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Chi-sguare:
S YEYI——

Least-squares filting procedure: Minimize x* with respect to each of the
coefficients simultaneously.
Coefficients of leasi-squares filling:

b=5(XadoH - 250 %)
a=Yade— (X3
Estimated variance 8%:

1
N-2

Statistical flucluations:

d:z;l:

Z(y; — a — bz;)?

g~y raw data counts

Uncertainties in coefficients:

.2 I
VR Y
EXERCISES

6-1 Fit the data of Example 6-2 as if all of the data had equal uncer-
tainties o; = @.

6-2 How would you go about solving the simultaneous equations of
Equations (6-15)7

6-3 Tit the data of Example 6-1 as if all the uncertainties followed the
Poisson distribution o >~ T';.

6-4 Derive Equations (6-25).

6-5 Compare the discrepancies A; of Example 6-1 with the experimental
uncertainty 5. How much larger than s is the largest value of A;?
How probable is such a discrepancy?

6-6 Show that Equations (6-12) reduce to Equations (6-9) if o; = .

6-7 Derive a formula for making a linear fit to data with an intercept
at the origin y = bz.
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CHAPTER SEVEN

CORRELATION
PROBABILITY

7.1 LINEAR - CORRELATION COEFFICIENT

“Let us assume that we have made measurements of pairs of
quantities z; and »:;. We know from Chapter 6 how to make a least-
squares fit to these data for a linear relationship, and in the next
chapters we will consider fitting the data with more complex fune-
tions. But we must also stop and ask whether the fitting procedure
is justified, whether, indeed, there exisis a physical relationship
hetween the variables z and y. What we are asking here is whether
or not the varintions in the observed values of one quantity y are
correlated with the variations in the measured values of the other
quantity z.
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For example, if we were to measure the length of a metal rod
as a function of temperature, we would find & definite and Tepro-
ducible correlation between the two quantities. But if we were to
measure the length of the rod as a function of time, even though
there might be fluctuations in the observations, we would not find
any significant reproducible long-term relationship between the
two sets of measurements.

On the basis of our diseussion in Chapter 6, we can develop a
quantitative measure of the degree of linear correlation or the
probability that a linear relationship exists between two observed
quantities. We can construet a linear-correlation coefficient r
which will indicate quantitatively whether or not we are justified
in determining even the simplest linear correspondence between
the two quantities.

Reciprocity in fitting = vs. y Our data consist of pairs
of measurements (z:,5:). If we consider the quantity y to be the
dependent variable, then we want to know if the data correspond
to a straight line of the form

y=a+bz (7-1)

We have already developed the analytical solution for the coeffi-
cient b which represents the slope of the fitted line given in Equa-
tion (6-9),

NZzy: — Zx:Zys
Nzzd — (Z)° 2

where the weighting factors «; have been omitted for clarity. If
there is no correlation between the quantities z and y, then there
will be no tendency for the values of y to increase or decrease with
increasing z, and, therefore, the least-squares fit must yield a
horizontal straight line with a slope b = 0. But the value of b by
itself cannot be & good measure of the degree of correlation since a
relationship might exist which included a very small slope.
Since we are discussing the interrelationship between the
variables z and y, we can equally well consider z as 8 funetion of ¥

b=
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and ask if the data correspond to a straight line of the form
z=a +by (7-3)

The values of the coefficients a’ and &' will be different from the
values of the coefficients a and b in Equation (7-1), hut they are
related if the variables z and y are correlated.

The analytical solution for the inverse slope b’ is similar to
that for b in Equation (7-2).

7 NZza: — ZzZy
NZy? — (Zy.)?

If there is no correlation between the quantities = and gy, then the
least-squares fit must yield a horizontal straight line with a slope
b = 0 as above for b.

_ If there is complete correlation hetween z and y, then there
exists a relationship between the coefficients ¢ and b of Equation
(7-1) and between a’ and b’ of Equation (7-3). To see what this
relationship is, we rewrite Equation (7-3)

')
y=—%+517x=a+bz

and equate coefficients.
1 (7-4)

If there is complete correlation, we see from Equation (7-4)
that bb’ = 1. If there is no correlation, both b and b’ are 0. We
therefore define the experimental linear-correlntion coefficient
r = 4/bb’ as a measure of the degree of linear correlation.

;- NZzg: — ZzZy:
[NZz? — ) BINZy? — (Cy,) 7"

(7-5)

The value ot: r ranges from 0, when there is no correlation, to +1,
when there is complete correlation. The sign of r is the same as
that of b (and b'), but only the absolute magnitude is important.

CORRELATION PROBABILITY 121




The correlation coefficient r eannot be used directly to indi-
cate the degree of correlation. A probability distribution for r can
be derived from the two-dimensional Gaussian distribution, but
its evaluation requires a knowledge of the correlation coefficient p
of the parent population. A more common test of r is to compare
its value with the probability distribution for a parent population
which is completely uncorrelated, that is, for which p = 0. Such
a comparison will indicate whether or not it is probable that the
data points eould represent a sample derived from an uncorrelated
parent population. If this probability is small, then it is more
probable that the data points represent a sample from a parent
population where the variables are correlated.

For a parent population with p = 0, the probability that any
random sample of uncorrelated experimental data points would
yield an experimental linear-correlation coefficient equal to r is
given by!

(,-’y) \};P_[(;EE/.—;‘;/ZJ (1 s rz)(r—z)iz (7-6)

where » = N — 2 is the number of degrees of freedom for an
experimental sample of N data points.

The gamma funetion I'(n) is equivalent to the factorial fune-
tion n! extended to nonintegral arguments. It is defined for inte-
gral and half-integral arguments by the values for arguments of 1
and 14 and a recursion relation.

M(1)=1 T@8)=+vr

For integral arguments

T(rn 4 1) = al(n)

rn+1) = n==0;1, . .=
For half-integral arguments

Mn+1) =nn—Dr-2) - - 39047
n=1%% 3 5%, ... (7I-7)

t For o derivation see Pugh and Winslow, sec. 12-8.
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Integral probability A more useful distribution than that
of Equation (7-6) is the probability P.(r,N) that a random sample
of N uncorrelated experimental data points would yield an experi-
mental linear-correlation coefficient as large as or larger than the
obsevaed value of |r|. This prohability is the integral of P,(r,») for
v=N—2.

P.(r,N) = 2 ﬁ‘[ P.(o,v) dp

v=N—2 (7-8)

With this definition, P.(r,N) indicates the probability that the
observed data could have come from an uncorrelated (p = 0)
parent population. A small value of P.(r,N) implies that the
observed variables are probably correlated.

Program 7-1 The probability function P.(r,N) of Equa-
tion (7-8) can be computed by expanding the integral. For even
values of » the exponent is an integer and the binomial expansion
can be used to expand the argument of the integral.

L~ 2 T+ 1/2]

vr  T(»/2)
I
ﬁ)lrl ‘-Zo [(_1)5 '(TTI;ET p‘h'] dp
PN ={ 5 om0/ Ty
T Va T0/2)
{'Zo [( D' Ii)m 2|:I:l1”
v even

For odd values of », the exponent is half-integral and the expan-
sion is more complex to derive, but the gamma functions may be
included in the expansion to simplify the computation,

Btr N = 1 i lsin—' )

+ Irl z [(1 o)t (21' )”]] v odd

e ]

CORRELATION PROBABILITY 123



Program 7-1 PCORRE Integral linear-correlation coefficient
prohability function P.(r,N).
FUNCTION PCORRE

PURPOSE
EVALUATE PROBARILITY FOR ND CORRELATION BETWEEN TWO VAR IABLES

USAGE
RESULT = PCORRE (R, NPTS)

DESCRIPTION OF PARAMETERS
R - LIMEAR CORRELATION COEFFICIENT

NPTS - HUMBER OF DATA POJHTS

SUBROUTINES AHD FUNCTIOM SUBPROGRAMS RENUIRED

GAMMA (X)
CALCULATES GAMMA FUNCTION FOR INTEGERS AHD HALF~INTEGERS

HOD1EICATIONS FOR FORTRAN 11
OMIT DOUBLE PRECISION SPECIFICATIONS
ADD F SUFFIX TO ABS 1N STATEMENTS 23 AND 42
CHANGE DSNRT TO SORTF 1M STATEMERT 42
CHANGE DATAN TO ATANF IN STATEMENT &3

aesAcoenOnNaannNonaonnon

The double factorial sign !! represents

L@ M
@ @)

The computation of P.(r,N) is illustrated in the computer
routine PCORRE of Program 7-1. This is a Fortran function sub-
program to evaluate P.(r,N) for a given value of r and N. The
input variables are ® = r, the correlation coefficient to be tested,
and NeTs = N, the number of data points.

for n odd

all = n(n — 2)(n — 4) - - for n even

FREE = NFREE = v = N — 2

is the number of degrees of freedom for & linear fit, and MAX = [
is the number of terms in the expansion. The sum of terms is
accumulated in statements 31-36 for » even and in statements
51-56 for » odd. The value of the probability is returned to the
calling program as the value of the function PCORRE.

Program 7-2 The computer routine GAMMA of Program 7-2
is used to evaluate the gamma functions. Statements 11-13 deter-
mine whether the argument of the calling sequence X is integral
or half-integral. If the argument is integral, the gamma function
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Program 7-1 PCORRE (coniinued)

FURCTION PCORRE (R;-"PTSI
DOUBLE ~PRECISIDH R2, TERM, SUM, F1, FHUM, DENON

c EVALUATE NUMBER OF DEGREES OF FREEDOH

11 NFREE = NPTS = 2
|F (NFREE)} 13, 13, 15
13 PCORRE = 0,
GO TO 60
15 R2 = Res
IF (1.-R2) 13, 13, 17
17 NEVEN = 2«(NFREE/2)
IF (NFPEE - MEVEN) 21, 21, &l

w

-~

HUMBER OF DEGREES OF FREEDOM IS EVEN

21 IMAX = (NFREE-2)/2
FREE = NFREE
TERM = ABS (R)
SUM = TERM
IF (IMAX) 60, 26, 31
26 PCORRE = 1, - TERMW
GO TO 60
31 DO 36 =1, IMAX
Fl = |
FNUH = IMAX = | + 1
DENOM = 2+ « 1
TERM = -TERH * N2 * FHUM/FI|
36 SUM = SUM + TERM/DENOH
PCORRE = 1.128379167 ¢ (GAMMA((FREE+1.)/2.} / GAMMA(FREE/2.))
PCO#SES: 1. = PCORRE*SUM
G0

noa

2

w

NUHBER OF DEGREES OF FREEDDM [S ODD

41 IMAX = (NFREE-3}/2
42 TERM = ABS (R) » DSQAT(1,-R2}
43 SUM = DATAN(R2/TERM)

IF (IMAX) 57, 45, 51
45 SUM = SUM + TERM

GO 70O 57
51 SUH = SUH ¢ TERM
52 D0 56 (=1, INAX

FHUN = 2s]

DENCM = 2+«] + 1

TERH = TERM = (1.-R2) » FHUM/DENON
56 SUM = SUM ¢ TERM
57 PCORRE = 1, - 0,6366197724+5UN
60 RETURH

END

aao

is identical to the factorial function FacTor(N) = N! of Program
3-2, which is called in statement 21 to evaluate the result. If the
argument is half-integral, the result GAMMA is set initially equal to
I'(34) in statement 31, and the product of Equations (7-7) is
iterated in statements 4143 for z < 11 and in statements 51-55
forz > 10.
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Program 7-2 GAMMA Gamma function I'(n) for integers
and hali-integers.

FUNCTION GAHMA

PURPOSE
CALCULATE THE GAMMA FUMCTION FOR INTEGERS AND HALF-INTEGERS

USAGE
RESULT = GAMMA (X)

DESCRIPTION OF PARAMETERS
X - |NTEGER OR HALF-INTEGER

SUBROUTIHES AND FUNCTIOH SUBPROGRAMS REONUIRED
FACTOR (N)
CALCULATES N FACTORIAL FOR INTEGERS

MODIFICATIONS FOR FORTRAN 11
OMIT DOUBLE PRECISION SPECIFICATIONS -
CHANGE DLOG TO LOGF IM STATEMENT 5&
CHANGE DEXP TO EXPF IN STATEMENT 55

BOOOAOOOOOO0O0O0 GO0

FUNCTION GAMMA (X)
DOUBLE PRECISION PROD, Suh, Fi

INTEGERIZE ARGUMENT

[z Xr <]

11 K =X~ ,25
13 IF (X-%N-.75) 31, 31, 21
ARGUHENT IS IHTEGER

[zXr1=]

21 GAMMA = FACTOR{N)
G0 T0 60

ARGUMENT 1S HALF-INTEGER

[xR=Nz]

31 PROD = 1.77245385
IF (N) Lb, U4, 33
33 IF {N-1D) &1, 41, 51
41 DO 43 I=1, M
FIl = |
43 PROD = PROD & (F1-.5)
L4 GAMMA = PROD
GO TO GO
51 SUH = 0,
DD 54 (=11, N
SUM % DLOG(F1-~.5)
= SUM + -.
§§ gg:MA = PROD + 539383,.8623 « DEXP{SUH)
60 RETURH
EHD

Sample calculation The calculation of the linear-correla-
tion coefficient r = r is carried out in the subroutine LINFIT of
Program 6-1. Statement 71 is equivalent to Equation (7-5) with
provision for including the standard deviations o; of the data
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points as weighting factors. Note that sum = Z(1/e:?) is substi-
tuted for N = ~eTs, and pELTA = A i substituted for the left-
hand term in the denominator of Equation (7-5). Each of the
sums includes the proper weighting by ¢;* as determined by the
variable MODE (see discussion of Section 6-3).

EXAMPLE 7-1 In the experiment of Example 6-1, the linear-
correlation coefficient r is given by Equation (7-5) to be

9(2808) — 45(466.7)
V9(285) — (45%) 1/9(29,828.65) — (466.7)2

_. 26,082 — 21,002 _ .
V540 /50649 ’

From the graph of Figure C-3, a value of r = 097 with N =9
observations yields a probability of determining such a large
correlation from an uncorrelated population as P.(r,N) < 0.001.
This means that it is extremely improbable that the variables T
and z are linearly uncorrelated ; 1.e,, the probability is high that
they are correlated and that our fit to a straight line is justified.

Similarly, in the experiment of Example 6-2, the linear-corre-
lation coefficient is given by Equation (7-5) with the weighting
factor 0:* = y; introduced.

.1919(675) — 16.911(10)
+/.1919(1837.74) — (16.011)° 4/1019(652) — (10)*
- 129.58 — 169.11 _ o

+/66.66 /25.119 '

Again, the probability P.(r,N) forr = 0.97 with ¥ = 10 observa-
tions is less than 0.001 indicating that the change in the counting
rate C is linearly correlated with time ¢ with a high degree of
probability,

7-2 CORRELATION BETWEEN MANY VARIABLES

If the dependent variable y is a function of more than one
variable,

Yy=a+ by + boxs + byxy + - - - (7-9)
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we might investigate the correlation between y and each of the
independent variables z; or we might also inquire into the possibil-
ity of correlation between the various different variables z; if they
are not independent.

To differentiate between the subscripts of Equations (7-5)
and (7-9), let us use double subscripts on the variables z;;. The
first subscript 7 will represent the observation y; as in the previous
discussions. The second subscript 7 will represent the particular
variable under investigation. Let us also rewrite Equation (7-5)

for the linenr-correlation coefficient r in terms of another quantity

an’.

We define the sample covariance su? .

gt = F—l_ i [z — Z) (i — )] (7-10)

where the means #; and % are given by

I = ]%.-E:F.-j and T = %E&‘.’t (7-11)

and the sums are taken over the range of the subseript 7 from 1 to
N. With this definition, the sample variance for one variable s;?

1
5 = g;* = (g (i — )2 (7-12)
is analogous to the sample variance g, defined in Equation (2-10).
Bt = }—E(ﬁi —-.‘3)’
T N-1

Equation (7-10) can be rewritten for comparison with Equa-
tion (7-5) by substituting the definitions of Equations (7-11).

st = 1_ i Z(zima — 2&)

= N'i_j (Zzisza — ]-%- 272 Ti) (7-13)

128 DATA REDUCTION AND ERROR ANALYSIS

If we substitute z,; for z; and z. for y; in Equation (7-5), we can
define the sample linear-correlation coefficient between any two
variables z; and z; as
Lo 3

= (7-14)
with the covariances and variances s;?, 8;%, and 8,? given by Equa-
tions (7-12) and (7-13). Thus, the linear-correlation coefficient
between the jth variable z; and the dependent variable y is given

Ty = 2, (7-15)

Similarly, the linear-correlation coefficient of the parent
population of which the data are a sample is defined as

anl

A
where ¢;%, 04, and ;2 are the true variances and covariances of the
parent population. These linear-correlation coefficients are also
known as product-moment-correlation coefficients.

With such a definition we can consider either the correlation
between the dependent variable and any other variable r;, or the
correlation between any two variahles r;. It is imporiant to note,
however, that the sample variances s;? defined by Equation (7-12)
are measures of the range of variation of the variables and not of
the uncertainties as are the sample variances s? defined in Sections
5-2 and 6-5.

Polynomials In Chapter 8 we will investigate functional
relationships between y and z of the form

y=a+bz+cz*+dz*+ - - - (7-16)

In a sense, this iz a variation on the linear relationship of Equation
(7-8) where the powers of the single independent variable z are
considered to be various variables z; = z7. The correlation
between the independent variable y and the mth term in the
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power series of Equation (7-16), therefore, can be expressed in
terms of Equations (7-12)-(7-15).

Weighted fit If the uncertainties of the data points are
not all equal o; # ¢, we must include the individual standard
deviations o; as weighting factors in the definitions of variances,
covariances, and correlation coefficients. From Section 6-3, the
preseription for introducing weighting is to weight ench term in a
sum by the factor 1/s:%.

The formula for the correlation coefficient remains the same
as Equations (7-14) and (7-15), but the formulas of Equations
{7-10) and (7-12) for calculating the variances and covariances
must be modified

1 i
Nla
=il [% (zij — f"”]

Wl

where the means £ and. z. are also weighted means.

8_,1’ =

(7-17)

8 = 8 =

5. < Zl1/ed)z4)
"= 31
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Thus, the actual weighting factor is

. - 1/0?
Weights = (/M (1/e

as specified by the discussion of Chapter 4 and Section 10-1.

Multiple-correlation coefficient We can extrapolate
the concept of the linear-correlation coefficient, which character-
izes the correlation between two variables at a time, to include
multiple correlations between groups of variables taken
simultaneously.

The linear-correlation coefficient r of Equation (7-5) between
y and z can be expressed in terms of the variances and covariances
of Equations (7-17) and the slope b of a straight-line fit given in
Equation (7-2).

_

o= tnl =
3282 = 82
z By Ul

In analogy with this definition of the linear-correlation coefficient,
we define the mulliple-correlalion coefficient E to be the sum over
similar terms for the variables of Equation (7-9).

R = 5: (b,- 24;1:-) = ,-Z (b,-:—ir,-.,) (7-18)

i=1

The linear-correlation coefficient r is useful for testing
whether one particular variable should be included in the theoret-
ical function to which the data are fit. The multiple-correlation
coefficient B characterizes the fit of the data to the entire function.
A comparison of the multiple-correlation coefficient for different
functions is therefore useful in optimizing the theoretical func-
tional form.

‘We will defer until Chapter 10 a discussion of how to use
these correlation coefficients to determine the validity of includ-
ing each term in the polynomial of Equation (7-16) or the arbi-
trary function of Equation (7-9).
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SUMMARY

Function linear in coefficients:

"

U=ﬂ+zbm

i=1

Sample covariance 8;*:

1 1
[ S N -1 z [G‘? (z'.i - jf)(:“ = fl')]
g = . 7 3 )
¥ Yo ‘
ZijTik
(i
N-1 _L i — Nz

N Lo

=20/

z

Sample variance:
8 = g
Linear-correlation coefficient:

8,}’
Tig B2 —
i 88k

Probability P.(r,N) that any random sample of uncorrelated
experimental data points would yield an experimental linear-
correlation coefficient as large as or larger than |r|:

1 2 Ti(+1)/2)

Pur,v4+2) = f (1 — z3) -0 gy

iMvE  T(/2)

Multiplecorrelation coefficient R:
n n
R? ’,-Z; (b,- %’:) = ,-Zl (bi ;—j riv)
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7-1
T2

7-3
-4
7-5

7-6

7-1

7-8

7-9

EXERCISES

Find the linear-correlation coefficient r for Example 6-1.

If o set of data when fitted with Equation (7-1) yield a zero slope
b = 0, what can you say about the linear-correlation coefficient
r? Justify this value in terms of the correlation between z; and y..
Find the linear-correlation coefficient r for Example 6-2.

Verify the expansion in the computation of P.(r,N).

Find the linear-correlation coefficient r, hetween z; and y; for the
data of Example 8-1.

If the linear-correlation coefficient r, of Exercise 7-5 is computed
by evaluating the slopes b and &' (r; = +/bb’), should the slopes
be computed by fitting the data with a linear polynomial or a
quadratic polynomial?

Find the correlation coefficient r; between z;* and y; for the data
of Example 8-1. Does the correlation justify the use of a quadratic
term?

Express the multiple-correlation coefficient R in terms of zi;, v,
and their averages.

Evaluate the multiple-correlation coefficient B for the data of
Example 8-1.
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