*Energy resolution measurements of CeBr*₃ *and LaCl*₃:*Ce detectors*

A. A. Naqvi, F. Z. Khiari, F. A. Liadi, Khateeb-ur-Rehman & A. A. Isab

Journal of Radioanalytical and Nuclear Chemistry

An International Journal Dealing with All Aspects and Applications of Nuclear Chemistry

ISSN 0236-5731 Volume 310 Number 2

J Radioanal Nucl Chem (2016) 310:849-855 DOI 10.1007/s10967-016-4904-4

Your article is protected by copyright and all rights are held exclusively by Akadémiai Kiadó, Budapest, Hungary. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

Energy resolution measurements of CeBr₃ and LaCl₃:Ce detectors

A. A. Naqvi¹ · F. Z. Khiari¹ · F. A. Liadi¹ · Khateeb-ur-Rehman¹ · A. A. Isab²

Received: 18 February 2016/Published online: 13 June 2016 © Akadémiai Kiadó, Budapest, Hungary 2016

Abstract The energy resolution of LaCl₃:Ce and CeBr₃ detectors were measured from gamma rays produced due to thermal neutron capture in CeBr₃ and LaCl₃:Ce detector's material using a portable DD neutron generator-based prompt gamma ray neutron activation analysis (PGNAA) setup. The energy resolution of CeBr₃ detector varies from 6.64 ± 0.04 to 2.75 ± 0.04 % over 368-2223 keV gamma rays while for LaCl₃:Ce it varies from 7.09 ± 0.02 to 0.90 ± 0.01 % over 272-8579 keV gamma rays. The energy resolution data of both detectors exhibit $1/\sqrt{E_{\gamma}}$ dependence.

Keywords Energy resolution measurements of LaCl₃:Ce and CeBr₃ detectors \cdot Thermal neutron activation spectra of LaCl₃:Ce and CeBr₃ detectors \cdot Portable neutron generatorbased prompt gamma ray neutron activation analysis (PGNAA) setup

Introduction

In prompt gamma neutron activation analysis (PGNAA) studies based upon thermal neutron capture reactions or neutron inelastic scattering, both sample as well as detector are exposed to thermal as well as fast neutron beams [1-5]. Due to the interaction of the neutron beams with elements present in the detector material, the detector records

² Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia prompt gamma rays associated with detector material along with the prompt gamma rays associated with the sample to be analyzed [3-5]. Activation gamma rays from the detector material along with any other intrinsic activity gamma rays from the detector material are main source of beam-associated background in prompt gamma ray studies [6-8]. This background sources put major limitations on the use of specific detectors in PGNAA applications. It is highly desirable to use a gamma ray detector with excellent energy and time resolutions in prompt gamma applications [4-8]. Furthermore, to reduce the beam associated background of the detector, it should be made of neutron radiation hardened material (material with insignificant neutron interaction cross section) and free of intrinsic activity. Recently neutron radiation hardened lanthanumhallide (LaBr₃:Ce and LaCl₃:Ce) detectors have been developed. LaBr₃:Ce and LaCl₃:Ce detectors offer excellent energy resolution but they have high intrinsic activity of radioactive lanthanum material in LaBr3:Ce and LaCl₃:Ce detectors [1-8]. Studies for minimizing the intrinsic activities of lanthanum-hallide detectors have led to the development of cerium tribromide (CeBr₃) gamma ray detectors [9–16]. Like LaCl₃:Ce detectors, CeBr₃ detectors have also about 4.4 % energy resolution for 661 keV gamma rays [11]. Since the CeBr₃ detector does not contain Lanthanum, it has less activity as compared to LaCl₃:Ce detector. Ideally the CeBr₃ detector should be free of intrinsic activity because Ce and Br are both nonradioactive. The residual intrinsic activity of CeBr₃ detector is due to impurity of ²²⁷Ac in the detector raw material. Its intrinsic activity is associated with gamma rays emitted by the alpha emitter of ²²⁷Ac impurity in the detector (produced by alpha particles of energies 5716 keV (²²³Ra); 6000 keV (²²⁷Th); 6623 keV (²¹¹Bi); 6819 keV (²¹⁹Rn); 7386 keV (²¹⁵Po); 5716 keV (²²³Ra)) [11]. The

A. A. Naqvi aanaqvi@kfupm.edu.sa

¹ Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

energies of intrinsic gamma rays of the CeBr₃ detector, produced due to the activity of ²²⁷Ac impurity, are spread over the 1400–2200 keV energy range. The LaCl₃:Ce has an intrinsic gamma ray background spread over 0.09-1.600 MeV with a lanthanum decay associated peak at 1468 keV [3–8]. The CeBr₃ detector has a 1.33 times lower alpha/gamma ratio as compared to LaBr₃:Ce/ LaCl₃:Ce detectors [11]. The higher Ce doping concentration in the CeBr₃ detector has resulted in a poorer energy resolution of 4.4 % as compared to LaBr₃:Ce detector (2.9 %) for 661 keV gamma rays [14]. This excessive cerium doping has also resulted in a poorer time resolution of CeBr₃ detector as compared to LaBr₃:Ce and LaCl₃:Ce detectors [14].

Although Ce:Br₃ detector has 25 % poorer energy resolution for 661 keV ¹³⁷Cs gamma rays as compared to LaBr₃:Ce, yet it has a reduced intrinsic activity and oneorder of magnitude increased detection efficiency around 1461 and 2641 keV gamma ray energies as compared to LaBr₃:Ce and LaCl₃:Ce detectors [11]. These gamma ray energy ranges are particularly important for detection of ⁴⁰K and ²⁰⁸Tl(²³²Th) in environmental samples [11]. Due to their lower intrinsic activity, PGNAA set ups employing Ce:Br₃ detectors, are expected to have better signal to noise ratio in gamma ray spectra and hence better performance compared to those employing LaBr₃:Ce and LaCL₃:Ce detectors.

A cylindrical 3×3 inches (76 \times 76 mm) (height \times diameter) CeBr₃ has been acquired by King Fahd University of Petroleum and Minerals (KFUM), Dhahran, Saudi Arabia from Scionix Holland BV, The Netherland for its prompt gamma analysis program. In this study the activation spectra of 76 \times 76 mm (height \times diameter) CeBr₃ and LaCl₃:Ce detectors were measured using a portable neutron generatorbased PGNAA setup. Finally, the energy resolution data of both detectors were determined for the resolved prompt gamma rays in the activation spectrum. The results of this study are presented in the following paragraphs.

Experimental

Intrinsic activity spectra of Ce:Br₃ and LaCl₃:Ce detectors

The intrinsic activity spectrum of the Ce:Br₃ detector was recorded using standard NIM electronics modules, used in previous studies of LaCl₃:Ce and [8] and LaBr₃:Ce [4] detectors. For continuity sake it will be briefly described here. The detector signal, which was routed through a preamplifier, was processed through a spectroscopy amplifier with a shaping time of 1 μ s. The amplifier signal

was processed by a Multichannel Buffer (ADC) for subsequent storage in a personal computer.

Figure 1 shows the Ce:Br₃ detector intrinsic activity spectrum over 1200–2200 keV energy range with gamma ray yield (counts) plotted as a function of gamma ray energy. The intrinsic activity spectrum of the CeBr₃ detector is superimposed upon the ²⁰⁷Bi gamma ray source spectrum taken with the detector. The detector intrinsic activity spectrum a significantly reduced background below 1.2 MeV energy. Figure 1 shows three gamma rays peaks at 1510, 1715 and 1990 keV associated with the ²²⁷Ac contaminants intrinsic activity of the CeBr₃ detector. This agrees with the results of intrinsic activity of a CeBr₃ detector due to ²²⁷Ac contaminants published earlier by Quarati et al. [11].

The intrinsic activity of the cylindrical (with 76 × 76 mm dimension) LaCl₃:Ce detector was also recorded following a procedure similar to the one used for the CeBr₃ detector. Figure 2 shows the intrinsic spectrum of the LaCl₃:Ce detector showing the 1468 keV intrinsic activity peak due to the decay of radioactive lanthanum impurity in the LaCl₃:Ce detector superimposed upon ²⁰⁷Bi source spectrum taken with the detector. Details of the origin of this activity have been published earlier [8]. Quarati et al. [11] have found that the intrinsic activity of a Ce:Br₃ detector is an order of magnitude less than the intrinsic activities of the LaBr₃:Ce and LaCl₃:Ce detectors of equivalent size.

Measurement of activation spectrum of CeBr₃ and LaCl₃:Ce detectors

In the present study activation spectra of CeBr₃ and LaCl₃:Ce detectors were acquired following the procedure described earlier for a 100×100 mm (diameter × height)

Gamma Ray Exp. Yield

Fig. 2 LaCl₃:Ce detector Intrinsic activity spectrum superimposed upon ²⁰⁷Bi source spectrum

LaBr₃:Ce detector [3]. For continuation sake it will be described briefly. The PGNAA setup consists of a cylindrical specimen placed inside a cylindrical high density polyethylene moderator. The moderator has a central cylindrical cavity that can accommodate a specimen with a maximum diameter of 9.0 cm and a height of 14 cm. A cylindrical 76×76 mm (diameter \times length) Ce:Br₃ gamma-ray detector, with its longitudinal axis aligned along the moderator and sample's major axis, was used in this study. The longitudinal axis of the cylindrical sample is also at right angle with respect to the neutron beam axis. In order to prevent undesired gamma-rays and neutrons from reaching the detector, 3 mm thick lead shielding and 50 mm thick paraffin shielding were provided around the gamma-ray detector. The neutron shielding is made of a mixture of paraffin and lithium carbonate mixed in equal weight proportion. The moderator and shielding size was determined from the results of Monte Carlo calculations. Figure 3 shows the PGNAA setup with the high density polyethylene cylindrical moderator and portable neutron generator.

In order to record the activation spectrum of the CeBr₃ and LaCl₃:Ce detectors, they were irradiated with a mixture of fast as well as thermal neutrons produced in the portable neutron generator-based PGNAA set up. The neutron generator produces 2.5 MeV neutrons via D (d, n) reaction which are thermalized by the moderator. Due to the finite efficiency of the moderator, the neutron flux in the moderator cavity is a mixture of fast and thermal neutrons. The activation spectrum of the detector was recorded without sample. A pulsed beam of 2.5 MeV neutrons was produced via the D (d, n) reaction using a 70 µA deuteron beam of 70 keV energy. The pulsed deuteron beam had a pulse width of 800 µs and a frequency of 250 Hz. The detector pulse height spectrum was acquired using standard NIM electronics modules. The detector signal, which was routed through a preamplifier, was processed through a spectroscopy amplifier with a shaping time of 1 µs. The logical gate signal was generated for each signal processed by the amplifier using a single channel analyzer and gate and delay generators modules.

The activation spectrum of the CeBr₃ detector was recorded for 40 min runs. It contains prompt gamma-ray peaks due to capture of thermal neutrons in Br and Ce elements present in the CeBr₃ detector, along with small intrinsic activity peaks due to ²²⁷Ac contamination. Energies of prominent prompt gamma-rays due to the capture of thermal neutrons in bromine and cerium in the CeBr₃ detector were taken from ref [17]. Figure 4 shows the activation spectrum of the CeBr₃ detector measured over

Fig. 4 Activation spectrum of the CeBr₃ Detector

0.24–2.35 MeV energy. It contains most of the prompt gamma-ray lines of bromine and cerium in the detector along with the 2.22 MeV hydrogen capture peak of thermal neutrons in the moderator.

Figure 5 shows an enlarged part of the CeBr₃ detector activation spectrum over 0.0-1.10 MeV superimposed upon ¹³⁷Cs source spectrum. The spectrum shows well resolved Br(196), Br(271) and Br(367) peaks due to capture of thermal neutrons in bromine within the CeBr₃ detector material. Similar bromine energy peaks were also observed before along with La(163) peak in the activation spectrum of a 100×100 mm LaBr₃:Ce detector, as shown in Fig. 6 [3].

The activation spectrum of the LaCl₃:Ce detector was recorded for 30 min. Figure 7 shows the LaCl₃:Ce detector activation spectrum over 0.20-2.40 MeV gamma rays. The

Fig. 5 Portion of CeBr₃ activation spectrum superimposed upon ¹³⁷Cs Source spectrum

J Radioanal Nucl Chem (2016) 310:849-855

Prompt Gamma Ray Exp. Yield 4000 Br(828) e(1107) H(2223) Br(367 Br(1248) Al(1779) 2000 Br(661), Ce(662) n 2.05 0.05 1.55 0.55 1.05 Prompt Gamma Ray Energy (MeV)

Fig. 6 Activation spectrum of LaBr3:Ce detector taken from ref. [4]

Fig. 7 Activation spectrum of LaCl₃:Ce detector

spectrum shows well resolved peaks of La(271), Cl(517), Cl(1165), Cl(1951-1959) and H(2223) peaks. Similar lanthanum and cerium peaks were reported in the activation spectrum of a 76×76 mm (diameter × height) LaBr₃:Ce detector shown in Fig. 6 from Ref. [4].

Due to short irradiation times, delayed gamma-rays from ¹⁴⁰La (half life = 40.3 h) could not be detected. Figure 8 shows an enlarged part of the LaCl₃:Ce detector activation spectrum over 2.13-9.69 MeV. The spectrum shows well resolved Cl(2470), Cl(2864), Cl(6111), Cl(6620-6628), Cl(6978) and Cl(8679) peaks due to the capture of thermal neutrons in chlorine in the LaCl₃:Ce detector material.

Figure 6 Activation spectrum of LaBr₃:Ce detector taken from Ref. [4].

Later on, all the well resolved energy peaks of the CeBr₃ and LaCl₃:Ce detectors in the full as well as in the enlarged activation spectra were used to calculate each detector energy resolution for the corresponding gamma ray energy.

Fig. 8 Portion of Activation spectrum of LaCl₃:Ce detector

Fig. 9 Energy resolution $\Delta E/E$ (%) data of the CeBr₃ detector superimposed upon least square fit of type $\Delta E/E$ (%) = a/E^{b}

Energies of prominent prompt gamma-rays due to the capture of thermal neutrons in lanthanum, chlorine, and cerium in the LaCl₃:Ce detector were taken from ref [17].

Results and discussion

The energy resolution of the CeBr₃ detector was measured over 368 to 2223 keV energy using ²⁰⁷Bi and ¹³⁷Cs gamma ray sources peaks. Also used for this purpose were the Br(196), Br(271), Br(367), Ce(475), Br(512), Br(554), Br(1064), Ce(1107), and Br (1317) peaks of the activation spectrum from the CeBr₃ detector, along with the 2223 keV hydrogen capture peak from the moderator as well as the single escape peak of H (2223). For

Table 1 Coefficients of fit of type $\Delta E/E(\%) = a/E^b$ to the energy resolution data of the CeBr₃, LaCl₃:Ce, and LaBr₃:Ce detectors

Detector type	Detector size	$\Delta E/E(\%) = a/E^b$	
		a	b
CeBr ₃	$76 \times 76 \text{ mm}$	130 ± 0.2	0.507 ± 0.025
$CeBr_3[12]$	50×50 mm	108	0.498
LaBr ₃ :Ce[12]	$50 \times 50 \text{ mm}$	81	0.501
LaCl ₃ :Ce	$76 \times 76 \text{ mm}$	122 ± 0.1	0.505 ± 0.010
LaBr ₃ :Ce[3]	$100 \times 100 \text{ mm}$	174	0.484

Fig. 10 Energy resolution $\Delta E/E$ (%) data of the LaCl₃:Ce detector superimposed upon least square fit of type $\Delta E/E$ (%) = a/E^{b}

368–2223 keV gamma rays, the energy resolution of the CeBr₃ detector varies from 6.64 \pm 0.04 to 2.75 \pm 0.04 %. In Fig. 9, the energy resolution data of the CeBr₃ detector is plotted as a function of gamma ray energy. A least square fit of type $\Delta E/E$ (%) = a/E^b was used to fit the data. The program was developed following the procedure given in a standard textbook on data reduction and error analysis techniques. [18]. Figure 9 shows experimental data points superimposed upon the solid line fit. In the fitted function, a and b are constants and E_{γ} is the gamma ray energy given in keV. The values of the constants a and b of the fit to the measured energy resolution data of the 76 \times 76 mm CeBr₃ detector are listed in Table 1.

The energy resolution of the LaCl₃:Ce detector was measured over 272–8579 keV energy using 570, 1064 and 1770 keV gamma rays from 207 Bi source along with 2223 keV hydrogen capture peaks during prompt gamma rays studies. The activation spectrum of the LaCl₃:Ce detector, namely La(272), La(4502), Cl(1165), Cl(2470), Cl(2864), Cl(6111), Cl(6620), Cl(6978), Cl(7790) and Cl(8579) peaks were also used for the measurement. For 272–8579 keV gamma rays, the energy resolution of the

Energy resolution ratio for 661 keV gamma rays	Ratio of corresponding a coefficients of the fit		
1	0.830		
1.517	1.333		
1.071	1.066		
0.774	0.701		
	Energy resolution ratio for 661 keV gamma rays 1 1.517 1.071 0.774		

Table 2 Ratios of Energy resolution (@661 keV) and a Coefficients from Energy Resolution Fit of CeBr₃, LaCl₃;Ce and LaBr₃:Ce detectors

^a Detector is marked by its diameter (\times mm) assuming a cylindrical (\times mm, \times mm) detector

LaCl₃:Ce detector varies from 7.09 ± 0.02 to 0.90 ± 0.01 %. In Fig. 10, the energy resolution data of the LaCl₃:Ce detector is plotted as a function of gamma ray energy. Also in Fig. 10, the energy resolution data is fitted with a least square fit of type $\Delta E/E$ (%) = a/E^b , where a and b are constants and E is the gamma ray energy in keV. The fit is drawn with a solid line.

The values of the constants *a* and *b* of the fit to the measured energy resolution data of the LaCl₃:Ce detector are listed in Table 1. Furthermore, the energy resolution data of the 50 × 50 mm (height × diameter) CeBr₃ and LaBr₃:Ce detectors [11] has been included in Table 1 for comparison with the present energy resolution data of the 76 × 76 mm (diameter × height) CeBr₃ and LaCl₃:Ce detectors. Also, the energy resolution data of a large 100 × 100 mm LaBr₃:Ce [3] detector has been included in Table 1.

As expected, the fit coefficient b for both types of detectors has a value of about 0.5. The value of the coefficient a shows dependence on detector volume and energy resolution at 661 keV. For detectors of the same type its value increases with detector volume. For detectors of different types but with the same volume, its value is proportional to the energy resolution of the detector for 661 keV gamma rays.

A comparison of the coefficient *a* values of the energy resolution fit to the data of the 50 \times 50 mm CeBr₃ detector [11] and that of the 76 \times 76 mm CeBr₃ detector of the present study shows a 20 % larger value of the coefficient *a* for our 76 \times 76 mm detector. The larger volume of the 76 \times 76 mm CeBr₃ detector used in the present study might have resulted in increasing light absorption with increasing Ce contents and hence poorer light collection. Table 2 shows the energy resolution ratios of the CeBr₃, LaBr₃:Ce and LaCl₃:Ce detectors of various sizes for 661 keV energies and ratios of corresponding *a* coefficients of the fits to the respective detector's energy resolution data.

As expected, the detector's *a*-coefficient ratios are in good agreement with the detector energy resolution ratio for 661 keV gamma rays. The disagreement between the two *a* values is only in the case when the two detectors under comparison have different volumes.

Conclusions

In this study, the energy resolution of 76×76 mm CeBr₃ and LaCl₃:Ce detectors were measured using gamma rays produced due to capture of thermal neutrons in elements present in the CeBr₃ and LaCl₃:Ce detectors material. The measured energy resolution of the CeBr₃ detector for 368–2223 keV gamma rays varies from 6.64 ± 0.04 to 2.75 ± 0.04 %. For the LaCl₃:Ce detector, the energy resolution for 272-8579 keV gamma rays varies from 7.09 ± 0.02 to 0.90 ± 0.01 %. The energy resolution data of both detectors has been fitted with a function of type $\Delta E/E$ (%) = a/E^{b} . For both types of the detectors, the fit coefficient b has a value of about 0.5. The value of coefficient *a* is very sensitive to detector volume and its energy resolution. This study has provided useful data about the energy resolution and activation spectra of CeBr₃ and LaCl₃:Ce detectors.

Acknowledgments This study is funded by NSTIP project # ENV2367-04, KACST, Saudi Arabia. The support provided by the Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, is also acknowledged.

References

- 1. Alexiev D, Mo L, Prokopovich DA, Smith ML, Matuchova M (2008) Comparison of LaBr 3: Ce and LaCl3: Ce With NaI(Tl) and cadmium zinc telluride (CZT) detectors. IEEE Trans Nucl Sci 55(3):1174–1177
- Menge PR, Gautier G, Iltis A, Rozsa C, Solovyev V (2007) Performance of large lanthanum bromide scintillators. Nucl Instrum Methods Phys Res, Sect A 579(1):6–10
- Naqvi AA, Khiari FZ, Maslehuddin M, Gondal MA, Al-Amoudi OSB, Ukashat MS, Ilyas AM, Liadi FA, Isab AA, Khateeb-ur-Rehman M, Raashid MA, Dastageer A (2015) Pulse height tests of a large diameter fast LaBr 3: Ce scintillation detector. Appl Radiat Isot 104:224–231
- 4. Naqvi AA, Zameer Kalakada AA, Al-Anezi MS, Raashid M, Maslehuddin M, Khateeb-ur-Rehman, Garwan MA, Khiari FZ, Isab AA, Al-Amoudi OSB (2011) Detection efficiency of low levels of boron and cadmium with a LaBr 3: Ce scintillation detector. Nucl Instrum Methods Phys Res, Sect A 665:74–79
- Naqvi AA, Fares A, Al-Matouq FZ, Khiari AA, Isab, Khateeb-ur-Rehman, Raashid M (2012) Prompt gamma tests LaBr 3: Ce and BGO detectors for detection of hydrogen, carbon oxygen in bulk samples. Nucl Instrum Methods Phys Res, Sect A 684:82–87

- Balcerzyk M, Moszyński M, Kapusta M (2005) Comparison of LaCl3: Ce and NaI(Tl) scintillators in γ-ray spectrometry. Nucl Instrum Methods Phys Res, Sect A 537:50–56
- Owens A, Bos AJJ, Brandenburg S, Dathy C, Dorenbos P, Kraft S, Ostendorf RW, Ouspenski V, Quarati F (2007) γ-ray performance of a 1242 cm 3 LaCl3: Ce scintillation spectrometer. Nucl Instrum Methods Phys Res, Sect A 574(1):110–114
- Naqvi AA, Al-Anezi MS, Kalakada Zameer, AlMatouq Faris A, Maslehuddin M, Gondal MA, Isab AA, Dastageer M, Khateeb-ur-Rehman (2012) Response tests of a LaCl3: Ce scintillation detector with low energy prompt gamma rays from boron and cadmium. Appl Radiat Isot 70:882–887
- Cherepy NJ, Payne SA, Asztalos SJ, Hull G, Kuntz JD, Niedermayr T, Pimputkar S, Roberts JJ, Sanner RD, Tillotson TM, van Loef E, Wilson CM, Shah KS, Roy UN, Hawrami R, Burger A, Boatner LA, Choong WS, Moses WW (2010) Scintillators with potential to supersede lanthanum bromide. IEEE Trans Nucl Sci 56:873–880
- Guss P, Reed M, Yuan D, Cutler M, Contreras C, Beller.D (2010) Comparison of CeBr₃ with LaBr₃:Ce, LaCl₃:Ce, and NaI:Tl detectors. In: Proc. SPIE 7805, hard X-ray, gamma-ray, and neutron detector physics XII, 78050L; doi:10.1117/12.862579
- 11. Quarati FGA, Dorenbos P, VanderBiezen J, Alan Owens, Selle M, Parthier L, Schotanus P (2013) Scintillation and detection characteristics of high-sensitivity CeBr 3 gamma-ray spectrometers. Nucl Instrum Methods Phys Res, Sect A 729:596–604

- Quarati FGA, Alekhin MS, Krämer KW, Dorenbos P (2014) Codoping of CeBr 3 scintillator detectors for energy resolution enhancement. Nucl Instrum Methods Phys Res, Sect A 735:655–658
- Guss P, Reed M, Yuan D, Beller D, Cutler M, Contreras C, Mukhopadhyay S, Wilde S (2014) Size effect on nuclear gammaray energy spectra acquired by different-sized CeBr 3, LaBr3:Ce, and NaI: Tl gamma-ray detectors. Nucl Technol 185(3):309–321
- 14. Ter Weele DN, Schaart DR, Dorenbos P (2014) The effect of self-absorption on the scintillation properties of Ce 3+ Activated LaBr 3 and CeBr3. IEEE Trans Nucl Sci 61(1):683–688
- Dorenbos P (2002) Light output and energy resolution of Ce³⁺doped scintillators. Nucl Instrum Methods Phys Res, Sect A 486:208–213
- Drozdowski W, Dorenbos P, Bos AJJ, Bizarri G, Owens A, Quarati FGA (2008) CeBr scintillator development for possible use in space missions. IEEE Trans Nucl Sci 55(3):1391–1396
- Choi HD, Firestone RB, Lindstrom RM, Molnar GL, Mughabghab SF, Paviotti-Corcuera R, Revay Zs, Trkov A, Zhou CM (2006) Database of prompt gamma-rays from slow neutron capture for elemental analysis. International Atomic Energy Agency, Vienna
- Bevington PR, Robinson DK (2003) Data reduction and error analysis for physical sciences, 3rd edn. McGraw Hill, New York