feducion % =
i 8
s = B

for the Physical Sciences

THIRD EDITION

Philip . Bevingtor
1. Keith Hobingon






TTATANT OV

ERROR ANALYSIS
YSICAL SCIENCES

DATA REDUCTION AND
FOR THE PH







DATA REDUCTION AND
ERROR ANALYSIS

FOR THE PHYSICAL
SCIENCES

THIRD EDITION

Philip R. Bevington

Late Associate Professor of Physics
Case Western Reserve University

D. Keith Robinson

Emeritus Professor of Physics
Case Western Reserve University

G

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York
San Francisco St. Louis Bangkok Bogota Caracas Kuala Lumpur
Lisbon London Madrid Mexico City Milan Montreal New Delhi

Santiago Seoul Singapore Sydney Taipei Toronto



McGraw-Hill Higher Education gy

A Division of The McGraw-Hill Companies

DATA REDUCTION AND ERROR ANALYSIS FOR THE PHYSICAL SCIENCES
THIRD EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright © 2003, 1992, 1969 by The McGraw-Hill Companies, Inc.
All rights reserved. No part of this publication may be reproduced or distributed in any form or by any
[Mcan 0 Ored N a4 datapasc O Ciricva CIh A N0 Ne prio W] CI Oonsent o he V] dW-11
Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission,

or braadeoagt far dictancs laarming
UL 0iUaulast 101 Uidiailile icaliiiiig.

Some anciiiaries, inciuding eiectronic and print components, may not be avaiiabie to customers
outside the United States.

This book is printed on acid-free paper.
1234567890DOC/DOC098765432
ISBN 0-07-247227-8

Publisher: Kent A. Peterson

Sponsoring editor: Daryl Bruflodt
Developmental editor: Spencer J. Cotkin, Ph.D.
Marketing manager: Debra B. Hash

Senior project manager: Mary E. Powers

Senior production supervisor: Laura Fuller
Senior media project manager: Stacy A. Patch
Lead media technology producer: Judi David
Coordinator of freelance design: Rick D. Noel
Cover designer: John Rokusek/Rokusek Design
Cover diagrams provided by: D. Keith Robinson
Compositor: GAC—Indianapolis

Typeface: 10/12 Times Roman

Printer: R. R. Donnelley & Sons Company/Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Bevington, Philip R., 1933-1980.

Data reduction and error analysis for the physical sciences / Philip R. Bevington, D. Keith
Robinson.—3rd ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-07-247227-8

1. Multivariate analysis. 2. Error analysis (Mathematics). 3. Least squares. 4. Data reduction.
I. Robinson, D. Keith. II. Title.

QA278 .B48 2003
511'.43—dc21 2002070896
CIP

www.mhhe.com




CONTENTS

Chapter 1 Uncertainties in Measurements 1
1.1 Measuring Errors 1
1.2 Uncertainties 5
1.3 Parent and Sample Distributions 6
1.4 Mean and Standard Deviation of Distributions 12
Chapter 2 Probability Distributions 17
2.1 Binomial Distribution 17
2.2 Poisson Distribution 23
2.3  Gaussian or Normal Error Distribution 27
2.4 Lorentzian Distribution 31
Chapter 3 Error Analysis 36
3.1 Instrumental and Statistical Uncertainties 36
3.2 Propagation of Errors 39
3.3 Specific Error Formulas 41
3.4 Application of Error Equations 46
Chapter 4 Estimates of Mean and Errors 51
4.1 Method of Least Squares 51
4.2  Statistical Fluctuations 60
4.3 Probability Tests 63
4.4  x? Test of a Distribution 65
Chapter 5 Monte Carlo Techniques 75
5.1 Introduction 75
5.2 Random Numbers 78

<



vi CONTENTS

5.3 Random Numbers from Probability Distributions 81

5.4 Specific Distributions 84

5.5 Efficient Monte Carlo Generation 94

Chapter 6 Least-Squares Fit to a Straight Line 98

6.1 Dependent and Independent Variables 98

6.2 Method of Least Squares 102

6.3 Minimizing x> 104

6.4 Error Estimation 107

6.5 Some Limitations of the Least-Squares Method 110

6.6  Alternate Fitting Methods 111

Chapter 7 Least-Squares Fit to a Polynomial 116

7.1 Determinant Solution 116

7.2 Matrix Solution 122

7.3 Independent Parameters 127

7.4 Nonlinear Functions 135

Chapter 8 Least-Squares Fit to an Arbitrary Function 142

8.1 Nonlinear Fitting 142

8.2 Searching Parameter Space 148

8.3 Grid-Search Method 151

8.4 Gradient-Search Method 153

8.5 Expansion Methods 156

8.6 The Marquardt Method 161

8.7 Comments 163

Chapter 9 Fitting Composite Curves 168

9.1 Lorentzian Peak on Quadratic Background 168

9.2 Area Determination 170

9.3 Composite Plots 174
Chapter 10 Direct Application of the Maximum-Likelihood

Method 179

10.1 Introduction to Maximum Likelihood 180

10.2 Computer Example 187

Chapter 11 Testing the Fit 194

11.1  x2 Test for Goodness of Fit 194

11.2 Linear-Correlation Coefficient 197

11.3 Multivariable Correlations 201



CONTENTS vii

114 F Test 204
11.5 Confidence Intervals 208
11.6 Monte Carlo Tests 212
Appendixes

A Numerical Methods 218
A.1  Polynomial Interpolation 218
A.2  Basic Calculus: Differentiation and Integration 222
A.3 Numerical Differentiation and Integration 226
A.4 Cubic Splines 228
A.5 Roots of Nonlinear Equations 231
A.6  Data Smoothing 235

B Matrices 238
B.1 Determinants 238
B.2  Solution of Simultaneous Equations by Determinants 243
B.3 Matrix Inversion 245

C Graphs and Tables 248
C.1  Gaussian Probability Distribution 248
C.2 Integral of Gaussian Distribution 250
C.3 Linear-Correlation Coefficient 252
C.4  x? Distribution 253
C.5 F Distribution 259
C.6  Student’s ¢ Distribution 259

D Histograms and Graphs 267
D.1 Making a Graph 268
D.2  Graphical Estimation of Parameters 269
D.3 Histograms and Frequency Plots 272
D.4  Graphics Routines 274

E Computer Routines in Fortran 275
E.1 Routines from Chapter 5 278
E.2 Routines from Chapter 6 281
E.3 Routines from Chapter 7 283
E.4 Routines from Chapter 8 287
E.5 Routines from Chapter 9 294
E.6 Routines from Chapter 10 295
E.7 Routines from Chapter 11 298



viii

CONTENTS

E.8 Routines from Appendix A 300
E.9 Routines from Appendix B 303
™ _anN_ 2N~y
References 307
Answers to Selected Exercises 309
Index 313




PREFACE TO THE THIRD EDITION

In his 1969 Preface to the first edition of this book, the late Philip Bevington aptly
stated his purpose, “ to provide an introduction to the techniques of data reduction
and error analysis commonly employed by individuals doing research in the physi-
cal sciences and to present them in sufficient detail and breadth to make them useful
for students throughout their undergraduate and graduate studies. The presentation
is developed from a practical point of view, including enough derivation to justify
results, but emphasizing the methods more than the theory.” This third edition con-
tinues Phil’s original mission, updated to reflect the ready availability of modern
computers.

The first four chapters introduce the concepts of measuring uncertainties, er-
ror analysis, and probability distributions, with a new section on probabilities in
low-statistics experiments. Chapter 5 provides an introduction to Monte Carlo
methods for simulating experimental data, methods that are applied in later chapters

tn ogenarate data for evamnlec and tn ctiidv and evaluate the ctatictical cionificance
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of experimental results. In chapters 6 through 9, the least-squares method is applied
to problems of increasing complexity, from analytic straight-line fits to nonlinear

fitc that raqinire itarative enliitione Chantar 10 nravidec an intradiiction to the direct
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application of the maximum-likelihood method, and chapter 11 includes a discus-
sion of x2-probability, confidence intervals, and correlation coefficients. Exercises
at the end of the chapters range in complexity from simple statistical calculations to
minor projects such as least-squares fitting and Monte Carlo calculations. Answers
to selected exercises are provided.

The appendixes from previous editions have been retained. Appendix A in-
cludes a brief section on basic differential calculus but is devoted mainly to numer-
ical methods that are useful in analyzing data on the computer. Determinants and
matrices are discussed in appendix B. Appendix C provides tables and graphs of sta-
tistical functions, augmented by computer routines on the website for calculating
probabilities. Appendix D sets forth some guidelines for the preparation of effective
graphs. Appendix E provides listings of computer routines that illustrate the text.
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COMPUTER ROUTINES

Simple, illustrative computer routines that were a useful feature of the original book
have been retained and are listed in Fortran77 in appendix E. Fortran was chosen
because it has proved to be the most durable of languages over many decades. (Pas-
cal, which was provided in the second edition, has vanished, displaced by C++.)
With the help of the comments at the beginning of appendix E, students should be
able to read the Fortran programs and follow their logic without special expertise in
the language. To simplify the listed routines and to clarify their main objectives, we

have deleted most of the calls to graphics routines.

Computer routines and programs are available for downloading in both For-
tran and C++ from the www.mhhe.com/bevington website, along with supporting
routines to facilitate the construction of complete programs for Monte Carlo gener-
ation, least-squares fitting, and probability calculations. A “Read Me” file on the site
describes the organization of the programs and provides instructions for using them.
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CHAPTER

UNCERTAINTIES
IN MEASUREMENTS

1.1 MEASURING ERRORS

tis a well-established fact of scientific investigation that the first time an experi-

ment is performed the results often bear all too little resemblance to the “truth”
being sought. As the experiment is repeated, with successive refinements of tech-
nique and method, the results gradually and asymptotically approach what we may
accept with some confidence to be a reliable description of events. We may some-
times feel that nature is loath to give up her secrets without a considerable expendi-
ture of effort on our part, and that first steps in experimentation are bound to fail.
Whatever the reason, it is certainly true that for all physical experiments, errors and
uncertainties exist that must be reduced by improved experimental techniques and
repeated measurements, and those errors remaining must always be estimated to es-
tablish the validity of our results.

Error is defined by Webster as “the difference between an observed or calcu-
lated value and the true value.” Usually we do not know the “true” value; otherwise
there would be no reason for performing the experiment. We may know approxi-
mately what it should be, however, either from earlier experiments or from theoret-
ical predictions. Such approximations can serve as a guide but we must always
determine in a systematic way from the data and the experimental conditions them-
selves how much confidence we can have in our experimental results.

There is one class of error that we can deal with immediately: errors that orig-
inate from mistakes or blunders in measurement or computation. Fortunately, these
errors are usually apparent either as obviously incorrect data points or as results that
are not reasonably close to expected values. They are classified as illegitimate errors
and generally can be corrected by carefully repeating the operations. Our interest is

1



2 Data Reduction and Error Analysis for the Physical Sciences

in uncertainties introduced by random fluctuations in our measurements, and sys-
tematic errors that limit the precision and accuracy of our results in more or less
well-defined ways. Generally, we refer to the uncertainties as the errors in our
results, and the procedure for estimating them as error analysis.

Accuracy Versus Precision
It is important to distinguish between the terms accuracy and precision. The accu-
acy of an experiment is-a measure of how close the result of the experimentis to
the true value; the precision is a measure of how well the result has been deter-
mined, without reference to its agreement with the true value. The precision is also
a measure of the reproducibility of the result in a given experiment. The distinction
between accuracy and precision is illustrated by the two sets of measurements in
Figure 1.1 where the straight line on each graph shows the expected relation be-
tween the dependent variable y and the independent variable x. In both graphs, the
scatter of the data points is a reflection of uncertainties in the measurements, con-
sistent with the error bars on the points. The data in Figure 1.1(a) have been mea-
sured to a high degree of precision as illustrated by the small error bars, and are in
excellent agreement with the expected variation of y with x, but are clearly inaccu-
rate, deviating from the line by a constant offset. On the other hand, the data points
in Figure 1.1(b) are rather imprecise as illustrated by the large error bars, but are
scattered about the predicted distribution.
It is obvious that we must consider the accuracy and precision simultaneously
for any experiment. It would be a waste of time and energy to determine a result with
high precision if we knew that the result would be highly inaccurate. Conversely, a

FIGURE 1.1
Illustration of the difference between precision and accuracy. (a) Precise but inaccurate data.
(b) Accurate but imprecise data. True values are represented by the straight lines.
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result cannot be considered to be extremely accurate if the precision is low. In general,
when we quote the uncertainty or error in an experimental result, we are referring to
the precision with which that result has been determined. Absolute precision indicates
the magnitude of the uncertainty in the result in the same units as the result; relative

precision indicates the uncertainty in terms of a fraction of the value of the result.

Systematic Errors

The accuracy of an experiment, as we have defined it, is generally dependent on
how well we can control or compensate for systematic errors, errors that will make
our results different from the “true” values with reproducible discrepancies. Errors

isty y and not easily studied by statistical analysis. They
may result from faulty calibration of equipment or from bias on the part of the ob-
server. They must be estimated from an analysis of the experimental conditions and
techniques. A major part of the pianning of an experiment shouid be devoted to un-
derstanding and reducing sources of systematic errors.

EXAMPLE 1.1 A student measures a table top with a steel meter stick and finds
that the average of his measurements yields a result of (1.982 * 0.001)m for the
length of the table. He subsequently learns that the meter stick was calibrated at 25 °C
and has an expansion coefficient of 0.0005 °C~!. Because his measurements were
made at a room temperature of 20°C, they are systematically too small. To correct for

PR LR o/ oY NE N/ AN

this effect, he multiplies his results by 1 + 0.0005 X (20 — 25) = 0.9975 so that his
new determination of the length is 1.977 m.

When the student repeats the experiment, he discovers a second systematic er-
ror, his technique for reading the meter stick was faulty in that he did not always read
the divisions from directly above. By experimentation he determines that this consis-
tently resulted in a reading that was 2 mm short. The corrected result is 1.979 m.

In this example, the first result was given with a fairly high precision, approx-
imately 1 part in 2000. The corrections to this resuit were meant to improve the ac-
curacy by compensating for known sources of deviation of the first result from the
best estimate possible. These corrections did not improve the precision at all, but did
in fact worsen it, because the corrections were themselves only estimates of the ex-
act corrections. Before quoting his final result, the student must reexamine his error
analysis and take account of any additional uncertainties that may have been intro-

duced by these corrections.

Random Errors

The precision of an experiment depends upon how well we can overcome random
errors, fluctuations in observations that yield different results each time the experi-
ment is repeated, and thus require repeated experimentation to yield precise results.
A given accuracy implies an equivalent precision and, therefore, also depends to
some extent on random errors.

The problem of reducing random errors is essentially one of improving the ex-
perimental method and refining the techniques, as well as simply repeating the
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experiment. If the random errors result from instrumental uncertainties, they may
be reduced by using more reliable and more precise measuring instruments. If the
random errors result from statistical fluctuations in a limited number of measure-
ments, they may be reduced by making more measurements. There are practical
limits to these improvements. In the measurement of the length of the table of Ex-
ample 1.1, the student might attempt to improve the precision of his measurements
by using a magnifying glass to read the scale, or he might attempt to reduce statis-
tical fluctuations in hlS measurements by repeatmg the measurement several times.

tematic errors, such as those 1ntroduced by the cahbratlon of the meter stick or the
correction for his initial faulty reading of the scale. The limits imposed by system-
atic errors are important considerations in planning and performing experiments.

Significant Figures and Roundoff

A rmmaniginn ~Af an avna antal wagnlt i imnliad hey tha ||mba 1tQ rannr

The precision Or ai eXpe erimental result is iiMipi1iea Oy uwi€ numoer & disuo recorde
in the result, although generally the uncertainty should be quoted specifically a
well. The number of significant figures in a result is defined as_follows:
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1. The leftmost nonzero digit is the most significant digit.

2. If there is no decimal point, the rightmost nonzero digit is the least significant
digit.

3. If there is a decimal point, the rightmost digit is the least significant digit, even
ifitisa 0.

4. All digits between the least and most significant digits are counted as signifi-
cant digits.

For example, the following numbers each have four significant digits: 1234,
123,400, 123.4, 1001, 1000., 10.10, 0.0001010, 100.0. If there is no decimal point,
there are ambiguities when the rightmost digit is 0. Thus, the number 1010 is con-
sidered to have only three signiﬁcant digits even though the last digit might be

nifirant Th avnid o onity it 1¢ hattar ta cninnly da ntc
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write such numbers in scientific notation, that is, as an argument in decimal notation
multiplied by the appropriate power of 10. Thus, our example of 1010 would be

yrittan ac 1N10 Ar 1 n]n Y ln3 if all fanr dioite ara
V¥ UL 7\

nificrant
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When quoting an experimental result, the number of significant figures should
be approximately one more than that dictated by the expen’mental precision. The
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ing errors in later calculations. If the result of the measurement of Example 1.1 is L
= 1.979 m with an uncertainty of 0.012 m, this result could be quoted as L = (1.979
* 0.012) m. However, if the first digit of the uncertainty is large, such as 0.082 m,
then we should probably quote L = (1.98 = 0.08) m. In other words, we let the un-
certainty define the precision to which we quote our result.

When insignificant digits are dropped from a number, the last digit retained
should be rounded off for the best accuracy. To round off a number to fewer significant
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digits than were specified originally, we truncate the number as desired and treat the ex-
cess digits as a decimal fraction. Then:

1. If the fraction is greater than /2, increment the new least significant digit.

2. If the fraction is less than Y2, do not increment.
3. If the fraction equals '2, increment the least significant digit only if it is odd.

The reason for rule 3 is that a fractional value of /2 may result from a previous
rounding up of a fraction that was slightly less than 2 or a rounding down of a frac-
tion that was slightly greater than 2. For example, 1.249 and 1.251 both round to
three significant figures as 1.25. If we were to round again to two significant figures,

both would yield the same value, either 1.2 or 1.3, depending on our convention.
Chnnging to round up if the regnlting last digit is odd and to round down if the result-

________ to round up if the resulting last digit is odd and to round down if the resul
ing last digit is even, reduces systematic errors that would otherwise be introduced
into the average of a group of such numbers. Note that it is generally advisable to re-

tain all available digits in intermediate calculations and round only the final results.

1.2 UNCERTAINTIES

Uncertainties in experimental results can be separated into two categories: those
that result from fluctuations in measurements, and those associated with the theo-
retical description of our result. For example, if we measure the length of a rectan-
gular table along one edge, we know that any uncertainties, aside from systematic
errors, are associated with the fluctuations of our measurements from trial to trial.
With an infinite number of measurements we might be able to estimate the length
very precisely, but with a finite number of trials there will be a finite uncertainty. If
we were to measure the length of the table at equally spaced positions across the
table, the measurements would show additional fluctuations corresponding to irreg-
ularities in the table itself, and our result could be expressed as the mean length. If,
however, we were to describe the shape of an oval table, we would be faced with
uncertainties both in the measurement of position of the edge of the table at various
points and in the form of the equation to be used to describe the shape, whether it be
circular, elliptical, or whatever. Thus, we shall be concerned in the following chap-
ters with a comparison of the distribution of measured data points with the distrib-
ution predicted on the basis of a theoretical model. This comparison will help to
indicate whether our method of extracting the results is valid or needs modification.

The term error suggests a deviation of the result from some “true” value. Usu-
ally we cannot know what the true value is, and can only estimate the errors inher-
ent in the experimeni. If we repeat an experiment, the resuits may weii differ from
those of the first attempt. We express this difference as a discrepancy between the
two results. Discrepancies arise because we can determine a result only with a given
uncertainty. For example, when we compare different measurements of a standard
physical constant, or compare our result with the accepted value, we should refer to
the differences as discrepancies, not errors or uncertainties.

Because, in general, we shall not be able to quote the actual error in a result,
we must develop a consistent method for determining and quoting the estimated
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error. A study of the distribution of the results of repeated measurements of the same
quantity can lead to an understanding of these errors so that the quoted error is a
measure of the spread of the distribution. However, for some experiments it may not
be feasible to repeat the measurements and experimenters must therefore attempt to
estimate the errors based on an understanding of the apparatus and their own skill in
using it. For example, if the student of Example 1.1 could make only a single mea-
surement of the length of the table, he should examine his meter stick and the table,
and try to estimate how well he could determine the length. His estimate should be

to quote an estimate for the standard error, he should try to estimate a range into
which he would expect repeated measurements to fall about seven times out of ten.
Thus, he might conclude that with a fine steel meter stick and a well-defined table
edge, he could measure to about =1 mm or +0.001 m. He should resist the tempta-
tion to increase this error estimate, “just to be sure.”

We must also realize that the model from which we calculate theoretical para-
meters to describe the results of our experiment may not be the correct model. In the
following chapters we shall discuss hypothetical parameters and probable distribu-
tions of errors pertaining to the “true” states of affairs, and we shall discuss meth-
ods of making experimental estimates of these parameters and the uncertainties
associated with these determinations.

Minimizing Uncertainties and Best Results

Our preoccupation with error analysis is not confined just to the determination of
the precision of our results. In general, we shall be interested in obtaining the max-
imum amount of useful information from the data on hand without being able either
to repeat the experiment with better equipment or to reduce the statistical uncer-
tainties by making more measurements. We shall be concerned, therefore, with the
problem of extracting from the data the best estimates of theoretical parameters and
of the random errors, and we shall want to understand the effect of these errors on
our results, so that we can determine what confidence we can place in our final re-
sults. It is reasonable to expect that the most reliable results we can calculate from
a given set of data will be those for which the estimated errors are the smallest.
Thus, our development of techniques of error analysis will help to determine the op-
timum estimates of parameters to describe the data.

It must be noted, however, that even our best efforts will yield only estimates
of the quantities investigated.

1.3 PARENT AND SAMPLE DISTRIBUTIONS

If we make a measurement x; of a quantity x, we expect our observation to approx-
imate the quantity, but we do not expect the experimental data point to be exactly
equal to the quantity. If we make another measurement, we expect to observe a dis-
crepancy between the two measurements because of random errors, and we do not
expect either determination to be exactly correct, that is, equal to x. As we make
more and more measurements, a pattern will emerge from the data. Some of the
measurements will be too large, some will be too small. On the average, however,
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we expect them to be distributed around the correct value, assuming we can neglect
or correct for systematic errors.

If we could make an infinite number of measurements, then we could describe
exactly the distribution of the data points. This is not possible in practice, but we
can hypothesize the existence of such a distribution that determines the probability
of getting any particuiar observation in a singie measurement. This distribution is
called the parent distribution. Similarly, we can hypothesize that the measurements
we have made are samples from the parent distribution and they form the sample
distribution. In the limit of an infinite number of measurements, the sample distrib-
ution becomes the parent distribution.

EXAMPLE 1.2 In a physics laboratory experiment, students drop a ball 50 times
and record the time it takes for the ball to fall 2.00 m. One set of observations, cor-
rected for systematic errors, ranges from about 0.59 s to 0.70 s, and some of the ob-

Asrrntinne ama 1daneiaal 17 ok a hictacgeran Ar fraqiianay mlat AF thaca
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measurements. The height of a data bar represents the number of measurements that
fall between the two values indicated by the upper and lower limits of the bar on the
abscissa of the plot. (See Appendix D.)

If the distribution results from random errors in measurement, then it is very
likely that it can be described in terms of the Gaussian or normal error distribution,
the familiar bell-shaped curve of statistical analysis, which we shall discuss in Chap-

ter 2. A Gaussian curve, based on the mean and standard deviation of these measure-
ments, is plotted as the solid line in Figure 1.2, This curve summarizes the data of the
sample distribution in terms of the Gaussian model and provides an estimate of the
parent distribution.

The measured data and the curve derived from them clearly do not agree ex-
actly. The coarseness of the experimental histogram distinguishes it at once from the
smooth theoretical Gaussian curve. We might imagine that, if the students were to
make a great many measurements or combine several sets of measurements so that
they could plot the histogram in finer and finer bins, under ideal circumstances the his-
togram would eventually approach a smooth Gaussian curve. If they were to calculate
the parameters from such a large sample, they could determine the parent distribution

ad hy tha datead ~ Tio 19
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It is convenient to think in terms of a probability density function p(x), nor-
malized to unit area (i.e., so that the integral of the entire curve is equal to 1) and de-
fined such that in the limit of a very large number N of observations, the number AN
of observations of the variable x between x and x + Ax is given by AN = Np(x)Ax.
The solid and dashed curves in Figure 1.2 have been scaled in this way so that the
ordinate values correspond directly to the numbers of observations expected in any
range Ax from a 50-event sample and the area under each curve corresponds to the
total area of the histogram.

Notation

A number of parameters of the parent distribution have been defined by convention.
We use Greek letters to denote them, and Latin letters to denote experimental esti-
mates of them.
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FIGURE 1.2

Histogram of measurements of the time for a ball to fall 2.00 m. The solid Gaussian curve was
calculated from the mean (T = 0.635 s) and standard deviation (s = 0.020 s) estimated from these
measurements. The dashed curve was calculated from the parent distribution with mean p = 0.639 s

P b Aol . — N s ] s
and standard deviation o = 0.020 s.

In order to determine the parameters of the parent distribution, we assume that
the results of experiments asymptotically approach the parent quantities as the num-
ber of measurements approaches infinity; that is, the parameters of the experimen-
tal distribution equal the parameters of the parent distribution in the limit of an
infinite number of measurements. If we specify that there are N observations in a
given experiment, then we can denote this by

(parent parameter) = }11_1’1; (experimental parameter)

If we make N measurements and label them x,, x,, x3, and so forth, up to a final mea-
surement xy, then we can identify the sum of all these measurements as

2

in5x1+x2+x3+---+xN

i=

¢ intarnretad ac the cuiim of the obheervatione x. aver the in-
S 1nterpreted as t Of the opservatons x; over the 1
1

L11% DVALLL
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sum over N measurements of various quantities, we simplify the notation by omitting
the index whenever we are considering a sum where the index i runs from 1 to N;

N
> x= _Elxi
fon

Mean, Median, and Mode

With the preceding definitions, the mean x of the experimental distribution is

given as the sum of N determinations x; of the quantity x divided by the number of

AatAseenn

uciLcel uuuauui‘ib

1
X=—D x 1.1
N 2 X (1.1)
and the mean . of the parent population is defined as the limit
_y (1 19
M=N§§°\N2xi) (1.2)

The mean is therefore equivalent to the centroid or average value of the quantity x.
The median of the parent population 1% is defined as that value for which, in

tha l: afa nfin mhar ~Af Aa half tha ~Aha
the uuul, O1 an uuuuLC Nuimoclr G1 uctcxuuuauuua .A,,, nalf the observations wxll b\, less

than the median and half will be greater. In terms of the parent distribution, this
means that the probability is 50% that any measurement x; will be larger or smaller
than the median

P(x; < pin) = P0G > yp) = 1/2 (1.3)
so that the median line cuts the area of the probability density distribution in half.
Because of inconvenience in computation, the median is not often used as a statis-

tical parameter.

The mode, or most probable value p.,,,, of the parent population is that value
for which the parent distribution has the greatest value. In any given experimental
measurement this value is the one that is most likely to be observed. In the limit of

arera iz lea. ~ Py ~om POy Yy PR PR Y

a d gL NUmoct Ul UUbCl lelUllb, llllb valuc Wlll plUUdUly OCCUT ITiOSt O1tei

P(“’max) 2 P(x ¢ “‘max) (1'4)

The relationship of the mean, median, and most probable value to one another
is illustrated in Figure 1.3. For a symmetrical distribution these parameters would
all be equal by the symmetry of their definitions. For an asymmetric distribution
such as that of Figure 1.3, the median generally falls between the most probable
value and the mean. The most probable value corresponds to the peak of the distri-
bution, and the areas on either side of the median are equal.

The deviation d; of any measurement x; from the mean . of the parent distribution
is defined as the difference between x; and p.:
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FIGURE 1.3

Asymmetric distribution illustrating the positions of the mean, median, and mode of the variable.

diEx,'_M (1'5)

For computational purposes, deviations are generally defined with respect to the
mean, rather than the median or most probable value. If w is the true value of the
quantity, d; is also the true error in x;.

The average of the deviations d must vanish by virtue of the definition of the
mean in Equation (1.2):

[1
,{ll_rga—um[ LKX_W“,{}H.‘O\N x} =0 (1.6)
The average deviation a, therefore, is defined as the average of the absolute values
of the deviations:

1
as}vi;gc{ﬁzlx,-—ul] (1.7

The average deviation is a measure of the dispersion of the expected observations
about the mean. The presence of the absolute value sign makes its use inconvenient
for statistical analysis.

A parameter that is easier to use analytically and that can be justified fairly
well on theoretical grounds to be a more appropriate measure of the dispersion of
the observations is the standard deviation o. The variance o? is defined as the limit
of the average of the squares of the deviations from the mean p.:
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form of Equation (1.8) is often described as “the average of the squares minus the
square of the average.” The standard deviation is the root mean square of the devi-
ations, and is associated with the second moment of the data about the mean. The
corresponding expression for the variance s of the sample population is given by

S251v+1 (x; — x)? (1.9)

where the factor N — 1, rather than N, is required in the denominator to account for
the fact that the parameter X has been determined from the data and not indepen-
dently. We note that the symbol o (instead of s) is often used to represent the best
estimate of the standard deviation of the parent distribution determined from a sam-
ple distribution.

Significance

The mean p and the standard deviation, as well as the median, the most probable
value, and the average deviation, are all parameters that characterize the informa-
tion we are seeking when we perform an experiment. Often we wish to describe our
distribution in terms of just the mean and standard deviation. The mean may not be
exactly equal to the datum in question if the parent distribution is not symmetrical
about the mean, but it should have the same characteristics. If a more detailed de-
scription is desired, it may be useful to compute higher moments about the mean.

In general, the best we can say about the mean is that it is one of the parame-
ters that specifies the probability distribution: It has the same units as the “true”
value and, in accordance with convention, we shall consider it to be the best esii-
mate of the “true” value under the prevailing experimental conditions.

The variance s* and the standard deviation s characterize the uncertainties as-
sociated with our experimental attempts to determine the “true” values. For a given
number of observations, the uncertainty in determining the mean of the parent dis-
tribution is proportional to the standard deviation of that distribution. The standard
deviation s is, therefore, an appropriate measure of the uncertainty due to fluctua-
tions in the observations in our attempt to determine the “true” value.

Although, in general, the distribution resulting from purely statistical errors
can be described well by the two parameters, the mean and the standard deviation,
we should be aware that, at distances of a few standard deviations from the mean of
an experimental distribution, nonstatistical errors may dominate. In especially se-
vere cases, it may be preferable to describe the spread of the distribution in terms of
the average deviation, rather than the standard deviation, because the latter tends to
deemphasize measurements that are far from the mean. There are also distributions
for which the variance does not exist. The average deviation or some other quantity
must be used as a parameter to indicate the spread of the distribution in such cases.
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In the following sections, however, we shall be concerned mainly with distributions
that result from statistical errors and for which the variance exists.

14 MEAN AND STANDARD DEVIATION
OF DISTRIBUTIONS

We can define the mean p. and the standard deviation ¢ in terms of the distribution
p (x) of the parent population. The probability density p(x) is defined such that in the
4lmt—ofwrﬂmwmmﬂh€ﬁmmﬁvﬁW
variable x that yield values between x and x + dx is given by dN = Np (x) dx.
The mean  is the expectation value ( x ) of x, and the variance o2 is the ex-
pectation value (( x — w.)? ) of the square of deviations of x from w. The expectation
value ( f(x) ) of any function of x is defined as the weighted average of f (x), over all
possible values of the variable x, with each value of f (x) weighted by the probabil-
ity density distribution p (x).

Discrete Distributions

If the probability function is a discrete function P(x) of the observed value x, we re-
place the sum over the individual observations 3.x; in Equation (1.2) by a sum over
the values of the possible observations multiplied by the number of times these ob-
servations are expected to occur. If there are n possible different observable values
of the quantity x, which we denote by x; (where the index j runs from 1 to n with no
two values of x; equal), we should expect from a total of N observations to obtain
each observable NP(x;) times. The mean can then be expressed as
-3 LS VPG
=lim = x; = lim = |x;NP(x;
M N—oc N,=21 N—-x NJZ J /]

=lim Y [x;P(x;))] (1.10)

N

Similarly, the variance ¢ in Equation (1.8) can be expressed in terms of the
bi

Qb _1[_\/ function P(x):
2= S — 2 2
o’ = lim =§ X — wPP(x)] = lim z:[x P(x))] — (1.11)

In general, the expectation value of any function of f{x) is given by

n

(F) =3 [fx)P)] (1.12)

Continuous Distributions

If the probability density function is a continuous smoothly varying function p(x) of
the observed value x, we replace the sum over the individual observations by an
integral over all values of x multiplied by the probability p(x). The mean p becomes
the first moment of the parent distribution
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W= f;xp(x) dx (1.13)

and the variance o becomes the second central product moment

o?= fo (x — wWPpx)dx = Jw x’p(x)dx — p? (1.14)

The expectation value of any function of x is

o}

(fO)=|_ S@pldx (L15)

What is the connection between the probability distribution of the parent pop-
ulation and an experimental sample we obtain? We have already seen that the un-
certainties of the experimental conditions preclude a determination of the “true”
values themselves. As a matter of fact, there are three levels of abstraction between
the data and the information we seek:

1. From our experimental data points we can determine a sample frequency dis-
tribution that describes the way in which these particular data points are dis-

trilntad Aavar tha ranga Af naggihla data nnainte Wa nica ¥ ta dannta tha maan ~f
1outCa Over Laigv Ul pussiviv uala PUllllb YYOU UdL A LU ULILIVULV lll\.« muivaill i

the data and s? to denote the sample variance. The shape and magnitude of the
sample distribution vary from sample to sample.

2. From the parameters of the sample probability distribution we can estimate the
parameters of the probability distribution of the parent population of possible
observations. Our best estimate for the mean . is the mean of the sample dis-
tribution X, and the best estimate for the variance ¢ is the sample variance s°.
Even the shape of this parent distribution must be estimated or assumed.

3. From the estimated parameters of the parent distribution we estimate the results
sought. In general, we shall assume that the estimated parameters of the parent
distribution are equivalent to the “true” values, but the estimated parent distri-
bution is a function of the experimental conditions as well as the “true” values,
and these may not necessarily be separable.

Let us refer again to Figure 1.2, which shows a histogram of time interval
measurements and two Gaussian curves, a solid curve based on the parameters
T =0.635sand s = 0.020 s, which were determined experimentally from the data
displayed in the histogram, and a dotted curve based on the parameters p = 0.639 s
and o = 0.020 s of the parent distribution. (Although, in general we don’t know the
properties of the parent distribution, they could have been estimated to high preci-
sion in another experiment involving many more measurements.) Comparing the
two curves, we observe a slight difference between the experimental mean 7 and the
“true” mean W, and between s and o.

By considering the data to be a sample from the parent population with the
values of the observations distributed according to the parent population, we can es-
timate the shape and dispersion of the parent distribution to obtain useful informa-
tion on the precision and reliability of our results. Thus, we consider the sample
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mean 7 to be our best estimate from the data of the mean w, and we consider the
sample variance s? to be our best estimate from the data of the variance o2, from
which we can estimate the uncertainty in our estimate of .

SUMMARY

Errors: Difference between measured and “true” values. Generally applied to the
uncertamty ina measurement Not blunders or mistakes.

bration, or technique.

Random error: Indefiniteness of result introduced by finite precision of measure-
ment or statistical variations. Measure of fluctuation after repeated experimentation.
Uncertainty: Magnitude of error that is estimated to have been made in determina-
tion of results.

Accuracy: Measure of how close the result of an experiment comes to the “true”
value.

Precision: Measure of how carefully the result is determined without reference to
any “true” value.

Significant figures:

1. The leftmost nonzero digit is the most significant digit.

2. If there is no decimal point, the rightmost nonzero digit is the least significant
digit.

3. If there is a decimal point, the rightmost digit is the least significant digit, even
if it is zero.

4. All digits between the least and most significant digits are counted as si gn1f1-
cant digits.

Roundoff: Truncate the number to the specified number of significant digits and
treat the excess digits as a decimal fraction.

1. If the fraction is greater than Y2, increment the new least significant digit.
2. If the fraction is less than /2, do not increment.
3. If the fraction equals 2, increment the least significant digit only if it is odd.

Parent population: Hypothetical infinite set of data points of which the experimen-
tal data points are assumed to be a random sample.

Parent distribution: Probability distribution of the parent population
sample data are chosen.

Expectation value f(x): Weighted average of a function f(x) over all values of x:

om which the

o=y -

N—x

= [ 16)P&)dx

— 00

T
=

Median .i5: P(x; < ui72) = Plx > ) = 2
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Most probable value ppgy: P(max) = P(x # Pnax)

|

|
Variance: a2 ={(x; — W = (x?) — n
Standard deviation: ¢ = \/o?
Sample mean: x = (1/N)Zx;

Sample variance: s> = —— 3(x; — ©P
P (N _ 1) i

EXERCISES

1.1. How many significant features are there in the following numbers?
(a) 976.45 (b) 84,000 (c) 0.0094 (d) 301.07
(e) 4.000 (f) 10 (g) 5280 (h) 400.

(/) 4.00 X 10? (j) 3.010 x 10*

1.2. What is the most significant figure in each of the numbers in Exercise 1.1? What is the
leact sionificant?
least significant?

1.3. Round off each of the numbers in Exercise 1.1 to two significant digits.

1.4. Find the mean, median, and most probable value of x for the following data (from

rolling dice).

i X; i x; i x; i X; i x;
1 3 6 8 11 12 16 6 21 5
2 7 7 9 12 8 17 7 22 10
3 3 8 7 13 6 18 8 23 8
4 7 9 5 14 6 19 9 24 8
5 12 10 7 15 7 20 8 25 8

1.5. Find the mean, median, and most probable grade from the following set of grades.
Group them to find the most probable value.

i X; i x; i X; i X;
1 73 11 73 21 69 31 56
2 9] 12 46 22 70 32 94
3 72 13 64 23 82 33 51
4 81 14 61 24 90 34 79
5 82 15 50 25 63 35 63
6 46 16 89 26 70 36 87
7 89 17 91 27 9% 37 54
8 75 18 82 28 44 38 100
9 62 19 n 29 100 39 72

10 58 20 76 30 88 40 81

1.6. Calculate the standard deviation of the data of Exercise 1.4.
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1.7.
1.8.

19.

Calculate the standard deviation of the data of Exercise 1.5.

Justify the second equality in Equations (1.8) and (1.14).

Carefully measure in centimeters the length of the cover of this book along the bound
edge. Estimate the uncertainty in your measurement. Quote your answer with its uncer-
tainty in decimal form and in scientific notation.
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PROBABILITY
DISTRIBUTIONS

f the many probability distributions that are involved in the analysis of experi-

mental data, three play a fundamental role: the binomial distribution, the Pois-
son distribution, and the Gaussian distribution. Of these, the Gaussian, or normal
error, distribution is undoubtedly the most important in statistical analysis of data.
Practically, it is useful because it seems to describe the distribution of random ob-
servations for many experiments, as well as describing the distributions obtained
when we try to estimate the parameters of most other probability distributions.

The Poisson distribution is generally appropriate for counting experiments
where the data represent the number of items or events observed per unit interval. It
is important in the study of random processes such as those associated with the ra-
dioactive decay of elementary particles or nuclear states, and is also applied to data
that have been sorted into ranges to form a frequency table or a histogram.

The binomial distribution is generally applied to experiments in which the re-
sult is one of a small number of possible final states, such as the number of “heads”
or “tails” in a series of coin tosses, or the number of particles scattered forward or
backward relative to the direction of the incident particle in a particle physics ex-
periment. Because both the Poisson and the Gaussian distributions can be consid-
ered as limiting cases of the binomial distribution, we shall devote some attention to
the derivation of the binomial distribution from basic considerations.

2.1 BINOMIAL DISTRIBUTION

Suppose we toss a coin in the air and let it land. There is a 50% probability that it
will land heads up and a 50% probability that it will land tails up. By this we mean
that if we continue tossing a coin repeatedly, the fraction of times that it lands with
heads up will asymptotically approach !4, indicating that there was a probability of

17
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5 of doing so. For any given toss, the probability cannot determine whether or not
it will land heads up; it can only describe how we should expect a large number of
tosses to be divided into two pGSSibllulca

Suppose we toss two coins at a time. There are now four different possible
permutations of the way in which they can land: both heads up, both tails up, and
two mixtures of heads and tails depending on which one is heads up. Because each
of these permutations is equally probable, the probability for any choice of them is
Va or 25%. To find the probability for obtaining a particular mixture of heads and

ith At A flnwmnnt rnnn tha Linda AFf gt add tha

Lallb, WllllUuL UlllC] Clllldlillé UCI.WCCll LllC lWU KiiiGS O1 llllAl.ule, WC IMiusSt aada lllC
probabilities corresponding to each possible kind. Thus, the total probability of find-
ing either head up and the other tail up is ¥2. Note that the sum of the probabilities
for all possibilities (V4 + Y4 + V4 + Va)is always equal to 1 because something is
bound to happen.

Let us extrapolate these 1deas to the general case. Suppose we toss n coms into

What is the probability that exactly x of these coins will land heads up, without dlS—
tinguishing which of the coins actually belongs to which group? We can consider
the probability P(x; n) to be a function of the number n of coins tossed and of the
number x of coins that land heads up. For a given experiment in which n coins are
tossed, this probability P(x; n) will vary as a function of x. Of course, x must be an
integer for any physical experiment, but we can consider the probability to be
smoothly varying with x as a continuous variable for mathematical purposes.

Permutations and Combinations

If n coins are tossed, there are 2" different possible ways in which they can land.
This follows from the fact that the first coin has two possible orientations, for each
of these the second coin also has two such orientations, for each of these the third
coin also has two, and so on. Because each of these possibilities is equally proba-
ble, the probability for any one of these possibilities to occur at any toss of n coins
is 1/2",

How many of these possibilities will contribute to our observations of x coins
with heads up? Imagine two boxes, one labeled “heads” and divided into x slots, and
the other labeled “tails.” We shall consider first the question of how many permuta-
tions of the coins result in the proper separation of x in one box and n — x in the
other; then we shall consider the question of how many combinations of these per-
mutations should be considered to be different from each other.

In order to enumerate the number of permutations Pm(n, x), let us pick up the
coins one at a time from the collection of n coins and put x of them into the “heads”
box. We have a choice of n coins for the first one we pick up. For our second selec-
tion we can choose from the remaining n» — 1 coins. The range of choice is dimin-
ished until the last selection of the xth coin can be made from only n — x + 1
remaining coins. The total number of choices for coins to fill the x slots in the
“heads” box is the product of the numbers of individual choices:

Pn(n,x)=ntn—1)n-2) - mh—-x+2)n—x+1) (2.1)
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This expansion can be expressed more easily in terms of factorials

n!
n!

Pm(n, x) = (2.2)

(n — x)!

So far we have calculated the number of permutations Pm(n, x) that will yield
x coins in the “heads” box and n — x coins in the “tails” box, with the provision that
we have identified which coin was placed in the “heads” box first, which was
placed in second, and so on. That is, we have ordered the x coins in the “heads” box.
In our computation of 2" different possible permutations of the n coins, we are only

interested in which coins landed heads up or heads down, not which landed first.
Therefore, we must consider contributions different only if there are different coins
in the two boxes, not if the x coins within the “heads” box are permuted into differ-
ent time orderings.

The number of different combinations C(n, x) of the permutations in the pre-
ceding enumeration results from combining the x! different ways in which x coins
in the “heads” box can be permuted within the box. For every x! permutations, there
will be only one new combination. Thus, the number of different combinations
C(n, x) is the number of permutations Pm(n, x) divided by the degeneracy factor x!
of the permutations:

Pm(n, x) !
C(n,x)= min x)_ n (

n
= (2.3)
x! xl(n — x)! x)
This is the number of different possible combinations of » items taken x at a time,
commonly referred to as () or “n over x.”

Probability

The probability P(x; n) that we should observe x coins with heads up and n — x with
tails up is the product of the number of different combinations C(n, x) that con-
tribute to that set of observations multiplied by the probability for each of the com-
binations to occur, which we have found to be (}2)".

Actually, we should separate the probability for each combination into two
parts: one part is the probability p* = (12)* for x coins to be heads up; the other part
is the probability g"~* = (1 — 12)"™* = (V2)"* for the other n — x coins to be tails
up. For symmetrical coins, the product of these two parts p*g"~* = (¥2)" is the prob-
ability of the combination with x coins heads up and n — x coins tails up. In the gen-
eral case, the probability p of success for each item is not equal in magnitude to the
probability ¢ = 1 — p for failure. For example, when tossing a die, the probability
that a particular number will show is p = 1/6, while, the probability of its not show-
ingis g = 1 — 1/6 = 5/6 so that p*q"~* = (1/6)* X (5/6)".

With these definitions of p and g, the probability Py (x; n, p) for observing x of
the n items to be in the state with probability p is given by the binomial distribution

;N nl
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where ¢ = 1 — p. The name for the binomial distribution comes from the fact that
the coefficients Pg(x; n, p) are closely related to the binomial theorem for the ex-
pansion of a power of a sum. According to the binomial theorem,

(p+qr= g [(ﬁ)p*q”‘*] (2.5)

The (j + 1)th term, corresponding to x = j, of this expansion, therefore, is equal to
the probability Pg(j; n, p). We can use this result to show that the binomial distrib-
ution coefficients Py (x; n, p) are normalized to a sum of 1. The right-hand side of
Equation (2.5) is the sum of probabilities over all possible values of x from 0 to n
and the left-hand side is just 1" = 1.

Mean and Standard Deviation

The mean of the binomial distribution is evaluated by combining the definition of n
in Equation (1.10) with the formula for the probability function of Equation (2.4):

n!

= ;O xmﬂ‘(l —py*=np (2.6)

We interpret this to mean that if we perform an experiment with » items and observe
the number x of successes, after a large number of repeated experiments the average
x of the number of successes will approach a mean value p given by the probability
for success of each item p times the number of items . In the case of coin tossing
where p = 12, we should expect on the average to observe half the coins land heads
up, which seems eminently reasonable.

The variance o of a binomial distribution is similarly evaluated by combin-
ing Equations (1.11) and (2.4):

] o
2 l(x— pP ————p*(1 —py~ ‘J = np(1 — p) (2.7)
o’ ( )
The evaluation of these sums is left as an exercise. We are mainly interested in the
results, which are remarkably simple.

If the probability for a single success p is equal to the probability for failure p
= g = 1%, then the distribution is symmetric about the mean p, and the median w,,,
and the most probable value are both equal to the mean. In this case, the variance o?
is equal to half the mean: g2 = p/2. If p and g are not equal, the distribution is
asymmetric with a smaller variance.

Example 2.1. Suppose we toss 10 coins into the air a total of 100 times. With each
coin toss we observe the number of coins that land heads up and denote that number
by x;, where i is the number of the toss; i ranges from 1 to 100 and x; can be any inte-
ger from O to 10. The probability function governing the distribution of the observed
values of x is given by the binomial distribution Pg(x; n, p) with n = 10 and p = 5.
This is the parent distribution and is not affected by the number N of repeated proce-

Acanna 2:e tlan merimnl aa naad
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FIGURE 2.1

Binomial distribution for p = 5.0 and p = V2 shown as a continuous curve although the function is
only defined at the discrete points indicated by the round dots.

The parent distribution Pg(x; 10, ¥2) is shown in Figure 2.1 as a smooth curve
drawn through discrete points. The mean p is given by Equation (2.6):
w=np=10(1%)=5
the standard deviation o is given by Equation (2.7):

o= Vnp(l — p) = V10(2)(h) = V2.5 =1.58

The curve is symmetric about its peak at the mean so that approximately 25% of the
throws yield five heads and five tails, about 20% yield four heads and six tails, and
the same fraction yields six heads and four tails. The magnitudes of the points are
such that the sum of the probabilities over all ten points is equal to 1.

Example 2.2. Suppose we roll ten dice. What is the probability that x of these dice
will land with the 1 up? If we throw one die, the probability of its landing with 1 up is
p = Y. If we throw ten dice, the probability for x of them to land with 1 up is given by
the binomial distribution Pg(x; n, p) withn = 10 and p = V6:

1y 10t [1)[5)0-=
P”("’ 10, 6) ~ 1010 — X! (6) (6)

This distribution is illustrated in Figure 2.2 as a smooth curve drawn through
discrete points. The mean and standard deviation are

p = 10/6 = 1.67

and

o= V10(1/6)(5/6) = 1.18



22 Data Reduction and Error Analysis for the Physical Sciences

0'40 T —[ T l T ] T r T
0.30 | _
=
g i i
_g I
£ "
Z 020 _
.Té" c
2
m
0.10 |- \ _
0.00 ! | . I\:J P G
0 2 4 6 8 10
X
FIGURE 2.2

Binomial distribution for . = 10/6 and p = 1/6 shown as a continuous curve.

The distribution is not symmetric about the mean or about any other point. The most
probable value is x = 1, but the peak of the smooth curve occurs for a slightly larger
value of x.

Example 2.3 A particle physicist makes some preliminary measurements of the angu-
lar distribution of K mesons scattered from a liquid hydrogen target. She knows that
there should be equal numbers of particles scattered forward and backward in the cen-

ter-af-mace cvetem of the narticlee She meacuree 1000 interactions and finde that 472
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scatter forward and 528 backward. What uncertainty should she quote in these numbers?

The uncertainty is given by the standard deviation from Equation (2.7),
o= Vnp(l — p) = V1000()%:) = V250 = 15.8

Thus, she could quote
fe=(@472+1

(N

.8)/1000 = 0.472 + 0.15

for the fraction of particles scattered in the forward direction and
f3=(528 = 15.8)/1000 = 0.528 * 0.15

for the fraction scattered backward.

Note that the uncertainties in the numbers scattering forward and backward
must be the same because losses from one group must be made up in the other.

If the experimenter did not know the a priori probabilities of scattering forward
and backward, she would have to estimate p and g from her measurements; that is,
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p = 472/1000 = 0.472

For probability p near 50%, the standard deviation is relatively insensitive to uncer-
tainties in the experimental determination of p.

2.2 POISSON DISTRIBUTION

The Poisson distribution represents an approximation to the binomial distribution
for the special case where the average number of successes is much smaller than the
possible number; that is, when p < n because p < 1. For such experiments the bi-
nomial distribution correctly describes the probability Pg(x; n, p) of observing x
events per time interval out of n possible events, each of which has a probability p
of occurring, but the large number n of possible events makes exact evaluation from
the binomial distribution impractical. Furthermore, neither the number n of possible
events nor the probability p for each is usually known. What may be known instead
is the average number of events p. expected in each time interval or its estimate X.
The Poisson distribution provides an analytical form appropriate to such investiga-
tions that describes the probability distribution in terms of just the variable x and the
parameter .

Let us consider the binomial distribution in the limiting case of p << 1. We are
interested in its behavior as n becomes infinitely large while the mean w = np re-
mains constant. Equation (2.4) for the probability function of the binomial distribu-
tion can be written as

1 n!

Py, p)=———p*(1 —p)*(1 = p)r (2.8)
B r %! (n — .X)| 1 4 F &
If we expand the second factor
!
L=n(n-—1)(n—2)-~(n—x—2)(n—x—1) (2.9)
(n — x)!

we can consider it to be the product of x individual factors, each of which is very
nearly equal to n because x < n in the region of interest. The second factor in
Equation (2.8) thus asymptotically approaches »n*. The product of the second and
third factors then becomes (np)* = w*. The fourth factor is approximately equal to
1 + px, which tends to 1 as p tends to 0.

The last factor can be rearranged by substituting u/p for n and expanding the
expression to show that it asymptotically approaches e *:

w
lim (1 — p)* =1lim[(1 — p)Vr]* = (1> =eH (2.10)
p—0 p—0 X7
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Combining these approximations, we find that the binomial distribution prob-
ability function Py(x; n, p) asymptotically approaches the Poisson distribution

-~ P.(x w@)aspapproaches0: 000000000000
11mPB(x n, p) = Pp(x; p,)=ii’ " (2.11)

Because this distribution is an approximation to the binomial distribution forp < 1,
the distribution is asymmetric about its mean p. and will resemble that of Figure 2.2.
Note that P,(x; ) does not become 0 for x = 0 and is not defined for negative val-
ues of x. This restriction is not troublesome for counting experiments because the
number of counts per unit time interval can never be negative.

Masetsradinm

pcliivauvlii

The Poisson distribution can also be derived for the case where the number of
events observed is small compared to the total possible number of events.! Assume
that the average rate at which events of interest occur is constant over a given inter-
val of time and that event occurrences are randomly distributed over that interval.
Then, the probability dP of observing no events in a time interval dt is given by

) \at

nin Y pin. .
ar\Ul ) — ryv,t, 7)—

(<
where P(x; t, T) is the probability of observing x events in the time interval dt, T is a
constant proportionality factor that is associated with the mean time between events,
and the minus sign accounts for the fact that increasing the differential time interval
dt decreases the probability proportionally. Integrating this equation yields the prob-
ability of observing no events within a time ¢ to be

P(0;1,7)= Pye '/ (2.13)

where P,, the constant of integration, is equal to 1 because P(0; ¢, T) = 1 at¢ = 0.
The probability P(x; ¢, T) for observing x events in the time interval T can be
evaluated by integrating the differential probability

#P(x; t,7) =

- (2.14)

which is the product of the probabilities of observing each event in a different in-
terval dr; and the probability e~"'* of not observing any other events in the remain-
ing time. The factor of x! in the denominator compensates for the ordering implicit
in the probabilities dP(1, ¢, ) as discussed in the preceding section on permutations
and combinations.

Thus, the probability of observing x events in the time interval ¢ is obtained by
integration

-7 x
Pp(x; p) = P(x; 1,7) = ex, (5) (2.15)

T

IThis derivation follows that of Orear (1958), pages 21-22.
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or
Po(x; p) = % et (2.16)

which is the expression for the Poisson distribution, where w = t/7 is the average
number of events observed in the time interval ¢. Equation (2.16) represents a nor-
malized probability function; that is, the sum of the function evaluated at each of the
allowed values of the variable x is unity:

€0 o0 X

SN ole )= S
L‘ P\, ) & 1 €

x=0 x=0%

TR0 =
e =

[\®]
_—

N’

~

o 1
€ 1

T,
2

Mean and Standard Deviation

The Poisson distribution, like the binomial distribution, is a discrete distribution.
That i is, it is defined Oi'ily at mtegral values of the variable X, aluxuu5u the parame-
ter W is a positive, real number. The mean of the Poisson distribution is actually the
parameter . that appears in the probability function P-(x; w.) of Equation (2.16). To

rarify t ~an ayvaln tha expect « on value !+ \ ~F 5

VUlll_y Llllb w¢E Cai CleualU lllU CA[JC datiofn vaiuc \A /Ul X.

x X o x—1
x)=> o) = ety ———= . = e~ ME = (2.18)
x=0 .X! x=](

To find the standard deviation o, the expectation value of the square of the devia-
tions can be evaluated:

o«

o2 ={(x—pP)= 20[(x - M)Z%e-u} = (2.19)
Thus, the standard deviation o is equal to the square root of the mean w and the
Poisson distribution has only a single parameter, .

Computation of the Poisson distribution by Equation (2.16) can be limited by
the factorial function in the denominator. The problem can be avoided by using log-
arithms or by using the recursion relations

PO;w=e*  Plx;p)= 5— Plx—1; ) (2.20)

This form has the disadvantage that, in order to calculate the function for particular
values of x and ., the function must be calculated at all lower values of x as well.

”n\quPr if the function is to be summed from x = 0 to some upper limit to obtain

111111 FSaVises W Owviiiv

the summed probability or to generate the distribution for a Monte Carlo calculation
(Chapter 5), the function must be calculated at all lower values of x anyway.

Example 2.4 As part of an experiment to determine the mean life of radioactive iso-
topes of silver, students detected background counts from cosmic rays. (See Example
8.1.) They recorded the number of counts in their detector for a series of 100 2-s in-
tervals, and found that the mean number of counts was 1.69 per interval. From the
mean they estimated the standard deviation to be o = \/1.69 = 1.30, compared to
s = 1.29 from a direct calculation with Equation (1.9).
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FIGURE 2.3
Histogram of counts in a cosmic ray detector. The Poisson distribution is an estimate of the parent
distribution based on the measured mean x = 1.69. It is shown as a continuous curve although the

function is only defined at the discrete points indicated by the round dots.

The students then repeated the exercise, this time recording the number of
counts in 15-s intervals for 60 intervals, obtaining a mean of 11.48 counts per interval,
with standard deviations o = \/11.48 = 3.17 and s = 3.39.

Histograms of the two sets of data are shown in Figures 2.3, and. 2.4. The cal-
culated mean in each case was used as an estimate of the mean of the parent distribu-
tion to calculate a Poisson distribution for each data set. The distributions are shown
as continuous curves, although only the points at integral values of the abscissa are
physically significant.

The asymmetry of the distribution in Figure 2.3 is obvious, as is the fact that
the mean w does not coincide with the most probable value of x at the peak of the
curve. The curve of Figure 2.4, on the other hand, is almost symmetric about its
mean and the data are consistent with the curve. As . increases, the symmetry of the
Poisson distribution increases and the distribution becomes indistinguishable from
the Gaussian distribution.

Summed Probability

We may want to know the probability of obtaining a sample value of x between lim-
its x; and x, from a Poisson distribution with mean . This probability is obtained
by summing the values of the function calculated at the integral values of x between
the two integral limits x, and x,,

X2
Sp(xis X3 ) =, Pelx; ) (2.21)
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FIGURE 24

Histogram of counts in a cosmic ray detector. The Poisson distribution, shown as a continuous curve,
is an estimate of the parent distribution based on the measured mean x = 11.48. Only the calculated
points indicated by the round dots are defined.

More likely, we may want to find the probability of recording n or more events in a
given interval when the mean number of events is .. This is just the sum

o«

Sp(n, 3 w) =3 Pp(x; ) =1 —'2;3()6; =1l-e 2:‘,&, (2.22)

In Example 2.4, the mean number of counts recorded in a 15-s time interval was
X = 11.48. In one of the intervals, 23 counts were recorded. From Equation (2.22),
the probability of collecting 23 or more events in a single 15-s time interval
is ~ 0.0018, and the probability of this occurring in any one of 60 15-s time intervals
is just the complement of the joint probability that 23 or more counts not be observed
in any of the 60 time intervals, or p = 1 — (1 — 0.0018)% = 0.10, or about 10%.
For large values of ., the probability sum of Equation (2.22) may be approx-

imated by an integral of the Gaussian function.

2.3 GAUSSIAN OR NORMAL ERROR
DISTRIBUTION

The Gaussian distribution is an approximation to the binomial distribution for the spe-
cial limiting case where the number of possible different observations n becomes in-
finitely large and the probability of success for each is finitely large so np > 1. It is
also, as we observed, the limiting case for the Poisson distribution as p. becomes large.



28 Data Reduction and Error Analysis for the Physical Sciences

There are several derivations of the Gaussian distribution from first principles,
none of them as convincing as the fact that the distribution is reasonable, that it has a
fairly simple analytic form, and that it is accepied by convention and experimeniation
to be the most likely distribution for most experiments. In addition, it has the satisfy-
ing characteristic that the most probable estimate of the mean p. from a random sam-

plC of observations x is the average of those observations .

Characteristics
The Gaussian probability density is defined as

_ 1 Ifx—
Po=— 2wexp[ 2( = )] (2.23)

This is a continuous function describing the probability of obtaining the value x in

a random observation from a parent distribution with parameters w and o, corre-
sponding to the mean and standard deviation, respectively. Because the distribution
is continuous, we must define an interval in which the value of the observation x
will fall. The probability density function is properly defined such that the proba-
bility dP;(x; w, o) that the value of a random observation will fall within an inter-
val dx around x is given by

dB;(x; w, o) = ps(x; W, o)dx (2.24)

considering dx to be an infinitesimal differential, and the probability density func-
tion to be normalized, so that

Jd;’c(x; o, o) = Jp:;(x; ., o)dx (2.25)

The width of the curve is determined by the value of o, such that for x = p + o, the
height of the curve is reduced to e~ of its value at the peak:

pex; p =0, 0) = e psp; p, o) (2.26)

The shape of the Gaussian distribution is shown in Figure 2.5. The curve displays
the characteristic bell shape and symmetry about the mean .

We can characterize a distribution by its full-width at half maximum T', often
referred to as the half-width, defined as the range of x between values at which the
probability ps(x; p, o) is half its maximum value:

pe(n = V2T, w, 0) = Yapg(u; 1, o) (2.27)
With this definition, we can determine from Equation (2.23) that
I'=235%¢c (2.28)

As illustrated in Figure 2.5, tangents drawn along a portion of steepest de scent of
t

tha tha Anruas at tha =1/ — s A v oand in
the curve intersect the curve at the e puuua X=p xoana

the points x = p * 20.
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FIGURE 2.5
Gaussian probability distribution illustrating the relation of w, o, I', and P.E. to the curve. The curve
has unit area

Standard Gaussian Distribution

It is generally convenient to use a standard form of the Gaussian equation obtained
by defining the dimensionless variable z = (x — w)/o, because with this change of
variable, we can write

(z)dz 1 exp{ -z
V2 \ 2
Thus, from a single computer routine or a table of values of ps(z), we can find the

Gaussian probability function p;(x; w, o) for all values of the parameters p and o by
changing the variable and scaling the function by 1/o to preserve the normalization.

o~
(S
)
\O
Namr’

PG

Mean and Standard Deviation

The parameters w and o in Equation (2.23) for the Gaussian probability density dis-
tribution correspond to the mean and standard deviation of the function. This equiv-
alence can be verified by calculating p. and o with Equations (1.13) and (1.14) as
the expectation values for the Gaussian function of x and (x — w)?, respectively.
For a finite data sample, which is expected to follow the Gaussian probability
density distribution, the mean and standard deviation can be calculated directly
from Equations (1.1) and (1.9). The resulting values of x and s will be estimates of
the mean p and standard deviation o. Values of X and s, obtained in this way from
the original 50 time measurements in Example 1.2, were used as estimates of . and
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o in Equation (2.23) to calculate the solid Gaussian curve in Figure 1.2. The curve
was scaled to have the same area as the histogram. The curve represents our esti-
mate of the parent distribution based on our measurements of the sample.

Integral Probability

We are often interested in knowing the probability that a measurement will deviate
from the mean by a specified amount Ax or greater. The answer can be determined
by evaluating numerically the integral

Fu+Ax 1/x — p\ﬂ
P;(Ax, p, o) = o\/— JpL Aixp{ )Ja’x (2.30)

heliee, ﬁl‘\n ; v A ean m
U

ity uiat any ranadm value of x will deviate from the mean
by less than +Ax Because the probablhty function Pg(x; W, o) is normalized to
unity, the probability that a measurement will deviate from the mean by
Ax is just 1 — Pg(Ax; w, o). Of particular interest are the probabilities
with deviations of o, 20, and so forth from the mean, corresponding to 1, 2, and so
on standard deviations. We may also be interested in the probable error (crpe) de-
fined to be the absolute value of the deviation lx — ! such that the pi’Ouauuuy’ for
the deviation of any random observation |x; — ! is less than Y%. That is, half the ob-
servations of an experiment would be expected to fall within the boundaries denoted
by b £ 0.

If we use the standard form of the Gaussian distribution of Equation (2.29),
we can calculate the integrated probability P;(z) in terms of the dimensionless vari-

able z = (x — wo,

more than
associated

A
Py(z) = LJ “e~?/2 dy (2.31)

\/ 21/ Az

where Az = Ax/o measures the deviation from the mean in units of the standard
deviation o.

The integral of Equation (2.31) cannot be evaluated analytically, so in order to
obtain the probability Pg(Ax; w, o) it is necessary either to expand the Gaussian
function in a Taylor’s series and integrate the series term by term, or to integrate nu-
merically. With modern computers, numerical integration is fast and accurate, and
reliable results can be obtained from a simple quadratic integration (Appendix A.3).

Tables and Graphs

The Gaussian probability density function ps(z) and the integral probability P(z)
are tabulated and plotted in Tables C.1 and C.2, respectively. From the integral
probability Table C.2, we note that the probabilities are about 68% and 95% that a
given measurement will fall within 1 and 2 standard deviations of the mean, re-
spectively. Similarly, by considering the 50% probability limit we can see that the
probable error is given by o, = 0.6745¢.
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Comparison of Gaussian and Poisson
Distributions

A comparison of the Poisson and Gaussian curves reveals the nature of the Poisson

distribution. It is the appropriate distribution for describing experiments in which
the possible values of the data are strictly bounded on one side but not on the other.
The Poisson curve of Figure 2.3 exhibits the typical Poisson shape. The Poisson
curve of Figure 2.4 differs little from the corresponding Gaussian curve of Figure
2.5, indicating that for large values of the mean ., the Gaussian distribution be-
comes an acceptable description of the Poisson distribution. Because, in general, the

Gaussran drstnbutlon 18 more convenient to calculate than the Porsson d1str1but10n

distribution is only defined at 0 and posmve mtegral values of the variable x,
whereas the Gaussian function is defined at all values of x.

2.4 LORENTZIAN DISTRIBUTION

There are many other distributions that appear in scientific research. Some are phe-
nomenological distributions, created to parameterize certain data distributions. Oth-
ers are well grounded in theory. One such distribution in the latter category is the
Lorentzian distribution, similar but unrelated to the binomial distribution. The
Lorentzian distribution is an appropriate distribution for describing data corre-
sponding to resonant behavior, such as the variation with energy of the cross section
of a nuclear or particle reaction or absorption of radiation in the Mossbauer effect.

The Lorentzian probability density function P;(x; w, I'), also called the
Cauchy distribution, is defined as

I/2
Pl )= L P

(2.32)

This distribution is symmetric about its mean w with a width characterized by its
half-width I'. The most striking difference between it and the Gaussian distribution
is that it does not diminish to O as rapidly; the behavior for large deviations is pro-
portional to the inverse square of the deviation, rather than exponentially related to
the square of the deviation.

As with the Gaussian distribution, the Lorentzian distribution function is a
continuous function, and the probability of observing a value x must be related to
the interval within which the observation may fall. The probability dP;(x; w, I') for
an observation to fall within an infinitesimal differential interval dx around x is
given by the product of the probability density function p,(x; w, I') and the size of
the interval dx:

dP(x; w, T) = p,(x; u, T) dx (2.33)

The normalization of the probability density function p;(x; w, I') is such that
the integral of the probability over all possible values of x is unity:
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= 1 (> 1
Lﬁudhndﬁ—gjd+lﬂ&—l (2.34)

where z = (x — w)/(I'/2).

Mean and Half-Width
The mean p of the Lorentzian distribution is given as one of the parameters in

Equation (2.32). It is obvious from the symmetry of the distribution that . must be
equal to the mean as well as to the median and to the most probable value.

The standard deviation is not defined for the Lorentzian distribution as a con-
sequence of its slowly decreasing behavior for large deviations. If we attempt to
evaluate the expectation value for the square of the deviations

TG i ey R (2.35
o?=(x—p ﬂ4J_m1+zzz .35)

we find that the integral is unbounded: the integral does not converge for large de-
viations. Although it is possible to calculate a sample standard deviation by evalu-
ating the average value of the square of the deviations from the sample mean, this
calculation has no meaning and will not converge to a fixed value as the number of
samples increases.

The width of the Lorentzian distribution is instead characterized by the full-
width at half maximum T, generally called the half-width. This parameter is defined
such that when x = p = I'/2, the probability density function is equal to one-half its
maximum value, or p(n. = I/2; w, I') = Vap(u; ., I). Thus, the half-width I is the
full width of the curve measured between the levels of half maximum probability.
We can verify that this identification of I with the full-width at half maximum is

The Lorentzian and Gaussian distributions are shown for comparison in Fig-
ure 2.6, for p. = 10 and I = 2.354 (corresponding to o = 1 for the Gaussian func-
tion). Both distributions are normalized to unit area according to their definitions in
Equations (2.23) and (2.32). For both curves, the value of the maximum probability
is inversely proportional to the half-width I'. This results in a peak value of
2/mwI" = 0.270 for the Lorentzian distribution and a peak value of 1/ o\/2m = 0.399
for the Gaussian distribution.

Except for the normalization, the Lorentzian distribution is equivalent to the
dispersion relation that is used, for example, in describing the cross section of a nu-
clear reaction for a Breit-Wigner resonance:

T,
Ey)? +(T/2)?

0=\ (2.36)

SUMMARY

Binomial distribution: Describes the probability of observing x successes out of n
tries when the probability for success in each try is p:
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Comparison of normalized Lorentzian and Gaussian distributions, with I' = 2.354¢.

n! (1 — p)r-x
——7(1)

ps(x; n, p) = (Q)P"Q"_" e

W= np a2 =np(l — p)
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stant p; appropriate for describing small samples from large populations.

X

Po(x; p) = % eH, ol=p

Gaussian distribution: Limiting case of the binomial distribution for large » and
finite p; appropriate for smooth symmetric distributions.
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Half-width I' = 2.354¢; probable error PE. = 0.67450.
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EXERCISES
2.1. Consider five coins labeled a, b, c, d, and e. Let x = number of heads showing.
(a) Manually count and tabulate all possible permutations for each of the following

configurations:

i x=0

. x=1

. x=2

iv.x=3

V. x=4

vii x=35

2.2.

2.3.

24.

2.5.

2.6.

2.7.

2.8.

2.9.

Compare your results to those given by Equation (2.2).

(b) Manually delete all duplicate permutations from each example of part (a), that is,
cross out permutations that repeat a previous combination in a different order.
Compare your resuits to those given by Equation (2.3).

Evaluate the following:

(&) ®» (4 © (19 (@ (%)

@\3) ®l2) @13 @Oy

Evaluate the binomial distribution Pg(x; n, p) forn = 6, p = V2, and x = 0 to 6. Sketch

the distribution and identify the mean and standard deviation. Repeat for p = %.

The probability distribution of the sum of the points showing on a pair of dice is given by

~

x—1
= =x=
P(x) ;6 2=x=<7
13 —x
= <l
36 T=x=12

Find the mean, median, and standard deviation of the distribution.

Show that the sum in Equation (2.6) reduces to p. = np. Hint: Define y = x — 1 and
m = n — 1 and use the fact that

m

>

m. m
=P = S Aimp) = 1
P y!(m—y)!p p yZO B(y P)

On a certain kind of slot machine there are 10 different symbols that can appear in

each of three windows. The machine pays off different amounts when either one, two,

or three lemons appear. What should be the payoff ratio for each of the three possibil-

ities if the machine is honest and there is no cut for the house?

Show that the sum in Equation (2.7) reduces to 6? = np(1 — p). Hint: Define y = x — 1

and m = n — 1 and use the results of Exercise 2.5.

At rush hour on a typical day, 25.0% of the cars approaching a fork in the street turn left

and 75.0% turn right. On a particular day, 283 cars turned left and 752 turned right. Find

the predicted uncertainty in these numbers and the probability that these measurements

were not made on a “typical day”; that is, find the probability of obtaining a result that

is as far or farther from the mean than the result measured on the particular day.

In a certain physics course, 7.3% of the students failed and 92.7% passed, averaged

over many semesters.

(a) What is the expected number of failures in a particular class of 32 students, drawn
from the same population?

(b) What is the probability that five or more students will fail?
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2.10.

2.11.

2.12.

2.13.

Evaluate and plot the two Poisson distributions of Example 2.4. Plot on each graph the
corresponding Gaussian distribution with the same mean and standard deviation.
Verify that, for the Poisson distribution, if w is an integer, the probability for x = p is
equal to the probability forx = w — 1, Po(i, p) = Pp(p — 1; ).

Show that the sum in Equation (2.19) reduces to 02 = w. Hint: Use Equation (2.18)
to simplify the expression. Define y = x — 1 and show that the sum reduces to
p(y + 1) = p?

Members of a large collaboration that operated a giant proton-decay detector in a salt
mine near Cleveland, Ohio, detected a burst of 8 neutrinos in their apparatus coinci-

2.14.

2.15.

2.16.

2.17.

2.18.

dent with the optical observation of the explosion of the Supernova 1987A.

. . . .
{a) If the avaraoce number of neutrinac detected in the annaratug ic 2 ner dav what ig
\wl AL Vidw u'\/luév AIV1IIVWI Vil 11WVUMLLIIIVO UwilwvWwiLWwLE 11 il “yl]“l“\v“o A b Pvl u“], YY1l 1O

the probability of detecting a fluctuation of 8 or more in one day?

(b) In fact, the 8 neutrinos were all detected within a 10-min period. What is the prob-
ability of detecting a fluctuation of 8 or more neutrinos in a 10-min period if the
average rate is 2 per 24 hours?

In a scattering experiment to measure the polarization of an elementary particle, a total

of N = 1000 particles was scattered from a target. Of these, 670 were observed to

be scattered to the right and 330 to the left. Assume that there is no uncertainty in

N = Ny + N,.

(a) Based on the experimental estimate of the probability, what is the uncertainty in
Ng?In N,?

(b) The asymmetry parameter is defined as A = (N — N,)/(N; + N,). Calculate the
experimental asymmetry and its uncertainty.

(c) Assume that the asymmetry has been predicted to be A = 0.400 and recalculate
the uncertainties in (@) and (b) using the predicted probability.

A problem arises when recording data with electronic counters in that the system may

saturate when rates are very high, leading to a “dead time.” For example, after a parti-

cle has passed through a detector, the equipment will be “dead” while the detector re-
covers and the electronics stores away the resuits. If a second particie passes through
the detector in this time period, it will not be counted.

(a) Assume that a counter has a dead time of 200 ns (200 X 10~° s) and is exposed to
a beam of 1 X 10° particles per second so that the mean number of particles hit-
ting the counter in the 200-ns time slot is w = 0.2. From the Poisson probability
for this process, find the efficiency of the counter, that is, the ratio of the average
number of particles' counted to the average number that pass through the counter
in the 200-ns time period.

(b) Repeat the calculation for beam rates of 2, 4, 6, 8, and 10 X 10 particles per sec-
ond, and plot a graph of counter efficiency as a function of beam rate.

Show by numerical calculation that, for the Gaussian probability distribution the full-

idth at half o m INig ralatad ta tha ndard Ao , TV = 72 284 B
wiatn al nail maximum 1 iS reiated (o tne stanaara ucvxauuu uy 1 £.5354C quauuu

(2.28)].
The probability that an electron is at a distance r from the center of the nucleus of a
hydrogen atom is given by

nd t maan radine » and tha ctandard deviatian ind the valna af the canctant (7
a l lu Lll\f 111IVALL 1AVLUD 7 AU IV OLALIVALU UW Y IALLUILL. 1 111U UiV YAdLIUuY VL Ulv wUiliowaaey .
Show that a tangent to the Gaussian function is steepest at x = . * o, and therefore
intersects the curve at the ¢~ points. Show also that these tangents intersect the x axis

atx = u * 20.
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mates of the mean and standard deviation that describe, respectively, the desired
result and the uncertainties in the results. In this chapter we shall further consider
how to estimate uncertainties in our measurements, the sources of the uncertainties,
and how to combine uncertainties in separate measurements to find the error in a re-
sult calculated from those measurements.

1 INCTRITMENTAT AND CTATICTIO
IV ENE VoS B s B ULV

«Je L ALNMT A ANUIVARJINALAR I ALY

UNCERTAINTIES

Instrumental Uncertainties

If the quantity x has been measured with a physical instrument, the uncertainty in
the measurement generally comes from fluctuations in readings of the instrumental
scale, either because the settings are not exactly reproducible due to imperfections
in the equipment, or because of human imprecision in observing settings, or a com-
bination of both. Such uncertainties are called instrumental because they arise from
a lack of perfect precision in the measuring instruments (including the observer).
We can include in this category experiments that deal with measurements of such
characteristics as length, mass, voltage, current, and so forth. These uncertainties
are often independent of the actual value of the quantity being measured.
Instrumental uncertainties are generally determined by examining the instru-
ments and considering the measuring procedure to estimate the reliability of the mea-
surements. In general, one should attempt to make readings to a fraction of the smallest

crala divicion an tha inctrmmeaent Far avamnle with o od merenry the ota it
sCai€ aivision on ine mstrument. r'or CAQILIPIC, Wil a suvu mvivulLy Lll\/Llll\Jlll\al\.zl, it

is often easy to estimate the level of the mercury to a least count of one-half of the

36
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smallest scale division and possibly even to one-fifth of a division. The measurement
is generally quoted to plus or minus one-half of the least count, and this number rep-
resents an estimate of the standard deviation of a single measurement. Recalling that,
for a Gaussian distribution, there is a 68% probability that a random measurement will
lie within 1 standard deviation of the mean, we observe that our object in estimating
errors is not to place outer limits on the range of the measurement, which is impossi-
ble, but to set a particular confidence level that a repeated measurement of the quantity
will fall this close to the mean or closer. Often we choose the standard deviation, the

68% confidence level, but other levels are used as well. We shall discuss the concept

of confidence lavale in Chantar 11
Ul VULILIUVIILT ITYUID 111 llapivr 11,

Digital instruments require special consideration. Generally, manufacturers
specify a tolerance; for example, the tolerance of a digital multimeter may be given

ac + 10, At anv rata tha nracician cannat he hattar than half tha lact dioit on the
aAd — 1 /U 2L all] 1Alv, LIV PIUUIOIUII VAILLIIVUL Uvw ULLLVI Llidil 1Al uuav 1aot unsu, Wil uiv

display. The manufacturer’s quoted tolerances may require interpretation as to
whether the uncertainty must be treated as a systematic effect or a statistical effect.

Far axamnla 1fa etiident nicac a racictor with a ctatad 10 talarancs in an aynariment
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he can expect the stated uncertainty in the resistance to make a systematic contribu-
tion to all experiments with that resistor. On the other hand, when he combines his

. . .
racnlte with thace nf tha athar ctiidante in tha nlace sach af wham nead a diffarant
resSus Wil tioSC O ul€ Oullr StUGCOIRS 11 i€ Ci1ass, €acil O WilOINl USCa a GLICICIIR

resistor, the uncertainties in the individual resistances contribute in a statistical man-
ner to the variation of the combined sample.

If it is possible to make repeated measurements, then an estimate of the stan-
dard deviation can be calculated from the spread of these measurements as dis-
cussed in Chapter 1. The resulting estimate of the standard deviation corresponds to
the expected uncertainty in a single measurement. In principle, this internal method
of determining the uncertainty should agree with that obtained by the external
method of considering the equipment and the experiment itself, and in fact, any sig-
nificant discrepancy between the two suggests a problem, such as a misunderstand-
ing of some aspect of the experimental procedure. However, when reasonable
agreement is achieved, then the standard deviation calculated internally from the
data generally provides the better estimate of the uncertainties.

Statistical Uncertainties

If the measured quantity x represents the number of counts in a detector per unit time
interval for a random process, then the uncertainties are called statistical because they
arise not from a lack of precision in the measuring instruments but from overall sta-
tistical fluctuations in the collections of finite numbers of counts over finite intervals
of time. For statistical fluctuations, we can estimate analytically the standard deviation
for each observation, without having to determine it experimentally. If we were to
make the same measurement repeatedly, we should find that the observed values were
distributed about their mean in a Poisson distribution (as discussed in Section 2.2) in-
stead of a Gaussian distribution. We can justify the use of this distribution intuitively
by considering that we should expect a distribution that is related to the binomial dis-
tribution, but that is consistent with our boundary conditions that we can collect any
positive number of counts, but no fewer than zero counts, in any time interval.
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The Poisson distribution and statistical uncertainties do not apply solely to ex-
periment where counts are recorded in unit time intervals. In any experiment in
which data are grouped in bins according to some criterion to form a histogram or
frequency plot, the number of events in each individual bin will obey Poisson sta-
tistics and fluctuate with statistical uncertainties.

One immediate advantage of the Poisson distribution is that the standard de-
viation is automatically determined:

o=V 3.1)

v s/

The relative uncertainty, the ratio of the standard deviation to the average rate,
o/p =1 /|, decreases as the number of counts received per interval increases.
Thus relative uncertainties are smaller when counting rates are higher.

The value for w to be used in Equation (3.1) for determining the standard de-
viation o is, of course, the value of the mean counting rate from the parent popula-

tion, of which each measurement x is only an approximate sample. In the limit of an
infinite number of determinations, the average of all the measurements would very
closely approximate the parent value, but often we cannot make more than one mea-
surement of each value of x, much less an infinite number. Thus, we are forced to
use \/; as an estimate of the standard deviation of a single measurement.

Example 3.1. Consider an experiment in which we count gamma rays emitted by a
strong radioactive source. We cannot determine the counting rate instantaneously be-
cause no counts will be detected in an infinitesimal time interval. But we can deter-
mine the number of counts x detected over a time interval Az, and this should be
representative of the average counting rate over that interval. Assume that we have
recorded 5212 counts in a 1-s time interval. The distribution of counts is random
in time and follows the Poisson probability function, so our estimate of the standard
deviation of the distribution is ¢ = \/5212. Thus, we should record our result for the
number of counts x in the time interval Ar as 5212 = 72 and the relative error is

o, Vx_ 1 1
X

=Y = — =~ =0014=14%

X \/;72

There may also be instrumental uncertainties contributing to the overall un-
certainties. For example, we can determine the time intervals with only finite preci-
sion. However, we may have some control over these uncertainties and can often
organize our experiment so that the statistical errors are dominant. Suppose that the
major instrumental error in our example is the uncertainty o, = 0.01 s in the time in-
terval Az = 1.00 s. The relative uncertainty in the time interval is thus

g, _0.01

At—m=0.01 =1.%

This relative instrumental error in the time interval will produce a 1.% relative error
in the number of counts x. Because the instrumental uncertainty is comparable to
the statistical uncertainty, it might be wise to attempt a more precise measurement
of the interval or to increase its length. If we increase the counting time interval
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from 1 s to 4 s, the number of counts x will increase by about a factor of 4 and the
relative statistical error will therefore decrease by a factor of 2 to about 0.7%,

whereas the relative instrumental uncertamty will decrease by a factor of 4 to
NIKO, ac ln

nao o I Q
Vel /U, AO l\J 15 a L1iv 1110

o=
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[un—ry

3.2 PROPAGATION OF ERRORS

We often want to determine a dependent variable x that is a function of one or more
drfferent measured variables. We must know how to propagate or carry over the un-

varlable.

Example 3.2. Suppose we wish to find the volume V of a box of length L, width W,

and height H. We can measure each of the three dimensions to be L,, w1dth W,, and
height H, and combine these measurements to yield a value for the volume:

Vo = LoWoH, (3.2)

How do the uncertainties in the estimates L,, W,, and H, affect the resulting uncer-
tainties in the final result V,,?

If we knew the actual errors, AL = L — L, and so forth, in each dimension, we
ould obtain an estimate of the error in the final result V,. hv m{nan(‘lmo V about the

pomt (Lo, Wy, Hp) in a Taylor series. The first term in the Taylor expansion gives

Vv 2% A%
+ + + X
V=h AL<3L>WUHn AW<3W> LoHo AH(3H>L W, (3.3)

from which we can find AV = V — V,,. The terms in parentheses are the partial deriv-
atives of V, with respect to each of the dimensions, L, W, and H, evaluated at the point
Ly, Wy, Hy. They are the proponionality constants between changes in V and infinites-
uuauy’ small euanges in the corresponumg dimensions. The partrar derivative of V
with respect to L, for example, is evaluated with the other variables W and H held
fixed at the values W, and H, as indicated by the subscript. This approximation ne-
glects higher-order terms in the Taylor expansion, which is equivalent to neglecting
the fact that the partial derivatives are not constant over the ranges of L, W, and H
given by their errors. If the errors are large, we must include in this definition at least
second partial derivatives (0V*9L?, etc.) and partial cross derivatives (9*°V/9L oW,
etc.), but we shall omit these from the discussion that follows.
For our example of V = LWH, Equation (3.3) gives

AV = W,H,AL + LyH, AW + LW,AH

o~
(3]
A
~—

C>

which we could evaluate if we knew the uncertainties AL, AW, and AH.

Uncertainties

In general, however, we do not know the actual errors in the determination of the
dependent variables (or if we do, we should make the necessary corrections). In-
stead, we may be able to estimate the error in each measured quantity, or to estimate
some characteristic, such as the standard deviation o, of the probability distribution
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of the measured qualities, How can we combine the standard deviation of the indi-
vidual measurements to estimate the uncertainty in the result?

Suppose we want to determine a quantity x that is a function of at least two
measured variables, u and v. We shall determine the characteristics of x from those
of u and v and from the fundamental dependence

x=flu,v,...) (3.5)

Although it may not always be exact, we shall assume that the most probable value
for x is given by

x=f(a,v,...) (3.6)

The uncertainty in the resulting value for x can be found by considering the
spread of the values of x resulting from combining the individual measurements u;

X = flu; vy .. .) (3.7)

In the limit of an infinite number of measurements, the mean of the distribution
will coincide with the average X given in Equation (3.6) and we can use the defin-
ition of Equation (1.8) to find the variance a2 (which is the square of the standard
deviation g,):

.
1
= — %)
o2 }/l—r.rolc{ > (x; — %) (3.8)

Just as we expressed the deviation of V in Equation (3.4) as a function of the
deviations in the dimensions L, W, and H, so we can express the deviations x; — X in
terms of the deviations u; — u, v; — v, ... of the observed parameters

x,—fz(u,.—a)<%)+(v—v)(%)+~- (3.9)

where we have omitted specific notation of the fact that each of the partial deriva-
tives is evaluated with all the other variables fixed at their mean values.

Variance and Covariance

Combining Equations (3.8) and (3.9) we can express the variance ¢ for x in terms of

the variances o2, 62, . . . for the variables u, v, . . . , which were actually measured:

+ 20, — ) (v, — ) (2x) (2x ] (3.10)
) (&)
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The first two terms of Equation (3.10) can be expressed in terms of the vari-
ances o2 and o2 given by Equation (1.8):

In order to express the third term of Equation (3.10) in a similar form, we introduce
the covariances o2 between the variables u and v defined analogous to the vari-
ances of Equation (3.11):

o = },1_{1;10 []':'/ > - w) (v — T’)]] (3.12)

With these definitions, the approximation for the variance o2 for x given in

Equation (3.10) becomes
o[ 9x z/ax\2 ) Cax ) [(9x)
0' =g} (au) +0‘v(a—v) +-"+20‘w(£) (a)+ (3.13)
Equation (3.13) is known as the error propagation equation.

The first two terms in the equation are averages of squares of deviations
weighted by the squares of the partial derivatives, and may be considered to be the
averages of the squares of the deviations in x produced by the uncertainties in « and
in v, respectively. In general, these terms dominate the uncertainties. If there are ad-
ditional variables besides « and v in the determination of x, their contributions to the
variance of x will have similar terms.

The third term is the average of the cross terms involving products of devia-
tions in u and v weighted by the product of the partial derivatives. If the fluctuations
in the measured quantities u and v, . . . are uncorrelated, then, on the average, we
should expect to find equal distributions of positive and negative values for this
term, and we should expect the term to vanish in the limit of a large random selec-

t1n n'p nh * t1 Thic £t hl A FnA
tion of observations. This is often a reasonable approximation and Equation (3.13)

then reduces to
2
o2~ [V L2 () L (3.14)
au v

with similar terms for additional variables. In general, we use Equation (3.14) for
determining the effects of measuring uncertainties on the final result and neglect the
covariant terms. However, as we shall see in Chapter 7, the covariant terms often
make important contributions to the uncertainties in parameters determined by fit-
ting curves to data by the least-squares method.

3.3 SPECIFIC ERROR FORMULAS

The expressions of Equations (3.13) and (3.14) were derived for the general rela-
tionship of Equation (3.5) giving x as an arbitrary function of # and v, . . . . In the
following specific cases of functions f(i, v, . . . ), the parameters a and b are defined
as constants and u and v are variables.
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Simple Sums and Differences

If the dependent variable x is related to a measured quantity u by the relation
x=u+ta 3.15)
then the partial derivative dx/du = 1 and the uncertainty in x is just
o, =0, (3.16)
and the relative uncertainty is given by
T e T (3.17)

X X u-+a

Note that if we are dealing with a small difference between u and g, the uncertainty in
x might be greater than the magnitude of x, even for a small relative uncertainty in u.

Example 3.3. In an experiment to count particles emitted by a decaying radioactive
source, we measure N, = 723 counts in a 15-s time interval at the beginning of the ex-
periment and N, = 19 counts in a 15-s time interval later in the experiment. The events
are random and obey Poisson statistics so that we know that the uncertainties in N, and
N, are just their square roots. Assume that we have made a very careful measurement
of the background counting rate in the absence of the radioactive source and obtained
a value B = 14.2 counts with negligible error for the same time interval At. Because
we have averaged over a long time period, the mean number of background counts in

the 15-s interval is not an integral number.
For the first time interval, the corrected number of counts is
x, =N,— B =723 — 14.2 = 708.8 counts
The uncertainty in x, is given by
oy, = oy, = V723 =26.9 counts
and the relative uncertainty is

0269 _( no
- 708 0.038 =3.8%

For the second time interval, the corrected number of events is
X, =N,— B =19 —14.2 =48 counts
The uncertainty in x is given by
Ty, = Oy, = \/ﬁ = 4.4 counts
and the relative uncertainty in x is

o, 44
2~ =091
x 4.8 0.9

Weighted Sums and Differences

If x is the weighted sum of « and v,

xX=au+ bv (3.18)
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the partial derivatives are simply the constants

ox\ _ ox) _
(a)—“ (a) b G19

and we obtain
o?=qa%2+ b%c2+ 2abc? (3.20)

Note the possibility that the variance o2 might vanish if the covariance ¢ 2 has
the proper magnitude and sign. This could happen in the unlikely event that the fluc-
tuations were completely correlated so that each erroneous observation of u was ex-
actly compensated for by a corresponding erroneous observation of v.

Example 3.4. Suppose that, in the previous example, the background counts B were
not averaged over a long time period but were simply measured for 15 s to give

D — 1A with gtandased daciaei e AS1A ~~ 27T Anire te Thawm tha 11 nawta
D — 1= Wllll Stanaara ucv1auuu UB - V 14 = 5./ COUnis. 1ncii ne uficeria ll_y lll X
would be given by

o2=0}+(-03?=N+B

because the uncertainties in N and B are equal to their square roots.

For the first time interval, we would calculate
= (723 — 14) = \/723 + 14 = 709 * 27.1 counts
and the relative uncertainty would be

o, 211 _
* 709 0.038

For the second time interval, we would calculate

x,=(19 - 14) = V19 + 14 = 5 = 5.7 counts

and the relative uncertainty wouid be

o, _3.7 _
. 5 1.1
Multiplication and Division
If x is the weighted product of » and v,
X = auv (3.21)

the partial derivatives of each variable are functions of the other variable,

ax\ _ ox ) _
(5)—@ <8v) au (3.22)

and the variance of x becomes

o2 =(ave,)? + (auc,)? + 2a*uvc?, (3.23)
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which can be expressed more symmetrically as

2 2 2 2
O-X O-u GV O-MV

Te _Tuy Ty 50w 3.24
x2  u? v? uv (3.24)

Similarly, if x is obtained through division,

Or_Oi, O ,Tu (3.26)
x* u? v uy '
LDvamnla 2 & Tha araa nfa triancla ic annal ta half tha nradiiat Aftha haga timag tha
lJAallllJlC JeJe 111C alva vl a uiaiixgiv 1o cqual W 1iail uiv lJlUuubL Ul LIV UadT LILLICS LIV
height A = bh/2. If the base and height have values » = 5.0 = 0.1 cm and & = 10.0
= 0.3 cm, the areais A = 25.0 cm? and the relative uncertainty in the area is given by
o oi o}
A b h
—=—* 3.27
2 b2 hZ ( )
or
/0_2 0_2\
2 — A2 Zb h
o5 = Al — +

0.12 0.32
— 12 u.1=  0.5° 2/ 2
25%(cm)* (52 + 102>(cm /cm?)

= (.81 cm*

Although the absolute uncertainty in the height is 3 times the absolute uncertainty in
the base, the relative uncertainty is only 1% times as large and its contribution to the
variance of the area is only (11%)? as large.

Powers

If x is obtained by raising the variable u to a power

x = au’ (3.28)
the derivative of x with respect to u is
3% _ et B (3.29)

and relative error in x becomes
x_ 3%
b y (3.30)

For the special cases of b = +1, we have
= au o, =ao,

SO

=— (3.31)
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For b = —1, we have

=
I
QIR
)9
I
|

SO
e (332)

The negative sign indicates that, in division, a positive error in u# will produce a cor-
responding negative error in x.

Example 3.6. The area of a circle is proportional to the s square of the radius A = w2,

1€ tha rading i ie datarminadtahoe » = 1NN + N2 Aam tha araan A = 100 A1 2 with an
11 LIV 1Aaulud 105 uUviviiiiiinvug LU UC 7 1UV.U — V.U \Llll, tll\.o ailva 10 g Y LUV Ll vvuu all

uncertainty given by

O4a_50r
A 2 r
or
o, =2A 07 = 271(10.0 cm )%(0.3 cm)/(10.0 cm) = 677 cm?
Exponentials

If x is obtained by raising the natural base to a power proportional to u,
x = ae’™ (3.33)
the derivative of x with respect to u is

ox = abe®™ = bx (3.34)

du

and the relative uncertainty becomes
o
— = bo, (3.35)
If the constant that is raised to the power is not equal to ¢, the expression can

be rewritten as

X = abv (3.36)

— (eln a)bu — e(b In au
=e*“withc=blna

where In indicates the natural logarithm. Solving in the same manner as before we
obtain

A —

~
W
(%]

X e — (1 )
N CO, =\ i1l G)o,
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Logarithms
If x is obtained by taking the logarithm of «,
x = aIn(bu) (3.38)
the derivative with respect to u is
ax _ab
il (3.39)
o, = ab "7 (3.40)

Angle Functions

If x is determined as a function of u, such as

= a cos(bu) (3.41)
The derivative of x with respect to u is
e —ab sin(bu) (3.42)
SO
o, = —a,ab sin(bu) (3.43)
Similarly, if
x = a sin(bu) (3.44)
then
g% = ab cos(bu) (3.45)
SO
o, = g,ab cos(bu) (3.46)

Nl Atn ¢t =
INUC Uulat U,

is the uncertainty in an angle and therefore must be expressed in radians.
These relations can be useful for making quick estimates of the uncertainty in
a calculated quantity caused by the uncertainty in a measured variable. For a simple

AnoIIen

pluduut Or quotiernit of the measured variable # with a constant, a 1% error in u
causes a 1% error in x. If u is raised to a power b, the resulting error in x becomes
b% for a 1% uncertainty in u. Even if the complete expression for x involves other
mAAnQIIRA A varialklag v = £, 1 N\ and 10 rangidorakly marae anmnlicatad than
Hica»>uicu valiavitd, A — j\u, v, . . . ) allld 1d uuumucnau1_y 1HIVUICT \,UlllyllbalCU Lilall
these simple examples, it is often possible to use these relations to make approxi-
mate estimates of uncertainties.

3.4 APPLICATION OF ERROR EQUATIONS

Even for relatively simple calculations, such as those encountered in undergraduate
laboratory experiments, blind application of the general error propagation expression
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[Equation (3.14)] can lead to very lengthy and discouraging equations, especially if
the final results depend on several different measured quantities. Often the error
equations can be simplified by neglecting terms that make negligible contributions to
the final uncertainty, but this requires a certain amount of practice.

Approximations

Students should practlce makmg qu1ck approx1mate estlmates of the various con-

Equation (3.14). A convenient rule of thumb is to neglect terms that make final con-
tributions that are less than 10% of the largest contribution. (Like all rules of this
sort, one should be wary of special cases. Several smaller contributions to the final
uncertainty can sum to be as important as one larger uncertainty.)

Example 3.7. Suppose that the area of a rectangle A = LW is to be determined from
the following measurements of the lengths of two sides:

L=221*x0.1cm W=73%*0.1cm
The relative contribution of o, to the error in L will be

O, O 0.1 "

AL "z 000
and the corresponding contribution of oy, will be
04, Ow_ 0.1
A T _ o 4
A W 173 0.01

The contribution from o is thus about one-third of that from oy. However, when the
contributions are combined, we obtain

o, = AV/0.0142 + 0.0052

which can be expanded to give

1/0.005\2\ ) o
= + =0. +0.06) = 0.
0014Akl 2\0014}} 0.014A(1 + 0.06) = 0.0154

Thus, the effective contribution from o is only about 6% of the effective contribution
from o, and could safely be neglected in this calculation.

Computer Calculation of Uncertainties

Finding analytic forms for the partial derivatives is sometimes quite difficult. One
should always break Equation (3.14) into separate components and not attempt to
find one complete equation that incorporates all error terms. In fact, if the analysis
is being done by computer, it may not even be necessary to find the derivatives ex-
plicitly. The computer can find numerically the variations in the dependent variable
caused by variations in each independent, or measured, variable.
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Suppose that we have a particularly complicated equation, or set of equations,
relatmg our fmal result x to the md1v1dually measured vanables u, v, and so forth

CALCU LATE Wthh returns the smgle varlable x when called with arguments
corresponding to the measured parameters

= CALCULATE(U, V, W .. .)

We shall further assume that correlations are small so that the covariances may be
ignored. Then, to find the variations of x with the measured quantities u, v, and so
forth, we can make successive calls to the function of the form

DXU = CALCULATE(U + DU, V, W, . .. ) -X,
DXV = CALCULATE(U, V+ DV, W, ... )-X
DXW = CALCULATE(U, V, W + DW, ... ) - X,
ETC.

where DU, DV, DW, and so forth are the standard deviations o, 0,, o,, and so
on. The resulting contributions to the uncertainty in x are combined in quadrature as

DX = SQRT(SQR(DXU) + SQR(DXV) + SQR(DXW) + .. .)

Note that it would not be correct to incorporate all the variations into one equation
such as
DX = CALCULATE(U + DU,V + DV, W + DW, . .. ) - X

because this would imply that the errors DU, DV, and so on were actually known
quantities, rather than independent, estimated variations of the measured quantities,
corresponding to estimates of the widths of the distributions of the measured variables.

SUMMARY
Covariance: o2, = {(u — w)(v — v)).
Propagation of errors: Assume x = f(u, v):

dx dx \? ax\ [ ox
2 + 2| == + 2 2 - bkl
o =0l <6u> Ty (av) T <6u) <8v>

For u and v uncorrelated, o2, = 0.

Specific formulas:
x=au+ bv o2 = a’c’+ b*c2 + 2abo?,
2 g2 o2 2
o2 o o} o
X = auv —=— + s +2——
x2 u uv
au oz ol 03 o2,
= 2 22
XX ur v uv
~ o o
x = au® —“+=p—=
X u
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o
= ae? — = bo,
X
o,
x = qb¢ —*=(bIna)o,
X
v = o In(hi) o = 52
X & 1INy O, aoc U

x = a cos(bu) g, = —a,ab sin(bu)

x = a sin(bu) o,ab cos(bu)

Q
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EXERCISES

3.1.

3.2

3.3.

W
o

3.5.

3.6.

3.7.

3.8.

Find the uncertainty o, in x as a function of the uncertainties o, and o, in « and v for

Lo Fallacsing Fiimetsmmee
tne 1uuuwmg functions:

@ x=12u+v) b)) x=12u—v) (c) x = 1/u?

(d) x = w? (&) x=u*+1?

If the diameter of a round table is determined to within 1%, how well is its area
known? Would it be better to determine its radius to within 1%?

The resistance R of a cylindrical conductor is proportional to its length L and inversely
proportional to its cross-sectional area A = wr?, Which should be determined with
higher precision, r or L, to optimize the determination of R? How much higher?

. The initial activity N, and the mean life T of a radioactive source are known with un-

certainties of 1% each. The activity follows the exponential distribution N = Nye™.
The uncertainty in the initial activity N, dominates at small #; the uncertainty in the
mean life T dominates at large ¢ (¢ > 7). For what value of #/7 do the uncertainties in N,
and T contribute equally to the uncertainty in N? What is the resulting uncertainty in N?
Snell’s law relates the angle of refraction 8, of a light ray traveling in a medium of in-
dex of refraction n, to the angle of incidence 8, of a ray traveling in a medium of in-
dex n, through the equation n, sin 8, = n, sin 8,. Find n, and its uncertainty from the

FAllaimiing mangiiranmiant

IUIIUWIIIE lllCaDulClllClltD
0, = (2203 +02° 0,=(1445*02° n, = 1.0000

The change in frequency produced by the Doppler shift when a sound source of fre-
quency fis moving with velocity v toward a fixed observer is given by Af = fu/(u —
v), where u is the velocity of sound. From the following values of u, f, and v and their
uncertainties, calculate Af and its uncertainty. Which, if any, of the uncertainties make
a negligible contribution to the uncertainty in Af?

= (332 = 8) m/s; £= (1000 = 1)Hz; and v = (0.123 * 0.003) m/s.

The radius of a circle can be calculated from measurements of the length L of a chord
and the distance A from the chord to the circumference of the circle from the equation
R = L?/2h + h/2. Calculate the radius and its uncertainty from the following values of
L and h.

(@) L=(125.0%=5.0)cm, A = (0.51 = 0.22) cm

(b) L=(1250x50)cm, h = (574 = 1.2)cm

Was it necessary to use the second term to calculate R in both (a) and (b)? Explain.
Students measure the speed of sound in the laboratory by creating a sound pulse that
travels down a 1-m tube and reflects back so that both the initial and reflected pulses
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are detected by the same microphone. The signals are recorded by computer and the
pulse amplitudes versus time are displayed on the monitor. The students measure the
time intervals for ten such pairs of pulses on the monitor and record the following
transit times in milliseconds:

3.9.

3.10.

3.11.

Trial | 1 2 3 4 5 6 7 8 9 10
Transittimes | 577 578 574 580 578 583 576 578 576 578

(a) Examine the data and try to estimate the spread of the data, that is, their standard
deviation.

(b) Calculate the mean transit time, the standard deviation of the sample, and the stan-
dard error (error in the mean).

[1€ O [1€ allsS MCMcasurcCments CI'S OImM—nc mcean oy morc tartl Stan-
dard deviations. In a ten-event sample, how many measurements are predicted by
Gaussian statistics to differ from the mean by 2 or more standard deviations? Re-
fer to Table C.2.

(d) Calculate the speed of sound and its uncertainty from the data.

Students in the undergraduate laboratory recorded the following counts in 1-min in-

tervals from a radioactive source. The nominal mean decay rate from the source is 3.7

decays per minute.

Decays per minute | 0 1 2 3 4 5 6 7 8 9 10
Frequencey of occurrence | 1 9 20 24 19 11 11 0 3 1 1

(a) Find the mean decay rate and its standard deviation. Compare the standard devia-
tion to the value expected from the Poisson distribution for the mean value that
you obtained.

(b) Plot a histogram of the data and show Poisson curves of both the parent and ob-
served distributions.

Find by numerical integration the probability of observing a value from the Gaussian

distribution that is:

(a) More than 1 standard deviation (o) from the mean.

(b) More than 2 standard deviations from the mean.

(c) More than 3 standard deviations from the mean.

Find by numerical integration the probability of observing a value from the Lorentz-

ian distribution that is:

(a) More than 1 half-width (I'/2) from the mean.

(b) More than 2 half-widths from the mean.

(¢) More than 3 half-widths from the mean.
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4.1 METHOD OF LEAST SQUARES

n Chapter 2 we defined the mean w of the parent distribution and noted that the
most probable estimate of the mean p of a random set of observations is the av-
erage X of the observations. The justification for that statement is based on the as-
sumption that the measurements are distributed according to the Gaussian
distribution. In general, we expect the distribution of measurements to be either
Gaussian or Poisson, but because these distributions are indistinguishable for most

physical situations we can assume the Gaussian distribution is obeyed.

Method of Maximum Likelihood

Assume that, in an experiment, we have observed a set of N data points that are ran-
domly selected from the infinite set of the parent population, distributed according
to the parent distribution. If the parent distribution is Gaussian with mean p and

standard deviation o, the probability dP; for making any single observation x; within
an interval dx is given by

dP; = p;dx 4.1)

with probability function p; = ps(x;; m., o) [see Equation(2.23)]. For simplicity, we
shall denote the probability P; for making an observation x; by

1 1x— 2}
Pi= e —_ — 4.2
o\2w xp[ 2( Y ) (4-2)

51
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Because, in general, we do not know the mean . of the distribution for a phys-
ical experiment, we must estimate it from some experimentally derived parameter.
Let us call the estimate p'. What formula for deriving .’ from the data will yield the
maximum likelihood that the parent distribution had a mean equal to w.?

If we hypothesize a trial distribution with a mean p." and standard deviation o’
= g, the probability of observing the value x; is given by the probability function

N 1 _l xi_“" 2
P,-(u)—a 2H6XP[ 2<——U )] (4.3)

Considering the entire set of N observations, the probability for observing that par-
ticular set is given by the product of the individual probability functions, P(p."),

P(p') = ll___V[]Pi(u’) (4.4)

where the symbol I denotes the product of the N probabilities P;(p.").

The product of the constants multiplying the exponential in Equation (4.3) is
the same as the product to the Nth power, and the product of the exponentials is the
same as the exponential of the sum of the arguments. Therefore, Equation (4.4) re-
duces to

a1 W [ 1 (-]
P ovas) P22 0 @3

According to the method of maximum likelihood, if we compare the probabil-
ities P(p.") of obtaining our set of observations from various parent populations with
different means .’ but with the same standard deviation ¢’ = o, the probability is
greatest that the data were derived from a population with w’ = p; that is, the most
likely population from which such a set of data might have come is assumed to be
the correct one.

Calculation of the Mean

The method of maximum likelihood states that the most probable value for .’ is the
one that gives the maximum value for the probability P(u.") of Equation (4.5). Be-
cause this probability is the product of a constant times an exponential to a negative
argument, maximizing the probability P(p.") is equivalent to minimizing the argu-
ment X of the exponential,

— ' \2
X= —-;—2 ("—“—) (4.6)

To find the minimum value of a function X we set the derivative of the func-
tion to O,

an d 1 / p,
——=- ,52“&‘ =0 (4.7)
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and obtain
dX —p' ) x—p
= : =0 4.8
2 dp.’ < o ) 2 ( o’ ) (@8
which, because o is a constant, gives
1
urzjz—zxi 4.9)

Thus, the maximum likelihood method for estimating the mean by maximiz-
ing the pi‘Ob&buuy’ P(u.") of Equation (4.5) shows that the most pro

the mean is just the average x as defined in Equation (1.1).

Estimated Error in the Mean

What nnnarf inty 7 ic acenciated with anr detarminatinn nf the mean 11/ in FEanation
Yy lilaut Uulivul Lallll.y v 1o aDDU\alaLUu WlLll Uul uvu,luuuauuu vl Lll\./ 1ivall th 111 l_JLluaLlUll

(4.9)? We have assumed that all data points x; were drawn from the same parent dis-
tribution and were thus obtained with an uncertainty characterized by the same stan-
dard deviation o. Each of these data points contributes to the determination of the
mean W’ and therefore each data point contributes some uncertainty to the determi-
nation of the final results. A histogram of our data points would follow the Gauss-
ian shape, peaking at the value ' and exhibiting a width corresponding to the
standard deviation o. Clearly we are able to determine the mean to much better than
*0, and our determination will improve as we increase the number of measured
points N and are thus able to improve the agreement between our experimental his-
togram and the smooth Gaussian curve.

In Chapter 3 we developed the error propagation equation [see Equation
(3.13)] for finding the contribution of the uncertainties in several terms contributing
to a single result. Applying this relation to Equation (4.9) to find the variance o3 of
the mean W', we obtain

R e T .10

where the variance o? in each measured data point x; is weighted by the square
of the effect du'/dx;, that that data point has on the result. This approximation
neglects correlations between the measurements x; as well as second- and higher-
order terms in the expansion of the variance o, but it should be a reasonable ap-
proximation as long as none of the data points contributes a major portion of the
final result.

If the uncertainties of the data points are all equal o; = o, the partial deriva-
tives in Equation (4.10) are simply

. - / . \ <
ow _ 9 (1 _1
ox;,  9x; (Nzxi) N @11
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and combining Equations (4.10) and (4.11), we obtain
2

o= [0,2(1%)2} = (4.12)

for the estimated error in the mean o,. Thus, the standard deviation of our determi-
nation of the mean " and, therefore, the precision of our estimate of the quantity .,
improves as the square root of the number of measurements.

The standard deviation o of the parent population can be estimated from a
consideration of the measuring equipment and conditions, or internally from the

data, according to Equation (1.8):

1 h | =\ 41
o—s=\//ﬁ_—lz(xi—x)“ (4.13)
which gives for the uncertainty o, in the determination of the mean

o == (4.14)

" VN VN
where o, is referred to as the standard deviation of the mean, or the standard error.
In principle, the value of o obtained from Equation (4.13) should be consistent with
the estimate made from the experimental equipment.

-
:J“
2..

studen e dropped ball (Example

.2). Let us assume that the time for the ball to fall 2.00 m had been established previ-
ously by careful measurements to be T,, = 0.639 s. The student drops the ball
50 times and concludes, from a consideration of the electronic timer and the experi-
mental arrangement that the uncertainty in each of his individual measurements is
+0.020 s, consistent with the standard deviation determined from the data. This finite
precision of the apparatus results in a spread of observations grouped around the es-
tablished time as illustrated by the histogram of the data in Figure 1.2.

Because the uncertainties in all the data points are equal (s; = s), the student
calculates from his measurements and Equatlon (4.9) that hlS estimate of the
mean time is p = T = 0.635s, with a standard deviation from Equation (4.13) of
o = 5 = 0.020 s. From Equation (4.14), he estimates the uncertainty in his determina-
tion of the mean to be o, s/\/ﬁ = (0.020/ \/—0 or o, = 0.0028. He quotes his
experimental result as T, = (0.635 * 0.003) s.

To compare his experimental value T, to the established value T,,, the student
calculates the number of standard deviations by which the two differ, n = IT,,, — T, /o,
= 1.4. From the integral of the Gaussian probability equation in Table C.2, we observe

that we might expect a measurement to be within 1.4 standard deviations in about

Q2 QO ~f rnnnnfor‘ ntg rtn aveosad 1 A ctandard daviatinng in ahant 16 V0, n‘:
Vo0 /U VL \.«P\JGL\IU \-«I\P\Illlll\/llto, Ul W VAVWVLVAL 1.TT otuuuouu uvvnauuuo 111 QUUUL 1V & /U
the cases.

It is important to realize that the standard deviation of the data does not de-
crease with repeated measurement; it just becomes better determined. On the other
hand, the standard deviation of the mean decreases as the square root of the number
of measurements, indicating the improvement in our ability to estimate the mean of
the distribution. Graphically we could illustrate this improvement by plotting a
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histogram of the data and noting that our ability to determine the peak of the distri-
bution improves as the number of measurements increases and the distribution be-
comes smoother.

A Warning About Statistics

Equation (4.12) might suggest that the error in the mean of a set of measurements
x; can be reduced indefinitely by repeated measurements of x;. We should be aware
of the limitations of this equation before assuming that an experimental result can
be improved to any desired degree of accuracy if we are willing to do enough
work. There are three main limitations to consider: those of available time and re-

fluctuations.

The first of these limitations is a very practical one. It may not be possible to
take enough repeated measurements to make a significant improvement in the stan-
dard deviation of the result. The student of Example 1.2 may be able to make 50
measurements of the time, but might not have the patience to make four times as
many measurements to cut the uncertainty by a factor of 2. Similarly, an experiment
at a particle accelerator may be assigned 1000 hours of beam time. It may not be
possible to increase the allocation to 16,000 hours to improve the precision of the
result by a factor of 4.

All experiments are subject to systematic errors at some level. Even after
every possible effort has been made to understand the experimental equipment and
correct for all known defects and errors of calibration, there comes a point at which
further knowledge is unobtainable. For instance, any error in the placement of the
detectors that measure times at the beginning and ending of the ball’s fall in Exam-
ple 1.2 will lead to a systematic uncertainty in the time (or in the distance through
which the ball fell) and thus in the final result of the experiment.

The phrase “nonstatistical fluctuations” can hide a multitude of sins, or at least
problems, in our experiments. It is a rare experiment that follows the Gaussian dis-
tribution beyond 3 or 4 standard deviations. More likely, some unexplained data
points, or outliers, may appear in our data sample, far from the mean. Such points
may imply the existence of other contaminating points within the central probabil-
ity region, masked by the large body of good points. A thorough study of back-
ground effects and sources of possible contaminating is obviously required, but at
some level, these effects are bound to limit the accuracy of the experiment.

What are we to make of those unexpected points that appear in our data plots
well beyond their level of probability? Some may arise from a chance careless mea-
surement. Did our attention wander at the instant when we should have recorded the
data point? Did we accidentally interchange two digits in writing down our mea-
surement? Perhaps we can understand and make corrections for some of these ef-
fects. Other anomalies in the data may be caused by equipment malfunction. Did
our electronic detector respond to a particularly striking clash of metal from the lo-
cal all-powerful rock radio station? Did our trusty computer decide to check e-mail
rather than respond to an urgent data interrupt? And was the distribution that we
chose to represent our data the correct one for this experiment?
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We may be able to make corrections for these problems, once we are aware of
their existence, but there are always others At some level thmgs w1ll happen that

thmgs w111 cause data to appear where statlstlcally no data should ex1st and data
points to vanish that should have been there. The moral is, be aware and do not trust
statistics in the tails of the distributions.

Elimination of Data Points

There will be occasions when we feel justified in eliminating or correcting outlying

data points. For example, suppose that among the time measurements in Example
1.2, the student had recorded one as 0.86s. The student would likely conclude that he
had meant to write 0.68s and either ignore or correct the point. What if one measure-
ment had been recorded as 0.72s? Should any action be taken? The point is about 4
standard deviations away from the mean of all the data points, and referring to Table
C.2 we see that there is about a 0.06% probability of obtaining in a single measure-
ment a value that is that far from the mean. Thus, in a sample of 50 such measure-
ments we should expect to collect about S0 X 0.00006 = 0.003 such events.

The established condition for discarding data in such circumstances is known
as Chauvenet’s criterion, which states that we should discard a data point if we ex-
pect less than half an event to be farther from the mean than the suspect point. If our
sample point satisfies this requirement and, as long as we are convinced that our
data do indeed follow the Gaussian distribution, we may discard the point with rea-
sonable confidence and recalculate the mean and standard deviation. Thus, for the
two examples cited in the preceding paragraph, it would be permissible under Chau-
venet’s criterion to discard both the 0.86s and the 0.72s data points.

Removing an outlying point has a greater effect on the standard deviation than
on the mean of a data sample, because the standard deviation depends on the
squares of the deviations from the mean. Deleting one such point will lead to a
smaller standard deviation and nerhanq another nmnt or two will now become can-
didates for rejection. We should be very cautious about changing data unless we are
confident that we understand the source of the problem we are seeking to correct,
and repeated point deletion is generally not recommended. The importance of keep-

ing good records of any changes to the data sample must also be emphasized.

Weighting the Data—Nonuniform Uncertainties

in developing the probability P(p.") of Equation (4.5) from the individual probabii-
ities P(u") of Equation (4.3), we assumed that the data points were all extracted
from the same parent population. In some circumstances, however, there will be
data points that have been measured with better or worse precision than others. We
can express this quantitatively by assuming parent distributions with the same mean
. but with different standard deviations o,.

If we assign to each data point x; its own standard deviation o, representing the
precision with which that particular data point was measured, Equation (4.5) for the
probability P(u") that the observed set of N data points come from parent distribu-
tions with means w; = ' and standard deviations o; becomes
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(el izl s

Using the method of maximum likelihood, we must maximize this probabil-
ity, which is equivalent to minimizing the argument in the exponential. Setting the
first derivative of the argument to 0, we obtain

14 x—w Y _ xi—p')_
s -2(5) e

The most probable value is therefore the weighted average of the data points

, _ 2x/o})
b =S @.17)

where each data point x; in the sum is weighted inversely by its own variance o?.

Error in the Weighted Mean
If the uncertainties of the data points are not equal, we evaluate dp.'/dx; from the ex-
pression of Equation (4.17) for the mean p.":

an' 3 Sy /a2) 1/a2
[0/ C &\ri/C7) YA

ox ~ ax 3(/0d) ~ 3(1/0D

Substituting this result into Equation (4.10) yields a general formula for the uncer-
tainty of the mean o:

(4.18)

o= ol 1
" “~1x\l/o7)) 2\1/07)

(4.19)

Relative Uncertainties

It may be that the relative values of g; are known, but the absolute magnitudes are not.
For example, if one set of data is acquired with one scale range and another set with a
different scale range, the o; may be equal within each set but differ by a known factor
between the two sets, as would be the case if o; were proportional to the scale range.
In such a case, the relative values of the o; should be included as weighting factors in
the determination of the mean . and its uncertainty, and the absolute magnitudes of
the o; can be estimated from the dispersion of the data points around the mean.

Let us define weighting factors w; such that
kw; = 1/a? (4.20)

where k& is an unknown scaling constant and the o; are the standard deviations asso-
ciated with each measurement. We assume that the weights w; are known but that
the absolute values of the standard deviations o; are not. Then, Equation (4.17) can
be written

" 3 (x;/0?) _ 2kw,x; — Iwx;
H S(1/0?)  Skw, Sw;

l

4.21)
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and the result depends only on the relative weights and not on the absolute magni-
tudes of the o

average variance of the data:

Swilx;, — w')? N Swx? N
2 — i\Nj — irio_
o Sw. =1 < Sw, & ) “w-py ¢

where the last factor corrects for the fact that the mean p' was itself determined
from the data. We may recognize the expression in brackets asthe difference be-

WECCH '-A-:l CA average o [1€ SqUArcs O1 our measurcinetl X; alld Uc Squdre O
the weighted average. The variance of the mean can then be determined by substi-
tuting the expression for o from Equation (4.22) into Equation (4.14):

ol=— (4.23)

If they are required, the value of the scaling constant k and of the values of the sep-
arate variances o; can be estimated by equating the two expressions for o, of Equa-
tions (4.14) and (4.19) and replacing 1/a? by kw; to give

2
oL __1 (4.24)
N 2\l/o0f) k2w,
SO
N 1
k= ) E_w, 4.25)
and therefore
,_ 1 o Zw;
of= o Nw, . (4.26)

Example 4.2. A student performs an experiment to determine the voltage of a stan-
dard cell. The student makes 40 measurements with the apparatus and finds a result
X, = 1.022 V with a spread s; = 0.01 V in the observations. After looking over her
data she realizes that she could improve the equipment to decrease the uncertainty by
a factor of 2.5 (s, = 0.004 V) so she makes 10 more measurements that yield a result
X, = 1018 V.

The mean of all these observations is given by Equation (4.17):

40(1.022) , 10(1.018)
0.012 0.0042

KRS 0 Y
0.012  0.0042
_ 4.00(1.022) + 6.25(1.018) v
4.00 + 6.25

=1.0196 V
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The uncertainty o, in the mean is given by Equation (4.19):

40 10 \~'2
GM_S—(O.012+W) = (0.00099 V

The result should be quoted as p. = (1.0196 = 0.0010)V although p = (1.020 =
0.001)V would also be acceptable. Carrying the fourth place (which is completely un-
defined) after the decimal point just eliminates any possible rounding errors if these
data should later be merged with data from other experiments.

The precision of the final result in Example 4.2 is better than that for either
part of the experiment. The uncertainties in the estimates of the means w; and ., de-
termined from the two sets of data independently are given by Equation (4.14):

5, =291 v _ 60016 v s2=wV=O.OOI3V

V40 V10
A comparison of these values illustrates the fact that taking more measurements
decreases the resulting uncertainty only as the square root of the number of obser-
vations, which for this case is not so important as decreasing o;.

What if the student did not know the absolute uncertainties in her measure-
ments, but only that the uncertainties had been improved by a factor of 2.5? She
il Ala ot abe g acblimmntba L tbe g e s Al el Lo Tl izadimin A DTN oy senen Tl
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/0% by the weight w; = 1, and 1/0% by the weight w;, = 2.52, to give

_40(1)(1.022) V + 10(2.52)(1.018) V
h= 40(1) + 10(2.59

=1.0196 V

To find the error in the mean the student could calculate o from her data by Equa-
tion (4.22) and use Equation (4.23) to estimate o ,.

Discarding Data

Even though the student in Example 4.2 made four times as many observations at

the lawer nrecician ( hicher iincertainty) the hich_nraecician contrihution ic aver 1 §
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times as effective as the low-precision data in determining the mean. The student
should probably consider ignoring the low-precision data entirely and using only
the high-precision data. Why should we ever throw away data that are not known to
be bad? Additionally, because in this case the earlier data are weighted so as to be
rather unimportant to the result, what is the point in neglecting them and thereby
wasting all the effort that went into collecting those first 40 data points?

These are questions that arise again and again in experimental science as one
works to find the elusive parameters of the parent distribution. The answer lies in
the fact that experiments tend to be improved over time and often the earliest data-
taking period is best considered a training period for the experimenters and a
“shakedown” period for the equipment. Why risk contaminating the sample with
data of uncertain results when they contribute so little to the final result? The rela-
tive standard deviations of the two data sets can serve as a guide. If the spread of the
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later distribution shows marked improvement over that of the earlier data, then we
should seriously consider throwing away the earlier data unless we are certain of
their reliability. There is no hard and fast rule that defines when a group of data
should be ignored—common sense must be applied. However, we should make an
effort to overcome the natural bias toward using all data simply to recover our in-
vestment of time and effort. Greater reliability may be gained by using the cleaner
sample alone.

4.2 STATISTICAL FLUCTUATIONS

For some experiments the standard deviations o; can be determined more accu-
rately from a knowledge of the estimated parent distribution than from the data or
from other experiments. If the observations are known to follow the Gaussian dis-
tribution, the standard deviation o is a free parameter and must be determined ex-
perimentally. If, however, the observations are known to be distributed according
to the Poisson distribution, the standard deviation is equal to the square root of the
mean.

As discussed in Chapter 2, Poisson probability is appropriate for describing
the distribution of the data points in counting experiments where the observations
are the numbers of events detected per unit time interval. In such experiments, there
are fluctuations in the counting rate from observation to observation that result
solely from the intrinsically random nature of the process and are independent of
any imprecision in measuring the time interval or of any inexactness in counting the
number of events occurring in the interval. Because the fluctuations in the observa-
tions result from the statistical nature of the process, they are classified as statisti-
cal fluctuations, and the resulting errors in the final determinations are classified as
statistical errors.

In any given time interval there is a finite chance of observing any positive (or
zero) integral number of events. The probability for observing any specific number
of counts is given by the Poisson probability function, with mean p,, where the sub-
script ¢ indicates that these are average values for the time interval of length Ar.
Thus, if we make N measurements of the number of counts in time intervals of fixed
length Az, we expect that a histogram of the number of counts x; recorded in each
time interval would follow the Poisson distribution for mean ..

Mean and Standard Deviation

For values of the mean p, greater than about ten, the Gaussian distribution closely
approximates the shape of the Poisson distribution. Therefore, we can use the for-
mula of Equation (4.9) for estimating the mean with the assumption that all data
points were extracted from the same parent population and thus have the same
uncertainties:

_ 1
=% =23 % 4.27)
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Here the x; are the numbers of events detected in the N time intervals Az, and the as-
sumption that the data were all drawn from the same parent population is equivalent
to assuming that the lengths of the time intervals were the same for all measurements.

According to Equation (2.19), the variance ¢ for a Poisson distribution is
equal to the mean .:

o= W =X (4.28)

The uncertainty in the mean o,, is obtained by combining Equations (4.12) and

(4.28):
_ O _ [ X,
0’,; _\/N J_N —\/N_ (4.29)

We usually wish to find the mean number of counts per unit time, which is just

o,
|J,—“" with o, = t=1/”p;

A 2
JAY V val

As we might expect, the uncertainty in the mean number of counts per unit time o,
is inversely proportional to the square roots of both the time interval At and the
number of measurements N.

In some experiments, as in Example 4.2, data may be obtained with varying
uncertainties. For purely statistical fluctuations, this implies that counts were
recorded in varying time intervals At,. If we wish to find the mean number of counts
W per unit time from such data, there are two possible ways to proceed. If we have
the raw data counts (the x;) and we know they are all independent, then we can sim-
ply add all the x; and divide the sum by the sum of the time intervals:

_ 22X, 2 —
}L_ZAt,. and o°=p

1:

(4.30)

>

The more likely situation is that we know only the means ; and corresponding
standard deviations o; of the means, obtained from the experiments. For example,

when dealine with nnh]lehpd experimental data. we should assume that the errors
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incorporate 1nstrumental as well as statistical uncertainties. With such data, the
safest procedure is to apply Equations (4.17) and (4.19) to evaluate the weighted
mean . of the individual means ,; and the standard deviation o, of the mean:

E(PL’ /o)) and o2 1 4.31)
O, =717 .
~30/0) ko 3(1/0)

Example 4.3. The activity of a radioactive source is measured N = 10 times with a
time interval Ar = 1 min. The data are given in Table 4.1. The average of these data
points is X = 15.1 counts per minute. The spread of the data points is characterized by
o = 3.9 counts per minute calculated from the mean according to Equation (4.27). The
uncertainty in the mean is calculated according to Equation (4.29) to be o; = 1.2
counts per minute.
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TABLE 4.1
Experimental data for the activity of a radioactive source from the
experiment of Example 4.3

Interval Counts
At; (min) X;
| 19
| 11
1 A = l A\ 181 + 10O s 4+
1 L= X = NL.X, = 10T COUIs per 1V nImules
1 16 = 15.1 counts per minute
1 11
1 15
1 22 o= \/):c = 3.9 counts per minute
1 9
o .
1 9 o = —N = 1.2 counts per minute
1 15
Sum = 151
10 147 010 = V147 counts per 10 minutes
- _ = 1.2 counts per minute
Total 20 298 Xy = (151 + 147)/(10 + 10)

= 298/20 = 14.9 counts per minute

0y = V298 counts per 20 minutes
= 0.9 counts per minute

Note: The data tabulated are the number of counts x, detected in each time interval At,.

If we were to combine the data into one observation x’ = 2x; from one 10-min
interval, we would obtain the same result. The activity is x’ = 151 counts per 10 min-
utes = 15.1 counts per minute as before. The uncertainty in the result is given by the
standard deviation of the single data point o, = /151 = 12.3 counts per 10 minutes
= 1.2 counts per minute.

Suppose that we made an additional measurement for a 10-min period and ob-
tained x” = 147 counts. We could combine x’ and x” exactly as before to obtain a total

Fr=x"+x"=(151 + 147)/(10 + 10) = 14.9 counts per minute
with an uncertainty
o5, = V298/20 = 0.87 counts per minute

which is smaller than o by a factor of V2. Alternatively, we could combine the orig-
inal data points according to Equation (4.17) and calculate the uncertainty in the final
result o7 by combining the uncertainties of the individual data points according to
Equation (4.19).

Note that, although we could have simplified matters by recording all the data
as one experimental point, x = 298 counts per 20 minutes, by so doing, we would
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lose all independent information about the shape of the distribution that could be
used as a partial check on the validity of the experiment.

- 43 PROBABILITYTESTYS /7 7 7 000/70o—/J20—7——

The object of our analysis is to obtain the best estimates, X and s,,, of the mean p
and its uncertainty o, and to interpret the probability associated with the uncer-
tainty as a measure of our success in determining the parent parameters. Regard-
less of the method used to make the measurements and analyze the data, we must
always estimate the uncertainty in our results to indicate numerically our confi-
dence in them.

that approximately 68% of the measurements in a Gaussian distribution fall within
*1 standard deviation of the mean . Thus, when we find the average of a large
number of individual measurements, we expect the distribution of means to be
Gaussian, centered on X = w with width s = ¢, so that approximately 68% of our
measurements of x would fall within the range (x — s) < x < (¥ + s). Similarly, if
we were to repeat the entire experiment many times, we should expect our individ-
ual determinations of x to form a Gaussian distribution about the mean w, with
width s, = s/ \/IV = g/ \/JV Again, we should expect that approximately 68% of
our determinations of ¥ should fall within the range (u —5,) <X < (p + 5,). If we
are convinced that we have made careful and unbiased measurements, we make a
slight logical leap to state that there is approximately 68% probability that the true
value of the mean  lies in the range (x — 5,) < p < (¥ + s,,) or that the specified
range is the 68% confidence interval.

Rather than state confidence intervals in terms of 1 standard deviation, we
may prefer to state a range that refers to a specific probability level. For example,
we may wish to state that our result lies between two values, x, and x, with a 90%
level of confidence, which would correspond to x; = X — 1.64 s, and x, = X + 1.64
s,- Thus, in Example 4.1, the student may report 90% probability that the mean time
is within the interval 0.635 = (1.64 X 0.0028) s, or T = (0.635 = 0.005) s at a 90%
confidence level. In science, it is customary to report 1 standard deviation uncer-
tainties unless we state otherwise. In other fields, for example political polling, it is
customary to report a 95% confidence level, corresponding to approximately 2 stan-
dard deviations. American polls are generally accompanied by a statement like “Poll
of 1000 adults; margin of error plus or minus 3 percentage points.” Canadian media
would report “Poll results are likely to be accurate within 3 percentage points 19
times out of 20.” If you assume a binomial distribution, you should realize that both
statements have almost the same content.

Student’s 7 Distribution

We should be aware that Gaussian probability may not apply to our particular data
set, and even an experimental distribution that nominally follows Gaussian statistics
is apt to deviate in the tails. When the data set is small, there is another considera-
tion. Not only the mean, but also our estimate s, of the standard error ¢, may be
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poorly determined. The probabilities that we calculate from the Gaussian distribu-
tion take no account of the latter problem.

dent’s t distribution,' which describes the distribution of the parameter ¢ = Ix — xl/s,,
where ¢ is the number of standard deviations of the sample distribution s, by which
x differs from Xx.

_ 1 I'[(v + 1)/2] 2 ~(w+1)/2
PV =705 o) (1 " v)

where the gamma function I'(n) is equivalent to the factorial function n! extended
to nonintegral arguments. (See Equation 11.7).

Unlike the Gaussian distribution. Student’s ¢ distri 1
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number of degrees of freedom v. If X represents the mean of N numbers and x is not
derived from the data, then v = N — 1. If both x and X are means, s, must be the joint
standard deviation of x and X, and v must be the total number of degrees of freedom.
In the limit of large v, Student’s ¢ and Gaussian probability distributions agree. As
with the Gaussian distribution, we are usually interested in integrated values that re-
late to the probability of obtaining a result within a specific range * standard devi-
ations. For example, we might wish to report our estimate of the probability that the
true value of . lies within the range (X — #s,) < p < (X + t5,) with 2 = IX — pl/s,,.

Table C 8 lists nrobabilities obtained hy intpnrating the Student’s f distribution
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fromx = X — s, to x = X + 15, for specified values of 7 and the number of degrees
of freedom v. The corresponding values for Gaussian probability (which are inde-
pendent of v) are listed in the last column.

Consider again Example 4.1 in which the student made 50 time measurements
and found that the mean of his measurements deviated by 1.4s,, from the established
value. From Gaussian probability we observed that approximately 84% of experi-
ments should yield a result that is within 1.4 standard deviations of the expected re-
sult. From Student’s ¢ distribution (Table C.8.), we observe that the probability is

lower by about 0.6%. However. suppose the student made onlv six measurements
y about 0.0%. However, suppo y
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using a more precise measuring system and again obtained a result that differed
from the mean by ¢ = 1.4s, (see Exercise 4.12). Small numbers of measurements
are common in undergraduate laboratory experiments, where time may be short and
the measurements may be tedious. What probability is implied for 5 degrees of free-
dom by a difference of = 1.4s,? The Gaussian probability is unchanged at ~84%;
Student’s ¢ predicts ~78%. Thus, for experiments with only a few degrees of free-
dom, Gaussian probability overestimates the confidence level associated with a
given range r. Another way of looking at this is to note that, for the same confi-
dence level, Student’s ¢ probability requires a larger uncertainty estimate than does
Gaussian probability.

Generally, a result is considered to be significant only at confidence levels of
95% or better. In Gaussian probability, this corresponds to a range of approximately
*+20. We can observe from Table C.8 that for a sample of only three data points

1“Review of Particle Physics,” The European Physical Journal C, vol. 15, p. 193 (2000)
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(v = 2), the Student’s ¢ probability for 95% confidence corresponds to a range of
more than *40.

44 CHI-SQUARE TESTS OF A

TOMMMTDTYTIMYMNAT

DISTRIBUTION

Once we have calculated the mean and standard deviation from our data, we may
be in a position to say even more about the parent population. If we can be fairly
confident of the type of parent distribution that describes the spread of the data
points (e.g., Gaussian or Poisson distribution), then we can describe the parent dis-
tribution in detail and predict the outcome of future experiments from a statistical

point of view.

Because we are concerned with the behavior of the probability density function
p(x;) as a function of the observed values of x;, a complete discussion will be post-
poned until Chapter 11 following the development of procedures for comparing data
with complex functions. Let us for now use the results of Chapter 11 without deriva-
tion. The test that we shall describe here is the x? (chi-square) test for goodness of fit.

Probability Distribution

If N measurements x; are made of the quantity x, we can truncate the data to a com-
mon least count and group the observations into frequencies of identical observations
to make a histogram. Let us assume that j runs from 1 to » so there are n possible dif-
ferent values of x;, and let us call the frequency of observations, or number of counts
in each histogram bin, A(x;) for each different measured value of x;. If the probability
for observing the value x; in any random measurement is denoted by P(x;), then the
expected number of such observations is y(x;) = NP(x;), where N is the total number
of measurements. Figures 4.1 and 4.2 show the same six-bin histogram, drawn from
a Gaussian parent distribution with mean w = 5.0 and standard deviation o = 1, cor-
responding to 100 total measurements. The parent distribution, y(x;) = NP(x)), 1s il-
lustrated by the solid Gaussian curve on each histogram.

For each measured value x;, there is a standard deviation o (h) associated with
the uncertainty in the observed frequency A(x;). This is not the same as the uncer-
tainty o; associated with the spread of the individual measurements x; about their
mean ., but rather describes the spread of the measurements of each of the fre-
quencies h(x;) about its mean ;. If we were to repeat the experiment many times to
determine the distribution of frequency measurements at each value of x;, we should
find each parent distribution to be Poisson with mean b = _y\ i) ) and variance GJ \_‘y‘)
= ¥(x;). Thus, for each value of x;, there is a distribution curve, P(y,), that de-
scribes the probability of obtaining the value of the frequency f,(x;) in the kth trial
experiment when the expected value is y(x;). It is the spread of these measurements
for each value of j that is characterized by o;(h). These distributions are illustrated
in Figures 4.1 and 4.2 as dotted Poisson curves at each value of x;. In Figure 4.1 the
Poisson curves are centered at the observed frequencies A(x)) w1th standard devia-
tions g;(h) = V h(x) In principle, we should center the P01sson curves at the
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FIGURE 4.1

Histogram, drawn from a Gaussian distribution mean p. = 5.0 and standard deviation o = 1,
corresponding to 100 total measurements. The parent distribution y(x;) = NP(x)) is illustrated by the

large Gaussian curve. The smaller dotted curves represent the Poisson distribution of events in each
bin, based on the sample data.
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FIGURE 4.2
The same histogram as shown in Figure 4.1 with dotted curves representing the Poisson distribution

of events in each bin, based on the parent distribution.
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frequencies p; = y(x;) with standard deviation o;(h) = \/;j of the parent popula-
tion as illustrated in Figure 4.2. However, in an actual experiment, we generally

would not know these parameters.

Definition of x2

With the preceding definitions for n, N, x;, h(x;), P(x;), and o(h), the definition of x>
from Chapter 11 is

. [h(x;) = NP(x)?

N
)

/-\
Ny’

o Jéll gj (h)?

In most experiments, however, we do not know the values of (k) because we make
only one set of measurements f(x;). Fortunately, these uncertainties can be estimated
from the data directly without measuring them explicitly.

If we consider the data of Figure 4.2, we observe that for each value of x;, we
have extracted a proportionate random sample of the parent population for that
value. The fluctuations in the observed frequencies h(x;) come from the statistical
probabilities of making random selections of finite numbers of items and are dis-

tributed according to the Poisson distribution with y(x;) as mean. Although the dis-
tribution of freqguencies v(x;) in Figure 4.2 is Gaussian, the probability functions for

2DV VL IR AN js a2 ARApRA Tes Lo RSaoslAl ML PARUGUIALINY AAARAE

the spreads of the measurements of each frequency are P01sson distributions.

For the Poisson distribution, the variance o; (h)? is equal to the mean y(x i)
of the distribution, and thus we can estimate o; (h) from the data to be o;(h) =
\/NP(x) == \/h(x ). Equation (4.32) simplifies 0

[h(x) = NP(x)]> = [n(x;) = NP(x)]?
=1 NP(.X}) o =1 h(xj)

(4.33)

Test of x>

As defined in Equations (4.32) and (4.33), x? is a statistic that characterizes the dis-
persion of the observed frequencies from the expected frequencies. If the observed
frequencies were to agree exactly with the predicted frequencies h(x;) = NP(x),
then we should find x> = 0. From our understanding of probability, we realize that
this is not a very likely outcome of an experiment. The numerator of Equation
(4.32) is a measure of the spread of the observations; the denominator is a measure
of the expected spread. We might imagine that for good agreement, the average
spread of the data would correspond to the expected spread, and thus we should get
a contribution of about one from each frequency, or x? = n for the entire distribu-
tion. This is almost correct. In fact, the true expectation value for x? is

(x)»=v=n—n, (4.34)

where v is the number of degrees of freedom and is equal to the number » of sam-
ple frequencies minus the number n, of constraints or parameters that have been cal-
culated from the data to describe the probability function NP(x;). For our example,
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even if NP(x)) is chosen completely independently of the distribution 4 (x)), there is
still the normalizing factor N corresponding to the total number of events in the dis-

trilmtion e that the eynectation value of v2 mnct at hact he /\/2\ = —1
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In order to estimate the probability that our calculated values of X* are consis-
tent with our expected distribution of the data, we must know how x? is distributed.

1f anr valne of v2 correenondc to a reaconahle hich nrn‘hahfhh/ than we can have
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confidence in our assumed distribution.
It is convenient to define the reduced chi-square as x> = x*/v, with expecta-

on value {\/2\ = 1. Valueg nF \/ much laroer than 1 recnlt fram laroe deaviatiang
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from the assumed dlstrrbutlon and may indicate poor measurements, incorrect as-
signment of uncertainties, or an incorrect choice of probability function. Very small
values of x2 are equally unacceptable and may imply some misunderstanding of the
experiment Rather than consider the probability of obtaining any particular value
of x? or xv (Wthh is 1nﬁmtesrma11y small), we shall use an 1ntegra1 test to determlne

lated ThlS is similar to our con51derat10n of the probablhty that a measurement of a
variable deviates by more than a certain amount from the mean.

Table C.4 gives the probability that a random sample of data points drawn
from the assumed probability distribution would yield a value of x? as large as or
larger than the observed value in a given experiment with v degrees of freedom.

If the probability is reasonably close to 1, then the assumed distribution de-
scribes the spread of the data points well. If the probability is small, either the as-
sumed distribution is not a good estimate of the parent distribution or the data
sample is not representative of the parent distribution. There is no yes-or-no answer
to the test; in fact, we should expect to find a probability of about 0.5 with x2 = 1,
because statistically the observed values of x? should exceed the norm half the time.
But in most cases, the probability is either reasonably large or unreasonably small,
and the test is fairly conclusive. A further discussion of the statistical significance of
the x? probability function will be given in Chapter 11.

Let us consider again the data of Example 1.2 (and 4.1), which are summarized
as a histogram in Figure 1.2 with the frequencies listed in Table 4.2. To test the agree-
ment between the data and the predicted distribution, we have calculated the function
y(x;) = NP(x)) at each value of x; from the mean and standard deviation of the parent
distribution (column 3 of Table 4.2), and from the mean and standard deviation of the
data, that is, from the sample distribution (column 6). The uncertainties o; calculated
as the square roots of the values predicted by the parent distribution and by the sam-
ple distribution are listed in columns 4 and 7 respectively. The individual contribu-
tions (before squaring) to the values of x2, [A(x;) — NP(x;)]/c;, are listed in columns
5 and 8. The calculated values of x> from the comparison between the data and each
distribution are the sums of the squares of these last quantities.

For the comparison of the 11 data points with the parent distribution we have

one constraint, the normalization constant N determined from the data, and there-

Suleise

fore the expectation value of x?is v = 11 — 1 = 10. We obtained x?> = 13.03 and
thus, x2 = 1.30. Interpolating in Table C.4, we observe that the corresponding prob-

qhﬂ:tv of obtaining a value \/2 = 1.30 with 10 dgorppe of freedom is ~23%. For a
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S1m11ar comparison with an estimate of the parent distribution based on the mean
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and standard deviation of the data, we have two additional constraints, the mean and
standard deviation. Thus, for this comparison, the expectation value of 2 is v =
11 — 3 = 8. We obtained x*> = 7.85 and, thus, x2 = 0.98. The corresponding prob-

Generalizations of the x? Test

In the preceding example we knew the parent distributions and were therefore able
to determine the uncertainties o;(h) from the predicted probability. In most cases,
where the actual parameters of the probability function are being determined in the
calculation, we must use an estimate of the parent population based on these para-
meters and must estimate the uncertainties in the y(x;) from the data themselves. To
do this we must replace the uncertainties in columns 4 and 7 of Table 4.2 with the
square roots of the observed frequencies in column 2.

Furthermore, although our example was clearly based on a simple probability
function, the x test is often generalized to compare data obtained in any type of ex-
periment to the prediction of a model. The uncertainties in the measurements may
be instrumental or statistical or a combination of both, and the uncertainty (rj(h)2 in
the denominator of Equation (4.32) may represent a Gaussian error distribution
rather than the Poisson distribution. In fact, several of the histogram bins in our ex-
ample contained small numbers of counts, and thus, the statistical application of the
test was not strictly correct, because we assume Gaussian statistics in the x? calcu-
lation. However, the test still provides us with a reproducible method of evaluating

TABLE 4.2
x? analysis of the data of Example 4.1

Observed
frequency From From
h; parent distribution sample distribution
Yi—H S/
0.595 2 0.89 0.94 —1.18 1.35 1.16 0.56
0.605 2 2.35 1.53 0.23 3.24 1.80 —-0.69
0.615 11 4.85 2.20 -2.79 6.05 2.46 2.01
0.625 6 7.81 2.79 0.65 8.80 2.97 -0.94
0.635 12 9.78 3.13 -0.71 9.97 3.16 0.64
0.645 8 9.53 3.09 0.50 8.80 297 -0.27
0.655 4 7.24 2.69 1.20 6.05 2.46 -0.83
0.665 3 4,28 2.07 0.62 324 1.80 —-0.13
0.675 1 1.97 1.40 0.69 1.35 1.16 —-0.30
0.685 1 0.71 0.84 -0.35 0.44 0.66 0.85
0.695 0 0.20 0.44 0.44 0.11 0.33 —-0.33
X2 =13.03/10 = 1.30 x2 = 7.85/8 = 0.98

Note: Parameters of the parent Gaussian distribution are p. = 0.639 and o = 0.020 s; parameters estimated from the
sample distribution are p. = 0.635 s and o = 0.020 s.
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the quality of our data, and if we are concerned with statistical accuracy, we can
merge the low-count bins to satisfy the Gaussian statistics requirement.

Another application of the chi-squared test is in comparing two sets of data to
attempt to decide whether or not they were drawn from the same parent population.
Suppose that we have measured two distributions, g(x;) and h(x;), and wish to de-
termine the probability that the two sets were not drawn from the same parent prob-
ability distribution P(x;). Clearly, we could apply the x? test separately to the two
sets of data and determme separately x probablhtles that each set was not a55001-

test, 1ndependent of the parent populatlon by wrltmg

) h(x )2

2 20 (4.35)

The denominator o%(g) + (k) is just the variance of the difference 8(xp) — h(x).
As in the previous examples, the expectation value of x> depends on the relatlon be—

tween the two parts of the numerator. o(x.) and h(x). If the two parts. corresnonding
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to the distributions of the two data sets, were obtained completely independently of
one another, then the number of degrees of freedom equals n and (x?) = n. If one of

the dictributions o(v\ or h(x) has been normalized to the other, then the number of
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degrees of freedom is reduced by 1 and (x?) = n — 1. Again, we interpret the x>
probability in a negative sense. If the value of x*/v is large, and therefore the prob-
ability given in Table C.4 is low, we may conclude that the two sets of data were
drawn from different distributions. However, for a low value of x? and therefore
high probability, we cannot draw the opposite conclusion that the two data sets g(x;)
and h(x;) were drawn from the same distribution. There is always the possibility that
there are indeed two different but closely similar distributions and that our data are
not sufficiently sensitive to detect the difference between the two.

Constraints and Degrees of Freedom

Equation (4.34) defines the number of degrees of freedom, v, and <x?>, the expec-
tation value of x2. To clarify the relation between constraints and degrees of free-
dom in a x? test, consider a data set that is expected to show a linear relation
between the measured values x; and A, that is,

)—A+Rv

Jj Mg

Clearly, two measurements of y at two different values of x are required just to
define the two parameters, A and B, of the straight line so there are two constraints
(n. = 2) on the system and at least three measurements (n = 3) must be made be-
fore a test can be applied. Under these circumstances, if we assume that points j = 1
and j = 2 are used to calculate A and B, Equation (4.32) becomes

X* = (hy — y3)%/a3(h)
and we should expect to find
(x*)=n—-n,=3-2=1
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Slmilarly, if we measure n = 4 points, there will be two points available for the
X test or 2 degrees of freedom. Of course, in general, we would not use just two
pomts to calculate the two parameters Rather we should perform a least squares

uncertainties). However, the same principle holds: we impose two constramts on
our calculation to define the two parameters of a straight line, leaving 2 degrees of
freedom.

SUMMARY
Weighted mean:
- _2(x/o}) 1o,
T 3(/e?) eme N&T
Variance of mean:
L, e

Instrumental uncertainties: Fluctuations in measurements due to finite precision of
measuring instruments:

Statistical fluctuations: Fluctuations in observations resulting from statistical prob-
ability of taking random samples of finite numbers of items:

zzuzx

x? test: Comparison of observed frequency distribution A(x;) of possible observa-
tions x. versus nredicted distribution NP(ig\ where N is the number of data nmntc
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and P(x)) is the theoretlcal probab111ty d1str1but10n

n — NP(x))
Ez i

a;(h)?
Degrees of freedom v: Number of data points minus the number of parameters to be
determined from the data points.
Reduced x°: X% = x*/v. For X tests, x2 should be approximately equal to 1.
Graphs and tables of x°: Table C.4 gives the probability that a random sample of

uata WllCll LUlllle.lCU o llb pulem ul.)l!lUuHUﬂ WULllU lelU varuca Ul Xv as 1(1155 ad
or larger than the observed value.

!

EXERCISES

4.1. Calculate the standard deviation and the error in the mean value of x from the data of
Exercise 1.4. Are the values reasonable? (See Exercise 2.4.)

4.2. Repeat Exercise 4.1 for the data of Exercise 1.5.
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4.3.

4.4.
4.5.

Read the data of Example 2.4 from Figures 2.3 and 2.4. Recalculate the curves and
calculate x? and x? for the agreement between the curves and the histograms. Use only
bins with five or more counts.

Work out the intermediate steps in Equation (4.19).

A student measures the period of a pendulum and obtains the following values.
Trial | 1 2 3 4 5 6 7 8
Period ! 1.35 1.34 1.32 1.36 1.33 1.34 1.37 1.35

4.6.

4.7.

4.8.

4.9.

(a) Find the mean and standard deviation of the measurements and the standard devi-
ation of the mean.

(b) Estimate the probability that another single measurement will fall within 0.02 s of
the mean.

(a) Find the mean and the standard deviation of the mean of the following numbers
under the assumption that they were all drawn from the same parent population.

(b) In fact, data points 1 through 20 were measured with uniform uncertainty o,
whereas data points 21 through 30 were measured more carefully so that the uni-
form uncertainty was only /2. Find the mean and standard deviation of the mean
under these conditions.

Trial x(o) Trial x(o) Trial x(0/2)
1 240 11 1.94 21 2.59
2 2.45 12 1.55 22 2.65
3 2.47 13 2.12 23 2.55
4 3.13 14 2.17 24 2.07
5 2.92 15 3.06 25 2.61
6 2.85 16 1.97 26 2.61
7 2.05 17 2.23 27 2.54
8 2.52 18 3.20 28 2.76
9 2.94 19 2.24 29 2.37

10 1.89 20 2.60 30 2.57

A counter is set to count gamma rays from a radioactive source. The total number of
counts, including background, recorded in each 1-min interval is listed in the accom-
panying table. An independent measurement of the background in a 5-min interval
gave 58 counts. From these data find:

(a) The mean background in a 1-min interval and its uncertainty.

(b) The corrected counting rate from the source alone and its uncertainty.

Trial | 1 2 3 4 5 6 7 8 9 10
Total counts | 125 130 105 126 128 119 137 131 115 116
The Particle Data Tables list the following eight experimental measurements of the

mean lifetime of the K, meson with their uncertainties, in units of 107'° s. Find the
weighted mean of the data and the uncertainty in the mean.

0.8971%£0.0021 0.8941%0.0014 0.8929+0.0016 0.8920+0.0044 0.881+0.009
0.8924+0.0032 0.8937x0.0048 0.8958*+0.0045

Eleven students in an undergraduate laboratory combined their measurements of the
mean lifetime of an excited state. Their individual measurements are tabulated.
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Student | 1 2 3 4 5 6 7 8 9 10 11
(s) ’ 343 322 354 335 347 335 279 320 324 310 1938
o, 16 12 15 14 16 15 19 12 14 18 1.3

Find the maximum likelihood estimate of the mean and its lmr‘m'tmntv

4.10. Assume that you have a box of resistors that have a Gaussian distribution of resis-
tances with mean value . = 100 () and standard deviation o = 20 () (i.e., 20% resis-
tors). Suppose that you wish to form a subgroup of resistors with p = 100 ) and
standard deviation of 5 () (i.e., 5% resistors) by selecting all resistors with resistance
between the two limits 7y, = w —aandr, = p + a.

(a) Find the value of a.

(b) What fraction of the resistors should satisfy the condition?

(c) Find the standard deviation of the remaining sample.

4.11. Suppose that 1000 adults responded to a poll about a current bill in Congress, and that

622 approved, while 378 disapproved.

(a) Assume that there was S0% a priori probability of obtaining either answer and cal-
culate the standard deviation of the result. Find the “margin of error,” that is, the
uncertainty that corresponds to a 95% confidence interval. (Use Gaussian proba-
bility. Justify this.)

(b) Assume the probabilities implied by the observed numbers of votes in each cate-
gory and repeat the calculation. Note the insensitivity of the standard deviation of
the binomial distribution to variations in probability near 50%.

{(~ Dafartn tha twa gtatamantg ahnint nalling ranarte in Cantinn 4 2 and chaw th
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are approximately equivalent.
4.12. Six measurements of the length of a wooden block yielded the following values: 20.3,
20.4, 19.8,20.4, 19.9, 20.7.
(a) From these numbers, calculate the mean, standard deviation, and standard error.
Assume that the actual mean length has been established by previous measure-
ments to be 20.00 cm and calculate ¢, the number of standard errors by which the

calculated mean differs from the established value.
Refer to the tables in Appendix C to find the limits on the 95

AN o3 L7 § TQuUiITS

level for both Gaussian and Student s t probabilities.
(b) The experiment was repeated to obtain a total of 25 data sets of six measurements
each from which the following 25 values of the mean were calculated.

20.25 20.10 20.02 20.12 20.00 19.73 19.73 20.13 20.22 20.22 20.27 19.83 20.00
19.77 20.10 20.28 19.97 19.88 20.32 19.98 20.05 20.23 19.92 19.97 19.77

Find the mean of these “means” and calculate their standard deviation. Compare
this standard deviation to the standard error calculated in (a).

4.13. The following data represent the frequency distribution of 200 variables drawn from a
parent Gaussian population with mean p. = 26.00 and standard deviation o = 5.00.
The bins are two units wide and the lower edge of the first bin is at x = 14.

4 8 11 20 26 31 29 22 26 13 5 2 3

(a) Plot a histogram of these data.

(b) From the mean p and standard deviation o, calculate the Gaussian function that
represents the parent distribution, normalized to the area of the histogram. Your
first point should be calculated at x = 15, the midpoint of the first bin.

(c) Calculate x? to test the agreement between the data and the theoretical curve.

(d) What is the expectation value of x*?

N
o

onfidence
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(e) Refer to Table C.4 to find the x? probability of the fit, that is, the probability of
drawing a random sample from the parent population that will yield a value of x?
as ldrge as or ldrger lﬂdn your LdlLulateU leUC

4.14. Plot a histogram in ten-point bins of the course grades listed in Exercise 1.5. Plot a

Gaussian curve based on the mean and standard deviation of the data, normalized to

2
the area of the histogram. Apply the x° test and check the associated probability from

Table C 4.




CHAPTER

MONTE CARLO
- TECHNIQUES —

5.1 INTRODUCTION

We saw in Chapter 4 the importance of probability distributions in the analysis
of data samples, and observed that we are usually interested in the integrals or
sums of such distributions over specified ranges. Although we have considered only
experiments that are described by a single distribution, most experiments involve a
combination of many different probability distributions. Consider, for example, a
simple scattering experiment to measure the angular distribution of particles scat-
tered from protons in a fixed target. The magnitude and direction of the momentum
vector of the incident particles, the probability that a particle will collide with a pro-
ton in the target, and the resulting momentum vectors of the scattered particles can
all be described in terms of probability distributions. The final experimental result
can be treated in terms of a multiple integration over all these distributions.
Analytical evaluation of such an integral is rarely possible, so numerical
methods must be used. However, even the simplest first-order numerical integration
can become very tedious for a multidimensional integral. A one-dimensional inte-
gral of a function can be determined efficiently by evaluating the function N times
on a regular grid, where the number of samples N depends on the structure of the
function and the required accuracy. (See Appendix A.3.) A two-dimensional integral
requires sampling in two dimensions and, for accuracy comparable to that of the
corresponding one-dimensional problem, requires something like N? samples. A
three-dimensional integral requires something like N3 samples. For integrals with

PRI al. Lot

many dimensions, the number of grid points at which the function must be calcu-
lated becomes excessively large.

75
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Before we continue with methods of extracting parameters from data, let us
look at the Monte Carlo method, a way of evaluating these multiple integrals that
depends on random sampling from probability density distributions, rather than
regular grid-based sampling techniques. The Monte Carlo method provides the ex-
perimental scientist with one of the most powerful tools available for planning ex-
periments and analyzing data. Basically, Monte Carlo is a method of calculating
multiple integrals by random sampling. Practically, it provides a method of simu-
lating experiments and creating models of experimental data. With a Monte Carlo
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culations that require neither a deep theoretical understanding of statistical analysis
nor sophisticated programming techniques.

The name Monte Carlo comes from the city on the Mediterranean with its fa-
mous casino, and a Monte Carlo calculation implies a statistical method of studying
problems based on the use of random numbers, similar to those generated in the
casino games of chance. One might reasonably ask whether the study of science can
be aided by such associations, but in fact, with Monte Carlo techniques, very com-
plicated scientific and mathematical problems can be solved with considerable ease
and precision.

Example 5.1. Suppose that we wish to find the area of a circle of radius r, but have
forgotten the equation. We might inscribe the circle within a square of known area A,
and cover the surface of the square uniformly with small markers, say grains of rice.
We find the ratio of the number of grains that lie within the circle to those that cover
the square, and determine the area of the circle A, from the relation

A. = AN,/N; (5.1)

where N, and N, are the numbers of grains of rice within the boundaries of the circle
and of the square, respectively.

What would be the accuracy of this determination; that is, how close should
we expect our answer to agree with the true value for the area of a circle? Clearly it
would depend on the number and size of the rice grains relative to the size of the
square, and on the uniformity of both the grains and their distribution over the
square. What if we decided that instead of attempting to cover the square uniformly,
we would be content with a random sampling obtained by tossing the rice grains
from a distance so that they landed randomly on the square, with every location
equally probable? Then we would obtain an interesting result: Our problem would
reduce to a simple binomial calculation as long as we did not overpopulate the
square but kept the density of rice grains low so that position of any grain on the
square was not influenced by the presence of other grains. We should find that, for
a fixed number of grains N, thrown onto the square, the uncertainty o in the mea-
surement of the circular area would be given by the standard deviation for the bino-
mial distribution with probability p = A, /A,,

o= VN,p(l —p)= VNSl - p) (5.2)
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Thus, if we were to increase the number of rice grains N, by a factor of 4, the relative
error in our determination of the area of the circle would decrease by a factor of 2.

Replacing the tossed rice grains by a set of computer generated random num-
of side length 2, and generate N = 100 pairs of random numbers between —1 and
+1 to determine the area. Then the probability of a “hit” is just the ratio of the area
of the circle to the area of a square, or p = /4, so in 100 tries, the mean number of
hits will be w = 100p = 78.5, and the standard deviation, from Equation (5.2), will
be o = VNp(1 — p = V100(w/4)(1 — w/4) = 4.1. For our measurements of the
area of the circle with 100 tries we should expect to obtain from Equation (5.1)
A, = A, X N./N, = (785 = 4.1) X 2%/100 = 3.14 = 0.16.

Figure 5.1 shows a typical distribution of hits from one “toss” of 100 pairs of
random numbers. In this example there were 73 hits, so we should estimate the area
and its uncertainty from Equations (5.1) and (5.2) to be A = 2.92 * 0.18. To deter-
mine the uncertainty, we assumed that we did not know the a priori probability
p = 7/4 and, therefore, we used our experimental estimate p = 73/100.

Figure 5.2 shows a histogram of the circle area estimates obtained in 100 in-
dependent Monte Carlo runs, each with 100 pairs of random numbers (or a total of
10,000 “tosses”). The Gaussian curve was calculated from the mean, A = 3.127,
and standard deviation, ¢ = 0.156, of the 100 estimated areas.

Obviously, the area determination problem of Example 5.1 is much too sim-
ple to require a Monte Carlo calculation. However, for problems involving integra-
tions of many variables and for those with complicated integration limits, the Monte

1.00

0.60

0.20

-0.20

—0.60

-1.00

FIGURE 5.1
Estimation of the area of a circle by the Monte Carlo method. The plot illustrates a typical distribution of
hits from one “toss” of 100 pairs of random numbers uniformly distributed between —1.00 and +1.00.
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Histogram of the circle area estimates obtained in 100 independent Monte Carlo runs, each with 100
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deviation o = 0.156 of the 100 estimated areas.

Carlo technique is invaluable, with its straightforward sampling and its relatively
simple determination of the uncertainties.

5.2 RANDOM NUMBERS

A successful Monte Carlo calculation requires a reliable set of random numbers, but
truly random numbers for use in calculations are hard to obtain. One might think of
a scheme based upon measuring the times between cosmic ray hits in a detector, or
on some physical process such as the generation of noise in an electronic circuit.
Such numbers would be random in the sense that it would be impossible to predict
the value of the next number from previous numbers but they are hardly convenient
to use in extended calculations, and some might not have the necessary uniformity
required for a Monte Carlo calculation.

In fact, it is generally preferable to use pseudorandom numbers, numbers gen-
erated by a computer algorithm designed to produce a sequence of apparently un-
correlated numbers that are uniformly distributed over a predefined range. In
addition to the convenience of being able to generate these numbers within the
Monte Carlo program itself, pseudorandom numbers have another important ad-
vantage over truly random numbers for Monte Carlo calculations. A Monte Carlo
program may use a great many random numbers, and the path of the calculation
through the program will depend on the numbers chosen in each run. With truly ran-
dom numbers, every run of a Monte Carlo calculation would follow a different path
and produce different results. Such a program would be very difficult to debug.
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With pseudorandom numbers, we can repeat a calculation with the same sequence
of numbers, and search for any particular problems that may be hidden in the code.
There are other advantages too. If we are studying the sensitivity of a calcula-

ence between results calculated with two tr1a1 values of the parameter by using the
same random number sequence for those parts of the calculation that are indepen-
dent of the parameter in question. Finally, a pseudorandom number generator can be
written to be portable; that is, the sequence of numbers produced by the algorithm
is independent of computer hardware and language, so that a given program will
produce the same results when run on different computers. In view of these advan-
tages and the fact that we rarely, if ever, encounter situations where truly random

numbers are required, we shall henceforth use the term random numbers to denote

noau/]nrnn/lnm num’ano
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In general, our random number generator must satisfy the following basic
criteria:
1. The distribution of the numbers should be uniform within a specified range and

should satisfy statistical tests for randomness, such as lack of predictability and
of correlations among neighboring numbers.

2. The calculation should produce a large number of unique numbers before re-
peating the cycle.

3. The calculation should be very fast.

A simple multiplication method is often used to generate random numbers, or
uniform deviates, as they are often called. An integer starting value or seed ry and
two integer constants are chosen. Successive random numbers are derived from the
recursion relation

Figp = (a X r) mod m (5.3)

where the mod operation corresponds to dividing the product in parentheses by the
integer m to obtain the remainder. With appropriate choices of constants a and m,

we can obtain a finite sequence of numbers that appear to be randomly selected be-

tween 1 and m — 1. The length of the sequence is determined by the choice of con-
stants and is limited by the computer word size. For example, if we choose m = 37
and a = 5, Equation (5.3) gives us the cycle of 36 nicely mixed up numbers, listed
in Table 5.1. Random number generators included with computer languages are of-
ten based on some variation of this multiplication technique. Careful and thorough
statistical studies must be made to be sure that an untested random number genera-
tor produces an acceptable sequence of numbers.

Because the numbers generated by Equation (5.3) are not truly random, we
might worry that our calculations are affected by hidden correlations in successively
generated numbers. We can improve the randomness of our sample by shuffling the
numbers. We generate two sequences of numbers with different generators a and m;
one sequence is stored in an array and a number from the second sequence is used
as an index to select numbers from the first sequence. For large programs that em-
ploy many random numbers, this method is limited by storage space, although local

shuffling within a block of random numbers can be used.
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TABLE 5.1
Pseudorandom numbers

i r; i r; i r; i r;
1 1 10 6 19 36 28 31
2 5 11 30 20 32 29 7
3 25 12 2 21 12 30 35
4 14 13 10 22 23 31 27
5 33 14 13 23 4 32 24
6 17 15 28 24 20 33 9
7 11 16 29 25 26 34 8
8 18 17 34 26 19 35 3
9 16 18 22 27 21 36 15

Note: The generating equation is r, . ; = (a X r) mod m, with g = 5 and m = 37. The cycle repeats a;;, = a
and so forth.

Even a modest Monte Carlo program can require many random numbers and,
to assure the statistical significance of results, we must be certain that the calcula-
tion does not use more than the maximum number generated by the algorithm be-
fore the sequence repeats. The sample generator of Equation (5.3) cannot produce
more than m — 1 different values of r,. The actual cycle length may be less than this
range, depending on the choice of constants. The cycle length can be increased by
employing two or more independent sequences such that the resulting cycle length
is proportional to the product of the lengths of the component cycles.

A generator developed by Wichmann and Hill,! based on a simple linear com-
bination of numbers from three independent sequences, is said to have a very long
cycle (~7 X 10'?) and appears to be well tested. Because the algorithm uses three
seeds, it is a little longer and slower than one- or two-seed algorithms, but its long
repeat cycle, portability, and lack of correlations seem to make it a convenient,
worry-free generator for most purposes. The algorithm is listed in Appendix E.

Although the fact that pseudorandom number generators always produce the
same sequences of numbers from the same seeds is an advantage in program de-
bugging, it may be a disadvantage in production running. For example, a simulation
program developed for use as a science museum display could be very uninterest-
ing if it repeated the same sequence of events every time it was run. If unpredictable
seeds are required, they can easily be derived from the least counts of the computer
clock. Commercial routines often include such a method of randomizing the start-
ing seeds. On the other hand, if we wish to run a simulation program several times
and to combine the results of the several different runs, the safest method to assure
the statistical independence of the separate runs is to record the last values of the
seeds at the end of each run and use these as starting seeds for the next run.

A thorough discussion of random number generation and of the Monte Carlo
technique is given in Knuth (1981).

IThe authors include a thorough and very useful discussion of the tests applied to a random number se-
quence, and of the development and testing of the published algorithm.



Monte Carlo Techniques 81

Warning

If you are using random numbers provided in commercial programs such as spread
sheets or even scientific data analysis programs, you should always check the ran-
dom number distributions for correlations, and make sure that the function behaves
as advertised. For example, in early versions of one very popular scientific data
analysis program, the choice of seed had no effect on the numbers produced by the
random number routine.

5.3 RANDOM NUMBERS FROM

PROBABILITY DISTRIBUTIONS
Transformation Method

Most number generators scale their output to provide real numbers uniformly dis-
tributed between O and 1. In general however, we require numbers drawn from spe-

uu(, pTODlell[y UlblTlDU[lOHb Let us UCIIHC UIlllUl'l'Il UCVldle p\r) drawn 1r0m a
standard probability density distribution that is uniform between r = 0 and r = 1:

1 for0=r<1i
plr) = {O otherwise (54)
The distribution is normalized so that
© 1
f p(r)dr = j 1dr=1 (5.5)
— 0

We shall refer to p(r) as the uniform distribution.

Suppose that we require random deviates from a different normalized proba-
bility density distribution P(r), which is defined to be uniform between x = —1 and
1; that is, the distribution

Yy for—1=x<1
P(x) = {O otherwise (5.6)

If we choose a random deviate r between 0 and 1 from the uniform distribution of
Equation (5.4), it is obvious that we can calculate another random deviate x as a
function of r:

_._r/ 1 /& M\
_J\’ 1 \J.7)
be

which will be uniformly distributed
simple linear transformation.

To pick a random sample x from the distribution Equation (5.6), we started
with a random deviate r drawn from the uniform distribution of Equation (5.4) and
found a function f(r) that gave the required relation between x and r. Let us find a
general relation for obtaining a random deviate x from any probability density dis-
tribution P(x), in terms of the random deviate r drawn from the uniform probability
distribution p(r).

tween —1 and + 1. This is an example of a
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Conservation of probability requires that the intervals Ar and Ax be related by
the following expression

|p(r) Ar| = |P(x)Ax| (5.8)

and, therefore, we can write

r p(r) dr = fx P(x)dx or L:OI dr = Lx:_wP(x)dx (5.9)

r=-—0oo X= —C

which gives the general result

x

r=[ P(x) dx (5.10)
X=-x

Thus, to find x, selected randomly from the probability distribution P(x), we gener-

ate a random number r from the uniform distribution and find the value of the limit

x that satisfies the integral equation (5.10).

Example 5.2. Consider the distribution described by the equation

(A(1 + ax?) for—1 <

y Fax?) for—1<x
p (x) = i otherwise

(5.11)

where P(x) is positive or zero everywhere within the specified range, and the normal-
izing constant A is chosen so that

1
f P(x)dx =1 (5.12)
-1
We have
r= j P(x) dx = rA(l + ax?) dx (5.13)
—oo -1
which gives
r=Alx+ax’/3+1+a/3) (5.14)

and therefore, to find x we must solve the third-degree equation (5.14).

Tha nracadnrae wa havae dacrrihad 1¢ rafarrad tn ac tha vnmrvfnvmnf' v mothnd
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of generating random deviates from probability distributions. In general, neither the
integral equation (5.13) nor the solution of the resulting equation (5.14) can be ob-

. . . .
tainad analutically en miimaearical calenlatinne are naceccary
ainea anayucauy, SO nuilciica: CaiCuiaulns ard neiossary.

The following steps are required to generate random deviates from a specific
probability distribution by the transformation method with a numerical integration:

1. Decide on the range of x. Some probability density functions are defined in a fi-
nite range, as in Equation (5.6); others, such as the Gaussian function, extend to
infinity. For numerical calculations, reasonable finite limits must be set on the
range of the variable.
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2. Normalize the probability function. If it is necessary to impose limits on the
range of the variable x, then the function must be renormalized to assure that
the integral is unity over the newly defined range. The normalization integral
should be calculated by the same analytical integration or numerical integration
routine that is used to find y.

3. Generate a random variable r drawn from the uniform distribution p(r).

4. Integrate the normalized probability function P(x) from negative infinity (or its
defined lower limit) to the value x = x, where x satisfies Equation (5.10).

Because the Monte Carlo method usually requires the generation of large
numbers of individual events, it is essential to have available fast numerical inter-
polation and integration routines. To reduce computing time, it is often efficient to
set up tables of repeatedly used solutions or integrals within the initializing section
of a Monte Carlo program. For example, to pick a random deviate x from the distri-
bution of Equation (5.11), we could do the integral of Equation (5.13) numerically

at the beginning of our nroegram. and set up a table of values of r versus x. Then

Rl UL pariiiiiip Vi Vel paUpaaiii, Qi oL QYL vAiwevs Vi VOIS A 23y

when we require a random number from the distribution, we generate a random
number r and search the table for the corresponding value of x. In general, the
search should be followed by an interpolation within the table (see Appendix A.1.)
to avoid introducing excessive graininess into the resulting distribution. It would be
even more convenient, but a little trickier, to produce a table of x versus r, so that
the required value of x could be obtained from an index derived from r. In all cases
of precalculated tables, it is important to consider the resolution required in the gen-
erated variable, because this will determine the intervals at which data must be
stored, and therefore the size of the table, and the time required for a search.

Rejection Method

Although the transformation method is probably the most useful method for ob-
taining random deviates drawn from particular distributions, the rejection method is
often the easiest to use. This is the method that we used in Example 5.1 to find the
area of a circle, by generating random numbers uniformly over the surface of the
circle and rejecting all except those that fell within the circumference.

Example 5.3. Suppose we wish to obtain random deviates between x = —1 and
x = +1, drawn from the distribution function

P(x)=1+ ax? (5.15)

which is just the unnormalized distribution of Equation (5.11). To use the rejection
method, we begin by generating a random deviate x’ uniformly distributed between
—1 and +1, corresponding to the allowed range of x, and a second random deviate y’
uniformly distributed between 0 and (1 + a), corresponding to the allowed range of
P(x). We can see that x" and y' must be given by

=—14+2r, and y' =(+a)r., (5.16)

where r; and r; , | are successively generated random values of r drawn from the uni-
form distribution.
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We count an event as a “hit” if the point (x’, y') falls between the curve defined
by P(x) and the x axis, that is, if y’ < P(x'), and a “miss” if it falls above the curve. In

—the limit of a large mumber of trials, the entire plot, including the area between the ———

curve and the x axis, will be uniformly populated by this operation and our selected
samples will be the x coordinates of the “hits,” or the values of x’, drawn randomly
from the distribution P(x). Note that with this method it is not necessary to normalize
the distribution to form a true probability function. It is sufficient that the distribution
be positive and well behaved within its allowed range.

The advantage of the rejection method over the transformation method is its
be calculated. A disadvantage of the method is often its low efficiency. In a complex
Monte Carlo program only a small fraction of the events may survive the complete
calculation to become successful “hits” and the generation and subsequent rejection
of so many random numbers may be very time consuming. To reduce this problem,
it is advisable to place the strictest possible limits on the random coordinates used

to map out the distribution function when using the rejection method.

5.4 SPECIFIC DISTRIBUTIONS

Gaussian Distribution

Almost any Monte Carlo calculation that simulates experimental measurements will
require the generation of deviates drawn from a Gaussian distribution, or Gaussian
deviates. A common application is simulation of measuring uncertainties by smear-
ing variables. Fortunately, because of the convenient scaling properties of the
Gaussian function, it is only necessary to generate Gaussian deviates from the stan-
dard distribution

2
Piz)dz= L exp [—Z—]a’z 5.1
V2w [ 2J
with mean O and standard deviation 1, and to scale to different means p and stan-
dard deviations o by calculating

22
)

X=0z+pn (5.18)

There are several different ways of obtaining random samples of the variable
z from the distribution P;(z) of Equation (5.17). The two most obvious are the re-
jection and transformation methods discussed previously. Because the Gaussian
function is defined between —o and +, these methods require that limits be
placed on the range of z. For low-statistics calculations in which the Gaussian func-
tion is being used to simulate smearing of data caused by measuring errors, a range
of +3a should be satisfactory because all but ~0.3% of normally distributed events
lie within this range.

Because the Gaussian function cannot be integrated analytically, numerical in-
tegrations are required for the transformation method. Decisions mus
the order of integration and the step size as well as on the limits. A first- or second-
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order numerical integration (Appendix A.3.) is generally satisfactory, with a linear
interpolation to find an approximation to the value of x in Equation (5.10) at the re-

quired value of the integral

An intaragting mathad far oo n
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that if we repeatedly calculate the means of groups of numbers drawn randomly
from any distribution, the distribution of those means tends to a Gaussian as the
number of means increases. Thus, if we calculate many times the sums of N uniform
deviates, drawn from the uniform distribution, we should expect the sums to fall
into a truncated Gaussian d1str1but10n bounded by 0 and N w1th mean value N/2. If

N
r¢= > r,—N/2 (5.19)
=1

the variable r; will be drawn from an approximately Gaussian distribution with
mean p. = 0 and standard deviation ¢ = \/N/12. We should note that the maxi-
mum range of r; will be limited to w = N/2 or . = o\V3N. For N = 2, the sum is
a triangle function and as N increases, the distribution quickly takes on a Gaussian-
like shape. Values of N as small as N = 4 are suitable for low statistics calculations.
With N = 4, we have ¢ = \/1/3 = 0.058 and the range of r; from —2 to +2 cor-
responds to p * o\/12 or = 3.460. If a better approximation to the Gaussian
function is require and calculation time is not a problem, N = 12 is particularly con-
venient because the resulting variance and standard deviation are unity.

A particularly elegant method for obtaining random numbers drawn from the
Gaussian distribution was suggested by Box and Miiller (1958). This method makes
use of the fact that, although the simple transformation method requires an integra-
tion of the Gaussian function, it is possible to find a function that generates the two-
dimensional Gaussian distribution,

f(zl,z;)=ﬁe><( +22\)— ,—ex (— \X rexp(——\’ (5.20)

From this equation, the authors obtained expressions that generate two Gaussian de-
viates, z; and z,, from two uniform deviates, r; and r,:

21=V—2Inr, cos 2nr,
2=V —2Inr, sin 27r, (5.21)

Example 5.4. A uniform 10-cm long rod has one end held at 0°C and the other at
100°C so that the temperature along the rod is expected to vary linearly from 0° to
100°C. Let us attempt to simulate data that would be obtained by measuring the tem-
perature at regular intervals along the rod. We shall assume that the parent population
is described by the equation

T= ag + box (5'22)

with a; = 0°C and b, = 10°C/cm, and that 10 measurements are made at 1-cm inter-
vals from x = 0.5 to x = 9.5 cm, with negligible uncertainties in x; and uniform mea-
suring uncertainties in T; of o, = 1.0°C.
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Example 5.4 illustrates a common Monte Carlo technique: simulating the ef-
fects of measuring uncertainties by smearing data points. If a particular variable has
a mean value T}, with uncertainties o; and Gaussian uncertainties are assumed, then
we obtain the smeared value of 7; from the relation

ri=T+or (5.23)

where r; is a random variable drawn from the standard Gaussian distribution with
mean 0 and standard deviation 1. The calculation is equivalent to drawing the ran-

dom variable T}’ directly from a Gaussian distribution with mean 7; and standard

at1an

devi
acviauon ;.

Program 5.1. HOTROD (Appendix E) A simple Monte Carlo calculation to sim-
ulate the measurements described in Example 5.4. The program uses routines in the
program unit MONTELIB.

Program 5.3. MONTELIB (Appendix E) Some useful Monte Carlo routines.

The data generated by the program HOTROD are shown in Table 5.2, with values
of T, for the parent population, predicted by Equation (5.22), and of T; for the sam-
ple population, calculated from Equation (5.23) for various values of x;. Note that,
as we should expect, the modified values of T are scattered about the values calcu-
lated from Equation (5.22).

Choice of a Method

Which of these methods for generating samples from the Gaussian probability dis-
tribution is the best? The answer depends on need and circumstance. For general use
it is convenient to keep a version of the Box-Miiller method in your program library.

TABLE 5.2
Simulated temperature versus position data for
a 10-cm rod held at T = 0°C at x = 0.0 cm and

-nno

i x; (cm) T; (°C) T; (°C)
1 0.5 5.00 4.71
2 1.5 15.00 15.43
3 2.5 25.00 23.24
4 35 35.00 35.77
5 45 45.00 45.39
6 55 55.00 52.26
7 6.5 65.00 65.71
8 15 75.00 76.96
9 85 85.00 85.97
10 9.5 95.00 93.77

Note: A uniform temperature gradient was assumed. The uncertainty in the
measurement of T was assumed to be o7 = 1.0 °C.
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This routine produces a continuous range of samples limited only by the computer
word size. For high-precision work, however, we should be aware that subtle corre-

lations between adjacent uniform deviates have been shown to distort the tails of the

th h Tf hicghact di tinl than tha t
Gaussian distribution of these numbers. If highest speed is essential, then the trans-

formation method with a precalculated table of the integral and some pointers for
quick access to the table should be the choice. This method requires making deci-
sions on the range and resolution of the generated variable and some extra pro-
gramming to create and access the integral table, but the lookup method can be very
fast. Fmally, if you are stranded ona desert 1sland w1th only your laptop computer

method of summmg N random numbers is sufflclently simple that you should be
able to write and debug the routine in a few minutes, provided you can remember

gic number is N = 12 for a variance of 1.

o
E
0

Poisson Distribution

Poisson statistics are important in most Monte Carlo calculations, but they are usu-
ally implied rather than calculated explicitly. Nevertheless, we sometimes wish to
generate data that are distributed according to the Poisson function, and application
of the transformation method to the problem is particularly simp]e and instructive.
To find an mLt‘:gt‘:r x drawn from the Poisson distribution with mean W, a Poisson
deviate, we generate a random variable r from the uniform distribution, replace the

integral of Equation (5.10) by the sum

x x X
= SPdcw=3 Ee (5.24)
e <6 x!
and solve Equation (5.24) for x.

Although the Poisson function does not have the convenient scaling properties
of the Gaussian function, and thus different calculations are required for each value
of the mean p, very few calculations are actuaily needed because we are interested
in this distribution only at small values of ., say p. =< 16, and only at integral val-
ues of the argument x. At larger values of ., the Poisson distribution becomes in-
distinguishable from the Gaussian and it is generally more convenient to employ the

Gaussian function in calculations.

Example 5.5. An instructor is preparing an exercise on Poisson statistics for his
class. He plans to provide each student with a simulated data set corresponding to 200
Geiger counter measurements of cosmic ray flux recorded in 10-s intervals with an as-
sumed mean counting rate of 8.4 counts per interval. The data will correspond to the
number of counts recorded in each 10-s interval.

Students will be asked to make histograms of their individual data samples, find
the means and standard deviations of the data, and compare their distributions with the
predictions of Gaussian and Poisson probability functions.

For each student, a set of values of x is generated from Equation (5.24) with
= 8.4 and 200 different random numbers. The transformation method is used
with a precalculated table of sums so that the value of x associated with each value
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of r can be selected by a simple search. To assure that each student’s data set is in-
dependent, either all sets are generated in a single computer run or else the random
number seeds are saved at the end of each run and used to start the next run.

Program 5.2. POISDECAY (Appendix E) Generates 200 random variables

drawn from the Poisson probability distribution with mean . = 8.4 to illustrate Ex-
ample 5.5. The program uses routines in the program unit MONTEL.IB.

The program calls the function POISSONDEVIATE with second argument

INIT = TRUE to set up a table of sums of Pp(i; n) from i = O to n indexed by n;
that is, to form the array

S,= S Pisn) forn=1,2,..., 05 (5.25)
so that
S, =S, ,+P(n;p) withSy=PB(0; p)=e* (5.26)

where n,, = N + 8\/; is selected as a reasonable upper range for the Poisson
curve.

For each event, the program calls POISSONDEVIATE with second argument
INIT = FALSE to select a value from the table. The routine POISSONDEVIATE
generates a random number r from the uniform distribution and searches the table
beginning at S, to find the value of »n for which S, = r. The value of n at which this
occurs is the desired random sample from the Poisson distribution. As the samples
are generated they are entered in a histogram by calls to the routine HISTOGRAM.

A histogram of 200 variables drawn from the Poisson distribution Program 5.2
is shown in Figure 5.3 with the parent distribution represented as a solid curve (al-
though it is, of course, not defined between integer values of the abscissa). The val-
ues of the Poisson function, calculated by the routine POISSONRECUR, and the
sums, calculated by the routine POISSONDEVIATE, for u = 8.4 and for » rang-
ing from O to 31, are displayed in Table 5.3.

We note that with the precalculated table it is only necessary to increment a
counter a few times and compare two real numbers to obtain each random variable,
whereas, without the table, it would have been necessary to calculate the Poisson
function several times for each generated sample, in addition to comparing the two
real numbers.

Exponential Distribution

If the Monte Carlo problem includes the generation of unstable states, random num-
bers drawn from an exponential distribution will be needed. Here the transformation
method is clearly the method of choice because the integral equation (5.10) and re-
sultant equation can be solved analytically.

Example 5.6. Consider an experiment to study the decay rate of a radioactive source
with estimated mean life of 7 seconds. The experiment involves collecting counts over
successive time intervals Az with a Geiger counter and scaler combination and plotting
the number of counts in each interval against the mean interval time.
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FIGURE 5.3
Histogram of 200 random variables generated by Program 5.3 from the Poisson distribution with
mean . = 8.4.
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TABLE 5.3

Poisson probability Py(i; j») and summed probability S; = 27, Pp(i; )

for o = 84

n Pp(n; p) Sn n Pp(n; p) Sn
0 0.0002248673 0.0002248673 16 0.0066035175 0.9940781736
1 0.0018888855 0.0021137528 17 0.0032629145 0.9973410882
2 0.0079333192 0.0100470720 18 0.0015226935 0.9988637816
3 0.0222132938 0.0322603658 19 0.0006731908 0.9995369724
4 0.0466479169 0.0789082827 20 0.0002827401 0.9998197126
5 0.0783685004 0.1572767830 2] 0.0001130961 0.9999328086
6 0.1097159005 0.2669926835 22 0.0000431821 0.9999759908
7 0.1316590806 0.3986517641 23 0.0000157709 0.9999917616
8 0.1382420346 0.5368937988 24 0.0000055198 0.9999972814
9 0.1290258990 0.6659196977 25 0.0000018547 0.9999991361

10 0.1083817551 0.7743014529 26 0.0000005992 0.9999997353

11 0.0827642494 0.8570657023 27 0.0000001864 0.9999999217

12 0.0579349746 0.9150006768 28 0.0000000559 0.9999999776

13 0.0374349066 0.9524355835 29 0.0000000162 0.9999999938

14 0.0224609440 0.9748965275 30 0.0000000045 0.9999999983

15 0.0125781286 0.9874746561 31 0.0000000012 1.0000000000

Note: The summation was terminated arbitrarily at n = p + 8\/;: =31, and Pp(31; ) was setto 1.

We wish to simulate this experiment with a Monte Carlo calculation. The nor-
malized probability density function for obtaining a count at time 7 from an expo-
nential distribution with mean life 7 is given by
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(5.27)

We can obtain an expression for random samples ¢; from this distribution by
applying Equation (5.10) to obtain

ti = -7 ln ri (5.28)

Thus, to obtain each value of ¢;,, we find a random number from the uniform distri-
bution and calculate ¢; from Equation (5.28).

Let us consider a second method of generating a histogram of data for this
example, a method that is much more efficient, but that severely limits any later
treatment of the data.

We can calculate the fraction of events that the parent distribution predicts
would fall into each of the At wide histogram bins from the equation

AN'(r) = j

t-d T

t+d e_X/T t+d At
dx=e | ;= — e (5.29)

where we have written d = At/2. The effect of the statistical errors is to smear each
of these calculated values in a way consistent with the Poisson distribution with
mean . = AN,’. For small values of AN;" we find the smeared value AN, directly
from Equation (5.24):

AN
r=>h (x; AN") (5.30)
x=0

For larger values of AN;’ calculation with the Poisson equation would be too te-
dious, but we can use Gaussian smearing as in Example 5.4 with o, = \/E Note

. . . . o e .
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tive number of counts in each bin. (A reminder: The overall distribution of events in
this example is exponential; the expected distribution of events in each individual
bin follows the Poisson distribution, as discussed in Section 4.3.)

Although these two methods of generating a data set or histogram produce
equivalent statistical results for Example 5.6, they differ in important details. The
full Monte Carlo method required generating individual “events” that can be
recorded and studied. For example, we could check the statistical behavior of the
data by subdividing the sample into several smaller groups. We could also investi-

gate the effect of decreasing as well as increasing the binning intervals Ar. Finally,

if we should wish to expand the study, perhaps to consider experimental geometry
and detector efficiency, the full Monte Carlo method will allow that. The smear-
ing method, on the other hand, produces only the ten numbers, representing the
counts in the ten bins. Aside from merging the bins, we have no control over the
data for future calculations. It is strictly a fast, “one-shot” procedure with a specific
limited aim.

Exampie 5.7. Consider an experiment to determine the mean iife of an eilementary
particle, the short-lived K¢ meson (which we shall refer to as the kaon), from
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measurements of the decay in flight of many such particles. In principle, we can
determine the mean life T by measuring the distribution of decay times, fitting the
probability density function of Equation (5.27) to the data and solving for 7. In prac-
tice, we must make corrections for biases resulting from detection inefficiencies,

including those associated with the finite sizes of our detectors. We can use a Monte
Carlo calculation to estimate these biases and enable us to apply the appropriate
correction.

The experimental arrangement is sketched in Figure 5.4. A high-energy charged
particle p; interacts in the target at the production vertex V, to produce several charged
and neutral secondary particles, including a neutral kaon. The kaon travels a distance
L before decaying into two pions, 7, and ,, at the decay vertex V,. We determine the

coordinates of the production vertex by measuring in the production vertex detector

the trajectories of charged particles that are produced with the kaon, and tracing back
these trajectories to their intersection point in the target. Similarly, we determine the
coordinates of the decay vertex by measuring in the decay vertex detector the trajec-

toriec of the two charoad nione from the kann decav and tracine thece traiectariec hacl
LWLAWD WL Wl LYYW Vll‘\‘usvu l.ll\lllo AiAVUill Lilw DVl U\.«vu.y, CLIINE U uvllls LIIWwOW W uJUVLUllVD Ui I

to their intersection point, V,. (The trajectories of neutral particles are much more dif-
ficult to measure than those of the charged particles.) We calculate the momentum of
the neutral kaon from measurements of the momentum vectors of its two decay prod-
ucts, 7, and r,.

The geometry of the detector plays a critical role in the analysis of the data. We
can make useful measurements only on events in which the trajectories of the charged
particles can be measured in the vertex detectors. To assure precise measurements of
the secondary tracks from the decay of the kaon, we define a fiducial region in which
the decay must occur. The dashed rectangle on Figure 5.4 indicates the fiducial region
with its limits d, and d, along the x-axis. With these limits, very short-lived and long-
lived particles will be eliminated from the data sample, introducing a bias into the de-
termination of the mean life.

/

) L~
Charged particle veto /
ged p 7 / / )
—
Lo
L 11
_—
Target B
Y
d,
Production N

vertex detector \

Decay vertex
detector

FIGURE 5.4
Experimental arrangement to measure the lifetime of an elementary particle.
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In a Monte Carlo study of these biases, we could take the following steps to

simulate measurements of decaying kaons:

1.

Generate the production vertex coordinates and kaon momentum vector P from
the known cross section for kaon production in the interaction of the incident
and target particles.

Consider the efficiency of the production detector. If the detector successfully
records charged particles produced in the initial interaction, proceed to step 3;

if not, mark the event a failure and go to step 8.

Apply Equation (5.28) to find the time of flight (or lifetime) T of each individual
kaon in its own rest frame Use the current best-known value for the mean life 7.
Apply the Lorentz transformation to T to find the lifetime 7’ in the laboratory
system.

Calculate the range r of the kaon in the laboratory and from this, the coordinate
of the decay point.

Check that the kaon decays within the fiducial volume. If so, proceed to step 7;
otherwise, mark the event a failure and go to step 8.

In the rest frame of the kaon, generate the pair of pion vectors. Transform to the
laboratory system and check whether or not both particles can be detected in the
decay vertex detector. If they can be detected, mark the event a success; if not,
mark the event a failure.

Record details of the event and return to step 1 to generate a new event, or ter-
minate if the desired number of events has been generated.
Program 54. KDECAY (website) Illustration of Example 5.7.

For this sample program, we simplify the problem by treating it in two dimensions and
simplify or skip some of the steps as noted below.

1. Assume that each kaon is produced in the plane illustrated in Figure 5.4 and trav-
els along the x-axis. Generate a vertex x-coordinate x, and the magnitude of the
kaon’s momentum P from suitable Gaussian distributions.

2. Skip

3. Find the lifetime T of the kaon in its own rest frame from the published value of
the kaon mean life T and Equation (5.28).

ansformation to T to find the lifetime 7" in the laboratory

T'=+T,,, wherey=1/\/1—B%and B = v/c
where v is the velocity of the kaon in the laboratory and c is the velocity of light.

5. Calculate the range r and decay point x,:
r=BcT andx;,=xy+r
6. Check that the decay is within the fiducial area, that is, that

dl Sxd<d2

If it is not, mark the event as a failure; otherwise, mark the event as a success.
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FIGURE 5.5
Distribution of times of flight (in units of 107'% s) of 2355 successful K° decays from a total sample of
4000 generated events. The curve shows the predicted exponential distribution of the total 4000-event

sample.

7. Skip this step.
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8. Increment the event counters and record only successful
]
step 1 to begin generating the next event.

The properties of the two Gaussians and the other constants of the calculation are
listed in Table 5.4. Note that we must use as input to our program a reasonable value
of the kaon mean life, the quantity that we are attempting to measure. If the quantity
had been only poorly measured previously, or perhaps not at all, it might be necessary
to run the Monte Carlo program with several different trial values of T, bracketing the
expected value.

For this example, we generated 4000 events of which 2355 passed the fiducial
cut. Figure 5.5 shows the distribution of the times of flight T (or lifetimes) in the rest
frame of the kaon for successful events. The curve shows the expected distribution
of the times of flight if no events had been rejected. We obtain the efficiency of the
system as a function of the time of flight T by calculating the ratio of the number
N'(T) of successful events to the total number N(7T) generated
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TABLE 5.4

Constants used in the Monte Carlo generation of Program 5.3

TauKaon (K, mean life) 0.894 X 107105

MassKaon (K, mass) 497.7 Mevl/c?

d1 (Lower limit of fiducial range) 10 m

d2 (Upper limit of fiducial range) 40 m

xMean (mean coordinate of the production vertex, V) 5.00 cm

xSig (Standard deviation of production vertex) 0.50 cm

pMean (mean K; momentum) 2000 MeV/c

pSig (Standard deviation of K momentum) 100 MeV/c

¢ (velocity of light) 3.00 X 10'° cmy/s
(T = N'(TV/N(T (5 21)
C\£ J AV \1 Jj/ivV\4i ] \J.J1)

We note that there are large losses of events at short times, below about T = 0.5 X
107195, caused by the gap between the production vertex V, and the beginning of the
fiducial region d,, and smaller, but significant losses at long times of events that de-
cayed beyond the end of the fiducial region, d,.

To correct data obtained in an actual experiment and distributed as N, (T), we
should first run the Monte Carlo to generate sufficient numbers of events so that the

nnecartaintiec in tha AVV(T are nealicihle caomnarad ta the nneartaintiac in tha avner.
VLIV L LGALLILINVD 1 L A Y \‘ , Gl w llvslx&lulv \/Ullll.lm WA LU L1V Uilviwi L@QLLILIV Y 11 Ly \IAP\II

imental data sample. We should then select a continuous region of our data sample
where the efficiency is reasonably good (and definitely not zero!) and correct the
measurements by scaling N,,,(T) by 1/e(T). Note that the statistical uncertainties in
the measured data must also be scaled, so there is little point in including data from
very low-efficiency regions of the sample. We can then obtain our estimate of the
mean life of the kaon from a least-squares fit of Equation (5.27) to the corrected
data. (A reminder: Although the overall distribution of events in this example is ex-
ponential, the expected distribution of events in each individual bin follows the

Poisson r‘|1ctnhnhnn as discussed in Section 4.4, \
JAIJUOULL GBIUJvVI LU UL

A more deta1led discussion of analysis techniques for this experiment is in
Chapter 10.

5.5 EFFICIENT MONTE CARLO
GENERATION

Because the relative error in a result calculated by the Monte Carlo method is
inversely proportional to the square root of the number of successful events gen-
erated, it is important, especially for a long calculation, to have the highest possi-
ble program efficiency. Rejected events do not improve the statistical accuracy
and every effort should be made to reduce the time spent on calculations that
lead to “misses” rather than “hits.” There are several ways to improve generation
efficiency:

1. Don’t be a purist. The Monte Carlo method
uc

cated multldlmensmnal integrals. If yo
problem by analytic methods, do so.
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2. Program carefully. Do not repeat calculations if the results can be saved for
later use.

3. If p0351ble test the low- yleld sections of the 31mulat10n early and cut out as

itable to follow the calculatlon of an event that is known to end in failure.

4. Try to reduce the variance of the results by limiting ranges wherever possible.
One application of this technique can be illustrated in Example 5.1, where the
area of a circle of radius r, is calculated by inscribing it within a square. Mak-
ing the side of the square larger than the diameter of the circle would be waste-
ful and would increase the variance of the area determination.

sider setting up the program in such a way that the 1dentlcal sequence of ran-
dom numbers is repeated throughout the calculation, except for calculations

enecifically aceneciatad with tha crhanaga Thic tachnianae will nat imnrave tha
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variance of the overall calculation, but will reduce the variance of the difference
of results from two calculations.

6. Inspect each probability function carefully before beginning a calculation and
estimate the resolution and detail that will be required in the calculation. If a
distribution has fine structure, try to determine whether or not such structure is
of interest and must be preserved. If necessary, consider breaking the calcula-
tions into separate regions and varying the sampling sensitivity as appropriate
for each region.

7. Be critical. Examine your generated variables to see that they fall within the ex-
pected ranges and follow expected distributions. In a large program, errors that
affect the results in subtle ways may be buried within the program and be very
difficult to detect. The only way to prevent problems is to make detailed checks
at every stage of the program.

SUMMARY

Pseudorandom numbers: Numbers created by a computer algorithm such that suc-
cessive numbers appear to be uncorrelated with previous numbers. They are re-
ferred to as random numbers or random deviates.

Uniform deviates: Pseudorandom numbers that are uniformly distributed between 0
and 1:

y_[1 for0=r<1
plr) = 10 otherwise
Normalized distribution: A distribution that is scaled so that its integral over a spec-
ified range is equal to unity.
Transformation integral: Transforms the variable r drawn randomly from the uni-
form distribution into a variable x drawn randomly from the distribution P(x):

fr 1 Ay = {x p(
I ALWI l £\,
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Rejection method: A method of generating random numbers drawn from particular
distributions by rejecting those that fall outside the geometrical limits of the speci-
fied distribution.

Gaussian deviate: Random number drawn from a Gaussian distribution.

Quick Gaussian deviate: The sum of N random numbers is approximately Gaussian
distributed with w = N/2 and ¢ = \/N/12. Choose N = 12 and calculate
r¢ = Zr; — N/2 to obtain r; drawn from

the standard Gaussian distribution with . = O and o = 1.

bution and calculate

21=V-=2Inrcos2mr, and 2z, ="\ —2Inr, sin2nr,

to obtain z; and z, drawn from the standard Gaussian distribution.

Data smearing: Method for adding random variations to calculations to simulate the
effects of finite measuring errors, T;' = T; + ar;.

Random numbers from the exponential distribution: To obtain a random number
t; drawn from the exponential distribution, calculate t; = —7 In r; from a random
deviate r,.

EXERCISES

5.1. Write a computer program that incorporates the Wichmann and Hill pseudorandom
number generator and use it to generate 100 random numbers beginning with seeds
s, = 13, s, = 117, and s; = 2019. Make a histogram of the numbers and draw a line
representing the expected number of events in each bin. Calculate x? for the agree-
ment between the expected and generated number of events and find the associated
probability.

5.2. (a) Generate 1000 random numbers uniformly distributed between —1r and + .

(b) Generate 1000 random numbers between x = 0 and 1, distributed according to the
distribution function P(x) = (5x + 3). Use the transformation method with an
analytic integration.

(c) Find the mean and standard deviation of each distribution and compare them to
the predicted values.

(d) Make a 20-bin his
distribution.

(e) Calculate x? to compare each generated distribution to its parent distribution.

Write a general routine to generate random integers drawn from the binomial distrib-

ution by the transformation method. Use the routine to generate 1000 events corre-

sponding to the distribution of heads or tails when a coin is tossed 50 times. Plot your

results and compare them to the direct prediction of Equation (2.4).

5.4. Write a Monte Carlo routine to simulate 200 rolls of a pair of dice and find the fre-
quency of occurrences of each possible sum. Plot a histogram of the occurrences with
statistical error bars and plot the prediction of the binomial distribution. Calculate x?
for the agreement between the prediction and the data, and find the x? probability.
Compare your results to the exact probability calculation of Exercise 2.4.

5.5. Make a histogram of 200 random numbers that follow the Gaussian distribution by
finding the distribution of the sums of groups of 12 random variates drawn from the
uniform distribution. Calculate the mean and standard deviation of the generated num-
bers and the uncertainty in the mean.
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Generate 1000 random numbers between x = —3 and + 3, distributed according to the
Lorentzian distribution with mean p. = 0 and half-width I' = 1.0. Use the transforma-
tion method with a numerical integration and interpolation. (See Appendix A.1 and A.3.)
Make a 20-bin histogram of the generated numbers and plot Lorentzian the curve on the

distribution. Calculate x? to compare the generated distribution to the parent distribution.

171 tha + of thnd ¢t~
Use the transformation method to pr

drawn from the distribution
P(x)=sinx for0<x<mw
=0 elsewhere

Make a histogram of the events and compare it to the expected distribution. Note that

th
oo

5.9.

5.10.

S.11.

the calculation can be done analytically and requires an inverse trigonometric function.

Use the reiection method to generate S00 random deviates betweenx = Qand x = 1,
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drawn from the distribution y(x) = a, + ax?, witha, = 3.4 and a, = 12.1. Flnd the
mean and standard deviation of the generated numbers and compare them to the ex-
pected values.

Write a Monte Carlo program to generate 200 cubes with sides a = 2.0 = 0.1 cm,
b=3.0=x0.1cm, and ¢ = 4.0 £ 0.2 cm. Plot the distribution of the volumes of the
cubes and find the mean volume, the standard deviation of the distribution, and the un-
certainty in the mean. Compare the standard deviation of the distribution to the value
predicted by the error propagation equation.

A Pascal triangle provides an interesting illustration of the relation between the bino-
mial and Gaussian probability distributions. Assume an arrangement of pins in the
form of a triangle as illustrated.

Row

N L & W N ==

Bin-3-2-1 0 1 2 3

A ball, dropped into the device strikes the top pin and has a 50% probability of strik-
ing either of the two pins below it in the next row. The ball bounces down until it
reaches the bottom where it is collected in one of the vertical bins.

(a) Find a general expression for the probability that a ball will land in a given bin af-
ter dropping through N rows of pins.

(b) Assume that 512 balls are dropped onto the top pin. Find the number of balls in
each bottom bin for a device with three rows of pins above the bins. Repeat for de-
vices with four, five, and six rows of pins.

(c) Find the standard deviation of the distribution of balls for each example; that is,
assume that the bin number is the independent variable so that x = 0.

(d) Plot histograms of the distribution of the balls with Gaussian curves with the
means and standard deviations determined in (¢).

Write a Monte Carlo program to simulate the Pascal triangle device described in the

previous exercise. Compare the results obtained by the two methods.
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VARIABLES

We often wish to determine one characteristic y of an experiment as a function
of some other quantity x. That is, instead of making a number of measure-
ments of a single quantity x, we make a series of N measurements of the pair (x;, y;),
one for each of several values of the index i, which runs from 1 to N. Our object is
to find a function y = y(x) that describes the relation between these two measured
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are linearly related to one another, and refer to data from two undergraduate labora-
tory experiments as examples. In the following chapters, we shall discuss methods
of finding relationships that are not linear.
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Example 6.1. A student is studying electrical currents and potential differences. He
has been provided with a 1-m nickel-silver wire mounted on a board, a lead-acid bat-
tery, and an analog voltmeter. He connects cells of the battery across the wire and mea-
sures the potential difference or voltage between the negative end and various
positions along the wire. From examination of the meter, he estimates the uncertainty
in each potential measurement to be 0.05 V. The uncertainty in the position of the
probe is less than 1 mm and is considered to be negligible.

The data are listed in Table 6.1 and are plotted in Figure 6.1 to show the poten-
tial difference as a function of wire length x. The estimated common uncertainty in
each measured potential difference is indicated on the graph by the vertical error bars.
From these measurements, we wish to find the linear function y(x) (shown as a solid
line) that describes the way in which the voltage V varies as a function of position x
along the wire.

98
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Example 6.2. In another experiment, a student is provided with a radioactive source
enclosed in a small 8-mm-diameter plastic disk and a Geiger counter with a 1-cm-
diameter end window. Her object is to investigate the 1/r? law by recording Geiger
counter measurements over a fixed period of time at various distances from the source
between 20 and 100 cm. Because the counting rate is not expected to vary from mea-
surement to measurement, except for statistical fluctuations, the student can record
data long enough to obtain good statistics over the entire range of the experiment. She
uses an automatic recording system and records counts for thirty 15-s intervals at each
position. For analysis in this experiment, she sums the counts from each set of 30 mea-

val measurements at each position can be used in other statistical studies.

The data are listed in Table 6.2 and plotted against x = 1/r? in Figure 6.2. The
vertical error bars on the data points represent the statistical uncertainties in the mea-
sured numbers of counts and are equal to the square roots of the numbers of counts.
The uncertainties in the measurements of the distances from the source to the counter
were assumed to be negligible.

In both of these examples, the functional relationship between the dependent and in-
dependent variables can be approximated by a straight line of the form

y(x)=a+ bx 6.1)

We shall consider in this chapter a method for determining the most probable val-
ues for the coefficients a and b.
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Potential difference as a function of position along a conducting wire (Example 6.1). The uniform
uncertainties in the potential measurements are indicated by the vertical error bars. The straight line is
the result of a least-squares fit to the data.
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TABLE 6.1

Potential difference V as a function of position along a current-carrying
— nickel-silver wire

Fitted
Potential potential
Point Postition difference difference
number x; (cm) V; (V) x? x;V; a+bx
1 10.0 0.37 100 3.70 033
2 20.0 0.58 400 11.60 0.60
3 30.0 0.83 900 24.90 0.86
4 40.0 1.15 1,600 46.00 1.12
5 50.0 1.36 2,500 68.00 1.38
6 60.0 1.62 3,600 97.20 1.64
7 70.0 1.90 4,900 133.00 1.91
8 80.0 2.18 6,400 174.40 2.17
9 90.0 2.45 8,100 220.50 2.43
Sums 450.0 12.44 28,500 779.30

A =NZx?— (Sx)* = (9 X 28,500) — (450)2 = 54,000

a=(Ex23V, — Sx,SxV,)/A = (28,500 X 12.44 — 450.0 X 779.30)/54,000 = 0.0714
b=(NZxV,— Sx,ZV,)/A = (9 X 779.30 — 450.0 X 12.44)/54,000 = 0.0262

o2 = giSx/A = 0.05% X 28,500/ 54,000 = 0.001319 o, = 0.036 o, = 0.019

~ =D P S - - P gy ’ ~ oA

o} = No{/A =9 X 0.05%/ 54,000 = 0.417 X 10°° o, = 0.00065 o}, = 0.00034

Note: A uniform uncertainty in V of 0.05 V is assumed. A linear fit to the data, calculated by the method of determi-
nants, gives a = 0.07 * 0.04 V and b = 0.0262 * 0.0006 V/cm, with x2 = 1.95 for 7 degrees of freedom. The
x? probability for the fit is approximately 96%.
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FIGURE 6.2

Number of counts in constant time intervals from a radioactive source as a function of the inverse
distance from source to Geiger counter (Example 6.2). The vertical error bars indicate the statistical
uncertainties in the counts. The straight line is the result of a least-squares fit to the data.
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TABLE 6.2
Number of counts detected in 7%2-min intervals as a function of distance from
the source
Weight Fitted
Distance x;=1/d? Counts a/ch counts
i d,‘ (m) (m_z) Ci O'CI. W; W; X; w; C,- Wix% Wix,'C,- a+ bxi
1 0.20 25.00 901 30.0 0.00111 0.0278 1 0.694 25.0 887
2 0.25 16.00 652 25.5 0.00153 0.0254 1 0.393 16.0 610
4 0.35 8.16 339 18.4 0.00295 0.0241 1 0.197 8.2 370
5 0.40 6.25 283 16.8 0.00353 0.0221 1 0.138 6.3 311
6 0.45 4.94 281 16.8 0.00356 0.0176 1 0.087 4.9 271
7 0.50 4.00 240 15.5 0.00417 0.0167 1 0.067 4.0 242
8 0.60 2.78 220 14.8 0.00455 0.0126 1 0.035 2.8 205
9 0.75 1.78 180 13.4 0.00556 0.0099 1 0.018 1.8 174
10 1.00 1.00 154 124 0.00649 0.0065 1 0.007 1.0 150
Sums 0.03570 0.1868 1 1912 81.0

o, =\Vy, w= lo?= 1/y,

A=3w,Iw;x?2— Cw;x;)? =0.03570 X 1.912 — (0.1868)%> = 0.0334
a—[ZWCwa wazwa]/A—[10X1912 0.1868 X 81.0]/A = 119.5
b = [Sw; Zw,x; C, — Zw,x, Sw; C; /A = [0.03570 X 81.0 — 0.1868 X 10]/A = 30.7

o2=2wx%/A =1912/0.0334 = 57.3 o,=17.6

o = Sw,/A = 0.03570/0.0334 = 1.07 o, = 1.1

Note: A linear fit to the data of the function C = a + bx by the method of determinants gives ¢ = 119 * 8 and
=31 * 1, with x2 = 11.1 for 8 degrees of freedom. The x? probability for the fit is about 20%.
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impossible to draw a stralght line through a l the points. For a set of N arbltrary
points, it is always possible to fit a polynomial of degree N — 1 exactly, but for our
experiments, the coefficients of the higher-order terms would have questionable sig-
nificance. We assume that the fluctuations of the individual points above and below
the solid curves are caused by experimental uncertainties in the individual mea-

\
surements. In Chapter 11 we shall develop a method for testing whether higher-

order terms are significant.

Measuring Uncertainties

If we were to make a series of measurements of the dependent quantity y; for one
particular value x; of the independent quantity, we would find that the measured
values were distributed about a mean in the manner discussed in Chapter 5 with a
probability of ~68% that any single measurement of y; be within 1 standard devia-
tion of the mean. By making a number of measurements for each value of the in-
dependent quantity x;, we could determine mean values y;, with any desired
precision. Usually, however, we can make only one measurement y; for each value
of x = x;, so that we must determine the value of y corresponding to that value of x
with an uncertainty that is characterized by the standard deviation o; of the distri-
bution of data for that point.



102 Data Reduction and Error Analysis for the Physical Sciences

We shall assume for simplicity in all the following discussions that we can as-
cr1be all the uncertamty in each measurement to the dependent varlable Th1s is

hlgher than that of y. Th1s dlfference is 111ustrated in Flgures 6 1 and 6. 2 by the fact
that the uncertainties are indicated by error bars for the dependent variables but not
for the independent variables.

Our condition, that we neglect uncertainties in x and consider just the uncer-
tainties in y, will be valid only if the uncertainties in y that would be produced by
variations in x corresponding to the uncertainties in the measurement of x are much
smaller than the uncertainties in the measurement of y. This is equivalent, in first or-

der, to the requirement at each measured point that
d
4 <o,
CUC

where dy/dx is the slope of the function y = y(x).

We are not always justified in ascribing all uncertainties to the dependent pa-
rameter. Sometimes the uncertainties in the determination of both quantities x and y
are nearly equal. But our fitting procedure will still be fairly accurate if we estimate
the indirect contribution o', from the uncertainty o, in x to the total uncertainty in y
by the first-order relation

o B
Oy = O (6.2)
and combine this with the direct contribution o,,, which is the measuring uncer-
tainty in y, to get

ol=0}+0} (6.3)

For both Examples 6.1 and 6.2 the condition would be reasonable because we pre-
dict a linear dependence of y with x. With the linear assumption, we treat the uncer-
tainties in our data as if they were in the dependent variable only, while realizing
that the corresponding fluctuations may have been originally derived from uncer-
tainties in the determinations of both dependent and independent variables.

In those cases where the uncertainties in the determination of the independent
quantity are considerably greater than those in the dependent quantity, it might be
wise to interchange the definition of the two quantities.

6.2 METHOD OF
Our data consist of pairs of measurements (x;, y;) of an independent variable x and a
dependent variable y. We wish to find values of the parameters a and b that mini-
mize the discrepancy between the measured values y; and calculated values y(x). We
cannot determine the parameters exactly with only a finite number of observations,
but can hope to extract the most probable estimates for the coefficients in the same
way that we extracted the most probable estimate of the mean in Chapter 4,

Rafn adin ot dafin orita fa tho Ai
oi0re procéeaing, we musit Gerine our Criilria ior lllllllllllbllls tne GiSCrep-

ancy between the measured and predicted values y;. For any arbitrary values of a



Least-Squares Fit to a Straight Line 103

and b, we can calculate the deviations Ay, between each of the observed values y;
and the corresponding calculated or fitted values

Ay, =y, —y(x)=y;,—a— bx (6.4)

With well chosen parameters, these deviations should be relatively small. However,
the sum of these deviations is not a good measure of how well our calculated
straight line approximates the data because large positive deviations can be bal-
anced by negative ones to yield a small sum even when the fit of the function y(x)

viations, but this leads to difficulties in obtaining an analytical solution. Instead we
sum the squares of the deviations.

There in no correct unique method for optimizing the parameters valid for all
problems. There exists, however, a method that can be fairly well justified, that is
simple and straightforward, and that is well established experimentally. This is the
method of least squares, similar to the method discussed in Chapter 4, but extended
to include more than one variable. It may be considered as a special case of the
more general method of maximum likelihood.

Method of Maximum Likelihood

Our data consist of a sample of observations drawn from a parent distribution that
determines the probability of making any particular observation. For the particular
problem of an expected linear relationship between dependent and independent
variables, we define parent parameters a, and b, such that the actual relationship be-
tween y and x is given by

Yolx) = ag + box (6.5)
We shall assume that each individual measured value of y; is itself drawn from a
Gaussian distribution with mean y(x;) and standard deviation ;. We should be
aware that the Gaussian assumption may not always be exactly true. In Example 6.2
the y; = C; were obtained in a counting experiment and therefore follow a Poisson
distribution. However, for a sufficiently large number of counts y; the distribution
may be considered to be Gaussian. We shall discuss fitting with Poisson statistics in
Section 6.6.
With the Gaussian assumption, the probability P; for making the observed
measurement y; with standard deviation o; for the observations about the actual
value yy(x;) is

_ 1 Ly _)’o(xi)}z}
hi= V%"[ Lt ©o

The probability for making the observed set of measurements of the N values of y;
is the product of the probabilities for each observation:

P(ay, by) =T1P, = 11 <0'~\1/2_1T> exp {—% 3 [y_i _ y?(xi)}z] (6.7)

(o)
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where the product II is taken with i ranging from 1 to N and the product of the ex-
ponentials has been expressed as the exponential of the sum of the arguments. In
these products and sums, the quantities 1/a? act as weighting factors.

Similarly, for any estimated values of the parameters a and b, we can calculate

the probability of obtaining the observed set of measurements

P(a,b)=l_[<oi\l/%>exp[ 22{’” o,(X)” (6.8)

with y(x) defined by Equation (6.1) and evaluated at each of the values x;.
We assume that the observed set of measurements is more likely to have come
from the parent distribution of Equation (6.5) than from any other similar distribu-

tion with different coefficients and, therefore, the probability of Equation (6.7) is
the maximum pi‘x’)uauuuy attainable with Equation (6.8). Thus, the maximum-
likelihood estimates for a and b are those values that maximize the probability of
Equation (6.8).

Because the first factor in the product of Equation (6.8) is a constant, inde-
pendent of the values of a and b, maximizing the probability P(a, b) is equivalent to
minimizing the sum in the exponential. We define this sum to be our goodness-of-

fit parameter x>

R Ul

X>=> ;— y; —a — bx;) (6.9)
L "l LYt Jd

We use the same symbol x?, defined earlier in Equation (4.32), because this is es-

sentially the same definition in a different context.

Our method for finding the optimum fit to the data will be to find values of a
and b that minimize this weighted sum of the squares of the deviations x> and
hence, to find the fit that produces the smallest sum of the squares or the least-
squares fit. The magnitude of x? is determined by four factors:

P A P P Tee- | ~L m

. Fluctuations in the measured values of the variables Yis which are random sam-
ples from a parent population with expectation values yo(x;).

[y

2. The values assigned to the uncertainties g; in the measured variables y;. Incor-
rect assignment of the uncertainties o; will lead to incorrect values of x>.

3. The selection of the analytical function y(x) as an approximation to the “true”
function yy(x). It might be necessary to fit several different functions in order to
find the appropriate function for a particular set of data.

4. The values of the parameters of the function y(x). Our objective is to find the
“best values” of these parameters.

6.3 MINIMIZING x>

To find the values of the parameters a and b that yield the minimum value for x?, we
set to zero the partial derivatives of x? with respect to each of the parameters
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ged as a pair of linear simultaneous equations

Xi
o}

(6.11)

x;
o?

The solutions can be found in any one of a number of different ways, but, for
generality we shall use the method of determinants. (See Appendix B.) The' solu-

tions are
25 =5
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o
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For the special case in which al
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Examples

For the data of Example 6.1 (Table 6.1), we assume that the uncertainties in the
measured voltages V are all equal and that the uncertainties in x; are negligible. We
and Xx;y; = Zx;V; and combine them according to Equation (6.13) to find numeri-
cal values for a and b. The steps of the calculation are illustrated in Table 6.1, and
the resulting fit is shown as a solid line on Figure 6.1.

Determination of the parameters a and b from Equation (6.12) is somewhat
more tedious, because the uncertainties o; must be included. Table 6.2 shows steps
in the calculation of the data of Example 6.2 with the uncertainties o; in the num-
bers of counts C; determined by Poisson statistics so that o7 = C;. The values of a
and b found in this calculation were used to calculate the straight line through the

data nnainte in Fionra 8 )
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It is important to note that the value of C; to be used in determining the un-
certainty o; must be the actual number of events observed. If, for example, the
student had decided to improve her statistics by collecting data at the larger dis-
tances over longer time periods Az; and to normalize all her data to a common
time interval Az,

C!=C; X At /At
then the statistical uncertainty in C' would be given by
0',', = ,\/’E’ X Atc/At,

Program 6.1. FITLINE (Appendix E) Solution of Equations (6.11) by the deter-
minant method of Equation (6.12).

The program uses routines in the programs units FITVARS, FITUTIL, and
GENUTIL, which are also used by other fitting programs. The sample programs
use single precision variables for simplicity, although double, or higher, precision is
highly recommended.

Program 6.1 uses Equation (6.12) to solve both Examples 6.1 and 6.2, al-
though separate routines written for each problem would be slightly more efficient.
Because the measurements of Example 6.1 have common errors, we could, for ex-
ample, increase the fitting speed by using Equations (6.13) rather than Equations
(6.12). Similarly, for Example 6.2, we could simplify the fitting routine by replac-
ing the statistical errors S1IGY[1] by the explicit expression for /'y, However, in
most calculations that involve statistical errors, there are also other errors to be con-
sidered, such as those arising from background subtractions, so the loss of general-
ity would more than compensate for any increased efficiency in the calculations.

Program 6.2. FITVARS (website) Include file of constants, variables, and arrays
for least-squares fits.

Program 6.3. FITUTIL (website) Utility routines for fitting programs
Input/output routine, x2 calculation, x?>-density, and x2-integral probability.
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Program 6.4. GENUTIL (website) General Utility Routines
Includes approximate gamma function, Simpson’s rule integration.

6.4 ERROR ESTIMATION

Common Uncertainties

If the standard deviations o; for the data points y; are unknown but we can assume
that they are all equal, 7 = o2, then we can estimate them from the data and the re-
sults of our fit. The requirement of equal errors may be satisfied if the uncertainties
are instrumental and all the data are recorded with the same instrument and on the
same scale, as was assumed in Example 6.1.

In Chapter 2 we obtained, for our best estimate of the variance of the data
sample,

1
lxgl= = Y)? 6.14
or=s2= 13 (3~ 7) (6.14)
where N — m is the number of degrees of freedom and is equal to the number of
measurements minus the number of parameters determined from the fit. In Equation
(6.14) we identify y, with the measured value of the dependent variable, and for y,
the expected mean value of y,, we use the value calculated from Equation (6.1) for
each data point with the fitted parameters a and b. Thus, our estimate o; = o for the
standard deviation of an individual measurement is
1

02=sz=ﬁ_—2 (y, —a — bx;)? (6.15)
By comparing Equation (6.15) with Equation (6.9), we see that it is just this com-
mon uncertainty that we have minimized in the least-squares fitting procedure.
Thus, we can obtain the common error in our measurements of y from the fit, al-
though at the expense of any information about the quality of the fit.

Variable Uncertainties

In general the uncertainties o; in the dependent variables y; will not all be the same.
If, for example, the quantity y represents the number of counts in a detector per unit
time interval (as in Example 6.2), then the errors are statistical and the uncertainty
in each measurement y; is directly related to the magnitude of y (as discussed in Sec-
tion 4.2), and the standard deviations o; associated with these measurements is

In principle, the value of y;, which should be used in calculating the standard
deviations ¢; by Equation (6.16), is the value y,(x;) of the parent population. In prac-
tice we use the measured values that are only samples from that population. In the
limit of an infinite number of determinations, the average of all the measurements
would very closely approximate the parent value, but generally we cannot make
more than one measurement of each value of x, much less an infinite number. We
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could approximate the parent value yy(x;) by using the calculated value y(x) from
our fit, but that would complicate the fitting procedure. We shall discuss this possi-
bility further in the following section.

Contributions from instrumental and other uncertainties may modify the sim-

ple square root form of the statistical errors. For example, uncertainties in measur-

tha t a
ing the time interval during which the events of Example 6.2 were recorded might

contribute, although statistical fluctuations generally dominate in counting experi-
ments. Background subtractions are another source of uncertainty. In many count-
ing experiments, there is a background under the data that may be removed by
subtraction, or may be included in the fit. In Example 6.2, cosmic rays and other
backgrounds contrlbute toa counting rate even when the source 1s moved far away

6.2 on the C axis. If the student had chosen to record the radiation background

counts C, in a separate measurement and to subtract C, from each of her measure-

ntec 7.t ohtain
IMICHW U; WU Uudiil

G =C-G

then the uncertainty in C’ would have been given by combining in quadrature the
uncertainties in the two measurements:

o7 =0t + 0}

x? Probability

/\

For those data for which we know the uncertainties o; in the measured values y; we
can calculate the value of x? from Equation (6.9) and test the goodness of our fit.
For our two-parameter fit to a straight line, the number of degrees of freedom will
be N — 2. Then, for the data of Example 6.2, we should hope to obtain x> = 10 — 2
= 8. The actual value, x> = 11.1, is listed in Table 6.2, along with the probability
(p = 20%). (See Table C.4.) We interpret this probability in the following way.
Suppose that we have obtained a x2 probability of p% for a certain set of data. Then,
we should expect that, if we were to repeat the experiment many times, approxi-
mately p% of the experiments would yield x* values as high as the one that we ob-
tained or higher. This subject will be discussed further in Chapter 11.

In Example 6.1, we obtained a value of x*> = 1.95 for 7 degrees of freedom,
corresponding to a probability of about 96%. Although this probability may seem to
be gratifyingly high, the very low value of x? gives a strong indication that the com-
mon uncertainty in the data may have been overestimated and it might be wise to
use the value of x? to obtain a better estimate of the common uncertainty. From
Equations (6.15) and (6.9), we obtain an expression for the revised common uncer-

tainty o in terms of x? and the original estimate, o

g'2=ag?X x¥(N—-2) (6.17)
or, more generally
og'?=g? X x?2 (6.18)

where x2 = x%/v and v is the number of degrees of freedom in the fit. Thus, for Ex-

ample 6.1, we find O' = 0.05% X 1.95/(9 — 2) = 0.0007, or ¢/ = ~0.03 V.
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Uncertainties in the Parameters

In order to find the uncertainty in the estimation of the parameters a and b in our fit-
ting procedure, we use the error propagation method discussed in Chapter 3. Each
of our data points y; has been used in the determination of the parameters and each
has contributed some fraction of its own uncertainty to the uncertainty in our final
determination. Ignoring systematic errors, which would introduce correlations be-
tween uncertainties, the variance o2 of the parameter z is given by Equation (3.14)
as the sum of the squares of the products of the standard deviations o; of the data

points with the effects that the data points have on the determination of z:

-xo(2)]

Thus, to determine the uncertainties in the parameters a and b, we take the
partial derivatives of Equation (6.12):

da_1(1o® %)
3y, A\o?< g2 G244 52
y_] O-j i O'J 0',} (6.20)
ob  1(x 1 1 X;
—=—(—22—2——2 7)
dy; A\o;“of o o;

We note that the derivatives are functions only of the variances and of the indepen-
dent variables x;. Combining these equations with the general expression of Equa-
tion (6.19) and squaring, we obtain for o,

> (=) =)
2 N : iy X
O-a j=1A2 l;()';‘ \20-?/ 2 2 'i 0- 20-12/ -
1 1 x?\?2 x? X; 2]
= — ! 2 v L
AZ[EG}(EG?) SE3hss 203(20%)
1 x? 1 o x? x;
:P<27>[20_327_(20_%>J
1 o x?
-335 6.21)
and for o3,
w0} (1 251 x 1 [(qx)
ai=S2L|IZL Y= |- =Y =Y —=+—(Y—
=2 el Bn) GtaTansa))
1 x}( 1)2 ;1 _x 1( x,ﬂ
Sl5(Sn)mis st (s
1/ x}z\l’ 1 1 [ x )]
SRR RCE
1 1
=ZE—0'—,2 (6.22)
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For the special case of common uncertainties in y;, @
reduce to

= g, these equations

i

a2 2
g2 = — 2 = N
o; N Zx? and o} NA’ (6.23)

with o given by Equation (6.15) and A’ given by Equation (6.13).
The uncertainties in the parameters o, and o, calculated from the original er-
ror estlmates are listed in Tables 6 1 and 6 2. For Examp]e 6 1 revised uncertain-

|
Equatlon (6 18), are also listed.

6.5 SOME LIMITATIONS OF THE
LEAST-SQUARES METHOD

aAdmil s a FRANZNS V222 2 22N

When a curve is fitted by the least-squares method to a collection of statistical
counting data, the data must first be histogrammed; that is, a histogram must be
formed of the corrected data, either during or after data collection. In Example 6.2,
the data were collected over intervals of time Az, with the size of the interval cho-
sen to assure that a reasonable number of counts would be collected in each time in-
terval. For data that vary linearly with the independent variable, this treatment poses
no special problems, but one could imagine a more complex problem in which fine
details of the variation of the dependent variable y with the independent variable x
are important. Such details might well be lost if the binning were too coarse. On the
other hand, if the binning interval were too fine, there might not be enough counts
in each bin to justify the Gaussian probability hypothesis. How does one choose the
appropriate bin size for the data?

A handy rule of thumb when considering the Poisson distribution is to assume
that large enough = 10. A comparison of the Gaussian and Poisson distributions for
mean . = 10 and standard deviation o = \/E (see Figures 2.4 and 2.5) shows very
little difference between the two distributions. We might expect this because the
mean is more than 3 standard deviations away from the origin. Thus, we may be
reasonably confident about the results of a fit if no histogram contains less than ten
counts and if we are not nlacmo excessive reliance on the actual value of v ob-
tained from the fit. If a bin does have fewer than the allowed minimum number of
counts, it may be possible to merge that bin with an adjacent one. Note that there is
no requirement that intervals on the abscissa be equal, although we must be careful
in our choice of the appropriate value of x; for the merged bin. We should also be
aware that such mergers necessarily reduce the resolution of our data and may,
when fitting functions more complicated than a straight line, obscure some interest-
ing features.

In general, the choice of bin width will be a compromise between the need for
sufficient statistics to maintain a small relative error in the values of y; and thus in
the fitted parameters, and the need to preserve interesting structure in the data.
When full details of any structure in the data must be preserved, it might be advis-
able to apply the maximum-likelihood method directly to the data, event by event,
rather than to use the least-squares method with its necessary binning of the data.
We return to this subject in Chapter 10.
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There is also a question about our use of the experimental errors in the fitting
process, rather than the errors predicted by our estimate of the parent distribution.
For Example 6.2, this corresponds to our choosing o7 = y, rather than o? = y(x;) =
a + bx;. We shall consider the possibility of using errors from our estimate of the
parent distribution, as well as the direct application of the Poisson probability func-
tion, in the following section.

Another important point to consider when fitting curves to data is the possi-
bility of rounding errors, which can reduce the accuracy of the results. With manual

alculations, it is important to avoid rounding the numbers until the very end of the
calculation. With computers, problems may arise because of finite computer word
length. This problem can be especially severe with matrix and determinant calcula-
tions, which often involve taking small differences between large numbers.
Depending on the computer and the software, it may be necessary to use double-
precision variables in the fitting routine.

We discuss in Chapter 7 the interaction of parameters in a multiparameter fit.
For now, it is worth noting that, for a nominally “flat” distribution of data, the in-
tercept obtained from a fit to a straight line may not be identical to the mean value
of the data points on the ordinate. See Exercise 6.7 for an example of this effect.

6.6 ALTERNATE FITTING METHODS

In this section we attempt to solve the problem of fitting a straight line to a collec-
tion of data points by using errors determined from the estimated parent distribution
rather than from the measurements, and by directly applying Poisson statistics,
rather than Gaussian statistics. Because it is not possible to derive a set of indepen-
dent linear equations for the parameters with these conditions, explicit expressions
for the parameters a and b cannot be obtained. However, with fast computers, solv-
ing coupled, nonlinear equations is not difficult, although the clarity and elegance
of the straightforward least-squares method can be lost.

Poisson Uncertainties

Let us consider a collection of purely statistical data that obey Poisson statistics (as

in FEvamnla & )) ¢en that tha nneartaintiac can ha avnraccad hv Fanation (A 1A Wa
11 LJI\ullllJl\/ Uoh} OV L11Al uUlv ulIvvili tdaliitivo vall uw VI\PLUOOU\J UJ I..J\.iuutl\lll \\lo_l\.l}. AA A

begin by substituting the approximation o? = y(x;) = a + bx; into the definition of
x? in Equation (6.9), which is based on Gaussian probability, and minimizing the
value of x? as in Equations (6.10). The result is a pair of simultaneous equations that
can be solved for a and b:

NS (6.24)

Next, let us replace the Gaussian probability P(a, b) of Equation (6.8) by the corre-
sponding probability for observing y; counts from a Poisson distribution with mean

M = y(xi)s
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y.l

I

P@a,b)= 1] (M e-y<x:>> (6.25)

and apply the method of maximum likelihood to this probability. It is easier and
equivalent to maximize the natural logarithm of the probability with respect to each
of the parameters a and b:

In P(a, b) = [y, In y(x,)] — 2y(x,) + constant (6.26)

where the constant term is independent of the parameters a and b. The result of tak-
ing partial derivatives of Equation (6.26) is a pair of simultaneous equations similar

to those of Equation (6.24),

Yi
“a+tbx 6.27)

_ XiYi
2x; = Ea + bx;

but with less emphasis on fitting the larger values of y,.

Neither the coupled simultaneous Equations (6.24) nor the Equations (6.27)
can be solved directly for a and b, but each pair can be solved by an iterative
method in which values of a and b are chosen and then adjusted until the two si-
multaneous equations are satisfied. (See Appendix A.5.)
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FIGURE 6.3

Least-squares fit of a straight line to the data by three different methods. (i) Standard least-squares
method with Gaussian statistics and experimental uncertainties; (ii) Gaussian statistics and analytic
uncertainties; (iii) Poisson statistics and analytic uncertainties. The analytic errors are expressed as
ol=a + bx,
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TABLE 6.3

Comparison of fits to a selection of statistical data from Example 6.2 for three
different fitting methods

Inverse Number
distance of 2) (&)]
squared counts 1 Gaussian Poisson
i x;(m™?) C; Standard ol =y(x) o’ =y(x)
1 25.00 44 320 36.3 35.1
2 16.00 18 210 241 232
3 11.11 17 15.1 17.5 16.8
4 8.16 6 11.5 13.5 12.9
5 6.25 8 9.1 10.9 104
6 4.94 9 7.5 9.2 8.6
7 4.00 9 6.4 7.9 7.4
8 2.78 11 4.9 6.3 5.8
9 1.78 3 3.7 49 4.5
10 1.00 3 2.7 3.9 34
Sums 128 114.0 134.4 128.0
a 1.52 2.50 2.11
b 1.22 1.35 1.32
X2 13.7 17.6 15.5

Nore: (1) Standard least-squares method with Gaussian statistics and experimental uncertainties; (2) Gaussian statis-
tics and analytic uncertainties; (3) Poisson statistics and analytic uncertainties. The analytic uncertainties are ex-
pressed as 0% = a + bx,.

Example 6.3. Because we expect the methods discussed here to be equivalent to the
standard method for large data samples, we selected a low statistics sample to emphasize
the differences. We chose from the measurements of Example 6.2 only those events col-
lected at each detector position during the first 15-s interval, a total of 128 events at ten
different positions. The results of (i) calculations by the standard method, (ii) calcula-
tions with Gaussian statistics and with errors given by a; = y(x;) = a + bx;, and (iii) cal-
culations with Poisson statistics with errors as in method (ii) are listed in Table 6.3 and
illustrated in Figure 6.3. We note that method (i) appears to underestimate the number of

events in the sample, whereas method (ii) overestimates the number. Method (iii) with

LS ik iv SQuiipit, IVITAS 1navunUe (11 VOiwSuiiiales u AVACRAIURS \222)

Poisson statistics and errors calculated as in method (ii) finds the exact number.

We can avoid questions of finite binning and the choice of statistics by mak-
ing direct use of the maximum-likelihood method, treating the fitting function as a
probability distribution. This method also allows detailed handling of problems in
which the probability associated with individual measurements varies in a complex
way from observation to observation. We shall pursue this subject further in Chap-
ter 10.

In general, however, the simplicity of the least-squares method and the diffi-
culty of solving the equations that result from other methods, particularly with more
complicated fitting functions, leads us to choose the standard method of least
squares for most problems. We make the following two assumptions to simplify the
calculation:
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1. The shapes of the individual Poisson distributions governing the fluctuations in

SUMMARY
Linear function: y(x) = a + bx.
Chi-square:
~ -— Vs - \ 2
X =2 [;ky,- —a-— bx,-)J

Least-squares fitting procedure: Minimize x* with respect to each of the parameters
simultaneously.
Solutions for least-squares fit of a straight line:

i Xi
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EXERCISES

where G is the average of the given values of a. Note that the fitted parameters are in-
dependent of the value of o, but the values of x*, o,, and o, are not.

6.2. Derive Equation (6.23) from Equations (6.21) and (6.22).

6.3. Show that Equation (6.12) reduces to Equation (6.13) if o; = 0.

6.4. Derive a formula for making a linear fit to data with an intercept at the origin so that
y = bx. Apply your method to fit a straight line through the origin to the following co-

ordinate pairs. Assume uniform uncertainties o; = 1.5 in y;. Find x? for the fit and the

uncertainty-in-b.
X; | 2 4 6 8 10 12 14 16 18 20 22 24
o | 53 144 207 301 350 413 527 557 630 721 805 879

6.5. A student hangs masses on a spring and measures the spring’s extension as a function
of the applied force in order to find the spring constant k. Her measurements are:

Mass (kg) | 200 300 400 500 600 700 800 _ 900
Extension(cm) | 51 55 59 68 74 15 86 94

oo~

There is an uncertainty of 0.2 in each measurement of the extension. The uncertainty in
the masses is negligible. For a perfect spring, the extension AL of the spring will be re-
lated to the applied force by the relation kAL = F, where F = mg, and AL = L — L,
and L, is the unstretched length of the spring. Use these data and the method of least
squares to find the spring constant k, the unstretched length of the spring L, and their
uncertainties. Find x? for the fit and the associated probability.
6.6. Outline a procedure for solving the simultaneous Equations (6.27). Refer to Ap-
pendix A.
. A student measures the temperature (T) of water in an insulated flask at times (f) sepa-
rated by 1 minute and obtains the following values:

=)
~1

K(s) | 0 1 2 3 4 5 6 7 8
T(°C) | 98.51 9850 98.50 98.49 9852 9849 9852 9845 9847

(a) Calculate the mean temperature and its standard error.

(b) To test whether or not the water is cooling, plot a graph of the temperatures versus
the time and make a least-squares fit of a straight line to the data. Is there a statisti-
cally significant slope to the graph?

(c) Note that the intercept is not identical to the mean value of the temperature you cal-
culated in part (a). Now, shift the time coordinates by 4 s so that the mean time is
0. Refit the data with the new values of T. Is the intercept now identical to the mean
value of T'?

(d) Clearly, the results of this experiment cannot depend upon the time at which the
measurements were made. Show that, if the mean value of x is equal to zero, then
the intercept b calculated from Equation (6.13) is identically equal to the mean
value of y.
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7.1 DETERMINANT SOLUTION

So far we have discussed fitting a straight line to a group of data points. However,
suppose our data (x;, y;) were not consistent with a straight line fit. We might con-
struct a more complex function with extra parameters and try varying the parame-
ters of this function to fit the data more closely. A very useful function for such a fit
is a power-series poiynomiail

y(x)=a, tax+azx?+ax3+---+a,xm! (7.1)

where the dependent variable y is expressed as a sum of power series of the inde-
pendent variable x with coefficients a,, a,, a;, a4, and so forth.

For problems in which the fitting function is linear in the parameters, the
method of least squares is readily extended to any number of terms m, limited only
by our ability to solve m linear equations in m unknowns and by the precision with
which calculations can be made. We can rewrite Equation (7.1) as

y(x)= ﬁn) a,xk! (7.2)
k=1

116
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where the index k runs from 1 to m. In fact, we can generalize the method even fur-
ther by writing Equation (7.2) as

m

y(x) =7 apfi(x) (7.3)

k=1

where the functions fi(x) could be the powers of x as in Equation (7.2), fi(x) = 1,
f2(x) = x, f5(x) = x2, and so forth, or they could be other functions of x as long as
they do not involve the parameters a,, a,, a;, and so forth.

With this definition, the probability function of Equation (6.8) can be written as

1 ) exp [_% 2 2‘15 [Yi - i akﬁc(xi):lz] (7.4)

o;V2mw i k=1

P(al,az,---’am)=H<

and Equation (6.9) for x? becomes

T T
X= lo__i[yi—kzlakfk(xi)JJ (7.5)

The method of least squares requires that we minimize x2, our measure of the
goodness of fit to the data, with respect to the parameters a,, a,, a;, and so forth. The
minimum is determined by taking partial derivatives with respect to each parameter
in the expression for x? of Equation (7.5), and setting them to zero:

9, 0

1 m 2
9a, X = %‘l [;’ {)’i _kz] akfk(xi)”

=-2> [f[((r—);l) I:yi - i akfk(xi)H =0 (7.6)

k=1

Thus, we obtain a set of m coupled linear equations for the m parameters a;, with the
index [ running from 1 to m:

or Z}’ij%zi) = Zfl(zi)[alfl(xi) +ay fr(x;) +asfa(x) -]
(7.7)

and so forth.
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The solutions can be found by the method of determinants, as in Chapter 6.
We shall display the full solution for the particular case of m = 3:

Eyiﬁ:;a Eﬁ(xi()’J;z(xi) 2ﬁ<xi31;3<xi)
. 2y’¥ Efzu,-()’;(xo 2fzoci()’;(x,-)
Ey’,‘,’ Ekiu S ki\)
vﬁ(xfafg(x» f((y) zﬁ(x,;;(xa

et 2ﬁ<x,~£(x,) . vf((r) Efxx,ﬁ(x.) 08
Ef(_lf_(_) Eyiﬁ:;o Eﬁu,-;?(x,-)
Eﬁ(xi;;(x,-) Efxx,-():;z(x,-) 2yf_((y_)
- 2Jz<ac,~01;1<)c,-) Efxxi];xx,-) Eyfy
2f3<x,~0f;;(x,> Eﬁ(x,-():;z(x» 2)}]%
s Hh() g fledhln) o ()
- Al EJ%L_) zmxi}?(x,) zmi};(xf)
ﬁ(xﬁ(x.-) Eﬁ(x,ﬁ(xi) 2ﬁ<x,~£<x,-)

We note that, as in the straight-line fits in Chapter 6, the denominator A is a func-

tion only of the independent variable

x and the uncertainties o; in the dependent

variable, and is not a function of the dependent variable y; itself. For the special
case of a quadratic power series in x, y(x;) = a; + a,x; + a;x?, we have fi(x;) = 1,
fo(x;) = x;, and f3(x;) = x?, so that Equations (7.8) become
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Example 7.1. A student plans to use a thermocouple to monitor temperatures and must
first calibrate it against a thermometer. The thermocouple consists of a junction of a cop-
per wire and a constantan wire. In order to measure the junction voltage with high pre-
cision, she connects the sample junction in series with a reference junction that is held at
0°C in an ice water bath. The data, therefore, will be valid only for calibrating the
relative variation of the junction voltage with temperature. The absolute voltage must
be determined in a separate experiment by measuring it at one specific temperature.
The student measures the difference in output voltage between the two junctions
for a temperature variation in the sample junction from 0 to 100°C in steps of 5°C. The
measurements are made on the 3-mV scale of the voltmeter, and fluctuations of the
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TABLE 7.1
Experimental data for the determination of the relative output
volt V of a thermocouple junction functi ture
T of the junction
Measured Calculated
Trial Temperature voltage voltage
i T (°C) V (mV) V(T) (mV)
1 0. —0.849 -0.918
2 . —-0.738 -0.728
3 10. —0.537 —0.536
4 15. —0.354 —-0.341
5 20. —-0.196 —-0.143
6 25. -0.019 0.058
7 30. 0.262 0.261
8 35. 0.413 0.467
9 40. 0.734 0.676
10 45. 0.882 0.888
11 50. 1.258 1.102
12 55. 1.305 1.319
13 60. 1.541 1.539
14 65. 1.768 1.761
15 70. 1.935 1.987
16 75. 2.147 2.215
17 80. 2.456 2.446
18 85. 2.676 2.679
19 90. 2.994 2915
20 95. 3.200 3.155
21 100. 3.318 3.396

a, = —0.918 % 0.030
a, = 0.0377 = 0.0013
a, = 0.000055 = 0.000013

Note: The common uncertainty in the voltage measurement is assumed to be 0.05 V. The value of x?
for the fit was x2 = 26.6 for 18 degrees of freedom, with a probability of 8.8%. Parameters obtained
from the fit are listed at the bottom of the table.

needle indicate that the uncertainties in the measurements are approximately 0.05 mV
for all readings.

Data from the experiment are listed in Table 7.1 and are plotted in Figure 7.1.
To a first approximation, the variation of V with T is linear, but close inspection of
the graph reveals a slight curvature. Theoretically, we expect a good fit to these data
with a quadratic curve of the form V = a, + a,T + a,T .

The parameters for the fit to the data of Example 7.1 have been obtained by
evaluating the sums and determinants of Equations (7.9). For a second-degree poly-
nomial with 21 data points, Equation (7.5) becomes
1
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FIGURE 7.1

Thermocouple voltage versus temperature (Example 7.1). The curved line was calculated by fitting to
the data second-degree polynomial V = a, + a,T + a;T? by the least-squares method. Uniform
uncertainties were assumed.

The values of x? and the parameters a,, a,, and a; determined from the fit are
listed in Table 7.1, as are the calculated values of V(T;) = y(x;). The calculated val-
ues of V are also represented by the solid line on the graph of Figure 7.1. We obtain
x2 = 26.6 for this fit, or x2 = x%/v = 1.5, where the number of degrees of free-
dom v is related to the number of events N and the number of free parameters m by

v=N — m Thn nrnhahihhl Fnr nhtalnlnn \/2 thic hich or h:nhpr can hn detarmined
v iV five t’ llL WULALLL 5 LillO ‘ll Al UL ‘llb Iwl WAIl Uw UWwiwiiiiliiwig

from the x 2-probability distribution (see Table C.4) and is about 8.8%, indicating a
reasonable fit to the data.

As an alternative to calculating x2 from the fit, we could extend Equation
(6.15) to three parameters and calculate the average uncertainty in the temperature
readings to obtain

1 21 XZ

02 =§2=— Sy — (@) + ayx; + ax)P ==

(7.11)
which is just the value of the uncertainty that would make x2 = 1. For Example 7.1,
we obtain for an estimate of the variance,

a'?=0?X x%/(N—n)=0.05X26.6/18 = 0.06°C

suggesting, perhaps, that the student slightly underestimated the uncertainty in her
measurements of V.
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7.2 MATRIX SOLUTION

The techniques of least-squares fitting fall under the general name of regression
analysis. Because we have been considering only problems in which the fitting
function

m

y(x:) 2 arfi(xi) (7.12)

is linear in the parameters a,, we are considering only linear regression or multiple

linear regression, usually shortened to multiple regression. In Chapter 8 we deal
with techniques for handling problems with fitting functions that are not linear in
the parameters.

Matrix Equations

We have not yet determined the uncertainties in the three parameters we obtained
when we fitted the second-order equation to the data of Example 7.1. We could find
the uncertainties by extending the method used for the linear fits of Examples 6.1
and 6.2. However, the algebra becomes even more tedious as the number of terms
in the fitted equation increases, and in fact, our method only yielded estimates of the
variances o and not of the covariances o 2, which are often important for fitted pa-
rameters. Rather than pursue the determinant method, we shall discuss immediately
the more elegant and general matrix method for solving the multiple regression
problem. Some of the properties of matrices are discussed in Appendix B.

Equations (7.7) can be expressed in matrix form as the equivalence between a
row matrix § and the product of a row matrix a with a symmetric matrix «, all of
order m:

B =aa (7.13)
The elements of the row matrix 8 are defined by
1
Bi= > [; il (xi)] (7.14)
those of the symmetric matrix & by
EV[L#H\#(V\-I (718§
2 JI\Xi)

\
i Jk\"‘ilJ \/7-1J)

and the elements of the row matrix a are the parameters of the fit. For m = 3, the

S TAnYs éne no

lllalllbcb 1iay UC Wlll.lCll ad

B=[B, B, B3] a=[a, a, aj] (7.16)
and
Q. O Qg3
o = |0y Qypn Oy (7.17)

Q3 Q3 Uiz
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To solve for the parameter matrix a we multiply both sides of Equation (7.13)
on the right by the inverse € of the matrix a, defined such that e = aa™! = 1, the
unity matrix. We obtain

pe = aa€e = a (/.18)
which gives
a=Be=Pa’! (7.19)

Equation (7.19) can also be expressed as -

2 Br€x) = g {%2[} yifi(x; )” (7.20)

1 U

k
where the B, is given by Equation (7.14).

The solution of Equation (7.19) requires that the matrix « be inverted. This
generally is not a simple procedure, except for matrices of very low order, but com-
puter routines are readily available. The inversion of a matrix is discussed in Ap-
pendix B.

The symmetric matrix e is called the curvature matrix because of its relation-
ship to the curvature of the x? function in parameter space. The relationship be-
comes apparent when we take the second derivatives of x? with respect to the
parameters. From Equation (7.6), we have for the partial derivative of x? with re-

spect to anv rk-h«:ﬂl naramatar

HU\/L VU Al IJ UlleJ Pu.lulll\.«l,\/l Ml,
9 x> fi(x;
a_)c(z, = 2[ ’((T { zakfk(x “ (7.21)
and the second cross-partial derivative with respect to two such parameters is
?x’ _
90,00, 23, 2fl( x) fi(x)| = 20 (7.22)

Estimation of Errors

The variance o2, of any parameter g, is the sum of the variances of each of the data
points o; multiplied by the square of the effect that each data point has on the deter-
mination of the parameter g, [see Equation (6.19)]. Similarly, the covariance of two
parameters a; and g, is given by

52, = S |02 224 (7.23)
v ™ 2% 5y, ay) '

(which also gives the variance for j = /), where we have assumed that there are no
correlations between uncertainties in the measured variables y;. Taking the deriva-
tives in Equation (7.23) of g, with respect to y; we obtain

g [ Sk ] (7.24)
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and, substituting into Equation (7.23), we obtain for the weighted sum of the
squares of the derivatives,

k=1
m [ . ] (7.25)
=2 Iejk 2. € O‘kaj
k=1 p=1
m
= 2 [ekj' llk] €
k=1
where we have swit ad the arder of the cume aver the dummv indices i k. and !
YY AIN /AN VY N 1L ¥ W% JYY AL A1\ Al%W WVAWWIL ULl LilWw UULLIU VUV Y Wl LilIWw G uiiliiiig AL D F, ’\r, LI ¢

is symmetric, its inverse
the unity matrix, which

racenlt fram thp cnmmpd nrodi
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sented by 1.
The inverse matrix € = o~ ! is called the error matrix or the covariance matrix
a A
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Example 7.2. The matrix method is illustrated by a straight-line fit V = a;, + a,T to
a selection of data from Example 7.1. To show clearly each step of the calculation, we
have selected just six points spaced at 25° intervals between 0 and 100° and have as-
sumed a common uncertainty in the dependent variable o, = 0.05 mV. The data are
listed in the columns 2 and 3 of Table 7.2a.

We begin by calculating each of the fitting functions f; = 1 and f, = x at each
value of the independent variable T. These are listed in columns 4 and 5 of Table 7.2a.
For each measured value of x, the values of ,, the elements of the column matrix 8,
and of oy, the elements of the symmetric matrix e, are calculated according to Equa-
tions (7.14) and (7.15). The individual terms in the calculation of 3, and 3, are listed
in columns 6 and 7 of Table 7.2a and the individual terms in the calculation of o, are
listed in columns 8 through 10. (We assume symmetry in «.) The resulting matrices
are displayed in Table 7.2b.

The symmetric matrix a is inverted to obtain the variance matrix € with elements
€, shown in Table 7. 2b and the product matrix of the fitted parameters o = Be is cal-

1latad and A; ad in Tahkla 7 9L Tha calanlatad valiiag af tho fittad variahla 1/ £fAe
cuiateda and uxoylay\.«u inn 1aoie /.2o. 1ne caicuiated vaiues of tne iitted variaovie v 1or

each value of the independent variable T are listed in the last column of Table 7.2a.

Program 7.1. MULTREGR (Appendix E) Least-squares fitting with matrices.

Multiple regression problems are usually solved by computer. The program
MULTREGR calls a set of routines for fitting any function that is linear in the pa-
rameters a,, a,, . . . , a,, to a set of N data points. Branches in the program on the char-
acter variable PAE permit selection of the fitting function for each example in this
chapter, with PAE = ‘P’ for the power series in x, PAE = ‘A’ for all terms of a
fourth-order Legendre polynomial, or PAE = ‘E’ for only the even terms in the Le-
gendre polynomial. The program uses several program units in addition to those re-
ferred to in Chapter 6.
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TABLE 7.2
Matrix solution for linear fit to data of Example 7.2

(a) Data and components of matrix elements

i T |4 filx)  folx) B, B2 Oy o Q) Viie

1 0 —0.849 1 0 -—3396 0 400 0 0 -0.947
2 20 -0.196 1 20 —78.4 —1,458 400 8,000 160,000 —0.101
3 40 0.734 1 40 293.6 11,744 400 16,000 640,000 0.745
4 60 1.541 1 60 616.4 36,984 400 24,000 1,440,000 1.590
5 80 2.456 1 80 982.4 78,592 400 32,000 2,560,000 2.436
6 100 3.318 1 100 1327.6 132,720 400 40,000 4,000,000 3.281

2802.0 258,472 2,400 120,000 8,800,000

(b) Matrices
_| 2400 120,000 _| 1310x107% -1.786x 107
120,000  8,800,00 —1.786 x 107 3.571 X 107"

B =[2,802 258,472 a=[—0947 0.0423]

Note: The uniform uncertainty in V was assumed to be 0.05 mV as in Example 7.1. The columns labeled 8, and o,
etc. correspond to the individual contributions by each measured coordinate pair to the summed values of 8 and .
The value of x for the fit was 9.1 for 4 degrees of freedom corresponding to a probability of 5.5%.

Program 7.2. FITFUNC7 (Appendix E) Fitting functions and x? calculation.

In general, every fitting problem requires such a routine. The function
POWERFUNC calculates the individual terms in a power function of any order in
x for Example 7.2, or Legendre polynomials for Example 7.3.

Program7.3. MAKEAB?7 (Appendix E) Form the arrays for the matrices o and 3.

Program B.1. MATRIX (Appendix E) Matrix products and inversion.

When we use the matrix method to fit a polynomial function to a data sample,
the resulting parameters must be identical to those calculated by the determinant
method, but we also obtain the full error matrix. The error matrix obtained by fitting
a second-degree polynomial to the complete data sample of Example 7.1 is listed in
Table 7.3.

The error matrix can be used to estimate the uncertainty in a calculated result,
inciuding the effects of the correlations of the errors. As an exampie, et us suppose
that we wish to find the predicted value of the voltage V and its uncertainty for a
temperature of exactly 80°C. We should calculate

V= a, + azT + a3T2 (7.26)

using the parameters determined by the fit to the data. The uncertainty in the calcu-
lated value of V, which results from the uncertainty in the parameters, is given by
Equation (3.13),
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TABLE 7.3
Error matrix from a fit by the matrix method to the data of Table 7.1

8.907 X 107%™ —3.473 X 107% 2.823 X 1077
-3.473 X 107% 1913 X 107% ~1.783 X 1078

2.823 X 10777 —1.783 X 107% 1.783 x 10710

Note: The table gives the variances and covariances of the fitted parameters. The values of the parame-
ters and of x? are listed in Table 7.1.

(VY ot (2V Y2 (VY o
da, : da, 2 da, 3

[ oV av) [aV av [aVv av

\aa, 302)0'12 2\@ )0'13 2k8a2 6a3) 23 (7.27)

=1‘€“+T '622+T '633+2(T'€12+T '613+T '€23)

where €,, and so on are the covariant terms in the symmetric error matrix. If we
used only the diagonal terms in the error matrix, our result would be V = (2.45
* 0.14) V. However, the off-diagonal terms are mainly negative, and including
them reduces the uncertainty by almost a factor of 10 to 0.015, so that we should
quote V= (2.45 = 0.02) V.

TinoarT a
LAnear .0

Table 7.4 illustrates the use of a spreadsheet (without taking advantage of the
spreadsheet’s built-in least-squares fitting routine) to fit a straight line to the data of
Example 7.2 by the matrix method. We entered the data in columns labeled T, V,
and o, and calculated component terms to be summed for 8, B,, and a;, a5, and
Qy, in the labeled columns using the indicated equations. We summed each a col-
umn to form the elements of the square matrix &, and the 3 columns to form the lin-
ear matrix 3. The spreadsheet’s matrix-handling routines were applied to invert the
o-matrix to form the e-matrix, and to multiply € by  to find the parameter matrix
a. Uncertainties in the parameters were calculated from the square roots of the di-
agonal terms in the e-matrix. Although we used absolute cell addresses to illustrate
the procedure, we could have simplified the calculation by naming the arrays of
cells and using the array-handling capabilities of the spreadsheet.

It may seem inefficient to write a program to solve such a simple problem,
which most spreadsheets can handle with ease. However, there are advantages.
First, it would be relatively easy to expand the program to fit more parameters, or to

fit a Cnﬂnc of functione mara nnmn]u\atnr‘ than cimnle nowers n‘F thea II"II“PI'\PI"II“ nt
110U @4 OVliVw) VUl LULIVWLIVILILD 111VI W wUL ll AilWw il Wwul "llull Ullllt’l P LAl 111 tl\.r l\.l\.«lll.

variable. A second advantage is that the solution provides the full error matrix.
While most fitting programs should provide the uncertainties in the fitted parame-

ters, the covariances may not be available. In some problems, they are essential.

We used Quatro Pro for this example, but the procedure with Excel is similar.



TABLE 7.4
Matrix solution by spreadsheet calculation for linear fit to data of
Example 7.2

(a) Data and components of the matrix elements and sums

TCC) V(mV) o, (mV) B, B, ap ap =0y 0y Yeare X

Column Equations V*l/o? V*T/o? 1*1/o? 1*T/o? T*T/o? a; + a*T [(Y = Yea)/oP?

0 -0.849 0.050 -339.6 0 400 0 0 -0.947 3.81

20 -0.196 0050 -784 -—1568 400 8,000 160,000 -—0.101 3.61
40 0.734  0.050 293.6 11,744 400 16,000 640,000 0.745 0.04
60 1.541  0.050 616.4 36,984 400 24,000 1,440,000 1.590 0.97
80 2.456 0.050 9824 78,592 400 32,000 2,560,000 2.436 0.16
100 3318 0.050 1327.2 132,720 400 40,000 4,000,000  3.281 0.54
SUMS 2801.6 258,472 2400 120,000 8,800,000 9.13

(b) Matrices and fitted coefficients with uncertainties
(Quatro Pro matrix algebra used to calculate € and a)

a €
2400 120000 1.310E-03 —1.786E-05
120000 8800000 —1.786E-05  3.571E-07
B a
12801.6 258472 | [-0.947 0.0423)
Oa
X2 =9.13 0.036_0.006

7.3 INDEPENDENT PARAMETERS
Suppose we take the data of Example 6.1 or Example 6.2 and fit to them the qua-

dratic y\u_yuuuua} function Yy =a; t dyx + u342 as we did for uxampu: 7.1. We
should expect to find a rather small and possibly meaningless result for the coeffi-
cient a; of the quadratic term, but, because a; was not set equal to zero by definition,
as in the analysis of Chapter 6, we might also find that the values of a, and a, have
changed, sometimes considerably, from the values obtained in the linear fit. In gen-
eral, the polynomial fitting procedure that we have considered will yield values for
the coefficients that depend on the degree of the polynomial fitted to the data.

This interdependence arises from the fact that we have specified our coordi-
nate system without regard to the region of parameter space from which our data
points are extracted. The value of a, represents the intercept on the ordinal axis, the
coefficient a, represents the slope at this same point, and other coefficients repre-
sent higher orders of curvature at this same intercept point. If the data are not clus-
tered about this intercept point, its location might be highly dependent on the
polynomial used to fit the data.

We might be able to extract more meamngful information about the data if we
nt th

A datarmina inctaad ~rnaffinia nd cn farth whisrh raneaga
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average value, the average slope, the average curvature, and so forth, of the data.
Such coefficients would be independent of our choice of coordinate system and
would represent physical characteristics of the data that are independent of the de-
gree of the fitted polynomial.

Orthogonal Polynomials
We want to fit the data to a function that is similar to that of Equation (7.1) but that

—yields the desired independence of the coefficients. The appropriate functiontouse

is the sum of orthogonal polynomials,! which has the form

Y(x)=a; + a)x — B) + as(x —v1) (x — v) (7.28)
+as(x—8)(x—d)(x —8;)+---

Following the development of Section 7.1, we must minimize x? to determine the co-

efficients a,, a,, a3, a4, and so on, with the further criterion that the addition of higher-
order terms to the pglynomia] will not affect the evaluation of lower-order terms. Thig

A1 22223 WU LA LR2QL WWILL AIVUN QLI LA UV QIR GLUIY Vilevi W

criterion will be used to determine the extra parameters {3, vy;, y,, and so on.

The goodness-of-fit parameter x? is defined as
r 1. r 1
Ay; | 1
=3 | = 2| Sl (1.29

ag; (O

Setting the derivatives of x? with respect to each of the m coefficients a,, a,, and so
forth to 0 yields m simultaneous equations

E)’i = Na, + a,Z(x; — B) + a3 2(x; — 'Yl)(xi - 72)

(7.30)
+a,2(x; —8;) (o — 3) (x; — &)+ -
> Xy = a1 2x; + a 2x(x; — B) + asZx;(x — vi) (i — v2)
(1.31)
+ a32xi(xi - 81) (xi - 82) (xi - 83) +--
Exizyi = alzxiz + aZExzz(xi - B) + aSExiz(xi - Yl) (xi - 72)
(7.32)
+a,Zxf(x = 8,) (6 = ) (x; = 85) + - -
Sy =a,2x} + ar Zx}(x; — B) + a3 Zx}(x; — v1) (x; — v2)
(7.33)

+a,Zx}— 8y) ( — 3) (; — ) + - -

where we have omitted a factor of o2 in the denominator for clarity.

'Any polynomial such as that of Equation (7.1) can be rewritten as a sum of orthogonal polynomials
y=a+ 21 [, (x))]
=
with the orthogonal property that Z[f,(x,)fi(x,)] = 0 for j # k.



Additional Parameters

Let us examine Equation (7.30). If we restrict ourselves to a zeroth-degree polyno-
mial, that is, to only one coefficient a,, all the other coefficients are equal to O by de-

finition. The coefficient a, therefore, is specified completely by the first term on the

PSPy

ugut-uauu DIUC Ul Equauuu \ / DU}

1 _
a =N2)’i=)’ (7.34)

If we restrict ourselves to a first-degree polynomial, the coefficient a, of the second
term of Equation (7.30) is not 0. However, if g, is to be independent of the value of

2s . ’

E(Xi‘B)zo

leads to the value for 3,

_1 _ -
B=y2 X=X (7.35)

and a, can be determined directly from Equation (7.31) by substituting the values of
a, and 3 with higher-order coefficients (a5, a,, etc.) set to 0.

Similarly, if we consider a quadratic function, the third term of Equation
(7.30) must be 0 even when the coefficient a; is not 0. This constraint leads to a qua-
dratic equation in <y, and v, that is not sufficient to specify either parameter. We
have the additional constraint, however, that the coefficient a, must be specified
completely by Equations (7.30) and (7.31). Thus, the third term in both Equations
(7.30) and (7.31) must be O regardless of the value of the coefficient a;, and we have
two simultaneous quadratic equations for the parameters vy, and vy,,

)

~
<
NI
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v \/

Similarly, the coefficient a; must be determined completely by Equation (7.32) (and
the predetermined values of a, and a,), and this constraint yields three simultaneous
equations for the parameters §,, 3,, and d5:

2 (o — 3 (x; — dy) (x; — d3)
2 x; (x; — d;) (; — ) (x; — 85)
Ex,z(xi —8) (x5 —8)(x;—3;)=0

The extrapolation to higher order is straightforward. (Note that these additional pa-
rameters are functions only of the independent variable x;.)

0

0 (7.37)

Estimates of the Coefficients

Once the parameters 8, v, 3, and so on have been determmed by
on

b t Q
b the constraint equ
tions, estimates of the coefficients a,, a,, and so n be found from the resulting
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n + 1 simultaneous equations. The value for the first coefficient a, is specified com-
pletely by minimizing x? with respect to a, in Equation (7.30) and is given in Equa-
tion (7.34). The value of the second coefficient a, is determined by minimizing x?2
with respect to both g, and a, in Equations (7.30) and (7.31) and substituting the
value of g, from Equation (7.34) into Equation (7.31). Similarly, the value of a; can
be determined from Equation (7.32) after substituting the values of a, and a, deter-
mined from Equations (7.30) and (7.31). Each succeeding equation yields a value for
the next higher-order coefficient.

Note that the value determined tor any coetticient 1s thus independent ot the
value specified for any higher-order coefficient, but is not independent of the value

of lower-order coefficients. The parameters, representing our best estimates of the
coefficients, are given by

w=rS =7
N v.lx. — B)
Lyl i P
a, =
> (x = B)?

. ‘ (7.38)
_ z yilxi = v1) O = ¥2)
2 [(xi = 1) (x; — 72)]2
> il — = 8,) (x; — 83)
2 [ — 51) (xi — 8y) (x; — §;)

as =

and so forth.

Simplification

For the general case of arbitrarily chosen data points (x;, y;), this procedure is cum-
bersome even with computer techniques because it requires the solution of coupled
nonlinear equauons There is, however, a specrar Ltype of data for which the calcula-
tions can be considerably simplified, namely, data that meet the following two cri-
teria: (1) the independent variables x; are equally spaced, and (2) the uncertainties
are constant, o; =0, and can therefore be 1guurcu

Consider the experiments of Examples 6.1 (measurement of temperature ver-
sus position) and 7.1 (voltage versus temperature). Those data satisfy the required
conditions and, therefore, we could use a simplified method of independent para-
meters to obtain a fit. The resulting values of the coefficients for these particular ex-
periments might not have any great physical significance (that is, a, = T the
average temperature of the data points in Example 6.1 is not a particularly useful
number), but by using this technique of fitting orthogonal polynomials we could try
fitting higher-degree polynomials without changing the values of the coefficients al-
ready calculated for a straight-line or quadratic fit. The experiment of Example 6.2
(the decay of a radioactive state) fulfills only the first of the two criteria, because the

x data points are equally spaced but the uncertainties are statistical, so that we can-



not ignore the factor of o?that belongs in the denominators of the fitting Equations
(7.30) through (7.33).
For an expenment similar to that of Example 7.1, where we have made N

X, to x in steps of A,

A=x ) +x

and the uncertainties are due to instrumental errors with a common standard devia-
tion o; = o, Equations (7.35) through (7.37) reduce to

1

1
=._rzxi=)_5=5 X; — X,)

Y= B+\/N2(x— )2—B+A\/ (N2 - 1) (7.39)

U e N v
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A more comprehensive list of parameters for orthogonal polynomials can be found

in Anderson and Houseman (1942).
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AAUILIV [ .J DILIUVWD DUDlll\rl\/llLD u], u2, u3, auu u4 ao Wbll ad Lll\/ vaiuuvo a.u

the x2-probability obtained when we fit the data of Example 7.1, by the standard
least-squares method and by the independent parameter method of Equation (7.39).
We have made separate fits with first-, second-, and third-degree polynomials
(m = 2, 3, and 4). As expected, adding extra terms does not change the values of the
lower-order coefficients obtained by the independent parameter method and there-
fore we display them only once in Table 7.5. There is a marked improvement in x?
in going from the two-parameter (linear) fits to three-parameter (quadratic) fits.

Unless a theoretical reason dictates that our data should follow a cubic distribu-

t1 tha n t1ifinats al-in
LIUII, lll\/L\/ is ntL‘ISL‘lll\'ﬂ.LlUll lll lllal\llls a fG"r lJchalll\/L\/L (CUb'C) ﬁl tG these data, be=

cause the value of x? for m = 3 is satisfactory (26.6 for 18 degrees of freedom,

TABLE 7.5

Values of x? and parameters obtained by fitting the data of Example 7.1 by
the standard least-squares method and by the method of independent
parameters, as a function of the number of parameters m of the fit

Standard least squares

Independent
m 2 3 4 parameters
x> 43.5 (0.12%) 26.6(8.8%) 24.9(9.4%)
a -1.01 £ 0.02 (—0.92 £ 0.03) (—0.89 * 0.03) 1.15
a, (4.31 £ 0.04)1072 (3.8 = 0.1)1072 (3.4 £0.3)1072 431 X 1072
as (5.5 £ 1.3)107° (1.5 =0.8)107* 5.49 X 1073
a, (—=6.5 = 5.1)1077 6.51 X 1077

Note: The values of x? are the same for both methods. The numbers in parentheses correspond to the x? probability
for the fit with 21-m degrees of freedom.
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corresponding to P = 8.8%), and adding more terms does not improve the fit. If a
cubic function had been predicted by theoretical considerations, we should be ob-

ligated to say that our data are not sensitive to the presence of a cubic term.

Legendre Polynomials

Although the method of fitting to orthogonal polynomials outlined in the previous
section can be tedious, there are predefined sets of orthogonal polynomials that are
often useful in fitting data. One important set is the Legendre polynomials

y(x) = aoPy(x) + a,A(x) + - - 2 [aLPi(x)] (7.40)

[N

where x = cos 6 and the terms P;(x) in the function are given by
R(x)=1  PR)=%h0Cx*~1)

7.41
RW=x  A®=%E -3 (74D
and higher-order terms can be determined from the recursion relation
1
Pi(x)= L [(2L = DxA-y(x) = (L — DP»(x)] (7.42)

Legendre polynomials are orthogonal when averaged over all values of x = cos 0:

! _]2/@QL+1) forL=M
L[PL(x)PM(x) dx = [ . N (7.43)

Example 7.3. Let us consider an experiment in which *C is bombarded by 4.5-MeV
protons. In the subsequent reaction, some of the protons are captured by the !3C nu-
cleus, which then decays by gamma emission, producing gamma rays with energies up

ta 11 Mal A maagnramant nf tha angnlar dictrihntian Af tha amittad gcamma rave ot
to 11 MeV. A measurement ot the afiguiar aistiouuion O1 tne emittea gaimiina rays gives

information about the angular momentum states of the energy levels in the residual nu-
cleus “N.

Table 7.6 lists simulated data for this experiment. Gamma ray counts were
recorded at 17 angles from 0 to 160°. Columns 1 through 4 list the angles at which the
measurements were made, the cosine of the angle (x = cos 0), the measured number
of counts (C;), and the uncertainties o in the counts. The uncertainties are assumed to
be purely statistical. These data are plotted in Figure 7.2 as a function of the angle 6.
There appears to be symmetry around 6 = 90°, and consideration of the reaction
process predicts that the data should be described by a fourth-order Legendre polyno-
mial with only even terms:

C = ayPy(x) + a,P(x) + a,Py(x) with x = cos 6 (7.44)

Let us apply the matrix method of least squares of Section 7.2 to this problem to
fit the series of Legendre polynomials of Equation (7.41) to these data. We shall first

fit a fourth-order Legendre polynomial that includes both odd and even terms. The fit-
ting function is of the form

y(x) = aofo(x) + a filx) + -+ + a1 foa(0) (7.45)

which is linear in the fitting parameters, the coefficients a;.
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Angular distribution of gamma rays emitted from the simulated react
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incident protons at E, = 4.5 MeV (Example 7.3). The calculated curve represents a fit to the data of a

series of even Legendre polynomials up to L = 4. Statistical uncertainties were assumed.

TABLE 7.6
Angular distribution of gamma rays emitted in the reaction 1*C(p, y)“N
produced by incident protons at Ep, = 4.5 MeV

6 & Y; Y;
(degrees) X =cos 0 counts o, all terms even term

0 1.000 1400 374 1365.8 1361.3
10 0.985 1386 37.2 1325.2 1321.1
20 0.940 1130 33.6 1217.0 1213.9
30 0.866 1045 323 1075.8 1074.5
40 0.766 971 31.2 943.5 944.4
50 0.643 862 294 852.5 855.6
60 0.500 819 28.6 813.9 818.6
70 0.342 808 28.4 816.9 821.9
80 0.174 862 29.4 836.5 840.2
90 0.000 829 28.2 848.6 849.6
100 -0.174 824 28.7 842.8 840.2
110 -0.342 839 29.0 827.5 821.9
120 —0.500 819 28.6 825.4 818.6
130 —-0.643 901 30.0 861.0 855.6
140 —-0.766 925 304 945.7 944.4
150 —0.866 1044 323 1069.8 1074.5
160 —-0.940 1224 35.0 1202.9 1213.9

Note: The calculated numbers of counts were obtained from least-squares Legendre polynomials fits to the data of

the form Y,(x) = > a, P, _,(x,), for separate fits with all terms and with even terms only.
L=1
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Computer fits Routines used for fitting a series of Legendre polynomials to these data
are included in Program 7.1. The procedure LEGPOLY in the program unit

:'I'r'rl INC7 calonlatac the tarme of thae I acandre nalunomiale thronoh tanth arder
WINNe 7 CAIVUIALUD WV WIS Vi GV LUEVHUIL PULY HVILHALS GHUUEL Uit Vi,

The procedure is selected through a branch on the variable PAE in the function Funct
with PAE = ‘A’ for all terms to ordern = m — 1, or PAE = ‘E’ to fit with just the
even terms. Note that the index k of the term in the fitting function, in general, does
not correspond to the order L of the Legendre polynomial.

The efficiency of the calculation (and therefore the speed of the linear regression
calculation) could be improved in a number of ways. The simplest change would be
to calculate the functions once at each value of the independent variable and store
the calculated values in an array.

Parameters obtained by fitting a series in Legendre polynomials for terms up
to L = 4 are listed in Table 7.7. Separate fits were made with all terms and with only
the even terms in the series. As expected, the coefficients of terms involving odd or-

ders are comparable to their uncertainties and negligible compared to those involv-
ing even poynomials. The full error matrix for the fit with even terms is listed in
Table 7.8.

In view of the strong theoretical argument that only even Legendre polynomi-
als are required for this reaction, it would be appropriate to fit a series that includes
only the even terms. The parameters obtained in this fit are also displayed in Table
7.7, and the numbers of counts calculated from these parameters are listed. The func-

tion calculated with even terms is illustrated as a curve on the data of Fioure 7.2.

VAIVIL VALV UAITILWLAE VY ALIE WY WIL VWL LIS 1D 1iiuduGlve G5 & ves v 11 LV GG Vi 1 iy

Because we are fitting with orthogonal functions, we might have expected to
obtain identical values for the coefficient a, from both fits. (We expect the higher-

order even coefficients to chanee because the nresence or absence of lower-order

Vivswi 11 WANSwiliwiwvi LU VG EY UVVRNST LAV pIVOLVIIVY VL QUSLIIVY VL AUV Vivswi

coefficients must affect the higher coefficients.) The fact that there is some depen-

dence of a, on higher-order terms is a result of the fact that a given experiment does
not sample uniformly the entire range of the Legendre nnl\mnmml so the orthogo-

IVL SQIIIpAV WIIIIVUIILL ) WA VLIS LGHEY Vi WIS 1ANAL 21V GRy SV vaAL ValaaUs

nality relation Equation (7.43) is not satisfied by a flmte data set. This is in contrast
to the situation in the previous section, where we set up orthogonal functions based
on the data themselves. Nevertheless, it is generally good practice to use orthogonal

TABLE 7.7
Coefficients and x2 from least-squares fit to Legendre polynomial series

2

X a a, a, as a,
All terms 17.2(14%) 9374176 0.7 =128 259 + 14 10 = 17 158 = 18
Even terms 17.6(22%) 938.1 7.5 261 = 14 161 = 16

56.24 —5.256 —6.272

—5.256 186.5 —26.90
|_ —6.272 —26.90 279.8 J




fitting functions whenever possible to minimize both the correlations between co-
efficients and the dependence of higher coefficients on the presence of lower ones.

The values of x? and the x>-probability for the two fits are also given in Table
7.7. !!L I 2 E ] ] E- . .] ] . l I l E ]
five-parameter fit, but x2 per degree of freedom is smaller and the x2-probability is
higher.

74 NONLINEAR FUNCTIONS

In all the procedures developed so far we have assumed that the fitting function was
linear in the coefficients. By that we mean that the function can be expressed as a
. I Hintied 1 e cfrcientH fitd
with a function that is not linear in the coefficients? For example, suppose we have
measured the distribution of decay times of an unstable state and that the distribu-
tion can be represented by the normalized function P(r) = (1/7)e 1S the

~t7 where T is the
mean lifetime of the state. Can we find the parameter T by the least-squares method?
The method of least squares does not yield a straightforward analytical solution for
such functions. In Chapter 8 we investigate methods of searching parameter space
for values of the coefficients that will minimize the goodness-of-fit criterion 2.
Here we consider approximate solutions to such problems using linear-regression

techniques.

Linearization

It is possible to transform some functions into linear functions. For example, if we
were to fit an exponential decay problem of the form

y =ae > (7.46)

L o ~la 10

where a and b are the unknown parameters, it would seem reasonable to take loga-
I f both s and to fit the resulting straight line equation

| Vel
/

Ny o Ve o \
y—ina— ox { l)

5

47
The method of least squares minimizes the value of x2 with respect to each of
the coefficients In a and In b where x? is given by

1
XX=> -ﬁ[ln y; +Ina — bx]]? (7.48)

where we must use weighted uncertainties o; instead of o; to account for the trans-
formation of the dependent variabie:
d(In y; 1
o= ——( y) g;=—0; (7.49)
dy Yi
The importance of weighting the uncertainties is illustrated in Figure 7.3, which
shows the function of Equation (7.46) graphed both on a linear and on a logarithmic

scale. (For plotting, we use logarithms to base 10 rather than natural logarithms.)
The uncertainties are given by g, = \/;. and therefore increase with increasing Vi

AL VHNCLUILANINNICS 41T V Jj G2 RALALARAAN
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FIGURE 7.3

Graph of the function y = ae~%* calculated on a linear and a logarithmic scale. The error bars are
given by g; = \/;, The curved line corresponds to the linear scale on the left, and the straight line to
the logarithmic scale on the right.

However, on the logarithmic scale, they appear to decrease with increasing y; and
are very large for very small In y,. If we were to ignore this effect in fitting Equation
(7.47), we would overemphasize the uncertainties for small values of y;.

In general, if we fit the function f (y) rather than y, the uncertainties o; in the

easured quantities must be modified by

df(y)
dy;

o= o; (7.50)

Errors in the Parameters

If we modify the fitting function so that instead of fitting the data points y; with
the coefficient a, b, . . . , we fit modified data points y; = f(y;) with coefficients a’,
b', ..., then our estimates of the errors in the coefficients will pertain to the uncer-

tainties in the modified coefficients a’, b', . . . , rather than to the desired coefficients
a, b, .. ..If the relationship between the two sets of coefficients is defined to be
a'=fa b =fb) (7.51)

then the correspondence between the uncertainties o, o}, . . . in the modified coef-
ficients and the uncertainties o,, o, . . . in the desired coefficients is obtained in a
manner similar to that for o; and o; in Equation (7.50):

4. () 4(b)
ol =2\ = A (1.52)

a da a b db b
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Thus, if the modified coefficient is a’ = In a, the estimated error in a is deter-
mined from the estimated error in a’, according to Equation (7.52) with f, = In a:
, _d(Ina) a,

0= g %a=, (753)

Values of x? for testing the goodness of fit should be determined from the
original uncertainties of the data o; and from the unmodified equation, although
Equation (7.48) should give approximately equivalent results when weighted with
the modified uncertainties o;.

In Example 6.2, we considered an experiment to check the decrease in the

_ number of counts C as a function of distance r from a radiative source. Weexpected

a relation of the form
C(r)=b/r? (7.54)

and therefore changed the independent variable to x = 1/r? and fitted a straight line
to the C versus x data. Because uncertainties were assigned only to the dependent
variable C, the fit was not distorted by that transformation.

Suppose, instead, that our objective had been to determine the exponent a in
the expression for C:

C(r)=br (7.55)
Taking logarithms of both sides, we obtain the linear equation
In(C)=In(b)—alnr
or

C,=b —ar (7.56)

Y IPal
g =0g/0C

and we could find the exponent a by fitting a straight line to Equation (7.56) using
these weighted uncertainties.

Although the method of taking logarithms of an exponential or a power func-
tion to produce a function that is linear in the parameters may be convenient for
quick estimates, with fast computers it is generally better to solve such problems by
one of the approximation methods developed for fitting nonlinear functions. These
methods will be explored in Chapter 8.

SUMMARY

Linear function: Function that is linear in its parameter a,:

) =3 afi)

1
L 1
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Least-squares fit to a function that is linear in its parameters:

2 pllxi)f;l(xi) 2 pl(xi)f;zlx:) 2 pl(xi)fza(xz)
g; O o;
A 2 £ 2(xi)f1(x:) E Lolx) fox:) E L) fo(x)
5|2 e o? o?
2 fii(xi()!-];l (x:) 2 ﬁ(xi,é(xi) E ﬁ(xiifzs(xi)

2 y'fl(xi) zﬁ(xi)€2(xi) Efl(xi)é?)(xi) .

’ Glz ] 3
L < .f2(xi) < L)Hx) < L) filx) ...
a=3| &0t & o ol

Ey’_fs(x,-) Efs(x,-) (x;) > A f(x) ..

2 3
2 2 2
g; g g;

For the jth coefficient, a; is found by re
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sion for A with the first column in the expression for a;.
Chi square:

51 Pogli], e, ]

X} =2 =i —y®)] =X v~ S ak
] ] {

i=1|_0' J i=1|_0-|_ k=1 JJ

Sample variance o*:
st = S = ()P
gf=g5'=—" — y(x
N -m ] yl y ]

Matrix solution: a = Be = Ba~! where a is a linear matrix of the coefficients and

By = 2 [0% yif (xi)]

= Lilzfl (xi)fk(xi)}

Error or variance matrix: The diagonal elements of the square matrix € = a~!
are the variances of the parameters a, and the off-diagonal elements are the
covariances:
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a =5 o = i — B)
! *” S - B

= 2y = v1) (i = ¥o) = 2y — 81) (i — 8y) (x; — 85)
> 2= ) (= YR ! 2[(x; = 81) (6 — 8) [ — 33)

For equally spaced values of x, x; , | — x; = A,

B=1/2(xi+xN) B+AV12N2_
3=B,B“—“A\/‘/zo(3N2—7)

Legendre polvnomials:
[o] r J

y(x) = 2 [, B.(x)]

B(x)= %[(2L — 1)xP,_(x) — (L — 1)P,_,(x)] (recursion relation)

Nonlinear functions:
If y; = f(;), then

. df(y)
o; o, 0;
and ifa’ = f,(a) and b’ = f,(b), then
, _df(@) , _ () )
Oa™"gq % T0T gy %

7.1. Show by direct calculation using the data of Example 7.2 listed in Table 7.2 that

a€e = 1 where 1 is the unity matrix.

7.2. The tabulated data represent the lower bin limit x and the bin contents y of a histogram

of data that fall into two peaks.

i 1 2 3 4 5 6 7 8 9 10
X, 50 60 70 80 90 100 110 120 130 140
v, 5 7 1 13 21 43 36 16 15 10
i 11 12 13 14 15 16 17 18 19 20
x; 150 160 170 180 190 200 210 220 230 240
Y, 13 42 9 75 29 13 8 4 6 3

Use the method of least squares to find the amplitudes a, and a, and their uncertain-

ties by fitting to the data the function
y®) = a,L(x; oy, T)) + a,L (x5 po, 1)
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7.3.

74.

with w, = 102.1, ', = 30, w, = 177.9, and I';, = 20. The function L(x; p, I) is the
Lorentzian function of Equation (2.32). Assume statistical uncertainties (o, = \/)7,-).
Find x? for the fit and the full error matrix.

From the parameters listed in Table 7.7 for the fit of even terms to the data of Exam-
ple 7.3, determine the predicted value of the cross section for 8 = 90° and its uncer-
tainty. Calculate the uncertainty from the diagonal errors, listed in Table 7.7 and from
the full error matrix listed in Table 7.8 and compare the two results.

Fit fourth-degree power series polynomials instead of Legendre polynomials to the
data of Example 7.3. Let x = cos 0 and fit a polynomial with all terms to x* and an-

7.9.

7.10.

other polynomial with only the even terms. Compare your results to those obtained

£ tho it ta 1
from the fit to Legendre polynomials displayed in Table 7.7.

. Derive the expression for v, and -y, of Equation (7.36).

Derive an expression for P4(cos 0). [See Equation (7.42).]
Chnw hy dirent intagratinn that P (v D (v and P (v are art

SNOW Oy GIreCt 1niegration nat £ p\X), i 11X), anag i, X) are orinogoena
O\ANJs | AN A 2\ f)

tion (7.43).

. In an experiment to measure the angular distribution of elastically scattered particles,

a beam of particles strikes a liquid hydrogen target and counts are recorded at selected
angles to the direction of the incident beam. Measurements are made both with the tar-
get filled with liquid hydrogen (full target) and with an empty target (empty target).
The empty-target measurements were made with one-half the number of incident par-
ticles used for the full-target signal. By subtracting the suitably scaled empty-target
signal from the full-target signal, the angular distribution of scattering on pure hydro-
gen can be determined.

Assume that the following data were obtained in such an experiment. Uncer-
tainties in the numbers of counts are statistical.

cos 6 (lower limit) -1.0 -08 ~-06 -04 -02 00 02 04 06 08
cos 6 (upper limit) -08 -06 -04 -02 00 02 04 06 08 1.0

184 128 99 49 53 55 70 81 136 216
5 4 4 1 3 1 4 9 8 7

Counts, full target
Counts, empty target

(a) Scale the empty-target data to the same number of incident antiprotons used in
recording the full-target data and make a subtraction to obtain the number of in-
teractions on the hydrogen. Pay particular attention to the uncertainties in the dif-
ference.

(b) Use the least-squares method to fit the function

y(x) = a,Ry(x) + ay R (x) + a3 Py(x)

to the subtracted data, to obtain the coefficients a,, a,, and a;, where the functions
P,(x) are the Legendre polynomials defined in Equation (7.41).
Follow the procedure outlined in Section 7.4 to find the exponent a in Equation (7.55),
using the data of Example 6.2 (Table 6.2).
A 1-m-long plastic plate with rulings at 10-cm intervals is dropped through a photo-
gate to measure the acceleration of gravity g in an undergraduate laboratory experi-
ment. The time is recorded as each ruling passes through the gate. The passage of the
first ruling starts the timer. Data from such an experiment are tabulated. The recorded
time is related to the distance that the ruler has fallen by y = y, — vyt — 1/2gf2. Note
that neither the initial height y, nor the initial speed v, are known.
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Ruling# | 0 1 2 3 4 5 6 1 8 9 10
Time(s) | 0.000 0079 0.132 0.174 0212 0.244 0271 0301 0.325 0.349 0.373

c1€ast=-squares CUHIoOa W d SCCONa-acgrce poiyno d O i.'i'i S
uncertainty. Measure y from the photogate so that you can set y = 0 when ruling #0
passes the gate, y = 1 when ruling #1 passes, and so forth. Choose ¢ as the indepen-
dent and y as the dependent variable. Assume a uniform uncertainty in ¢ of 0.001 s and
a negligible uncertainty in y. Because the uncertainty is in the independent variable, it
must be transformed to the dependent variable by the method discussed in Section 6.1.
This will require initial estimates of g and v,. After the fit has been made you may
wish to repeat the fit using estimates of g and v, from the previous fit to improve the
results




CHAPTER

LEAST-SQUARES

8.1 NONLINEAR FITTING

The methods of least squares and multiple regression developed in the previous
chapters are restricted to fitting functions that are linear in the parameters as in
Equation (7.3):

y(X)=2[ajﬁ(X)] (8.1)

This limitation is imposed by the fact that, in general, minimizing x? can yield a set
of coupled equations that are linear in the m unknown parameters only if the fitting
functions y(x) are themselves linear in the parameters. We shall distinguish between
the two types of problems by referring to linear fitting for problems that involve
equations that are linear in the parameters, such as those discussed in Chapters 6 and
7, and nonlinear fitting for those problems that are nonlinear in the parameters.

Example 8.1. In a popular undergraduate physics laboratory experiment, a real sil-
ver quarter is irradiated with thermal neutrons to create two short-lived isotopes of
silver, ,7,Ag'® and ,,Ag''?, that subsequently decay by beta emission. Students count
the emitted beta particles in 15-s intervals for about 4 min to obtain a decay curve.
Data collected from such an experiment are listed in Table 8.1 and plotted on a semi-
logarithmic graph in Figure 8.1. The data are reported at the end of each 15-s inter-
val, just as they were recorded by a scaler. The data points do not fall on a straight

142
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FIGURE 8.1
Number of counts detected from the decay of two excited states of silver as a function of time
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curve was obtained by a nonlinear least-squares fit of Equation (8.2) to the data.

line because the probability function that describes the process is the sum of two ex-
ponential functions plus a constant background. We can represent the decay by the
fitting function

y(x)=a, + a,e "% + aze~"/a (8.2)

where the parameter g; corresponds to the background radiation and a, and a; corre-
spond to the amplitudes of the two excited states with mean lives a, and as, respec-
tively. Clearly, Equation (8.2) is not linear in the parameters a, and as, although it is
linear in the parameters g, a,, and a;.

We can use a graphical analysis method to find the two mean lifetimes by ploi-
ting the data on semilogarithmic paper after first subtracting from each data point the
constant background contribution, which has been measured separately. (Note that the
background counts have not been subtracted in Figure 8.1.) We then consider two re-
gions of the plot: region a, at small values of T (e.g., T < 120 s) in which the short-
lived state dominates the plot, and region b, at large values of 7' (e.g., 7 > 200 s) in
which only the long-lived state contributes to the data. We can estimate the mean life-
time of the long-lived state by finding the slope of our best estimate of the straight line
that passes through the data points in region b. From this result we can estimate the
contribution of the long-lived component to region a and subtract that contribution
from each of the data points, and thus make a new plot of the number of counts in re-
gion a, which we attribute to the short-lived state alone. The slope of the line through
the corrected points gives us the mean lifetime of the short-lived state. Linear regres-
sion techniques discussed in Section 7.4 could be used to find the slope of the graph in
each region.
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TABLE 8.1
Geiger counter data from an irradiated silver piece, recorded in 15-s intervals
Point Measured Calculated Point Measured Calculated
number Time counts counts number  Time counts counts
1 15 775 748.3 31 465 24 24.0
2 30 479 519.8 32 480 30 23.0
3 45 380 3704 33 495 26 22.1
4 60 302 272.0 34 510 28 21.3
5 75 185 206.7 35 525 21 20.5
6 90 157 162.7 36 540 18 19.8
7 105 137 132.5 37 555 20 19.2
8 120 119 111.5 38 570 27 18.5
9 135 110 96.3 39 585 17 18.0
10 150 89 85.0 40 600 17 17.4
11 165 74 76.5 41 615 14 16.9
12 180 61 69.7 42 630 17 16.5
13 195 66 64.2 43 645 24 16.0
14 210 68 59.5 44 660 11 15.6
15 225 48 55.5 45 675 22 15.2
16 240 54 519 46 690 17 14.9
17 255 51 48.8 47 705 12 14.6
18 270 46 459 48 720 10 14.3
19 285 55 433 49 735 13 14.0
20 300 29 40.9 50 750 16 13.8
21 315 28 38.7 51 765 9 13.5
22 330 37 36.7 52 780 9 13.3
23 345 49 34.8 53 795 14 13.1
24 360 26 33.1 54 810 21 12.9
25 375 35 31.5 55 825 17 12.7
26 390 29 30.0 56 840 13 12.6
27 405 31 28.6 57 855 12 124
28 420 24 27.3 58 870 18 12.3
29 435 25 26.1 59 885 10 12.1
30 450 35 25.0

Note: The time is reported at the end of each interval. The calculated number of counts was found by method 4.

Because analytic methods of least-squares fitting cannot be used for nonlinear
fitting problems, we must consider approximation methods and make searches of
parameter space. In the following sections we discuss four nonlinear fitting meth-
ods: a simple grid-search method in which we simply calculate x? at trial values of
the parameters, and search for those values of the parameters that yield a minimum
value of x?, a gradient-search method that uses the slope of the function to improve
the efficiency of the search, and two semianalytic methods that make use of the ma-
trix method developed in Chapter 7, with a linear approximation to the nonlinear
functions. As examples, we shall determine the parameters (a, . . . as) by fitting
Equation (8.2) to the data of Example 8.1 using each of the four methods. The curve

. :
on Figure 8.1 is the result of such a fit.
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FIGURE 8.2
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P, a...,0,)= H[ 1 ] exp [—%El%ﬁ)ﬂ (8.3)

and, as in the previous chapters, maximize the likelihood with respect to the para-
meters by minimizing the exponent, or the goodness-of-fit parameter x*:

1
X*=3 [;_5 [yi = y(xi)]z] (8.4)
where x; and y; are the measured variables, g; is the uncertainty in y;, and y(x;) are
values of the function calculated at x;. According to the method of least squares, the
optimum values of the parameters g; are obtained by minimizing x* simultaneously
with respect to each parameter,

3_): = aia,- > [Gil_z[)’i - )’(xi)]z} =0
r | i (8.5)
= —22[0%;[% = ()] M}

da;

Taking partial derivatives of x* with respect to each of the m parameters g; will yield
m coupled equations in the m unknown parameters g; as in Section 7.1. If these equa-
tions are not linear in all the parameters, we must, in general, treat x? as a continuous
function of the m parameters, describing a hypersurface in an m-dimensional space,
as expressed by Equation (8.4), and search that space for the appropriate minimum
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value of x2. Figure 8.2 illustrates such a hyperspace for a function of two parameters.
Alternatively, we may apply to the m equations obtained from Equations (8.5) ap-
proximation methods developed for finding roots of coupled, nonlinear equations. A
combination of both methods is often used.

Variation of x2 Near a Minimum

For a sufficiently large event sample, the likelihood function becomes a Gaussian
function of each parameter centered on those values a; that minimize x*:

P(a) = Ae™(@=a)/20 (8.6)

where A is a function of the other parameters, but not of a;. Comparing Equation
(8.3) for the likelihood function with Equation (8.4) for x2, we observe that we can
express x? as

x> = —2In[P(a, ay,...,a,)]+ 2 In(c;\V/2m) (8.7
Then, from Equation (8.6), we can write

,_@—aj)

2
0j

X +C (8.8)
to show the variation of x> with any single parameter g; in the vicinity of a mini-
mum with respect to that parameter. The constant C is a function of the uncertain-
ties o; and the parameters a, for k # j. Thus x? varies as the square of distance from
a minimum, and an increase of 1 standard deviation (o) in the parameter from the
value a; at the minimum increases x* by 1. For a more general proof, see Arndt and
MacGregor (1966), appendix II.

We can see that this result is consistent with that obtained from a second-order
Taylor expansion of x> about the values a;, where the values of x* and its deriva-
tives at a = a’ are written as x §, 9x§/9a;, and so forth:

=x+ 31— apt+18 $1X g @ -apt 39)
j=1 aaj J J 2k=lj=l aaka J J

Because the condition for minimizing x° is that the first partial derivative with re-
spect to each parameter vanish (i.e., 9x*/da; = 0), we can expect that near a local
minimum in any parameter a;, x* will be a quadratic function of that parameter.
We can obtain another useful relation from Equation (8.8) by taking the sec-
ond derivative of x? with respect to the parameter g, to obtain
2\,2
Ix _2 (8.10)

2
aaj 0'1

We obtain the following expression for the uncertainty in the parameter in terms of
the curvature of the x? function in the region of the minimum:

2y,2\-1
cr;?=2(a X ) 8.11)

2
aaj
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FIGURE 8.3

Plot of x? versus a single parameter a in the region of a local minimum. The location of the minimum
is calculated by fitting a parabola through the three indicated data points.

We note that for uncorrelated parameters, Equation (8.11) is equivalent to Equation
(7.22) with Equation (7.25) for obtaining the uncertainties from the curvature matrix.
We can also use the quadratic relation to find the approximate location of a x?
minimum by considering the equation of a parabola that passes through three points
that straddle the minimum, and solving for the value of the parameter at the mini-
mum, as illustrated in Figure 8.3. If we have calculated three values of x2,
X1 = x*a;), X3 = xX*(aj,), and x3 = x*(a;3), where a, = a;; + Ag;and a;; = aj +
Aa;, then the value a; of the parameter at the minimum of the parabola is given by

a:=a;;— Aa; X: = X3 +l (8.12)
N A A

In addition, we can estimate the errors in the fitting parameters g; by varying each
parameter about its minimum to increase x? by 1 from the minimum value. The
variation o; in the parameter a;, which will increase x* by 1 from its value at the
minimum of the parabola, is given by

0;=Aa;V2(x3— 2x3 + x3)”! (8.13)

Alternatively, we can attempt to calculate the second derivative of x? at the mini-
mum and find the standard deviation from Equation (8.11).

If the parameters are correlated, the method summarized in Equation (8.13) for
determining uncertainties in the parameters is valid only under the condition that,
with g; = a/ * g;, x* be minimized with respect to all other parameters. This condi-
tion severely limits the usefulness of this procedure for determining the uncertainties.
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We provide a more detailed discussion in Section 11.5. When the covariant terms in
the error matrix are important, it is best to obtain the full error matrix by the method
described in Section 7.2.

8.2 SEARCHING PARAMETER SPACE

The method of least squares consists of determining the values of the parameters g;
of the function y(x) that yield a minimum for the function x? given in Equatlon
(8.4). For nonlinear fitting problems, there are several ways of finding this mini-
mum value. In Sections 8.3 and 8.4 we discuss approximation methods for finding
solutions to the m coupled nonlinear equations in m unknowns that result from the

lure of Equation (8.5).

Starting Values and Local Minima

Fitting nonlinear functions to data samples sometimes seems to be more of an art
than a science. In part, this is in the nature of the approximation process, where the
speed of convergence toward a solution may depend upon the choice of the method
for finding solutions, the choice of starting values for the parameters, and possibly
the choice of the step size. To use any of these methods, we must first determine
starting values, estimates to be used by the fitting routine for initial calculations of
the function and of chi square. For the pure search methods we must also define step
sizes, the initial variations of the parameters. Neither starting values nor step sizes,
of course, are needed in linear fitting.

Another problem in nonlinear fitting is the existence of multiple solutions or
local minima. For an arbitrary function there may be more than one minimum of the
x? function within a reasonable range of values for the parameters, and thus, more
than one set of solutions of the m coupled equations. An unfortunate choice of start-

ing point may “drive” the solution toward a local minimum rather than to the ab-
solute minimum that we seek. Before attempting a nonlinear least-squares fit,
therefore, it is useful to search the parameter space to locate the main minima and
identify the desired range of parameters over which to refine the search.

The first step is to find starting values for the parameters. A convenient ap-
proach, for which a computer graphics program is very useful, is to make plots of the
data with curves calculated from trial values of the parameters. By visual inspection,
one can often determine acceptable starting values with little or no further calcula-
tions. A basic requirement is that the area under the plotted curve be approximately
the same as that under the data.

Another approach is to map the naram_eter space and search for values of the
parameters that approx1mately minimize 2. In the simplest brute-force mapping
procedure, the permissible range of each parameter a; is divided into p equal incre-
ments Ag; so that the m-parameter space is d1v1ded into IT7, P, hypercubes. The
value of x? is then evaluated at the vertices of each hypercube This procedure
yields a coarse map of the behavior of x? as a function of all the parameters a;. At
the vertex for which x? has its lowest value, the size of the grid can be reduced to

obtain more precise values of the parameters. For a simple two- or three-parameter
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fit, the parameters obtained by this procedure may be sufficiently precise that no
further searching is required. For more than three parameters, the mapping is rather
tedious and displaying the grid map is difficult.

A variation on the regular lattice method is a Monte Carlo search of the
m-dimensional space. Trial values of the parameters are generated randomly from
uniform distributions of the parameters, selected within predefined ranges, and a
value of x? determined for each trial. After several trials, the set of trial values that
gives the lowest value of x? can be used as starting values. The general Monte Carlo

. method was discussed in Chapters.

A more sophisticated method of locating the various minima of the x? hyper-
surface involves traversing the surface from minimum to minimum by the path of
lowest value in x2, as a river follows a ravine in travelling from lake to ocean. Start-
ing at a point in the m-dimensional space, the search traverses the length of the lo-
cal minimum, then continues in the same general direction but in a direction that
minimizes the new values of x2. When a new local minimum is discovered, the
search repeats the process until all local minimum have been located in the speci-
fied region of the space.

For relatively straightforward fitting problems, it should be sufficient to plot
the data, make a reasonable estimate of the parameters to be used as starting values

in the search procedure, and perform the fit by one or more of the methods de-
scribed in the fnl]nwmo sections. As a nrpf‘mmnn one should vary the ertmo val-

ues of the parameters to test whether or not the various fits converge to the same
values of the parameters, within the expected uncertainties. If the dimensionality of
the space is low enough, a grid of starting points may be used. For higher dimen-
sionality, a Monte Carlo method may be used to select random starting points.

Bounds on the Parameters

From a particular set of starting values for the parameters, the search may converge
toward solutions that are physically unreasonable. In Example 8.1 negative values
for the parameters are not acceptable, and the current trial value of one of the para-
meters a,, or as, may limit the possibility of determining values of the others. For

1 If 3t nnt
example, if a, becomes very small or 0, a, cannot be determined at all. If it is not

possible to find starting values for the parameters that prevent the search from wan-
dering into these illegal regions, it may be necessary to place limits on them in the
search procedure to keep them within physically allowable ranges. Simple if then
statements in the routines may be sufficient. Care should be taken that the final
value of any parameter is not at one of these artificially imposed limits.

Selection and Adjustment of Step Sizes

There are no hard and fast rules for selecting step sizes for the search methods.
Clearly the steps will be different for different parameters and should be related to
the slope of the x? function. Very small step sizes result in slow convergence,
whereas step sizes that are too large will overshoot the local minima and require
constant readjustment to bracket the valleys. In the sample routines in Section 8.7,
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we choose initial step sizes to be proportional to the starting values of the parame-
ters and readjust them if necessary after each local minimum is found. In the simple
grid-search calculation, we adjust the step sizes to be those values that increase x?
by approximately 2 from its value at the local minimum.

Condition for Convergence

A change in x? per degree of freedom (x?/dof) of less than about 1% from one trial

problems of local minima and very flat valleys in the parameter space, it may not be
sufficient to set an arbitrary condition for convergence, start a search, and let it run
to completion. If the starting parameters are not chosen very carefully, the search
may stop in a flat valley with an inappropriately large value of x2. If this happens,
there are several possible ways to proceed. We can choose different starting values
and retry the fit, as suggested in the previous sections, or we can set tighter conver-
gence requirements (e.g., Ax%/dof < 0.1%) and rerun the search in the hope that the
program will escape from the valley and reach the appropriate minimum. A conve-
nient approach for small problems is to observe the process of the search and to cut
it off manually when it appears that a stable minimum has been found. If a suitable
minimum cannot be found, then different starting values should be tried. When fit-
ting curves to several similar samples of data, we may find it satisfactory to estab-
lish suitable starting parameters, step sizes, and a cutoff criterion for the first set,
and employ an automatic method for the remaining sets.

Computer Illustration of Nonlinear Fitting
Methods

In the following sections we discuss and illustrate with computer routines four
methods of fitting Equation (8.2) to the data of Example 8.1.

Program 8.0. NONLINFT (Appendix E) Common calling routine to test the
four different fitting methods. Repeats the calculations until a x2-minimum is found.
Variables are defined in the program until FITVARS and data input and output are
handled in the program unit FITUTIL as in the fitting programs of Chapters 6 and 7.
F1TFUNCS calculates the fitting function.

Step sizes for the fit are set initially in the routine FETCHPARAMETERS
to be a fraction of the starting values of the parameters. (The siep sizes must not be
scaled to the parameters throughout the calculation, however, lest they become 0 when
a parameter is 0, which would halt the search in that parameter.)

Tables 8.2, 8.3, 8.4, and 8.5 show values of x2 and the parameters a, through a,
for several stages of the calculation at the beginning, middle, and end of each of the
four types of search. The tables include the time to find the solution relative to the time
for the fastest procedure.

Program 8.1. GRIDSEAR (Appendix E) Routine GRIDLS illustrates the grid-
search method.

Program 8.2. GRADSEAR (Appendix E) Routine GRADLS illustrates the
gradient-search method.
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Program 8.3. EXPNDFIT (Appendix E) Routine CHIFIT illustrates fitting by
expansion of the fitting function.

Program 84. MARQFIT (Appendix E) Routine MARQUARDT illustrates fit-
ting by the gradient-expansion algorithm.

Program 8.5. FITFUNBS8 (Appendix E) Fitting function and x >-calculation for all
fits called from Program 8.0.

Program 8.6. MAKEABBS8 (Appendix E) Matrix set-up for non-linear fits.
Program 8.7. NUMDERIV (Website) Numerical derivatives.

Program B.1. MATRIX (Appendix E) Matrix products and inversion.

8.3 GRID-SEARCH METHOD

If the variation of x 2 with each parameter a; is not very sensitive to the values of the
other parameters, then the optimum parameter values can be obtained most simply
by minimizing x? with respect to each of the parameters separately. This is the grid-
search method. The procedure is simply to select starting values of the parameters,
find the value of one of the parameters that minimizes x 2 with respect to that para-
meter, set the parameter to that value, and repeat the procedure for each parameter
in turn. The entire process is then repeated until a stable x 2 minimum is obtained.

Grid search. The procedure for a grid search may be summarized as follows:

1.  Select starting values g; and step or increment sizes Ag; for each parameter and
calculate x? with the starting parameters.

2. Increment one parameter g; by *Aa; and calculate x 2, where the sign is chosen
so that x 2 decreases.

3. Repeat step 2 until x? stops decreasing and begins to increase. The increase in
x 2 indicates that the search has crossed a ravine and started up the other side.

4.  Use the last three values of a; (which bracket the minimum) and the associated
values of x? to determine the minimum of the parabola, which passes through
the three points as illustrated in Figure 8.3. [See Equation (8.12).]

5. Repeat to minimize x 2 with respect to each parameter in turn.

6. Continue to repeat the procedure until the last iteration yields a predefined neg-
ligibly small decrease in x 2.

The main advantage of the grid-search method is its simplicity. With succes-
sive iterations of the search, the absolute minimum of the x? function in parameter
space can be located to any desired precision.

The main disadvantage is that, if the variations of x? with the parameters are
strongly correlated, then the approach to the minimum may be very slow. Consider,
for example, the contour plot of x? as a function of two parameters in Figure 8.4.
The x2 contours are generally approximately elliptical near the minimum. The
degree of correlation of the parameters is indicated by the tilt of the ellipse. If two
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FIGURE 84

Contour plot of x? as a function of two highly correlated variables. The zigzag line represents the
search path approach to a local minimum by the grid-search method.

parameters are not correlated, so that the variation of x? with each parameter is in-
denendent of the variation with the other, then the axes of the ellinse will be paral-
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lel to the coordinate axes. Thus, if a grid search is initiated near one end of a tilted

ellipse, the search may follow a zigzag path as indicated by the solid line in Figure
8.4 and the search will be very inefficient Nevertheless. the simplicity of the calcu-
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lations involved in a grid search often compensates for this inefficiency.

Program 8.1. GRIDSEAR (Appendix E) Routine GRIDLS illustrates the grid-
search method.

The main search routine, GRIDLS, is entered with the value of x?
(CH1SQR) as argument. In a loop over each of the m parameters in turn, the value of
the parameter is varied until x> has passed through a local minimum in the parameter.
The three most recent values of x? that bracket the minimum are stored in the variables
CHISQ1l, CHISQ2, and CHISQ3. The best estimate of the parameter at this
stage of the calculation is determined from the minimum of the parabola that passes
through the three points. The step size (DELTAA(J)) is then adjusted to be that
value that increases x? by 2 from its value at the local minimum.

One pass through GRIDLS corresponds to a single zigzag along the path of
Figure 8.4. The search is repeated until x2 does not change by more than the preset
levei, CHICUT.

A call to the function SIGPARAB in the program unit FITUTIL at the end
of the search returns an estimate of the uncertainty in each parameters in turn from a

r\a]r\n]ohnn of the indenendent variation needed to 1nr~rpacp \12 kv 1 Frnm ite minimuam
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value.
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TABLE 8.2
Two exponentials plus constant background: grid-search method

Trial X2 a, a, a, a, as

0 406.6 10.0 900.0 80.0 27.0 225.0
1 143.0 14.5 1332.3 106.8 27.7 207.2
2 96.9 12.6 1233.9 127.9 28.2 198.4
3 79.4 11.6 1155.1 140.2 28.8 192.2
4 72.9 11.2 1100.3 147.0 29.3 189.2
16 66.7 11.3 963.5 148.8 323 185.3
17 66.7 1.3 962.5 148.2 324 185.8
39 66.3 10.9 959.3 139.1 333 1954
40 66.2 10.8 959.2 138.9 333 195.7
Uncertainties 0.6 28.3 4.5 0.8 5.0

V2IAAE — 1 D2 cnnnlen —_
X77G01 = 1.45, prova =

13ee,
11ty

Note: Stages in the fit to counts from the decay of excited states of silver. The values of x? and the parameters are
listed at the beginning, middle, and end of the search. The uncertainties in the parameters correspond to a change of
1 in x? from its value at the end of the search.

Table 8.2 shows values of x? and the parameters a, through as for several
stages of the calculation at the beginning, middle, and end of the search. The search
is relatively slow, but eventually a satisfactory solution is found. Note that the cal-
culated uncertainties correspond to the diagonal terms in the error matrix for uncor-
related parameters. If correlations are considered to be important, the matrix
inversion methods discussed in the following sections could be used to find better
approximations to the uncertainties.

8.4 GRADIENT-SEARCH METHOD

The search could be improved if the zigzagging direction of travel in Figure 8.4
were replaced by a more direct vector toward the appropriate minimum. In the gra-
dient-search method of least squares, all the parameters g, are incremented simulta-
neously, with relative magnitudes adjusted so that the resultant direction of travel in
parameter space is along the gradient (or direction of maximum variation) of x>

The gradient Vx? is a vector that points in the direction in which x? increases
most rapidly and has components in parameter space equal to the rate of change of
x? along each axis:

n | 9x?
2=\ |24 14
Vx j=§l: [aaj al] (8.14)

where 4; indicates a unit vector in the direction of the g; coordinate axis. In order to
determine the gradient, we estimate the partial derivatives numerically as discussed
in Appendix A:
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x> _ x*(a;+ fAa) — x*(a)
da; fAa;

J J

(Vx3); = (8.15)

where fis a fraction of the step size Aa; by which g, is changed in order to determine

the derivative.

The gradient has both magnitude and dimensions and, if the dimensions of the
various parameters a; are not all the same (which is usually the case), the compo-
nents of the gradient do not even have the same dimensions. Let us define dimen-
sionless parameters b; by rescaling each of the parameters a; to a size that
characterizes the variation of x? with g; rather roughly. We shall use the step sizes

Aa; as the scaling constants, so that

— J
b= -2 (8.16)
ada;
J
Mha Aol erns ~ te¢lh cencaman t ¢~ b tlhhnaw lhanneao
1n€ acrivative with réSpect 1o o; inn HeECoOMES
Ix? _ X
X =2 pg, (8.17)
b, dq;

which may be calculated numerically as

ox* _x’a; +fha) — x4y, _xa;+ fAg) ~ X*(a)

8.18
db; fAa; ! f &1
We can then define a dimensionless gradient -y, with unit magnitude and components
ax%/ ob;
X7 (8.19)

Yi T
TVEr (9x¥/ab)

In the numerical calculation of Equation (8.18), the quantities Aa; and f occur only
in the argument of x? and not as scale factors.

The direction that the gradient-search method follows is the direction of steep-
est descent, which is opposite of the gradient y. The search begins by incrementing
all parameters simultaneously by an amount Ag,, with relative value given by the
corresponding component +y; of the dimensionless gradient and absolute magnitude
given by the size constant Aa;:

J

The minus sign ensures that the value of x? decreases. The size constant Aa; of
Equation (8.20) is the same as that of Equation (8.16).

There are several possible methods of continuing the gradient search after a
first step. The most straightforward is to recompute the gradient after each change
in the parameters. One disadvantage of this method is that it is difficult to approach
the bottom of the minimum asymptotically because the gradient tends to O at the
minimum. Another disadvantage is that recomputation of the gradient at each step
for small step sizes results in an inefficient search, but the use of larger step sizes
makes location of the minimum less precise.

A reasonable variation on the method is to search along one direction of the
original gradient in small steps, calculating only the value of x? until x? begins to
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rise again. At this point, the gradient is recomputed and the search continues in the
new direction. Whenever the search straddles a minimum, a parabolic interpretation
of x? is used to improve the determination of the minimum.

A more sophisticated approach would be to use second partial derivatives of
x? to determine changes in the gradient along the search path:

m azxz
+ 21
a, kzl aajaak aak (8 )

If the search is already fairly near the minimum, this method does decrease
the number of steps needed, but at the expense of more elaborate computation. If the
search is not near enough to the minimum, this method can actually increase
the number of steps required when first-order perturbations on the gradient are
not valid.

The efficiency of the gradient search decreases markedly as the search ap-
proaches a minimum because the evaluation of the derivative according to the
method of Equation (8.18) involves taking differences between nearly equal num-
bers. In fact, at the minimum of x?, these differences should vanish. For this reason,
one of the methods discussed in the following sections may be used to locate the ac-
tual minimum once the gradient search has approached it fairly closely.

~ o

a,+da, aaj

ax’
aaj

Program 8.2. GRADSEAR (Appendix E) Routine GRADLS illustrates the
gradient-search method.

On each entry to the main search routine, GRADLS, the components of the
gradient GRADLS(J) are calculated numerically from Equation (8.18) in the proce-
dure CALCGRAD. The argument FRACT of this routine, corresponding to the
variable f of Equation (8.18), determines the fraction of the step size (DELTAA)
used in the numerical calculation of the partial derivative. Each parameter A(J) is
then changed by the amount STEPDOWN*DELTAA(J)*GRAD(J), where
STEPDOWN is a scaling factor that is set initially in the main program and read-
justed after each stage to the size needed to locate the minimum.

The initial values of DELTAA (J) determines to some extent the execution
speed of each pass through the routine GRADLS, and the value of CHIC UT deter-
mines when the search will stop. Because of the small gradient near the x> minimum,
it may take many steps to reach a reasonable value of x2, and the cutoff, CHICUT,
may have to be set to a very low value. For such cases, user intervention can be pro-
vided as an alternate method of stopping the search.

At the conclusion of the search, the uncertainties in the parameters are estimated
in the function SIGPARAB as in the routine GRADLS.

Table 8.3 shows values of x2 and the parameters a, through as for several
stages of the calculation at the beginning, middle, and end of the search. For Exam-
ple 8.1, the gradient search is considerably faster than the grid-search approach
because all the parameters are varied together at each step. However, the gradient-
search method has one disadvantage that is not illustrated. If the starting values of
the parameters are too far from the final values, the grid search has a good chance
of plodding along until it reaches the correct solution. The gradient search, on the
other hand, may tend to get bogged down in local minima that correspond to a long,
flat valley in the parameter space.
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TABLE 8.3
Two exponentials plus constant background: gradient-search method
Trial X2 a, a, a, a, as
0 406.6 10.0 900.0 80.0 27.0 225.0
1 82.3 10.6 1061.0 94.0 344 254.2
2 72.6 9.8 984.0 98.8 36.8 2374
3 69.8 9.9 966.9 100.9 36.8 244.6
4 69.3 9.8 953.7 101.6 36.7 242.1
19 66.6 8.9 952.2 114.7 35.5 233.6
20 66.5 8.9 954.8 114.9 35.6 2339
Uncertainties 0.6 26.5 38 0.8 7.0

x?/dof = 1.23; probability = 11.8%; relative time = 4.0

Note: Stages in the fit to counts from the decay of excited states of silver. The values of x? and the parameters are
listed at the beginning, middle, and end of the search. The uncertainties in the parameters corresponding to a change
of 1 in x? from its value at the end of the search.

8.5 EXPANSION METHODS

Instead of searching the x 2 hypersurface to map the variation of x? with parameters,
we should be able to find an approximate analytical function that describes the x2
hypersurface and use this function to locate the minimum, with methods developed
for linear least-squares fitting. The approximations will introduce errors into the cal-
culated values of the parameters, but successive iterations of the analytical method
should approach the x? minimum with increasing accuracy. The main advantage of
such an approach is that the number of points on the x 2 hypersurface at which com-
putations must be made will be fewer than for a grid or gradient search. This ad-
vantage is somewhat offset by the fact that the computations at each point are
considerably more complicated. However, the analytical solution essentially
chooses its own step size and, thus, the user is spared the problem of trying to opti-
mize the step size for speed and precision.

Parabolic Expansion of x?

In Equation (8.9) we expanded x? to second order in the parameters about a local
minimum xj where a; = a;:

X>=X5+ 2{ X°8 } ;2 El PXi 5, SakJ (8.22)

k ljlaaaak

which is equivalent to approximating the x2 hypersurface by a parabolic surface.
Here we define da; = a; — a;, and X3 is given by

xX§=> [(_)_1_2[yi = y'(xi)]zl (8.23)

i

where y'(x;) is the value of the function when da; = 0.
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Applying the method of least squares, we minimize x? as expressed in Equa-
tion (8.22) with respect to the increments (da;) in the parameters, and solve for the
optimum values of these increments to obtain

Ox* _oxd_ & | 9°xd ]
—E—==""+> Y 1—""08aq;(=0 k=1, 8.24
a(ﬁak) aak 12:1 aakaaj aj " ( )
The result is a set of m linear equations in da; that we can write as
Br— >, (8a;a;)=0 k=1, m (8.25)
j=1
with
19x3 1 02x3
= _-2X0 L= 00 8.26
= "2%a, M %=3340a (8.26)

The factors *Y are included for agreement with the conventional definitions of

..
thaca nmantitiag
LIVOU Yudaliuiuvs.,

As in Chapter 7, we can treat Equation (8.25) as a matrix equation:
B=%aa (8.27)

where B and 8a are row matrices and & is a symmetric matrix of order m. We shall
find that « is the curvature matrix discussed in Section 7.2, so named because it
measures the curvature of the x> hypersurface.

Method of Computation

The solution of Equation (8.27) can be obtained by matrix inversion as in Sec-
tion 7.2:

da=Be da,= il (e4;B)) (8.28)
P

where the error matrix € = a~! is the inverse of the curvature matrix.

If the parameters are independent of one another, that is, if the variation of x 2
with respect to each parameter is independent of the values of the other parameters,
then the cross-partial derivatives a;, (j # k) will be O in the limit of a very large data
sample and the matrix & will be diagonal. The inverse matrix € will also be diago-
nal and Equation (8.27) will degenerate into m separate equations:

5 ~Bj_ax(2).62x3
oj=—t=——
aaj

(8.29)

Computation of the matrix elements by Equation (8.26) requires knowledge of
the first and second derivatives of x 2 evaluated at the current values of the parame-
ters. Analytic forms of the derivatives are generally quickest to compute, but may be
difficult or cumbersome to derive. If it is not convenient or possible to provide ana-
lytic forms of the derivatives, then they can be computed by the method of finite dif-
ferences (see Appendix A). In the following expressions, we use forward differences
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for efficient calculations. The intervals A ; should be chosen to be large enough to
avoid roundoff errors but small enough to furnish reasonably accurate values of the
derivatives near the minimum:

ox3 _ X%(aj + Aa;, a;) - X(2)(aj’ a)
da; Aa;

j j
93 4 Xia;, a,) — 2xd(a; + 8a;/2, a;) + x¥(a; + Aa;, @)
da; (Ag))?
2.2
X0 =Ix(a;, a;) (8.30)
da;daq !
- xd(a; + Aa;, ar) = xi(a), a, + Aay)
Vo2 A . LA~ N /TA - A~ 1
+ Xo\g; + Aa;, a, + Aqy)j/|Aa;Aa]

In actual practice, calculations are faster and, in general, more accurate if the ele-
ments of the matrix o are determined from the first-order expansion (to be dis-
cussed in the following text), which involves only first derivatives of y(x) with
respect to the parameters, rather than the second derivatives of x?2 as expressed in
Equation (8.30).

Fitting Procedure

Within the limits of the approximation of the x2 hypersurface by a parabolic ex-
trapolation, we can solve Equation (8.27) directly to yield parameter increments da,
such that x? should be minimized for a; + d4;. If the starting point is close enough
to the minimum so that higher-order terms in the expansion can be neglected, this
becomes an accurate and precise method. But if the starting point is not near
enough, the parabolic approximation of the x 2 hypersurface is not valid and the re-
sults will be in error. In fact, if the starting point is so far from the minimum that the
curvature of x2 is negative, the solution will tend toward a maximum rather than a
minimum. During computation, therefore, the diagonal elements o ; of the matrix a
must be set positive whether they are or not. The resulting magnitude for da; will be

incorract hnt the cion will he carrect
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Expansion of the Fitting Function

An alternative to expanding the x 2 function to develop an analytic description for the
hypersurface is to expand the fitting function y(x) in the parameters a; and to use the
method of linear least squares to determine the optimum value for the parameter in-
crements da;. If we carry out the derivation rigorously and drop higher-order terms,
we should achieve the same result as for the expansion of x? to first and second order.

First-Order Expansion

Let us expand the fitting function y(x) in a Taylor series about the point a;, to first
order in the parameter increments da; = a; — a;:
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y(x) = y'(x)+§ 9y (x)a ] (8.31)

| '(x) is the value of the fitting function when t | :

point values a; and the derivatives are evaluated at the starting point. The result is a
linear function in the parameter increments da; to which we can apply the method
of linear least squares developed in Chapter 7.

In this approximation, x> can be expressed explicitly as a function of the pa-
rameter increments da;:

X’=> (% { Y~ y'(x) i [a{'(x,) H ) (8.32)

,=| ouj

Following the method of least squares, we minimize x > with respect to each
of the parameter increments dq; by setting the derivatives equal to 0:

x: (L] a9y () ay'(x) )\ _

As before, this yields the set of m simultaneous Equations (8.25), which can be ex-
pressed as the matrix Equation (8.27):

B=9%aa (8.34)

where 3, is defined as in Equation (8.26) and a, is given by

ajkzz[ia_ymw] 835)

0',2 aa’ Bak

Second-Order Expansion

Suppose we make a Taylor expansion of the fitting function y(x) to second order in
the parameter increments da;:

y(x)=y'(x) + 2 [ Y (x) + %Em: i [M;C_) dajdak} (8.36)

If we include the last term of Equat1on (8.36) in the expression for x? of Equa-

tion (8.32) and again minimize x2 by setting to O the derivatives with respect to the
increments da;, we again obtain Equation (8.25), this time with

Be= X [—15 [yi = ¥'(x)] ay;(lxi)] = _% (3_;(;%

ai
W) oy'x) o azy’(xi)]
%k = 20,-2[ da; da, =Ly = ') da;oay (8.37)
_1_9°x3

2 aajaak
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The resulting definitions for B, and a;, are identical to those of Equation (8.26) ob-
tamed by expandmg the X2 functlon and the X -expanswn method is therefore

Let us compare Equatlons (8 37) with the analogous Equatlons (7.14) and
(7.15) for linear least-squares fitting. The definitions of oy in Equations (8.37) and
(7.15) are equivalent in the linear approximation [See Equation (7.22)] and thus «
corresponds to the curvature matrix. The definition of B, in Equation (8.37) is
equivalent, in the linear approximation, to the definition of B, in Equations (7.14)
except for the substitution of y, — y'(x;) for y,. We can justify this substitution by
noting that the solutions of Equation (8.34) are the parameter increments da;,

whereas those of Equation (7.14) are the parameters themselves. In essence, we are

nnnnnnnnnnnnn loagt_qriiarag mathnadg ta fit tha naramatar inaramante tn diffarannn
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data Ay, between the actual data and the starting values of the fitting y'(x;):

Ay =y, —y'(x) (8.38)

Thus, the expression given in Equation (8.35) for o is a first-order approxi-
mation to the curvature matrix that is given to second order in Equation (8.37). For
linear functions, the second-order term vanishes. It is convenient to use the first-
order approximation for fitting nonlinear functions and thus avoid the necessity of
calculating the second derivatives in Equation (8 37). We note that this procedure

o cnmaoivha tifiad An tha arannde tha tha vicinitu Af tha w2 minimiim
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we should expect the factor of y;, — y'(x;) in the expression for a of Equation (8.37)
to be close to 0 so that the first term in the expression will dominate.!

Program 8.3. EXPNDFIT (Appendix E) Routine CHIF T illustrates non-linear
fitting by expansion of the fitting function. The program is called repeatedly from the
main program NONLINFIT, until x> passes through a minimum. EXPNDFIT
calls the following routines to set up and manipulate the matrices.

Program 8.6. MAKEABBS8 (Appendix E) Sets up the a and  matrices.

The routine uses the first-order approximation of Equation (8.35) to calculate the com-
ponents oy, of the curvature matrix. This is equivalent to neglecting terms in the sec-
ond derivatives of the fitting function y(x) in the expression for o, in Equation (8.37).
The routines in this program unit use numerical derivatives and therefore differ from
those with the same names in Chapter 7, which use analytic derivatives.

Program 8.7. N UMDERIV (website) Numerical derivatives.

Derivatives of x? (XISQ) are calculated numerically by the functions DXISQ_DA,
D2XiISQ_DAZ, and D2XiSQ_DAJK in this program unit. To avoid repetitive cai-
culations, the values of the derivatives at each value of x and for the variation of each
of the m parameters are calculated once for each trial and stored in arrays. If available,
analytic expressions for the derivatives could be substituted directly for the functions

to increase the speed and accuracy of the calculation.

Program B.1. MATRIX (Appendix E) Matrix multiplication and inversion.

'See Press et al. (1986), page 523.
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TABLE 8.4

Two exponentials plus constant background: x2 expansion method

Trial X2 a, a, a a, as
0 406.6 10.0 900.0 80.0 27.0 225.0
1 86.2 1.1 933.8 140.4 33.8 170.5
2 66.6 10.8 861.2 128.9 33.9 201.7
3 66.1 10.4 958.2 131.2 340 205.4

Uncertainties 1.8 49.9 21.7 2.5 30.5

x?/dof = 1.22; probability = 12.4%; relative time = 1.0

Note: All stages in the fit to counts from the decay of excited states of silver. The uncertainties in the parameters cor-
respond to the square roots of the diagonal terms in the error matrix.

At the conclusion of the search, the inverse € of the final value of the curva-
ture matrix o is treated as the error matrix, and the errors in the parameters are ob-
tained from the square roots of the diagonal terms by calls to the function
SIGMATRX in the unit FitFunc8. Table 8.4 shows values of x? and the parameters
a, through as for all stages of the calculation.

8.6 THE MARQUARDT METHOD

Convergence

One disadvantage inherent in the analytical methods of expanding either the fitting
function y(x) or x? is that although they converge quite rapidly to the point of min-
imum x2 from points nearby, they cannot be relied on to approach the minimum
with any accuracy from a point outside the region where the x2 hypersurface is ap-
proximately parabolic. In particular, if the curvature of the x? hypersurface is used,
as in Equation (8.37) or (8.26), the analytical solution is clearly unreliable whenever

the curvature becomes negative. Symptomatic of this problem is the need to set pos-
itive the diagonal elements o; of the matrix « so that all curvatures are treated as if
they were positive.

In contrast, the gradient search of Section 8.4 is ideally suited for approaching
the minimum from far away, but does not converge rapidly near the minimum.
Therefore, we need an algorithm that behaves like a gradient search for the first por-
tion of a search and behaves more like an analytical solution as the search con-
verges. In fact, it can be shown (see Marquardt 1963) that the path directions for
gradient and analytical searches are nearly perpendicular to each other, and that the
optimum direction is somewhere between these two vectors.

One advantage of combining these two methods into one algorithm is that the
simpler first-order expansion of the analytical method will certainly suffice because
the expansion need only be valid in the immediate neighborhood of the minimum.
Thus, to calculate the curvature matrix o, we can use the approximation of Equation
(8.35) and ignore the second derivatives of Equation (8.37).
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Gradient-Expansion Algorithm

A convenient algorithm (see Marquardt 1963), which combines the best features of

the gradient search with the method of linearizing the fitting function, can be ob-

tained bv increasino the diacsonal terms of the curvature matrix o hv afactor]l + A
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that controls the interpolation of the algorithm between the two extremes. Equation
(8.34) becomes

oy forj # k

J

B=0%aa' with o) = (8.39)

If \ 1s very small, Equations (8.39) are similar to the solution of Equation (8.34) de-
veloped from the Taylor expansion. If \ is very large, the diagonal terms of the cur-

vature matrix dominate and the matrix equation degenerates into m separate
equations

B; = \da,a (8.40)

which yield the vector increment da in the same direction as the vector 8 of Equa-
tion (8.37) (or opposite to the gradient of x?).

The solution for the parameter increments da; follows from Equations (8.39)
after matrix inversion

=§1(Bke,‘k) (8.41)

where the B, are given by Equation (8.37) and the matrix €’ is the inverse of the ma-
trix o’ with elements given by Equations (8.39).

The initial value of the constant factor A should be chosen small enough to
take advantage of the analytical solution, but large enough that x? decreases. Be-
cause this algorithm approaches the gradient-search method with small steps for

large \, there should exist a value of \ such that x*a + 3a) < x*a). The recipe
given by Marquardt is:

1. Compute x?(a).

2. Start initially with A = 0.001.

3. Compute da and x?(a + 8a) with this choice of \.

4. If x*(a + da) > x*(a), increase \ by a factor of 10 and repeat step 3.

5. If x*(a + da) < x*(a), decrease \ by a factor of 10, consider a’ = a + da to be

the new starting point, and return to step 3, substituting a’ for a.

For each iteration it may be necessary to recompute the parameter increments
da; from Equation (8.41), and the elements o, and B; of the matrices, several times
to optimize \. As the solution approaches the minimum, the value of A will decrease
and the program should locate the minimum with a few iterations. A lower limit
may be set for the value A, but in practice this limit will seldom be reached.
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TABLE 8.5

Two exponentials plus constant background: Marquardt method

Trial x? a, a, as a, as
0 406.6 10.0 900.0 80.0 27.0 225.0
1 82.9 11.0 933.5 139.3 33.9 173.9
2 66.4 10.8 960.1 130.6 33.8 201.2
3 66.1 10.4 958.3 131.4 33.9 205.0

Uncertainties 1.8 49.9 21.7 2.5 30.5

x*/dof = 1.22; probability = 12.4%; relative time = 1.0

TABLE 8.6
Elements of the error matrix (Marquardt method)

1/k 1 2 3 4 5

1 3.38 —3.69 27.98 —2.34 —49.24
2 —3.69 2492.26 81.89 —69.21 -3.90
3 27.98 81.89 468.99 —44.22 —-615.44
4 —2.34 —69.21 —44.22 6.39 53.80
5 —49.24 -3.90 —615.44 53.80 929.45

Note: Error matrix from a fit to the radioactive silver data. The diagonal terms are the variances o'} and the off-
diagonal terms are the covariances o', of the parameters a,.

Program 8.4. MARQFIT (Appendix E) Routine MARQUARDT illustrates fit-
ting by the gradient-expansion algorithm.

The procedure uses the same program units as those in Program 8.3, and is identical to
that program except for the adjustment of the diagonal elements o;; of the matrix e by

At the conclusion of the search, the inverse € of the final value of the curva-
ture matrix a is treated as the error matrix, and the errors in the parameters are ob-
tained from the square roots of the diagonal terms by calls to the function
SIGMATRX in the unit FitFunc8. Table 8.5 shows values of x? and the parameters
a, through a; for all stages of the calculation. Table 8.6 shows the error matrix from
the fit.

8.7 COMMENTS

Although the Marquardt method is the most complex of the four fitting routines, it
is also the clear winner for finding fits most directly and efficiently. It has the strong
advantage of being reasonably insensitive to the starting values of the parameters,
although in a peak-over-background example (Chapter 9), it does have difficulty
when the starting parameters of the function for the peak are outside reasonable
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ranges. The Marquardt method also has the advantage over the grid- and gradient-
search methods of providing an estimate of the full error matrix and better calcula-

— tionof the diagonal errors.

The routines of Programs 8.3 and 8.4 were tested with both numerical and an-
alytical derivatives. Typical search paths with numerical derivatives are shown in
Tables 8.4 and 8.5. For the sample problem with the assumed starting conditions,
the minimum x? was found in only a few steps by either method with essentially no
time difference. Both methods are reasonably insensitive to starting values of para-
meters in which the fit is linear, but can be sensitive to starting values of the non-
linear parameters. Program 8.4 had remarkable success over a broad range of

starting values, whereas Program 8.3 required better definition of the starting values
of the parameters and generally required many more iterations

LA PGS QIS CAILI QALY ARRRAANAS ARG AR R QRIS

The uncertainties in the parameters for these fits were calculated from the di-
agonal terms in the error matrices and are, in general, considerably larger than the
uncertainties obtained in the grid- and gradient-search methods. Because the latter
errors were obtained by finding the change in each parameter to produce as change
of x? of 1 from the minimum values, without reoptimizing the fit, there is a strong
suggestion that correlations among the parameters play an important role in fitting
Figure 8.1. This point of view is supported by examination of the error matrix from

the method 4 fit (Table 8.6), which shows large off-diagonal elements.
With nnnrlv selected Qmmno values, the searches may terminate in local min-

ima with unacceptably high values of x? and, therefore, W1th unacceptable final val-
ues for the parameters. Termination in the sample programs is controlled simply by
considering the reduction in x* from one iteration to the next and stopping at a pre-
selected difference. With this method, it is essential to check the results carefully to
be sure that the absolute minimum has indeed been found.

V) I:
wonunear J unciion.

ficients of the terms.
Minimum of x* (parabolic approximation):

, X3 — X3 1
4= dj3 = Ag; [x - 2x3+ X3 2}

Estimate of standard deviation from Ax?* = 1:
g; = Aaj \/2(X% - 2X% + X%)—1

Grid search: Vary each parameter in turn, minimizing x? with respect to each para-
meter independently. Many successive iterations are required to locate the minimum
of x? unless the parameters are independent; that is, unless the variation of x? with
respect to one parameter is independent of the values of the other parameters.
Gradient search: Vary all the parameters simultaneously, adjusting relative magni-
tudes of the variations so that the direction of propagation in parameter space is
along the direction of steepest descent of x2.
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Direction of steepest descent: Opposite the gradient V x %
_ ax? - X*(a; + fAa)) — x(a))
da, fAaq;

b= —(OX*/30) )
VEr ((0x%/ da)Aa;)?

Parabolic expansion ’fo2'

(sz)j

oa = Pe Sak=il(ekjﬁj)
f=

with

Linearization of the fitting function:

Br= [Lz[}’i — ()] a}’(xi)] _ __;_3_)((2)

o} da, a
1 J9y(x) dy(x) _ oy 92y(x)
it 20,2[ da; da L (x) da;da
:l aZXZ
2 da;oq,

Gradient-expansion algorithm—the Marquardt method: Make \ just large enough
to insure that x2 decreases:

, o (1+N) forj=k
Oij=

Oij fOI‘j * k
|_1 a /. .\ a_ [ 4\_| 1 a..2
oy == 1 oyx;) oy B, = _1o0x
7k o? da; da kT2 9a,

. . . _ 2
Uncertainty in parameter a;: o,; = e;; corresponds to Ax* = 1.

EXERCISES

8.1. Use an interpolation method (see Appendix A) to find the equation of the parabola that
passes through the three points (x,, ¥,), (x2, ¥,), and (x3, y3). Find the value of x at the
minimum of the parabola and thus verify Equation (8.12).

8.2. From the results of Exercise 8.1, verify Equation (8.13).
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8.3. The following data represent histogram bin counts across a Lorentzian peak:

x | 1824 1828 1832 1836 1840 1844 1848 1852 1856 1860
o | 58 679 696 736 84 812 899 817 767 657

(a) Use the grid-search method to fit the equation y(x) = AP;(x; ., I') to the data and
find the maximum-likelihood value of w, where P,(x; p., I) is the Lorentzian func-
tion of Equation (2.32) and the known parameters are A = 75 and I' = 0.055. As-
sume that x is given at the lower edge of each histogram bin and that the errors in y
are statistical. Find the uncertainty in ..

Suggested procedure: (i) Calculate x? at the peak of the distribution and at a value
on each side. (ii) Find the minimum of a parabola that passes through the three

=]

8.5.

:F;

S?‘

points. (iii) Repeat the procedure with three points centered on the minimum x“ un-

til the value of w has been determined to *=0.001.
(b) Repeat the procedure for a two-parameter fit, with I" as the second unknown.
Consider the histogram of measured time intervals displayed in Figure 1.2. The num-
bers of events in the bins bounded by ¢ = 0.59 to 0.70s.

2,2,11,6,12,8,4,3,1,1,0

Fit a Gaussian curve [Equation (2.23)] to these data by the least-squares method to find
i, o, and the amplitude of the curve A. Bins with fewer than seven events should be
merged to improve the reliance on Gaussian statistics. Compare the parameters ob-
tained from the fit with those determined by taking the mean and standard deviation of
the data.
The following data correspond to counts recorded in Example 6.2 with the addition of
an unknown randomly fluctuating background term a;. Use the Marquardt method to fit
the equation C = a, + a,/d? to these data to find the parameters @, and a, and the full
error matrix. Assume statistical uncertainties.

i | 1 2 3 4 5 6 7 8 9 10

d;(m) 020 025 030 035 040 045 050 060 075 1.00
o 944 688 467 366 316 317 264 251 214 184
Use the method of least squares to fit the five-parameter equation y(x) = a; + a,x +
a;G(x; ay, as) to the following da d ta where a, = w, as = 0, and G(x; ., 0) is the Gauss-

ian curve of Equation (2.23).

i 1 2 3 4 5 6 7 8 9 10
X, 10 11 12 13 14 15 16 17 18 19
v 31 25 24 30 34 37 31 30 64 54
i m 12 13 14 15 16 17 18 19 20
X 20 21 22 23 24 25 26 27 28 29
Y, 95 94 78 79 43 54 58 52 46 41

Use the Marquardt method and find an estimate of the error matrix. The value of x is
given at the lower edge of each bin. Assume statistical uncertainties.

8.7. To check the inverse-square relationship expressed in Coulomb’s law,

F=kQ,0,/r?
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Students in an undergraduate laboratory measured the force of electrostatic repulsion
between two charged conducting spheres as a function of the distance between the cen-
ters of the spheres.

They applied the same potential to each sphere so that each carried the same charge.
Because of the mutual repulsion of the charges on the conducting spheres, the effective
separation of the two charge distributions is not simply the separation of the centers of
the spheres. The resulting reduction in the repulsive force is a function of the separation
r of the spheres and their radii g, given approximately by the correction factor

f=1—=4(@a/ry

where @ = 1.9 cm in this experiment. Thus, the relation between the mutual force on the
spheres and their separation, including the correction factor, can be expressed as

Fcoulvmb = l: - 4<%>3} er—Ole

The students used a torsion balance to study the variation of the repulsive force, so that
the force was proportional to the measured torsion angle. The relation between the tor-
sion angle 6 and the separation r of the centers of the spheres, including the correction
factor, can be rewritten as a “fitting equation”

0 = A[l — 4(a/r)]

with unknown parameters, the scale factor A and the exponent e.
The students obtained the following measurements of the torsion angle (6 in de-
grees) as a function of the separation between the centers of the spheres (r in cm).

r. 50 60 70 80 90 100 120 140 160 180 200
6, 264 233 179 136 111 84 63 53 33 30 27

Assume that the uncertainty in the angle is *1°,

(a) Use one of the nonlinear fitting methods to determine the two parameters e and A
of the fitting equation, and their uncertainties.

(b) Make a better estimate of the uncertainty in 6 by considering the uncertainty re-
quired to give x> = number of degrees of freedom.

(c) What effect does this change have on the uncertainties in the fitted parameters?



CHAPTER

9

-

FITTING
COMPOSITE
CURVES

9.1 LORENTZIAN PEAK ON QUADRATIC
BACKGROUND

Many fitting problems involve determining the parameters of a resonant peak or
peaks, superimposed upon a background signal. Examples may be found in various
types of spectroscopic studies where the objective is to determine the properties of
one Or more resonant states.

EXAMPLE 9.1 We consider a problem from nuclear or particle physics illustrated
hv the 4A000-event hictooram of Fioure 0 1 which chowe a larece neak on a emoothlv
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varying background. We shall assume that the data have been drawn from a distribu-
tion that includes a resonant state described by the Lorentzian distribution, and that the
background can be described by a second-degree polynomial in the energy E.! We
shall attempt to fit Equation (9.1) to the data to determine the amplitude A, the reso-

nant energy E,, and the full width at half maximum I'.

I'/(2m)
(E - Ep)* +(I'/2)

Y(E)=a, + a,E+ a;E* + A, 9.1)

We note that Equation (9.1) is linear in the parameters a,, a,, and as, but not in the
parameters E, and I'.

!These “data” were actually generated by the Monte Carlo method described in Chapter 5. The para-
meters used in the generation are listed in the second column of Table 9.1.

168
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FIGURE 9.1

Histogram data in bins of 0.10 GeV of the 4000 simulated events generated from Equation (9.13) with
parameters listed in column 2 of Table 9.1. The solid curve illustrates a fit of Equation (9.1) to the
data. The dashed curve indicates the polynomial background.

We used the Marquardt method with numerical derivatives to fit Equation (9.1)
to the histogram of Figure 9.1, because this is clearly the most flexible and convenient
of the four methods considered in Chapter 8. The amplitudes of the polynomial func-
tion (a, through a;), the amplitude of the Lorentzian peak (a, = Ay), and the mean E,
and half-width I of the Lorentzian function (as and a4) were treated as free parameters
of the fit. Starting values for as and a4 were obtained by inspecting the histogram of
Figure 9.1; starting values for the other parameters, the coefficients of the various

1arn Ahtatnad ey t1ial and arense Dannniga tha Maranardt mathad 10 avan ¢t far
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function that is linear in the parameters, convergence of the fit is relatively insensitive
to starting values of a, through a,. The method is more sensitive to starting values for
the Lorentzian parameters (E, and I'). If starting values were too far from the obvious
parameters of the peak, the program would coast to a halt in a shallow local minimum
with obviously incorrect values for the parameters, and with a higher than expected
value of x2. Starting values for all fits are listed in column 3 of Table 9.1.

Results of this six-parameter fit to the distribution in Figure 9.1 are summarized
in column 4 of Table 9.1 and the curve calculated from Equation (9.1) with the para-
meters found in the fit is plotted on the histogram of Figure 9.1. The dashed curve
shows the contribution of background under the peak. The x? probability of the fit
(7.9%) is low, but acceptable.

Because one of the objectives of the analysis of Example 9.1 is to determine
E,, the mean of the peak function of Equation (9.1), we must be careful in the
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TABLE 9.1
Results of least-squares fits of Equations (9.1) and (9.13) to data displayed in
Figures 9.1 and 9.2

Values
used to Starting Six-parameter Six-parameter Nine-parameter
generate values fit fit fit
data for fit (Figure 9.1) (Figure 9.2-inset) (Figure 9.2)
dof 24 54 51
X2 34.3 72.9 56.0
P, 7.9% 4.4% 294
Num 4000 3944 3927 3994
a 1.0 1 22*26 -22%x13 =21 %= 1.1
a, 45.0 1 136.0 = 8.1 739 3.7 73.7 £ 3.6
a —10. 1 -31.6 = 3.1 —180 = 1.4 -18.0= 1.4
Peak 1
as {Ap) 20.0 1 798170 339+ 27 288+ 3.0
as (Ey) 1.0 1 0.9838 = 0.0068 0.9912 + 0.0050 0.9968 * 0.0044
ag (I) 0.1 0.1 0.197 = 0.024 0.139 = 0.015 0.108 = 0.017
Peak 2
a; (A) 3.5 1 — — 53x22
ag (E) 0.8 0.825 — — 0.824 = 0.017
ay (I') 0.12 0.05 — — 0.083 = 0.034

choice of the value of the independent variable that we use in the fit. On the his-
togram of Figure 9.1, the value of E; at the left-hand edge of selected bins is indi-
cated, but for the fit we used the value of E at the center of each bin. If we had used
values of E; from the left-hand edge of the histogram bins, the value for E;, from the
fit would have been too low by half a bin width. For wide bins and a rapidly vary-
ing fitting function, it might be advisable to select the value of E; for each bin by
weighting according to the steepness of the function.

Note that the nraohleam af celacting the thnlnfn value of the a
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always take care when we plot results of a fit that the curve is not displaced half a
bin width from the data.

<

Program 9.1 LORINFIT (Appendix E) illustrates use of the Marquardt method
to fit a Lorentzian peak on a quadratic background.

9.2 AREA DETERMINATION

When dealing with problems of peaks and backgrounds, we may wish to determine
not only the position and width of a peak in a spectrum, but also the number of
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events or area of the peak, which may measure the intensity of a transition or the
strength of a reaction. When peaks are not well separated, or when the contribution
from background is substantial, least-squares fitting can provide a consistent
method of extracting such information from the data.

The importance of consistency should not be underestimated. Whether or
not the method chosen is the best possible method, as long as it involves a well-
understood and clearly specified procedure, other experimenters will be able to
check and compare the results safe in the knowledge that their comparisons are
justified and meaning [he method of least squares is considered to be an unbiased
estimator of the fitting parameters and all parameters are presumed to be estimated
as well as possible. This assumption is based on the validity of both the fitting func-
tion in describing the data and the least-squares method. If we try to fit the data with
an incorrect fitting function, or try to fit data with uncertainties that do not follow the
Gaussian distribution, then the fitting procedure may not yield optimum results.

Although we refer to the number of events as the area of a peak or plot, the
true area is, of course, the number of events multiplied by the data interval or his-
togram bin width. Thus, to find the area A, of the peak from the results of the fit in
Example 9.1, we calculate

(= T/(2w)
ar= [ o (E—Eo) + (T/2

Because we used the normalized form of the Lorentzian function, the integral is just
the coefficient a, obtained in the search Ap = A, = a,. The area of the peak on the
histogram is the product of the number of events N in the peak and the width AE of
the histogram bin

9.2)

Ap=Np X AE,
so the number of events in the peak is given by
Np=Ap/AE 9:3)
The result from Example 9.1 is N, = (79.8 £ 7.0)/0.1 = (798 = 70) events.
Alternatively, we might plot the background curve on the graph
o(E)=a, + a,E + a;E? 9.4)

and count the number of events in the peak above the background in a selected
range encompassing the peak. We have indicated such a range by vertical dotted
lines at Ey, — 2I" and E,, + 2I" in Figure 9.1. With this method we should be obliged
to estimate and correct for events outside the selected region.

Uncertainties in Areas under Peaks

If we calculate the area of the peak from Equations (9.2) and (9.3), then the un-
certainty should be estimated from the uncertainties in the parameters by the er-
ror propagation equation. We have used this method to obtain the uncertainty in
the number of events of the peak of Figure 9.1 in the calculation that follows
Equation (9.3).
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The uncertainty g, in the area under a peak can also be estimated by consid-
ering the uncertainty in the parent distribution. If the data are distributed according
to the Poisson distribution, the uncertainty in the area A, is given by o7 = A,,. If we
obtain the area by counting the number of events above background, then the vari-
ance of the difference will be the sum (not the difference) of the variance of the to-
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where the subscripts p, b, and ¢ correspond to peak, background, and total (= peak
+ background). In order to keep s, = A, as small as possible, we should count
events only in that region where the peak-to-background ratio is large and make

ions for the tails-of the distribution.

Area under a Curve with Poisson Statistics

Curiously enough, if the data are distributed around each data point according to the
Poisson distribution, as in a counting experiment, the method of least squares con-
sistently underestimates the area under a fitted curve by an amount approximately
equal to the value of x2. To show this, let us consider fitting such data with an ar-
bitrary peak, represented by bf,(x; ., o) plus a polynomial background similar to
Example 9.1:

O
W
-’

y(x)=a+ bf(x; p, o) (
where we have simplified the background to a single term a for clarity.

Using the method of least squares, we define x? to be the weighted sum of the
squares of deviations of the data from the fitted curve

1
X*= 2[;5(% —a = bf(x; m, 0))2] (9.6)
]
and obtain the solution by minimizing x? simultaneousiy with respect to each of the

parameters. The required derivatives with respect to the two parameters a and b, in
which the function is linear, are

@(—2_—2 1. — bf(x: . _0
ob Zo-g(yi a— bf(x; w, o)) f(x; p, )| =

3y 1 9.7
e —22[;?(% —a=bf(x;p,0))|=
We can write x? in terms of the derivatives of Equation (9.7) as
1{ ox* , , ox?
xz—zl%@ —a = bf(x; w.0))| + 5 a—§1—+b—(.,"—) 9.8)
]

and setting the derivatives to 0 gives

X’ = Z[g (yi —a — bf(x; p, r))} 9.9)
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If the data represent the number of counts per unit time in a detector, then they are
distributed according to the Poisson distribution and we can approximate o2 = y,.
Equation (9.9) becomes

! (9.10)

Thus, we observe that the area under the total fit is underestimated by an amount
equal to x 2.

For this derivation we require only that the fitting function consist of a sum of
terms, each one of which is multiplied by a coefficient

y(x) = i:ajfj(x) 9.11)
i=

The function f(x) can contain any number of other parameters in nonlinear form,
but may not contain any of the coefficients a;. Even reparameterizing the function
of Equation (9.5) [or Equation (9.1)] and minimizing x ? with respect to the area ex-
plicitly would not affect the discrepancy between the actual and estimated areas.

Note that for data that are distributed with a constant uncertainty o; = o, the
second equation of Equations (9.7) is sufficient to ensure that Zy(x,) = Xy,. It is the
assumption of a Poisson distribution for the data o? = y; that yields the discrepancy
between the actual and estimated areas.

If the agreement between the fit and the data should be exact, x> = 0, then the
estimated and actual areas would be equal. For a fitting function that is a good rep-
resentation of the data, the value of x? will approximately equal the number of de-
grees of freedom, so that if there are many bins and a few parameters to be
determined, the average discrepancy will be about 1 per bin. Thus, the correction
may be negligible for distributions with large numbers of events.

We would like to find ways to reduce the discrepancy. The fact that we know
the approximate value of the discrepancy in the total histogram is, in itself, not very
helpful because we do not know how to aliocate the discrepancy between peak and
background. We might find the ratio of the integral A, of the peak [Equation (9.2)]
to the integral A of the complete function Equation (9.1) and scale to the total num-
ber of events in the plot to estimate the number of events in the peak. This method
assumes that the correction is proportional to the area. Another possibility is to
make separate fits to the peak and background regions of the plot, so that we can try
to assign the estimated correction separately to the two regions of the plot.

One obvious way of reducing the discrepancy between the area of the mea-
sured and fitted data is to reduce the value of x? at the minimum so that the correc-
tion is small. A method of accompiishing this reduction, which is not universaily
accepted but which can be justified by practical considerations, is the technique of
smoothing the data, averaging in some mathematically acceptable way over adja-
cent bins. (See Appendix A.5). Under any smoothing process there can be no over-
all gain in information, and a net improvement of the fit to the area must be offset
by an increased uncertainty in the estimation of other parameters, such as the width
and position of the peak. But smoothing will decrease the value of x? at the mini-
mum and thereby reduce the bias in the estimation of the area.
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Referring to Table 9.1, we observe that the areas under the three fitted curves
differ from the area under the data sample (4000 events) although the dlfferences

the nonlmear fitting process. Linear least squares polynomlal fits to appropriate
data, such as the background distributions in Example 9.1, yield the expected dif-
ferences between the area of the data and the fitted curves. See Exercise 9.1.

9.3 COMPOSITE PLOTS
~ Single Peak and Background

For a fitting function y(x) that is separable into a peak y,(x) plus a background y,(x),
such as Equation (9.1), it may be convenient to consider at least some facets of the
fitting procedure separately. The ieast-squares procedure for minimizing x? with re-
spect to each of the parameters a;,

KB 1 =0
90,2 |o? o2 1Y yslx) = el )2 (9.12)
can be considered equally well in terms of fitting the sum of the curves y(x) to the to-
tal yield y; or of fitting one function yp(x) to the difference spectrum Yi= ¥ — ypx).
The only provision is that the uncertainties in the data points of o; = g; nn Wt be the

same in both calculations.

If the background curve can be assumed to be a slowly varying function un-
der the peak, as in Figure 9.1, and may reasonably be interpolated under the peak
from fitting on both sides, it may be preferable to fit the background curve y,(x)
outside the region of the peak and to fit the peak function y,(x) only in the region
of the peak.

Such a procedure might help isolate special problems that result from fitting

with an incorrect peak or background. The x? function measures not only the devi-
ations of the parameters from an ideal fit, but also the dm(‘rpn;m(‘v between the form

Quaizs UL v

chosen for the shape of the fitting functlon y(x) and the parent d1str1but10n of the
data. If the shape of the fitting function does not represent that of the parent distrib-
ution exactly, the value of x?> may have large contributions from local data regions.
By fitting separate regions of a plot, it may be possible to discover whether the dis-
agreement is in the background or the peak region. In the histogram of Figure 9.1,
our interest is in the properties of the peak function, and not in the background,
which we parameterize with a simple power series in E. However, the value of 2
for the fit is calculated for the entire plot and includes contributions from discrep-
ancies between the background and the fitted curve, as well as between the peak and
curve. We may be able to isolate problems to one or the other region by separating
the fit into two parts.

Another reason for making separate fits to regions of a plot is to search for start-
ing values for an overall fit. For example, when fitting a function that consists of peak
functions plus background function, it may be useful first to fit the regions outside the
peaks to get starting values for the background parameters and then to fit separately

the region close to each peak, to find starting values for the peak parameters.
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As an example, assume that we wish to find starting values for the fit of Equa-
tion (9.1) to the data of Figure 9.1. The following procedure could be used:

1. Separate the curve into three regions (a), (), and (c) as indicated by the two
vertical lines on Figure 9.1.

2. Fit the background polynomial y,(x) = a, + a,E + a;E? simultaneously to re-
gions below and above the peak to obtain provisional values for the parameters
a, through as,.

3. Fit the entire function of Equation (9.1) to the central region, with the fixed val-
ues of a, through a; obtained in step 2 to obtain values for the parameters ay, as,
and ag.

4. Fit the entire function of Equation (9.1) simultaneously to regions (a) and (c),
with the starting values of the parameters a, through a¢ set to the values ob-
tained in steps 2 and 3 to obtain new values of the parameters a, through a,.

If the parameters continue to change significantly on each iteration, the
process can be repeated from step 2 as required. Alternatively, it may be sufficient
to skip step 3 and to fit for all parameters after step 2.

In fitting the peak and background functions over different parts of the spec-
trum, it is important to note that the complete function y(E) of Equation (9.1) must
be fitted to both regions; that is, in the region outside the peak where the back-
ground is being fitted, the calculation of the tail of the peak must be included, and
underneath the peak, the background terms must be included.

Multiple Peaks

Separation of closely spaced peaks is an important problem in many research fields.
Although we should not attempt to extract information from our data by sorting in
bins that are smaller than the uncertainties in our measurements, and should not use
bin widths that are so narrow that the numbers of events in the bins are too small to
satisfy Gaussian statistics, we also should not err in the other direction and risk sup-
pressing important details. Selecting optimum bin sizes is critical. For some data sam-
ples, different bin widths for different regions of the data sample may be appropriate.

EXAMPLE 9.2 We have noted that, although the 4.4% probability for the fit to the
data of Example 9.1 is rather low, it could be acceptable. However, because the data
were plotted in rather coarse bins (AE = 0.1 GeV), some information may have been
suppressed. To check this possibility, we plotted the data in smaller bins (AE = 0.05
GeV) as illustrated in Figure 9.2. (Note that in plotting Figure 9.2 we have eliminated
some bins from the lower and upper edges of the histogram in order to enhance the
display; all 60 bins are included in the fits.)

Plotted in smaller bins, the large peak near E = 1.00 GeV appears to be consid-
erably narrower than indicated in Figure 9.1. There is also a suggestion of a possible
excess of events in the bin centered at E = 0.825 GeV on the low-energy side of the
main peak. As illustrated by the curve on Figure 9.2, a fit of the two-peak Equation
(9.13) to the narrow-bin data, seems to confirm the existence of a second peak. To
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FIGURE 9.2

Histogram data in bins of 0.05 GeV of the 4000 simulated events shown in Figure 9.1. The solid
curve illustrates a fit of Equation (9.13) to the data. The inset illustrates, in the region of the smaller
peak, a fit of the single-peak Equation (9.1) to the entire data sample.

obtain this fit, we chose as starting values for the mass and width of the second peak,
0.825 and 0.05 GeV, respectively,

Lo/(2m)
Eo)? + (To/2)?

y(E)=a, +a2E+a3E2+A0(E_

r/(2m) 9.13)

UE-E 2+ (T/2)

suggested by examination of Figure 9.2.

Results of the fit are listed in column 6 of Table 9.1. The 29.4% chi-squared
probability for this fit is a marked improvement from 4.4% for the single-peak fit. The
inset on Figure 9.2 shows the region of the smaller peak with a curve calculated by fit-
ting the single-peak Equation (9.1) to the entire data sample of Figure 9.2. Parameters
determined in this fit are listed in column 5 of Table 9.1.

We can estimate the statistical significance of the smaller peak in Example
9.2 by counting the total number of events above the single-peak background
(shown in the inset) and considering whether or not the excess is consistent with a
statistical fluctuation. There are 102 events in the peak bin over a background of
69.5 events, corresponding to a fluctuation of (102 — 69.5)\'\/69.5 = 3.9 standard
deviations in the background signal. Referring to Table C.2, we infer that there is
a (1 —0.99990) = 0.00010, or 0.01% probability that we should obtain a result



this large, or larger, from a statistical fluctuation. Thus, the smaller peak appears to
be very well established.
But we should wait before rushmg 1nto publlcatlon our analys1s is not f1n-

in a partlcular bin. However, there are 60 b1ns in thlS data sample, and the fluctua-
tion could have appeared in any of them. The probability that a 3.9 standard devia-
tion would not appear in any of the 60 pairs is 0.9999%, so the probability of
observing the fluctuation in any of the bin pairs is 1 — 0.9999% ~ 0.6%. This prob-
ability is low enough to give us considerable confidence that the smaller peak is not
a fluctuation. If we had some a priori reason, such as a theoretical prediction or ev-
idence from another experiment, to believe that the smaller peak should be located

in the particular energy region where it appears, then the argument against a statis-

t 1f1 tiint Ald L 111
tical fluctuation would be even more Compeuing.

While there appears to be firm statistical support for a second peak in the data
of Example 9.2, that support depends strongly on our understanding of the contri-
butions in the region of the second peak from the smooth background distribution
and the tail of the large peak. If, for example, background counts were 10% higher,
decreasing the excess by 10%, the fluctuation would decrease from 3.9 to 2.9 stan-
dard deviations and the probability of a fluctuation of this magnitude in any bin
would increase from about 1% to 20%, a considerably less compelling number.

Are there further tests we can make on our data sample to help us understand
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Ll onsluxxvuuvv Ui VUl 1voulL,:, 1 vVl PlUUl\/lllD DULIL Ad 111D, VVI1ILIL LIV Dlaulduival Dls

nificance of a result may be in question, the Monte Carlo method (Chapter 5) pro-
vides a powerful tool for more detailed examination. We shall use this technique in
Chapter 11 to make a simple statistical test of these data. A full Monte Carlo pro-
gram, which incorporates all the known or estimated details involved in the cre-
ation of the data sample, is invaluable in the planning and analysis of a serious
experiment.

SUMMARY
Background subtraction:
ye(x)=¥(¥) = %(x)  (yp—> peak; y, — background )
Uncertainty in area of peak:
2

o5, =05 +0i  (=A+ Apfor Poisson statistics)

Area under fitted peak curve:

+ oo
Ap= f ye(x) dx

Discrepancy in area under a curve with Poisson statistics:

X hin = {y, - y(x,'))] = area(data) — area(fit)

rr
U
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EXERCISES

9.1

The following data are drawn from the background distribution illustrated by the

dashed curve in Figure 9.1 The data points correspond to the numbers of counts in 15
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E 01 03 05 07 09 11 13 15 17 19 21 23 25 27
N 4 30 49 71 87 91 120 136 147 133 130 118 142 122

Plot a of the data.
Use a linear-fitting technique, such as those described in Chapter 7, to fit a second-order

9.2

9.3

94

polynomial to these data. Assume statistical uncertainties in the counts. Compare the

number of events in the mstogram to the number determined b oy the fit. Is the difference

consistent with the prediction of Equation (9.10)?

Find the area of the peak in Figure 9.1 by counting the area between the vertical dotted

lines and subtracting the estimated background. Refer to the data in Exercise 9.4. Esti-

mate the correction for the tails. Estimate the uncertainty in your determination of
the area.

Refer to the data of Exercise 8.6. Fit the histogram by the method outlined in Section

9.3 with separate fits of the background second-order polynomial to the regions outside

the peak and of the Gaussian function to the region of the peak.

The accompanying table lists the numbers of events in the histogram bins of Example

9.1 from E = 0.0 to 3.0 GeV in steps of 0.05 GeV.

(a) Fit Equation (9.1) to the data to obtain the parameters for this distribution. Compare
to the values of the parameters listed in column 5 of Table 9.1.

(b) Repeat the fit with adjacent bins merged (i.e., combine bins 1 and 2, bins 3 and 4,
etc.) and observe the effect on the value of x2, the determination of the area of the
peak, and the determination of the mean and half-width of the peak. Assume statis-
tical uncertainties.

7 2 6 12 15 18 31 29 27 27 41 35 37 37 63 71 102 95 115 202
190 113 8 68 74 79 75 79 68 62 69 81 79 8 87 68 70 8 77 70
71 62 85 62 73 70 59 61 77 61 62 73 67 71 75 66 73 71 71 49



CHAPTER

10

DIRECT
APPLICATION
OF THE
MAXIMUM-
LIKELIHOOD
METHOD

he least-squares method is a powerful tool for extracting parameters from ex-

perimental data. However, before a least-squares fit can be made to a data set
that consists of individual measurements or events, the events must be sorted into a
histogram, which may obscure some detailed structure in the data. Because the
least-squares method was derived from the principle of maximum likelihood, it
might be better in some instances to use the maximum-likelihood method directly
to compare experimental data to theoretical predictions, without the necessity of
binning data into histograms with the corresponding loss of information.

We have already used the method in Chapter 4 to find estimates for the mean
and standard deviation of data obtained in repeated measurements of a single vari-
able, where we have assumed that the measurements were distributed according to
Gaussian probability. Now, we extend the method to other distribution functions
and to multiparameter fits. Maximum-likelihood methods can be applied directly to
many “curve fitting” problems, and such fitting is almost as easy to use as the least-
squares method, and considerably more flexible. However, the direct maximum-
likelihood method requires computations for each measured event, rather than for
each histogram bin as in least-squares fitting, and therefore the technique may be
too slow for very large data samples.

Direct maximum-likelihood calculations have an advantage over the least-
squares method for two particular types of problems: (1) low-statistics experiments

179



180 Data Reduction and Error Analysis for the Physical Sciences

with insufficient data to satisfy the requirement of Gaussian statistics for individual
histogram bins and (2) experiments in which the fitting function corresponds to a
different probability density function for each measured event so that binning the
data leads to a reduction in information and a loss of sensitivity in determining the
parameters. If the data set is sufficiently large, then the least-squares method can be
applied to problems of either type, and that method is generally preferred in view of
its smaller computing requirement. At any rate, it is not possible to extract more
than minimal information from a very small data set, so we should expect the direct
maximum-likelihood method to be most useful for intermediate problems with

modest data samples.

10.1 INTRODUCTION TO MAXIMUM
LIKELIHOOD

The basic maximum-likelihood procedure is relatively simple. Assume that we have
a collection of N events corresponding to the measurement of an independent vari-
able x; and a dependent variabie y,, where i runs from 1 to N. We wish to obtain the
parameters, a,, a,, . . . , a,, of a fitting function y(x;) = y(x;; a;, a,, . . . , a,,) from
these data. For each event, we convert y(x;) to a normalized probability density

function
P,=P(x;a,a,...,a,) (10.1)
evaluated at the observed value x;. The likelihood function .£(a;, a,, . . . , a,,) is the

product of the individual probability densities

P, (10.2)

—

Zay,ay...,a,)=
i=1
and the maximum-likelihood values of the parameters are obtained by maximizing
£(ay, ay, . . ., a,) with respect to the parameters.
In many experiments, the probability density function P; will be made up of
two components: a theoretical factor corresponding to the underlying principle be-

EXAMPLE 10.1 In Example 5.7 we presented a Monte Carlo program for studying
biases that could arise in an experiment to measure the mean life of the short-lived K9
meson (or kaon). The example includes details of the experiment and Figure 5.4 illus-
trates schematically the experimental apparatus.

In brief, the experiment involves measuring the distance between the point of
production and point of decay of the kaon, determining the meson’s velocity, and cal-
culating the meson’s time of flight from production to decay. After correction for bias
introduced by the finite size of the experimental apparatus, the mean life of the kaon
could be determined from measurements of many such events.

The dashed rectangle on Figure 5.4 indicates the region in which events are col-
lected, the fiducial region for the experiment. We select decay vertices only within this
region to assure precise measurements of both the separation of the two vertices and the
trajectories of secondary particles from decay of the kaon. These latter measurements
determine the momentum, and thus the velocity, of the kaon. Loss of events that do not
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FIGURE 10.1
Frequency distribution of times of flight for 23,565 events that survived fiducial cuts in a 40,000-
event Monte Carlo generation, as a function of the proper time (in units of 107'° s). The exponential
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distribution of the 40,000 generated events.

fall within the fiducial region bias the final calculation of the mean life and therefore
we must understand the biases and make corrections.

In the following examples, we assume that the coordinates of the two vertices
and the magnitude of the momentum of the decaying kaon have been determined.

We used the Monte Carlo program of Example 5.7, with the mean life of the
kaon set to its nominal value of ¢ = 0.894 X 107!%, to generate 40,000 events in or-
der to study the efficiency of the detector with reasonably high precision. It is impor-
tant that the statistical uncertainties introduced in the determination of the efficiency
function be negligible compared to the statistical and other uncertainties in the actual
experiment. The distribution of the 23,565 generated events that survived fiducial cuts
is shown as crosses in Figure 10.1 with the expected exponential distribution of the to-
tal 40,000-event sample shown as a smooth curve.

In Figure 10.2 we have plotted the resulting efficiency as a function of the times
of flight of the kaons (the proper time) in their individual rest frames, with the effi-
ciency function defined as the ratio of observed to expected events [or the point-
by-point ratio €(T) = N'(T)/N(T)] from Equation (5.31). The dotted line in Figure
10.2 illustrates the region over which the efficiency reasonably may be assumed to
be 100%.
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Efficiency function €(T) = N(T)/N(T), calculated from the ratio of observed events (crosses) to
expected events (smooth curve in Figure 10.1). The dotted line illustrates the region over which the
efficiency reasonably may be assumed to be 100%.

We also used the Monte Carlo program, with different random-number seeds
and the same nominal value of T, to generate a small “data set” of 1000 events, of
which 598 survived the fiducial cut, to use in testing our analysis procedures.

We shall discuss several aspects of the analysis of such data in the following
examples.

EXAMPLE 10.1a: Least-squares Method Figure 10.3 shows on a semilogarith-
mic plot the distribution, as crosses (x), of the 598 events that survived the fiducial
cuts from the total sample of 1000 events generated in Example 10.1. The straight line
shows the expected distribution if there had been no efficiency losses. In order to ex-
tract the mean life of the kaon from these data, we apply the efficiency function illus-
trated in Figure 10.2 to correct for losses. The corrected data points are plotted in
Figure 10.3 as data points with vertical error bars corresponding to the statistical un-
certainties in the data, scaled by the efficiency factor. (Uncertainties in the correction
factor were negligible.) The efficiency was assumed to be 100% in the region indi-
cated by the horizontal dotted line in Figure 10.2. The very large error bars on “cor-
rected” points at the two ends of the plot result from scaling low-statistics data points
and illustrate the problem of using data in regions of low efficiency. Generally, it is
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FIGURE 10.3

Semilogarithmic plot of the frequency distribution of 598 events that survived fiducial cuts from a
1000-event (Monte Carlo) data sample. The uncorrected data are shown as crosses; the data corrected
for efficiency losses are shown as data points with error bars. The straight line shows the result of a
linear least-squares fit to the corrected semilogarithmic data.

wise to eliminate points that require such large corrections from the sample, because
they contribute little to the overall result and depend heavily on the corrections.

From the linear slope of the logarithmic plot, illustrated by the straight line
through the data points, we obtain an “experimental” mean life 1 = (0.925 = 0.058).
Alternatively, we could have used a nonlinear least-squares fitting technique to deter-
mine T directly from a linear plot of the data.

Direct Maximum Likelihood

Most actual experiments are more complex and have efficiency functions that are
considerably more complicated than the one illustrated by our example. For such
problems, application of direct maximum likelihood may be the preferable method
for finding the best estimate of the parameters. To apply this method, we must
define a probability function for each recorded event.

The probability of observing a single event that survives for a time ¢, is

P.=A;p(t; ) (10.3)



184 Data Reduction and Error Analysis for the Physical Sciences

The first factor A; represents the detection efficiency, or probability that the particle
will decay wnthm a predeﬁned ﬁduczal volume w1th1n our apparatus so that a satis-

ordinates of the production and decay veruces of the decaying partwle its momentum
vector, and the geometry of the fiducial volume. The second factor p(z;; T) is propor-
tional to the probability that a particle of mean lifetime 7 will decay between time ¢,
and ¢, + dt and is therefore proportional to e ~*/*. Equation (10.3) becomes

P=Ae /" (10.4)
It might appear that the two factors in Equation (10.3) are independent, so that

the detection efficiency factor is independent of the decay probability, but, as we
have observed in the prevmus exampie, this is not genei‘any true. Because of the fi-
nite size of our measuring apparatus, we may preferentially lose events that survive
for very short times so that we can’t make precise measurements of their flight
paths, as well as those that survive for very long times and therefore decay outside
the acceptable limits of our detectors. Losses of both types depend upon the mean
life that we are attempting to determine, the “1” in the second factor of Equation
(10.3). For each particle that is observed to decay within the apparatus, we can de-
fine a potential path length as the distance it would travel if it had not decayed. Be-
cause each decaying particle has a different potential path length we must calculate
geometric factors to correct for those particles that decay outside the detector. The
correction factors will depend on the parameters and will be a function of the pro-
duction and decay coordinates and the momentum vectors of each decaying parti-
cle. Clearly, one element of good experiment design should be to minimize the
dependence of these geometric correction factors on the parameters sought in the

experiment.

Tha facrtar A n FEanatinn (10 A\
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ment to assure unit probability for observing in this experiment any event that has
the mean life, coordinates, and kinematics of the observed decaying particle. To de-
termine the normalizing factor A; we refer to Figure 5.4 and consider the fiducial
volume of our apparatus, indicated by the dashed rectangle. From each particle’s
production coordinates and momentum vector, we can determine the minimum dis-
tance d, that the particle must travel to enter the region and the maximum distance
d, it can travel before leaving the region. (We can, of course, observe some events
outside the fiducial volume, but we reject them because they cannot be measured
precisely.) These minimum and maximum distances d, and d, must be converted to
times of flight #, and 1, in the rest frame of the decaying particles, and the normaliz-
ing factors A; can then be determined from the condition

B t
j Pdt; = A,.J e dt; = 1 (10.5)
f t
Wiith thic nnmnl;wnf;nn tha individinal avant nrahahilitg D AF A 1atinn {10 AN
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becomes the probability density for observing a single event. The normalized joint
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probability or the likelihood function for observing N such events in our experiment
is just the product of the individual probability functions:

- ——t, [

S
N
~~
—
<D
=)
~=

Parameter Search

Our object is to find the value of the parameter T that maximizes this likelihood
function. Because the probability of observing any particular event is less than 1,
the product of a large number of such probab111t1es (one for each measured event)

dle. To av01d problems it is usually preferable to maximize the logamhm of the
likelihood function

=1In £ (10.7)

rather than the likelihood function itself, so that the product of Equation (10.6) be-
comes a sum. The logarithms should be reasonable, negative numbers. For our partic-
ular example, the logarithm of the likelihood function of Equation (10.6) is given by

M() = In[ £(7)] = E[m A - ﬂ (10.8)
with A; defined by Equation (10.5). Note that A; is a function of the unknown
parameter T, as well as of the production coordinates, momentum vector, and fidu-
cial volume, and must be calculated separately for each event, and for every trial
value of 1.

In general, this problem, like the corresponding nonlinear least-squares fitting
problem, cannot be solved in closed form. However, either the grid- or gradient-
search method of minimizing the x? function discussed in Chapter 8 can be adopted
directly. It is only necessary to search for a maximum of M (or a minimum value of
— M) with the same routines we used in Chapter 8 to find a minimum of x>

We may note a correspondence between the quantity M(t), determined in
Equation (10.7) from the likelihood function for individual events, and the good-
ness-of-fit parameter x2, determined by Equation (8.7) from the likelihood function
P(a) for binned data:

x? = —2In[.£(7)] + constant (10.9)

£ Ayvanto bln tWo mathAada 14 thao gcamae yaln
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1

1
T the maximum- hkehhood estimate of the parameter 7. In both cases the likeli-
hood function will be a Gaussian function of the parameter near the optimum value

£(7) < exp (—(T_—T)E) (10.10)

202

so we can expect M(1), like x*(), to vary quadratically with the parameter T in the
vicinity of 1'.



186 Data Reduction and Error Analysis for the Physical Sciences

EXAMPLE 10.1b Let us consider the simplest form of this problem. Assume that
the unknown mean lifetime is sufficiently short so that our apparatus is large enough

times is negligible. Let us also assume that our equipment can detect particles at very
short as well as very long times. Then the limits on the normalization integral of Equa-
tion (10.5) become #; = 0 and ¢, =  and A; is the same for every event and is given
by A; = 1/t. The likelihood function becomes

L@ =T[Ae" =]]

e—l,/‘r

- (10.11)

with Jogarithm
M(t)=In[.£(7)]= ——Et —NlnrT (10.12)

We can obtain the maximum of Equation (10.12) by taking the derivative of
M(7) with respect to T and setting it to 0:

dﬁ(’) [ =S - Nlm}
=5Su=5=0

The solution is T = Z¢/N; that is, the maximum-likelihood estimate of the mean life is
just the mean of the individual lifetime measurements. We should have reached the
same result if we had found the maximum of .Z(¢) from Equation (10.11).

(10.13)

EXAMPLE 10.1c  Suppose that we repeat the experiment, but with poorer experi-
mental resolution so that we cannot distinguish the decay vertex (x,, y,, z,) from the
creation vertex (x;, y;, Z;) unless they are separated by a distance d,. For simplicity, we
assume that the decaying particles are all produced with the same velocity, so that the
lower cutoff distance d, translates into the same lower cutoff in time ¢, for all events.
(In an actual experiment, of course, the decaying particles would be produced with
various velocities, so that the calculated lower cutoff time ¢, would vary from event to

event.)

For this example, the normalization integral of Equation (10.5) becomes

A,.J e t/"dr, =1 (10.14)
L
which gives
t/v
A,=% (10.15)
T

The likelihood function becomes

N N tl/‘T

<=1 4 =TT

(10.16)
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so that
M= Z=EU17_I"]—21“T (10.17)
Setting
aM(T) _ (10.18)
dr
gives
d _ [n-1 h—nl N
_E{[l 'J—ln‘r}=—2{l 2:]__:0 (10.19)
dr <=t = ) T T
or
El-ti_tl.l zt;' 10 s
TE———="— (10.20)
N N

As we should expect, the lifetime T would have been overestimated if we had
neglected to take account of the cutoff at short times.

EXAMPLE 10.1d Let us consider a more realistic problem in which we have both
short and long cutoffs on the observable path. We also assume that the unstable parti-
cles are produced at various locations within the target and with various momentum
vectors p.

For this example, we must calculate the normalization integral, Equation
(10.5), separately for each event with individual values for #, and ¢, determined from
the minimum and maximum distance cutoffs, d, and d,, respectively. The resulting
expression for the likelihood function is

N N [ et/ ]
L) =TT1Ae™" =Tl|7=—7——7 (10.21)
=1 =1l Tle T e T

M(7) = In[.£(r)]

Setting to zero the derivative of M(t) with respect to T gives us the equation
for the maximume-likelihood value of 1. However, the resulting equation cannot be
solved analytically for 7 although it could be solved by interpolation (see Appendix
A). We choose, rather, to maximize M(t) by a one-dimensional grid-search method
because search methods are more generally applicable to maximum-likelihood
problems and can readily be extended to multiple parameter problems.

10.2 COMPUTER EXAMPLE

Sample Maximum Likelihood Fit

We use the program MAXLIKE to select and analyze the 598 events that survived
the fiducial area cuts, from the 1000-event uncorrected data sample generated in
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Example 10.1a. The events were generated with T, = 0.894 X 1071 s and the dis-
tribution of the selected events is illustrated by the crosses in Figure 10.3.

Program 10.1 MAXLIKE (Appendix E) A grid-search method to maximize the

ten specifically for Example 10.1d.

STARTUP sets the range of the parameter TAU for the search.

FETCHDATA assigns the input data file, reads the limits of the fiducial region
(d, and d,), reads data for individual events.

SEARCH sets and increments TAU and calls LOGLIKE, which returns the loga-
ceding value. Terminates the search when M stops increasing and starts to decrease,
indicating that M has passed through a local maximum. At termination, fiis a paraboia
to the last three points to find a better estimate of TAU at the maximum.

LOGLIKE calls LOGPROB to find the logarithm of the probability density for
each event; sums to calculate the logarithm of the likelihood function.

LOGPROB calculates the logarithm of the probability density for an event.
ERROR calculates the uncertainty SIGTAU in TAUATMIN, the maximum like-
lihood value of the parameter TAU, by finding the change in TAU needed to decrease
Mby AM = 1/2.

PLOTLIKECURVE (Not listed) calculates and plots the shape of the likelihood
function in the region of the maximum. Plots a Gaussian curve with mean and stan-
dard deviation equal to TAUMIN and DTAU.

Grid-Search Solution

At each step the program increments T by a preset amount At and repeats the cal-
culation until M(t) has passed through a maximum and has started to decrease. The
program fits a parabola to the three points that bracket the maximum to find the
value 7’ at the maximum of M(t). For a more detailed problem, the program could
be written to repeat the calculation with smaller values of AT to find a better esti-
mate of 7', as in the fitting examples in Chapter 8. Either the grid- or gradient-
search method of Chapter 8 could be adapted to solve multiparameter problems.

Results of the Fit

We analyzed the data set twice: first with data selected in the nominal fiducial region
(10 cm to 40 cm), which gave ' = (0.943 * 0.059) X 107 '% for the 598 events that
survived the cut, and then, to test the sensitivity of the calculation to our choice of
fiducial region, with data selected in the less-appropriate fiducial region with d; = 10
cm and d, = 20 cm, which gave 7' = (0.78 * 0.14) X 107 1% for the 373 events that
survived this cut. Plots of the relative values of the likelihood function versus trial
values of the parameter T are shown as crosses in Figure 10.4a for the data selected
in the nominal fiducial region and in Figure 10.4b for data selected in the less-
appropriate fiducial region. As expected, the incorrect fiducial region clearly selects
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FIGURE 104

Relative values of the likelihood function versus trial values of the parameter for events that passed
the fiducial cuts for the decay vertex. The data points are indicated by crosses; the smooth Gaussian
curves were calculated from Equation (10.10) with the values of the means and standard deviations
obtained in the two fits. (a) Nominal fiducial cuts: 10 — 40 cm; 598 events survived; T° = 0.943 X
10795, 0 = 0.059 X 10705, (b) Incorrect fiducial cuts: 10 — 20 cm; 373 events survived; 7' = 0.78
X 107¥s,0 =0.14 X 107105,

fewer events and, therefore, gives a less-precise result. In an actual experiment, we
should have to consider a trade-off between the number of surviving events in the
sample, and the precision with which those surviving events could be measured, and
choose our fiducial region to maximize the overall quality of the result.

We observed that, for a sufficiently large event sample, the likelihood function
should become Gaussian in the parameters in the vicinity of a x?> minimum (or a
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maximum of the likelihood function) according to Equation (10.10), where 7' is the
value of the parameter 7 that maximizes the likelihood function. We show on Fig-
ures 10.4a and 10.4b Gaussian curves calculated from Equation (10.10), with 7" and
o determined by the respective fits. Both the data points and the Gaussian curves
have been scaled to unit height at T = 7'. The data points of Figure 10.4a closely
follow the curve; in the lower statistics example in Figure 10.4b, the data points de-
part from the curve considerably.

Uncertainties

To estimate the uncertainty o in our determination of 7', we found the change in T
necessary to decrease M by AM = 1/2 from its value at the maximum 1’ (corre-
sponding to an increase of x2 by 1 or a change of e~ 2 in the likelihood function .£).
Because the likelihood function for the larger sample (Figure 10.4a) closely fol-
lowed the Gaussian form, our estimate of the uncertainty should be satisfactory.
However, the smaller sample (Figure 10.4b) was skewed from the Gaussian, so that
our estimate of the standard deviation might be somewhat low. For multiparameter
fits it is often useful to plot contours of x? (or of M) as a function of pairs of the pa-
rameters to study the uncertainties. (See Chapter 11.)

There are several other ways to estimate the uncertainty in a parameter after
performing a maximum-likelihood fit. If the distribution of the likelihood function
is sufficiently close to a Gaussian, we can find o, from Equation (8.11):

9*M(7) !
o= (—@) (10.22)

oT

If it is not possible to calculate Equation (10.22) exactly (although it is possible for
our example), we can find the second derivative by taking finite differences as dis-
cussed in Appendix A.

If the likelihood function does not follow the Gaussian distribution, we can try
a numerical integration of the likelihood function to find limiting values that include
~68.3% of the total area, corresponding to the 1 standard deviation limit. Alterna-
tively, we may use a method suggested by Orear (1958) who points out that, for small
event samples, where the likelihood function may not be very Gaussianlike, it may be
preferable to calculate an average value of the second derivative through the equation

a°M  |[0°M/da?] £(a)da
= (10.23)
da [£(a)da
where a is the unknown l)cuaul\,fef and the in gi"&}S are over the allowable ra ange of

the parameter. This procedure has the advantage over the method of Equation
(10.22) of giving more weight to the tails of the distribution in cases where they
drop off more slowly than those of a Gaussian curve.

Another method of determining the uncertainties in the parameters is to use a
Monte Carlo calculation to produce simulated data sets, comparable to our measured
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data, and to use the method outlined in Chapter 11 for determining confidence levels
for our results. This method has the advantage that it depends only on the assump-
tions made in the Monte Carlo generation, and not on any statistical expectations
about the shape of the likelihood function. In many experiments, especially those
with low statistics, it provides the most reliable estimate of parameter uncertainties.

Goodness of Fit

v1de a convement test of the quallty of the fit. The value at the peak of the likelihood
function itself is not useful because it represents only the maximized probability for
obtaining our particular experimental result and we have no way of predicting the
expected probability.

An estimate of the goodness of fit can be obtained by making a histogram of
the data and comparing it to a prediction based on our best estimate of the parame-
ters. A Monte Carlo simulation of the experiment may be required to calculate the
predicted distribution, with a x? test to compare the data to the prediction.

It is not always clear just which data variable should be histogrammed for this
purpose. We would like to find that variable on which the parameters depend most
strongly. For our sample problem, the lifetime 7 in the rest frames of the particles is
an obvious choice, because that is the variable we would choose if we were to solve
the problem by the least-squares method. However, it might be wise to try plots of
several variables to be sure that the fit is satisfactory. To test, we could generate with
our Monte Carlo program a large sample of events based on the parameters discov-
ered in each search, apply the fiducial cuts, and calculate x? from the agreement be-
tween the Monte Carlo results and our data sample. We should be aware that,

becanse we did not actuallv minimize v2 for the exnerimental distribution with re-
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spect to the parameters, a satlsfactory value of x? may be at best an indication that
nothing is drastically wrong with the solution.

SUMMARY
Normalized probability density function:

P.= P(x;, a;, ay, s Q)
Likelihood function:

N
L(ayay,...,a,)= [P

=1

Single-event probability density: P; = A;-p(x;; a) where A; is the detection efficiency
and p(x;; a) is proportional to the interaction probability

Logarithm of likelihood function: M = In £ = Z In P,

Maximization of £ or of M: 8 £/da; = 0 or IM/da; = O for all g,



192

Data Reduction and Error Analysis for the Physical Sciences

Gaussian form of likelihood function for large data sample:

Pla) o ox

(@ = @)
\ )

Uncertainties in parameters:

EXERCISES

10.1.

10.2.

In a scattering experiment, the angles of the scattered particles are measured and the
cosines of the angles in the center-of-mass rest frame of the incident and target parti-
cles are calculated and recorded. Fifty such measurements, drawn from the distribu-
tion y(x) = a, + a, cos?0, are listed in the table. Use the direct maximum-likelihood
method to determine the values of the parameters a, and a, Note that it is necessary to

o digtrmihiitinn fiinatinn v ta o narmaolizad neahahil inntinn and that tha

th
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normalization constant will be different for each pair of trial values of a, and a,.

—0.999 —0.983 -0956 —0.946 —0.933 -0.925 -0916 -0.910

—0.881 —0.739 -0.734  -0.717 —0.715 —0.675 —0.665 —0.649

—0.621 —0.537 -0.522 —0.508 —0.499 -0.471 —0.460 —0.419

—0.403 -0.311 —-0.305 —0.281 -0.170 -0.162  —0.063 0.214
0.438 0.444 0.508 0.586 0.638 0.677 0.721 0.730
0.768 0.785 0.790 0.793 0.877 0.896 0.931 0.938
0.548 0.993

Because of the small amount of data, the uncertainties in the parameters a, and a, are
so large that the values of the parameters are not very meaningful. Therefore, to com-
plete the problem, you should use the Monte Carlo program written for Exercise 5.8
to generate 500 events and use your calculation to find the parameters from those data.
Students in an undergraduate physics laboratory determined the mass of the A hyperon
by measuring graphically the energies and the momentum vectors of the proton and
7 meson into which the A hyperons decayed. Because of the large uncertainties in the
measurements, the calculated square of the masses of the decaying particles forms a
truncated Gaussian distribution that is limited on the low-mass side by (M, + M, )? =
1.1617 (GeV/c?)?, but is not limited on the high-mass side. The following 50 numbers
represent squares of the calculated masses in units of (GeV/c?)2.

1.2981 1.2618 1.2145 1.2539 1.4230 1.3963 13701 12303 1.3655 1.2042
1.3190 12086 1.2118 1.2078 1.2726 1.2438 1.1838 1.1666 1.1908 1.1922
1.2525 1.3615 1.1855 1.2697 1.2044 1.3397 14317 12713 12203 1.2817
1.2046 1.2856 1.1980 1.2595 1.1721 1.2608 1.1689 1.4838 1.1743 1.2954
1.2586 1.2655 12316 1.2372 12969 1.2015 1.2000 1.1677 1.2080 1.1893
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Use the direct maximume-likelihood method to fit a truncated Gaussian to these data to
determine the maximum-likelihood value of the mass of the squared particle. A search
in two-parameter space will be required since neither the mean nor the width of the
distribution is known.

Note that it is necessary to calculate numerically the normalization of the trun-
cated Gaussian for each pair of trial values of the mean and standard deviation of the
Gaussian function. It is advisable to set up a table of the integral of the standard
Gaussian and to use interpolation to find the desired normalizations. A simple auto-

events with nominal mean life T = 0.894 X 10705,

(a) Plot a histogram of the times of flight of all the generated kaons in their own rest
frames (proper times).

(b) Use Program 10.1 (available on the website), with nominal fiducial cuts on your
data (d, = 10.0 cm and d, = 40 cm) to repeat the analysis of Example 10.1d to
find the maximum likelihood solution 7’ for the kaon mean life. Plot a histogram

of the events that survive the cuts.
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that are different from those used in part (a), generate 20,000 events to serve as
your estimate of the parent distribution. Apply the nominal fiducial cuts to these
data and plot a histogram of the data in the same bins as you used in part (b).

(d) Calculate x? for the agreement between your “experimental” histogram and the
surviving events from the “parent” distribution. If the numbers of events in your
bins of the parent distribution are large enough, their uncertainties can be ignored
in this calculation. If they are not, you must use the combined statistical errors of

the two distributions when calculating x2.



CHAPTER

11

TESTING
THE FIT

11.1 x?TEST FOR GOODNESS OF FIT

The method of least squares is based on the hypothesis that the optimum descrip-
tion of a set of data is one that minimizes the weighted sum of the squares of the
deviation of the data y; from the fitting function y(x;). The sum is characterized by
the variance of the fit s%, which is an estimate of the variance of the data 2. For a
function y(x;), which is linear in m parameters and is fitted to N data points, we
have

) 1 {1 /o)y — yex)) 1 “

L

S= (/N (1/02) = N—m > wilyi = y(x)J?

(11.1)

where the factor v = N — m is the number of degrees of freedom for fitting N data
points (implied in the unlabeled sums) with m parameters and the weighting factor
for each measurement is given by

1/c?

i~ N1/ (11.2)

w

the inverse of the variance o2 that describes the uncertainties in each point, normal-
ized to the average of all the weighting factors.

The variance of the fit s? is also characterized by the statistic x? defined in
Equation (7.5) for polynomials:

e=3{ L] 113)

107}

194



Testing The Fit 195

with
y(x) = z ayfil(x)

The relationship between s? and x? can be seen most easily by comparing s>
with the reduced chi-square x?2,

X:= =D (11.4)

where (o2) is the weighted average of the individual variances

2y = WNE((/oh)ed) |1 LT
@) = UMz (o?) —{NEUIJ (11.5)

and is equivalent to o ? if the uncertainties are all equal, o; = .

The parent variance of the data g2 is a characteristic of the dispersion of the
data about the parent distribution and is not descriptive of the fit. The estimated
variance of the fit s2, however, is characteristic of both the spread of the data and the
accuracy of the fit. The definition of x2, as the ratio of the estimated variance s? to
the parent variance o 2 times the number of degrees of freedom v, makes it a conve-
nient measure of the goodness of fit.

If the fitting function is a good approximation to the parent function, then the
estimated variance s? should agree well with the parent variance o2, and the value
of the reduced chi-square should be approximately unity, x2 = 1. If the fitting func-
tion is not appropriate for describing the data, the deviations will be larger and the
estimated variance will be too large, yielding a value of x?2 greater than 1. A value
of x2 less than 1 does not necessarily indicate a better fit, however; it is simply a
consequence of the fact that there exists an uncertainty in the determination of s?,
and the observed values of x2 will fluctuate from experiment to experiment. A value
of x?2 that is very small may indicate an error in the assignment of the uncertainties
in the measured variables.

Distribution of x 2

The probability distribution function for x? with v degrees of freedom is given by
2\1/2(v=2),—x%2
2.\ — (x?) e
px(x ’ v) /2 F(V/Z)

The chi-square distribution of Equation (11.6) is derived in many texts on statistics'
but we shall simply quote the results here.

The gamma function I'(n) is equivalent to the factorial function n! extended to
nonintegral arguments. It is defined for integral and half-integral arguments by the
values at arguments of 1 and %2 and a recursion relation:

(11.6)

1See Pugh and Winslow (1966), Section 12-5.
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=1 TA=Vw Tr-1)=nln )

For integral values of n

> ((11.7)

Tn+D=nn-1)n-2)-Cr)(~Vw)
n=",3%%%, ...

J
Calculating factorial functions can lead to computer overflow problems. For

~ computational purposes it is convenient to replace the factorial form of the gamma

function by a form of Stirling’s approximation?:
[[n]= V2me"n®~12(1 + 0.0833/n) (11.8)

This approximation, which is accurate to ~0.1% for all n = V2, avoids both the
problems of overflow in calculating factorials and the necessity of testing and
choosing the appropriate form for integral or half-integral argument. The trade-off
is computer speed. Calculating exponentials may be slower than calculating facto-
rials, but high speed usually is not required for nonrepetitive calculations.

If the function of the parent population is denoted by yy(x), the value of x3
determined from the parameters of the parent function

X6 = E[é[yi —yo(xi)lz] (11.9)
is distributed according to Equation (11.6) with v = N degrees of freedom. If the
function y(x) used in the determination of x? contains m parameters, the value of
x? calculated from Equation (11.3) is distributed according to Equation (11.6) with
v = N — m degrees of freedom.

More useful for our purposes than the probability density distribution p,(x?%; v)
of Equation (11.6) is the integral probability P(x?; v) between x? = x% and x? = oo

R 4

P(x%v) = J P, (x*; v) dx* (11.10)
X2
Equation (11.10) describes the probability that a random set of n data points drawn
from the parent distribution would yield a value of x? equal to or greater than the
tabulated value.

Program 11.1. CHI2PROB (Appendix E) x*>-probability.

CHIPROBDENS computation of the function px(xz; v) [Equation (11.6)] using
function GAMMA to approximate the gamma function.

CHIPROB Numerical calculation of the integral, Equation (11.10), by Simpson’s
rule. If variable overflow is a problem, double-precision variables could be employed.

2«Review of Particle Properties” (1986), p. 53.
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The calculation returns the integral to an accuracy of about =0.1%. The trade-
off on accuracy versus speed of computation is controlled by the value of the constant
DX, the integration step.

For the special case of 1 degree of freedom, v = 1, the x>-probability density
function of Equation (11.6) takes the form

px(xz; v) — e—xZ/Z/(z,n.xz)l/z

which is difficult to integrate numerically near x = 0. However, the integral is finite,
and the function can be expanded in a Taylor series about x = 0 and integrated ana-
lytically. We use that technique for v = 1 and x* < 2.

Similarly, for v = 2, where the function takes the form

px(xz; v) = e—xz/2/2

the analytic form of the integral is used.

For a fitting function that is a good approximation to the parent function, the
experimental value of x2 should be close to one and the probability from Equation
(11.10) should be approximately 0.5. For poorer fits, the values of x2 will be larger
and the associated probability will be smaller. There is an ambiguity in interpreting
the probability because x2 is a function of the quality of the data as well as the
choice of parent function, so that even correct fitting functions occasionally yield
large values of x2. However, the probability of Equation (11.10) is generally either
reasonably close to 0.5, indicating a reasonable fit, or unreasonably small, indicat-
ing a bad fit. In fact, for most purposes, the reduced chi-square x?2 is an adequate
measure of the probability directly. The probability will be reasonably close to 0.5
so long as x2 is reasonably close to 1; that is, less than about 1.5.

Example 11.1. Consider the solution of the problem of fitting two exponential
curves plus a linear background to the data from the radioactive silver decay of
Example 8.1. The fit (see Table 8.5) gave x? = 66.1 for 54 degrees of freedom, or
Xs = 1.22, with P (x% v) = 12.4%. We can interpret this result in the following way.
Assume that the parameters we found are, indeed, the parameters of the parent distri-
bution. Then, suppose that we were to repeat our experiment many times, drawing
many different data samples from that parent distribution. Our result indicates that in
12.4% of those experiments we should expect to obtain fits that are no better than that
listed in Table 8.5.

11.2 LINEAR-CORRELATION
COEFFICIENT

Let us assume that we have made measurements of pairs of quantities x; and y;. We
know from the previous chapters how to fit a function to these data by the least-
squares method, but we should stop and ask whether the fitting procedure is justi-
fied and whether, indeed, there exists a physical relationship between the variables
x and y. What we are asking here is whether or not the variations in the observed
values of one quantity y are correlated with the variations in the measured values of
the other quantity x.
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For example, if, as in Example 6.1, we were to measure the potential differ-
ence across segments of a current-carrying wire as a function of the segment length,
we should find a definite and reproducible correlation between the two quantities.
But if we were to measure the potential of the wire as a function of time, even
though there might be fluctuations in the observations, we should not find any sig-
nificant reproducible long-term relationship between the pairs of measurements.

On the basis of our discussion in Chapter 6, we can develop a quantitative
measure of the degree of correlation or the probability that a linear relationship
exists between two observed quantities. We can construct a linear-correlation

coefflclent r that will indicate quantitatively whether or not we are _]UStlfied in de-

ta no avan tha cimnlact linaar carracnandance hatweaan tha twa ana
L\.Luluuus vyull Luu OLILIPJIvOL unéar uuxl\.«oyuuuvuv\. oCIween ne two Yuali

Reciprocity in Fitting x Versus y

Our data consist of pairs of measurements (x;, y;). If we consider the quantity y to be
the dependent variable, then we want to know if the data correspond to a straight

llIlC Ul lllC lUllll

y=a-+bx (11.11)
We have already developed the analytical solution for the coefficient b, which rep-
resents the slope of the fitted line given in Equation (6.12):
N2xy, — 2x;2y;
b= - = 11.12
NZx? — (3x)? (11.12)

where the weighting factors in o; have been omitted for clarity. If there is no corre-
lation between the quantities x and y, then there will be no tendency for the values
of y to increase or decrease with increasing x, and, therefore, the least-squares fit
must yield a horizontal straight line with a slope b = 0. But the value of b by itself
cannot be a good measure of the degree of correlation because a relationship might
exist that included a very small slope.
Because we are discussing the interrelationship between the variables x and y,
we can equally well consider x as a function of y and ask if the data correspond to a
straight-line form
x=a +b'y (11.13)

The values of the coefficients a’ and b’ will be different from the values of the co-

efficients g and b in Eguation (l 1.1 1\ but thpv are related if the variables x and v are

Equation but th les x and y are
correlated.

The analytical solution for the inverse slope b’ is similar to that for b in Equa-
tion (11.12):

Nzxiy,- - Exizy,-

=N =y

(11.14)

If there is no correlation between the quantities x and y, then the least-squares fit
must yield a horizontal straight line with a slope " = 0.
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If there is a complete correlation between x and y, then there exists a relation-
ship between the coefficients a and b of Equation (11.11) and between a’ and b’ of
Equation (11.13). To see what this relationship is, we rewrite Equation (11.13):

a 1
=——+4+—x=qa+ 11.15
y y T x=a bx ( )
and equate coefficients
a' 1
- - = — 11.16
a bl b bl ( )

We see from Equation (11.16) that bb’ = 1 for complete correlation. If there
is no correlation, both b and b’ are 0 and Equations (11.16) do not apply. We. there-
fore define, as a measure of the degree of linear correlation, the experimental linear-
correlation coefficient r = W:

NExy, — Zx2y;
[NZx? = (3x,)7)[NZy} = (Sy, 7]

The value of r ranges from 0, when there is no correlation, to =1, when there is
complete correlation. The sign of r is the same as that of b (and "), but only the ab-
solute magnitude is important.

The correlation coefficient  cannot be used directly to indicate the degree of
correlation. A probability distribution for r can be derived from the two-dimensional
Gaussian distribution, but its evaluation requires a knowledge of the correlation co-
efficient p of the parent population. A more common test of r is to compare its value
with the probability distribution for the parent population that is completely uncorre-
lated; that is, for which p = 0. Such a comparison will indicate whether or not it is
probable that the data points could represent a sample derived from an uncorrelated
parent population. If this probability is small, then it is more probable that the data
points represent a sample from a parent population where the variables are correlated.

For a parent population with p = 0, the probability that any random sample of
uncorrelated experimental data points would yield an experimental linear-correla-
tion coefficient equal to r is given by>

1 T[(v+1)/2]
(s v) = 1
p (r V) \/; F(V/Z) (
where v = N — 2 is the number of degrees of freedom for an experimental sample

of N data points. The gamma function for integral and half-integral values was de-
fined in Equation (11.7).

r= (11.17)

— r2)v-2/2 (11.18)

Integral Probability

A more useful distribution than that of Equation (11.18) is the probability P(r; N)
that a random sample of N uncorrelated experimental data points would yield an

3For a derivation see Pugh and Winslow (1966), Section 12-8.
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experimental linear-correlation coefficient as large as or larger than the observed
value of | r|. This probability is the integral of p,(r; v) forv = N — 2:

1
Pc(r;N)=2l'px(r; wdx v=N-2 (11.19)
JTri
With this definition, P{(#; N) indicates the probability that the observed dat:

a
could have come from an uncorrelated (p = 0) parent population. A small value
of P(r; N) implies that the observed variables are probably correlated.

Because Equation (11.19) cannot be integrated analytically, the function must
be integrated either by making a series expansion of the argument and integrating
term by term or by performmg a numerlcal mtegratlon W1th fast computers the lat-

Program 11.2 LCORLATE (Appendix E) Correlation probability computations.
LCcORPROB computes the probability of Equation (11.19) by numerical integra-
tion. Input variables RCORR and NOBSERV correspond to the value of the ex-
perimental linear-correlation coefficient and the number of observations, respectively.
(The number of degrees of freedom is the number of observations minus 2.) The pro-
gram uses the following routines: L.1NCORREL computes the function p,(r; v) of
Equation (11.18) using the approximation of Equation (11.8) for the gamma function
(calculated by the function GAMMA in the program unit GENUTIL). Because
LINCORREL is intended to be used as an argument to the integration routine
SIMPSON, it can have only one argument. The parameter v is passed in the global
variable PS IMPS by the calling routine.

LINCORPROB computes P(r; v) of Equation (11.19) by numerically integrating
LINCORREL by Simpson’s rule. The calculation returns the integral to an accuracy
of about =0.01. The trade-off on accuracy versus speed of computation is controlled
by the value of the constant DX, the integration step.

Example 11.2. For the data of Example 6.1, the linear-correlation coefficient r can
be calculated from Equation (11.17) with the data of Table 6.1:
9 X 779.3 —450.0 X 12.44

V(9 X 28,500 — 450.0%) X (9 X 21.32 — 12.442)
= 0.9998

The probability for determining, from an uncorrelated population with9 — 2 =7
degrees of freedom, a value of r equal to or larger than the observed value, can be cal-
culated from Equation (11.19) (see Table C.3). The result P.(r; N) < 0.001% indicates
that it is extremely improbable that the variables x and V are linearly uncorrelated. Thus,
the probability is high that the variables are correlated and the linear fit is justified.

Similarly, in the experiment of Example 6.2, the linear-correlation coefficient
can be calculated from Equation (11.17) by including the weighting factors a? = y; as
in Table 6.2, so that, for example, N is replaced by 2w; and Zx; is replaced by Zw;x;,
and so forth:

0.03570 X 81.02 — 0.1868 X 10

 1/(0.03570 X 1.912 — 0.18682) X (0.03570 X 3693 — 10?)
= 0.9939
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Again, the probability P(r; N) for r = +0.9938 with v = 10 — 2 = 8 degrees
of freedom is very small (< 0.001%), indicating that the change in counting rate C is
linearly correlated to a high degree of probability with x = 1/r2, the inverse square of
the distance between the source and counter.

11.3 MULTIVARIABLE CORRELATIONS
If the dependent variable y; is a function of more than one variable,
y,~=a+b1x,-1 +b2x,~2+b3x,~3+"- (1120)

we might investigate the correlation between y; and each of the independent vari-
ables x;; or we might also enquire into the possibility of correlation between differ-
ent variables x;;. Here, we use the first subscript i to represent the observation, as in
the previous discussions, and the second subscript j to represent the particular vari-
able under investigation. The variables x; could be different variables, or they could
be functions of x;, f(x;), as in Chapter 7. We shall rewrite Equation (11.17) for the
linear-correlation coefficient r in terms of another quantity s.
We define the sample covariance s%:

1
N7 20 = %) (e — %) (11.21)

where the means ¥; and X, are given by

2
sjk

_ 1 _ 1
xj=ﬁzx,-j and xk=1v2x,-k (11.22)

and the sums are taken over the range of the subscript i from 1 to N. The weights have
been omitted for clarity. With this definition, the sample variance for one variable s2,

is analogous to the sample variance s defined in Equation (1.9):

S SR VY,
S =N (x; — X) (11.24)
It is important to note that the sample variances s? defined by Equation (11.23) are
measures of the ranges of variation of the variables and not of the uncertainties in
the variables.
Equation (11.21) can be rewritten for comparison with Equation (11.17) by
substituting the definitions of Equation (11.22):

s} = N_l——l >0 — %) (xix — %)

1 - =
=ﬁ:—12(xijx,-k—xjxk) (1125)

1 1
= I-V_——T E <xijxik - N Exijzxik>
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If we substitute x;; for x; and x;, for y, in Equation (11.17), we can define the sample
linear-correlation coefficient between any two variables x; and x; as

2
r, = ik (11.26)

J
SjSk

with the covariances and variances 53, s7, and s§ given by Equations (11.23) and
(11.25). Thus, the linear-correlation coefficient between the jth variable x; and the
dependent variable y is given by

r, = (11.27)

Similarly, the linear-correlation coefficient of the parent population of which
the data are a sample is defined as
0']2,(

P =—— (11.28)
;0%

where ¢, %, and o7} are the true variances and covariances of the parent popula-
tion. These linear-correlation coefficients are also known as product-moment corre-
lation coefficients.

With these definitions we can consider either the correlation between the de-
pendent variable and any other variable r;, or the correlation between any two vari-
ables ry.

Polynomials

In Chapter 7 we investigated functional relationships between y and x of the form
y=a0+a]_x+a2x2+a3x3+"' (11.29)

In a sense, this is a variation on the linear relationship of Equation (11.20) where the
powers of the single independent variable x are considered to be various variables
x; = x/. The correlation between the independent variable y and the mth term in the
power series of Equation (11.29), therefore, can be expressed in terms of Equations
(11.23) through (11.27):

5%,
AP
mbvy ~ _
1 ]
Sh = [Zxim ——(Ex?")ZJ
N-1] N (11.30)
1 1
2= 2 _ — 32
=N LEy, N(Ey,)}
52 - Zx'f’y-—le-”'Ey.
my " N —1 L PN i i
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Weighted Fit

If the uncertainties in the data points are not all equal (o; # o), we must include the
individual standard deviations o; as weighting factors in the definition of variances,
covariances, and correlation coefficients. From Chapter 6 the prescription for intro-
ducing weighting is to multiply each term in the sum by 1/02.

The formula for the correlation remains the same as Equations (11.26) and
(11.27), but the formulas of Equations (11.21) and (11.23) for calculating the vari-
ances and covariances must be modified:

V(N = DE[(1/0?) (x;; — X)) & — %]

"= (/N (1/o7)
., VIN=1DE[(1/0}) (x; — %) (11.31)
T T N (/e

where the means X; and X, are also weighted means

Sx;w,  2(x;/0?)

Xj=

N 2(1/0?)
The weighting factors
1/a?
=t 11.32
YT /N /0?) (11.32)

for each data point are the inverse of the variances o? that describe the uncertainties
in each point, normalized to the average of all the weighting factors.

Multiple-Correlation Coefficient

We can extrapolate the concept of the linear-correlation coefficient, which charac-
terizes the correlation between two variables at a time, to include multiple correla-
tions between groups of variables taken simultaneously. The linear-correlation
coefficient r of Equation (11.17) between y and x can be expressed in terms of the
variances and covariances of Equation (11.31) and the slope b of a straight-line fit
given in Equation (11.12):

s2
=2 = (11.33)

S

\)

In analogy with this definition of the linear-correlation coefficient, we define the
multiple-correlation coefficient R to be the sum over similar terms for the variables

of Equation (11.20):
. szy . S
>(6%)=2(6tn (1134)
j=1

y =1 Sy

R2

The linear-correlation coefficient r is useful for testing whether one particular
variable should be included in the theoretical function that is fitted to the data. The
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multiple-correlation coefficient R characterizes the fit of the data to the entire func-
tion. A comparison of the multiple-correlation coefficient for different functions is
therefore useful in optimizing the theoretical functional form.

We shall discuss in the following sections how to use these correlation coeffi-
cients to determine the validity of including each term in the polynomial of Equa-
tion (11.29) or the series of arbitrary functions of Equation (11.20).

11.4 F TEST

Asnoted in Section 11.1, the x? test is somewhat ambiguous unless the form of the
parent function is known, because the statistic x? measures not only the discrepancy
between the estimated function and the parent function, but also the deviations be-
tween the data and the parent function simultaneously. We would prefer a test that
separates these two types of information so that we can concentrate on the former
type. One such test is the F test, which combines two different methods of deter-
mining a x? statistic and compares the results to see if their relation is reasonable.

F Distribution

If two statistic x? and x3, which follow the x? distribution, have been determined,
the ratio of the reduced chi-squareds, x2, and x2, is distributed according to the
F distribution*
2
Xi/vi
F=2170 (11.35)
X3/v

with probability density function
P RTRY \ — l—‘i[(vl + v2)/2] /ﬂ\\w/z fl/Z(V|_2) ¢ 1 36\
BT T 0 /00/2) ) (L fn/v) 20

where v, and v, are the numbers of degrees of freedom corresponding to x? and x3.
By the definition of x2 [see Equation (11.4)], a ratio of ratios of variances

[

(11.37)

is also distributed as F, where s, and s, are experimental estimates of standard devia-
tions o, and o, pertaining to some characteristic of the same or different distributions.

As with our tests of x? and the linear-correlation coefficient r, we shall be
more interested in the mteorﬂl nrnhﬂhlhtv

R(Fiviow) = | pyfiviv) df (1138

which describes the probability of observing such a large value of F from a random

set of data when compared to the correct fitting function. The integral function
P(F; v v-\ is tabulated and omnhpd in Table C.5 for a wide range of F.v.. and V5.

2 F\A s Yy Y2/ 22 MEURIGS QL2 AN RS 222 AGUVAT RoWd AR Wik 2422 i A, ij» &2

4See Pugh and Winslow (1966), Section 12-7, for a derivation.
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A word of caution is in order concerning the use of these tables. Because the sta-
tistic F in Equation (11.35) is defined as the ratio of two determinations of x? without
specifying which must be in the numerator, we can define two statistics F;, and F5,,

2 2 1
F,=X g =X2_ (11.39)

X2 X Fn
which must both be distributed according to the F distribution.
If in some experiment our calculations yield a particular value of F,,, we can

(Table C.6 and Figure C.6) or less than 1% probble (Table C.7 and Figure C.7). If
the test value is less than the tabulated values, we must also make sure that it is not
too small. To do this, we compare the value

F21 = 1/F12 (1140)

to the same tables and graphs, noting that the values of v, and v, are reversed. The
values of v, and v, specified in Table C.5 correspond to the degrees of freedom for
the numerator and denominator of Equation (11.39), respectively.

Example 11.3. Suppose that F}, = 0.2 with v; = 2 and v, = 10. For Table C.6, the
observed value of F}, may be as high as 4.10 and still be exceeded by about 5% of ran-
dom observations. Similarly, we compare F,; = 1/F;; = 5.0 with the 5% point for

v, = 10 and v, = 2, which has a value of 19.4. Because the values of F, and F,, are
well within the 5% limits, we can have confidence in the fit.

What we are estimating in this example is the probability Pg(F,,; v;, v,) that
F, is not too large and the probability Pr(1/F,,; v,, v;) that F,, is not too small. It
1s temnting to simplify this pmcednre bv agsnming that

Pe(1/F g5 vy, vi) = Pe(Fy5 vy, v2) (11.41)
so that our test consists of determining F such that
P=(F; v, v,) = 0.05

with the requirement that

F>F,>1/F

This approximation is valid for reasonably large values of v, and v, but not for small
values of either, as in the preceding example, where we have 4.10 > F,, > 1/19.4.

Multiple-Correlation Coefficient

There are two types of F tests that are normally performed on least-squares fitting
procedures. One is designed to test the entire fit and can be related to the multiple-
correlation coefficient R. The other, to be discussed later, tests the inclusion of an
additional term in the fitting function.

If we consider the sum of squares of deviations S? associated with the spread
of the data points around their mean (omitting factors of 1/a? for clarity),
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S3=2(yi—Y) (11.42)

this is a statistic that follows the x? distribution with N — 1 degrees of freedom

(only one parameter y must be determined from the N data points). It is a character-

istic of guantities that follow the v2 distribution that thevy may he avnracced ac tha
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sum of other quantities that also follow the x? distribution such that the number of
degrees of freedom of the original statistic is the sum of the numbers of degrees of
freedom of the terms in the sum.

By suitable manipulation and rearrangement, it can be shown that SZ can be
expressed as the sum of the two terms,

r i |

m

=300 = 32 =3 |00 =D Za - )] + S0~ Sasy
. ) ) = (11.43)
= $0300i= ) (5~ 11+ Sy~ )P
where the fitting function is of the form
(x) = 2@ £(x) (11.44)
and we have
- 1
fi= N2 (11.45)

The left-hand side of Equation (11.43) is distributed as x? with N — 1 degrees
of freedom. The right-hand term is our definition of x ? from the Equation (11.3) and
has N — m degrees of freedom. Consequently, the middle term must be distributed

according to the x? distribution with m — 1 degrees of freedom.
R\/ anpaﬁcnn with our definition of the multinle-correlation coefficient R in

G a3V Veei evAiialaVII VA ou AR PAAL TR LA AGIVEL SRR

Equatlon (11.34), we can express this middle tern as a fraction R? of the statistic S35 2

2S4Sl 9 = DI =R (0= ) (11.46)
Equation (11.43) becomes
(=¥ =RY(i—3P+(1-R)Z(y —¥) (11.47)
or
§2 = R252 + (1 — R?)S2 (11.48)

where, as before, both terms on the right-hand side are distributed as x 2, the first
with m — 1 degrees of freedom and the second with N — m degrees of freedom.
Thus, the physical meaning of the multiple-correlation coefficient becomes
evident. It divides the total sum of squares of deviations S? into two parts. The first
fraction R2S? is a measure of the spread of the dependent and independent variable
data space. The second fraction, (1 — RZ)S§, is the sum of squares of the deviations
about the regression and represents the agreement between the fit and the data.
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From the definition of Equation (11.35), we can define a ratio Fy of the two
terms in the right-hand side of Equation (11.47) that follow the F distribution with
v = m — 1 and with v, = N — m degrees of freedom,

RYm—-1)  R? ><(N—m)
(I-R})/N-m) (1-R*)" (m—1)
From this definition of Fj in terms of the multiple-correlation coefficient R, it is
clear that a large value of F R corresponds toa good fit, where the multlple correla-

Fr=

(11.49)

cients are 0 (a = 0). So long as Fp exceeds the test value for F, we can be fa1rly
confident that our coefficients are nonzero. If, on the other hand, Fr < F, we may
conclude that at least one of the terms in the fitting function is not valid, is decreas-
ing the multiple correlation by its inclusion, and should have a coefficient of 0.

Test of Additional Term

n e additive nature of functions that obev the ¥2 statistics. we can fo
D
a

€caus e of the additive nature of functions that chy the X * statistics, we can form
new x° statistic by taking the difference of two other statistics that are distributed
as x2. In particular, if we fit a set of data with a fitting function with m terms, the re-
sulting value of chi-square associated with the deviations about the regression x?(m)
has N — m degrees of freedom. If we add another term to the fitting function, the
corresponding value of chi-square x?(m + 1) has N — m — 1 degrees of freedom.
The difference between these two must follow the x? distribution for 1 degree of
freedom.

If we form the ratio of the difference x*(m) — x?(m + 1) to the new value
X>(m + 1), we can form a statistic F, that follows the F distribution with v, = 1 and

=N—-m-—1:

2 2 2
X’(m)—x*m+1) _ Ax

= = 11.50

X D/ N —m 1) X (159

This ratio is a measure of how much the additional term has improved the value of

the reduced chi-square and should be small when the function with m + 1 terms does
not significantly improve the fit over the function with m terms. Thus, we can be con-

AN SApaiaaiRRiia gy APV LI 220 VAL AL AR LEZRS "2 0 3 3 ™ ) we Va2

fident in the relative merit of the new terms if the value of F, is large As for Fg, this
is really a test of whether the coefficient for the new term is 0@+ =0).IfF,
exceeds the test value for F, we can be fairly confident that the coefficient should not
be 0 and the term, therefore, should be included. Table C.5 and Figure C.5 are useful
for testing F,. They give the value of F corresponding to various values of the prob-
ability P (F; 1, v,) and various values of v, for the case where v; = 1. Thus, rather
than evaluating F for critical values of the probability (for example, 5% or 1%), we
can evaluate the probability corresponding to the observed value of F,.

A calculation of F), could be built into a linear regression program and the re-
sulting value compared to a supplied test value F, to indicate whether or not the last
term in the series is justified, and therefore, to determine how many terms in the se-
ries should be included in the fit. However, it is probably safer, except possibly in a
large, well debugged production run involving fitting polynomials to many similar
data sets, to examine the individual values of x? along with F, and to adjust the
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number of terms in the calculation manually. One should, however, be aware that
the important figure of merit for added terms is the difference of the two values of
x 2 divided by the new value x?2 of the reduced chi-square.

11.5 CONFIDENCE INTERVALS

The object of data fitting is to obtain values for the parameters of the fitted function,
and the uncertainties in the parameters. The quality of the fit is indicated by x 2 and its
the fitted parameters are good estimates of the parent parameters. Whether we esti-
mate our parameters by the least-squares method or by direct application of the max-
imum-likelihood method, as discussed in Chapter 10, we must always estimate the
uncertainty in our parameters to indicate numerically our confidence in our results.

Generally, we assume Gaussian statistics and quote the standard deviation o
in a result, where o appears in the Gaussian probability density function

(x;m,0)= 1 ex [—l (x=uY| (11.51)
P O Ve 2o | '
and determines the width of the distribution. As noted in Chapter 2, approximately

68.3% of the events of the Gaussian distribution fall within o of the mean w and
approximately 95.4% fall within *2g.

Confidence Level for One-Parameter Fit

One way of looking at the 1 standard deviation limit is to consider that, in a series of
repeated experiments, there is approximately a 68% chance of obtaining values within
*+¢ of the mean . Of course, we usually do not know p, and perhaps not o either, but
have determined experimentally only X and s, our estimate of the parameters. How-
ever, as long as our experimental estimates X and s are reasonably close to the true val-
ues . and o, we can state that there is approximately a 68% probability that the true
value of the measured parameter lies between X — s and x + s, or that at the 68.3%
confidence level, the true value of the parameter lies between these two limits.

We may wish to quote results in terms of other confidence levels. For exam-
ple, we refer to the =20 limit as the 95.4% confidence interval, or we may quote a
99% or 99.9% confidence level for a high-precision experiment. The conventional
1o and 20 limits are based on the Gaussian distribution, which may or may not ap-
ply to the data in question, and even an experimental distribution that nominally fol-
lows Gaussian statistics is apt to deviate in the tails.

For any distribution, represented by the normalized probability density func-
tion, p,(x; W), we determine the probability that a measurement of the parameter will
fall between X — a and X + b by the integral

F+b
P.= J_ p.(X; x) dx (11.52)

and could quote a confidence level of P, that the “true” value of the measured para-
meter is between these two values. Note that we have not specified a region that is
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sample of Example 10.1d. The data points (from Figure 10.4b) are indicated by crosses; the solid and
dashed curves represent the results of fitting Gaussian curves separately to the two sides of the
distribution. Parameters determined in the two fits are indicated on the graph. All measurements are in
units of 1071%s.

symmetrical about the mean. The uncertainties in our measurements may not be
symmetrical, although the asymmetry may be hidden if we assume Gaussian statis-
tics in our calculations. For example, the routines for finding uncertainties in para-
meters found by least-squares fitting (Chapters 7 and 8) generally assume a
Gaussian distribution of the parameters and hence produce a single number for the
uncertainties.

Example 11.4. As an example of an asymmetrical probability distribution, consider
the 373-event data sample of Example 10.1d. In Figure 10.4b we plot as crosses the
scaled values of the likelihood function for these data as a function of trial values of the
parameter 7. The data points exhibit a marked asymmetry about the mean 7’. The dashed
curve was calculated from Equation (10.10) with parameters obtained from the fit.

To make a better determination of o from this curve, we considered the re-
gions on each side of the mean separately and estimated two separate standard de-
viations, o; and gy, with the aid of Equation (1.11). To reduce the effect of the
right-hand side tail on the value of o,, we imposed a cutoff at T = 1.6 and used only
those data points below the cutoff in this calculation.

A composite curve formed of two Gaussians with the same mean T but differ-
ent values of o is shown as the solid curve in Figure 11.1. It would be reasonable
to consider the two values of o obtained in this way as appropriate estimates of
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the uncertainty in 7, so that we could report ' = 0.78*31> as indicated by the ar-
rows on Figure 11.1 rather than 7" = 0.78 * 0.14 as we did in Chapter 10. This is
equivalent to finding the two positions at which the logarithm of the likelihood
function has decreased by AM = V2 as discussed in Section 10.2. Clearly this result

is somewhat subjective if either side of the curve does not follow the Gaussian
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in the calculation.

Confidence Levels for Multiparameter Fits

The definition of the confidence level in a one- parameter expenment is generally

estimate d1rect1y from the d1str1but10n of the probablllty that the true result hes be-

tween two specified values. When two or more variables have been determined and
those variables exhibit some correlation, the definition of the confidence level be-

AU VQIIQUILS LAV SV SR RAQR VAL, A ARl viiv aniaNeNiAAN S

comes a little more difficult. Consider, for example, the determination of the mean
lifetimes T, and T, of two unstable silver isotopes of Example 8.1. The problem was
treated in Chapter 8 as a five-parameter problem, with parameters a, and a5 corre-
sponding to the two mean lifetimes, 7, and T,, respectively, and parameters a,, a,,
and a; corresponding to the amplitudes of a uniform background and the two
decaying states. The parameters of most interest in the experiment are a, and as, and
we want to define a joint confidence interval for those two variables.

Figure 11.2 shows two sets of contours for the variation of x? as_a function of
a, and a; from the least-squares fit by the Marquardt method discussed in Chapter 8.
The small contours, drawn with solid lines, were calculated by holding the parame-
ters a;, a,, and a; fixed at their optimum values (see Table 8.5) and varying a, and as
to obtain increases in x? of 1, 2, and 3 from the minimum value. The large contours,
shown as dashed lines, were calculated by allowing a,, a,, and a; to vary to minimize
x? for each pair of values of a, and as. The contour plots cover very different ranges
because of the correlations of the displayed parameters, a, and a5, with the remain-
ing parameters a, through a;. The tilt of the closed figures on each plot indicates the
degree of correlation of parameters a, and a5 with each other. In an ideal experiment,
the contours are ellipses in the region of the x?> minimum and if a, and as are not cor-
related, then, with suitable scaling of the axes, the ellipses are circles.

Which plot should we use? Additionally, how do we determine a confidence
interval; that is, a region of the a,-a5 space in which we estimate there is, for exam-
ple, a ~68% probability of finding the true values of the two parameters?

First, we should note that, because the fitting function, Equation (8.2), is not
linear in the parameters, the methods of testing described in the previous sections
strictly do not apply. However, we are much more likely to run into nonlinear fitting
problems than the easier linear problems, so we shall continue with this example. At
any rate, the function is linear in parameters a, through a;, and we could make a lin-
ear expansion of it, over a limited region, in the parameters a, and as. In fact, this
was the basis of a method of fitting nonlinear functions in Chapter 8.

Then, we should use the larger of the two contour diagrams to define our con-
fidence intervals. That implies that if we wish to find the standard deviation of a,
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Two sets of contours for the variation of x2 with parameters a, and as in the region of the x>
minimum. Data are from the least-squares fit by the Marquardt method discussed in Chapter 8. The
small contours, drawn with solid lines, were calculated by holding parameters a, through a; fixed at
their optimum while varying a, and as to obtain increases in x? of 1, 2, and 3 from the minimum
values. The large contours, shown as dashed lines, were calculated by allowing a,, a,, and a; to vary
to minimize x? for each pair of values of a, and as.

from the contour plot, we should consider the full range of the outer limit of the
Ax? = 1 contour, and not the intersection of that contour with the a4 axis. This is
equivalent to allowing as to assume its best values for each chosen value of a, as we
have already assumed for the parameters g, through a;. The two dashed vertical lines

indicate the two limits on a4 that include the 1 standard deviation, or 68.3% of the
nrnhahlhtv and the two horizontal lines indicate the 1 standard deviation limits for g..
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How do we know that the vertical lines enclose 68.3% of the probability? By
allowing the four parameters a,, a,, as, and as to find their optimum values for each
chosen value of a, and varying a,, we have separated our x? fitting problem into two
parts: a fit of N data points to m — 1 parameters with N — m — 1 degrees of free-
dom and a variation of Ax? with a, about the minimum x?, with 1 degree of free-
dom. As we observed in the previous section, the two variations separately must
follow their appropriate x? distributions, so our variation of Ax? obeys the x? prob-
ability distribution for 1 degree of freedom. If we look at the integrated probability
distribution P, for 1 degree of freedom [Table C.4, or calculated from Equation
(11.10)], we see that x> = 1 corresponds to 31.7% of the probability, or Ax? < 1
corresponds to 68.3%. Similarly, if we wish to find the limits for 2 standard devia-
tions, we should find the limits of a, on the Ax? = 4 contour, with all other para-
meters optimized.
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To find the 1 standard deviation region encompassed by the joint variation of
two parameters, a, and as, with all other parameters optimized, we must draw the
_ contour corresponding to that value of Ay? for 2 degrees of freedom that includes
68.3% of the probability. Referring again to Table C.4 or Equation (11.10), we find
that we should draw the contour for Ax? = 2.30, and for the 2 standard deviation
contour, we should choose Ax? = 6.14. Joint confidence intervals with more than
two parameters are often of interest, but are difficult to display and are represented
best by two-dimensional projections of contours for pairs of variables.

Suppose the predicted value of a physical quantity is

redic quantity is u. = 1000.0, and we have
made a measurement and obtained the value x = 999.4 + 2.0. At what confidence
level is the predicted value consistent with our measurement? The question could be
rephrased as, “What is the probability of obtaining from the predicted parent distri-
bution a distribution that is as bad as the one we got, or worse?” Because the shape
of the parent distribution was not predicted, but only the value of the mean, we must
use our value of the standard deviation, o = 2.0, as an estimate of that of the parent
distribution. If the distribution is known to follow Gaussian statistics, then the re-
quired confidence is twice the integral of the standard Gaussian probability function
from x = & to ®, where 8 = | — x|/ ¢ =[1000.0 — 999.4{/ 2.0.

Now, suppose that the predicted value was necessarily positive—an intensity,
for example. Then, we might again assume a Gaussian distribution, but only for
positive values of the variable x, and therefore our confidence integral becomes the
integral of the standard Gaussian from 8 to . However, because the total probabil-
ity must be normalized to 1, we again multiply the integral by 2 so that the proba-
bility or confidence level is the same for both problems.

The method of determining the confidence level thus depends on the type
of problem as well as the probability function that is applicable to the problem.
For distributions that are symmetrical about their means, such as the Gaussian dis-
tribution, we generally consider the probability of obtaining a result that is the
specified number of standard deviations from the mean, without regard to sign,
unless a particular sign is excluded by the physical problem. For distributions
such as the chi-square and Poisson distributions, which are only defined for posi-
tive values of their arguments, it is conventional to find a “one-sided” probability
as in the case of the x? distribution where we quote the probability of obtaining
a value as large as or larger than the value we obtained for a given number of
degrees of freedom.

=

11.6 MONTE CARLO TESTS

A Monte Carlo calculation can help us understand the statistical significance of our
results and possibly obtain a better estimate of some of the parameters of the exper-
iment. As a by-product, the Monte Carlo program may also help us identify biases
in our analysis procedure.

Suppose, for example, that we have measured a quantity x that is predicted to
have a value p.. From our experiment we obtain the value X for our estimate of p.
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We want to find the probability of obtaining from a series of similar experiments a
value x that differs from the predicted value w by

Ax=|w — X! (11.53)

We can set up a Monte Carlo program to simulate our experiment and to gen-
erate events with the parameters predicted by the theoretical principle that we are
testing and with the same cuts as those imposed by our experimental apparatus.
Such a program can be