test this prediction. In the case of 3!V, the ground-state moment is
p= +5.1514 £ 0.0001 p, and the moment of the first excited state is p =
+3.86 + 0.33 py. The ratio of the moments is thus 1.33 £ 0.11, in agreement
with the expected ratio 2/ 5 = 1.4. In the case of *Mn, the ratio of moments of
the same states is 5.024 £ 0.007 p/3.25 £ 0.30 py = 1.55 £ 0.14. The evidence
from the magnetic moments thus supports our assumption about the nature of
these states.

Single-Particle States in Deformed Nuclei

The calculated levels of the nuclear shell model are based on the assumption that
the nuclear potential is spherical. We know, however, that this is not true for
nuclei in the range 150 < 4 < 190 and 4 > 230. For these nuclei we should use
a shell-model potential that approximates the actual nuclear shape, specifically a
rotational ellipsoid. In calculations using the Schrédinger equation with a non-
spherical potential, the angular momentum ¢ is no longer a “good” quantum
number; that is, we cannot identify states by their spectroscopic notation
(s,p,d,f, etc.) as we did for the spherical shell model. To put it another way, the
states that result from the calculation have mixtures of different ¢ values (but
based on consideration of parity, we expect mixtures of only even or only odd ¢
values).

In the spherical case, the energy levels of each single particle state have a
degeneracy of (2j + 1). (That is, relative to any arbitrary axis of our choice, all
2j + 1 possible orientations of j are equivalent.) If the potential has a deformed
shape, this will no longer be true—the energy levels in the deformed potential
depend on the spatial orientation of the orbit. More precisely, the energy depends
on the component of j along the symmetry axis of the core. For example, an f;
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Figure 5.26 Single-particle orbits with j = Z and their possible projections along
the symmetry axis, for prolate (top) and oblate (bottom) deformations. The possible
projections are @, = 1, Q, = , Q, = £, and , = Z. (For clarity, only the positive
projections are shown.) Note that in the prolate case, orbit 1 lies closest (on the
average) to the core and will interact most strongly with the core; in the oblate
case, it is orbit 4 that has the strongest interaction with the core.

nucleon can have eight possible components of j, ranging from — 2 to + Z. This
component of j along the symmetry axis is generally denoted by Q. Because the
nuclei have reflection symmetry for either of the two possible directions of the
symmetry axis, the components +Q and —& will have the same energy, giving
the levels a degeneracy of 2. That is, what we previously called the f, ,, State
splits up into four states if we deform the central potential; these states are
labeled £ = 3,2,3,7 and all have negative parity. Figure 5.26 indicates the
different possible “orbits” of the odd particle for prolate and oblate deforma-
tions. For prolate deformations, the orbit with the smallest possible € (equal to
;) interacts most strongly with the core and is thus more tightly bound and
lowest in energy. The situation is different for oblate deformations, in which the
orbit with maximum & (equal to ;) has the strongest interaction with the core
and the lowest energy. Figure 5.27 shows how the f, , states would split as the
deformation is increased.
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Figure 5.27 This shows directly the effect of the various orientations of the 1, ,
orbit. As shown in Figure 5.26, the orbit with component = } along the symmetry
axis has the strongest interaction with the prolate core and therefore lies lowest in
energy. For an oblate core, it is the & = 7 component that lies lowest.

Of course, we must keep in mind that Figures 5.26 and 5.27 are not strictly
correct because the spherical single-particle quantum numbers # and j are not
valid when the potential is deformed. The negative parity state with @ = 3, for
example, cannot be identified with the f, , state, even though it approaches that

state as B — 0. The wave function of the = 5 state can be expressed as a

mixture (or linear combination) of many different ¢ and j (but only with j > 3,
in order to get a component of 3). It is customary to make the approximation
that states from different major oscillator shells (see Figures 5.4 and 5.6) do not
mix. Thus, for example, the = 3 state that approaches the 2f, , level as § — 0
will include contributions from only those states of the Sth oscillator shell (2f; /,,
2f7 /3, 1hg 5, 1hyy /). The 4th and 6th oscillator shells have the opposite parity
and so will not mix, and the next odd-parity shells are far away and do not mix

strongly. Writing the spherical wave functions as y,;, we must have

l11"(9) = Za(N/j)‘abN/j (5-22)

Zj

where {'(Q) represents the wave function of the deformed state & and where
a(N¢j) are the expansion coefficients. For the @ = 3 state

Y(Q) = a(533) ¥sys + a(533) ¥saz + a(553) s + a(555) ¥sen (5.23)

The coefficients a(NZj) can be obtained by solving the Schridinger equation for
the deformed potential, which was first done by S. G. Nilsson in 1955. The
coefficients will vary with B, and of course for B — 0 we expect a(531) to
approach 1 while the others all approach 0. For 8 = 0.3 (a typical prolate
deformation), Nilsson calculated the values ’

a(533) = 0267  a(531) = 0.832
a(552) = 0415 a(554) = —0.255

for the £ = 3 level we have been considering.
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Figure 5.28 The energy levels of 7Hf. As in the case of "*Er (Figure 5.23),
knowledge of the spin-parity assignments helps us to group the states into rota-
tional bands. The lowest state in each band has / = @, and the higher states follow
the I(/ + 1) energy spacing.
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Figure 5.29 Energy levels for neutrons in a prolate deformed potential. The
deformation is measured essentially by the parameter 8. The numbers in the
brackets label the states; for our purposes, we are interested only in the first
number, which is the principal quantum number N of the oscillator shell and
therefore tells us the parity of the state ( — 1)V, and the last number, which is the
component £. Solid lines show states with even parity, and dashed lines show odd
parity. For a deformation between 0.2 and 0.3 (typical for nuclei in this region) the
105th neutron of 7Hf would go into the state [5141], that is, an odd-parity state
with £ = Z. A small excitation takes it into the state [6242], an even parity state with
{ = 2. Both intrinsic states (and their associated rotational bands) can be seen in
Figure 5.28. Other observed states in 77Hf result from breaking a pair of neutrons
in a lower state and exciting one to pair with the 2~ neutron. In this way, for
instance, we could produce a single neutron in the state [5125], which gives the
odd-parity @ = § state in "7”Hf. From C. Gustafson et al., Ark. Fys. 36, 613 (1967).
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Given such wave functions for single-particle states in deformed nuclei, we can
then allow the nuclei to rotate, and we expect to find a sequence of rotational
states, following the I(J + 1) energy spacing, built on each single-particle state.
The lowest state of the rotational band has I = £, and as rotational energy is
added the angular momentum increases in the sequence I = Q, 2 + 1,2 +2,... .
Figure 5.28 shows the energy levels of the nucleus '7Hf, in which two well-devel-
oped rotational bands have been found and several other single-particle states
have been identified. .

To interpret the observed single-particle levels, we require a diagram similar to
Figure 5.27 but which shows all possible single-particle states and how their
energies vary with deformation. Such a diagram is shown in Figure 5.29 for the
neutron states that are appropriate to the 150 < 4 < 190 region. Recalling that
the degeneracy of each deformed single-particle level is 2, we proceed exactly as
we did in the spherical shell model, placing two neutrons in each state up to
N = 105 and two protons in each state up to Z = 72. We can invoke the pairing
argument to neglect the single-particle states of the protons and examine the
possible levels of the 105th neutron for the typical deformation of 8 = 0.3. You
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can see from the diagram that the expected single-particle levels correspond
exactly with the observed levels of """H.

The general structure of the odd-4 deformed nuclei is thus characterized by
rotational bands built on single-particle states calculated from the deformed
shell-model potential. The proton and neutron states are filled (two nucleons per
state), and the nuclear properties are determined in the extreme single-particle
limit by the properties of the odd particle. This model, with the wave functions
calculated by Nilsson, has had extraordinary success in accounting for the
nuclear properties in this region. In general, the calculations based on the
properties of the odd particle have been far more successful in the deformed
region than have the analogous calculations in the spherical region.

In this chapter we have discussed evidence for types of nuclear structure based
on the static properties of nuclei—energy levels, spin-parity assignments, mag-
netic dipole and electric quadrupole moments. The wave functions that result
from solving the Schrodinger equation for these various models permit many
other features of nuclear structure to be calculated, particularly the transitions
between different nuclear states. Often the evidence for collective structure, for
instance, may be inconclusive based on the energy levels alone, while the
transition probabilities between the excited states may give definitive proof of
collective effects. It may also be the case that a specific excited state may have
alternative interpretations—for example, a vibrational state or a 2-particle cou-
pling. Studying the transition probabilities will usually help us to discriminate
between these competing interpretations. The complete study of nuclear structure
therefore requires that we study radioactive decays, which give spontaneous
transitions between states, and nuclear reactions, in which the experimenter can
select the initial and final states. In both cases, we can compare calculated decay
and reaction probabilities with their experimental values in order to draw
conclusions about the structure of nuclear states. The methods of each of these
areas of nuclear spectroscopy will occupy us for most of the remainder of this
text.
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Chapters 7-10.

Two essential monographs, covering respectively the shell model and the
collective model, have béen written by recipients of the Nobel Prize for their
work on nuclear models: M. G. Mayer and J. H. D. Jensen, Elementary Theory of
Nuclear Shell Structure (New York: Wiley, 1955) and A. Bohr and B. R.
Mottelson, Nuclear Structure (Reading, MA: Benjamin, 1975), Vol. 2 (Vol. 1
treats the shell model). Another comprehensive but advanced work is J. M.
Eisenberg and W. Greiner, Nuclear Models (Amsterdam: North-Holland, 1970).
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PROBLEMS

1. Give the expected shell-model spin and parity assignments for the ground
states of (a) "Li; (b) 1'B; (c) 1*C; (d) 'F; (e) *'P; (f) “!Pr.

2. The low-lying levels of *C are ground state,  7; 3.09 MeV, 1*; 3.68 MeV,

37; 3.85 MeV, §+. The next states are about 7 MeV and above. Interpret

these four states according to the shell model.

The level scheme of Figure 5.6 would lead us to expect I™ = L7 for the

ground state of 2Tl (Z = 81), while the observed value is *. A similar
case occurs in 27Pb (N = 125) and '*Hg (N = 119), where £ is expected
but 17 is observed. Given that the pairing force increases strongly with ¢,
give the shell-model configurations for these nuclei that are consistent with
the observed spin-parity assignments.

Figure 5.6 is only a schematic, average representation of the shell-model
single-particle states. The energies of the states will vary with the proton
number and neutron number. To illustrate this effect, consider the available
states of the 51st proton in Sb isotopes. Make a chart in the style of Figure
5.25 showing the ¥ and 27 states in "*Sb to **Sb. (Consult the Table of
Isotopes and the Nuclear Data Sheets for information on the energy levels.)
Discuss the relative positions of the g,, and ds, proton states as a
function of neutron number.

In the single-particle shell model, the ground state of a nucleus with an odd
proton and an odd neutron is determined from the coupling of the proton

and neutron shell-model states: I = j, + j,. Consider the following nuclei:
16N — 275 2B — 17, 3P — 1*; %Al — 3%, Draw simple vector diagrams
illustrating these couplings, then replace j, and j,, respectively, by £, + s,
and ¢, + s,. Examine your four diagrams and deduce an empirical rule for
the relative orientation of s, and s, in the ground state. Finally, use your
empirical rule to predict the 1™ assignments of 2Na and *Na.

(a) If the energy of a single-particle state in the absence of spin-orbit
splitting is E,, find the energies of the two members of the spin-orbit
doublet whose difference is given by Equation 5.4. (b) Show that the “center
of gravity” of the doublet is E|,.

Compute the expected shell-model quadrupole moment of **°Bi (27) and
compare with the experimental value, —0.37b.

Compute the values of the magnetic dipole moments expected from the shell
model, and compare with the experimental values:

Nuclide I p(exp) (pn)
BGe +0.510
87Qr —1.093
Nz, —1.304
475 +5.34

R, +6.06

+

+

t

Nl: NN N N R
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9. Compute the vibrational frequency associated with typical quadrupole
vibrations. Taking typical values for decay lifetimes of 2% states in vibra-
tional nuclei (you can find these in the Table of Isotopes, for example),
comment on whether the decays generally occur on a shorter or longer time
scale than the nuclear vibrations. If « represents the vibrational amplitude,
as in Equation 5.13, could we observe quantities dependent on {a)? On
(a®)?

10. By tabulating the possible m states of three quadrupole (£= 2) phonons,
and their symmetrized combinations, show that the permitted resultant
states are 07, 2%, 3%, 4%, and 6™.

11. Find the volume of the nucleus whose surface is described by Equation 5.14.

12. Consider a uniformly charged ellipsoidal nucleus whose surface is described
by Equation 5.14. Show that the electric quadrupole moment, defined by
Equation 3.36, is given by Equation 5.16.

13. The levels of ’#Hf show two similar rotational bands, with energies given as
follows (in MeV):

EO*) EQ*) E@*) E®6*) E@8*) E10%) E(12%)
Band1 0 0091 0297 0608 1010 1486 2021
Band2 0827 0900 1063 1307 1630 2026 2489

Compare the moments of inertia of these two bands, and comment on any
difference.

14. The low-lying levels of 1’0 and '°O differ primarily in the presence of states
of I"= 3% and £* in 10; these two states have no counterparts in '’O.
Show that these two states could result from the configuration (d; /2)3 and
thus are not expected in 0.

15. The nucleus Mg has a 2* first excited state at 1.369 MeV and a 4* second
excited state at 4.123 MeV. The 2* state has a magnetic dipole moment of
1.02 py and an electric quadrupole moment of —0.27b. Which model
would be most likely to provide an accurate description of these states?
Justify your choice by calculating parameters appropriate to your choice of
model.
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