
Chi-square: 

x' = L [IT~' (Yi - a - bXi)'] 

Leaat-square. fitting procedure: Minimize x' with respect to each of the 
coefficients simultaneously. 

Coefficienla oj uaal-BlJuare. jiUing: 

1 (~"'i' ~ Yi ~ "'i ~ XiYi) 
a = ~ t., ail t., rT." - t., 0"," t., rl'il 

b 1 (~ 1 ~ "'iYi ~ Xi ~ Yi) 
= X 1. ai' t., 0',' - it a,' t., u,' 

A= - -- -L 1 L"'i' (L Xi)' 
U,I ail (fi" 

Estimated variance ,": 

1 
0'2 :::::::! 3' c: N _ 2 ~(Yi - a - bzi )2: 

Statutital jlucluations: 

(Ti' ~ Yi raw data counls 

Uncertainties in coefficients: 

u.1 !:::::!.!. ~%i' 
L\ /.., (fi' 

EXERCISES 

u·'~i2:;i' 

6-1 Fit the data of Example 6-2 as if all of the data had equal uncer­
tainties fli = fl. 

6-2 How would you go about solving the simultaneous equations of 
Equations (6-15)? 

6-3 Fit the data of Example 6-1 as if all the uncertainties followed the 
Poisson distribution ai' ~ Ti • 

6-4 Derive Equations (6-25). 
6-5 Compare the discrepancies Ai of Example 6-1 with the experimental 

uncertainty •. How much larger than. is the largest value of Ai? 
How probable is such a discrepancy? 

6-6 Show that Equations (6-12) reduce to Equations (6-9) if lTi = IT. 
6-7 Derive a formula for making a linear 6t to datn with an intercept 

at the origin Y = bx. 
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CORRELA TION 

PROBABILITY 

CHAPTER SEVEN 

7-1 LINEAR - CORRELATION COEFFICIENT 

. Let US assume that we have made measurements of pairs of 
quantities"'iand Yi. We know from Chapter 6 how to mnke a least­
squares fit to these data for a linear relationship, and in the next 
chapters we will consider fitting the data with more complex func­
tions. But we must also stop and ask whether the fitting procedure 
is justified, whether, indeed, there e",i8/8 a physical relationship 
hetween the variahles x and y. What we are asking here is whether 
or not the variations in the ohserved values of one quantity yare 
correlated with the variations in the measured values of the other 
quantity", . 
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For example, if we were to measure the length of a metal rod 
as a function of temperature, we would find a definite and repro­
ducible correlation between the two quantities. But if we were to 
measure the length of the rod as a function of time, even though 
there might be fluctuations in the observations, we would not find 
any significant reproducible long-term relationship between the 
two sets of measurements. 

On the basis of our discussion in Chapter 6, we can develop a 
quantitative measure of the degree of linear correlation or the 
probability that a linear relationship exists between two observed 
quantities. We can construct a linear-correlation coefficient r 
which will indicate quantitatively whether or not we are justified 
in determining even the simplest linear correspondence between 
the two quantities. 

Reciprocity in fitting x VB. y Our data consist of pairs 
of measurements (",,,y,). If we consider the quantity V to be the 
dependent variable, then we want to know if the data correspond 
to a straight line of the form 

v=a+b" 
(7-1) 

We have already developed the analytical solution for the coeffi­
cient b which represents the slope of the fitted line given in Equa­
tion (6-9), 

b = NT.XiYi - T.z,T.y, 
NT-",,' - (T-",,)' 

(7-2) 

where the weighting factors <T, have been omitted for clarity. If 
there is no correlation between the quantities x and y, then there 
will be no tendency for the values of y to increase or decrease with 
increasing x, and, therefore, the leastrsquares fit must yield a 
horizontal straight line with a slope b = O. But the value of b by 
itself cannot be a good measure of the degree of correlation since a 
relationship might exist which included a very small slope. 

Since we are discussing the interrelationship between the 
variables '" and y, we can equally well consider x as a function of y 
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and ask if the data correspond to a straight line of the form 

x = a' + b'y (7-3) 

The values of the coefficients a' and b' will be different from the 
values of the coefficients a and b in Equation (7-1), hut they are 
related if the variables x and yare correlated. 

The analytical solution for the inverse slope b' is similar to 
that for b in Equation (7-2). 

b' = NT-XiVi - T.Xi~Yi 
NT-V,' (T-y,) , 

If there is no correlation between the quantities", and y, then the 
leastrsquares fit must yield a horizontal straight line with a slope 
b' = 0 as above for b. 

If there is complete correlation hetween '" and y, then there 
exists a relationship between the coefficients a and b of Equation 
(7-1) and between a' and b' of Equation (7-3). To see what thiB 
relationship is, we rewrite Equation (7-3) 

a' 1 
y = - b' + b' '" = a + b", 

and equate coefficients. 

a' 
a==-- b' 

1 
b = b' 

(7-4) 

If there iB complete correlation, we Bee from Equation (7-4) 
that bb' = 1. If there is no correlation, both band b' are O. We 
therefore define the experimental linear-correlation coefficient 
r .. ...;w as a measure of the degree of linear correlation. 

NEx.-Yi - 'Ex,Ey,-
r ill [Nl:"'" _ (l:",,)'P'[Nl:y,' (T-y,)'jl< 

(7-5) 

The value of r ranges from 0, when there is no correJBtion, to ± 1, 
when there is complete correlation. The Bign of r is the same as 
that of b (and b'), but only the absolute magnitude is important. 
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Tbe correlation coefficient r cannot be used directly to indi­
cate tbe degree of correlation. A probability distribution for r can 
be derived from tbe two-dimensional Gaussian distribution, but 
its evaluation requires a knowledge of tbe correlation coefficient p 

of tbe parent popUlation. A more common test of r is to compare 
its value witb tbe probability distribution for a parent popUlation 
whicb is completely uncorrelated, tbat is, for whicb p = O. Sucb 
a comparison will indicate wbetber or not it is probable tbat tbe 
data points could represent a sample derived from an uncorrelated 
parent population. If this probability is small, tben· it is more 
probable tbat tbe data points represent a sample from a parent 
population wbere tbe variables are correlated. . 

For a parent population witb p = 0, tbe probability tbat any 
random sample of uncorrelated experimental data points would 
yield an experimental linear-correlation coefficient equal to r is 
given by' 

P (r v) = _1_ r[(v + 1)/2) (1 _ r')(~2l/2 (7-6) r, .y; '", __ J~\ 

wbere v = N - 2 is tbe number of degrees of freedom for an 
experimental sample of N data points. 

Tbe gamma function r(n) is equivalent to tbe factorial func­
tion n! extended to nonintegral arguments. It is defined for inte­
gral and balf-integral arguments by tbe values for arguments of 1 
and ~ and a recursion relation. 

r(1) = 1 r(~) = ~ r (n + 1) - nr(n) 

For integral arguments 

r(n + 1) = n! n = 0, 1, 

For balf-integral arguments 
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r(n + 1) = n(n - 1)(n - 2) ..• (%)(3-2~) 
n = 3-2, %, %, 

1 For 0. derivation see Pugh and Winslow, sec, 12-8. 
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~ 

(7-7) 

Integral probability A more useful distribution tban tbat 
of Equation (7-6) is tbe probability P ,(r,N) tbat a random sample 
of N uncorrelated experimental data points would yield an experi­
mental linear-correlation coefficient as large as or larger tban tbe 
observed value of Iri. This probability is tbe integral of P ,(r,v) for 
v = N -2. 

P,(r,N) = 2 k~ P,(p,v) dp v = N - 2 (7-8) 

Witb this definition, P,(r,N) indicates tbe probability tbat tbe 
observed data could bave come from an uncorrelated (p = 0) 
parent popUlation. A small value of P,(r,N) implies tbat tbe 
observed variables are probably correlated. 

Program 7-1 Tbe probability function P,(r,N) of Equa­
tion (7-8) can be computed by expanding tbe integral. For even 
values of v tbe exponent is an integer and tbe binomial expansion 
can be used to expand tbe argument of tbe integral. 

P,(r,N) 

1 _ ~ r[(v + 1)/ 2) 
~ r(v/ 2) 

f~'I.f [(-1)' (I 1~)liIP"]dp 
.-0 

1 = ~(v - 2) 
1 _ ~ r[(v + 1)/ 2) 
~ r(v/2) 

{
I [ . I! IrI"+t]} .l (-1)' (I .)liI2i + 1 ._0 

v even 

For odd values of v, tbe exponent is balf-integral and tbe expan­
sion is more complex to derive, but tbe gamma functions may be 
included in tbe expansion to simplify tbe computation. 

P,(r,N) = 1 - J;: {sin-. (IrD 

+ Irl .f [(1 - r')' (2i ;,,1)!!]} " odd 
'-Ii 
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Program 7-1 PCORRE Integrallinear-correlation coefficient 
probability function P,{r,N). 

c 
c 
c 
c 
c 
c 
c 
c 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
t 
C 
C 

fUNCTIOH PCORRE 

PURPOSE 
EVAlUATE PROBABILITY FnR 110 CORRElATION BE1WEEII TWO VARIABLES 

USAGE 
RESULT. PCORRE (R, IIPTS) 

DESCRIPTION OF PARAMETERS 
R • LINEAR CORRELATION COEFFICIENT 
NPTS - NUMBER OF DATA POINTS 

SUBROUTINES MID fUNCTION SUBPROGRAMS REOUIREO 
GAUNA (l) 

CALCULA'TES GAMMA FUNCTION FOR INTEGERS AIIO HALF·IlITEGERS 

MODIFICATIONS FOR FORTRAN II 
OIUT DOUBLE PRECISION SPECIFICATIONS 
ADO F SUFFIX TO ABS IN STATEMENTS 23 AND "2 
CHANGE DSQRT TO SQRTF IN STATEMENT "Z 
CHANGE OATAN TO ATANF III STATEIIEtlT \3 

Tbe double factorial sign II represents 

nil - n(n - 2) (n - 4) ... ~:~ g~ for n odd 
for n even 

Tbe computation of P.(r,N) is illustrated in tbe computer 
routine PCORRE of Program 7-1. This is a Fortran function sub­
program to evaluate P.(r,N) for a given value of rand N. Tbe 
input variables are R ~ r, tbe correlation coellicient to be tested, 
and NPTS = N, the number of data points. 

FREE=NFREE=V=N-2 

is tbe number of degrees of freedom for a linear fit, and 'MAX = I 
is the number of terms in tbe expansion. Tbe sum of terms is 
accumulated in statements 31- 36 for v even and in statements 
51-56 fur v odd. The value of tbe probability is returned to tbe 
calling program as tbe value of tbe function PCORRE. 

Program 7-2 The computer routine GAMMA of Program 7-2 
is used to evaluate tbe gamma functions. Statements 11- 13 deter­
mine wbetber tbe argument of the calling sequence X is integral 
or balf-integral. If tbe argument is integral, tbe gamma function 
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Program 7-1 PCORRE (continued) 

fUNCTION PCORRE (A, !lPTS) 
DOUBLE~PRECISION A2, TERIoI, sun, FI, FilUM, OEflOII 

C 
C EVALUATE NUMBER Of DEGREES OF FREEOOII 
C 

c 

11 NFREE • NPTS • 2 
IF (HFREE) 13, 13, 15 

13 PCORRE - o. 
GO TO 60 

15 R2 • R"Z 
IF (1 . ·AZ) 13, 13, 17 

17 NEVEN • Z·(IIFREE/2) 
IF (NFPEE • NEVEN) 21, 21, '1 

C H\Jf\BER OF DEGREES OF FREEDOtt IS EVEti 
C 

21 IMAl • (HFAEE-2'/2 
FREE • "FREE 

23 TERM • ASS (R, 
SUM • TERM 
IF (IIIAX) 60, 26, 31 

26 PCORRE • 1. - TERn 
GO TO 60 

31 DO 36 I·l~ IttAX 
FI • I 
FIIUH • IHAX • I • 
OENOM • Z-' - 1 
T£AM • ·T£AM - nz - FNUM/FI 

36 SUM • SUM -- TERM/DEum, 
PCORRE • 1.121379167 -- (CAntlA«(FREE __ l.)/2.) / GAHHA(FAEE/2 . » 
PCDRRE - 1. - PCORRE"SUM 
GO TO IUt 

c 
C NUMBER OF DEGREES OF FREEDOM IS ODD 
C 

III lMAX - (IIFREE-3)J2 
112 TERn. ASS (R) - DSQAT Cl.·R2) 
113 SUM. DATAN(R2/TERtI) 

IF (lMAX) 51. liS. 5 1 
liS SUM • SUM • TEAll 

GO TO 57 
51 SUM • SOH -- TERII 
51 (JO 56 I-I. tHAI 

FHUtI • 2-1 
OEtm" • Z--I - 1 
TERn. TERII • (I.-R2) - FIIun/DEtIOt, 

56 SUM • SUM __ TERM 
51 PCORRE • 1. - 0.63661917211.SUIt 
60 RETURN 

END 

is identical to the factorial function FACTOR(N) = N! of Program 
3-2, whicb is called in statement 21 to evaluate tbe result. If tbe 
argument is half-integral, the result GAMMA is set initially equal to 
r(72) in statement 31, and tbe product of Equations (7-7) is 
iterated in statements 41-43 for z < 11 and in statements 51-55 
for z > 10. 

CORRELATION PROBABIUTY 125 



Program 7-2 GAMMA Gamma function r(n) Cor integers 
and half-integers. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

FUNCTION GAHMA 

PURPOSE 
CALCULATE THE GAMMA FUNCTION FOR INTEGERS A'IO HALF-I NTEGERS 

USAGE 
RESULT - GAMMA (Xl 

DESCRIPTION OF PARAMETERS 
X - ItITEGER OR HALF-I NTEGER 

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED 
FACTOR (N) 

CALCULATES N FACTORIAL FOR INTEGERS 

MODIFICATIONS FOR FORTRAN II 
oUlT DOUBLE PRECISION SPECIFICATIONS 
CHANGE OLOG TO LOGF IN STATEnENT 54 
CHANGE OEXP TO EXPF Ifl STATE"IENT 55 

FUNCTION GAMMA (X) 
DOUBLE PRECISION PROD, SUfi, FI 

C INTEGERIZE ARGUMENT 
C 

c 
c 
c 

c 
c 
c 

11 N - X - .25 
XN - N 

13 IF (X-XN-.7S) 31, 31, 21 

ARGUnENT IS IfiTEGER 

21 GAItMA - FACTOR(N) 
GO TO 60 

ARGUMENT IS HALF-INTEGER 

31 PROD - 1.77245385 
IF (N) 44, 44, 33 

n IF (N-I0) 41, 41, 51 
41 DO 43 I-I, N 

FI - I 
43 PROD - PROD. (FI-.S) 
44 GMIHA - PROD 

GO TO 60 
51 sun· o. 

DO 54 1-11, N 
FI - I 

54 SUM. SUM + oLOG(FI-.5) 
S5 GAItHA - PROD. 639383.8623 • DEXP(SUlt) 
60 RETURN 

END 

Sample calculation The calculation of the linear-correla­
tion coefficient R = r is carried out in the subroutine LINFIT of 
Program 6-1. Statement 71 is equivalent to Equation (7-5) with 
provision for including the standard deviations '" of the data 
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points as weighting factors. Note that SUM = 2:(1/",') is substi­
tuted for N = NPTS, and DELTA = d is substituted for the left­
hand term in the denominator of Equation (7-5). Each of the 
sums includes the proper weighting by",' as determined by the 
variable MODE (see discussion of Section 6-3). 

EXAMPLE 7-1 In the experiment of Example 6-1, tbe linear­
correlation coefficient r is given by Equation (7-5) to be 

9(2898) - 45(466.7) 
r = -yr.9"'(""'28""5"') =(~45i.;')~Y~9;;;(2~9~,8~28~.6~5) 

= 26,082 - 21,002 = 0.97 
v'54O "';50649 

(466.7)' 

From the graph of Figure C-3, a value of r = 0.97 with N = 9 
observations yields a probability of determining such a large 
correlation from an uncorrelated population as P,(r,N) < 0.001. 
This means that it is extremely improbable that the variables T 
and x are linearly uncorrelated; i.e., the probability is high that 
they are correlated and that our fit to a straight line is justified. 

Similarly, in the experiment of Example 6-2, the linear-corre­
lation coefficient is given by Equation (7-5) with the weighting 
factor ",' = y, introduced. 

.1919(675) - 16.911(10) 
r = -y7.';;19"'1i'><9?;(1i'><8ii;3709. 7~4~)~. ~(1~6"'.9';"l1fi)i', -=-Y?~19~1~9(T,i6;;;:52",)=7(j';10"')' 

= 129.53 - 169.11 = -0.97 
"';66.66 "';25.119 

Again, the probability P,(r,N) for r = 0.97 with N = 10 observa­
tions is less than 0.001 indicating that the change in the counting 
rate C is linearly correlated with time t with a high degree of 
probability. 

7-2 CORRELATION BETWEEN MANY VARIABLES 

If the dependent variable y is a function of more than one 
variable, 

y = a + b,x, + b,x, + b,x, + . . . (7-9) 
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we might investigate the correlation between y and each of the 
independent variables Xj or we might a\so inquire into the possibil­
ity of correlation between the various different variables Xi jf they 
are not independent. 

To differentiate between the subscripts of Equations (7-5) 
and (7-9), let us use double subscripts on the variables Xii ' The 
first subscript i will represent the observation y, as in the previous 
discussions. The second SUbscript j will represent the particular 
variable under investigation. Let us also rewrite Equation (7-5) 
for the linear-correlation coefficient r in terms of another quantity 
B/Ie'. 

We define the sampk covariance 8i.' 

8i.' " N ~ 1 2:[(X'i - :fj)(x" - :f.)] (7-10) 

where the means Xi and :f. are given by 

_ 1 ~ 
Xi Iiiiii N ~Xii and 

_ 1 ~_ 
x. Iiiiii N MOI'iJ: (7-11) 

and the sums are taken over the range of the SUbscript i from 1 to 
N. With this definition, the sample variance for one variable 8;' 

1 _ 
8;' .. 8ii' = N _ 1 2:(X'i - Xi)' (7-12) 

is analogous to the sample variance 8.' defined in Equation (2-10). 

8' _ 1 • - N _ 1 2:(x, - x)' 

Equation (7-10) can he rewritten for comparison with Equa­
tion (7-5) by SUbstituting the definitions of Equations (7-11) . 

1 
8ile" =:: N _ 1 l:(Xi;Zili - %/1:6-) 

1 1 
= N-:::-r. (2:x,;x,. - N 2:x,/Ex,.) (7-13) 
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If we substitute Xi; for X, and x,. for y, in Equation (7-5), we can 
define the sampk linear-correlation coefficient between any two 
variables Xi and X. as 

rile R! Bit' 
BjBt 

(7-14) 

with the covario.nces and variances 8j1-', 8J', and Bt' given by Equa­
tions (7-12) and (7-13) . Thus, the linear-correlation coefficient 
between the jth variable Xi and the dependent variable y is given 
by 

Bli ---ril/ 8j8J1 
(7-15) 

Similarly, the linear-correlation coefficient of the parent 
popUlation of which the data are a .ample i. defined as 

(Tile' 
Pile ~ U'J1Tk 

wherecr/, cr.', and cri.' are the true variances and covariances of the 
parent population. These linear-correlation coefficients are also 
known as product-moment-correlation coefficients. 

With such a definition we can consider either the correlation 
between the dependent variable and any other variable r l . or the 
correlation between any two variables rit . It is important to note, 
however, that the sample variances 8/ defined by Equation (7-12) 
are measures of the range of variation of the variables and not of 
the uncertainties as are the sample variances 8' defined in Sections 
5-2 and 6-5. 

Polynomials In Chapter 8 we will investigate functional 
relationships between y and X of the form 

y = a + bx + ex' + <lx' + . . . (7-16) 

In a sense, this is a variation on the linear relationship of Equation 
(7-8) where the powers of the single independent variable X are 
considered to be various variables Xj = xi. The correlation 
between the independent variable y and the mth term in the 
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power series of Equation (7-16), therefore, can be expressed in 
terms of Equations (7-12)-(7-15). 

B",,,' 
rln" =-

8""8,, 

, 1 [ 1 ] 8~ = N _ 1 2:,,;'. - N (2:,,;-), 

8,' = N ~ 1 [ 2:y;' - ~ (2:y;) , ] 

, 1 ( 1 ) 8",,, = ~ Z:ti"Yi - N 'ZXi"'l:Yi 

Weighted fit If the uncertainties of the data points are 
not all equal U; '" u, we must include the individual standard 
deviations "; "" weighting factors in the definitions of variances, 
covariances, and correlation coefficients. From Section 6-3, the 
prescription for introducing weighting is to weight each term in a 
sum hy the factor 1/ ,,;'. 

The formula for the correlation coefficient remains the same 
"" Equations (7-14) and (7-15) , hut the formul,," of Equations 
(7-10) and (7-12) for calculating the variances and covariances 
must be modified 

8;.' .. ~ I [!,. (,,;; - x;)(,,;. - x.)] 
1 ~ 1 
N "" fTi' 

8;' .. 8iJ' = ~ I [~(,,;; - x;),] 
1 ~ 1 
N "" Vi' 

where the means x; and.x. are also weighted means. 
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2:[(l/ O';')";J] 
x; <= 2:(1/ ,,;') 
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(7-17) 

Thus, the actual weighting factor is 

W . h' 1/,,;' 
elg .. = (1/N)2:(I/,,;') 

"" specified by the discussion of Chapter 4 and Section 10-1. 

Multiple-correlation coefficient We can extrapolate 
the concept of the linear-correlation coefficient, which character­
izes the correlation between two variables at a time, to include 
multiple correlations between groups of variables taken 
simultaneously. 

The linear-correlation coefficient r of Equation (7-5) between 
y and:r; can be expressed in terms of the variances and covariances 
of Equations (7-17) and the slope b of u. stru.ight-line fit given in 
Equation (7-2). 

r' = 8%11
4 

= b 8~2 
8z 'S,,2 8,,' 

In analogy with this definition of the linear-correlation coefficient, 
we define the multiple-correlation coefficient R to be the sum over 
similar terms for the variu.bles of Equlltion (7-9). 

E';;; I (b; ;':) = I (b; t rio) 
i-I " i-I ., 

(7-18) 

The linear-correlation coefficient r is useful for testing 
whether one pllrticular variable should be included in the theoret­
ical function to which the datil are fit. The mUltiple-correlation 
coefficient E characterizes the fit of the data to the entire function. 
A comparison of the multiple-correllltion coefficient for different 
functions is therefore useful in optimizing the theoretical func­
tional form. 

We will defer until Chapter 10 a discussion of how to use 
these correlation coefficients to determine the validity of includ­
ing each term in the polynomial of Equation (7-16) or the arbi­
trary function of Equation (7-9). 
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SUIIIIIIARY 

FunctUJR linear in caejJieienll: 

" 
V ~ a + L b;X1 

j-J 

Sample covariance .;,,': 

• _ :.:N,---~--!..I.!:L:!..:[:!.;'!::.,(-;ZI;;./_-.-;:'::')':'(X:':"=--_Z:::-'::.) 1 
lIill >=I 

NL~· 

- N ~ 1 (t;'; Nflf') 
N ~ai2 

.. 2:(XI;/"I') 
f / 2:(1/"1') 

Sample variance: 

'I' - 'ii' 

Limar-co"elotwn coefficient: 

'i" D-
ril 'j'. 

Probability P.(r,N) tbat any random &ample of uncorrelated 
experimental data poin'" would yield an experimental lincar­
correlation coefficient as large .. or larger than Irl : 

P.(r, " + 2) = rl ~ r[(" + 1)/2) 11'1.v;: 1'1 •• 10\ (1 - x')(~')I' tb; 

Multipk-<:orrelalion coefficient R: 

R' _ f (b. '1.') _ f (b.!i r . ) 
'- ' I 2 '- J II 'I' j-I .. j_1 .. 
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EXERCISES 

7-1 Find the linear-correlation coefficient. for Example 6-1. 
7-2 If a set of data when litted witb Equation (7-1) yield a zero slope 

b - 0, what can you say about the linear-correlation coefficient 
r? Justify this value in terms of the correlation between "'I and VI. 

7-3 Find the linear-correlation coeIIicient r for Example 6-2. 
7-4 Verify the expansion in the computation of Pe{r,N) . 
7-5 Find tbe linear-correlation coefficient., between XI and YI for the 

data of Example 8-1. 
7-6 If the linear-correlation coefficient " of Exercise 7-5 is computed 

by evaluating the 810pes band b' (r, = VW), should the 810pea 
be computed by litting the data with a linear polynomial or a 
quadratic polynomial? 

7 .. 7 Find the correlation coefficient rt between :tiS and Yi for the data 
of Example 8-1. Doea the correlation justify the use of a quadratic 
term? 

7-8 Express the multiple-correlation coefficient R in t.erms of %jf, YiJ 
and their averages. 

7-9 Evaluate the multiple-correlation coefficient R for the data of 
Example 8-1. 
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