
McGraw-Hill Higher Education rg 
A Division of The McGraw-Hill Companies 

DATA REDUCTION AND ERROR ANALYSIS FOR THE PHYSICAL SCIENCES 

THIRD EDITION 

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the 
Americas, New York, NY 10020. Copyright © 2003,1992,1969 by The McGraw-Hill Companies, Inc. 
All rights reserved. No part of this publication may be reproduced or distributed in any form or by any 
means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill 
Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, 

or broadcast for distance learning. 

Some ancillaries, including electronic and print components, may not be available to customers 

outside the United States. 

This book is printed on acid-free paper. 

12 13 DOCIDOC 10 9 8 7 6 5 4 3 

ISBN-13: 978-0-07-247227-1 
ISBN-IO: 0-07-247227-8 

Publisher: Kent A. Peterson 
Sponsoring editor: Daryl Bruflodt 
Developmental editor: Spencer J. Cotkin, Ph.D. 
Marketing manager: Debra B. Hash 
Senior project manager: Mary E. Powers 
Senior production supervisor: Laura Fuller 
Senior media project manager: Stacy A. Patch 
Lead media technology producer: Judi David 
Coordinator of freelance design: Rick D. Noel 
Cover designer: John RokusekiRokusek Design 
Cover diagrams provided by: D. Keith Robinson 
Compositor: GAC-Indianapolis 
Typeface: 10/12 Times Roman 
Printer: R. R. Donnelley & Sons Company/Crawfordsville, IN 

Library of Congress Cataloging-in-Publication Data 

Bevington, Philip R., 1933-1980. 
Data reduction and error analysis for the physical sciences / Philip R. Bevington, D. Keith 

Robinson.-3rd ed. 
p. cm. 

Includes bibliographical references and index. 
ISBN 0-07-247227-8 
l. Multivariate analysis. 2. Error analysis (Mathematics). 3. Least squares. 4. Data reduction. 

I. Robinson, D. Keith. II. Title. 

QA278 .B48 2003 
511 '.43-dc21 

www.mhhe.com 

2002070896 
CIP 

Chapter 1 
1.1 

1.2 

1.3 

1.4 

Chapter 2 
2.1 

2.2 

2.3 

2.4 

Chapter 3 
3.1 

3.2 

3.3 

3.4 

Chapter 4 
4.1 

4.2 

4.3 

4.4 

Chapter 5 
5.1 

5.2 

CONTENTS 

Preface to the Third Edition IX 

Uncertainties in Measurements 1 
Measuring Errors 

Uncertainties 5 
Parent and Sample Distributions 6 
Mean and Standard Deviation of Distributions 12 

Probability Distributions 17 
Binomial Distribution 17 
Poisson Distribution 23 
Gaussian or Normal Error Distribution 27 
Lorentzian Distribution 31 

Error Analysis 36 
Instrumental and Statistical Uncertainties 36 
Propagation of Errors 39 
Specific Error Formulas 41 
Application of Error Equations 46 

Estimates of Mean and Errors 51 
Method of Least Squares 51 
Statistical Fluctuations 60 
Probability Tests 63 
X2 Test of a Distribution 65 

Monte Carlo Techniques 75 
Introduction 75 
Random Numbers 78 

V 



vi CONTENTS CONTENTS vii 

5.3 Random Numbers from Probability Distributions 81 11.4 FTest 204 

5.4 Specific Distributions 84 11.5 Confidence InterVals 208 

5.5 Efficient Monte Carlo Generation 94 11.6 Monte Carlo Tests 212 

Chapter 6 Least-Squares Fit to a Straight Line 98 Appendixes 
6.1 Dependent and Independent Variables 98 

6.2 Method of Least Squares 102 A Numerical Methods 218 
6.3 Minimizing X2 104 A.1 Polynomial Interpolation 218 

6.4 Error Estimation 107 A.2 Basic Calculus: Differentiation and Integration 222 

6.5 Some Limitations of the Least-Squares Method 110 A.3 Numerical Differentiation and Integration 226 

6.6 Alternate Fitting Methods 111 A.4 Cubic Splines 228 
A.S Roots of Nonlinear Equations 231 

Chapter 7 Least-Squares Fit to a Polynomial 116 A.6 Data Smoothing 235 

7.1 Determinant Solution 116 

7.2 Matrix Solution 122 B Matrices 238 
7.3 Independent Parameters 127 B.1 Determinants 238 

7.4 Nonlinear Functions 135 B.2 Solution of Simultaneous Equations by Determinants 243 
B.3 Matrix Inversion 245 

Chapter 8 Least-Squares Fit to an Arbitrary Function 142 
8.1 Nonlinear Fitting 142 C Graphs and Tables 248 
8.2 Searching Parameter Space 148 C.1 Gaussian Probability Distribution 248 

8.3 Grid-Search Method 151 C.2 Integral of Gaussian Distribution 250 

8.4 Gradient-Search Method 153 C.3 Linear-Correlation Coefficient 252 

8.5 Expansion Methods 156 C.4 X2 Distribution 253 

8.6 The Marquardt Method 161 C.S F Distribution 259 

8.7 Comments 163 C.6 Student's t Distribution 259 

Chapter 9 Fitting Composite Curves 168 D Histograms and Graphs 267 
9.1 Lorentzian Peak on Quadratic Background 168 D.1 Making a Graph 268 

9.2 Area Determination 170 D.2 Graphical Estimation of Parameters 269 

9.3 Composite Plots 174 D.3 Histograms and Frequency Plots 272 
D.4 Graphics Routines 274 

Chapter 10 Direct Application of the Maximum-Likelihood 
Method 179 E Computer Routines in Fortran 275 

10.1 Introduction to Maximum Likelihood 180 E.1 Routines from Chapter 5 278 

10.2 Computer Example 187 E.2 Routines from Chapter 6 281 

E.3 Routines from Chapter 7 283 

Chapter 11 Testing the Fit 194 E.4 Routines from Chapter 8 287 
11.1 X2 Test for Goodness of Fit 194 E.S Routines from Chapter 9 294 

11.2 Linear-Correlation Coefficient 197 E.6 Routines from Chapter 10 295 
11.3 Multivariable Correlations 201 E.7 Routines from Chapter 11 298 



viii CONTENTS 

E.8 Routines from Appendix A 

E.9 Routines from Appendix B 

References 

Answers to Selected Exercises 

Index 

300 

303 

307 
309 
313 

PREFACE TO THE THIRD EDITION 

In his 1969 Preface to the first edition of this book, the late Philip Bevington aptly 
stated his purpose, " to provide an introduction to the techniques of data reduction 
and error analysis commonly employed by individuals doing research in the physi­
cal sciences and to present them in sufficient detail and breadth to make them useful 
for students throughout their undergraduate and graduate studies. The presentation 
is developed from a practical point of view, including enough derivation to justify 
results, but emphasizing the methods more than the theory." This third edition con­
tinues Phil's original mission, updated to reflect the ready availability of modem 
computers. 

The first four chapters introduce the concepts of measuring uncertainties, er­
ror analysis, and probability distributions, with a new section on probabilities in 
low-statistics experiments. Chapter 5 provides an introduction to Monte Carlo 
methods for simulating experimental data, methods that are applied in later chapters 
to generate data for examples and to study and evaluate the statistical significance 
of experimental results. In chapters 6 through 9, the least-squares method is applied 
to problems of increasing complexity, from analytic straight-line fits to nonlinear 
fits that require iterative solutions. Chapter 10 provides an introduction to the direct 
application of the maximum-likelihood method, and chapter 11 includes a discus­
sion of x2-probability, confidence intervals, and correlation coefficients. Exercises 
at the end of the chapters range in complexity from simple statistical calculations to 
minor projects such as least-squares fitting and Monte Carlo calculations. Answers 
to selected exercises are provided. 

The appendixes from previous editions have been retained. Appendix A in­
cludes a brief section on basic differential calculus but is devoted mainly to numer­
ical methods that are useful in analyzing data on the computer. Determinants and 
matrices are discussed in appendix B. Appendix C provides tables and graphs of sta­
tistical functions, augmented by computer routines on the website for calculating 
probabilities. Appendix D sets forth some guidelines for the preparation of effective 
graphs. Appendix E provides listings of computer routines that illustrate the text. 

ix 
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COMPUTER ROUTINES 

Simple, illustrative computer routines that were a useful feature of the original book 
have been retained and are listed in Fortran77 in appendix E. Fortran was chosen 
because it has proved to be the most durable of languages over many decades. (Pas­
cal, which was provided in the second edition, has vanished, displaced by C++.) 
With the help of the comments at the beginning of appendix E, students should be 
able to read the Fortran programs and follow their logic without special expertise in 
the language. To simplify the listed routines and to clarify their main objectives, we 
have deleted most of the calls to graphics routines. 

Computer routines and programs are available for downloading in both For­
tran and C++ from the www.mhhe.comlbevington website, along with supporting 
routines to facilitate the construction of complete programs for Monte Carlo gener­
ation, least -squares fitting, and probability calculations. A "Read Me" file on the site 
describes the organization of the programs and provides instructions for using them. 
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1.1 MEASURING ERRORS 

CHAPTER 

1 
UNCERTAINTIES 

IN MEASUREMENTS 

I t is a well-established fact of scientific investigation that the first time an experi­
ment is performed the results often bear all too little resemblance to the "truth" 

being sought. As the experiment is repeated, with successive refinements of tech­
nique and method, the results gradually and asymptotically approach what we may 
accept with some confidence to be a reliable description of events. We may some­
times feel that nature is loath to give up her secrets without a considerable expendi­
ture of effort on our part, and that first steps in experimentation are bound to fail. 
Whatever the reason, it is certainly true that for all physical experiments, errors and 
uncertainties exist that must be reduced by improved experimental techniques and 
repeated measurements, and those errors remaining must always be estimated to es­
tablish the validity of our results. 

Error is defined by Webster as "the difference between an observed or calcu­
lated value and the true value." Usually we do not know the "true" value; otherwise 
there would be no reason for performing the experiment. We may know approxi­
mately what it should be, however, either from earlier experiments or from theoret­
ical predictions. Such approximations can serve as a guide but we must always 
determine in a systematic way from the data and the experimental conditions them­
selves how much confidence we can have in our experimental results. 

There is one class of error that we can deal with immediately: errors that orig­
inate from mistakes or blunders in measurement or computation. Fortunately, these 
errors are usually apparent either as obviously incorrect data points or as results that 
are not reasonably close to expected values. They are classified as illegitimate errors 
and generally can be corrected by carefully repeating the operations. Our interest is 
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in uncertainties introduced by random fluctuations in our measurements, and sys­
tematic errors that limit the precision and accuracy of our results in more or less 
well-defined ways. Generally, we refer to the uncertainties as the errors in our 
results, and the procedure for estimating them as error analysis. 

Accuracy Versus Precision 

It is important to distinguish between the terms accuracy and precision. The accu­
racy of an experiment is a measure of how close the result of the experiment is to 
the true value; the precision is a measure of how well the result has been deter­
mined, without reference to its agreement with the true value. The precision is also 
a measure of the reproducibility of the result in a given experiment. The distinction 
between accuracy and precision is illustrated by the two sets of measurements in 
Figure 1.1 where the straight line on each graph shows the expected relation be­
tween the dependent variable y and the independent variable x. In both graphs, the 
scatter of the data points is a reflection of uncertainties in the measurements, con­
sistent with the error bars on the points. The data in Figure 1.1(a) have been mea­
sured to a high degree of precision as illustrated by the small error bars, and are in 
excellent agreement with the expected variation of y with x, but are clearly inaccu­
rate, deviating from the line by a constant offset. On the other hand, the data points 
in Figure 1.1 (b) are rather imprecise as illustrated by the large error bars, but are 
scattered about the predicted distribution. 

It is obvious that we must consider the accuracy and precision simultaneously 
for any experiment. It would be a waste of time and energy to determine a result with 
high precision if we knew that the result would be highly inaccurate. Conversely, a 

y 

x x 

FIGURE 1.1 
Illustration of the difference between precision and accuracy. (a) Precise but inaccurate data. 
(b) Accurate but imprecise data. True values are represented by the straight lines. 
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result cannot be considered to be extremely accurate if the precision is low. In general, 
when we quote the uncertainty or error in an experimental result, we are referring to 
the precision with which that result has been determined. Absolute precision indicates 
the magnitude of the uncertainty in the result in the same units as the result; relative 
precision indicates the uncertainty in terms of a fraction of the value of the result. 

Systematic Errors 

The accuracy of an experiment, as we have defined it, is generally dependent on 
how well we can control or compensate for systematic errors, errors that will make 
our results different from the "true" values with reproducible discrepancies. Errors 
of this type are not easy to detect and not easily studied by statistical analysis. They 
may result from faulty calibration of equipment or from bias on the part of the ob­
server. They must be estimated from an analysis of the experimental conditions and 
techniques. A major part of the planning of an experiment should be devoted to un­
derstanding and reducing sources of systematic errors. 

EXAMPLE 1.1 A student measures a table top with a steel meter stick and finds 
that the average of his measurements yields a result of (1.982 ± O.OOl)m for the 
length of the table. He subsequently learns that the meter stick was calibrated at 25°C 
and has an expansion coefficient of 0.0005 °e-l. Because his measurements were 
made at a room temperature of 20°C, they are systematically too small. To correct for 
this effect, he multiplies his results by 1 + 0.0005 X (20 - 25) = 0.9975 so that his 
new determination of the length is l.977 m. 

When the student repeats the experiment, he discovers a second systematic er­
ror, his technique for reading the meter stick was faulty in that he did not always read 
the divisions from directly above. By experimentation he determines that this consis­
tently resulted in a reading that was 2 mm short. The corrected result is l.979 m. 

In this example, the first result was given with a fairly high precision, approx­
imately 1 part in 2000. The corrections to this result were meant to improve the ac­
curacy by compensating for known sources of deviation of the first result from the 
best estimate possible. These corrections did not improve the precision at all, but did 
in fact worsen it, because the corrections were themselves only estimates of the ex­
act corrections. Before quoting his final result, the student must reexamine his error 
analysis and take account of any additional uncertainties that may have been intro­
duced by these corrections. 

Random Errors 

The precision of an experiment depends upon how well we can overcome random 
errors, fluctuations in observations that yield different results each time the experi­
ment is repeated, and thus require repeated experimentation to yield precise results. 
A given accuracy implies an equivalent precision and, therefore, also depends to 
some extent on random errors. 

The problem of reducing random errors is essentially one of improving the ex­
perimental method and refining the techniques, as well as simply repeating the 
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experiment. If the random errors result from instrumental uncertainties, they may 
be reduced by using more reliable and more precise measuring instruments. If the 
random errors result from statistical fluctuations in a limited number of measure­
ments, they may be reduced by making more measurements. There are practical 
limits to these improvements. In the measurement of the length of the table of Ex­
ample 1.1, the student might attempt to improve the precision of his measurements 
by using a magnifying glass to read the scale, or he might attempt to reduce statis­
tical fluctuations in his measurements by repeating the measurement several times. 
In neither case would it be useful to reduce the random errors much below the sys­
tematic errors, such as those introduced by the calibration of the meter stick or the 
correction for his initial faulty reading of the scale. The limits imposed by system­
atic errors are important considerations in planning and performing experiments. 

Significant Figures and Roundoff 

The precision of an experimental result is implied by the number of digits recorded 
in the result, although generally the uncertainty should be quoted specifically as 
well. The number of significant figures in a result is defined as follows: 

1. The leftmost nonzero digit is the most significant digit. 
2. If there is no decimal point, the rightmost nonzero digit is the least significant 

digit. 
3. If there is a decimal point, the rightmost digit is the least significant digit, even 

if it is a O. 
4. All digits between the least and most significant digits are counted as signifi­

cant digits. 

For example, the following numbers each have four significant digits: 1234, 
123,400, 123.4, 1001, 1000., 10.10,0.0001010, 100.0. If there is no decimal point, 
there are ambiguities when the rightmost digit is O. Thus, the number 1010 is con­
sidered to have only three significant digits even though the last digit might be 
physically significant. To avoid ambiguity, it is better to supply decimal points or to 
write such numbers in scientific notation, that is, as an argument in decimal notation 
multiplied by the appropriate power of 10. Thus, our example of 1010 would be 
written as 1010. or 1.010 X 103 if all four digits are significant. 

When quoting an experimental result, the number of significant figures should 
be approximately one more than that dictated by the experimental precision. The 
reason for including the extra digit is to avoid errors that might be caused by round­
ing errors in later calculations. If the result of the measurement of Example 1.1 is L 
= 1.979 m with an uncertainty of 0.012 m, this result could be quoted as L = (1.979 
± 0.012) m. However, if the first digit of the uncertainty is large, such as 0.082 m, 
then we should probably quote L = (1.98 ± 0.08) m. In other words, we let the un­
certainty define the precision to which we quote our result. 

When insignificant digits are dropped from a number, the last digit retained 
should be rounded off for the best accuracy. To round off a number to fewer significant 
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digits than were specified originally, we truncate the number as desired and treat the ex­
cess digits as a decimal fraction. Then: 

1. If the fraction is greater than Y2, increment the new least significant digit. 
2. If the fraction is less than Y2, do not increment. 

3. If the fraction equals Yl, increment the least significant digit only if it is odd. 

The reason for rule 3 is that a fractional value of Yl may result from a previous 
rounding up of a fraction that was slightly less than Y2 or a rounding down of a frac­
tion that was slightly greater than Y2. For example, 1.249 and 1.251 both round to 
three significant figures as 1.25. If we were to round again to two significant figures, 
both would yield the same value, either 1.2 or 1.3, depending on our convention. 
Choosing to round up if the resulting last digit is odd and to round down if the result­
ing last digit is even, reduces systematic errors that would otherwise be introduced 
into the average of a group of such numbers. Note that it is generally advisable to re­
tain all available digits in intermediate calculations and round only the final results. 

1.2 UNCERTAINTIES 

Uncertainties in experimental results can be separated into two categories: those 
that result from fluctuations in measurements, and those associated with the theo­
retical description of our result. For example, if we measure the length of a rectan­
gular table along one edge, we know that any uncertainties, aside from systematic 
errors, are associated with the fluctuations of our measurements from trial to trial. 
With an infinite number of measurements we might be able to estimate the length 
very precisely, but with a finite number of trials there will be a finite uncertainty. If 
we were to measure the length of the table at equally spaced positions across the 
table, the measurements would show additional fluctuations corresponding to irreg­
ularities in the table itself, and our result could be expressed as the mean length. If, 
however, we were to describe the shape of an oval table, we would be faced with 
uncertainties both in the measurement of position of the edge of the table at various 
points and in the form of the equation to be used to describe the shape, whether it be 
circular, elliptical, or whatever. Thus, we shall be concerned in the following chap­
ters with a comparison of the distribution of measured data points with the distrib­
ution predicted on the basis of a theoretical model. This comparison will help to 
indicate whether our method of extracting the results is valid or needs modification. 

The term error suggests a deviation of the result from some "true" value. Usu­
ally we cannot know what the true value is, and can only estimate the errors inher­
ent in the experiment. If we repeat an experiment, the results may well differ from 
those of the first attempt. We express this difference as a discrepancy between the 
two results. Discrepancies arise because we can determine a result only with a given 
uncertainty. For example, when we compare different measurements of a standard 
physical constant, or compare our result with the accepted value, we should refer to 
the differences as discrepancies, not errors or uncertainties. 

Because, in general, we shall not be able to quote the actual error in a result, 
we must develop a consistent method for determining and quoting the estimated 



, . 

i 
, I 

6 Data Reduction and Error Analysis for the Physical Sciences 

error. A study of the distribution of the results of repeated measurements of the same 
quantity can lead to an understanding of these errors so that the quoted error is a 
measure of the spread of the distribution. However, for some experiments it may not 
be feasible to repeat the measurements and experimenters must therefore attempt to 
estimate the errors based on an understanding of the apparatus and their own skill in 
using it. For example, if the student of Example 1.1 could make only a single mea­
surement of the length of the table, he should examine his meter stick and the table, 
and try to estimate how well he could determine the length. His estimate should be 
consistent with the result expected from a study of repeated measurements; that is, 
to quote an estimate for the standard error, he should try to estimate a range into 
which he would expect repeated measurements to fall about seven times out of ten. 
Thus, he might conclude that with a fine steel meter stick and a well-defined table 
edge, he could measure to about ± 1 mm or ±O.OOI m. He should resist the tempta­
tion to increase this error estimate, "just to be sure." 

We must also realize that the model from which we calculate theoretical para­
meters to describe the results of our experiment may not be the correct model. In the 
following chapters we shall discuss hypothetical parameters and probable distribu­
tions of errors pertaining to the "true" states of affairs, and we shall discuss meth­
ods of making experimental estimates of these parameters and the uncertainties 
associated with these determinations. 

Minimizing Uncertainties and Best Results 

Our preoccupation with error analysis is not confined just to the determination of 
the precision of our results. In general, we shall be interested in obtaining the max­
imum amount of useful information from the data on hand without being able either 
to repeat the experiment with better equipment or to reduce the statistical uncer­
tainties by making more measurements. We shall be concerned, therefore, with the 
problem of extracting from the data the best estimates of theoretical parameters and 
of the random errors, and we shall want to understand the effect of these errors on 
our results, so that we can determine what confidence we can place in our final re­
sults. It is reasonable to expect that the most reliable results we can calculate from 
a given set of data will be those for which the estimated errors are the smallest. 
Thus, our development of techniques of error analysis will help to determine the op­
timum estimates of parameters to describe the data. 

It must be noted, however, that even our best efforts will yield only estimates 
of the quantities investigated. 

1.3 PARENT AND SAMPLE DISTRIBUTIONS 

If we make a measurement Xl of a quantity x, we expect our observation to approx­
imate the quantity, but we do not expect the experimental data point to be exactly 
equal to the quantity. If we make another measurement, we expect to observe a dis-
crepancy between the two measurements because of random errors, and we do not 
expect either determination to be exactly correct, that is, equal to x. As we make 
more and more measurements, a pattern will emerge from the data. Some of the 
measurements will be too large, some will be too small. On the average, however, 
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we expect them to be distributed around the correct value, assuming we can neglect 
or correct for systematic errors. 

If we could make an infinite number of measurements, then we could describe 
exactly the distribution of the data points. This is not possible in practice, but we 
can hypothesize the existence of such a distribution that determines the probability 
of getting any particular observation in a single measurement. This distribution is 
called the parent distribution. Similarly, we can hypothesize that the measurements 
we have made are samples from the parent distribution and they form the sample 
distribution. In the limit of an infinite number of measurements, the sample distrib­
ution becomes the parent distribution. 

EXAMPLE 1.2 In a physics laboratory experiment, students drop a ball 50 times 
and record the time it takes for the ball to fall 2.00 m. One set of observations, cor­
rected for systematic errors, ranges from about 0.59 s to 0.70 s, and some of the 00-
servations are identical. Figure 1.2 shows a histogram or frequency plot of these 
measurements. The height of a data bar represents the number of measurements that 
fall between the two values indicated by the upper and lower limits of the bar on the 
abscissa of the plot. (See Appendix D.) 

If the distribution results from random errors in measurement, then it is very 
likely that it can be described in terms of the Gaussian or normal error distribution 
the familiar bell-shaped curve of statistical analysis, which we shall discuss in Chap~ 
ter 2. A Gaussian curve, based on the mean and standard deviation of these measure­
ments, is plotted as the solid line in Figure 1.2. This curve summarizes the data of the 
sample distribution in terms of the Gaussian model and provides an estimate of the 
parent distribution. 

The measured data and the curve derived from them clearly do not agree ex­
actly. The coarseness of the experimental histogram distinguishes it at once from the 
smooth theoretical Gaussian curve. We might imagine that, if the students were to 
make a great many measurements or combine several sets of measurements so that 
they could plot the histogram in finer and finer bins, under ideal circumstances the his­
togram would eventually approach a smooth Gaussian curve. If they were to calculate 
the parameters from such a large sample, they could determine the parent distribution 
represented by the dotted curve in Figure 1.2. 

It is convenient to think in terms of a probability density function p(x), nor­
malized to unit area (i.e., so that the integral ofthe entire curve is equal to 1) and de­
fined such that in the limit of a very large number N of observations, the number ,)..N 
of observations of the variable x between x and x + Ax is given by M = Np(x)Ax. 
The solid and dashed curves in Figure 1.2 have been scaled in this way so that the 
ordinate values correspond directly to the numbers of observations expected in any 
range Ax from a 50-event sample and the area under each curve corresponds to the 
total area of the histogram. 

Notation 

A number of parameters of the parent distribution have been defined by convention. 
We use Greek letters to denote them, and Latin letters to denote experimental esti­
mates of them. 
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Histogram of measurements of the time for a ball to fall 2.00 m. The solid Gaussian curve was 
calculated from the mean (1' = 0.635 s) and standard deviation (s = 0.020 s) estimated from these 
measurements. The dashed curve was calculated from the parent distribution with mean J.L = 0.639 s 
and standard deviation a = 0.020 s. 

In order to determine the parameters of the parent distribution, we assume that 
the results of experiments asymptotically approach the parent quantities as the num­
ber of measurements approaches infinity; that is, the parameters of the experimen­
tal distribution equal the parameters of the parent distribution in the limit of an 
infinite number of measurements. If we specify that there are N observations in a 
given experiment, then we can denote this by 

(parent parameter) = lim (experimental parameter) 
N->oo 

If we make N measurements and label them Xl' X2, X3, and so forth, up to a final mea­
surement XN, then we can identify the sum of all these measurements as 

N 

~ Xi == Xl + X2 + X3 + ... + XN 

i=l 

where the left-hand side is interpreted as the sum of the observations Xi over the in­
dex i from i = 1 to i = N inclusive. Because we shall be making frequent use of the 
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sum over N measurements of various quantities, we simplify the notation by omitting 
the index whenever we are considering a sum where the index i runs from 1 to N; 

Mean, Median, and Mode 

With the preceding definitions, the mean x of the experimental distribution is 
given as the sum of N determinations Xi of the quantity X divided by the number of 
determinations 

1 
X==N~Xi 

and the mean f-L of the parent population is defined as the limit 

f-L == lim (2. ~ Xl) 
N->oo N 

(1.1) 

0·2) 

The mean is therefore equivalent to the centroid or average value of the quantity x. 
The median of the parent population f-L1I2 is defined as that value for which, in 

the limit of an infinite number of determinations Xi' half the observations will be less 
than the median and half will be greater. In terms of the parent distribution, this 
means that the probability is 50% that any measurement Xi will be larger or smaller 
than the median 

(1.3) 

so that the median line cuts the area of the probability density distribution in half. 
Because of inconvenience in computation, the median is not often used as a statis­
tical parameter. 

The mode, or most probable value f-Lmax, of the parent popUlation is that value 
for which the parent distribution has the greatest value. In any given experimental 
measurement, this value is the one that is most likely to be observed. In the limit of 
a large number of observations, this value will probably occur most often 

P(f-Lmax) 2: P(x 1= f-Lmax) (1.4) 

The relationship of the mean, median, and most probable value to one another 
is illustrated in Figure 1.3. For a symmetrical distribution these parameters would 
all be equal by the symmetry of their definitions. For an asymmetric distribution 
such as that of Figure 1.3, the median generally falls between the most probable 
value and the mean. The most probable value corresponds to the peak of the distri­
bution, and the areas on either side of the median are equal. 

Deviations 

The deviation di of any measurement Xi from the mean f-L of the parent distribution 
is defined as the difference between Xi and f-L: 
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FIGURE 1.3 
Asymmetric distribution illustrating the positions of the mean, median, and mode of the variable. 

di =Xi - fL (1.5) 

For computational purposes, deviations are generally defined with respect to the 
mean, rather than the median or most probable value. If fL is the true value of the 
quantity, di is also the true error in Xi:. 

The average of the deviations d must vanish by virtue of the definition of the 
mean in Equation (1.2): 

lim d = lim [~2: (Xi - fL) = lim(~ 2: Xl) - fL = 0 (1.6) 
N-->oo N-->oo N J N-->oo N 

The average deviation ex, therefore, is defined as the average of the absolute values 
of the deviations: 

(1.7) 

The average deviation is a measure of the dispersion of the expected observations 
about the mean. The presence of the absolute value sign makes its use inconvenient 
for statistical analysis. 

A parameter that is easier to use analytically and that can be justified fairly 
well on theoretical grounds to be a more appropriate measure of the dispersion of 
the observations is the standard deviation 0'. The variance 0'2 is defined as the limit 
of the average of the squares of the deviations from the mean fL: 
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(1.8) 

and the standard deviation 0' is the square root of the variance. Note that the second 
form of Equation (1.8) is often described as "the average of the squares minus the 
square of the average." The standard deviation is the root mean square of the devi­
ations, and is associated with the second moment of the data about the mean. The 
corresponding expression for the variance S2 of the sample population is given by 

(1.9) 

where the factor N - 1, rather than N, is required in the denominator to account for 
the fact that the parameter 'x has been determined from the data and not indepen~ 
dently. We note that the symbol 0' (instead of s) is often used to represent the best 
estimate of the standard deviation of the parent distribution determined from a sam­
ple distribution. 

Significance 

The mean fJ.. and the standard deviation, as well as the median, the most probable 
value, and the average deviation, are all parameters that characterize the informa­
tion we are seeking when we perform an experiment. Often we wish to describe our 
distribution in terms of just the mean and standard deviation. The mean may not be 
exactly equal to the datum in question if the parent distribution is not symmetrical 
about the mean, but it should have the same characteristics. If a more detailed de­
scription is desired, it may be useful to compute higher moments about the mean. 

In general, the best we can say about the mean is that it is one of the parame­
ters that specifies the probability distribution: It has the same units as the "true" 
value and, in accordance with convention, we shall consider it to be the best esti­
mate of the "true" value under the prevailing experimental conditions. 

The variance S2 and the standard deviation s characterize the uncertainties as­
sociated with our experimental attempts to determine the "true" values. For a given 
number of observations, the uncertainty in determining the mean of the parent dis­
tribution is proportional to the standard deviation of that distribution. The standard 
deviation s is, therefore, an appropriate measure of the uncertainty due to fluctua­
tions in the observations in our attempt to determine the "true" value. 

Although, in general, the distribution resulting from purely statistical errors 
can be described well by the two parameters, the mean and the standard deviation, 
we should be aware that, at distances of a few standard deviations from the mean of 
an experimental distribution, nonstatistical errors may dominate. In especially se­
vere cases, it may be preferable to describe the spread of the distribution in terms of 
the average deviation, rather than the standard deviation, because the latter tends to 
deemphasize measurements that are far from the mean. There are also distributions 
for which the variance does not exist. The average deviation or some other quantity 
must be used as a parameter to indicate the spread of the distribution in such cases. 
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In the following sections, however, we shall be concerned mainly with distributions 
that result from statistical errors and for which the variance exists. 

1.4 MEAN AND STANDARD DEVIATION 
OF DISTRIBUTIONS 

We can define the mean J.L and the standard deviation (J in terms of the distribution 
p (x) of the parent population. The probability density p(x) is defined such that in the 
limit of a very large number of observations, the fraction dN of observations of the 
variable x that yield values between x and x + dx is given by dN = Np (x) dx. 

The mean J.L is the expectation value (x) of x, and the variance (J2 is the ex­
pectation value (( x - J.L)2) of the square of deviations of x from J.L. The expectation 
value (I(x) ) of any function of x is defined as the weighted average off (x), over all 
possible values of the variable x, with each value off (x) weighted by the probabil­
ity density distribution p (x). 

Discrete Distributions 

If the probability function is a discrete function P(x) of the observed value x, we re­
place the sum over the individual observations 2-Xi in Equation (1.2) by a sum over 
the values of the possible observations multiplied by the number of times these ob­
servations are expected to occur. If there are n possible different observable values 
of the quantity x, which we denote by Xj (where the index) runs from 1 to n with no 
two values of Xj equal), we should expect from a total of N observations to obtain 
each observable NP(x) times. The mean can then be expressed as 

I N 1 N 
J.L = lim - ~ Xi = lim - ~ [xjNP(X)] 

N->oo N i= 1 N->oo N j= 1 

= lim ~ [XjP{x)] (1.10) 
N->oo 

Similarly, the variance (J in Equation (1.8) can be expressed in terms of the 
probability function P(x): 

(1.11) 

In general, the expectation value of any function off(x) is given by 

n 

(j(x)) = ~ [J(xJP(Xj)] (1.12) 
j=l 

Continuous Distributions 

If the probability density function is a continuous smoothly varying function p(x) of 
the observed value x, we replace the sum over the individual observations by an 
integral over all values of x multiplied by the probability p(x). The mean J.L becomes 
the first moment of the parent distribution 
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(1.13) 

and the variance (J2 becomes the second central product moment 

(1.14) 

The expectation value of any function of x is 

(I(x)) = LOOj(X)P(X)dX (1.15) 

. What is the co~nection between the probability distribution of the parent pop­
ulatIOn and an expenmental sample we obtain? We have already seen that the un..' 
certainties of the experimental conditions preclude a determination of the "true" 
values themselves. As a matter of fact, there are three levels of abstraction between 
the data and the information we seek: 

1. F:om. our experime~tal data points we can determine a sample frequency dis­
t~butIOn that descnbes the way in which these particular data points are dis­
tnbuted over the range of possible data points. We use x to denote the mean of 
the data and S2 to denote the sample variance. The shape and magnitude of the 
sample distribution vary from sample to sample. 

2. From the parameters of the sample probability distribution we can estimate the 
paramet~rs of the probabi~ity distribution of the parent population of possible 
o~ser:atIOns. Our best estImate for the mean J.L is the mean of the sample dis­
tnbutIOn x, and the best estimate for the variance (J2 is the sample variance S2. 

Even the shape of this parent distribution must be estimated or assumed. 

3. From the estimated parameters of the parent distribution we estimate the results 
s~ug?t. ~n general, ~e shall assume that the estimated parameters of the parent 
dlstnbutIOn are eqmvalent to the "true" values, but the estimated parent distri­
bution is a function of the experimental conditions as well as the "true" values, 
and these may not necessarily be separable. 

Let us refer again to Figure 1.2, which shows a histogram of time interval 
~easurements and two Gaussian curves, a solid curve based on the parameters 
T = 0.635 sand s = 0.020 s, which were determined experimentally from the data 
displayed in the histogram, and a dotted curve based on the parameters J.L = 0.639 s 
and (J = 0.020 s of the parent distribution. (Although, in general we don't know the 
p:op~rties of the parent distribution, they could have been estimated to high preci­
SIOn III another experiment involving many more measurements.) Comparing the 
two curves, we observe a slight difference between the experimental mean T and the 
"true" mean J.L, and between sand (J. 

By considering the data to be a sample from the parent population with the 
~alues of the observations distributed according to the parent population, we can es­
tImate the shape and dispersion of the parent distribution to obtain useful informa­
tion on the precision and reliability of our results. Thus, we consider the sample 
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mean T to be our best estimate from the data of the mean fL, and we consider the 
sample variance S2 to be our best estimate from the data of the variance (J"2, from 
which we can estimate the uncertainty in our estimate of fL· 

SUMMARY 

Errors: Difference between measured and "true" values. Generally applied to the 
uncertainty in a measurement. Not blunders or mistakes. 
Systematic error: Reproducible inaccuracy introduced by faulty equipment, cali­
bration, or technique. 
Random error: Indefiniteness of result introduced by finite precision of measure­
ment or statistical variations. Measure of fluctuation after repeated experimentation. 
Uncertainty: Magnitude of error that is estimated to have been made in determina­
tion of results. 
Accuracy: Measure of how close the result of an experiment comes to the "true" 
value. 
Precision: Measure of how carefully the result is determined without reference to 
any "true" value. 
Significant figures: 

1. The leftmost nonzero digit is the most significant digit. 
2. If there is no decimal point, the rightmost nonzero digit is the least significant 

digit. 
3. If there is a decimal point, the rightmost digit is the least significant digit, even 

if it is zero. 
4. All digits between the least and most significant digits are counted as signifi­

cant digits. 

Roundoff: Truncate the number to the specified number of significant digits and 
treat the excess digits as a decimal fraction. 

1. If the fraction is greater than Y2, increment the new least significant digit. 

2. If the fraction is less than 1/2, do not increment. 
3. If the fraction equals Y2, increment the least significant digit only if it is odd. 

Parent population: Hypothetical infinite set of data points of which the experimen­
tal data points are assumed to be a random sample. 
Parent distribution: Probability distribution of the parent population from which the 
sample data are chosen. 
Expectation value f(x): Weighted average of a function f(x) over all values of x: 
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Most probable value fLmax: P(fLmaJ 2:: p(x '* fLmaJ 

Mean: fL == (x) 

Average deviation: ex == (Ixi - fLl) 

Variance: (J"2 == ((Xi - fL)2) = (x2) - fL 2 

Standard de~iation: (J" = W 
Sample mean: x = (1/N)~Xi 

. 1 
Sample vanance: S2 = -( -- ~(x· - i\2 N-l) I / 

EXERCISES 

1.1. How many significant features are there in the following numbers? 
(a) 976.45 (b) 84,000 (c) 0.0094 (d) 301.07 
(e) 4.000 (f) 10 (g) 5280 (h) 400. 
(i) 4.00 X 102 (j) 3.010 X 104 

1.2. What is the most significant figure in each of the numbers in Exercise 1. I? What is the 
least significant? 

1.3. Round off each of the numbers in Exercise 1.1 to two significant digits. 
1.4. Find the mean, median, and most probable value of x for the following data (from 

rolling dice). 

i Xi i Xi i Xi i Xi i Xi 

1 3 6 8 11 12 16 6 21 5 
2 7 7 9 12 8 17 7 22 10 
3 3 8 7 13 6 18 8 23 8 
4 7 9 5 14 6 19 9 24 8 
5 12 10 7 15 7 20 8 25 8 

1.5. Find the mean, median, and most probable grade from the following set of grades. 
Group them to find the most probable value. 

Xi Xi Xi Xi 

1 73 11 73 21 69 31 56 
2 91 12 46 22 70 32 94 
3 72 13 64 23 82 33 51 
4 81 14 61 24 90 34 79 
5 82 15 50 25 63 35 63 
6 46 16 89 26 70 36 87 
7 89 17 91 27 94 37 54 
8 75 18 82 28 44 38 100 
9 62 19 71 29 100 39 72 

10 58 20 76 30 88 40 81 

1.6. Calculate the standard deviation of the data of Exercise 1.4. 
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1.7. Calculate the standard deviation of the data of Exercise 1.5. 
1.8. Justify the second equality in Equations (1.8) and (1.14). 
1.9. Carefully measure in centimeters the length of the cover of this book alo~g t?e bound 

edge. Estimate the uncertainty in your measurement. Quote your answer wIth Its uncer­
tainty in decimal form and in scientific notation. 

CHAPTER 

2 
PROBABILITY 

DISTRIBUTIONS 

Of the many probability distributions that are involved in the analysis of experi­
mental data, three playa fundamental role: the binomial distribution, the Pois­

son distribution, and the Gaussian distribution. Of these, the Gaussian, or normal 
error, distribution is undoubtedly the most important in statistical analysis of data. 
Practically, it is useful because it seems to describe the distribution of random ob­
servations for many experiments, as well as describing the distributions obtained 
when we try to estimate the parameters of most other probability distributions. 

The Poisson distribution is generally appropriate for counting experiments 
where the data represent the number of items or events observed per unit interval. It 
is important in the study of random processes such as those associated with the ra­
dioactive decay of elementary particles or nuclear states, and is also applied to data 
that have been sorted into ranges to form a frequency table or a histogram. 

The binomial distribution is generally applied to experiments in which the re­
sult is one of a small number of possible final states, such as the number of "heads" 
or "tails" in a series of coin tosses, or the number of particles scattered forward or 
backward relative to the direction of the incident particle in a particle physics ex­
periment. Because both the Poisson and the Gaussian distributions can be consid­
ered as limiting cases of the binomial distribution, we shall devote some attention to 
the derivation of the binomial distribution from basic considerations. 

2.1 BINOMIAL DISTRIBUTION 

Suppose we toss a coin in the air and let it land. There is a 50% probability that it 
will land heads up and a 50% probability that it will land tails up. By this we mean 
that if we continue tossing a coin repeatedly, the fraction of times that it lands with 
heads up will asymptotically approach Y2, indicating that there was a probability of 

17 
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Y2 of doing so. For any given toss, the probability cannot determine whether or not 
it will land heads up; it can only describe how we should expect a large number of 
tosses to be divided into two possibilities. 

Suppose we toss two coins at a time. There are now four different possible 
permutations of the way in which they can land: both heads up, both tails up, and 
two mixtures of heads and tails depending on which one is heads up. Because each 
of these permutations is equally probable, the probability for any choice of them is 
Y4 or 25%. To find the probability for obtaining a particular mixture of heads and 
tails, without differentiating between the two kinds of mixtures, we must add the 
probabilities corresponding to each possible kind. Thus, the total probability of find­
ing either head up and the other tail up is Y2. Note that the sum of the probabilities 
for all possibilities (Y4 + Y4 + Y4 + Y4) is always equal to I because something is 
bound to happen. 

Let us extrapolate these ideas to the general case. Suppose we toss n coins into 
the air, where n is some integer. Alternatively, suppose that we toss one coin n times. 
What is the probability that exactly x of these coins will land heads up, without dis­
tinguishing which of the coins actually belongs to which group? We can consider 
the probability P(x; n) to be a function of the number n of coins tossed and of the 
number x of coins that land heads up. For a given experiment in which n coins are 
tossed, this probability P(x; n) will vary as a function of x. Of course, x must be an 
integer for any physical experiment, but we can consider the probability to be 
smoothly varying with x as a continuous variable for mathematical purposes. 

Permutations and Combinations 

If n coins are tossed, there are 2n different possible ways in which they can land. 
This follows from the fact that the first coin has two possible orientations, for each 
of these the second coin also has two such orientations, for each of these the third 
coin also has two, and so on. Because each of these possibilities is equally proba­
ble, the probability for anyone of these possibilities to occur at any toss of n coins 
is l/2n

• 

How many of these possibilities will contribute to our observations of x coins 
with heads up? Imagine two boxes, one labeled "heads" and divided into x slots, and 
the other labeled "tails." We shall consider first the question of how many permuta­
tions of the coins result in the proper separation of x in one box and n - x in the 
other; then we shall consider the question of how many combinations of these per­
mutations should be considered to be different from each other. 

In order to enumerate the number of permutations Pm(n, x), let us pick up the 
coins one at a time from the collection of n coins and put x of them into the "heads" 
box. We have a choice of n coins for the first one we pick up. For our second selec­
tion we can choose from the remaining n - 1 coins. The range of choice is dimin­
ished until the last selection of the xth coin can be made from only n - x + 1 
remaining coins. The total number of choices for coins to fill the x slots in the 
"heads" box is the product of the numbers of individual choices: 

Pm (n, x) = n (n - 1)(n - 2)··' (n - x + 2)(n - x + 1) (2.1) 
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This expansion can be expressed more easily in terms of factorials 

n! 
Pm(n, x) = ( ) 

n -x! 
(2.2) 

. S~ far we have calculated the number of permutations Pm(n, x) that will yield 
x COIns m .the "?~ads" b?x and n - x coins in the "tails" box, with the provision that 
we have IdentIfIed WhICh coin was placed in the "heads" box first which was 
placed in second, and so on. That is, we have ordered the x coins in the :'heads" box. 
!n our computati.on of ~n different possible permutations of the n coins, we are only 
mterested m whIch coms landed heads up or heads down, not which landed first. 
!herefore, we must consider contributions different only if there are different coins 
m the two boxes, not if the x coins within the "heads" box are permuted into differ­
ent time orderings. 

. The numb~r of different combinations C(n, x) of the permutations in the pre­
~edmg enumeratIOn results from combining the x! different ways in which x coins 
m.the "heads" box can be permuted within the box. For every x! permutations, there 
wIll be only one new combination. Thus, the number of different combinations 
C(n, x) is the number of permutations Pm(n, x) divided by the degeneracy factor x! 
of the permutations: 

C(n, x) = Pm(n, x) = n! = (n) 
x! x!(n - x)! x 

(2.3) 

This is the number of different possible combinations of n items taken x at a time 
commonly referred to as (~) or "n over x." , 

Probability 

T~e pro~ability P(x; n) that we should observe x coins with heads up and n - x with 
ta.Ils up IS the product of the number of different combinations C(n, x) that con­
tnbute to that set of observations multiplied by the probability for each of the com­
binations to occur, which we have found to be (Y2)n. 

Actually, we should separate the probability for each combination into two 
~arts: one pa~.is the probability pX = (Y2)X for x coins to be heads up; the other part 
IS the probabIlIty qn-x = (l - Y2Y-x = (Y2)n-x for the other n - x coins to be tails 
up: ~or symmetric~l c~ins, the product of these two parts pxqn-x = (Y2)n is the prob­
abIlIty of the combm~~lOn with x coins heads up and n - x coins tails up. In the gen­
eral ca~e.' the probabIlIty p of success for each item is not equal in magnitude to the 
probabIht~ q = 1 - p for .failure. ~or example, when tossing a die, the probability 
~hat.a partlcular number wIll show IS p = 116, while, the probability of its not show­
mg IS q = 1 - 116 = 5/6 so that pxqn-x = (l/6)X X (5/6)n . 

.with these ~efinitions of p and q, the probability PB (x; n, p) for observing x of 
the n Items to be m the state with probability p is given by the binomial distribution 

(2.4) 
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where q = 1 - p. The name for the binomial distribution comes from the fact that 
the coefficients PB(x; n, p) are closely related to the binomial theorem for the ex­
pansion of a power of a sum. According to the binomial theorem, 

(2.5) 

The (j + l)th term, corresponding to x = j, of this expansion, therefore, is equal to 
the probability PB(j; n, p). We can use this result to show that the binomial distrib­
ution coefficients PB(x; n, p) are normalized to a sum of 1. The right-hand side of 
Equation (2.5) is the sum of probabilities over all possible values of x from 0 to n 
and the left-hand side is just In = 1. 

Mean and Standard Deviation 

The mean of the binomial distribution is evaluated by combining the definition of fL 
in Equation (1.10) with the formula for the probability function of Equation (2.4): 

n [n! ~ fL = ~ x pX(l - p'r-x = np 
x=o x!(n - x)! 

(2.6) 

We interpret this to mean that if we perform an experiment with n items and observe 
the number x of successes, after a large number of repeated experiments the average 
x of the number of successes will approach a mean value fL given by the probability 
for success of each item p times the number of items n. In the case of coin tossing 
where p = Y2, we should expect on the average to observe half the coins land heads 
up, which seems eminently reasonable. 

The variance (J2 of a binomial distribution is similarly evaluated by combin-
ing Equations (1.11) and (2.4): 

n [ n! ] (J2 = ~ (x - fL)2 pX(l - p)n-x = np(l - p) 
x=o x!(n - x)! 

(2.7) 

The evaluation of these sums is left as an exercise. We are mainly interested in the 
results, which are remarkably simple. 

If the probability for a single success p is equal to the probability for failure p 
= q = Y2, then the distribution is symmetric about the mean fL, and the median fL1I2 

and the most probable value are both equal to the mean. In this case, the variance (J2 

is equal to half the mean: (J2 = fL/2. If p and q are not equal, the distribution is 
asymmetric with a smaller variance. 

Example 2.1. Suppose we toss 10 coins into the air a total of 100 times. With each 
coin toss we observe the number of coins that land heads up and denote that number 
by Xi' where i is the number ofthe toss; i ranges from 1 to 100 and Xi can be any inte­
ger from 0 to 10. The probability function governing the distribution of the observed 
values of X is given by the binomial distribution PB(x; n,p) with n = 10 andp = Y2. 
This is the parent distribution and is not affected by the number N of repeated proce­
dures in the experiment. 
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FIGURE 2.1 
Binomial distribution for f.L = 5.0 and p = Y2 shown as a continuous curve although the function is 
only defined at the discrete points indicated by the round dots. 

The parent distribution PB(x; 10, Y2) is shown in Figure 2.1 as a smooth curve 
drawn through discrete points. The mean fL is given by Equation (2.6): 

fL = np = 10(1/2) = 5 

the standard deviation (J is given by Equation (2.7): 

(J = Vnp(l - p) = V10(V2)(V2) = V2.5 = 1.58 

The curv~ is s~mmetric abou~ its peak at the mean so that approximately 25% of the 
throws Yield fIve heads and fIve tails, about 20% yield four heads and six tails and 
the same fraction yields six heads and four tails. The magnitudes of the point~ are 
such that the sum of the probabilities over all ten points is equal to 1. 

E~ample 2:2. Suppose we roll ten dice. What is the probability that X of these dice 
wIll land wIth the 1 up? I~ we throw one die, the probability of its landing with 1 up is 
p = ~6. If ~e t~o~ ten dIce, the probability for X of them to land with 1 up is given by 
the bmonual dIstnbution P B(X; n, p) with n = 10 and p = 1;6: 

PB(X; 10, ~) = X!(l~O~ x)! G}(~),O-x 
. This. distribution is illustrated in Figure 2.2 as a smooth curve drawn through 

dIscrete pomts. The mean and standard deviation are 

f.L = 10/6 = 1.67 

and 

(J = YlO(l/6) (5/6) = 1.18 
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FIGURE 2.2 
Binomial distribution for j.L = 10/6 and p = 1/6 shown as a continuous curve. 

The distribution is not symmetric about the mean or about any other point. The most 
probable value is x = 1, but the peak of the smooth curve occurs for a slightly larger 
value of x. 

Example 2.3 A particle physicist makes some preliminary measurements of the angu­
lar distribution of K mesons scattered from a liquid hydrogen target. She knows that 
there should be equal numbers of particles scattered forward and backward in the cen­
ter-of-mass system of the particles. She measures 1000 interactions and finds that 472 
scatter forward and 528 backward. What uncertainty should she quote in these numbers? 

The uncertainty is given by the standard deviation from Equation (2.7), 

(J" = ynp(1 - p) = Y1000(Yz)(%) = y'25o = 15.8 

Thus, she could quote 

IF = (472 ± 15.8)/1000 = 0.472 ± 0.15 

for the fraction of particles scattered in the forward direction and 

IB = (528 ± 15.8)/1000 = 0.528 ± 0.15 

for the fraction scattered backward. 
Note that the uncertainties in the numbers scattering forward and backward 

must be the same because losses from one group must be made up in the other. 
If the experimenter did not know the a priori probabilities of scattering fo~ard 

and backward, she would have to estimate p and q from her measurements; that IS, 
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p = 472/1000 = 0.472 

and 

q = 528/1000 = 0.528 

She would then calculate 

s = Y1000 (0.472)(0.528) = Y249.2 = 15.8 

For probability p near 50%, the standard deviation is relatively insensitive to uncer­
tainties in the experimental determination of p. 

2.2 POISSON DISTRIBUTION 

The Poisson distribution represents an approximation to the binomial distribution 
for the special case where the average number of successes is much smaller than the 
possible number; that is, when fL <{ n because p <{ 1. For such experiments the bi­
nomial distribution correctly describes the probability FB(x; n, p) of observing x 
events per time interval out of n possible events, each of which has a probability p 
of occurring, but the large number n of possible events makes exact evaluation from 
the binomial distribution impractical. Furthermore, neither the number n of possible 
events nor the probability p for each is usually known. What may be known instead 
is the average number of events fL expected in each time interval or its estimate x. 
The Poisson distribution provides an analytical form appropriate to such investiga­
tions that describes the probability distribution in terms of just the variable x and the 
parameter fL. 

Let us consider the binomial distribution in the limiting case of p <{ 1. We are 
interested in its behavior as n becomes infinitely large while the mean fL = np re­
mains constant. Equation (2.4) for the probability function of the binomial distribu­
tion can be written as 

1 n! 
FB(x; n, p) = x! (n _ x)! pX(1 - p)-x(1 - p)n (2.8) 

If we expand the second factor 

n! 
(n _ x)! = n(n - l)(n - 2) ... (n - x - 2)(n - x-I) (2.9) 

we can consider it to be the product of x individual factors, each of which is very 
nearly equal to n because x <{ n in the region of interest. The second factor in 
Equation (2.8) thus asymptotically approaches nX. The product of the second and 
third factors then becomes (np)X = fLx. The fourth factor is approximately equal to 
1 + px, which tends to 1 as p tends to O. 

The last factor can be rearranged by substituting fLip for n and expanding the 
expression to show that it asymptotically approaches e- fL: 

lim (1 - p)x = lim [(1 - p)1/P]fL = (!)fL = e-fL (2.10) 
p->Q p->Q e 
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Combining these approximations, we find that the binomial distribution prob­
ability function PB(x; n, p) asymptotically approaches the Poisson distribution 

Pp(x; fL) as p approaches 0: 

lim PB (x; n, p) = pp(x; fL) = fL
x

, e- fL 
p-->o x. 

(2.11) 

Because this distribution is an approximation to the binomial distribution for p ~ 1, 
the distribution is asymmetric about its mean fL and will resemble that of Figure 2.2. 
Note that Pp (x; fL) does not become 0 for x = 0 and is not defined for negative val­
ues of x. This restriction is not troublesome for counting experiments because the 
number of counts per unit time interval can never be negative. 

Derivation 

The Poisson distribution can also be derived for the case where the number of 
events observed is small compared to the total possible number of events. I Assume 
that the average rate at which events of interest occur is constant over a given inter­
val of time and that event occurrences are randomly distributed over that interval. 
Then, the probability dP of observing no events in a time interval dt is given by 

dt 
dP(O; t, T) = - p(O; t, T) - (2.12) 

T 

where P(x; t, T) is the probability of observing x events in the time interval dt, T is a 
constant proportionality factor that is associated with the mean time between events, 
and the minus sign accounts for the fact that increasing the differential time interval 
dt decreases the probability proportionally. Integrating this equation yields the prob­
ability of observing no events within a time t to be 

p(O; t, T) = Poe-ti'r (2.13) 

where Po, the constant of integration, is equal to 1 because P(O; t, T) = 1 at t = O. 
The probability P(x; t, T) for observing x events in the time interval T can be 

evaluated by integrating the differential probability 

e-th x dt-
dXP(x; t, T) = -, II ---1 (2.14) 

x. ;=1 T 

which is the product of the probabilities of observing each event in a different in­
terval dt; and the probability e-tl7 of not observing any other events in the remain­
ing time. The factor of x! in the denominator compensates for the ordering implicit 
in the probabilities dP;(1, t, T) as discussed in the preceding section on permutations 
and combinations. 

Thus, the probability of observing x events in the time interval t is obtained by 
integration 

e-th (t)x 
pp(x; fL) = p(x; t, T) = -, -

x. T 

IThis derivation follows that of Orear (1958), pages 21-22. 

(2.15) 
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or 

(2.16) 

which is the expression for the Poisson distribution, where fL = tIT is the average 
nun~ber of eve~t~ observ~d in the.time interval t. Equation (2.16) represents a nor­
malIzed probabIlIty functIOn; that IS, the sum of the function evaluated at each of the 
allowed values of the variable x is unity: 

(2.17) 

Mean and Standard Deviation 

The Poisson distribution, like the binomial distribution, is a discrete distribution. 
That ~s, it is ~~fined only at integral values of the variable x, although the parame­
ter fL IS a pOSItive, real number. The mean of the Poisson distribution is actually the 
par~met~r fL that appears in the probability function PP(x; fL) of Equation (2.16). To 
venfy thIS, we can evaluate the expectation value (x ) of x: 

00 (fLX _) 00 x-I 00 y 
(x) = :L x, e fL = fLe-fL :L (fL ) = fLe- fL :L ~ = fL 

x=o x. x=1 x-I! y=oY! 
(2.18) 

To find the standard deviation 0", the expectation value of the square of the devia­
tions can be evaluated: 

(2.19) 

Th~s, the. sta.nd~d deviation 0" is equal to the square root of the mean fL and the 
POisson dIstnbutIOn has only a single parameter, fL. 

Co~putatio~ Of. the Poisson distribution by Equation (2.16) can be limited by 
th~ factonal fun~tIOn m the denominator. The problem can be avoided by using log­
anthms or by usmg the recursion relations 

(2.20) 

This form has the disadvantage that, in order to calculate the function for particular 
values of x and fL, the function must be calculated at all lower values of x as well. 
However, if the function is to be summed from x = 0 to some upper limit to obtain 
the summed probability or to generate the distribution for a Monte Carlo calculation 
(Chapter 5), the function must be calculated at all lower values of x anyway. 

Example 2.4 As part of an experiment to determine the mean life of radioactive iso­
topes of silver, students detected background counts from cosmic rays. (See Example 
8.1.) They recorded the number of counts in their detector for a series of 100 2-s in­
tervals, and f~und that the mean number of counts was l,&2....Per interval. From the 
mean they estimated the standard deviation to be 0" = V 1.69 = 1.30, compared to 
s = 1.29 from a direct calculation with Equation (1.9). 



26 Data Reduction and Error Analysis for the Physical Sciences 

40 

32 
'2 
iil 
en 
'0 e;, 

24 en 
<I.l 
() 
0: 

~ 
::> 
() 
() 

16 0 
4-< 
0 .... 
<I.l 
.n 
S 
::> 

8 Z 

0 
0 

Number of counts per 2 seconds 

FIGURE 2.3 
Histogram of counts in a cosmic ray detector. The Poisson distribution is an estimate of the parent 
distribution based on the measured mean x = 1.69. It is shown as a continuous curve although the 
function is only defined at the discrete points indicated by the round dots. 

The students then repeated the exercise, this time recording the number of 
counts in 15-s intervals for 60 intervals, obtaining a mean of 11.48 counts per interval, 
with standard deviations <T = Vi1.4s = 3.17 and s = 3.39. 

Histograms of the two sets of data are shown in Figures 2.3, and. 2.4. The cal­
culated mean in each case was used as an estimate of the mean of the parent distribu­
tion to calculate a Poisson distribution for each data set. The distributions are shown 
as continuous curves, although only the points at integral values of the abscissa are 
physically significant. 

The asymmetry of the distribution in Figure 2.3 is obvious, as is the fact that 
the mean IJ.. does not coincide with the most probable value of x at the peak of the 
curve. The curve of Figure 2.4, on the other hand, is almost symmetric about its 
mean and the data are consistent with the curve. As IJ.. increases, the symmetry of the 
Poisson distribution increases and the distribution becomes indistinguishable from 
the Gaussian distribution. 

Summed Probability 

We may want to know the probability of obtaining a sample value of x between lim­
its Xl and X2 from a Poisson distribution with mean IJ... This probability is obtained 
by summing the values of the function calculated at the integral values of x between 
the two integral limits Xl and X2, 

X2 

Sp(Xio X2; IJ..) = L pAx; IJ..) (2.21) 
X, 
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FIGURE 2.4 
Histogram of counts in a cosmic ray detector. The Poisson distribution, shown as a continuous curve 
is ~n e~ti~ate of the parent distribution based on the measured mean x = 11.48. Only the calculated' 
pomts mdlcated by the round dots are defined. 

More likely, we may want to find the probability of recording n or more events in a 
given interval when the mean number of events is IJ... This is just the sum 

(2.22) 

In Example 2.4, the mean number of counts recorded in a 15-s time interval was 
x = 11.48. In one of the intervals, 23 counts were recorded. From Equation (2.22), 
the probability of collecting 23 or more events in a single 15-s time interval 
is - 0.0018, and the probability of this occurring in anyone of 60 15-s time intervals 
is just the complement of the joint probability that 23 or more counts not be observed 
in any of the 60 time intervals, or p = 1 - (1 - 0.0018)60 = 0.10, or about 10%. 
. For larg~ values of IJ.., the probability sum of Equation (2.22) may be approx-
Imated by an llltegral of the Gaussian function. 

2.3 GAUSSIAN OR NORMAL ERROR 
DISTRIBUTION 

~he ?a~~sian distribution is an approximation to the binomial distribution for the spe­
CIal hrrutlllg case where the number of possible different observations n becomes in­
finitely large and the probability of success for each is finitely large so np ~ 1. It is 
also, as we observed, the limiting case for the Poisson distribution as IJ.. becomes large. 
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There are several derivations of the Gaussian distribution from first principles, 
none of them as convincing as the fact that the distribution is reasonable, that it has a 
fairly simple analytic form, and that it is accepted by convention and experimentation 
to be the most likely distribution for most experiments. In addition, it has the satisfy­
ing characteristic that the most probable estimate of the mean fL from a random sam­
ple of observations x is the average of those observations x. 

Characteristics 

The Gaussian probability density is defined as 

PG = cr~ exp[-~(x ~ fL YJ (2.23) 

This is a continuous function describing the probability of obtaining the value x in 
a random observation from a parent distribution with parameters fL and cr, corre­
sponding to the mean and standard deviation, respectively. Because the distribution 
is continuous, we must define an interval in which the value of the observation x 
will fall. The probability density function is properly defined such that the proba­
bility dPG(x; fL, cr) that the value of a random observation will fall within an inter­
val dx around x is given by 

dPG(x; fL, cr) = PG(x; fL, cr)dx (2.24) 

considering dx to be an infinitesimal differential, and the probability density func­
tion to be normalized, so that 

L~oo(x; fL, cr) = f!~];; fL, cr)dx (2.25) 

The width of the curve is determined by the value of cr, such that for x = fL + cr, the 
height of the curve is reduced to e -\12 of its value at the peak: 

(2.26) 

The shape of the Gaussian distribution is shown in Figure 2.5. The curve displays 
the characteristic bell shape and symmetry about the mean fL· 

We can characterize a distribution by its full-width at half maximum f, often 
referred to as the half-width, defined as the range of x between values at which the 
probability PG(x; fL, cr) is half its maximum value: 

PG(fL ± ljzf, fL, cr) = I/ZPG(fL; fL, cr) (2.27) 

With this definition, we can determine from Equation (2.23) that 

f = 2.354 cr (2.28) 

As illustrated in Figure 2.5, tangents drawn along a portion of steepest descent of 
the curve intersect the curve at the e- 11Z points x = fL ± cr and intersect the x axis at 
the points x = fL ± 2cr. 
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FIGURE 2.5 
Gaussian probability distribution illustrating the relation of J.1, (T, r, and P.E. to the curve. The curve 
has unit area. 

Standard Gaussian Distribution 

It is generally convenient to use a standard form of the Gaussian equation obtained 
by defining the dimensionless variable z = (x - fL)/cr, because with this change of 
variable, we can write 

(2.29) 

Thus, from a single computer routine or a table of values of PG(z), we can find the 
Gaussian probability function PG(x; fL, cr) for all values of the parameters fL and cr by 
changing the variable and scaling the function by 1/cr to preserve the normalization. 

Mean and Standard Deviation 

The parameters fL and cr in Equation (2.23) for the Gaussian probability density dis­
tribution correspond to the mean and standard deviation of the function. This equiv­
alence can be verified by calculating fL and cr with Equations (1.13) and (1.14) as 
the expectation values for the Gaussian function of x and (x - fLP, respectively. 

For a finite data sample, which is expected to follow the Gaussian probability 
density distribution, the mean and standard deviation can be calculated directly 
from Equations (1.1) and (1.9). The resulting values of x and s will be estimates of 
the mean fL and standard deviation cr. Values of x and s, obtained in this way from 
the original 50 time measurements in Example 1.2, were used as estimates of fL and 
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a in Equation (2.23) to calculate the solid Gaussian curve in Figure 1.2. The curve 
was scaled to have the same area as the histogram. The curve represents our esti­
mate of the parent distribution based on our measurements of the sample. 

Integral Probability 

We are often interested in knowing the probability that a measurement will deviate 
from the mean by a specified amount Lil or greater. The answer can be determined 
by evaluating numerically the integral 

PG(.~x, fL, a) = ~ l~ f"+~xp[--21 (x - fL)2]dX (2.30) 
a V 2'7T .. -Llx a 

which gives the probability that any random value of x will deviate from the mean 
by less than ± Lil. Because the probability function P G(x; fL, a) is normalized to 
unity, the probability that a measurement will deviate from the mean by more than 
Lil is just 1 - P G(Lil; fL, a). Of particular interest are the probabilities associated 
with deviations of a, 2a, and so forth from the mean, corresponding to 1,2, and so 
on standard deviations. We may also be interested in the probable error (ape), de­
fined to be the absolute value of the deviation Ix - fLl such that the probability for 
the deviation of any random observation Ix; - fL I is less than Y2. That is, half the ob­
servations of an experiment would be expected to fall within the boundaries denoted 

by fL ± ape· 
If we use the standard form of the Gaussian distribution of Equation (2.29), 

we can calculate the integrated probability P G(z) in terms of the dimensionless vari­
able z = (x - fL)la, 

PG(z) = -- e- Z 2 dz 1 fLlZ 
2/ 

~ -Llz 
(2.31) 

where az = Lilla measures the deviation from the mean in units of the standard 
deviation a. 

The integral of Equation (2.31) cannot be evaluated analytically, so in order to 
obtain the probability P G(Lil; fL, a) it is necessary either to expand the Gaussian 
function in a Taylor's series and integrate the series term by term, or to integrate nu­
merically. With modem computers, numerical integration is fast and accurate, and 
reliable results can be obtained from a simple quadratic integration (Appendix A.3). 

Tables and Graphs 

The Gaussian probability density function PG(z) and the integral probability P G(z) 
are tabulated and plotted in Tables C.1 and C.2, respectively. From the integral 
probability Table C.2, we note that the probabilities are about 68% and 9S% that a 
given measurement will fall within 1 and 2 standard deviations of the mean, re­
spectively. Similarly, by considering the SO% probability limit we can see that the 
probable error is given by ape = 0.674Sa. 

Comparison of Gaussian and Poisson 
Distributions 
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A comparison of the Poisson and Gaussian curves reveals the nature of the Poisson 
distribution. It is the appropriate distribution for describing experiments in which 
the possible values of the data are strictly bounded on one side but not on the other. 
The Poisson curve of Figure 2.3 exhibits the typical Poisson shape. The Poisson 
curve of Figure 2.4 differs little from the corresponding Gaussian curve of Figure 
2.S, indicating that for large values of the mean fL, the Gaussian distribution be­
comes an acceptable description of the Poisson distribution. Because, in general, the 
Gaussian distribution is more convenient to calculate than the Poisson distribution 
it is often the preferred choice. However, one should remember that the Poisso~ 
distribution is only defined at 0 and positive integral values of the variable x, 
whereas the Gaussian function is defined at all values of x. 

2.4 LORENTZIAN DISTRIBUTION 

There are many other distributions that appear in scientific research. Some are phe­
nomenological distributions, created to parameterize certain data distributions. Oth­
ers are well grounded in theory. One such distribution in the latter category is the 
Lorentzian distribution, similar but unrelated to the binomial distribution. The 
Lorentzian distribution is an appropriate distribution for describing data corre­
sponding to resonant behavior, such as the variation with energy of the cross section 
of a nuclear or particle reaction or absorption of radiation in the Mossbauer effect. 

The Lorentzian probability density function PL(X; fL, f), also called the 
Cauchy distribution, is defined as 

1 f/2 
PL(X; fL, r) = ;: (x - fL)2 + (f /2)2 (2.32) 

This distribution is symmetric about its mean fL with a width characterized by its 
half-width f. The most striking difference between it and the Gaussian distribution 
is that it does not diminish to 0 as rapidly; the behavior for large deviations is pro­
portional to the inverse square of the deviation, rather than exponentially related to 
the square of the deviation. 

As with the Gaussian distribution, the Lorentzian distribution function is a 
continuous function, and the probability of observing a value x must be related to 
the interval within which the observation may fall. The probability dPL(x; fL, f) for 
an observation to fall within an infinitesimal differential interval dx around x is 
given by the product of the probability density function PL(X; fL, f) and the size of 
the interval dx: 

(2.33) 

The normalization of the probability density function PL(X; fL, f) is such that 
the integral of the probability over all possible values of x is unity: 
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f
OO If 00 1 
PL(X; fL, f)dx = - -1-2 dz = 1 

-00 1T -00 + z 
(2.34) 

where z = (x - fL)/(f/2). 

Mean and Half-Width 

The mean fL of the Lorentzian distribution is given as one of the parameters in 
Equation (2.32). It is obvious from the symmetry of the distribution that fL must be 
equal to the mean as well as to the median and to the most probable value. 

The standard deviation is not defined for the Lorentzian distribution as a con­
sequence of its slowly decreasing behavior for large deviations. If we attempt to 
evaluate the expectation value for the square of the deviations 

(2.35) 

we find that the integral is unbounded: the integral does not converge for large de­
viations. Although it is possible to calculate a sample standard deviation by evalu­
ating the average value of the square of the deviations from the sample mean, this 
calculation has no meaning and will not converge to a fixed value as the number of 
samples increases. 

The width of the Lorentzian distribution is instead characterized by the full­
width at half maximum f, generally called the half-width. This parameter is defined 
such that when x = fL ± f 12, the probability density function is equal to one-half its 
maximum value, or P(fL ± fl2; fL, n = Y2P(fL; fL, n. Thus, the half-width f is the 
full width of the curve measured between the levels of half maximum probability. 
We can verify that this identification of f with the full-width at half maximum is 
correct by substituting x = fL ± fl2 into Equation (2.32). 

The Lorentzian and Gaussian distributions are shown for comparison in Fig­
ure 2.6, for fL = 10 and f = 2.354 (corresponding to a = 1 for the Gaussian func­
tion). Both distributions are normalized to unit area according to their definitions in 
Equations (2.23) and (2.32). For both curves, the value of the maximum probability 
is inversely proportional to the half-width f. This results in a peak value of 
2/1Tf = 0.270 for the Lorentzian distribution and a peak value of l/ayl2; = 0.399 
for the Gaussian distribution. 

Except for the normalization, the Lorentzian distribution is equivalent to the 
dispersion relation that is used, for example, in describing the cross section of a nu­
clear reaction for a Breit-Wigner resonance: 

_ 2 f1f2 
a - 1TA (E - Eo)2 + (f /2)2 (2.36) 

SUMMARY 

Binomial distribution: Describes the probability of observing x successes out of n 
tries when the probability for success in each try is p: 
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x 

FIGURE 2.6 
Comparison of normalized Lorentzian and Gaussian distributions, with r = 2.354cr. 

fL = np a 2 = np(I - p) 

Poisson distribu~ion: Limitin? ~ase of the binomial distribution for large n and con­
stant fL; appropnate for descnbmg small samples from large populations. 

pp(x; fL) = fL~ e- fL , 
x. 

C!a.ussian distri~ution: Limiting case of the binomial distribution for large nand 
flmte p; appropnate for smooth symmetric distributions. 

PG(x; fL, a) = a0; exp [-~ (x: fL YJ 
Half-width f = 2.354a; probable error P.E. = 0.6745a. 
Standard form: 

PG(z) dz = vk exp (- ~ Y dz 

Lorentzian distribution: Describes resonant behavior 
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EXERCISES 

Iz.T\ Consider five coins labeled a, b, c, d, and e. Let x = number of heads showing. . 
~ (a) Manually count and tabulate all possible permutations for each of the followmg 

configurations: 
i. x = 0 

ii. x = 1 
iii. x=2 
IV. x= 3 
v. x=4 

vi. x = 5 
Compare your results to those given by Equation (2.2). . 

(b) Manually delete all duplicate permutations from each. ex~mpl.e of p~ (a), that IS, 
cross out permutations that repeat a previous combmatIon m a dIfferent order. 
Compare your results to those given by Equation (2.3). 

2.2. Evaluate the following: 

(a) (~) (b) (i) 
2.3. Evaluate the binomial distribution P B(X; n, p) for n = 6, p = Y2, and x = 0 to 6. Sketch 

the distribution and identify the mean and standard deviation. Repeat for p = Y6. 
@ The probability distribution of the sum of the points showing on a pair of dice is given by 

x-I p( ) 2 ~ x ~ 7 x =36 
13 -x 

- 7 ~ x ~ 12 -36 

Find the mean, median, and standard deviation of the distribution. 
2.5. Show that the sum in Equation (2.6) reduces to fL = np. Hint: Define y = x-I and 

m = n - 1 and use the fact that 

2.6. 

2.8. 

f [ ,( m~ ), pY(I - p)m- y] = f PB(y; m, p) = 1 
y=O y. my. y=O 

On a certain kind of slot machine there are 10 different symbols that can appear in 
each of three windows. The machine pays off different amounts when either one, two, 
or three lemons appear. What should be the payoff ratio for each of the three possibil­
ities if the machine is honest and there is no cut for the house? 
Show that the sum in Equation (2.7) reduces to u 2 = np(l - p). Hint: Define y = x-I 
and m = n - 1 and use the results of Exercise 2.5. 
At rush hour on a typical day, 25.0% of the cars approaching a fork in the stre~t tum ~eft 
and 75.0% tum right. On a particular day, 283 cars turned left and 752 turned nght. Fmd 
the predicted uncertainty in these numbers and the probab~l~ty that th~s~ measurements 
were not made on a "typical day"; that is, find the probabIlIty of obtammg a result that 
is as far or farther from the mean than the result measured on the particular day. 
In a certain physics course, 7.3% of the students failed and 92.7% passed, averaged 
over many semesters. 
(a) What is the expected number of failures in a particular class of 32 students, drawn 

from the same population? 
(b) What is the probability that five or more students will fail? 
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2.10. Evaluate and plot the two Poisson distributions of Example 204. Plot on each graph the 
corresponding Gaussian distribution with the same mean and standard deviation. 

2.11. Verify that, for the Poisson distribution, if fL is an integer, the probability for x = fL is 
equal to the probability for x = fL - 1, Pp(fL, fL) = Pp(fL - 1; fL). 

2.12. Show that the sum in Equation (2.19) reduces to u 2 = fL. Hint: Use Equation (2.18) 
to simplify the expression. Define y = x-I and show that the sum reduces to 
fL(y +- 1) = fL2. 

2.13. 

2.14. 

2.15. 

2.16. 

Members of a large collaboration that operated a giant proton-decay detector in a salt 
mine near Cleveland, Ohio, detected a burst of 8 neutrinos in their apparatus coinci-
dent with the optical observation of the explosion of the Supernova 1987 A. 
(a) If the average number of neutrinos detected in the apparatus is 2 per day, what is 

the probability of detecting a fluctuation of 8 or more in one day? 
(b) In fact, the 8 neutrinos were all detected within a lO-min period. What is the prob­

ability of detecting a fluctuation of 8 or more neutrinos in a IO-min period if the 
average rate is 2 per 24 hours? -

In a scattering experiment to measure the polarization of an elementary particle, a total 
of N = 1000 particles was scattered from a target. Of these, 670 were observed to 
be scattered to the right and 330 to the left. Assume that there is no uncertainty in 
N=NR +NL. 
(a) Based on the experimental estimate of the probability, what is the uncertainty in 

NR?InNL? 
(b) The asymmetry parameter is defined as A = (NR - NL)/(NR + NL). Calculate the 

experimental asymmetry and its uncertainty. 
(c) Assume that the asymmetry has been predicted to be A = 00400 and recalculate 

the uncertainties in (a) and (b) using the predicted probability. 
A problem arises when recording data with electronic counters in that the system may 
saturate when rates are very high, leading to a "dead time." For example, after a parti­
cle has passed through a detector, the equipment will be "dead" while the detector re­
covers and the electronics stores away the results. If a second particle passes through 
the detector in this time period, it will not be counted. 
(a) Assume thaUl counter has a dead time of 200 ns (200 X 10-9 s) and is exposed to 

a beam of 1 X 106 particles per second so that the mean number of particles hit­
ting the counter in the 200-ns time slot is fL = 0.2. From the Poisson probability 
for this process, find the efficiency of the counter, that is, the ratio of the average 
number of particles' counted to the average number that pass through the counter 
in the 200-ns time period. 

(b) Repeat the calculation for beam rates of 2, 4, 6, 8, and 10 X 106 particles per sec­
ond, and plot a graph of counter efficiency as a function of beam rate. 

Show by numerical calculation that, for the Gaussian probability distribution, the full­
width at half maximum r is related to the standard deviation by r = 2.354u [Equation 
(2.28)]. 

The probability that an electron is at a distance r from the center of the nucleus of a 
hydrogen atom is given by 

Find the mean radius r and the standard deviation. Find the value of the constant C. 

~ Show that a tangent to the Gaussian function is steepest at x = fL ± u, and therefore 
"-7 intersects the curve at the e- 1I2 points. Show also that these tangents intersect the x axis 

atx=fL±2u. 
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CHAPTER 

3 
ERROR 

ANALYSIS 

I n Chapter 1 we discussed methods for extracting from a set of data points esti­
mates of the mean and standard deviation that describe, respectively, the desired 

result and the uncertainties in the results. In this chapter we shall further consider 
how to estimate uncertainties in our measurements, the sources of the uncertainties, 
and how to combine uncertainties in separate measurements to find the error in a re­
sult calculated from those measurements. 

3.1 INSTRUMENTAL AND STATISTICAL 
UNCERTAINTIES 

Instrumental Uncertainties 

If the quantity x has been measured with a physical instrument, the uncertainty in 
the measurement generally comes from fluctuations in readings of the instrumental 
scale, either because the settings are not exactly reproducible due to imperfections 
in the equipment, or because of human imprecision in observing settings, or a com­
bination of both. Such uncertainties are called instrumental because they arise from 
a lack of perfect precision in the measuring instruments (including the observer). 
We can include in this category experiments that deal with measurements of such 
characteristics as length, mass, voltage, current, and so forth. These uncertainties 
are often independent of the actual value of the quantity being measured. 

Instrumental uncertainties are generally determined by examining the instru­
ments and considering the measuring procedure to estimate the reliability of the mea­
surements. In general, one should attempt to make readings to a fraction of the smallest 
scale division on the instrument. For example, with a good mercury thermometer, it 
is often easy to estimate the level of the mercury to a least count of one-half of the 
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smallest scale division and possibly even to one-fifth of a division. The measurement 
is generally quoted to plus or minus one-half of the least count, and this number rep­
resents an estimate of the standard deviation of a single measurement. Recalling that, 
for a Gaussian distribution, there is a 68% probability that a random measurement will 
lie within 1 standard deviation of the mean, we observe that our object in estimating 
errors is not to place outer limits on the range of the measurement, which is impossi­
ble, but to set a particular confidence level that a repeated measurement of the quantity 
will fall this close to the mean or closer. Often we choose the standard deviation, the 
68% confidence level, but other levels are used as well. We shall discuss the concept 
of confidence levels in Chapter 11. 

Digital instruments require special consideration. Generally, manufacturers 
specify a tolerance; for example, the tolerance of a digital multimeter may be given 
as ± 1 %. At any rate, the precision cannot be better than half the last digit on the 
display. The manufacturer:s quoted tolerances may require interpretation as to 
whether the uncertainty must be treated as a systematic effect or a statistical effect. 
For example, if a student uses a resistor with a stated 1 % tolerance in an experiment, 
he can expect the stated uncertainty in the resistance to make a systematic contribu­
tion to all experiments with that resistor. On the other hand, when he combines his 
results with those of the other students in the class, each of whom used a different 
resistor, the uncertainties in the individual resistances contribute in a statistical man­
ner to the variation of the combined sample. 

If it is possible to make repeated measurements, then an estimate of the stan­
dard deviation can be calculated from the spread of these measurements as dis­
cussed in Chapter 1. The resulting estimate of the standard deviation corresponds to 
the expected uncertainty in a single measurement. In principle, this internal method 
of determining the uncertainty should agree with that obtained by the external 
method of considering the equipment and the experiment itself, and in fact, any sig­
nificant discrepancy between the two suggests a problem, such as a misunderstand­
ing of some aspect of the experimental procedure. However, when reasonable 
agreement is achieved, then the standard deviation calculated internally from the 
data generally provides the better estimate of the uncertainties. 

Statistical Uncertainties 

If the measured quantity x represents the number of counts in a detector per unit time 
interval for a random process, then the uncertainties are called statistical because they 
arise not from a lack of precision in the measuring instruments but from overall sta­
tistical fluctuations in the collections of finite numbers of counts over finite intervals 
of time. For statistical fluctuations, we can estimate analytically the standard deviation 
for each observation, without having to determine it experimentally. If we were to 
make the same measurement repeatedly, we should find that the observed values were 
distributed about their mean in a Poisson distribution (as discussed in Section 2.2) in­
stead of a Gaussian distribution. We can justify the use of this distribution intuitively 
by considering that we should expect a distribution that is related to the binomial dis­
tribution, but that is consistent with our boundary conditions that we can collect any 
positive number of counts, but no fewer than zero counts, in any time interval. 
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The Poisson distribution and statistical uncertainties do not apply solely to ex­
periment where counts are recorded in unit time intervals. In any experiment in 
which data are grouped in bins according to some criterion to form a histogram or 
frequency plot, the number of events in each individual bin will obey Poisson sta­
tistics and fluctuate with statistical uncertainties. 

One immediate advantage of the Poisson distribution is that the standard de­
viation is automatically determined: 

a=W (3.1) 

The relative uncertainty, the ratio of the standard deviation to the average rate, 
alf.L = lIW, decreases as the number of counts received per interval increases. 
Thus relative uncertainties are smaller when counting rates are higher. 

The value for f.L to be used in Equation (3.1) for determining the standard de­
viation a is, of course, the value of the mean counting rate from the parent popula­
tion, of which each measurement x is only an approximate sample. In the limit of an 
infinite number of determinations, the average of all the measurements would very 
closely approximate the parent value, but often we cannot make more than one mea­
surement of each value of x, much less an infinite number. Thus, we are forced to 
use Vx as an estimate of the standard deviation of a single measurement. 

Example 3.1. Consider an experiment in which we count gamma rays emitted by a 
strong radioactive source. We cannot determine the counting rate instantaneously be­
cause no counts will be detected in an infinitesimal time interval. But we can deter­
mine the number of counts x detected over a time interval !!.t, and this should be 
representative of the average counting rate over that interval. Assume that we have 
recorded 5212 counts in a I-s time interval. The distribution of counts is random 
in time and follows the Poisson proba~ function, so our estimate of the standard 
deviation ofthe distribution is a = V 5212. Thus, we should record our result for the 
number of counts x in the time interval !!.t as 5212 ± 72 and the relative error is 

ax = Vx = _1_ = J..- = 0.014 = 1.4% 
x x Vx 72 

There may also be instrumental uncertainties contributing to the overall un­
certainties. For example, we can determine the time intervals with only finite preci­
sion. However, we may have some control over these uncertainties and can often 
organize our experiment so that the statistical errors are dominant. Suppose that the 
major instrumental error in our example is the uncertainty at = 0.01 s in the time in­
terval ilt = 1.00 s. The relative uncertainty in the time interval is thus 

at 0.01 
!!.t = 1.00 = 0.01 = 1. % 

This relative instrumental error in the time interval will produce a 1. % relative error 
in the number of counts x. Because the instrumental uncertainty is comparable to 
the statistical uncertainty, it might be wise to attempt a more precise measurement 
of the interval or to increase its length. If we increase the counting time interval 
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from 1 s to 4 s, the number of counts x will increase by about a factor of 4 and the 
relative statistical error will therefore decrease by a factor of 2 to about 0.7%, 
whereas the relative instrumental uncertainty will decrease by a factor of 4 to 
0.25%, as long as the instrumental uncertainty at remains constant at 0.01 s. 

3.2 PROPAGATION OF ERRORS 

We often want to determine a dependent variable x that is a function of one or more 
different measured variables. We must know how to propagate or carry over the un­
certainties in the measured variables to determine the uncertainty in the dependent 
variable. 

Example 3.2. Suppose we wish to find the volume V of a box of length L, width W, 
and height H. We can Ipeasure each of the three dimensions to be L o, width Wo, and 
height H 0 and combine these measurements to yield a value for the volume: 

(3.2) 

How do the uncertainties in the estimates Lo, Wo, and H 0, affect the resulting uncer­
tainties in the final result Vo? 

If we knew the actual errors, !!.L = L - Lo and so forth, in each dimension, we 
could obtain an estimate of the error in the final result Vo by expanding V about the 
point (Lo, Wo, Ho) in a Taylor series. The first term in the Taylor expansion gives 

V= Vo + !!.L(av) + !!.w(av) + !!.H(av) (3.3) 
aL WoHo aw LoHo aH LoWo 

from which we can find!!' V = V - Vo. The terms in parentheses are the partial deriv­
atives of V, with respect to each of the dimensions, L, W, and H, evaluated at the point 
Lo, Wo, Ho. They are the proportionality constants between changes in V and infinites­
imally small changes in the corresponding dimensions. The partial derivative of V 
with respect to L, for example, is evaluated with the other variables Wand H held 
fixed at the values Wo and Ho as indicated by the subscript. This approximation ne­
glects higher-order terms in the Taylor expansion, which is equivalent to neglecting 
the fact that the partial derivatives are not constant over the ranges of L, W, and H 
given by their errors. If the errors are large, we must include in this definition at least 
second partial derivatives (aV2/aL2, etc.) and partial cross derivatives (a2V!aL aw, 
etc.), but we shall omit these from the discussion that follows. 

For our example of V = LWH, Equation (3.3) gives 

(3.4) 

which we could evaluate if we knew the uncertainties !!.L, !!. W, and !!.H. 

Uncertainties 

In general, however, we do not know the actual errors in the determination of the 
dependent variables (or if we do, we should make the necessary corrections). In­
stead, we may be able to estimate the error in each measured quantity, or to estimate 
some characteristic, such as the standard deviation a, of the probability distribution 



, . 

40 Data Reduction and Error Analysis for the Physical Sciences 

of the measured qualities, How can we combine the standard deviation of the indi­
vidual measurements to estimate the uncertainty in the result? 

Suppose we want to determine a quantity x that is a function of at least two 
measured variables, u and v. We shall determine the characteristics of x from those 
of u and v and from the fundamental dependence 

x = j(u, v, ... ) (3.5) 

Although it may not always be exact, we shall assume that the most probable value 
for x is given by 

x = j(u, v, ... ) (3.6) 

The uncertainty in the resulting value for x can be found by considering the 
spread of the values of x resulting from combining the individual measurements Ui' 

Vi' . •. into individual results Xi: 

Xi = j(Ui, Vi> .•. ) (3.7) 

In the limit of an infinite number of measurements, the mean of the distribution 
will coincide with the average x given in Equation (3.6) and we can use the defin­
ition of Equation (l.8) to find the variance (J"; (which is the square of the standard 
deviation (J"x): 

(J"2 = lim [! ~ (x. - x)21 
x N---tco N £.J I J (3.8) 

Just as we expressed the deviation of V in Equation (3.4) as a function ofthe 
deviations in the dimensions L, W, and H, so we can express the deviations Xi - x in 
terms of the deviations Ui - U, Vi - V, ... of the observed parameters 

x. - x = (u. - u) (ax) + (v - v) (ax) + ... 
I I au av (3.9) 

where we have omitted specific notation of the fact that each of the partial deriva­
tives is evaluated with all the other variables fixed at their mean values. 

Variance and Covariance 

Combining Equations (3.8) and (3.9) we can express the variance (J"; for x in terms of 
the variances (J"~, (J"~, . •. for the variables u, v, ... , which were actually measured: 

. 1 [ (ax) (ax)]2 (J"2 = hm - ~ (u. - u) - + (V - v) - + ... 
x N---tcoN£.J I au I av 

1 [ (ax)2 (ax)2 = lim - L (u - u)2 - + (v. - v)2 -
N---tco N I au I av 

+ 2(u - u)(v. - v) (ax) (ax) + ... ] 
I I au av (3.10) 
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The first two terms of Equation (3.10) can be expressed in terms of the vari­
ances (J"~ and (J"~ given by Equation (1.8): 

(J"2 = lim [! ~ (u - u.)2] 
U N-HX) N.£.J I I 

(J"2 = lim [! ~ (v. - v.)2] 
v N-+oo N £.J I I 

(3.11) 

In order to express the third term of Equation (3.10) in a similar form, we introduce 
the covariances (J";v between the variables u and v defined analogous to the vari­
ances of Equation (3.11): 

(J"2 == lim [! ~ [(u. - u) (v. - v)]] (3.12) 
uv N-+oo N £.J I I 

With these definitions, the approximation for the variance (J"; for x given in 
Equation (3.10) becomes 

(J"2 = (J"2 - + (J"2 - + ... + 2(J"2 - - + ... (ax)2 (ax)2 (ax) (ax) 
x u au v av uv au av (3.13) 

Equation (3.13) is known as the error propagation equation. 
The first two terms in the equation are averages of squares of deviations 

weighted by the squares of the partial derivatives, and may be considered to be the 
averages of the squares of the deviations in x produced by the uncertainties in u and 
in v, respectively. In general, these terms dominate the uncertainties. If there are ad­
ditional variables besides u and v in the determination of x, their contributions to the 
variance of x will have similar terms. 

The third term is the average of the cross terms involving products of devia­
tions in u and v weighted by the product of the partial derivatives. If the fluctuations 
in the measured quantities u and v, . .. are uncorrelated, then, on the average, we 
should expect to find equal distributions of positive and negative values for this 
term, and we should expect the term to vanish in the limit of a large random selec­
tion of observations. This is often a reasonable approximation and Equation (3.13) 
then reduces to 

(J"2 = (J"2 - + (J"2 - + ... (ax)2 (ax)2 
x u au v av (3.14) 

with similar terms for additional variables. In general, we use Equation (3.14) for 
determining the effects of measuring uncertainties on the final result and neglect the 
covariant terms. However, as we shall see in Chapter 7, the covariant terms often 
make important contributions to the uncertainties in parameters determined by fit­
ting curves to data by the least-squares method. 

3.3 SPECIFIC ERROR FORMULAS 

The expressions of Equations (3.13) and (3.14) were derived for the general rela­
tionship of Equation (3.5) giving x as an arbitrary function of u and v, .... In the 
following specific cases offunctionsj(u, v, ... ), the parameters a and b are defined 
as constants and u and v are variables. 
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Simple Sums and Differences 

If the dependent variable x is related to a measured quantity u by the relation 

x= u +a (3.15) 

then the partial derivative ax/au = 1 and the uncertainty in x is just 

(3.16) 

and the relative uncertainty is given by 

(3.17) 

Note that if we are dealing with a small difference between u and a, the uncertainty in 
x might be greater than the magnitude of x, even for a small relative uncertainty in u. 

Example 3.3. In an experiment to count particles emitted by a decaying radioactive 
source, we measure Nl = 723 counts in a 15-s time interval at the beginning of the ex­
periment and N2 = 19 counts in a 15-s time interval later in the experiment. The events 
are random and obey Poisson statistics so that we know that the uncertainties in Nl and 
N2 are just their square roots. Assume that we have made a very careful measurement 
of the background counting rate in the absence of the radioactive source and obtained 
a value B = 14.2 counts with negligible error for the same time interval !1t. Because 
we have averaged over a long time period, the mean number of background counts in 
the 15-s interval is not an integral number. 

For the first time interval, the corrected number of counts is 

Xl = Nl - B = 723 - 14.2 = 708.8 counts 

The uncertainty in Xl is given by 

a XI = aNI = V723 = 26.9 counts 

and the relative uncertainty is 

; = ~~.: = 0.038 = 3.8% 

For the second time interval, the corrected number of events is 

X2 = N2 - B = 19 - 14.2 = 4.8 counts 

The uncertainty in X is given by 

ax, = aN, = Vi9 = 4.4 counts 

and the relative uncertainty in X is 

Weighted Sums and Differences 

If x is the weighted sum of u and v, 

ax = 4.4 = 0.91 
X 4.8 

x = au + bv (3.18) 
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the partial derivatives are simply the constants 

(3.19) 

and we obtain 

(3.20) 

Note the possibility that the variance 0"; might vanish if the covariance O";v has 
the proper magnitude and sign. This could happen in the unlikely event that the fluc­
tuations were completely correlated so that each erroneous observation of u was ex­
actly compensated for by a corresponding erroneous observation of v. 

Example 3.4. Suppose that, in the previous example, the background counts B were 
not averaged over a long time period but were simply measured for 15 s to give 
B = 14 with standard deviation aB = y'i4 = 3.7 counts. Then the uncertainty in X 

would be given by 

a; = a~ + (-aB)2 = N + B 

because the uncertainties in Nand B are equal to their square roots. 

For the first time interval, we would calculate 

Xl = (723 - 14) ± Y723 + 14 = 709 ± 27.1 counts 

and the relative uncertainty would be 

:x = ~~.~ = 0.038 

For the second time interval, we would calculate 

X2 = (19 - 14) ± Y19 + 14 = 5 ± 5.7 counts 

and the relative uncertainty would be 

:x = 5~7 = 1.1 

Multiplication and Division 

If x is the weighted product of u and v, 

x = auv (3.21) 

the partial derivatives of each variable are functions of the other variable, 

(:~) = av (:~ ) = au (3.22) 

and the variance of x becomes 

0"2 = (avO" )2 + (aua )2 + 2a2uv0"2 x u v uv (3.23) 
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which can be expressed more symmetrically as 
2 2 2 2 

0" x = 0" U + 0" v + 2 0" uv 
X 2 U 2 V 2 UV 

Similarly, if x is obtained through division, 

the relative variance for x is given by 

au 
x=­

v 

2 2 2 2 
O"X = O"u + O"v _ 20" uv 
x 2 u2 v2 UV 

(3.24) 

(3.25) 

(3.26) 

Example 3.5. The area of a triangle is equal to half the product of the base times the 
height A = bh12. If the base and height have values b = 5.0 ± 0.1 cm and h = 10.0 
± 0.3 cm, the area is A = 25.0 cm2 and the relative uncertainty in the area is given by 

(3.27) 

or 

(J"2 = A2((J"~ + (J"~) 
A b2 h2 

= 252(cm)4( 05; 
2 
+ ~~:) (cm2/ cm2) 

= 0.81 cm4 

Although the absolute uncertainty in the height is 3 times the absolute uncertainty in 
the base, the relative uncertainty is only 1 Y2 times as large and its contribution to the 
variance of the area is only (1 Y2)2 as large. 

Powers 

If x is obtained by raising the variable u to a power 

x= aub 

the derivative of x with respect to u is 

and relative error in x becomes 

(
ax) = abu b - I = bx 
au u 

O"x= bO"u 
x u 

For the special cases of b = + 1, we have 

so 

x=au 

O"x=O"u 
X U 

(3.28) 

(3.29) 

(3.30) 

(3.31) 
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For b = - 1, we have 

so 

a 
x=­

u 
aO"u 

0" =--
x u2 

O"x= _O"u 
X U 

(3.32) 

The negative sign indicates that, in division, a positive error in u will produce a cor­
responding negative error in x. 

Example 3.6. The area of a circle is proportional to the square of the radius A = 'IT r2. 
If the radius is determined to be r = 10.0 ± 0.3 cm, the area isA = 100.'IT cm2 with an 
uncertainty given by 

or 

Exponentials 

(J"A = 2 (J"r 
A r 

(J"A = 2A (J"r = 2'IT(1O.0 cm)2(0.3 cm)/(1O.0 cm) = 6'IT cm2 
r 

If x is obtained by raising the natural base to a power proportional to u, 

x = aebu 

the derivative of x with respect to u is 

ax 
- = abebu = bx 
au 

and the relative uncertainty becomes 

O"x = bO" 
x u 

(3.33) 

(3.34) 

(3.35) 

If the constant that is raised to the power is not equal to e, the expression can 
be rewritten as 

x = abu (3.36) 
= (eln a)bu = e(b In a)u 

= eCU with c = b In a 

where In indicates the natural logarithm. Solving in the same manner as before we 
obtain 

(3.37) 
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Logarithms 

If x is obtained by taking the logarithm of u, 

the derivative with respect to u is 

Angle Functions 

x = a In(bu) 

ax ab 

au u 

a 
a = ab --1!. 

x U 

If x is determined as a function of u, such as 

x = a cos(bu) 

The derivative of x with respect to u is 

: = -ab sin(bu) 

so 

Similarly, if 

x = a sin(bu) 

then 

dx 
du = ab cos(bu) 

so 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

Note that au is the uncertainty in an angle and therefore must be expressed in radians. 
These relations can be useful for making quick estimates of the uncertainty in 

a calculated quantity caused by the uncertainty in a measured variable. For a simple 
product or quotient of the measured variable u with a constant, a 1 % error in u 
causes a 1 % error in x. If u is raised to a power b, the resulting error in x becomes 
b% for a 1 % uncertainty in u. Even if the complete expression for x involves other 
measured variables, x = f(u, v, ... ) and is considerably more complicated than 
these simple examples, it is often possible to use these relations to make approxi­
mate estimates of uncertainties. 

3.4 APPLICATION OF ERROR EQUATIONS 

Even for relatively simple calculations, such as those encountered in undergraduate 
laboratory experiments, blind application of the general error propagation expression 
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[Equation (3.14)] can lead to very lengthy and discouraging equations, especially if 
the final results depend on several different measured quantities. Often the error 
equations can be simplified by neglecting terms that make negligible contributions to 
the final uncertainty, but this requires a certain amount of practice. 

Approximations 

Students should practice making quick, approximate estimates of the various con­
tributions to the uncertainty in the final result by considering separately the terms in 
Equation (3.14). A convenient rule of thumb is to neglect terms that make final con­
tributions that are less than 10% of the largest contribution. (Like all rules of this 
sort, one should be wary of special cases. Several smaller contributions to the final 
uncertainty can sum to be as important as one larger uncertainty.) 

Example 3.7. Suppose that the area of a rectangle A = LW is to be determined from 
the following measurements of the lengths of two sides: 

L=22.1±0.lcm W= 7.3 ± 0.1 cm 

The relative contribution of U L to the error in L will be 

and the corresponding contribution of Uw will be 

UA IV = Uw = 0.1 =0014 
A W 7.3 . 

The contribution from U L is thus about one-third of that from Uw. However, when the 
contributions are combined, we obtain 

U A = A YO.0142 + 0.0052 

which can be expanded to give 

( 
1 (0.005)2) UA = 0.014A 1 + 2 0.014 = 0.014A(1 + 0.06) = 0.015A 

Thus, the effective contribution from U L is only about 6% ofthe effective contribution 
from Uw and could safely be neglected in this calculation. 

Computer Calculation of Uncertainties 

Finding analytic forms for the partial derivatives is sometimes quite difficult. One 
should always break Equation (3.14) into separate components and not attempt to 
find one complete equation that incorporates all error terms. In fact, if the analysis 
is being done by computer, it may not even be necessary to find the derivatives ex­
plicitly. The computer can find numerically the variations in the dependent variable 
caused by variations in each independent, or measured, variable. 
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Suppose that we have a particularly complicated equation, or set of equations, 
relating our final result x to the individually measured variables u, v, and so forth. 
Let us assume that the actual equations are programmed as a computer function 
CALC U LATE, which returns the single variable x when called with arguments 
corresponding to the measured parameters 

x = CALCULATE(U, Y, W ... ) 

We shall further assume that correlations are small so that the covariances may be 
ignored. Then, to find the variations of x with the measured quantities u, v, and so 
forth, we can make successive calls to the function of the form 

oXU = CALCULATE(U + OU, Y, W, ... ) -x, 

oXY = CALCULATE(U, Y + OY, W,. ) - x, 

oXW = CALCULATE(U, Y, W + ow, ... ) - x, 

ETC. 

where OU, OV, OW, and so forth are the standard deviations O'u, O'v' O'w, and so 
on. The resulting contributions to the uncertainty in x are combined in quadrature as 

oX = SQRT(SQR(OXU) + SQR(OXY) + SQR(OXW) + ... ) 

Note that it would not be correct to incorporate all the variations into one equation 
such as 

oX = CALCULATE(U + OU, Y + OY, W + ow, ... ) - x 

because this would imply that the errors OU, OV, and so on were actually known 
quantities, rather than independent, estimated variations of the measured quantities, 
corresponding to estimates of the widths of the distributions of the measured variables. 

SUMMARY 

Covariance: O'~v = ((u - u)(v - v)). 
Propagation of errors: Assume x = feu, v): 

0'2 = 0'2 (ax)2 + 0'2 (ax)2 + 20'2 (ax) (ax) 
x u au v av uv au av 

For u and v uncorrelated, O';v = O. 

Specific formulas: 

x=au+bv 

x=auv 

au 
x=­

v 

x= aub 

0'; = a20'~ + b20'; + 2abO';;v 
222 2 

O'x = O'u + O'v + 2 O'uv 
x2 u2 v2 UV 

2 2 2 2 
O'x = O'u + O'v _ 2 O'uv 
x2 u2 v2 uv 

O'x=bO'u 
x u 

x = aebu 

x = abu 

x = a In(bu) 

x = a cos(bu) 

x = a sin(bu) 

O'x = bO' 
x U 

b 
0' u 

0' =a -
x U 

O'x = -O'uab sin(bu) 

O'x = O'uab cos(bu) 
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EXERCISES 

<i'D Find the uncertainty 0' x in x as a function of the uncertainties (J" u and (J" v in u and v for 
the following functions: 
(a) x = 1I2(u + v) (b) x = 1I2(u - v) (c) x = lIu2 

(d) X = uv2 (e) x = u2 + v2 

3.2. If the diameter of a round table is determined to within 1 %, how well is its area 
known? Would it be better to determine its radius to within I %? 

3.3. 

3.4. 

3.5. 

The resistance R of a cylindrical conductor is proportional to its length L and inversely 
proportional to its cross-sectional area A = 'ITr. Which should be determined with 
higher precision, r or L, to optimize the determination of R? How much higher? 
The initial activity No and the mean life T of a radioactive source are known with un­
certainties of 1 % each. The activity follows the exponential distribution N = Noe-th. 

The uncertainty in the initial activity No dominates at small t; the uncertainty in the 
mean life T dominates at large t (t ~ T). For what value of tIT do the uncertainties in No 
and T contribute equally to the uncertainty in N? What is the resulting uncertainty in N? 

Snell's law relates the angle of refraction 62 of a light ray traveling in a medium of in­
dex of refraction n2 to the angle of incidence 6] of a ray traveling in a medium of in­
dex n] through the equation n2 sin 62 = n] sin 6]. Find n2 and its uncertainty from the 
following measurements: 

81 = (22.03 ± 0.2)° 82 = (14.45 ± O.2t n l = 1.0000 

The change in frequency produced by the Doppler shift when a sound source of fre­
quency f is moving with velocity v toward a fixed observer is given by I1f = fv/(u -
v), where u is the velocity of sound. From the following values of u, f, and v and their 
uncertainties, calculate I1f and its uncertainty. Which, if any, of the uncertainties make 
a negligible contribution to the uncertainty in !1f? 

UI = (332 ± 8) mls; f = (1000 ± l)Hz; and v = (0.123 ± 0.003) mls. 

3.7. The radius of a circle can be calculated from measurements of the length L of a chord 
and the distance h from the chord to the circumference of the circle from the equation 
R = L212h + h/2. Calculate the radius and its uncertainty from the following values of 
Land h. 
(a) L = (125.0 ± 5.0) cm, h = (0.51 ± 0.22) cm 
(b) L = (125.0 ± 5.0) cm, h = (57.4 ± 1.2) cm 
Was it necessary to use the second term to calculate R in both (a) and (b)? Explain. 

3.8. Students measure the speed of sound in the laboratory by creating a sound pulse that 
travels down a I-m tube and reflects back so that both the initial and reflected pulses 
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are detected by the same microphone. The signals are recorded by computer and the 
pulse amplitudes versus time are displayed on the monitor. The students measure the 
time intervals for ten such pairs of pulses on the monitor and record the following 
transit times in milliseconds: 

Trial 

I 5.7~ 
2 3 4 5 6 7 8 9 

Transit times 5.78 5.74 5.80 5.78 5.83 5.76 5.78 5.76 5.78 

10 

(a) Examine the data and try to estimate the spread of the data, that is, their standard 
deviation. 

(b) Calculate the mean transit time, the standard deviation of the sample, and the stan­
dard error (error in the mean). 

(c) One of the transit time measurements differs from the mean by more than 2 stan­
dard deviations. In a ten-event sample, how many measurements are predicted by 
Gaussian statistics to differ from the mean by 2 or more standard deviations? Re­
fer to Table C.2. 

~ (d) Calculate the speed of sound and its uncertainty from the data. e' Students in the undergraduate laboratory recorded the following counts in I-min in­
tervals from a radioactive source. The nominal mean decay rate from the source is 3.7 
decays per minute. 

Decays per minute o 1 2 3 4 5 6 7 8 9 10 

Frequencey of occurrence 9 20 24 19 11 11 0 3 

(a) Find the mean decay rate and its standard deviation. Compare the standard devia­
tion to the value expected from the Poisson distribution for the mean value that 
you obtained. 

(b) Plot a histogram of the data and show Poisson curves of both the parent and ob­
served distributions. 

3.10. Find by numerical integration the probability of observing a value from the Gaussian 
distribution that is: 
(a) More than I standard deviation (a") from the mean. 
(b) More than 2 standard deviations from the mean. 
(c) More than 3 standard deviations from the mean. 

3.11. Find by numerical integration the probability of observing a value from the Lorentz­
ian distribution that is: 
(a) More than 1 half-width (r/2) from the mean. 
(b) More than 2 half-widths from the mean. 
(c) More than 3 half-widths from the mean. 

4.1 METHOD OF LEAST SQUARES 

CHAPTER 

4 
ESTIMATES 

OF MEAN 
AND ERRORS 

I n Chapter 2 we defined the mean J.L of the parent distribution and noted that the 
most probable estimate of the mean J.L of a random set of observations is the av­

erage x of the observations. The justification for that statement is based on the as­
sumption that the measurements are distributed according to the Gaussian 
distribution. In general, we expect the distribution of measurements to be either 
Gaussian or Poisson, but because these distributions are indistinguishable for most 
physical situations we can assume the Gaussian distribution is obeyed. 

Method of Maximum Likelihood 

Assume that, in an experiment, we have observed a set of N data points that are ran­
domly selected from the infinite set of the parent population, distributed according 
to the parent distribution. If the parent distribution is Gaussian with mean J.L and 
standard deviation cr, the probability dPi for making any single observation Xi within 
an interval dx is given by 

(4.1) 

with probability function Pi = PG(xi; J.L, cr) [see Equation(2.23)]. For simplicity, we 
shall denote the probability Pi for making an observation Xi by 

(4.2) 

51 
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Because, in general, we do not know the mean"", of the distribution for a phys­
ical experiment, we must estimate it from some experimentally derived parameter. 
Let us call the estimate "",'. What formula for deriving "",' from the data will yield the 
maximum likelihood that the parent distribution had a mean equal to "",? 

If we hypothesize a trial distribution with a mean "",' and standard deviation (J"' 
= (J", the probability of observing the value Xi is given by the probability function 

p.("",') = exp -- -.L.L 1 [ 1 (X - ')2] 
I (J" v'2rI 2 (J" (4.3) 

Considering the entire set of N observations, the probability for observing that par­
ticular set is given by the product of the individual probability functions, Pi("""), 

N 

p("",') = II ~("",') (4.4) 
i=! 

where the symbol II denotes the product of the N probabilities Pi("""). 
The product of the constants multiplying the exponential in Equation (4.3) is 

the same as the product to the Nth power, and the product of the exponentials is the 
same as the exponential ofthe sum of the arguments. Therefore, Equation (4.4) re­
duces to 

p("",') = ((J"~rexp[-~ ~ (Xi ~ "",' y] (4.5) 

According to the method of maximum likelihood, if we compare the probabil­
ities P("",') of obtaining our set of observations from various parent populations with 
different means "",' but with the same standard deviation (J"' = (J", the probability is 
greatest that the data were derived from a population with "",' = ""'; that is, the most 
likely population from which such a set of data might have come is assumed to be 
the correct one. 

Calculation of the Mean 

The method of maximum likelihood states that the most probable value for "",' is the 
one that gives the maximum value for the probability P("",') of Equation (4.5). Be­
cause this probability is the product of a constant times an exponential to a negative 
argument, maximizing the probability P("",') is equivalent to minimizing the argu­
ment X of the exponential, 

(4.6) 

To find the minimum value of a function X we set the derivative of the func­
tion to 0, 

(4.7) 
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and obtain 

dX = _1. ~ ~(Xi - "",')2 = ~ (Xi - """) = ° 
d"",' 2 d"",' (J" (J"2 

(4.8) 

which, because (J" is a constant, gives 

(4.9) 

Thus, the maximum likelihood method for estimating the mean by maximiz­
ing the probability P("",') of Equation (4.5) shows that the most probable value of 
the mean is just the average x as defined in Equation (1.1). 

Estimated Error in the Mean 

What uncertainty (J" is associated with our determination of the mean "",' in Equation 
(4.9)? We have assumed that all data points Xi were drawn from the same parent dis­
tribution and were thus obtained with an uncertainty characterized by the same stan­
dard deviation (J". Each of these data points contributes to the determination of the 
mean "",' and therefore each data point contributes some uncertainty to the determi­
nation of the final results. A histogram of our data points would follow the Gauss­
ian shape, peaking at the value "",' and exhibiting a width corresponding to the 
standard deviation (J". Clearly we are able to determine the mean to much better than 
± (J", and our determination will improve as we increase the number of measured 
points N and are thus able to improve the agreement between our experimental his­
togram and the smooth Gaussian curve. 

In Chapter 3 we developed the error propagation equation [see Equation 
(3.13)] for finding the contribution of the uncertainties in several terms contributing 
to a single result. Applying this relation to Equation (4.9) to find the variance (J"~ of 
the mean "",', we obtain 

(4.10) 

where the variance (J"r in each measured data point Xi is weighted by the square 
of the effect a"",' / aXi' that that data point has on the result. This approximation 
neglects correlations between the measurements Xi as well as second- and higher­
order terms in the expansion of the variance (J"~, but it should be a reasonable ap­
proximation as long as none of the data points contributes a major portion of the 
final result. 

If the uncertainties of the data points are all equal (J"i = (J", the partial deriva­
tives in Equation (4.10) are simply 

~~; = a~i (~~Xi) = ~ (4.11) 
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and combining Equations (4.10) and (4.11), we obtain 

(4.12) 

for the estimated error in the mean (J' fL" Thus, the standard deviation of our determi­
nation of the mean fL I and, therefore, the precision of our estimate of the quantity fL, 
improves as the square root of the number of measurements. 

The standard deviation (J' of the parent population can be estimated from a 
consideration of the measuring equipment and conditions, or internally from the 
data, according to Equation (1.8): 

(J' = s = ) N ~ 1 ~ (Xi - X)2 (4.13) 

which gives for the uncertainty (J' /L in the determination of the mean 

(J' S 
(J' =--=--

/L vN vN (4.14) 

where (J' /L is referred to as the standard deviation of the mean, or the standard error. 
In principle, the value of (J' obtained from Equation (4.13) should be consistent with 
the estimate made from the experimental equipment. 

Example 4.1 We return to the student's measurement of the dropped ball (Example 
1.2). Let us assume that the time for the ball to fall 2.00 m had been established previ­
ously by careful measurements to be Test = 0.639 s. The student drops the ball 
50 times and concludes, from a consideration of the electronic timer and the experi­
mental arrangement that the uncertainty in each of his individual measurements is 
±0.020 s, consistent with the standard deviation determined from the data. This finite 
precision of the apparatus results in a spread of observations grouped around the es­
tablished time as illustrated by the histogram of the data in Figure 1.2. 

Because the uncertainties in all the data points are equal (s; = s), the student 
calculates from his measurements and Equation (4.9) that his estimate of the 
mean time is f.1 = T = 0.635s, with a standard deviation from Equation (4.13) of 
a = s = 0.020 s. From Equation (4.14), he estimates the uncertainty in his determina­
tion of the mean to be a /L = sfYN = 0.020fVsO or a /L = 0.0028. He quotes his 
experimental result as Texp = (0.635 ± 0.003) s. 

To compare his experimental value Texp to the established value Test' the student 
calculates the number of standard deviations by which the two differ n = IT - T If a , exp est /l. 

= 1A. From the integral of the Gaussian probability equation in Table C.2, we observe 
that we might expect a measurement to be within lA standard deviations in about 
83.8% of repeated experiments, or to exceed 1A standard deviations in about 16.2% of 
the cases. 

It is important to realize that the standard deviation of the data does not de­
crease with repeated measurement; it just becomes better determined. On the other 
hand, the standard deviation of the mean decreases as the square root of the number 
of measurements, indicating the improvement in our ability to estimate the mean of 
the distribution. Graphically we could illustrate this improvement by plotting a 
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histogram of the data and noting that our ability to determine the peak of the distri­
bution improves as the number of measurements increases and the distribution be­
comes smoother. 

A Warning About Statistics 

Equation (4.12) might suggest that the error in the mean of a set of measurements 
Xi can be reduced indefinitely by repeated measurements of Xi. We should be aware 
of the limitations of this equation before assuming that an experimental result can 
be improved to any desired degree of accuracy if we are willing to do enough 
work. There are three main limitations to consider: those of available time and re­
sources, those imposed by systematic errors, and those imposed by nonstatistical 
fluctuations. 

The first of these limitations is a very practical one. It may not be possible to 
take enough repeated measurements to make a significant improvement in the stan­
dard deviation of the result. The student of Example 1.2 may be able to make 50 
measurements of the time, but might not have the patience to make four times as 
many measurements to cut the uncertainty by a factor of 2. Similarly, an experiment 
at a particle accelerator may be assigned 1000 hours of beam time. It may not be 
possible to increase the allocation to 16,000 hours to improve the precision of the 
result by a factor of 4. 

All experiments are subject to systematic errors at some level. Even after 
every possible effort has been made to understand the experimental equipment and 
correct for all known defects and errors of calibration, there comes a point at which 
further knowledge is unobtainable. For instance, any error in the placement of the 
detectors that measure times at the beginning and ending of the ball's fall in Exam­
ple 1.2 will lead to a systematic uncertainty in the time (or in the distance through 
which the ball fell) and thus in the final result of the experiment. 

The phrase "nonstatistical fluctuations" can hide a multitude of sins, or at least 
problems, in our experiments. It is a rare experiment that follows the Gaussian dis­
tribution beyond 3 or 4 standard deviations. More likely, some unexplained data 
points, or outliers, may appear in our data sample, far from the mean. Such points 
may imply the existence of other contaminating points within the central probabil­
ity region, masked by the large body of good points. A thorough study of back­
ground effects and sources of possible contaminating is obviously required, but at 
some level, these effects are bound to limit the accuracy of the experiment. 

What are we to make of those unexpected points that appear in our data plots 
well beyond their level of probability? Some may arise from a chance careless mea­
surement. Did our attention wander at the instant when we should have recorded the 
data point? Did we accidentally interchange two digits in writing down our mea­
surement? Perhaps we can understand and make corrections for some of these ef­
fects. Other anomalies in the data may be caused by equipment malfunction. Did 
our electronic detector respond to a particularly striking clash of metal from the lo­
cal all-powerful rock radio station? Did our trusty computer decide to check e-mail 
rather than respond to an urgent data interrupt? And was the distribution that we 
chose to represent our data the correct one for this experiment? 
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We may be able to make corrections for these problems, once we are aware of 
their existence, but there are always others. At some level, things will happen that 
we cannot understand, and for which we cannot make corrections, and these 
"things" will cause data to appear where statistically no data should exist, and data 
points to vanish that should have been there. The moral is, be aware and do not trust 
statistics in the tails of the distributions. 

Elimination of Data Points 

There will be occasions when we feel justified in eliminating or correcting outlying 
data points. For example, suppose that among the time measurements in Example 
1.2, the student had recorded one as 0.86s. The student would likely conclude that he 
had meant to write 0.68s and either ignore or correct the point. What if one measure­
ment had been recorded as O.72s? Should any action be taken? The point is about 4 
standard deviations away from the mean of all the data points, and referring to Table 
C.2 we see that there is about a 0.06% probability of obtaining in a single measure­
ment a value that is that far from the mean. Thus, in a sample of 50 such measure­
ments we should expect to collect about 50 X 0.00006 = 0.003 such events. 

The established condition for discarding data in such circumstances is known 
as Chauvenefs criterion, which states that we should discard a data point if we ex­
pect less than half an event to be farther from the mean than the suspect point. If our 
sample point satisfies this requirement and, as long as we are convinced that our 
data do indeed follow the Gaussian distribution, we may discard the point with rea­
sonable confidence and recalculate the mean and standard deviation. Thus, for the 
two examples cited in the preceding paragraph, it would be permissible under Chau­
vener's criterion to discard both the 0.86s and the O.72s data points. 

Removing an outlying point has a greater effect on the standard deviation than 
on the mean of a data sample, because the standard deviation depends on the 
squares of the deviations from the mean. Deleting one such point will lead to a 
smaller standard deviation and perhaps another point or two will now become can­
didates for rejection. We should be very cautious about changing data unless we are 
confident that we understand the source of the problem we are seeking to correct, 
and repeated point deletion is generally not recommended. The importance of keep­
ing good records of any changes to the data sample must also be emphasized. 

Weighting the Data-Nonuniform Uncertainties 

In developing the probability P(~') of Equation (4.5) from the individual probabil­
ities Pi(~') of Equation (4.3), we assumed that the data points were all extracted 
from the same parent population. In some circumstances, however, there will be 
data points that have been measured with better or worse precision than others. We 
can express this quantitatively by assuming parent distributions with the same mean 
~ but with different standard deviations (J';. 

If we assign to each data point Xi its own standard deviation (J'; representing the 
precision with which that particular data point was measured, Equation (4.5) for the 
probability P(~') that the observed set of N data points come from parent distribu­
tions with means ~; = ~' and standard deviations (J'; becomes 
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p(~,) = IT ( 1 )exp[-! L (x; - ~')2] 
;= 1 (J'; yI2; 2 (J'; 

(4.15) 

Using the method of maximum likelihood, we must maximize this probabil­
ity, which is equivalent to minimizing the argument in the exponential. Setting the 
first derivativ.e of the argument to 0, we obtain 

-!~ L (x; - ~')2 = L (x; -2~') = 0 
2 d~ (J'; (J'; 

The most probable value is therefore the weighted average of the data points 

, _ L(X/(J'n 
~ - L(1/(J'T) 

(4.16) 

(4.17) 

where each data point x; in the sum is weighted inversely by its own variance (J'T. 

Error in the Weighted Mean 

If the uncertainties of the data points are not equal, we evaluate a ~' / ax; from the ex­
pression of Equation (4.17) for the mean ~': 

a~' _ a L(X/(J'T) _ 1/(J'T 
ax; - ax; L(l/(J'T) - L(1/(J'l) (4.18) 

Substituting this result into Equation (4.10) yields a general formula for the uncer­
tainty of the mean (J': 

1/ (J'T 1 
L [L(1/(J'nF = L(l/(J'T) (4.19) 

Relative Uncertainties 

It may be that the relative values of (J'; are known, but the absolute magnitudes are not. 
For example, if one set of data is acquired with one scale range and another set with a 
different scale range, the (J'; may be equal within each set but differ by a known factor 
between the two sets, as would be the case if (J'; were proportional to the scale range. 
In such a case, the relative values of the (J'; should be included as weighting factors in 
the determination of the mean ~ and its uncertainty, and the absolute magnitudes of 
the (J'; can be estimated from the dispersion of the data points around the mean. 

Let us define weighting factors Wi such that 

kw; = 1/(J'T (4.20) 

where k is an unknown scaling constant and the (J'i are the standard deviations asso­
ciated with each measurement. We assume that the weights Wi are known but that 
the absolute values of the standard deviations (J'i are not. Then, Equation (4.17) can 
be written 

(4.21) 
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and the result depends only on the relative weights and not on the absolute magni­
tudes of the (J'i. 

To find the error in the estimate f.L' of the mean we must calculate a weighted 
average variance of the data: 

(J'2 = LWJXi - f.L')2 X ~ = (LWiXT _ 12) X ~ 
LWi (N - 1) LWi f.L (N - 1) (4.22) 

where the last factor corrects for the fact that the mean f.L 1 was itself determined 
from the data. We may recognize the expression in brackets as-the difference be­
tween the weighted average of the squares of our measurements Xi and the square of 
the weighted average. The variance of the mean can then be determined by substi­
tuting the expression for (J'2 from Equation (4.22) into Equation (4.14): 

(J'2 
(J'2=-

JL N (4.23) 

If they are required, the value of the scaling constant k and of the values of the sep­
arate variances (J'i can be estimated by equating the two expressions for (J' of Equa-
tions (4.14) and (4.19) and replacing 1/(J'T by kwi to give JL 

so 

(J'2 1 1 

N L(l/(J'T) = kLWi 

k= N_l_ 
(J'2 LWi 

(4.24) 

(4.25) 

and therefore 

(4.26) 

Example 4.2. A student performs an experiment to determine the voltage of a stan­
dard cell. The student makes 40 measurements with the apparatus and finds a result 
XI = 1.022 V with a spread SI = 0.01 V in the observations. After looking over her 
data she realizes that she could improve the equipment to decrease the uncertainty by 
a factor of 2.5 (S2 = 0.004 V) so she makes 10 more measurements that yield a result 
X2 = 1.018 V. 

The mean of all these observations is given by Equation (4.17): 

_ 40~~O~;2) + 1~:~~:28) 
fL=X= 40 10 V 

--+--
0.012 0.0042 

4.00(1.022) + 6.25(1.018) 
= V 

4.00 + 6.25 

= 1.0196 V 
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The uncertainty (TIL in the mean is given by Equation (4.19): 

( 
40 10 )-1/2 

(TIL = S = 0.012 + 0.0042 = 0.00099 V 

The result should be quoted as fL = (1.0196 ± 0.0010)V although fL = (1.020 ± 
O.OOI)Vwould also be acceptable. Carrying the fourth place (which is completely un­
defined) after the decimal point just eliminates any possible rounding errors if these 
data should later be merged with data from other experiments. 

The precision of the final result in Example 4.2 is better than that for either 
part of the experiment. The uncertainties in the estimates of the means f.Ll and f.L2 de­
termined from the two sets of data independently are given by Equation (4.14): 

S2 = 0.01 V ~ 0.0016 V 
V40 

S2 = 0.004 V = 0.0013 V 
VW 

A comparison of these values illustrates the fact that taking more measurements 
decreases the resulting uncertainty only as the square root of the number of obser­
vations, which for this case is not so important as decreasing (J'i. 

What if the student did not know the absolute uncertainties in her measure­
ments, but only that the uncertainties had been improved by a factor of 2.5? She 
could obtain the estimate of the mean directly from Equation (4.21) by replacing 
1/(J'T by the weight Wi = 1, and 1/(J'~ by the weight Wi = 2.52, to give 

= 40(1)(1.022) V + 10(2.52)(1.018) V = 10196 V 
f.L 40(1) + 10(2.5)2 . 

To find the error in the mean the student could calculate (J' from her data by Equa­
tion (4.22) and use Equation (4.23) to estimate (J'IL" 

Discarding Data 

Even though the student in Example 4.2 made four times as many observations at 
the lower precision (higher uncertainty), the high-precision contribution is over 1.5 
times as effective as the low-precision data in determining the mean. The student 
should probably consider ignoring the low-precision data entirely and using only 
the high-precision data. Why should we ever throwaway data that are not known to 
be bad? Additionally, because in this case the earlier data are weighted so as to be 
rather unimportant to the result, what is the point in neglecting them and thereby 
wasting all the effort that went into collecting those first 40 data points? 

These are questions that arise again and again in experimental science as one 
works to find the elusive parameters of the parent distribution. The answer lies in 
the fact that experiments tend to be improved over time and often the earliest data­
taking period is best considered a training period for the experimenters and a 
"shakedown" period for the equipment. Why risk contaminating the sample with 
data of uncertain results when they contribute so little to the final result? The rela­
tive standard deviations of the two data sets can serve as a guide. If the spread of the 
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later distribution shows marked improvement over that of the earlier data, then we 
should seriously consider throwing away the earlier data unless we are certain of 
their reliability. There is no hard and fast rule that defines when a group of data 
should be ignored--common sense must be applied. However, we should make an 
effort to overcome the natural bias toward using all data simply to recover our in­
vestment of time and effort. Greater reliability may be gained by using the cleaner 
sample alone. 

4.2 STATISTICAL FLUCTUATIONS 

For some experiments the standard deviations a i can be determined more accu­
rately from a knowledge of the estimated parent distribution than from the data or 
from other experiments. If the observations are known to follow the Gaussian dis­
tribution, the standard deviation a is a free parameter and must be determined ex­
perimentally. If, however, the observations are known to be distributed according 
to the Poisson distribution, the standard deviation is equal to the square root of the 
mean. 

As discussed in Chapter 2, Poisson probability is appropriate for describing 
the distribution of the data points in counting experiments where the observations 
are the numbers of events detected per unit time interval. In such experiments, there 
are fluctuations in the counting rate from observation to observation that result 
solely from the intrinsically random nature of the process and are independent of 
any imprecision in measuring the time interval or of any inexactness in counting the 
number of events occurring in the interval. Because the fluctuations in the observa­
tions result from the statistical nature of the process, they are classified as statisti­
cal fluctuations, and the resulting errors in the final determinations are classified as 
statistical errors. 

In any given time interval there is a finite chance of observing any positive (or 
zero) integral number of events. The probability for observing any specific number 
of counts is given by the Poisson probability function, with mean J.Lt, where the sub­
script t indicates that these are average values for the time interval of length Ilt. 
Thus, if we make N measurements of the number of counts in time intervals of fixed 
length flt, we expect that a histogram of the number of counts Xi recorded in each 
time interval would follow the Poisson distribution for mean J.Lt" 

Mean and Standard Deviation 

For values of the mean J.Lt greater than about ten, the Gaussian distribution closely 
approximates the shape of the Poisson distribution. Therefore, we can use the for­
mula of Equation (4.9) for estimating the mean with the assumption that all data 
points were extracted from the same parent population and thus have the same 
uncertainties: 

(4.27) 

Estimates of Mean and Errors 61 

Here the Xi are the numbers of events detected in the N time intervals flt, and the as­
sumption that the data were all drawn from the same parent population is equivalent 
to assuming that the lengths of the time intervals were the same for all measurements. 

According to Equation (2.19), the variance a 2 for a Poisson distribution is 
equal to the mean J.L: 

(4.28) 

The uncertainty in the mean atl'- is obtained by combining Equations (4.12) and 
(4.28): 

(4.29) 

We usually wish to find the mean number of counts per unit time, which is just 

J.Lt . h at. fI. 
J.L = flt WIt a I'- = flt = -V N flt (4.30) 

As we might expect, the uncertainty in the mean number of counts per unit time a I'­
is inversely proportional to the square roots of both the time interval flt and the 
number of measurements N. 

In some experiments, as in Example 4.2, data may be obtained with varying 
uncertainties. For purely statistical fluctuations, this implies that counts were 
recorded in varying time intervals flti• If we wish to find the mean number of counts 
J.L per unit time from such data, there are two possible ways to proceed. If we have 
the raw data counts (the xJ and we know they are all independent, then we can sim­
ply add all the Xi and divide the sum by the sum of the time intervals: 

LX· 
J.L = Lfl~. and a

2 = J.L 
I 

The more likely situation is that we know only the means J.Lj and corresponding 
standard deviations aj of the means, obtained from the experiments. For example, 
when dealing with published experimental data, we should assume that the errors 
incorporate instrumental as well as statistical uncertainties. With such data, the 
safest procedure is to apply Equations (4.17) and (4.19) to evaluate the weighted 
mean J.L of the individual means J.Li and the standard deviation a I'- of the mean: 

L(J.L/a?) 
~ J ] and 

J.L - L(l/a]) (4.31) 

Example 4.3. The activity of a radioactive source is measured N = 10 times with a 
time intervall1t = 1 min. The data are given in Table 4.1. The average of these data 
points is .x = 15.1 counts per minute. The spread ofthe data points is characterized by 
a = 3.9 counts per minute calculated from the mean according to Equation (4.27). The 
uncertainty in the mean is calculated according to Equation (4.29) to be ax = 1.2 
counts per minute. 
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TABLE 4.1 

Experimental data for the activity of a radioactive source from the 
experiment of Example 4.3 

Interval 
t:.ti (min) 

10 

Tota120 

Counts 
Xi 

19 
11 

24 

16 
11 
15 
22 
9 

9 

15 

Sum = 151 

147 

298 

1 
x = N LXi = 151 counts per 10 minutes 

= 15.1 counts per minute 

(T = vi = 3.9 counts per minute 

(T 

(T x = yIN = 1.2 counts per minute 

(T 10 = V147 counts per 10 minutes 
= 1.2 counts per minute 

X20 = (151 + 147)1(10 + 10) 
= 298/20 = 14.9 counts per minute 

(T20 = 098 counts per 20 minutes 
= 0.9 counts per minute 

Note: The data tabulated are the number of counts Xi detected in each time interval I::!.t
i
. 

If we were to combine the data into one observation x' = ~Xi from one lO-min 
interval, we would obtain the same result. The activity is x' = 151 counts per 10 min­
utes = 15.1 counts per minute as before. The uncertainty in the result is given by the 
standard deviation ofthe single data point (Tx, = Vi5l = 12.3 counts per 10 minutes 
= 1.2 counts per minute. 

Suppose that we made an additional measurement for a lO-min period and ob­
tained x" 2: 147 counts. We could combine x' and x" exactly as before to obtain a total 

xT = x' + x" = (151 + 147)/(10 + 10) = 14.9 counts per minute 

with an uncertainty 

(TXT = 098/20 = 0.87 counts per minute 

which is smaller than (Tx by a factor of 0. Alternatively, we could combine the orig­
inal data points according to Equation (4.17) and calculate the uncertainty in the final 
result aT by combining the uncertainties of the individual data points according to 
Equation (4.19). 

Note that, although we could have simplified matters by recording all the data 
as one experimental point, x = 298 counts per 20 minutes, by so doing, we would 
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lose all independent information about the shape of the distribution that could be 
used as a partial check on the validity of the experiment. 

4.3 PROBABILITY TESTS 

The object of our analysis is to obtain the best estimates, x and s"" of the mean J..L 

and its uncertainty 0'"" and to interpret the probability associated with the uncer­
tainty as a measure of our success in determining the parent parameters. Regard­
less of the method used to make the measurements and analyze the data, we must 
always estimate the uncertainty in our results to indicate numerically our confi­
dence in them. 

Generally, we relate the uncertainty to a Gaussian probability. We have noted 
that approximately 68% of the measurements in a Gaussian distribution fall within­
± 1 standard deviation of the mean J..L. Thus, when we find the average of a large 
number of individual measurements, we expect the distribution of means to be 
Gaussian, centered on x = J..L with width s = 0', so that approximately 68% of our 
measurements of x would fall within the range (x - s) < x < (x + s). Similarly, if 
we were to repeat the entire experiment many times, we should expect our individ­
ual determinations of x to form a Gaussian distribution about the mean J..L, with 
width s'" = stYN = O'tYN. Again, we should expect that approximately 68% of 
our determinations of x should fall within the range (J..L - s",) < x < (J..L + s",). If we 
are convinced that we have made careful and unbiased measurements, we make a 
slight logical leap to state that there is approximately 68% probability that the true 
value of the mean J..L lies in the range (x - s",) < J..L < (x + s",) or that the specified 
range is the 68% confidence interval. 

Rather than state confidence intervals in terms of 1 standard deviation, we 
may prefer to state a range that refers to a specific probability level. For example, 
we may wish to state that our result lies between two values, Xl and X2 with a 90% 
level of confidence, which would correspond to Xl = X - 1.64 s'" and X2 = X + 1.64 
Sw Thus, in Example 4.1, the student may report 90o/~probability that the mean time 
is within the interval 0.635 ± 0.64 X 0.0028) s, or T = (0.635 ± 0.005) s at a 90% 
confidence level. In science, it is customary to report 1 standard deviation uncer­
tainties unless we state otherwise. In other fields, for example political polling, it is 
customary to report a 95% confidence level, corresponding to approximately 2 stan­
dard deviations. American polls are generally accompanied by a statement like "Poll 
of 1000 adults; margin of error plus or minus 3 percentage points." Canadian media 
would report "Poll results are likely to be accurate within 3 percentage points 19 
times out of 20." If you assume a binomial distribution, you should realize that both 
statements have almost the same content. 

Student's t Distribution 

We should be aware that Gaussian probability may not apply to our particular data 
set, and even an experimental distribution that nominally follows Gaussian statistics 
is apt to deviate in the tails. When the data set is small, there is another considera­
tion. Not only the mean, but also our estimate s'" of the standard error 0' JL may be 
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poorly determined. The probabilities that we calculate from the Gaussian distribu­
tion take no account of the latter problem. 

In such cases, a better estimate of the probability can be obtained from Stu­
dent's t ~istribution, 1 which describes t?e distribution of the parameter t = Ix - xl/s

fL
, 

where t IS the number of standard deviations of the sample distribution S by which 
x differs from x. fL 

(t v) = _1_ r[(v + 1)/2] ( ~)-(V+J)/2 
PI , vfv;) f(v/2) 1 + v 

where the gamma function fen) is equivalent to the factorial function n! extended 
to nonintegral arguments. (See Equation 11.7). 

Unlike the Gaussian distribution, Student's t distribution depends upon the 
number of degrees of freedom v. If x represents the mean of N numbers and x is not 
derived from the data, then v = N - 1. If both x and x are means, S must be the joint 
standard deviation of x and x, and v must be the total number of d:grees of freedom. 
In the limit of large v, Student's t and Gaussian probability distributions agree. As 
with the Gaussian distribution, we are usually interested in integrated values that re­
late to the probability of obtaining a result within a specific range ±t standard devi­
ations. For example, we might wish to report our estimate of the probability that the 
true value of fL lies within the range (x - tSfL) < fL < (x + ts ) with t = Ix - fLlls . 

Table C.8 lists probabilities obtained by integrating the Student's t distributi~n 
from x = x - tSfL to x = X + tSfL for specified values of t and the number of degrees 
of freedom v. The corresponding values for Gaussian probability (which are inde­
pendent of v) are listed in the last column. 

Consider again Example 4.1 in which the student made 50 time measurements 
and found that the mean of his measurements deviated by 1.4sfL from the established 
value. From Gaussian probability we observed that approximately 84% of experi­
ments should yield a result that is within 1.4 standard deviations of the expected re­
sult. From Student's t distribution (Table C.8.), we observe that the probability is 
lower by about 0.6%. However, suppose the student made only six measurements 
using a more precise measuring system and again obtained a result that differed 
from the mean by t = 1.4sfL (see Exercise 4.12). Small numbers of measurements 
are common in undergraduate laboratory experiments, where time may be short and 
the measurements may be tedious. What probability is implied for 5 degrees of free­
dom by a difference of t = l.4sfL? The Gaussian probability is unchanged at ~84%; 
Student's t predicts -78%. Thus, for experiments with only a few degrees of free­
dom, Gaussian probability overestimates the confidence level associated with a 
given range t. Another way of looking at this is to note that, for the same confi­
dence level, Student's t probability requires a larger uncertainty estimate than does 
Gaussian probability. 

Generally, a result is considered to be significant only at confidence levels of 
95% or better. In Gaussian probability, this corresponds to a range of approximately 
±20'. We can observe from Table C.8 that for a sample of only three data points 

I"Review of Particle Physics," The European Physical Journal C, vol. 15, p. 193 (2000) 
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(v = 2), the Student's t probability for 95% confidence corresponds to a range of 
more than ±40'. 

4.4 CHI-SQUARE TESTS OF A 
DISTRIBUTION 

Once we have calculated the mean and standard deviation from our data, we may 
be in a position to say even more about the parent population. If we can be fairly 
confident of the type of parent distribution that describes the spread of the data 
points (e.g., Gaussian or Poisson distribution), then we can describe the parent dis­
tribution in detail and predict the outcome of future experiments from a statistical 
point of view. 

Because we are concerned with the behavior of the probability density function' 
p(x;) as a function of the observed values of Xi' a complete discussion will be post­
poned until Chapter 11 following the development of procedures for comparing data 
with complex functions. Let us for now use the results of Chapter 11 without deriva­
tion. The test that we shall describe here is the X2 (chi-square) test for goodness of fit. 

Probability Distribution 

If N measurements Xi are made of the quantity x, we can truncate the data to a com­
mon least count and group the observations into frequencies of identical observations 
to make a histogram. Let us assume that} runs from 1 to n so there are n possible dif­
ferent values of Xj' and let us call the frequency of observations, or number of counts 
in each histogram bin, hex) for each different measured value of Xj. If the probability 
for observing the value Xj in any random measurement is denoted by P(x), then the 
expected number of such observations is Y(Xj) = NP(x), where N is the total number 
of measurements. Figures 4.1 and 4.2 show the same six-bin histogram, drawn from 
a Gaussian parent distribution with mean fL = 5.0 and standard deviation 0' = 1, cor­
responding to 100 total measurements. The parent distribution, y(x) = NP(x), is il­
lustrated by the solid Gaussian curve on each histogram. 

For each measured value Xj' there is a standard deviation O'/h) associated with 
the uncertainty in the observed frequency hex). This is not the same as the uncer­
tainty O'i associated with the spread of the individual measurements Xi about their 
mean fL, but rather describes the spread of the measurements of each of the fre­
quencies hex) about its mean fLj. If we were to repeat the experiment many times to 
determine the distribution of frequency measurements at each value of xj ' we should 
find each parent distribution to be Poisson with mean fLj = y(x) and variance O'J(y) 
= y(x). Thus, for each value of Xj' there is a distribution curve, P/Yk), that de­
scribes the probability of obtaining the value of the frequency hk(x) in the kth trial 
experiment when the expected value is y(Xj)' It is the spread of these measurements 
for each value of} that is characterized by O'j(h). These distributions are illustrated 
in Figures 4.1 and 4.2 as dotted Poisson curves at each value of Xj. In Figure 4.1 the 
Poisson curves are centered at the observed frequencies hex) with standard devia­
tions O'/h) = Yh(x). In principle, we should center the Poisson curves at the 



66 Data Reduction and Error Analysis for the Physical Sciences 

50r---'---~----r---'---~~-''---.----r---'----' 

40 

30 

20 

10 

2.0 4.0 6.0 8.0 10.0 
x 

FIGURE 4.1 
Histogram, drawn from a Gaussian distribution mean fL = 5.0 and standard deviation (J' = 1, 
corresponding to 100 total measurements. The parent distribution y(x) = NP(x) is illustrated by the 
large Gaussian curve. The smaller dotted curves represent the Poisson distribution of events in each 
bin, based on the sample data. 
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FIGURE 4.2 
The same histogram as shown in Figure 4.1 with dotted curves representing the Poisson distribution 
of events in each bin, based on the parent distribution. 

Estimates of Mean and Errors 67 

frequencies J.Lj = y(x) with standard deviation (j/h) = ~ of the parent popula­
tion as illustrated in Figure 4.2. However, in an actual experiment, we generally 
would not know these parameters. 

Definition of X2 

With the preceding definitions for n, N, xi hex), P(x), and (j/h), the definition of X2 
from Chapter 11 is 

(4.32) 

In most experiments, however, we do not know the values of (j/h) because we make 
only one set of measurements f(x). Fortunately, these uncertainties can be estimated 
from the data directly without measuring them explicitly. 

If we consider the data of Figure 4.2, we observe that for each value of Xj' we 
have extracted a proportionate random sample of the parent population for that 
value. The fluctuations in the observed frequencies hex) come from the statistical 
probabilities of making random selections of finite numbers of items and are dis­
tributed according to the Poisson distribution with y(x) as mean. Although the dis­
tribution of frequencies y(Xj) in Figure 4.2 is Gaussian, the probability functions for 
the spreads of the measurements of each frequency are Poisson distributions. 

For the Poisson distribution, the variance (jj(h)2 is equal to the mean y(Xj) 
of the distribution, and thus we can estimate (j/h) from the data to be (jj(h) = 
V NP(x) = vfh(;). Equation (4.32) simplifies to 

2 n [h(x) - NP(x)F n [h(x) - NP(x)F 
X == 2: = 2: (4.33) 

j=! NP(x) j=! h(x) 

Test ofX2 

As defined in Equations (4.32) and (4.33), X2 is a statistic that characterizes the dis­
persion of the observed frequencies from the expected frequencies. If the observed 
frequencies were to agree exactly with the predicted frequencies h(xj) = NP(x), 
then we should find X2 = O. From our understanding of probability, we realize that 
this is not a very likely outcome of an experiment. The numerator of Equation 
(4.32) is a measure of the spread of the observations; the denominator is a measure 
of the expected spread. We might imagine that for good agreement, the average 
spread of the data would correspond to the expected spread, and thus we should get 
a contribution of about one from each frequency, or X2 = n for the entire distribu­
tion. This is almost correct. In fact, the true expectation value for X2 is 

(X2) = V = n - nc (4.34) 

where v is the number of degrees of freedom and is equal to the number n of sam­
ple frequencies minus the number nc of constraints or parameters that have been cal­
culated from the data to describe the probability function NP(x). For our example, 
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even if NP(xj) is chosen completely independently of the distribution h (Xj) , there is 
still the normalizing factor N corresponding to the total number of events in the dis­
tribution, so that the expectation value of X2 must at best be (X2) = n - 1. 

In order to estimate the probability that our calculated values of X2 are consis­
tent with our expected distribution of the data, we must know how X2 is distributed. 
If our value of X2 corresponds to a reasonable high probability, then we can have 
confidence in our assumed distribution. 

It is convenient to define the reduced chi-square as X~ == X2/V, with expecta­
tion value (X~) = 1. Values of X~ much larger than 1 result from large deviations 
from the assumed distribution and may indicate poor measurements, incorrect as­
signment of uncertainties, or an incorrect choice of probability function. Very small 
values of X~ are equally unacceptable and may imply some misunderstanding of the 
experiment. Rather than consider the probability of obtaining any particular value 
of X2 or X~ (which is infinitesimally small), we shall use an integral test to determine 
the probability of observing a value of X~ equal to or greater than the one we calcu­
lated. This is similar to our consideration of the probability that a measurement of a 
variable deviates by more than a certain amount from the mean. 

Table C.4 gives the probability that a random sample of data points drawn 
from the assumed probability distribution would yield a value of X2 as large as or 
larger than the observed value in a given experiment with v degrees of freedom. 

If the probability is reasonably close to 1, then the assumed distribution de­
scribes the spread of the data points well. If the probability is small, either the as­
sumed distribution is not a good estimate of the parent distribution or the data 
sample is not representative of the parent distribution. There is no yes-or-no answer 
to the test; in fact, we should expect to find a probability of about 0.5 with X~ = 1, 
because statistically the observed values of X2 should exceed the norm half the time. 
But in most cases, the probability is either reasonably large or unreasonably small, 
and the test is fairly conclusive. A further discussion of the statistical significance of 
the X2 probability function will be given in Chapter 11. 

Let us consider again the data of Example 1.2 (and 4.1), which are summarized 
as a histogram in Figure 1.2 with the frequencies listed in Table 4.2. To test the agree­
ment between the data and the predicted distribution, we have calculated the function 
y(x) = NP(x) at each value of Xj from the mean and standard deviation of the parent 
distribution (column 3 of Table 4.2), and from the mean and standard deviation of the 
data, that is, from the sample distribution (column 6). The uncertainties erj calculated 
as the square roots of the values predicted by the parent distribution and by the sam­
ple distribution are listed in columns 4 and 7 respectively. The individual contribu­
tions (before squaring) to the values of X2, [h(x) - NP(x)]/erj' are listed in columns 
5 and 8. The calculated values of X2 from the comparison between the data and each 
distribution are the sums of the squares of these last quantities. 

For the comparison of the 11 data points with the parent distribution we have 
one constraint, the normalization constant N determined from the data, and there­
fore the expectation value of X2 is v = 11 - 1 = 10. We obtained X2 = 13.03 and 
thus, X~ = 1.30. Interpolating in Table C.4, we observe that the corresponding prob­
ability of obtaining a value X~ ;:::: 1.30 with 10 degrees of freedom is ~23%. For a 
similar comparison with an estimate of the parent distribution based on the mean 
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and standard deviation of the data, we have two additional constraints, the mean and 
standard deviation. Thus, for this comparison, the expectation value of X2 is v = 
11 - 3 = 8. We obtained X2 = 7.85 and, thus, X~ = 0.98. The corresponding prob­
ability for obtaining a value X~ ;:::: 0.98 with 8 degrees of freedom is ~45%. 

Generalizations of the X2 Test 

In the preceding example we knew the parent distributions and were therefore able 
to determine the uncertainties erih) from the predicted probability. In most cases, 
where the actual parameters of the probability function are being determined in the 
calculation, we must use an estimate of the parent population based on these para­
meters and must estimate the uncertainties in the Y(Xj) from the data themselves. To 
do this we must replace the uncertainties in columns 4 and 7 of Table 4.2 with the 
square roots of the observed frequencies in column 2. ' 

Furthermore, although our example was clearly based on a simple probability 
function, the X2 test is often generalized to compare data obtained in any type of ex­
periment to the prediction of a model. The uncertainties in the measurements may 
be instrumental or statistical or a combination of both, and the uncertainty erih)2 in 
the denominator of Equation (4.32) may represent a Gaussian error distribution 
rather than the Poisson distribution. In fact, several of the histogram bins in our ex­
ample contained small numbers of counts, and thus, the statistical application of the 
test was not strictly correct, because we assume Gaussian statistics in the X2 calcu­
lation. However, the test still provides us with a reproducible method of evaluating 

TABLE 4.2 

X2 analysis of the data of Example 4.1 

Observed 
frequency From From 

hj parent distribution sample distribution 

Time hj Yj ITj 
Yj -hj 

(Tj 
Yj ITj 

Yj-hj 

(Tj 

0.595 2 0.89 0.94 -1.18 1.35 1.16 0.56 
0.605 2 2.35 1.53 0.23 3.24 1.80 -0.69 
0.615 11 4.85 2.20 -2.79 6.05 2.46 2.01 
0.625 6 7.81 2.79 0.65 8.80 2.97 -0.94 
0.635 12 9.78 3.13 -0.71 9.97 3.16 0.64 
0.645 8 9.53 3.09 0.50 8.80 2.97 -0.27 
0.655 4 7.24 2.69 1.20 6.05 2.46 -0.83 
0.665 3 4.28 2.07 0.62 3.24 1.80 -0.13 
0.675 1.97 1.40 0.69 1.35 1.16 -0.30 
0.685 1 0.71 0.84 -0.35 0.44 0.66 0.85 
0.695 0 0.20 0.44 0.44 0.11 0.33 -0.33 

X~ = 13.03/10 = 1.30 X~ = 7.85/8 = 0.98 

Note: Parameters of the parent Gaussian distribution are fL = 0.639 and (J = 0.020 s; parameters estimated from the 
sample distribution are fL = 0.635 sand (J = 0.020 s. 
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the quality of our data, and if we are concerned with statistical accuracy, we can 
merge the low-count bins to satisfy the Gaussian statistics requirement. 

Another application of the chi-squared test is in comparing two sets of data to 
attempt to decide whether or not they were drawn from the same parent population. 
Suppose that we have measured two distributions, g(x) and h(xj), and wish to de­
termine the probability that the two sets were not drawn from the same parent prob­
ability distribution P(x). Clearly, we could apply the X2 test separately to the two 
sets of data and determine separately X2 probabilities that each set was not associ­
ated with the supposed parent population P(Xj). However, we can also make a direct 
test, independent of the parent population, by writing 

n [g(x) - h(x)F 

X2 = j~ a2(g) + a 2(h) 
(4.35) 

The denominator a 2(g) + a 2(h) is just the variance of the difference g(Xj) - h(x). 
As in the previous examples, the expectation value of X2 depends on the relation be­
tween the two parts of the numerator, g(x) and h(x). If the two parts, corresponding 
to the distributions of the two data sets, were obtained completely independently of 
one another, then the number of degrees of freedom equals nand (X2) = n. If one of 
the distributions g(x) or h(x) has been normalized to the other, then the number of 
degrees of freedom is reduced by 1 and (X2) = n - 1. Again, we interpret the X2 
probability in a negative sense. If the value of X2/v is large, and therefore the prob­
ability given in Table C.4 is low, we may conclude that the two sets of data were 
drawn from different distributions. However, for a low value of X2 and therefore 
high probability, we cannot draw the opposite conclusion that the two data sets g(Xj) 
and h(x) were drawn from the same distribution. There is always the possibility that 
there are indeed two different but closely similar distributions and that our data are 
not sufficiently sensitive to detect the difference between the two. 

Constraints and Degrees of Freedom 

Equation (4.34) defines the number of degrees of freedom, v, and <X2>, the expec­
tation value of X2. To clarify the relation between constraints and degrees of free­
dom in a X2 test, consider a data set that is expected to show a linear relation 
between the measured values Xj and hj' that is, 

Yj=A + BXj 

Clearly, two measurements of Y at two different values of x are required just to 
define the two parameters, A and B, of the straight line so there are two constraints 
(nc = 2) on the system and at least three measurements (n = 3) must be made be­
fore a test can be applied. Under these circumstances, if we assume that points j = 1 
andj = 2 are used to calculate A and B, Equation (4.32) becomes 

X2 = (h3 - Y3)2j aHh) 

and we should expect to find 

(X2) = n - nc = 3 - 2 = 1 
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Similarly, if we measure n = 4 points, there will be two points available for the 
X2 test or 2 degrees of freedom. Of course, in general, we would not use just two 
points to calculate the two parameters. Rather, we should perform a least-squares 
fit in which all measurements are treated equally (or weighted according to their 
uncertainties). However, the same principle holds: we impose two constraints on 
our calculation to define the two parameters of a straight line, leaving 2 degrees of 
freedom. 

SUMMARY 

Weighted mean: 

_ 2:(x/a 2) 1 x= I I _ -"'x-
.. 2:(1/aT) ",=" N £..J I 

Variance of mean: 

1 a 2 

a
2 

= --fL 2:(1/aJ) ",=" N 

Instrumental uncertainties: Fluctuations in measurements due to finite precision of 
measuring instruments: 

Statistical fluctuations: Fluctuations in observations resulting from statistical prob­
ability of taking random samples of finite numbers of items: 

a 2 = f.L = X 

X2 test: Comparison of observed frequency distribution h(x) of possible observa­
tions Xj versus predicted distribution NP(x), where N is the number of data points 
and P(x) is the theoretical probability distribution: 

n [h(x) - NP(x)F 
X2:=; ~ 2 

j=! aj(h) 

Degrees of freedom v: Number of data points minus the number of parameters to be 
determined from the data points. 
Reduced X2: X~ = X2/v. For X2 tests, X~ should be approximately equal to 1. 
Graphs and tables ofx2: Table C.4 gives the probability that a random sample of 
data when compared to its parent distribution would yield values of X~ as large as 
or larger than the observed value. 

EXERCISES 

4.1. Calculate the standard deviation and the error in the mean value of x from the data of 
Exercise 1.4. Are the values reasonable? (See Exercise 2.4.) 

4.2. Repeat Exercise 4.1 for the data of Exercise 1.5. 
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4.3. 

4.4. 
4.5. 

Read the data of Example 204 from Figures 2.3 and 204. Recalculate the curves and 
calculate X2 and X~ for the agreement between the curves and the histograms. Use only 
bins with five or more counts. 
Work out the intermediate steps in Equation (4.19). 
A student measures the period of a pendulum and obtains the following values. 

Trial 2 3 4 5 6 7 8 

Period 1.35 1.34 1.32 1.36 1.33 1.34 1.37 1.35 

(a) Find the mean and standard deviation of the measurements and the standard devi­
ation of the mean. 

(b) Estimate the probability that another single measurement will fall within 0.02 s of 
the mean. 

4.6. (a) Find the mean and the standard deviation of the mean of the following numbers 
under the assumption that they were all drawn from the same parent population. 

(b) In fact, data points 1 through 20 were measured with uniform uncertainty 0', 

whereas data points 21 through 30 were measured more carefully so that the uni­
form uncertainty was only 0'/2. Find the mean and standard deviation of the mean 
under these conditions. 

Trial 

2 
3 
4 
5 
6 
7 
8 
9 

10 

X«(J') 

2.40 
2.45 
2.47 
3.13 
2.92 
2.85 
2.05 
2.52 
2.94 
1.89 

Trial 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

X«(J') 

1.94 
1.55 
2.12 
2.17 
3.06 
1.97 
2.23 
3.20 
2.24 
2.60 

Trial 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

x«(J'/2) 

2.59 
2.65 
2.55 
2.07 
2.61 
2.61 
2.54 
2.76 
2.37 
2.57 

4.7. A counter is set to count gamma rays from a radioactive source. The total number of 
counts, including background, recorded in each I-min interval is listed in the accom­
panying table. An independent measurement of the background in a 5-min interval 
gave 58 counts. From these data find: 
(a) The mean background in a I-min interval and its uncertainty. 
(b) The corrected counting rate from the source alone and its uncertainty. 

Trial 2 3 4 5 6 7 8 9 10 

Total counts 125 130 105 126 128 119 137 131 115 116 

4.8. The Particle Data Tables list the following eight experimental measurements of the 
mean lifetime of the Ks meson with their uncertainties, in units of 10- 10 s. Find the 
weighted mean of the data and the uncertainty in the mean. 

0.8971 ±0.0021 0.8941 ±0.0014 0.8929±0.0016 0.8920±0.0044 0.881 ±0.009 
0.8924±0.0032 0.8937±0.0048 0.8958±0.0045 

4.9. Eleven students in an undergraduate laboratory combined their measurements of the 
mean lifetime of an excited state. Their individual measurements are tabulated. 
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Student 1 2 3 4 5 6 7 8 9 10 11 

T(S) 34.3 32.2 35.4 33.5 34.7 33.5 27.9 32.0 32.4 31.0 19.8 
(J'T 1.6 1.2 1.5 1.4 1.6 1.5 1.9 1.2 1.4 1.8 1.3 

Find the maximum likelihood estimate of the mean and its uncertainty. 
4.10. Assume that you have a box of resistors that have a Gaussian distribution of resis­

tances with mean value IL = 100 n and standard deviation 0' = 20 n (i.e., 20% resis­
tors). Suppose that you wish to form a subgroup of resistors with IL = 100 nand 
standard deviation of 5 n (i.e., 5% resistors) by selecting all resistors with resistance 
between the two limits rl = IL - a and r2 = IL + a. 
(a) Find the value of a. 
(b) What fraction of the resistors should satisfy the condition? 
(c) Find the standard deviation of the remaining sample. 

4.11. Suppose that 1000 adults responded to a poll about a current bill in Congress, and thai 
622 approved, while 378 disapproved. 
(a) Assume that there was 50% a priori probability of obtaining either answer and cal­

culate the standard deviation of the result. Find the "margin of error," that is, the 
uncertainty that corresponds to a 95% confidence interval. (Use Gaussian proba­
bility. Justify this.) 

(b) Assume the probabilities implied by the observed numbers of votes in each cate­
gory and repeat the calculation. Note the insensitivity of the standard deviation of 
the binomial distribution to variations in probability near 50%. 

(c) Refer to the two statements about polling reports in Section 4.3 and show that they 
are approximately equivalent. 

4.12. Six measurements of the length of a wooden block yielded the following values: 20.3, 
2004, 19.8,2004, 19.9,20.7. 
(a) From these numbers, calculate the mean, standard deviation, and standard error. 

Assume that the actual mean length has been established by previous measure­
ments to be 20.00 em and calculate t, the number of standard errors by which the 
calculated mean differs from the established value. 

Refer to the tables in Appendix C to find the limits on the 95% confidence 
level for both Gaussian and Student's t probabilities. 

(b) The experiment was repeated to obtain a total of 25 data sets of six measurements 
each from which the following 25 values of the mean were calculated. 

20.25 20.10 20.02 20.12 20.00 19.73 19.73 20.13 20.22 20.22 20.27 19.83 20.00 
19.77 20.10 20.28 19.97 19.88 20.32 19.98 20.05 20.23 19.92 19.97 19.77 

Find the mean of these "means" and calculate their standard deviation. Compare 
this standard deviation to the standard error calculated in (a). 

4.13. The following data represent the frequency distribution of 200 variables drawn from a 
parent Gaussian population with mean IL = 26.00 and standard deviation 0' = 5.00. 
The bins are two units wide and the lower edge of the first bin is at x = 14. 

4 8 11 20 26 31 29 22 26 13 5 2 3 
(a) Plot a histogram of these data. 
(b) From the mean IL and standard deviation 0', calculate the Gaussian function that 

represents the parent distribution, normalized to the area of the histogram. Your 
first point should be calculated at x = 15, the midpoint of the first bin. 

(c) Calculate X2 to test the agreement between the data and the theoretical curve. 
(d) What is the expectation value of X2? 
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(e) Refer to Table CA to find the X2 probability of the fit, that is, the probability of 
drawing a random sample from the parent population that will yield a value of X2 
as large as or larger than your calculated value. 

4.14. Plot a histogram in ten-point bins of the course grades listed in Exercise 1.5. Plot a 
Gaussian curve based on the mean and standard deviation of the data, normalized to 
the area of the histogram. Apply the X2 test and check the associated probability from 
Table CA. 

5.1 INTRODUCTION 

CHAPTER 

5 
MONTE CARLO 

TECHNIQUES 

W e saw in Chapter 4 the importance of probability distributions in the analysis 
of data samples, and observed that we are usually interested in the integrals or 

sums of such distributions over specified ranges. Although we have considered only 
experiments that are described by a single distribution, most experiments involve a 
combination of many different probability distributions. Consider, for example, a 
simple scattering experiment to measure the angular distribution of particles scat­
tered from protons in a fixed target. The magnitude and direction of the momentum 
vector of the incident particles, the probability that a particle will collide with a pro­
ton in the target, and the resulting momentum vectors of the scattered particles can 
all be described in terms of probability distributions. The final experimental result 
can be treated in terms of a multiple integration over all these distributions. 

Analytical evaluation of such an integral is rarely possible, so numerical 
methods must be used. However, even the simplest first-order numerical integration 
can become very tedious for a multidimensional integral. A one-dimensional inte­
gral of a function can be determined efficiently by evaluating the function N times 
on a regular grid, where the number of samples N depends on the structure of the 
function and the required accuracy. (See Appendix A.3.) A two-dimensional integral 
requires sampling in two dimensions and, for accuracy comparable to that of the 
corresponding one-dimensional problem, requires something like N 2 samples. A 
three-dimensional integral requires something like N 3 samples. For integrals with 
many dimensions, the number of grid points at which the function must be calcu­
lated becomes excessively large. 

75 
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Before we continue with methods of extracting parameters from data, let us 
look at the Monte Carlo method, a way of evaluating these multiple integrals that 
depends on random sampling from probability density distributions, rather than 
regular grid-based sampling techniques. The Monte Carlo method provides the ex­
perimental scientist with one of the most powerful tools available for planning ex­
periments and analyzing data. Basically, Monte Carlo is a method of calculating 
multiple integrals by random sampling. Practically, it provides a method of simu­
lating experiments and creating models of experimental data. With a Monte Carlo 
calculation, we can test the statistical significance of data with relatively simple cal­
culations that require neither a deep theoretical understanding of statistical analysis 
nor sophisticated programming techniques. 

The name Monte Carlo comes from the city on the Mediterranean with its fa­
mous casino, and a Monte Carlo calculation implies a statistical method of studying 
problems based on the use of random numbers, similar to those generated in the 
casino games of chance. One might reasonably ask whether the study of science can 
be aided by such associations, but in fact, with Monte Carlo techniques, very com­
plicated scientific and mathematical problems can be solved with considerable ease 
and precision. 

Example 5.1. Suppose that we wish to find the area of a circle of radius Yc but have 
forgotten the equation. We might inscribe the circle within a square of known area As 
and cover the surface of the square uniformly with small markers, say grains of rice. 
We find the ratio of the number of grains that lie within the circle to those that cover 
the square, and determine the area of the circle Ac from the relation 

(5.1) 

where Nc and Ns are the numbers of grains of rice within the boundaries of the circle 
and of the square, respectively. 

What would be the accuracy of this determination; that is, how close should 
we expect our answer to agree with the true value for the area of a circle? Clearly it 
would depend on the number and size of the rice grains relative to the size of the 
square, and on the uniformity of both the grains and their distribution over the 
square. What if we decided that instead of attempting to cover the square uniformly, 
we would be content with a random sampling obtained by tossing the rice grains 
from a distance so that they landed randomly on the square, with every location 
equally probable? Then we would obtain an interesting result: Our problem would 
reduce to a simple binomial calculation as long as we did not overpopulate the 
square but kept the density of rice grains low so that position of any grain on the 
square was not influenced by the presence of other grains. We sho~lld find that, for 
a fixed number of grains Ns thrown onto the square, the uncertainty IT in the mea­
surement of the circular area would be given by the standard deviation for the bino­
mial distribution with probability p = AclAs, 

(5.2) 
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Thus, if we were to increase the number of rice grains Nc by a factor of 4, the relative 
error in our determination of the area of the circle would decrease by a factor of 2. 

Replacing the tossed rice grains by a set of computer generated random num­
bers is an obvious improvement. Let us inscribe our circle of unit radius in a square 
of side length 2, and generate N = 100 pairs of random numbers between - 1 and 
+ 1 to determine the area. Then the probability of a "hit" is just the ratio of the area 
of the circle to the area of a square, or p = 1T/4, so in 100 tries, the mean number of 
hits will be I.L = lOOp = 78.5, and the standard deviation, from Equation (5.2), will 
be IT = YNp(l - p = YlOO(1T/4)(1 - 1T/4) = 4.1. For our measurements of the 
area of the circle with 100 tries we should expect to obtain from Equation (5.1) 
Ac = As X NJNs = (78.5 ± 4.1) X 22/100 = 3.14 ± 0.16. 

Figure 5.1 shows a typical distribution of hits from one "toss" of 100 pairs of 
random numbers. In this example there were 73 hits, so we should estimate the area. 
and its uncertainty from Equations (5.1) and (5.2) to be A = 2.92 ± 0.18. To deter­
mine the uncertainty, we assumed that we did not know the a priori probability 
p = 1T/4 and, therefore, we used our experimental estimate p = 73/100. 

Figure 5.2 shows a histogram of the circle area estimates obtained in 100 in­
dependent Monte Carlo runs, each with 100 pairs of random numbers (or a total of 
10,000 "tosses"). The Gaussian curve was calculated from the mean, A = 3.127, 
and standard deviation, IT = 0.156, of the 100 estimated areas. 

Obviously, the area determination problem of Example 5.1 is much too sim­
ple to require a Monte Carlo calculation. However, for problems involving integra­
tions of many variables and for those with complicated integration limits, the Monte 
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FIGURES.1 
Estimation of the area of a circle by the Monte Carlo method. The plot illustrates a typical distribution of 
hits from one "toss" of 100 pairs ofrandom numbers unifonnly distributed between -1.00 and + 1.00. 
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FIGURE 5.2 
Histogram of the circle area estimates obtained in 100 independent Monte Carlo runs, each with 100 
pairs of random numbers. The Gaussian curve was calculated from the mean A = 3.127 and standard 
deviation IT = 0.156 of the 100 estimated areas. 

Carlo technique is invaluable, with its straightforward sampling and its relatively 
simple determination of the uncertainties. 

5.2 RANDOM NUMBERS 

A successful Monte Carlo calculation requires a reliable set of random numbers, but 
truly random numbers for use in calculations are hard to obtain. One might think of 
a scheme based upon measuring the times between cosmic ray hits in a detector, or 
on some physical process such as the generation of noise in an electronic circuit. 
Such numbers would be random in the sense that it would be impossible to predict 
the value of the next number from previous numbers but they are hardly convenient 
to use in extended calculations, and some might not have the necessary uniformity 
required for a Monte Carlo calculation. 

In fact, it is generally preferable to use pseudorandom numbers, numbers gen­
erated by a computer algorithm designed to produce a sequence of apparently un­
correlated numbers that are uniformly distributed over a predefined range. In 
addition to the convenience of being able to generate these numbers within the 
Monte Carlo program itself, pseudorandom numbers have another important ad­
vantage over truly random numbers for Monte Carlo calculations. A Monte Carlo 
program may use a great many random numbers, and the path of the calculation 
through the program will depend on the numbers chosen in each run. With truly ran­
dom numbers, every run of a Monte Carlo calculation would follow a different path 
and produce different results. Such a program would be very difficult to debug. 
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With pseudorandom numbers, we can repeat a calculation with the same sequence 
of numbers, and search for any particular problems that may be hidden in the code. 

There are other advantages too. If we are studying the sensitivity of a calcula­
tion to variations in a selected parameter, we can reduce the variance of the differ­
ence between results calculated with two trial values of the parameter by using the 
same random number sequence for those parts of the calculation that are indepen­
dent of the parameter in question. Finally, a pseudorandom number generator can be 
written to be portable; that is, the sequence of numbers produced by the algorithm 
is independent of computer hardware and language, so that a given program will 
produce the same results when run on different computers. In view of these advan­
tages and the fact that we rarely, if ever, encounter situations where truly random 
numbers are required, we shall henceforth use the term random numbers to denote 
pseudorandom numbers. 

In general, our random number generator must satisfy the following basic 
criteria: 

1. The distribution of the numbers should be uniform within a specified range and 
should satisfy statistical tests for randomness, such as lack of predictability and 
of correlations among neighboring numbers. 

2. The calculation should produce a large number of unique numbers before re­
peating the cycle. 

3. The calculation should be very fast. 

A simple multiplication method is often used to generate random numbers, or 
uniform deviates, as they are often called. An integer starting value or seed ro and 
two integer constants are chosen. Successive random numbers are derived from the 
recursion relation 

ri+l = (a X rJ mod m (5.3) 

where the mod operation corresponds to dividing the product in parentheses by the 
integer m to obtain the remainder. With appropriate choices of constants a and m, 
we can obtain a finite sequence of numbers that appear to be randomly selected be­
tween 1 and m - 1. The length of the sequence is determined by the choice of con­
stants and is limited by the computer word size. For example, if we choose m = 37 
and a = 5, Equation (5.3) gives us the cycle of 36 nicely mixed up numbers, listed 
in Table 5.1. Random number generators included with computer languages are of­
ten based on some variation of this multiplication technique. Careful and thorough 
statistical studies must be made to be sure that an untested random number genera­
tor produces an acceptable sequence of numbers. 

Because the numbers generated by Equation (5.3) are not truly random, we 
might worry that our calculations are affected by hidden correlations in successively 
generated numbers. We can improve the randomness of our sample by shuffling the 
numbers. We generate two sequences of numbers with different generators a and m; 
one sequence is stored in an array and a number from the second sequence is used 
as an index to select numbers from the first sequence. For large programs that em­
ploy many random numbers, this method is limited by storage space, although local 
shuffling within a block of random numbers can be used. 
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TABLES.1 

Pseudorandom numbers 

Tj Tj Tj Tj 

1 1 10 6 19 36 28 31 
2 5 11 30 20 32 29 7 
3 25 12 2 21 12 30 35 
4 14 13 10 22 23 31 27 
5 33 14 13 23 4 32 24 
6 17 15 28 24 20 33 9 
7 11 16 29 25 26 34 8 
8 18 17 34 26 19 35 3 
9 16 18 22 27 21 36 15 

Note: The generating equation is rd 1 = (a X r;) mod m, with a = 5 and m = 37. The cycle repeats a37 = alo a38 = a2, 
and so forth. 

Even a modest Monte Carlo program can require many random numbers and, 
to assure the statistical significance of results, we must be certain that the calcula­
tion does not use more than the maximum number generated by the algorithm be­
fore the sequence repeats. The sample generator of Equation (5.3) cannot produce 
more than m - 1 different values of rio The actual cycle length may be less than this 
range, depending on the choice of constants. The cycle length can be increased by 
employing two or more independent sequences such that the resulting cycle length 
is proportional to the product of the lengths of the component cycles. 

A generator developed by Wichmann and Hill, I based on a simple linear com­
bination of numbers from three independent sequences, is said to have a very long 
cycle (~7 X 1012) and appears to be well tested. Because the algorithm uses three 
seeds, it is a little longer and slower than one- or two-seed algorithms, but its long 
repeat cycle, portability, and lack of correlations seem to make it a convenient, 
worry-free generator for most purposes. The algorithm is listed in Appendix E. 

Although the fact that pseudorandom number generators always produce the 
same sequences of numbers from the same seeds is an advantage in program de­
bugging, it may be a disadvantage in production running. For example, a simulation 
program developed for use as a science museum display could be very uninterest­
ing if it repeated the same sequence of events every time it was run. If unpredictable 
seeds are required, they can easily be derived from the least counts of the computer 
clock. Commercial routines often include such a method of randomizing the start­
ing seeds. On the other hand, if we wish to run a simulation program several times 
and to combine the results of the several different runs, the safest method to assure 
the statistical independence of the separate runs is to record the last values of the 
seeds at the end of each run and use these as starting seeds for the next run. 

A thorough discussion of random number generation and of the Monte Carlo 
technique is given in Knuth (1981). 

1 The authors include a thorough and very useful discussion of the tests applied to a random number se­
quence, and of the development and testing of the published algorithm. 
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Warning 

If you are using random numbers provided in commercial programs such as spread 
sheets or even scientific data analysis programs, you should always check the ran­
dom number distributions for correlations, and make sure that the function behaves 
as advertised. For example, in early versions of one very popular scientific data 
analysis program, the choice of seed had no effect on the numbers produced by the 
random number routine. 

5.3 RANDOM NUMBERS FROM 
PROBABILITY DISTRIBUTIONS 

Transformation Method 

Most number generators scale their output to provide real numbers uniformly dis­
tributed between 0 and 1. In general, however, we require numbers drawn from spe­
cific probability distributions. Let us define uniform deviates per) drawn from a 
standard probability density distribution that is uniform between r = 0 and r = 1: 

p(r) = {b 
The distribution is normalized so that 

for 0:::; r < 1 
otherwise 

JOO p(r) dr = J\ dr = 1 
-00 0 

We shall refer to per) as the uniform distribution. 

(5.4) 

(5.5) 

Suppose that we require random deviates from a different normalized proba­
bility density distribution per), which is defined to be uniform between x = -1 and 
1; that is, the distribution 

p(x) = {1/2 for -1.:::; x < 1 
o otherwIse 

(5.6) 

If we choose a random deviate r between 0 and 1 from the uniform distribution of 
Equation (5.4), it is obvious that we can calculate another random deviate x as a 
function of r: 

x = f(r) = 2r - 1 (5.7) 

which will be uniformly distributed between -1 and + 1. This is an example of a 
simple linear transformation. 

To pick a random sample x from the distribution Equation (5.6), we started 
with a random deviate r drawn from the uniform distribution of Equation (5.4) and 
found a functionf(r) that gave the required relation between x and r. Let us find a 
general relation for obtaining a random deviate x from any probability density dis­
tribution P(x), in terms of the random deviate r drawn from the uniform probability 
distribution per). 
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Conservation of probability requires that the intervals ~r and ~x be related by 
the following expression 

Ip(r) ~rl = Ip(x)~xl (5.8) 

and, therefore, we can write 

L~ _!(r) dr = i: _f(x) dx or Lo 1 dr = L: _oop(x) dx (5.9) 

which gives the general result 

(5.10) 

Thus, to find x, selected randomly from the probability distribution P(x), we gener­
ate a random number r from the uniform distribution and find the value of the limit 
x that satisfies the integral equation (5.10). 

Example 5.2. Consider the distribution described by the equation 

(x) = {A(l + ax2
) for -1.:::; x < 1 

p 0 otherWIse (5.11) 

where P(x) is positive or zero everywhere within the specified range, and the normal­
izing constant A is chosen so that 

(5.12) 

We have 

(5.13) 

which gives 

r = A(x + ax3/3 + 1 + a/3) (5.14) 

and therefore, to find x we must solve the third-degree equation (5.14). 

The procedure we have described is referred to as the transformation method 
of generating random deviates from probability distributions. In general, neither the 
integral equation (5.13) nor the solution of the resulting equation (5.14) can be ob­
tained analytically, so numerical calculations are necessary. 

The following steps are required to generate random deviates from a specific 
probability distribution by the transformation method with a numerical integration: 

1. Decide on the range of x. Some probability density functions are defined in a fi­
nite range, as in Equation (5.6); others, such as the Gaussian function, extend to 
infinity. For numerical calculations, reasonable finite limits must be set on the 
range of the variable. 
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2. Normalize the probability function. If it is necessary to impose limits on the 
range of the variable x, then the function must be renormalized to assure that 
the integral is unity over the newly defined range. The normalization integral 
should be calculated by the same analytical integration or numerical integration 
routine that is used to find y. 

3. Generate' a random variable r drawn from the uniform distribution per). 

4. Integrate the normalized probability function P(x) from negative infinity (or its 
defined lower limit) to the value x = x, where x satisfies Equation (5.10). 

Because the Monte Carlo method usually requires the generation of large 
numbers of individual events, it is essential to have available fast numerical inter­
polation and integration routines. To reduce computing time, it is often efficient to 
set up tables of repeatedly used solutions or integrals within the initializing section' 
of a Monte Carlo program. For example, to pick a random deviate x from the distri­
bution of Equation (5.11), we could do the integral of Equation (5.13) numerically 
at the beginning of our program, and set up a table of values of r versus x. Then, 
when we require a random number from the distribution, we generate a random 
number r and search the table for the corresponding value of x. In general, the 
search should be followed by an interpolation within the table (see Appendix A.l.) 
to avoid introducing excessive graininess into the resulting distribution. It would be 
even more convenient, but a little trickier, to produce a table of x versus r, so that 
the required value of x could be obtained from an index derived from r. In all cases 
of precalculated tables, it is important to consider the resolution required in the gen­
erated variable, because this will determine the intervals at which data must be 
stored, and therefore the size of the table, and the time required for a search. 

Rejection Method 

Although the transformation method is probably the most useful method for ob­
taining random deviates drawn from particular distributions, the rejection method is 
often the easiest to use. This is the method that we used in Example 5.1 to find the 
area of a circle, by generating random numbers uniformly over the surface of the 
circle and rejecting all except those that fell within the circumference. 

Example 5.3. Suppose we wish to obtain random deviates between x = -1 and 
x = + 1, drawn from the distribution function 

p(x) = 1 + ax 2 (5.15) 

which is just the unnormalized distribution of Equation (5.11). To use the rejection 
method, we begin by generating a random deviate x' uniformly distributed between 
-1 and + 1, corresponding to the allowed range of x, and a second random deviate y' 
uniformly distributed between 0 and (l + a), corresponding to the allowed range of 
P(x). We can see that x' and y' must be given by 

x' = -1 + 2ri and y' = (1 + a)ri+ 1 (5.16) 

where ri and ri + 1 are successively generated random values of r drawn from the uni­
form distribution. 
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We count an event as a "hit" if the point (x', y') falls between the curve defined 
by P(x) and the x axis, that is, if y' < P(x'), and a "miss" if it falls above the curve. In 
the limit of a large number of trials, the entire plot, including the area between the 
curve and the x axis, will be uniformly populated by this operation and our selected 
samples will be the x coordinates of the "hits," or the values of x', drawn randomly 
from the distribution P(x). Note that with this method it is not necessary to normalize 
the distribution to form a true probability function. It is sufficient that the distribution 
be positive and well behaved within its allowed range. 

The advantage of the rejection method over the transformation method is its 
simplicity. An integration is not required-only the probability function itself must 
be calculated. A disadvantage of the method is often its low efficiency. In a complex 
Monte Carlo program only a small fraction of the events may survive the complete 
calculation to become successful "hits" and the generation and subsequent rejection 
of so many random numbers may be very time consuming. To reduce this problem, 
it is advisable to place the strictest possible limits on the random coordinates used 
to map out the distribution function when using the rejection method. 

5.4 SPECIFIC DISTRIBUTIONS 

Gaussian Distribution 

Almost any Monte Carlo calculation that simulates experimental measurements will 
require the generation of deviates drawn from a Gaussian distribution, or Gaussian 
deviates. A common application is simulation of measuring uncertainties by smear­
ing variables. Fortunately, because of the convenient scaling properties of the 
Gaussian function, it is only necessary to generate Gaussian deviates from the stan­
dard distribution 

PG(Z) dz = vk exp [ -; JdZ (5.17) 

with mean 0 and standard deviation 1, and to scale to different means f.L and stan­
dard deviations 0' by calculating 

x = O'Z + f.L (5.18) 

There are several different ways of obtaining random samples of the variable 
Z from the distribution P G(z) of Equation (5.17). The two most obvious are the re­
jection and transformation methods discussed previously. Because the Gaussian 
function is defined between -00 and +00, these methods require that limits be 
placed on the range of z. For low-statistics calculations in which the Gaussian func­
tion is being used to simulate smearing of data caused by measuring errors, a range 
of ±30' should be satisfactory because all but ~0.3% of normally distributed events 
lie within this range. 

Because the Gaussian function cannot be integrated analytically, numerical in­
tegrations are required for the transformation method. Decisions must be made on 
the order of integration and the step size as well as on the limits. A first- or second-
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order numerical integration (Appendix A.3.) is generally satisfactory, with a linear 
interpolation to find an approximation to the value of x in Equation (5.10) at the re­
quired value of the integral. 

An interesting method for generating Gaussian deviates is based on the fact 
that if we repeatedly calculate the means of groups of numbers drawn randomly 
from any distribution, the distribution of those means tends to a Gaussian as the 
number of means increases. Thus, if we calculate many times the sums of N uniform 
deviates, drawn from the uniform distribution, we should expect the sums to fall 
into a truncated Gaussian distribution, bounded by 0 and N, with mean value N12. If 
we generate N values of r from the distribution of Equation (5.4) and calculate 

N 
rG= ~ r i -N12 

i=1 
(5.19) 

the variable r G will be drawn from an approximately Gaussian distribution with' 
mean f.L = 0 and standard deviation 0' = VN112. We should note that the maxi­
mum range of r G will be limited to f.L ± N12 or f.L ± 0' V3N. For N = 2, the sum is 
a triangle function and as N increases, the distribution quickly takes on a Gaussian­
like shape. Values of N as small as N = 4 are suitable for low statistics calculations. 
With N = 4, we have 0' = Vi73 = 0.058 and the range of rG from -2 to +2 cor­
responds to f.L ± O'VU or f.L ± 3.460'. If a better approximation to the Gaussian 
function is require and calculation time is not a problem, N = 12 is particularly con­
venient because the resulting variance and standard deviation are unity. 

A particularly elegant method for obtaining random numbers drawn from the 
Gaussian distribution was suggested by Box and Muller (1958). This method makes 
use of the fact that, although the simple transformation method requires an integra­
tion of the Gaussian function, it is possible to find a function that generates the two­
dimensional Gaussian distribution, 

j(zt> Z2) = 2~ exp (- (zr ; zD) = vk exp (-~) X vk exp (-~) (5.20) 

From this equation, the authors obtained expressions that generate two Gaussian de­
viates, Z1 and Z2, from two uniform deviates, r1 and r2: 

Z1 = V -2ln r1 cos 21Tr2 

Z2 = V -2ln r1 sin 21Tr2 (5.21) 

Example 5.4. A uniform lO-cm long rod has one end held at O°C and the other at 
100°C so that the temperature along the rod is expected to vary linearly from 0° to 
100°C. Let us attempt to simulate data that would be obtained by measuring the tem­
perature at regular intervals along the rod. We shall assume that the parent population 
is described by the equation 

T= ao + box (5.22) 

with ao = O°C and bo = lO°C/cm, and that 10 measurements are made at I-cm inter­
vals from x = 0.5 to x = 9.5 cm, with negligible uncertainties in Xi and uniform mea­
suring uncertainties in Ti of aT = l.0°e. 
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Example 5.4 illustrates a common Monte Carlo technique: simulating the ef­
fects of measuring uncertainties by smearing data points. If a particular variable has 
a mean value Ti, with uncertainties (J"i and Gaussian uncertainties are assumed, then 
we obtain the smeared value of Ti from the relation 

(5.23) 

where ri is a random variable drawn from the standard Gaussian distribution with 
mean a and standard deviation 1. The calculation is equivalent to drawing the ran­
dom variable T/ directly from a Gaussian distribution with mean Ti and standard 
deviation (J"i' 

Program 5.1. HOTRoD (Appendix E) A simple Monte Carlo calculation to sim­
ulate the measurements described in Example 5.4. The program uses routines in the 
program unit MONTE LI B. 

Program 5.3. M 0 N TEL I B (Appendix E) Some useful Monte Carlo routines. 

The data generated by the program HOTRoD are shown in Table 5.2, with values 
of Ti for the parent population, predicted by Equation (5.22), and of Ti for the sam­
ple population, calculated from Equation (5.23) for various values of Xi' Note that, 
as we should expect, the modified values of T are scattered about the values calcu­
lated from Equation (5.22). 

Choice of a Method 

Which of these methods for generating samples from the Gaussian probability dis­
tribution is the best? The answer depends on need and circumstance. For general use 
it is convenient to keep a version of the Box-Muller method in your program library. 

TABLE 5.2 

Simulated temperature versus position data for 
a 10-em rod held at T = O°C at x = 0.0 em and 
at T = 100°C at x = 10.0 em 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

x;(cm) 

0.5 
1.5 
2.5 
3.5 
4.5 
5.5 
6.5 
7.5 
8.5 
9.5 

5.00 
15.00 
25.00 
35.00 
45.00 
55.00 
65.00 
75.00 
85.00 
95.00 

4.71 
15.43 
23.24 
35.77 
45.39 
52.26 
65.71 
76.96 
85.97 
93.77 

Note: A uniform temperature gradient was assumed. The uncertainty in the 
measurement of T was assumed to be ITT = 1.0 0c. 

F 
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This routine produces a continuous range of samples limited only by the computer 
word size. For high-precision work, however, we should be aware that subtle corre­
lations between adjacent uniform deviates have been shown to distort the tails of the 
Gaussian distribution of these numbers. If highest speed is essential, then the trans­
formation method with a precalculated table of the integral and some pointers for 
quick access to the table should be the choice. This method requires making deci­
sions on the range and resolution of the generated variable and some extra pro­
gramming to create and access the integral table, but the lookup method can be very 
fast. Finally, if you are stranded on a desert island with only your laptop computer 
and have an urgent need for random selections from a Gaussian distribution, the 
method of summing N random numbers is sufficiently simple that you should be 
able to write and debug the routine in a few minutes, provided you can remember 
that the magic number is N;= 12 for a variance of 1. 

Poisson Distribution 

Poisson statistics are important in most Monte Carlo calculations, but they are usu­
ally implied rather than calculated explicitly. Nevertheless, we sometimes wish to 
generate data that are distributed according to the Poisson function, and application 
of the transformation method to the problem is particularly simple and instructive. 
To find an integer X drawn from the Poisson distribution with mean /L, a Poisson 
deviate, we generate a random variable r from the uniform distribution, replace the 
integral of Equation (5.10) by the sum 

(5.24) 

and solve Equation (5.24) for x. 
Although the Poisson function does not have the convenient scaling properties 

of the Gaussian function, and thus different calculations are required for each value 
of the mean /L, very few calculations are actually needed because we are interested 
in this distribution only at small values of /L, say /L :::; 16, and only at integral val­
ues of the argument x. At larger values of /L, the Poisson distribution becomes in­
distinguishable from the Gaussian and it is generally more convenient to employ the 
Gaussian function in calculations. 

Example 5.5. An instructor is preparing an exercise on Poisson statistics for his 
class. He plans to provide each student with a simulated data set corresponding to 200 
Geiger counter measurements of cosmic ray flux recorded in lO-s intervals with an as­
sumed mean counting rate of 8.4 counts per interval. The data will correspond to the 
number of counts recorded in each 10-s interval. 

Students will be asked to make histograms of their individual data samples, find 
the means and standard deviations of the data, and compare their distributions with the 
predictions of Gaussian and Poisson probability functions. 

For each student, a set of values of x is generated from Equation (5.24) with 
/L = 8.4 and 200 different random numbers. The transformation method is used 
with a precalculated table of sums so that the value of x associated with each value 
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of r can be selected by a simple search. To assure that each student's data set is in­
dependent, either all sets are generated in a single computer run or else the random 
number seeds are saved at the end of each run and used to start the next run. 

Program 5.2. POlsDECAY (Appendix E) Generates 200 random variables 
drawn from the Poisson probability distribution with mean f.L = 8.4 to illustrate Ex­
ample 5.5. The program uses routines in the program unit MONTE LI B. 

The program calls the function POISSONDEVIATE with second argument 
I N IT = TRUE to set up a table of sums of Pp(i; J.L) from i = 0 to n indexed by n; 
that is, to form the array 

so that 

n 

Sn = 2: Pp(i; J.L) for n = 1,2, ... , nmax 
i=O 

(5.25) 

(5.26) 

where nmax = N + 8 W is selected as a reasonable upper range for the Poisson 
curve. 

For each event, the program calls POISSONDEVIATE with second argument 
INIT = FALSE to select a value from the table. The routine POISSONDEVIATE 

generates a random number r from the uniform distribution and searches the table 
beginning at So, to find the value of n for which Sh ::::: r. The value of n at which this 
occurs is the desired random sample from the Poisson distribution. As the samples 
are generated they are entered in a histogram by calls to the routine HI STOG RAM. 

A histogram of 200 variables drawn from the Poisson distribution Program 5.2 
is shown in Figure 5.3 with the parent distribution represented as a solid curve (al­
though it is, of course, not defined between integer values of the abscissa). The val­
ues of the Poisson function, calculated by the routine POISSONRECUR, and the 
sums, calculated by the routine POISSONDEVIATE, for J.L = 8.4 and for n rang­
ing from 0 to 31, are displayed in Table 5.3. 

We note that with the precalculated table it is only necessary to increment a 
counter a few times and compare two real numbers to obtain each random variable, 
whereas, without the table, it would have been necessary to calculate the Poisson 
function several times for each generated sample, in addition to comparing the two 
real numbers. 

Exponential Distribution 

If the Monte Carlo problem includes the generation of unstable states, random num­
bers drawn from an exponential distribution will be needed. Here the transformation 
method is clearly the method of choice because the integral equation (5.10) and re­
sultant equation can be solved analytically. 

Example 5.6. Consider an experiment to study the decay rate of a radioactive source 
with estimated mean life of'T seconds. The experiment involves collecting counts over 
successive time intervals !1t with a Geiger counter and scaler combination and plotting 
the number of counts in each interval against the mean interval time. 
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FIGURE 5.3 
Histogram of 200 random variables generated by Program 5.3 from the Poisson distribution with 
mean fL = 8.4. 

TABLE 5.3 

Poisson probability Pp(i; f-t) and summed probability Si = 2:7=0 Pp(i; f-t) 
for f-t = 8.4 

n Pp(n; fL) S. n Pp(n; fL) S. 

0 0.0002248673 0.0002248673 16 0.0066035175 0.9940781736 
1 0.0018888855 0.0021137528 17 0.0032629145 0.9973410882 
2 0.0079333192 0.0100470720 18 0.0015226935 0.9988637816 
3 0.0222132938 0.0322603658 19 0.0006731908 0.9995369724 
4 0.0466479169 0.0789082827 20 0.0002827401 0.9998197126 
5 0.0783685004 0.1572767830 21 0.0001130961 0.9999328086 
6 0.1097159005 0.2669926835 22 0.0000431821 0.9999759908 
7 0.1316590806 0.3986517641 23 0.0000157709 0.9999917616 
8 0.1382420346 0.5368937988 24 0.0000055198 0.9999972814 
9 0.1290258990 0.6659196977 25 0.0000018547 0.9999991361 

10 0.1083817551 0.7743014529 26 0.0000005992 0.9999997353 
11 0.0827642494 0.8570657023 27 0.0000001864 0.9999999217 
12 0.0579349746 0.9150006768 28 0.0000000559 0.9999999776 
13 0.0374349066 0.9524355835 29 0.0000000162 0.9999999938 
14 0.0224609440 0.9748965275 30 0.0000000045 0.9999999983 
15 0.0125781286 0.9874746561 31 0.0000000012 1.0000000000 

Note: The summation was terminated arbitrarily at n = fl. + 8"\,1;;: = 31, and Pp(31; fl.) was set to I. 

We wish to simulate this experiment with a Monte Carlo calculation. The nor­
malized probability density function for obtaining a count at time t from an expo­
nential distribution with mean life T is given by 
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for t < 0 

for t::::: 0 
(5.27) 

We can obtain an expression for random samples ti from this distribution by 
applying Equation (5.10) to obtain 

(5.28) 

Thus, to obtain each value of ti , we find a random number from the uniform distri­
bution and calculate ti from Equation (5.28). 

Let us consider a second method of generating a histogram of data for this 
example, a method that is much more efficient, but that severely limits any later 
treatment of the data. 

We can calculate the fraction of events that the parent distribution predicts 
would fall into each of the M wide histogram bins from the equation 

It+d e-xh ,+d Ilt 
IlN'(t) = -- dx = e-thl'_d = - e-th 

t-d 'T 'T 
(5.29) 

where we have written d = Ilt12. The effect of the statistical errors is to smear each 
of these calculated values in a way consistent with the Poisson distribution with 
mean f.L = M;'. For small values of IlN;' we find the smeared value IlNi directly 
from Equation (5.24): 

!;.N 

r = L Pp (x; IlN') (5.30) 
x=o 

For larger values of IlN;' calculation with the Poisson equation would be too te­
dious, but we can use Gaussian smearing as in Example 5.4 with (J'i = W. Note 
that the Poisson equation must be used for bins with low statistics to assure a posi­
tive number of counts in each bin. (A reminder: The overall distribution of events in 
this example is exponential; the expected distribution of events in each individual 
bin follows the Poisson distribution, as discussed in Section 4.3.) 

Although these two methods of generating a data set or histogram produce 
equivalent statistical results for Example 5.6, they differ in important details. The 
full Monte Carlo method required generating individual "events" that can be 
recorded and studied. For example, we could check the statistical behavior of the 
data by subdividing the sample into several smaller groups. We could also investi­
gate the effect of decreasing as well as increasing the binning intervals Ilt. Finally, 
if we should wish to expand the study, perhaps to consider experimental geometry 
and detector efficiency, the full Monte Carlo method will allow that. The smear­
ing method, on the other hand, produces only the ten numbers, representing the 
counts in the ten bins. Aside from merging the bins, we have no control over the 
data for future calculations. It is strictly a fast, "one-shot" procedure with a specific 
limited aim. 

Example 5.7. Consider an experiment to determine the mean life of an elementary 
particle, the short-lived K~ meson (which we shall refer to as the kaon), from 
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measurements of the decay in flight of many such particles. In principle, we can 
determine the mean life T by measuring the distribution of decay times, fitting the 
probability density function of Equation (5.27) to the data and solving for T. In prac­
tice, we must make corrections for biases resulting from detection inefficiencies, 
including those associated with the finite sizes of our detectors. We can use a Monte 
Carlo calculation to estimate these biases and enable us to apply the appropriate 
correction. 

The experimental arrangement is sketched in Figure 5.4. A high-energy charged 
particle Pi interacts in the target at the production vertex VI to produce several charged 
and neutral secondary particles, including a neutral kaon. The kaon travels a distance 
L before decaying into two pions, 'ITI and 'ITz, at the decay vertex V2• We determine the 
coordinates of the production vertex by measuring in the production vertex detector 
the trajectories of charged particles that are produced with the kaon, and tracing back 
these trajectories to their intersection point in the target. Similarly, we determine the 
coordinates of the decay vertex by measuring in the decay vertex detector the trajec-' 
tories of the two charged pions from the kaon decay, and tracing these trajectories back 
to their intersection point, V2• (The trajectories of neutral particles are much more dif­
ficult to measure than those of the charged particles.) We calculate the momentum of 
the neutral kaon from measurements of the momentum vectors of its two decay prod­
ucts, 'ITI and 'IT2. 

The geometry of the detector plays a critical role in the analysis of the data. We 
can make useful measurements only on events in which the trajectories of the charged 
particles can be measured in the vertex detectors. To assure precise measurements of 
the secondary tracks from the decay of the kaon, we define afiducial region in which 
the decay must occur. The dashed rectangle on Figure 5.4 indicates the fiducial region 
with its limits d l and d2 along the x-axis. With these limits, very short-lived and long­
lived particles will be eliminated from the data sample, introducing a bias into the de­
termination of the mean life. 

Charged particle veto 

--------- itl 

V2 

Pi .1 
it2 

d l Fiducial volume d2 
Production 
vertex detector 

FIGURE 5.4 
Experimental arrangement to measure the lifetime of an elementary particle. 

Decay vertex 
detector 
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In a Monte Carlo study of these biases, we could take the following steps to 
simulate measurements of decaying kaons: 

1. Generate the production vertex coordinates and kaon momentum vector P from 
the known cross section for kaon production in the interaction of the incident 
and target particles. 

2. Consider the efficiency of the production detector. If the detector successfully 
records charged particles produced in the initial interaction, proceed to step 3; 
if not, mark the event a failure and go to step 8. 

3. Apply Equation (5.28) to find the time of flight (or lifetime) Tof each individual 
kaon in its own rest frame. Use the current best-known value for the mean life 'T. 

4. Apply the Lorentz transformation to T to find the lifetime T' in the laboratory 
system. 

5. Calculate the range r of the kaon in the laboratory and from this, the coordinate 
of the decay point. 

6. Check that the kaon decays within the fiducial volume. If so, proceed to step 7; 
otherwise, mark the event a failure and go to step 8. 

7. In the rest frame of the kaon, generate the pair of pion vectors. Transform to the 
laboratory system and check whether or not both particles can be detected in the 
decay vertex detector. If they can be detected, mark the event a success; if not, 
mark the event a failure. 

S. Record details of the event and return to step 1 to generate a new event, or ter-
minate if the desired number of events has been generated. 

Program 5.4. KOECAY (website) Illustration of Example 5.7. 

For this sample program, we simplify the problem by treating it in two dimensions and 
simplify or skip some of the steps as noted below. 

1. Assume that each kaon is produced in the plane illustrated in Figure 5.4 and trav­
els along the x-axis. Generate a vertex x-coordinate Xo and the magnitude of the 
kaon's momentum P from suitable Gaussian distributions. 

2. Skip 

3. Find the lifetime T of the kaon in its own rest frame from the published value of 
the kaon mean life 7 and Equation (5.28). 

4. Apply the Lorentz transformation to T to find the lifetime T' in the laboratory 
system: 

T' = 'Y~m' where 'Y = 1/v'1=f32 and 13 = vic 
where v is the velocity of the kaon in the laboratory and c is the velocity of light. 

5. Calculate the range r and decay point Xd: 

r = I3cT' andxd = Xo + r 

6. Check that the decay is within the fiducial area, that is, that 

d]::S xd<d2 

If it is not, mark the event as a failure; otherwise, mark the event as a success. 
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Distribution of times of flight (in units of 10- 10 s) of 2355 successful KO decays from a total sample of 
4000 generated events. The curve shows the predicted exponential distribution of the total 4000-event 
sample. 

7. Skip this step. 

8. Increment the event counters and record only successful events. If the desired 
number of events has been generated, terminate the calculation; otherwise, go to 
step I to begin generating the next event. 

The properties of the two Gaussians and the other constants of the calculation are 
listed in Table 5.4. Note that we must use as input to our program a reasonable value 
of the kaon mean life, the quantity that we are attempting to measure. If the quantity 
had been only poorly measured previously, or perhaps not at all, it might be necessary 
to run the Monte Carlo program with several different trial values of 7, bracketing the 
expected value. 

For this example, we generated 4000 events of which 2355 passed the fiducial 
cut. Figure 5.5 shows the distribution of the times of flight T (or lifetimes) in the rest 
frame of the kaon for successful events. The curve shows the expected distribution 
of the times of flight if no events had been rejected. We obtain the efficiency of the 
system as a function of the time of flight T by calculating the ratio of the number 
N' (T) of successful events to the total number N(T) generated 
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TABLE 5.4 

Constants used in the Monte Carlo generation of Program 5.3 

TauKaon (Ko mean life) 
MassKaon (Ko mass) 
dl (Lower limit of fiducial range) 
d2 (Upper limit of fiducial range) 
xMean (mean coordinate of the production vertex, VI) 
xSig (Standard deviation of production vertex) 
pMean (mean Ko momentum) 
pSig (Standard deviation of Ko momentum) 
c (velocity of light) 

E(T) = N'(T)/N(T) 

0.894 X 10- 10 s 
497.7 Mev/c2 

10m 
40m 
5.00cm 
0.50cm 
2000 MeV/c 
100 MeV/c 
3.00 X 1010 cmls 

(5.31) 

We note that there are large losses of events at short times, below about T = 0.5 X 
10-!O s, caused by the gap between the production vertex VI and the beginning of the 
fiducial region db and smaller, but significant losses at long times of events that de­
cayed beyond the end of the fiducial region, dz. 

To correct data obtained in an actual experiment and distributed as NexiT), we 
should first run the Monte Carlo to generate sufficient numbers of events so that the 
uncertainties in the N' (T) are negligible compared to the uncertainties in the exper­
imental data sample. We should then select a continuous region of our data sample 
where the efficiency is reasonably good (and definitely not zero!) and correct the 
measurements by scaling Nexp(T) by VE(T). Note that the statistical uncertainties in 
the measured data must also be scaled, so there is little point in including data from 
very low-efficiency regions of the sample. We can then obtain our estimate of the 
mean life of the kaon from a least-squares fit of Equation (5.27) to the corrected 
data. (A reminder: Although the overall distribution of events in this example is ex­
ponential, the expected distribution of events in each individual bin follows the 
Poisson distribution, as discussed in Section 4.4.) 

A more detailed discussion of analysis techniques for this experiment is in 
Chapter 10. 

5.5 EFFICIENT MONTE CARLO 
GENERATION 

Because the relative error in a result calculated by the Monte Carlo method is 
inversely proportional to the square root of the number of successful events gen­
erated, it is important, especially for a long calculation, to have the highest possi­
ble program efficiency. Rejected events do not improve the statistical accuracy 
and every effort should be made to reduce the time spent on calculations that 
lead to "misses" rather than "hits." There are several ways to improve generation 
efficiency: 

1. Don't be a purist. The Monte Carlo method is basically a way of doing compli­
cated multidimensional integrals. If you can save time by doing part of the 
problem by analytic methods, do so. 
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2. Program carefully. Do not repeat calculations if the results can be saved for 
later use . 

3. If possible, test the low-yield sections of the simulation early and cut out as 
soon as a "miss" occurs. Except for particular loss studies, it is usually not prof­
itable to follow the calculation of an event that is known to end in failure. 

4. Try to reduce the variance of the results by limiting ranges wherever possible. 
One application of this technique can be illustrated in Example 5.1, where the 
area of a circle of radius rc is calculated by inscribing it within a square. Mak­
ing the side of the square larger than the diameter of the circle would be waste­
ful and would increase the variance of the area determination. 

5. When repeating a calculation to find the effects of varying a parameter, con­
sider setting up the program in such a way that the identical sequence of ran­
dom numbers is repeated throughout the calculation, except for calculations­
specifically associated with the change. This technique will not improve the 
variance of the overall calculation, but will reduce the variance of the difference 
of results from two calculations. 

6. Inspect each probability function carefully before beginning a calculation and 
estimate the resolution and detail that will be required in the calculation. If a 
distribution has fine structure, try to determine whether or not such structure is 
of interest and must be preserved. If necessary, consider breaking the calcula­
tions into separate regions and varying the sampling sensitivity as appropriate 
for each region. 

7. Be critical. Examine your generated variables to see that they fall within the ex­
pected ranges and follow expected distributions. In a large program, errors that 
affect the results in subtle ways may be buried within the program and be very 
difficult to detect. The only way to prevent problems is to make detailed checks 
at every stage of the program. 

SUMMARY 

Pseudorandom numbers: Numbers created by a computer algorithm such that suc­
cessive numbers appear to be uncorrelated with previous numbers. They are re­
ferred to as random numbers or random deviates. 
Uniform deviates: Pseudorandom numbers that are uniformly distributed between 0 
and 1: 

() {
I for 0 ::::; r < 1 

p r = 0 otherwise 

Normalized distribution: A distribution that is scaled so that its integral over a spec­
ified range is equal to unity. 
Transformation integral: Transforms the variable r drawn randomly from the uni­
form distribution into a variable x drawn randomly from the distribution P(x): 
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Rejection method: A method of generating random numbers drawn from particular 
distributions by rejecting those that fall outside the geometrical limits of the speci­
fied distribution. 
Gaussian deviate: Random number drawn from a Gaussian distribution. 
Quick Gaussian deviate: The sum of N random numbers is approximately Gaussian 
distributed with f.L = NI2 and (J" = VN/12. Choose N = 12 and calculate 
r G = 2:.r; - NI2 to obtain r G drawn from 
the standard Gaussian distribution with f.L = 0 and (J" = 1. 
Box-Muller methodfor Gaussian deviates: Select rl and r2 from the uniform distri­
bution and calculate 

Zl = V -21n rl cos 2'lTr2 and Z2 = V -21n rl sin 2'lTr2 

to obtain Zl and Z2 drawn from the standard Gaussian distribution. 
Data smearing: Method for adding random variations to calculations to simulate the 
effects of finite measuring errors, T;' = T; + (J"h 

Random numbers from the exponential distribution: To obtain a random number 
t; drawn from the exponential distribution, calculate t; = -7 In r; from a random 
deviate rio 

EXERCISES 

5.1. Write a computer program that incorporates the Wichmann and Hill pseudorandom 
number generator and use it to generate 100 random numbers beginning with seeds 
Sl = 13, Sl = 117, and S3 = 2019. Make a histogram of the numbers and draw a line 
representing the expected number of events in each bin. Calculate Xl for the agree­
ment between the expected and generated number of events and find the associated 
probability. 

5.2. (a) Generate 1000 random numbers uniformly distributed between -1T and +1T. 

(b) Generate 1000 random numbers between x = 0 and 1, distributed according to the 
distribution function P(x) = (5x + 3). Use the transformation method with an 
analytic integration. 

(c) Find the mean and standard deviation of each distribution and compare them to 
the predicted values. 

(d) Make a 20-bin histogram of each distribution and plot on each the predicted 
distribution. 

(e) Calculate Xl to compare each generated distribution to its parent distribution. 
5.3. Write a general routine to generate random integers drawn from the binomial distrib­

ution by the transformation method. Use the routine to generate 1000 events corre­
sponding to the distribution of heads or tails when a coin is tossed 50 times. Plot your 
results and compare them to the direct prediction of Equation (2.4). 

5.4. Write a Monte Carlo routine to simulate 200 rolls of a pair of dice and find the fre­
quency of occurrences of each possible sum. Plot a histogram of the occurrences with 
statistical error bars and plot the prediction of the binomial distribution. Calculate Xl 
for the agreement between the prediction and the data, and find the Xl probability. 
Compare your results to the exact probability calculation of Exercise 2.4. 

5.5. Make a histogram of 200 random numbers that follow the Gaussian distribution by 
finding the distribution of the sums of groups of 12 random variates drawn from the 
uniform distribution. Calculate the mean and standard deviation of the generated num­
bers and the uncertainty in the mean. 
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5.6. Generate 1000 random numbers between x = - 3 and + 3, distributed according to the 
Lorentzian distribution with mean fL = 0 and half-width r = 1.0. Use the transforma­
tion method with a numerical integration and interpolation. (See Appendix A.1 and A.3.) 
Make a 20-bin histogram of the generated numbers and plot Lorentzian the curve on the 
distribution. Calculate Xl to compare the generated distribution to the parent distribution. 

5.7. Use the transformation method to produce a sequence of 200 random numbers x 
drawn from the distribution 

P (x) = sin x for 0 :S x < 1T 

= 0 elsewhere 

Make a histogram of the events and compare it to the expected distribution. Note that 
the calculation can be done analytically and requires an inverse trigonometric function. 

S.S. Use the rejection method to generate 500 random deviates between x = 0 and x = 1, 
drawn from the distribution y(x) = al + alxl, with al = 3.4 and al = 12.1. Find the' 
mean and standard deviation of the generated numbers and compare them to the ex­
pected values. 

5.9. Write a Monte Carlo program to generate 200 cubes with sides a = 2.0 ± 0.1 cm, 
b = 3.0 ± 0.1 cm, and c = 4.0 ± 0.2 cm. Plot the distribution of the volumes of the 
cubes and find the mean volume, the standard deviation of the distribution, and the un­
certainty in the mean. Compare the standard deviation of the distribution to the value 
predicted by the error propagation equation. 

5.10. A Pascal triangle provides an interesting illustration of the relation between the bino­
mial and Gaussian probability distributions. Assume an arrangement of pins in the 
form of a triangle as illustrated. 

Row 

1 
2 
3 
4 .... 
5 . . . . . 

6 

I I I I I I I I 
Bin - 3 - 2 - 1 0 1 2 3 

A ball, dropped into the device strikes the top pin and has a 50% probability of strik­
ing either of the two pins below it in the next row. The ball bounces down until it 
reaches the bottom where it is collected in one of the vertical bins. 
(a) Find a general expression for the probability that a ball will land in a given bin af­

ter dropping through N rows of pins. 
(b) Assume that 512 balls are dropped onto the top pin. Find the number of balls in 

each bottom bin for a device with three rows of pins above the bins. Repeat for de­
vices with four, five, and six rows of pins. 

(c) Find the standard deviation of the distribution of balls for each example; that is, 
assume that the bin number is the independent variable so that x = O. 

(d) Plot histograms of the distribution of the balls with Gaussian curves with the 
means and standard deviations determined in (c). 

5.11. Write a Monte Carlo program to simulate the Pascal triangle device described in the 
previous exercise. Compare the results obtained by the two methods. 
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LEAST-SQUARES 

FITTOA 
STRAIGHT 

LINE 

6.1 DEPENDENT AND INDEPENDENT 
VARIABLES 

We often wish to determine one characteristic y of an experiment as a function 
of some other quantity x. That is, instead of making a number of measure­

ments of a single quantity x, we make a series of N measurements of the pair (Xi> yJ, 
one for each of several values of the index i, which runs from 1 to N. Our object is 
to find a function y = y(x) that describes the relation between these two measured 
variables. In this chapter we consider the problem of pairs of variables (x;, yJ that 
are linearly related to one another, and refer to data from two undergraduate labora­
tory experiments as examples. In the following chapters, we shall discuss methods 
of finding relationships that are not linear. 
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Example 6.1. A student is studying electrical currents and potential differences. He 
has been provided with a I-m nickel-silver wire mounted on a board, a lead-acid bat­
tery, and an analog voltmeter. He connects cells of the battery across the wire and mea­
sures the potential difference or voltage between the negative end and various 
positions along the wire. From examination of the meter, he estimates the uncertainty 
in each potential measurement to be 0.05 V. The uncertainty in the position of the 
probe is less than 1 mm and is considered to be negligible. 

The data are listed in Table 6.1 and are plotted in Figure 6.1 to show the poten­
tial difference as a function of wire length x. The estimated common uncertainty in 
each measured potential difference is indicated on the graph by the vertical error bars. 
From these measurements, we wish to find the linear function y(x) (shown as a solid 
line) that describes the way in which the voltage V varies as a function of position x 
along the wire. 
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Example 6.2. In another experiment, a student is provided with a radioactive source 
enclosed in a small 8-mm-diameter plastic disk and a Geiger counter with a l-cm­
diameter end window. Her object is to investigate the lIr 2 law by recording Geiger 
counter measurements over a fixed period of time at various distances from the source 
between 20 and 100 cm. Because the counting rate is not expected to vary from mea­
surement to measurement, except for statistical fluctuations, the student can record 
data long enough to obtain good statistics over the entire range of the experiment. She 
uses an automatic recording system and records counts for thirty 15-s intervals at each 
position. For analysis in this experiment, she sums the counts from each set of 30 mea­
surements to obtain the number of counts in 7.5 m intervals. The separate 15-s inter­
val measurements at each position can be used in other statistical studies. 

The data are listed in Table 6.2 and plotted against x = lIr 2 in Figure 6.2. The 
vertical error bars on the data points represent the statistical uncertainties in the mea­
sured numbers of counts and are equal to the square roots of the numbers of counts., 
The uncertainties in the measurements of the distances from the source to the counter 
were assumed to be negligible. 

Linear Approximation 

In both of these examples, the functional relationship between the dependent and in­
dependent variables can be approximated by a straight line of the form 

y(x) = a + bx (6.1) 

We shall consider in this chapter a method for determining the most probable val­
ues for the coefficients a and b. 
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FIGURE 6.1 
Potential difference as a function of position along a conducting wire (Example 6.1). The uniform 
uncertainties in the potential measurements are indicated by the vertical error bars. The straight line is 
the result of a least -squares fit to the data. 
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TABLE 6.1 

Potential difference V as a function of position along a current-carrying 
nickel-silver wire 

Potential 
Point Postition difference 

number Xj (em) Vj(V) x~ XjVj I 

1 10.0 0.37 100 3.70 
2 20.0 0.58 400 11.60 
3 30.0 0.83 900 24.90 
4 40.0 1.15 1,600 46.00 
5 50.0 1.36 2,500 68.00 
6 60.0 1.62 3,600 97.20 
7 70.0 1.90 4,900 133.00 
8 80.0 2.18 6,400 174.40 
9 90.0 2.45 8,100 220.50 --

Sums 450.0 12.44 28,500 779.30 

d = NL.XT - (L.x;)2 = (9 X 28,500) - (450)2 = 54,000 
a = (L.xJL.Vj - L.XjL.XjV;)/d = (28,500 X 12.44 - 450.0 X 779.30)/54,000 = 0.0714 
b = (NL.xjV; - L.XjL.V;)/d = (9 X 779.30 - 450.0 X 12.44)154,000 = 0.0262 
O"~ = O"~L.XTld = 0.052 X 28,500/54,000 = 0.001319 O"a = 0.036 O"~ = 0.019 
0"); = NO"~/d = 9 X 0.052 /54,000 = 0.417 X 10-6 O"b = 0.00065 O"~ = 0.00034 

Fitted 
potential 

difference 
a +bx 

0.33 
0.60 
0.86 
1.12 
1.38 
1.64 
1.91 
2.17 
2.43 

Note: A unifonn uncertainty in V of 0.05 V is assumed. A linear fit to the data, calculated by the method of detenni­
nants, gives a = 0.07 ± 0.04 V and b = 0.0262 ± 0.0006 V/cm, with X2 = 1.95 for 7 degrees of freedom. The 
X2 probability for the fit is approximately 96%. 
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FIGURE 6.2 
Number of counts in constant time intervals from a radioactive source as a function of the inverse 
distance from source to Geiger counter (Example 6.2). The vertical error bars indicate the statistical 
uncertainties in the counts. The straight line is the result of a least-squares fit to the data. 
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TABLE 6.2 

Number of counts detected in 7lJ2-min intervals as a function of distance from 
the source 

Weight 
Distance Xj = 11 dr Counts (1 1 Cn 

dj (m)' (m-2) Cj O"Cj Wj WiXi WjCj WjX7 

1 0.20 25.00 901 30.0 0.00111 0.0278 0.694 
2 0.25 16.00 652 25.5 0.00153 0.0254 0.393 
3 0.30 11.11 443 21.0 0.00226 0.0251 0.279 
4 0.35 8.16 339 18.4 0.00295 0.0241 0.197 
5 0.40 6.25 283 16.8 0.00353 0.0221 0.138 
6 0.45 4.94 281 16.8 0.00356 0.0176 0.087 
7 0.50 4.00 240 15.5 0.00417 0.0167 0.067 
8 0.60 2.78 220 14.8 0.00455 0.0126 0.035 
9 0.75 1.78 180 13.4 0.00556 0.0099 0.018 

10 1.00 1.00 154 12.4 0.00649 0.0065 0.007 
---

Sums 0.03570 0.1868 10 1.912 

O"j = ~ Wj = 1/O"T= 1/yj 
d = L.WjL.WjXT - (L.Wj x;J2 = 0.03570 X 1.912 - (0.1868)2 = 0.0334 
a = [L.WjCjL.WjxJ - L.WjXj L.WjXj C;l/d = [10 X 1.912 - 0.1868 X 81.0]/d = 119.5 
b = [L.Wj L.WjXj Cj - L.WjXj L.Wj C;l/d = [0.03570 X 81.0 - 0.1868 X lO]/d = 30.7 

O"~ = L.wjxJld = 1.912/0.0334 = 57.3 O"a = 7.6 
0"); = L.Wj/d = 0.0357010.0334 = 1.07 O"b = 1.1 

Fitted 
counts 

WjXjCj a + bXj 

25.0 887 
16.0 610 
11.1 461 
8.2 370 
6.3 311 
4.9 271 
4.0 242 
2.8 205 
1.8 174 
1.0 150 

81.0 

Note: A linear fit to the data of the function C = a + bx by the method of determinants gives a = 119 ± 8 and 
b = 31 ± 1, with X2 = 11.1 for 8 degrees offreedom. The X2 probability for the fit is about 20%. 

We cannot fit a straight line to the data exactly in either example because it is 
impossible to draw a straight line through all the points. For a set of N arbitrary 
points, it is always possible to fit a polynomial of degree N - 1 exactly, but for our 
experiments, the coefficients of the higher-order terms would have questionable sig­
nificance. We assume that the fluctuations of the individual points above and below 
the solid curves are caused by experimental uncertainties in the individual mea­
surements. In Chapter 11 we shall develop a method for testing whether higher­
order terms are significant. 

Measuring Uncertainties 

If we were to make a series of measurements of the dependent quantity Yi for one 
particular value Xi of the independent quantity, we would find that the measured 
values were distributed about a mean in the manner discussed in Chapter 5 with a 
probability of -68% that any single measurement of Yi be within 1 standard devia­
tion of the mean. By making a number of measurements for each value of the in­
dependent quantity Xi' we could determine mean values Yi with any desired 
precision. Usually, however, we can make only one measurement Yi for each value 
of X = Xi' so that we must determine the value of Y corresponding to that value of X 

with an uncertainty that is characterized by the standard deviation (J'i of the distri­
bution of data for that point. 
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We shall assume for simplicity in all the following discussions that we can as­
cribe all the uncertainty in each measurement to the dependent variable. This is 
equivalent to assuming that the precision of the determination of x is considerably 
higher than that of y. This difference is illustrated in Figures 6.1 and 6.2 by the fact 
that the uncertainties are indicated by error bars for the dependent variables but not 
for the independent variables. 

Our condition, that we neglect uncertainties in x and consider just the uncer­
tainties in y, will be valid only if the uncertainties in Y that would be produced by 
variations in x corresponding to the uncertainties in the measurement of x are much 
smaller than the uncertainties in the measurement of y. This is equivalent, in first or­
der, to the requirement at each measured point that 

dy 
(Jx dx q: (Jy 

where dy/dx is the slope of the function y = y(x). 
We are not always justified in ascribing all uncertainties to the dependent pa­

rameter. Sometimes the uncertainties in the determination of both quantities x and y 
are nearly equal. But our fitting procedure will still be fairly accurate if we estimate 
the indirect contribution (JyI from the uncertainty (Jx in x to the total uncertainty in y 
by the first-order relation 

(6.2) 

and combine this with the direct contribution (JyD' which is the measuring uncer­
tainty in y, to get 

(6.3) 

For both Examples 6.1 and 6.2 the condition would be reasonable because we pre­
dict a linear dependence of y with x. With the linear assumption, we treat the uncer­
tainties in our data as if they were in the dependent variable only, while realizing 
that the corresponding fluctuations may have been originally derived from uncer­
tainties in the determinations of both dependent and independent variables. 

In those cases where the uncertainties in the determination of the independent 
quantity are considerably greater than those in the dependent quantity, it might be 
wise to interchange the definition of the two quantities. 

6.2 METHOD OF LEAST SQUARES 

Our data consist of pairs of measurements (Xi' y) of an independent variable x and a 
dependent variable y. We wish to find values of the parameters a and b that mini­
mize the discrepancy between the measured values Yi and calculated values y(x). We 
cannot determine the parameters exactly with only a finite number of observations, 
but can hope to extract the most probable estimates for the coefficients in the same 
way that we extracted the most probable estimate of the mean in Chapter 4. 

Before proceeding, we must define our criteria for minimizing the discrep­
ancy between the measured and predicted values Yi' For any arbitrary values of a 
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and b, we can calculate the deviations LlYi between each of the observed values Yi 
and the corresponding calculated or fitted values 

LlYi = Yi - y(xJ = Yi - a - bXi (6.4) 

With well chosen parameters, these deviations should be relatively small. However, 
the sum of these deviations is not a good measure of how well our calculated 
straight line approximates the data because large positive deviations can be bal­
anced by negative ones to yield a small sum even when the fit of the function y(x) 
to the data is bad. We might consider instead summing the absolute values of the de­
viations, but this leads to difficulties in obtaining an analytical solution. Instead we 
sum the squares of the deviations. 

There in no correct unique method for optimizing the parameters valid for all 
problems. There exists, however, a method that can be fairly well justified, that is 
simple and straightforward, 'and that is well established experimentally. This is the' 
method of least squares, similar to the method discussed in Chapter 4, but extended 
to include more than one variable. It may be considered as a special case of the 
more general method of maximum likelihood. 

Method of Maximum Likelihood 

Our data consist of a sample of observations drawn from a parent distribution that 
determines the probability of making any particular observation. For the particular 
problem of an expected linear relationship between dependent and independent 
variables, we define parent parameters ao and bo such that the actual relationship be­
tween Y and x is given by 

(6.5) 

We shall assume that each individual measured value of Yi is itself drawn from a 
Gaussian distribution with mean Yo(x) and standard deviation (Ji' We should be 
aware that the Gaussian assumption may not always be exactly true. In Example 6.2 
the Yi = Ci were obtained in a counting experiment and therefore follow a Poisson 
distribution. However, for a sufficiently large number of counts Yi the distribution 
may be considered to be Gaussian. We shall discuss fitting with Poisson statistics in 
Section 6.6. 

With the Gaussian assumption, the probability Pi for making the observed 
measurement Yi with standard deviation (Ji for the observations about the actual 
value Yo (Xi) is 

P 1 { 1 [Yi - YO(xJ]2} i = exp --
(Ji~ 2 (Ji 

(6.6) 

The probability for making the observed set of measurements of the N values of Yi 
is the product of the probabilities for each observation: 

() ( 1 ) {I ~ [Yi - YO(XJ]2} P ao, bo = IIPi = II (Ji ~ exp -2: ~ (Ji (6.7) 
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where the product II is taken with i ranging from I to N and the product of the ex­
ponentials has been expressed as the exponential of the sum of the arguments. In 
these products and sums, the quantities 1/a} act as weighting factors. 

Similarly, for any estimated values of the parameters a and b, we can calculate 
the probability of obtaining the observed set of measurements 

(6.8) 

with y(x) defined by Equation (6.1) and evaluated at each of the values Xi' 
We assume that the observed set of measurements is more likely to have come 

from the parent distribution of Equation (6.5) than from any other similar distribu­
tion with different coefficients and, therefore, the probability of Equation (6.7) is 
the maximum probability attainable with Equation (6.8). Thus, the maximum­
likelihood estimates for a and b are those values that maximize the probability of 
Equation (6.8). 

Because the first factor in the product of Equation (6.8) is a constant, inde­
pendent of the values of a and b, maximizing the probability pea, b) is equivalent to 
minimizing the sum in the exponential. We define this sum to be our goodness-of­
fit parameter X2: 

(6.9) 

We use the same symbol X2, defined earlier in Equation (4.32), because this is es­
sentially the same definition in a different context. 

Our method for finding the optimum fit to the data will be to find values of a 
and b that minimize this weighted sum of the squares of the deviations X2 and 
hence, to find the fit that produces the smallest sum of the squares or the least­
squares fit. The magnitude of X2 is determined by four factors: 

1. Fluctuations in the measured values of the variables Yi' which are random sam­
ples from a parent population with expectation values Yo (x). 

2. The values assigned to the uncertainties ai in the measured variables Yi' Incor­
rect assignment of the uncertainties a i will lead to incorrect values of X2. 

3. The selection of the analytical function y(x) as an approximation to the "true" 
function Yo(x). It might be necessary to fit several different functions in order to 
find the appropriate function for a particular set of data. 

4. The values of the parameters of the function y(x). Our objective is to find the 
"best values" of these parameters. 

6.3 MINIMIZING X2 

To find the values of the parameters a and b that yield the minimum value for X2, we 
set to zero the partial derivatives of X2 with respect to each of the parameters 
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~X2 = ~ ~r~(y. - a - bX)2] 
aa aa laT 1 

=-2~r~(y. - a - bX.)] = 0 l aT 1 1 

:b X2 = aab~[~T(Yi - a - bXY] 

(6.10) 

= -2~[~T(Yi - a - bxJ] = 0 

These equations can be rearranged as a pair of linear simultaneous equations 
in the unknown parameters a and b: 

(6.11) 

The solutions can be found in anyone of a number of different ways, but, for 
generality we shall use the method of determinants. (See Appendix B.) The' solu­
tions are 

~lL ~;~ I a f 
= !(~ xT ~ lL _ ~ ~ ~ XiYi) a=- 1 1 

2 il ~XiYi ~;if il aT aT aT aT 
a f 

1 1 

1 ~ZL 
b=! 

~-:z a 2 =!(~~~XiYi_~ Xi ~lL) ai I 

il ~ Xi ~XiYi il aT aT aT aT 
a2 a2 

1 1 

(6.12) 

For the special case in which all the uncertainties are equal (a = ai), they can­
cel and the solutions may be written 

_ 1 ILYi LXi 1_ 1 ('" 2'" '" '" ) a - il' LX;)'i LXT - il' ,,:,Xi":'Yi - ,,:,Xi,,:,XiYi 

1 IN LYi I 1 b = il' LXi LX;)'i = il' (NLxiYi - LXiLyJ (6.13) 

il' = IN LXi 1= NLxf - (Lx.)2 
LXi LXY 1 1 



106 Data Reduction and Error Analysis for the Physical Sciences 

Examples 

For the data of Example 6.1 (Table 6.1), we assume that the uncertainties in the 
measured voltages V are all equal and that the uncertainties in Xi are negligible. We 
can therefore use Equation (6.l3). We accumulate four sums LXi' LYi = LVi' LXI, 
and LXiYi = LXiVi and combine them according to Equation (6.l3) to find numeri­
cal values for a and b. The steps of the calculation are illustrated in Table 6.1, and 
the resulting fit is shown as a solid line on Figure 6.1. 

Determination of the parameters a and b from Equation (6.12) is somewhat 
more tedious, because the uncertainties a i must be included. Table 6.2 shows steps 
in the calculation of the data of Example 6.2 with the uncertainties a

i 
in the num­

bers of counts Ci determined by Poisson statistics so that aT = Ci• The values of a 
and b found in this calculation were used to calculate the straight line through the 
data points in Figure 6.2. 

It is important to note that the value of Ci to be used in determining the un­
certainty a i must be the actual number of events observed. If, for example, the 
student had decided to improve her statistics by collecting data at the larger dis­
tances over longer time periods Ll ti and to normalize all her data to a common 
time interval Lltc' 

C; = C; X Lltcl Mi 

then the statistical uncertainty in C' would be given by 

a; = V""C; X MclMi 

Program 6.1. FITLI N E (Appendix E) Solution of Equations (6.11) by the deter­
minant method of Equation (6.12). 

The program uses routines in the programs units FITVARS, FITUTI L, and 
G E NUT I L, which are also used by other fitting programs. The sample programs 
use single precision variables for simplicity, although double, or higher, precision is 
highly recommended. 

Program 6.1 uses Equation (6.12) to solve both Examples 6.1 and 6.2, al­
though separate routines written for each problem would be slightly more efficient. 
Because the measurements of Example 6.1 have common errors, we could, for ex­
ample, increase the fitting speed by using Equations (6.13) rather than Equations 
(6.12). Similarly, for Example 6.2, we could simplify the fitting routine by replac­
ing the statistical errors SIGY[I] by the explicit expression for ~. However, in 
most calculations that involve statistical errors, there are also other errors to be con­
sidered, such as those arising from background subtractions, so the loss of general­
ity would more than compensate for any increased efficiency in the calculations. 

Program 6.2. FITVARS (website) Include file of constants, variables, and arrays 
for least-squares fits. 

Program 6.3. FITUTI L (website) Utility routines for fitting programs 
Input/output routine, X2 calculation, x2-density, and x2-integral probability. 

r 
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Program 6.4. G E N UTI L (website) General Utility Routines 
Includes approximate gamma function, Simpson's rule integration. 

6.4 ERROR ESTIMATION 

Common Uncertainties 

If the standard deviations a i for the data points Yi are unknown but we can assume 
that they are all equal, aT = a2

, then we can estimate them from the data and the re­
sults of our fit. The requirement of equal errors may be satisfied if the uncertainties 
are instrumental and all the data are recorded with the same instrument and on the 
same scale, as was assumed in Example 6.1. 

In Chapter 2 we obtained, for our best estimate of the variance of the data, 
sample, 

1 
a 2 = S2 == --2: (Yi - y)2 

N-m (6.14) 

where N - m is the number of degrees of freedom and is equal to the number of 
measurements minus the number of parameters determined from the fit. In Equation 
(6.14) we identify Yi with the measured value of the dependent variable, and for y, 
the expected mean value of Yi' we use the value calculated from Equation (6.1) for 
each data point with the fitted parameters a and b. Thus, our estimate ai = a for the 
standard deviation of an individual measurement is 

a2 = S2 = N ~ 2 2: (Yi - a - bx Y (6.15) 

By comparing Equation (6.15) with Equation (6.9), we see that it is just this com­
mon uncertainty that we have minimized in the least-squares fitting procedure. 
Thus, we can obtain the common error in our measurements of Y from the fit, al­
though at the expense of any information about the quality of the fit. 

Variable Uncertainties 

In general the uncertainties a i in the dependent variables Yi will not all be the same. 
If, for example, the quantity Y represents the number of counts in a detector per unit 
time interval (as in Example 6.2), then the errors are statistical and the uncertainty 
in each measurement Yi is directly related to the magnitude of Y (as discussed in Sec­
tion 4.2), and the standard deviations ai associated with these measurements is 

(6.16) 

In principle, the value of Yi' which should be used in calculating the standard 
deviations ai by Equation (6.16), is the value Yo(x;) of the parent population. In prac­
tice we use the measured values that are only samples from that population. In the 
limit of an infinite number of determinations, the average of all the measurements 
would very closely approximate the parent value, but generally we cannot make 
more than one measurement of each value of x, much less an infinite number. We 
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coul~ approximate the parent value Yo (x;) by using the calculated value y(x) from 
o~~ fIt, but th~t would complicate the fitting procedure. We shall discuss this possi­
bIlIty further m the following section. 

Contributions from instrumental and other uncertainties may modify the sim­
ple square root form of the statistical errors. For example, uncertainties in measur­
ing t~e time interval during which the events of Example 6.2 were recorded might 
contnbute, although statistical fluctuations generally dominate in counting experi­
~ents. Ba.ckground subtractions are another source of uncertainty. In many count­
mg exp~nments, there .is a background under the data that may be removed by 
subtractIOn, or may be mcluded in the fit. In Example 6.2, cosmic rays and other 
backgrounds contrib~te ~o a counting rate even when the source is moved far away 
from the detecto:, as mdIcated by the nonzero intercept of the fitted line of Figure 
6.2 on the C aXIS. If the student had chosen to record the radiation background 
counts Cb in a separate measurement and to subtract Cb from each of her measure­
ments Ci to obtain 

C; = Ci - Cb 

then the uncertainty in C' would have been given by combining in quadrature the 
uncertainties in the two measurements: 

x2 Probability 

For those data for which we know the uncertainties <Ti in the measured values y. we 
can calculate the value of X2 from Equation (6.9) and test the goodness of ou; fit. 
For our two-parameter fit to a straight line, the number of degrees of freedom will 
be N - 2. Then, for the data of Example 6.2, we should hope to obtain X2 = 10 - 2 
= 8. The actual value, X2 = 11.1, is listed in Table 6.2, along with the probability 
(p = 20%). (See Table C:.4.) We interpret this probability in the following way. 
Suppose that we have obtamed a X2 probability of p% for a certain set of data. Then, 
we should expect that, if we were to repeat the experiment many times, approxi­
mately p% of the experiments would yield X2 values as high as the one that we ob­
tained or higher. This subject will be discussed further in Chapter 11. 

In Example 6.1, we obtained a value of X2 = 1.95 for 7 degrees of freedom, 
corres~on.ding to. a probability of about 96%. Although this probability may seem to 
be gratIfymgly hIgh, the very low value of X2 gives a strong indication that the com­
mon uncertainty in the data may have been overestimated and it might be wise to 
use th.e value of X2 to obtain a better estimate of the common uncertainty. From 
EquatIOns (6.15) and (6.9), we obtain an expression for the revised common uncer­
tainty <T: in terms of X2 and the original estimate, <Tc: 

<T~2 = <Tf X X2/(N - 2) (6.17) 

or, more generally 

(6.18) 

where X~ = X21v and v is the number of degrees of freedom in the fit. Thus, for Ex­
ample 6.1, we find <T?= 0.052 X 1.95/(9 - 2) = 0.0007, or <T: = ~0.03 V. 
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Uncertainties in the Parameters 

In order to find the uncertainty in the estimation of the parameters a and b in our fit­
ting procedure, we use the error propagation method discussed in Chapter 3. Each 
of our data points Yi has been used in the determination of the parameters and each 
has contributed some fraction of its own uncertainty to the uncertainty in our final 
determination: Ignoring systematic errors, which would introduce correlations be­
tween uncertainties, the variance <T~ of the parameter z is given by Equation (3.14) 
as the sum of the squares of the products of the standard deviations <Ti of the data 
points with the effects that the data points have on the determination of z: 

(6.19) 

Thus, to determine the' uncertainties in the parameters a and b, we take the' 
partial derivatives of Equation (6.12): 

aa 1 ( 1 Xf Xj Xi) 
-=- -~---~-
a Yj Ll <TJ <Tf <TJ <Tf 

(6.20) 

ab =~(Xj ~~_~~ Xi) 
a Yj Ll <TJ <Tf <TJ <Tf 

We note that the derivatives are functions only of the variances and of the indepen­
dent variables Xi. Combining these equations with the general expression of Equa­
tion (6.19) and squaring, we obtain for <T2, 

<T~ = ~ <T~ [~ (~X~)2 _ 2; ~ X~ ~ x~ + X~ (~ X~)2] 
j=! Ll <Tj <Ti <Tj <Ti <Ti <Tj <Ti 

= ~2 [~:2(~ ;~)2_ 2~;~ ~ ;~~ ;~ + ~ ~ (~;~)2] 
J I J I I J I 

= ~2(~;~)[~:J~;~-(~;f)2] 
=i~;~ 

I 

(6.21) 

(6.22) 



110 Data Reduction and Error Analysis for the Physical Sciences 

For the special case of common uncertainties in Yi' U'i = U', these equations 
reduce to 

and 
(6.23) 

with U' given by Equation (6.15) and A' given by Equation (6.13). 
The uncertainties in the parameters U'a and U'b, calculated from the original er­

ror estimates, are listed in Tables 6.1 and 6.2. For Example 6.1, revised uncertain­
ties U'~ and U'I" based on the revised common data uncertainty calculated from 
Equation (6.18), are also listed. 

6.5 SOME LIMITATIONS OF THE 
LEAS~SQUARESMETHOD 

When a curve is fitted by the least-squares method to a collection of statistical 
counting data, the data must first be histogrammed; that is, a histogram must be 
formed of the corrected data, either during or after data collection. In Example 6.2, 
the data were collected over intervals of time At, with the size of the interval cho­
sen to assure that a reasonable number of counts would be collected in each time in­
terval. For data that vary linearly with the independent variable, this treatment poses 
no special problems, but one could imagine a more complex problem in which fine 
details of the variation of the dependent variable Y with the independent variable x 
are important. Such details might well be lost if the binning were too coarse. On the 
other hand, if the binning interval were too fine, there might not be enough counts 
in each bin to justify the Gaussian probability hypothesis. How does one choose the 
appropriate bin size for the data? 

A handy rule of thumb when considering the Poisson distribution is to assume 
that large enough = 10. A comparison of the Gaussian and Poisson distributions for 
mean IL = 10 and standard deviation U' = W (see Figures 2.4 and 2.5) shows very 
little difference between the two distributions. We might expect this because the 
mean is more than 3 standard deviations away from the origin. Thus, we may be 
reasonably confident about the results of a fit if no histogram contains less than ten 
counts and if we are not placing excessive reliance on the actual value of X2 ob­
tained from the fit. If a bin does have fewer than the allowed minimum number of 
counts, it may be possible to merge that bin with an adjacent one. Note that there is 
no requirement that intervals on the abscissa be equal, although we must be careful 
in our choice of the appropriate value of Xi for the merged bin. We should also be 
aware that such mergers necessarily reduce the resolution of our data and may, 
when fitting functions more complicated than a straight line, obscure some interest­
ing features. 

In general, the choice of bin width will be a compromise between the need for 
sufficient statistics to maintain a small relative error in the values of Yi and thus in 
the fitted parameters, and the need to preserve interesting structure in the data. 
When full details of any structure in the data must be preserved, it might be advis­
able to apply the maximum-likelihood method directly to the data, event by event, 
rather than to use the least-squares method with its necessary binning of the data. 
We return to this subject in Chapter 10. 
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There is also a question about our use of the experimental errors in the fitting 
process, rather than the errors predicted by our estimate of the parent distribution. 
For Example 6.2, this corresponds to our choosing U'T = Yi rather than U'T = y(xJ = 
a + bxi• We shall consider the possibility of using errors from our estimate of the 
parent distribution, as well as the direct application of the Poisson probability func­
tion, in the following section. 

Another important point to consider when fitting curves to data is the possi­
bility of rounding errors, which can reduce the accuracy of the results. With manual 
calculations, it is important to avoid rounding the numbers until the very end of the 
calculation. With computers, problems may arise because of finite computer word 
length. This problem can be especially severe with matrix and determinant calcula­
tions, which often involve taking small differences between large numbers. 
Depending on the computer and the software, it may be necessary to use double­
precision variables in the fitting routine. 

We discuss in Chapter 7 the interaction of parameters in a multiparameter fit. 
For now, it is worth noting that, for a nominally "flat" distribution of data, the in­
tercept obtained from a fit to a straight line may not be identical to the mean value 
of the data points on the ordinate. See Exercise 6.7 for an example of this effect. 

6.6 ALTERNATE FITTING METHODS 

In this section we attempt to solve the problem of fitting a straight line to a collec­
tion of data points by using errors determined from the estimated parent distribution 
rather than from the measurements, and by directly applying Poisson statistics, 
rather than Gaussian statistics. Because it is not possible to derive a set of indepen­
dent linear equations for the parameters with these conditions, explicit expressions 
for the parameters a and b cannot be obtained. However, with fast computers, solv­
ing coupled, nonlinear equations is not difficult, although the clarity and elegance 
of the straightforward least-squares method can be lost. 

Poisson Uncertainties 

Let us consider a collection of purely statistical data that obey Poisson statistics (as 
in Example 6.2) so that the uncertainties can be expressed by Equation (6.16). We 
begin by substituting the approximation U'T = y(x) = a + bXi into the definition of 
X2 in Equation (6.9), which is based on Gaussian probability, and minimizing the 
value of X2 as in Equations (6.10). The result is a pair of simultaneous equations that 
can be solved for a and b: 

2 
N-" Yi 

- ""-'(a + bxY 
2 

~ " XiYi 
Xi = ""-' (a + bxY 

(6.24) 

Poisson Probability 

Next, let us replace the Gaussian probability pea, b) of Equation (6.8) by the corre­
sponding probability for observing Yi counts from a Poisson distribution with mean 
lLi = y(xJ, 



I 

.1 

112 Data Reduction and Error Analysis for the Physical Sciences 

P(a, b) = II ([y(XJ]Yi e-Y(x,)) 
Yi! 

(6.25) 

and apply the method of maximum likelihood to this probability. It is easier and 
equivalent to maximize the natural logarithm of the probability with respect to each 
of the parameters a and b: 

In P(a, b) = L[Yi In y(xJ] - LY(XJ + constant (6.26) 

where the constant term is independent of the parameters a and b. The result of tak­
ing partial derivatives of Equation (6.26) is a pair of simultaneous equations similar 
to those of Equation (6.24), 

(6.27) 

but with less emphasis on fitting the larger values of Yi' 
Neither the coupled simultaneous Equations (6.24) nor the Equations (6.27) 

can be solved directly for a and b, but each pair can be solved by an iterative 
method in which values of a and b are chosen and then adjusted until the two si­
multaneous equations are satisfied. (See Appendix A.5.) 
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FIGURE 6.3 
Least-squares fit of a straight line to the data by three different methods. (i) Standard least-squares 

method with Gaussian statistics and experimental uncertainties; (ii) Gaussian statistics and analytic 

uncertainties; (iii) Poisson statistics and analytic uncertainties. The analytic errors are expressed as 

a} = a + bx j • 
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TABLE 6.3 
Comparison of fits to a selection of statistical data from Example 6.2 for three 
different fitting methods 

Inverse Number 
distance of (2) (3) 
squared counts (1) Gaussian Poisson 
Xi (m- 2) C j Standard u 2 = Y(Xi) u 2 = Y(Xi) 

1 25.00 44 32.0 36.3 35.1 
2 16.00 18 21.0 24.1 23.2 
3 11.11 17 15.1 17.5 16.8 
4 8.16 6 11.5 13.5 12.9 
5 6.25 8 9.1 10.9 10.4 
6 4.94 9 7.5 9.2 8.6 
7 4.00 9 6.4 7.9 7.4 
8 2.78 11 4.9 6.3 5.8 
9 1.78 3 3.7 4.9 4.5 

10 1.00 3 2.7 3.9 3.4 

Sums 128 114.0 134.4 128.0 
a 1.52 2.50 2.11 
b 1.22 1.35 1.32 

X2 13.7 17.6 15.5 

Note: (1) Standard least-squares method with Gaussian statistics and experimental uncertainties; (2) Gaussian statis­
tics and analytic uncertainties; (3) Poisson statistics and analytic uncertainties. The analytic uncertainties are ex­
pressed as cr2 = a + bXj. 

Example 6.3. Because we expect the methods discussed here to be equivalent to the 
standard method for large data samples, we selected a low statistics sample to emphasize 
the differences. We chose from the measurements of Example 6.2 only those events col­
lected at each detector position during the fIrst 15-s interval, a total of 128 events at ten 
different positions. The results of (i) calculations by the standard method, (ii) calcula­
tions with Gaussian statistics and with errors given by ai = y(x;) = a + bxi, and (iii) cal­
culations with Poisson statistics with errors as in method (ii) are listed in Table 6.3 and 
illustrated in Figure 6.3. We note that method (i) appears to underestimate the number of 
events in the sample, whereas method (ii) overestimates the number. Method (iii) with 
Poisson statistics and errors calculated as in method (ii) fInds the exact number. 

We can avoid questions of finite binning and the choice of statistics by mak­
ing direct use of the maximum-likelihood method, treating the fitting function as a 
probability distribution. This method also allows detailed handling of problems in 
which the probability associated with individual measurements varies in a complex 
way from observation to observation. We shall pursue this subject further in Chap­
ter 10. 

In general, however, the simplicity of the least-squares method and the diffi­
culty of solving the equations that result from other methods, particularly with more 
complicated fitting functions, leads us to choose the standard method of least 
squares for most problems. We make the following two assumptions to simplify the 
calculation: 
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1. The shapes of the individual Poisson distributions governing the fluctuations in 
the observed Yi are nearly Gaussian. 

2. The uncertainties a i in the observations Yi may be obtained from the uncertain­
ties in the data and may be approximated by aT = Yi for statistical uncertainties. 

SUMMARY 

Linear function: y(x) = a + bx. 
Chi-square: 

Least-squares fitting procedure: Minimize X2 with respect to each of the parameters 
simultaneousl y. 
Solutions for least-squares fit of a straight line: 

Estimated uniform variance S2: 

Statistical fluctuations: 

aT=Yi (raw data counts) 

Uncertainties in coefficients: 
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EXERCISES 

6.1. Fit the data of Example 6.2 as if all the data had equal uncertainties (Ii = iT = 18.5, 
where iT is the average of the given values of a. Note that the fitted parameters are in­
dependent of the value of iT, but the values of X2, (Iao and (Ib are not. 

6.2. Derive Equation (6.23) from Equations (6.21) and (6.22). 
6.3. Show that Equation (6.12) reduces to Equation (6.13) if (Ii = (I. 

6.4. Derive a formula for making a linear fit to data with an intercept at the origin so that 
Y = bx. Apply your method to fit a straight line through the origin to the following co­
ordinate pairs. Assume uniform uncertainties (Ii = 1.5 in Yi' Find X2 for the fit and the 
uncertainty in b. 

Xi 2 4 6 8 10 12 14 16 18 20 22 24 

5.3 14.4 20.7 30.1 35.0 41.3 52.7 55.7 63.0 72.1 80.5 87.9 

6.5. A student hangs masses on a spring and measures the spring's extension as a function 
of the applied force in order to find the spring constant k. Her measurements are: 

Mass (kg) 200 300 400 500 600 700 800 900 

Extension (em) 5.1 5.5 5.9 6.8 7.4 7.5 8.6 9.4 

There is an uncertainty of 0.2 in each measurement of the extension. The uncertainty in 
the masses is negligible. For a perfect spring, the extension I1L of the spring will be re­
lated to the applied force by the relation kl1L = F, where F = mg, and I1L = L - La, 
and La is the unstretched length of the spring. Use these data and the method of least 
squares to find the spring constant k, the unstretched length of the spring La, and their 
uncertainties. Find X2 for the fit and the associated probability. 

6.6. Outline a procedure for solving the simultaneous Equations (6.27). Refer to Ap­
pendixA. 

6.7. A student measures the temperature (T) of water in an insulated flask at times (t) sepa­
rated by 1 minute and obtains the following values: 

t(s) o 1 2 3 4 5 6 7 8 

T(°C) 98.51 98.50 98.50 98.49 98.52 98.49 98.52 98.45 98.47 

(a) Calculate the mean temperature and its standard error. 
(b) To test whether or not the water is cooling, plot a graph of the temperatures versus 

the time and make a least-squares fit of a straight line to the data. Is there a statisti­
cally significant slope to the graph? 

(c) Note that the intercept is not identical to the mean value of the temperature you cal­
culated in part (a). Now, shift the time coordinates by 4 s so that the mean time is 
O. Refit the data with the new values of T. Is the intercept now identical to the mean 
value of T? 

(d) Clearly, the results of this experiment cannot depend upon the time at which the 
measurements were made. Show that, if the mean value of x is equal to zero, then 
the intercept b calculated from Equation (6.13) is identically equal to the mean 
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7.1 DETERMINANT SOLUTION 

CHAPTER 

7 
LEAST-SQUARES 

FIT 
TOA 

POLYNOMIAL 

So far we have discussed fitting a straight line to a group of data points. However, 
suppose our data (Xi' Yi) were not consistent with a straight line fit. We might con­
struct a more complex function with extra parameters and try varying the parame­
ters of this function to fit the data more closely. A very useful function for such a fit 
is a power-series polynomial 

(7.1) 

where the dependent variable Y is expressed as a sum of power series of the inde­
pendent variable X with coefficients al> a2, a3, a4, and so forth. 

For problems in which the fitting function is linear in the parameters, the 
method of least squares is readily extended to any number of terms m, limited only 
by our ability to solve m linear equations in m unknowns and by the precision with 
which calculations can be made. We can rewrite Equation (7.1) as 

(7.2) 
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where the index k runs from 1 to m. In fact, we can generalize the method even fur­
ther by writing Equation (7.2) as 

m 

y(x) = ~ akh(x) (7.3) 
k=] 

where the functionsfk(x) could be the powers of X as in Equation (7.2),f](x) = 1, 
fzCx) = X,f3(X) = x2, and so forth, or they could be other functions of x as long as 
they do not involve the parameters aj, a2, a3, and so forth. 

With this definition, the probability function of Equation (6.8) can be written as 

and Equation (6.9) for X2 becomes 

(7.5) 

The method of least squares requires that we minimize X2, our measure of the 
goodness of fit to the data, with respect to the parameters at> a2' a3, and so forth. The 
minimum is determined by taking partial derivatives with respect to each parameter 
in the expression for X2 of Equation (7.5), and setting them to zero: 

_ {fi(Xi ) [ m ]} --2~ -2 Yi-~adk(xJ =0 
. cr, k=] 

(7.6) 

Thus, we obtain a set of m coupled linear equations for the m parameters ai' with the 
index I running from 1 to m: 

or 

(7.7) 

and so forth. 
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The solutions can be found by the method of determinants, as in Chapter 6. 
We shall display the full solution for the particular case of m = 3: 

(7.8) 

L-f1(xJfl (Xi) L- f1 (xJf2(XJ L- fl(XJ 
(T2 

Yi 2 (Tf (Ti I I 

1 L- f2(XJfl (xJ L- f2(XJf2(XJ L- fixJ a3 =- (Tf Yi 2 Ll (T2 (Ti I I 

L-f3(XJfl(XJ L-f3(XJf2(XJ L- f3(XJ 
Yi 2 

(T2 (Tf (Ti I I 

with 

We note that, as in the straight-line fits in Chapter 6, the denominator Ll is a func­
tion only of the independent variable X and the unc~rtaintie~ (Ti in the depend~nt 
variable, and is not a function of the dependent variable Yi Itself. For the special 
case of a quadratic power series in x, Y(Xi) = al + a2xi + a3xJ, we havefl(x;) = 1, 
fix;) = Xi' andf3(xi) = X2, so that Equations (7.8) become 

with 
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1 x· Xf 
L-Yiz L- (T~ L- (T/? 

(Ti I I 

1 x· X2 3 

al =:i L-Yi~ L- (T/? L- Xi 
(Ti (T? 

I I 

X2 X~ 4 

L-Yi~ L- (T~ L-~ 
(Ti (T2 

I I 

1 1 x? 
L- (T2 L-Yiz L- (Tlf 

I (Ti I 

1 x· X· 3 

a2 =- L- (T~ L-Yi~ L-~ (7.9) 
Ll (Ti (T2 

I I 

X2 X2 4 

L- (T~ L-Yi~ L- Xi 
(Ti (T2 

I I 

1 x· 1 
L- (T2 L- (T~ L-Yiz 

I I (Ti 

1 x· 2 X· 
a3 =:i L- (T~ L-~ L-Yi~ (T2 (Ti I I 

X2 3 X2 

L- (T~ L- Xi L-Yi~ (T2 (Ti I I 

1 L- Xi 
2 

L- (T2 
L-~ 

(T2 (T? 
I I I 

X· Xf X~ 
Ll= L- (T~ L- (T/2 L- (T~ 

I I I 

X2 X3 4 

L- (T; L- (T~ L- Xi 
(T? 

I I I 

Example 7.1. A student plans to use a thermocouple to monitor temperatures and must 
first calibrate it against a thermometer. The thermocouple consists of a junction of a cop­
per wire and a constantan wire. In order to measure the junction voltage with high pre­
cision, she connects the sample junction in series with a reference junction that is held at 
O°C in an ice water bath. The data, therefore, will be valid only for calibrating the 
relative variation of the junction voltage with temperature. The absolute voltage must 
be determined in a separate experiment by measuring it at one specific temperature. 

The student measures the difference in output voltage between the two junctions 
for a temperature variation in the sample junction from 0 to 100°C in steps of SoC. The 
measurements are made on the 3-m V scale of the voltmeter, and fluctuations of the 
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TABLE 7.1 
Experimental data for the determination of the relative output 
voltage V of a thermocouple junction as a function of temperature 
T of the junction 

Trial Temperature 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

al = -0.918 ± 0.030 
a2 = 0.0377 ± 0.0013 

TeC) 

O. 
5. 

10. 
15. 
20. 
25. 
30. 
35. 
40. 
45. 
50. 
55. 
60. 
65. 
70. 
75. 
80. 
85. 
90. 
95. 

100. 

a3 = 0.000055 ± 0.000013 

Measured Calculated 
voltage voltage 
V (mV) VeT) (mV) 

-0.849 -0.918 
-0.738 -0.728 
-0.537 -0.536 
-0.354 -0.341 
-0.196 -0.143 
-0.019 0.058 

0.262 0.261 
0.413 0.467 
0.734 0.676 
0.882 0.888 
1.258 1.102 
1.305 1.319 
1.541 1.539 
1.768 1.761 
1.935 1.987 
2.147 2.215 
2.456 2.446 
2.676 2.679 
2.994 2.915 
3.200 3.155 
3.318 3.396 

Note: The common uncertainty in the voltage measurement is assumed to be 0.05 V. The value of X2 

for the fit was X2 = 26.6 for 18 degrees of freedom, with a probability of 8.8%. Parameters obtained 
from the fit are listed at the bottom of the table. 

needle indicate that the uncertainties in the measurements are approximately 0.05 m V 
for all readings. 

Data from the experiment are listed in Table 7.1 and are plotted in Figure 7.1. 
To a first approximation, the variation of V with T is linear, but close inspection of 
the graph reveals a slight curvature. Theoretically, we expect a good fit to these data 
with a quadratic curve ofthe form V = QI + Q2T + Q3T2. 

The parameters for the fit to the data of Example 7.1 have been obtained by 
evaluating the sums and determinants of Equations (7.9). For a second-degree poly­
nomial with 21 data points, Equation (7.5) becomes 

21 1 
X2 == ~ 2" [Yi - QI - Q2X i - Q3x t]2 

i= 1 ai 
(7.10) 
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FIGURE 7.1 
Thermocouple voltage versus temperature (Example 7.1). The curved line was calculated by fitting to 
the data second-degree polynomial V = al + a2T + a3T2 by the least-squares method. Uniform 
uncertainties were assumed. 

The values of X2 and the parameters Qio Q2, and Q3 determined from the fit are 
listed in Table 7.1, as are the calculated values of V(TJ = y(xJ. The calculated val­
ues of V are also represented by the solid line on the graph of Figure 7.1. We obtain 
X2 = 26.6 for this fit, or x; = X21v = 1.5, where the number of degrees of free­
dom v is related to the number of events N and the number of free parameters m by 
v = N - m. The probability for obtaining X2 this high or higher can be determined 
from the x2-probability distribution (see Table C.4) and is about 8.8%, indicating a 
reasonable fit to the data. 

As an alternative to calculating X2 from the fit, we could extend Equation 
(6.15) to three parameters and calculate the average uncertainty in the temperature 
readings to obtain 

(7.11) 

which is just the value of the uncertainty that would make X~ = 1. For Example 7.1, 
we obtain for an estimate of the variance, 

a'2 = a 2 X X2/(N - n) = 0.05 X 26.6/18 = 0.06°C 

suggesting, perhaps, that the student slightly underestimated the uncertainty in her 
measurements of V. 
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7.2 MATRIX SOLUTION 

The techniques of least-squares fitting fall under the general.name. of regre~s~on 
analysis. Because we have been considering only problems m WhICh the fIttmg 
function 

m 

y(xJ = L adiJxi) (7.12) 
k=1 

is linear in the parameters ak' we are considering only linear regression or multiple 
linear regression, usually shortened to multiple regression. In Chapter 8 ~e de~l 
with techniques for handling problems with fitting functions that are not lInear m 
the parameters. 

Matrix Equations 

We have not yet determined the uncertainties in the three parameters we obtai~ed 
when we fitted the second-order equation to the data of Example 7.1. We could fmd 
the uncertainties by extending the method used for the linear fits of Examples 6.1 
and 6.2. However, the algebra becomes even more tedious as the number of terms 
in the fitted equation increases, and in fact, our method only yielded estimates of the 
variances 0"2 and not of the covariances 0" lb which are often important for fitted pa­
rameters. R~ther than pursue the determinant method, we shall discuss immediately 
the more elegant and general matrix method for solving the multiple regression 
problem. Some of the properties of matrices are discussed in Appendix B. 

Equations (7.7) can be expressed in matrix form as the eqUIvalence between a 
row matrix 13 and the product of a row matrix a with a symmetric matrix a, all of 
order m: 

13 = aa 

The elements of the row matrix 13 are defined by 

[3k== L [:rYJk(X;)] 

those of the symmetric matrix a by 

(Xlk == L [:r!t(XJfk(X;)] 

(7.13) 

(7.14) 

(7.15) 

and the elements of the row matrix a are the parameters of the fit. For m = 3, the 
matrices may be written as 

13 = [[31 [32 [33] a = [a1 a2 a3] (7.16) 

and 

r a" 
(Xl2 an] 

a = (X21 (X22 (X23 
(X31 (X32 (X33 

(7.17) 

Least-Squares Fit to a Polynomial 123 

To solve for the parameter matrix a we multiply both sides of Equation (7.13) 
on the right by the inverse e of the matrix a, defined such that ae = aa- l = 1, the 
unity matrix. We obtain 

l3e = aae = a 

which gives 

a = l3e = l3a- 1 

Equation (7.19) can also be expressed as 

al = ~1([3kEkl) = ~1 {EkIL[:rYJk(X;)]} 

where the [3k is given by Equation (7.14). 

(7.18) 

(7.19) 

(7.20) 

The solution of Equation (7.19) requires that the matrix a be inverted. This 
generally is not a simple procedure, except for matrices of very low order, but com­
puter routines are readily available. The inversion of a matrix is discussed in Ap­
pendix B. 

The symmetric matrix a is called the curvature matrix because of its relation­
ship to the curvature of the X2 function in parameter space. The relationship be­
comes apparent when we take the second derivatives of X2 with respect to the 
parameters. From Equation (7.6), we have for the partial derivative of X2 with re­
spect to any arbitrary parameter ai' 

aX2 = -2L{!t(~;) [Yi - fakfk(X;)]} (7.21) 
aal O"i k=1 

and the second cross-partial derivative with respect to two such parameters is 

a
2

X2 _ [ 1 ~ _ -a' a - 2L --Z!t(X;)fk(X;) - 2(Xlk 
al ak O"i 

(7.22) 

Estimation of Errors 

The variance O"~, of any parameter al is the sum of the variances of each of the data 
points O"i multiplied by the square of the effect that each data point has on the deter­
mination ofthe parameter al [see Equation (6.19)]. Similarly, the covariance of two 
parameters aj and al is given by 

0"2 = [0"2 aaj aal] 
aja, L 'a a Yi Yi 

(7.23) 

(which also gives the variance for j = l), where we have assumed that there are no 
correlations between uncertainties in the measured variables Yi' Taking the deriva­
tives in Equation (7.23) of al with respect to Yi we obtain 

aal m l 1 ~ a. = L Elk 0"2fk(x;) y, k=1 , 
(7.24) 
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and, substituting into Equation (7.23), we obtain for the weighted sum of the 
squares of the derivatives, 

a;ja/ = L{aT ~ [Ejklfk(Xi)] ~ [EIP a1.t;,(XJ]} 
k=1 a, p=1 , 

= l;1 {Ej\~JEIPL(:T.t;,(XNk(Xi))]} 
= l;1 {Ejkp~I[EIP . exPkJ} 

m 

= L [Ekj . lid = Ejl 
k=1 

(7.25) 

where we have switched the order of the sums over the dummy indices i, k, and l 
and have used the fact that because the curvature matrix a is symmetric, its inverse 
E must also be symmetric, so that Ekj = Ejk' The elements of the unity matrix, which 
result from the summed products of the elements of a with its inverse E, are repre­
sented by 11k, 

The inverse matrix E == a-I is called the error matrix or the covariance matrix 
because its elements are the variances and covariances of the fitted parameters 

a~a/ = Ejl' 
Example 7.2. The matrix method is illustrated by a straight-line fit V = al + a2Tto 
a selection of data from Example 7.1. To show clearly each step of the calculation, we 
have selected just six points spaced at 25° intervals between 0 and 100° and have as­
sumed a common uncertainty in the dependent variable <Tv = 0.05 mY. The data are 
listed in the columns 2 and 3 of Table 7.2a. 

We begin by calculating each of the fitting functions II = 1 and 12 = x at each 
value of the independent variable T. These are listed in columns 4 and 5 of Table 7.2a. 
For each measured value of x, the values of ~b the elements of the column matrix 13, 
and of Ctlb the elements of the symmetric matrix ex, are calculated according to Equa­
tions (7.14) and (7.15). The individual terms in the calculation of ~I and ~2 are listed 
in columns 6 and 7 of Table 7.2a and the individual terms in the calculation of Ctlk are 
listed in columns 8 through 10. (We assume symmetry in ex.) The resulting matrices 
are displayed in Table 7.2h. 

The symmetric matrix ex is inverted to obtain the variance matrix e with elements 
Ekl, shown in Table 7.2h, and the product matrix of the fitted parameters a = pe is cal­
culated and displayed in Table 7.2h. The calculated values of the fitted variable V for 
each value of the independent variable T are listed in the last column of Table 7.2a. 

Program 7.1. M U L TR EG R (Appendix E) Least-squares fitting with matrices. 
Multiple regression problems are usually solved by computer. The program 

M U L T REG R calls a set of routines for fitting any function that is linear in the pa­
rameters aI, ab ... , am to a set of N data points. Branches in the program on the char­
acter variable PAE permit selection of the fitting function for each example in this 
chapter, with PAE = 'p' for the power series in x, PAE = 'A' for all terms of a 
fourth-order Legendre polynomial, or PAE = 'E' for only the even terms in the Le­
gendre polynomial. The program uses several program units in addition to those re­
ferred to in Chapter 6. 
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TABLE 7.2 

Matrix solution for linear fit to data of Example 7.2 

(a) Data and components of matrix elements 

T V fl(Xi) fz(x;) /31 /32 an a12 a22 VIit 

I 0 -0.849 0 -339.6 0 400 0 0 -0.947 
2 20 -0.196 20 -78.4 -1,458 400 8,000 160,000 -0.101 
3 40 0.734 40 293.6 11,744 400 16,000 640,000 0.745 
4 60 1.541 60 616.4 36,984 400 24,000 1,440,000 1.590 
5 80 2.456 80 982.4 78,592 400 32,000 2,560,000 2.436 
6 100 3.318 100 1327.6 132,720 400 40,000 4,000,000 3.281 

2802.0 258,472 2,400 120,000 8,800,000 

(b) Matrices 

[ 2,400 120,000 J 
a = 120,000 8,800,00 

_ [ 1.310 X 10-03 

e - -1.786 X 10-05 
-1.786 X 1O-05J 

3.571 X 10-07 

/3 = [2,802 258,472J a = [-0.947 0.0423] 

Note: The uniform uncertainty in V was assumed to be 0.05 mV as in Example 7.1. The columns labeled 13. and Olll' 

etc. correspond to the individual contributions by each measured coordinate pair to the summed values of 13 and Ol. 

The value of X' for the fit was 9.1 for 4 degrees of freedom corresponding to a probability of 5.5%. 

Program 7.2. FITFu Nc7 (Appendix E) Fitting functions and X2 calculation. 
In general, every fitting problem requires such a routine. The function 

POWERFu NC calculates the individual terms in a power function of any order in 
x for Example 7.2, or Legendre polynomials for Example 7.3. 

Program 7.3. MAKEAB7 (Appendix E) Form the arrays for the matrices a and p. 

Program B.1. MATRIX (Appendix E) Matrix products and inversion. 

When we use the matrix method to fit a polynomial function to a data sample, 
the resulting parameters must be identical to those calculated by the determinant 
method, but we also obtain the full error matrix. The error matrix obtained by fitting 
a second-degree polynomial to the complete data sample of Example 7.1 is listed in 
Table 7.3. 

The error matrix can be used to estimate the uncertainty in a calculated result, 
including the effects of the correlations of the errors. As an example, let us suppose 
that we wish to find the predicted value of the voltage V and its uncertainty for a 
temperature of exactly 80°C. We should calculate 

(7.26) 

using the parameters determined by the fit to the data. The uncertainty in the calcu­
lated value of V, which results from the uncertainty in the parameters, is given by 
Equation (3.13), 
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[ 

8.907 x 10-04 

-3.473 X 10-05 

2.823 X 10-07 

-3.473 X 10-05 

1.913 X 10-06 

-1.783 X 10-08 

2.823 x 10-07
] 

-1.783 x 10-08 

1.783 x 10- IO 

Note: The table gives the variances and covariances of the fitted parameters. The values of the parame­
ters and of X2 are listed in Table 7.1. 

S2 = (aV)2 (TT + (aV)2(T~ + (aav)Z (T~ 
aa] aaz a3 

( avav) 2 2(av av) 2 + 2(av av) 2 + 2 -- (TIZ + - (Tl3 (T23 aa] aaz aa] aa3 aaz aa3 
= 1 . Ell + T Z • E22 + T4 . E33 + 2(T . E]2 + T Z 

. El3 + T3 . EZ3) 

(7.27) 

where ElZ and so on are the covariant terms in the symmetric error matrix. If we 
used only the diagonal terms in the error matrix, our result w~uld be ~ = (2:45 
± 0.14) V. However, the off-diagonal terms are mainly negatIve, and lllcludlllg 
them reduces the uncertainty by almost a factor of 10 to 0.015, so that we should 
quote V = (2.45 ± 0.02) v. 

Linear Least-Squares Fitting with a Spreadsheet 

Table 7.4 illustrates the use of a spreadsheet (without taking advantage of the 
spreadsheet's built-in least-squares fitting routine) to fit a straight line to the data of 
Example 7.2 by the matrix method. We entered the data in columns labeled T, V, 
and (Tv and calculated component terms to be summed for 131' 132' and au, a12' and 
a in the labeled columns using the indicated equations. We summed each a col-22 l' umn to form the elements of the square matrix a, and the 13 columns to form the lll-
ear matrix 13. The spreadsheet's matrix-handling routines were applied to invert t~e 
a-matrix to form the E-matrix, and to multiply E by 13 to find the parameter matnx 
a. Uncertainties in the parameters were calculated from the square roots of the di­
agonal terms in the E-matrix. Although we used absolute cell addresses to illustrate 
the procedure, we could have simplified the calculation by naming the arrays of 
cells and using the array-handling capabilities of the spreadsheet. 

It may seem inefficient to write a program to solve such a simple problem, 
which most spreadsheets can handle with ease. However, there are advantages. 
First, it would be relatively easy to expand the program to fit more parameters, or to 
fit a series of functions more complicated than simple powers of the independent 
variable. A second advantage is that the solution provides the full error matrix. 
While most fitting programs should provide the uncertainties in the fitted pa~ame­
ters, the covariances may not be available. In some problems, they are essentIal. 

We used Quatro Pro for this example, but the procedure with Excel is similar. 
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TABLE 7.4 

Matrix solution by spreadsheet calculation for linear fit to data of 
Example 7.2 

(a) Data and components of the matrix elements and sums 

Yeale 

Column Equations 

0 -0.849 0.050 -339.6 0 400 0 0 -0.947 
20 -0.196 0.050 -78.4 -1,568 400 8,000 160,000 -0.101 
40 0.734 0.050 293.6 11,744 400 16,000 640,000 0.745 
60 1.541 0.050 616.4 36,984 400 24,000 1,440,000 1.590 
80 2.456 0.050 982.4 78,592 400 32,000 2,560,000 2.436 

100 3.318 0.050 1327.2 132,720 400 40,000 4,000,000 3.281 

SUMS 2801.6 . 258,472 2400 120,000 8,800,000 

(b) Matrices and fitted coefficients with uncertainties 
(Quatro Pro matrix algebra used to calculate E and a) 

Ol E 

l 2400 
120000 

120000 J 
8800000 

l1.3lOE-03 
-1.786E-05 

-1.786E-05 J 
3.571E-07 

J3 a 
12801.6 2584721 [ -0.947 0.0423] 

(T. 

X2 = 9.13 10.036 0.0061 

7.3 INDEPENDENT PARAMETERS 

3.81 
3.61 
0.04 
0.97 
0.16 
0.54 

9.13 

Suppose we take the data of Example 6.1 or Example 6.2 and fit to them the qua­
dratic polynomial function y = a] + a2x + a3x2 as we did for Example 7.1. We 
should expect to find a rather small and possibly meaningless result for the coeffi­
cient a3 of the quadratic term, but, because a3 was not set equal to zero by definition, 
as in the analysis of Chapter 6, we might also find that the values of a] and a2 have 
changed, sometimes considerably, from the values obtained in the linear fit. In gen­
eral, the polynomial fitting procedure that we have considered will yield values for 
the coefficients that depend on the degree of the polynomial fitted to the data. 

This interdependence arises from the fact that we have specified our coordi­
nate system without regard to the region of parameter space from which our data 
points are extracted. The value of a] represents the intercept on the ordinal axis, the 
coefficient az represents the slope at this same point, and other coefficients repre­
sent higher orders of curvature at this same intercept point. If the data are not clus­
tered about this intercept point, its location might be highly dependent on the 
polynomial used to fit the data. 

We might be able to extract more meaningful information about the data if we 
were to determine instead coefficients a;, a2' a3, and so forth, which represent the 
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average value, the average slope, the average curvature, and so forth, of the data. 
Such coefficients would be independent of our choice of coordinate system and 
would represent physical characteristics of the data that are independent of the de­
gree of the fitted polynomial. 

Orthogonal Polynomials 

We want to fit the data to a function that is similar to that of Equation (7.1) but that 
yields the desired independence of the coefficients. The appropriate function to use 
is the sum of orthogonal polynomials, 1 which has the form 

y(x) = al + aix - 13) + a3(x - )'1) (x - )'2) (7.28) 
+ a4(x - 8 1)(x - 82) (x - 83) + ... 

Following the development of Section 7.1, we must minimize X 2 to determine the co­
efficients aI' a2, a3, a4, and so on, with the further criterion that the addition of higher­
order terms to the polynomial will not affect the evaluation of lower-order terms. This 
criterion will be used to determine the extra parameters 13, )'1' )'2, and so on. 

The goodness-of-fit parameter X2 is defined as 

X2 == L [~i]2 = L [:T [Yi - Y(Xi)J2] (7.29) 

Setting the derivatives of X2 with respect to each ofthe m coefficients aI' a2, and so 
forth to 0 yields m simultaneous equations 

LYi = Nal + a2L(xi -13) + a3 L(xi - )'1) (xi - )'2) 

+ a4L(xi - 81) (Xi - 82) (Xi - 83) + ... 

L XiYi = alLxi + a2 Lxi(xi - 13) + a3 LxJxi - )'1) (Xi - )'2) 

+ a3LxJxi - 81)(Xi - 82)(Xi - 83) + ... 

LXTYi = alLxT + a2LxT(xi -13) + a3 LxT(xi - )'1) (Xi - )'2) 

+ a4LxT(xi - 81) (Xi - 82) (Xi - 83) + ... 

LxfYi = al Lxf + a2Lxf(xi - 13) + a3 Lxf(xi - )'1) (Xi - "/2) 

+ a4Lxf(xi - 81) (Xi - 82) (Xi - 83) + ... 

where we have omitted a factor of cry in the denominator for clarity. 

(7.30) 

(7.31) 

(7.32) 

(7.33) 

lAny polynomial such as that of Equation (7.1) can be rewritten as a sum of orthogonal polynomials 

y=a+ i[bjjj(x.)] 
j~l 

with the orthogonal property that L[fj(X;)fk(X;)] = 0 for j * k. 
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Additional Parameters 

Let us examine Equation (7.30). If we restrict ourselves to a zeroth-degree polyno­
mial, that is, to only one coefficient aj, all the other coefficients are equal to 0 by de­
finition. The coefficient aj, therefore, is specified completely by the first term on the 
right-hand side of Equation (7.30): 

1 
al = 'it L Yi = Y (7.34) 

If we restrict ourselves to a first-degree polynomial, the coefficient a2 of the second 
term of Equation (7.30) is not O. However, if ar is to be independent of the value of 
a2, the second term itself must be O. Hence, the requirement that 

leads to the value for 13, 

(7.35) 

and a2 can be determined directly from Equation (7.31) by substituting the values of 
al and 13 with higher-order coefficients (a3, a4, etc.) set to O. 

Similarly, if we consider a quadratic function, the third term of Equation 
(7.30) must be 0 even when the coefficient a3 is not O. This constraint leads to a qua­
dratic equation in )'1 and "12 that is not sufficient to specify either parameter. We 
have the additional constraint, however, that the coefficient a2 must be specified 
completely by Equations (7.30) and (7.31). Thus, the third term in both Equations 
(7.30) and (7.31) must be 0 regardless of the value ofthe coefficient a3, and we have 
two simultaneous quadratic equations for the parameters )'1 and )'2, 

and 

Similarly, the coefficient a3 must be determined completely by Equation (7.32) (and 
the predetermined values of al and a2), and this constraint yields three simultaneous 
equations for the parameters 81, 82, and 83: 

L (Xi - 81) (Xi - 82) (Xi - 83) = 0 

L XJXi - 81) (Xi - 82) (Xi - 83) = 0 

LXT (Xi - 81) (Xi - 82) (Xi - 83) = 0 

(7.37) 

The extrapolation to higher order is straightforward. (Note that these additional pa­
rameters are functions only of the independent variable Xi') 

Estimates of the Coefficients 

Once the parameters 13,)',8, and so on have been determined by the constraint equa­
tions, estimates of the coefficients aj, a2, and so on can be found from the resulting 
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n + 1 simultaneous equations. The value for the first coefficient al is specified com­
pletely by minimizing X2 with respect to al in Equation (7.30) and is given in Equa­
tion (7.34). The value of the second coefficient a2 is determined by minimizing X2 
with respect to both al and a2 in Equations (7.30) and (7.31) and substituting the 
value of al from Equation (7.34) into Equation (7.31). Similarly, the value of a3 can 
be determined from Equation (7.32) after substituting the values of al and a2 deter­
mined from Equations (7.30) and (7.31). Each succeeding equation yields a value for 
the next higher-order coefficient. 

Note that the value determined for any coefficient is thus independent of the 
value specified for any higher-order coefficient, but is not independent of the value 
of lower-order coefficients. The parameters, representing our best estimates of the 
coefficients, are given by 

and so forth. 

Simplification 

1 _ 
al =NLYi=Y 

LYi(Xi -13) 

L(Xi -13)2 

LyJXi - 1'1) (Xi - 1'2) 

L [(Xi - 1'1) (xi - 1'2)]2 

L yJXi - ( 1) (Xi - ( 2) (Xi - ( 3) 

L [(Xi - 8J) (Xi - ( 2) (Xi - (3)]2 

(7.38) 

For the general case of arbitrarily chosen data points (Xi' Yi), this procedure is cum­
bersome even with computer techniques because it requires the solution of coupled, 
nonlinear equations. There is, however, a special type of data for which the calcula­
tions can be considerably simplified, namely, data that meet the following two cri­
teria: (1) the independent variables Xi are equally spaced, and (2) the uncertainties 
are constant, O'i = 0', and can therefore be ignored. 

Consider the experiments of Examples 6.1 (measurement of temperature ver­
sus position) and 7.1 (voltage versus temperature). Those data satisfy the required 
conditions and, therefore, we could use a simplified method of independent para­
meters to obtain a fit. The resulting values ofthe coefficients for these particul~ ex­
periments might not have any great physical significance (that is, aJ = T the 
average temperature of the data points in Example 6.1 is not a particularly useful 
number), but by using this technique of fitting orthogonal polynomials we could try 
fitting higher-degree polynomials without changing the values of the coefficients al­
ready calculated for a straight-line or quadratic fit. The experiment of Example 6.2 
(the decay of a radioactive state) fulfills only the first of the two criteria, because the 
X data points are equally spaced but the uncertainties are statistical, so that we can-
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not ignore the factor of O'T that belongs in the denominators of the fitting Equations 
(7.30) through (7.33). 

For an experiment similar to that of Example 7.1, where we have made N 
measurements of equally spaced values of the independent variable X ranging from 
Xl to XN in steps of d, 

d =Xi+1 +Xi 

and the uncertainties are due to instrumental errors with a common standard devia­
tion O'i = 0', Equations (7.35) through (7.37) reduce to 

1 1 
13 = N LXi = X = 2 (Xi - xn) 

I' = 13 ± )~ L(Xi -13)2 = 13 ± d) 112 (N2 - 1) (7.39) _ 

A more comprehensive list of parameters for orthogonal polynomials can be found 
in Anderson and Houseman (1942). 

Table 7.5 shows coefficients aj, a2, a3, and a4 as well as the values of X2 and 
the x2-probability obtained when we fit the data of Example 7.1, by the standard 
least-squares method and by the independent parameter method of Equation (7.39). 
We have made separate fits with first-, second-, and third-degree polynomials 
(m = 2, 3, and 4). As expected, adding extra terms does not change the values of the 
lower-order coefficients obtained by the independent parameter method and there­
fore we display them only once in Table 7.5. There is a marked improvement in X2 
in going from the two-parameter (linear) fits to three-parameter (quadratic) fits. 
Unless a theoretical reason dictates that our data should follow a cubic distribu­
tion, there is no justification in making a four-parameter (cubic) fit to these data, be­
cause the value of X2 for m = 3 is satisfactory (26.6 for 18 degrees of freedom, 

TABLE 7.5 

Values of X2 and parameters obtained by fitting the data of Example 7.1 by 
the standard least-squares method and by the method of independent 
parameters, as a function of the number of parameters m of the fit 

Standard least squares 
Independent 

m 2 3 4 parameters 

X2 43.5 (0.12%) 26.6(8.8%) 24.9(9.4%) 
a l -1.01 ± 0.02 (-0.92 ± 0.03) (-0.89 ± 0.03) 1.15 
a2 (4.31 ± 0.04)10-2 (3.8 ± 0.1)10-2 (3.4 ± 0.3)10-2 4.31 X 10-2 

a3 (5.5 ± 1.3)10-5 (1.5 ± 0.8)10-4 5.49 X 10-5 

a4 (-6.5 ± 5.1)10-7 6.51 X 10-7 

Note: The values of X' are the same for both methods. The numbers in parentheses correspond to the X' probability 
for the fit with 21-m degrees of freedom. 
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corresponding to P = 8.8%), and adding more terms does not improve the fit. If a 
cubic function had been predicted by theoretical considerations, we should be ob­
ligated to say that our data are not sensitive to the presence of a cubic term. 

Legendre Polynomials 

Although the method of fitting to orthogonal polynomials outlined in the previous 
section can be tedious, there are predefined sets of orthogonal polynomials that are 
often useful in fitting data. One important set is the Legendre polynomials 

where x = cos e and the terms PL(X) in the function are given by 

Po(x) = 1 

Pl(X) = x 
P2(x) = Vz(3x2 - 1) 
P3(x) = Y2 (5x3 - 3x) 

and higher-order terms can be determined from the recursion relation 

1 
PL(x) = L [(2L - 1)XPL- 1(X) - (L - l)PL-ix)] 

(7.40) 

(7.41) 

(7.42) 

Legendre polynomials are orthogonal when averaged over all values of x = cos e: 

i I [P ( )P ( ) d = {2/(2L + 1) for L = M (7.43) 
-I L x M X X 0 for L *" M 

Example 7.3. Let us consider an experiment in which l3C is bombarded by 4.5-Me V 
protons. In the subsequent reaction, some of the protons are captured by the l3C nu­
cleus, which then decays by gamma emission, producing gamma rays with energies up 
to 11 MeV. A measurement of the angular distribution of the emitted gamma rays gives 
information about the angular momentum states of the energy levels in the residual nu­
cleus 14N. 

Table 7.6 lists simulated data for this experiment. Gamma ray counts were 
recorded at 17 angles from 0 to 160°. Columns 1 through 4 list the angles at which the 
measurements were made, the cosine of the angle (x = cos e), the measured number 
of counts (Ci), and the uncertainties (J c, in the counts. The uncertainties are assumed to 
be purely statistical. These data are plotted in Figure 7.2 as a function of the angle e. 
There appears to be symmetry around e = 90°, and consideration of the reaction 
process predicts that the data should be described by a fourth-order Legendre polyno­
mial with only even terms: 

(7.44) 

Let us apply the matrix method of least squares of Section 7.2 to this problem to 
fit the series of Legendre polynomials of Equation (7.41) to these data. We shall first 
fit a fourth-order Legendre polynomial that includes both odd and even terms. The fit­
ting function is of the form 

(7.45) 

which is linear in the fitting parameters, the coefficients ai. 
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~n~ular distribution of gamma rays emitted from the simulated reaction l3e (p, ')')14N produced by 
InCIdent protons at Ep = 4.5 MeV (Example 7.3). The calculated curve represents a fit to the data of a 
series of even Legendre polynomials up to L = 4. Statistical uncertainties were assumed. 

TABLE 7.6 

Angular distribution of gamma rays emitted in the reaction 13C(p, ')')14N 
produced by incident protons at E p = 4.5 MeV 

e ci Yi Yi 
(degrees) x=cose counts (Je, all terms even term 

0 1.000 1400 37.4 1365.8 1361.3 
10 0.985 1386 37.2 1325.2 1321.1 
20 0.940 1130 33.6 1217.0 1213.9 
30 0.866 1045 32.3 1075.8 1074.5 
40 0.766 971 31.2 943.5 944.4 
50 0.643 862 29.4 852.5 855.6 
60 0.500 819 28.6 813.9 818.6 
70 0.342 808 28.4 816.9 821.9 
80 0.174 862 29.4 836.5 840.2 
90 0.000 829 28.2 848.6 849.6 

100 -0.174 824 28.7 842.8 840.2 
110 -0.342 839 29.0 827.5 821.9 
120 -0.500 819 28.6 825.4 818.6 
130 -0.643 901 30.0 861.0 855.6 
140 -0.766 925 30.4 945.7 944.4 
150 -0.866 1044 32.3 1069.8 1074.5 
160 -0.940 1224 35.0 1202.9 1213.9 

Note: The calculat~d numbers of counts were obtained from least -squares Legendre polynomials fits to the data of 

the form Y,(x) = 2: aLPL-1(X,), for separate fits with all terms and with even terms only. 
L=I 
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Computer fits Routines used for fitting a series of Legendre polynomials to these data 
are included in Program 7.1. The procedure LEGPOLY in the program unit 
FITFu Nc7 calculates the terms of the Legendre polynomials through tenth order. 
The procedure is selected through a branch on the variable PAE in the function Funct 
with PAE = 'A' for all terms to order n = m - 1, or PAE = 'E' to fit with just the 
even terms. Note that the index k of the term in the fitting function, in general, does 
not correspond to the order L of the Legendre polynomial. 

The efficiency of the calculation (and therefore the speed of the linear regression 
calculation) could be improved in a number of ways. The simplest change would be 
to calculate the functions once at each value of the independent variable and store 
the calculated values in an array. 

Parameters obtained by fitting a series in Legendre polynomials for terms up 
to L = 4 are listed in Table 7.7. Separate fits were made with all terms and with only 
the even terms in the series. As expected, the coefficients ofterms involving odd or­
ders are comparable to their uncertainties and negligible compared to those involv­
ing even poynomials. The full error matrix for the fit with even terms is listed in 
Table 7.8. 

In view of the strong theoretical argument that only even Legendre polynomi­
als are required for this reaction, it would be appropriate to fit a series that includes 
only the even terms. The parameters obtained in this fit are also displayed in Table 
7.7, and the numbers of counts calculated from these parameters are listed. The func­
tion calculated with even terms is illustrated as a curve on the data of Figure 7.2. 

Because we are fitting with orthogonal functions, we might have expected to 
obtain identical values for the coefficient ao from both fits. (We expect the higher­
order even coefficients to change because the presence or absence of lower-order 
coefficients must affect the higher coefficients.) The fact that there is some depen­
dence of ao on higher-order terms is a result of the fact that a given experiment does 
not sample uniformly the entire range of the Legendre polynomial, so the orthogo­
nality relation Equation (7.43) is not satisfied by a finite data set. This is in contrast 
to the situation in the previous section, where we set up orthogonal functions based 
on the data themselves. Nevertheless, it is generally good practice to use orthogonal 

TABLE7.7 

Coefficients and X2 from least-squares fit to Legendre polynomial series 

All terms 
Even terms 

TABLE 7.S 

17.2(14%) 
17.6(22%) 

937.4 ::'::: 7.6 
938.1 ::'::: 7.5 

0.7 ± 12.8 259 ± 14 
261 ± 14 

10::':::17 

Error matrix for a least-squares fit to even Legendre polynomials 

56.24 -5.256 -6.272 1 
_"c..Of\ 

158 ::'::: 18 
161 ± 16 
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fitting functions whenever possible to minimize both the correlations between co­
efficients and the dependence of higher coefficients on the presence of lower ones. 

The values of X2 and the x2-probability for the two fits are also given in Table 
7.7. We note that X2 for the three-parameter fit is necessarily higher than that for the 
five-parameter fit, but X2 per degree of freedom is smaller and the x2-probability is 
higher. 

7.4 NONLINEAR FUNCTIONS 

In all the procedures developed so far we have assumed that the fitting function was 
linear in the coefficients. By that we mean that the function can be expressed as a 
sum of separate terms each multiplied by a single coefficient. How can we fit data 
with a function that is not linear in the coefficients? For example, suppose we have 
measured the distribution of decay times of an unstable state and that the distribu­
tion can be represented by the normalized function pet) = (1/T)e- tlT, where T is the 
mean lifetime of the state. Can we find the parameter T by the least-squares method? 
The method of least squares does not yield a straightforward analytical solution for 
such functions. In Chapter 8 we investigate methods of searching parameter space 
for values of the coefficients that will minimize the goodness-of-fit criterion X2. 
Here we consider approximate solutions to such problems using linear-regression 
techniques. 

Linearization 

It is possible to transform some functions into linear functions. For example, if we 
were to fit an exponential decay problem of the form 

Y = ae-bx (7.46) 

where a and b are the unknown parameters, it would seem reasonable to take loga­
rithms of both sides and to fit the resulting straight line equation 

In Y = In a - bx (7.47) 

The method of least squares minimizes the value of X 2 with respect to each of 
the coefficients In a and In b where X2 is given by 

X2 = L {a~t [In Yi + In a - bxJ2
} (7.48) 

where we must use weighted uncertainties a; instead of ai to account for the trans­
formation of the dependent variable: 

,_ d(1nYi) _ I 
ai-~ai-~ai (7.49) 

The importance of weighting the uncertainties is illustrated in Figure 7.3, which 
shows the function of Equation (7.46) graphed both on a linear and on a logarithmic 
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FIGURE 7.3 
Graph of the function y = ae~bx calculated on a linear and a logarithmic scale. The error bars are 
given by (Ji = '/'Y;. The curved line corresponds to the linear scale on the left, and the straight line to 
the logarithmic scale on the right. 

However, on the logarithmic scale, they appear to decrease with increasing Yi and 
are very large for very small In Yi' If we were to ignore this effect in fitting Equation 
(7.47), we would overemphasize the uncertainties for small values of Yi' 

In general, if we fit the functionf(y) rather than y, the uncertainties ai in the 
measured quantities must be modified by 

a' = df(y) a· (7.50) 
I dYi I 

Errors in the Parameters 

If we modify the fitting function so that instead of fitting the data points Yi with 
the coefficient a, b, ... , we fit modified data points Y; = fey;) with coefficients a', 
b', ... , then our estimates of the errors in the coefficients will pertain to the uncer­
tainties in the modified coefficients a', b', ... , rather than to the desired coefficients 
a, b, .... If the relationship between the two sets of coefficients is defined to be 

(7.51) 

then the correspondence between the uncertainties a~, a~, ... in the modified coef­
ficients and the uncertainties am ab, ... in the desired coefficients is obtained in a 
manner similar to that for a; and ai in Equation (7.50): 

, _ dfa (a) , _ dfb(b) 
aa -~ aa ab - ---;n;- ab (7.52) 
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Thus, if the modified coefficient is a' = In a, the estimated error in a is deter­
mined from the estimated error in a', according to Equation (7.52) withfa = In a: 

, _ d(1na) _ aa 
aa -~ aa ---;; (7.53) 

Values of X2 for testing the goodness of fit should be determined from the 
original uncertainties of the data ai and from the unmodified equation, although 
Equation (7.48) should give approximately equivalent results when weighted with 
the modified uncertainties a;. 

In Example 6.2, we considered an experiment to check the decrease in the 
number of counts C as a function of distance r from a radiative source. We expected 
a relation of the form 

C(r) = b/r2 (7.54) . 

and therefore changed the independent variable to x = lIr and fitted a straight line 
to the C versus x data. Because uncertainties were assigned only to the dependent 
variable C, the fit was not distorted by that transformation. 

Suppose, instead, that our objective had been to determine the exponent a in 
the expression for C: 

C(r) = br-a 

Taking logarithms of both sides, we obtain the linear equation 

In(C) = In(b) - a In r 

or 

Ci=b'-ar' 

(7.55) 

(7.56) 

with C' = In C, r' = In T, and b' = In b. The uncertainties a' in C' would be given 
by Equation (7.49) as 

a' = a/C 

and we could find the exponent a by fitting a straight line to Equation (7.56) using 
these weighted uncertainties. 

Although the method of taking logarithms of an exponential or a power func­
tion to produce a function that is linear in the parameters may be convenient for 
quick estimates, with fast computers it is generally better to solve such problems by 
one of the approximation methods developed for fitting nonlinear functions. These 
methods will be explored in Chapter 8. 

SUMMARY 

Linear function: Function that is linear in its parameter ak: 
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Least-squares fit to a function that is linear in its parameters: 

L f/xJ L f/xi)fz(xJ L fl(XJf3(XJ 
Yi 2 a2 a2 ai I I 

1 L f2(Xi) L fixJfz(xJ L fixJf3(xJ 
al =- Yi a2 a~ a2 

~ I I I 

L f3(XJ L f3(XJfixJ L f3(xJf3(xJ 
Yi a~ a~ a? 

I I I 

For the jth coefficient, aj is found by replacing the jth column in the expres­
sion for ~ with the first column in the expression for al' 
Chi square: 

x2 
= ~ [~[Yi - y(xi)]r = ~ [~ [Yi - ~Iadk]r 

Sample variance a 2: 

1 N 
a 2 = S2 = -_-L[Yi - y(xJJ2 

N mi=1 

Matrix solution: a = 13£ = l3a -I where a is a linear matrix of the coefficients and 

[3k== L [:lYJk(XJ] 

fXlk == L [:lfi (XJfk(Xi)] 

Error or variance matrix: The diagonal elements of the square matrix £ = a-I 

are the variances of the parameters ak and the off-diagonal elements are the 
covariances: 

Orthogonal polynomials: 

y(x) = al + aix - [3) + a3(x - "II) (x - "12) 
+ aix - 81)(x - 82)(x - 83) + ... 
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For equally spaced values of x, Xi + I - Xi = ~, 
~---

[3 = Yz(Xi + XN) "I = [3 ± ~ YX2(N2 - 1) 

8 = [3, [3 ± ~ YYzo(3N2 - 7) 

Legendre polynomials: 

m-I 

y(x) = L [aLll(x)] 
L=I 

Po(x) = 1 ~(x) = x 

1 
1l(x)=z:[(2L-l)xll - l (x)-(L-l)PL- 2 (x)] (recursion relation) 

Nonlinear functions: 
If Y; = f(y), then 

and if a' = fa(a) and b' = fb(b), then 

, _ dfa(a) 
aa-~aa 

EXERCISES 

7.1. Show by direct calculation using the data of Example 7.2 listed in Table 7.2 that 
fXe = 1 where 1 is the unity matrix. 

7.2. The tabulated data represent the lower bin limit x and the. bin contents y of a histogram 
of data that fall into two peaks. 

2 3 4 5 6 7 8 9 10 

Xi 50 60 70 80 90 100 110 120 130 140 
Yi 5 7 11 13 21 43 30 16 15 10 

11 12 13 14 15 16 17 18 19 20 

Xi 150 160 170 180 190 200 210 220 230 240 
Yi 13 42 90 75 29 13 8 4 6 3 

Use the method of least squares to find the amplitudes al and a2 and their uncertain­
ties by fitting to the data the function 
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with fLl = 102.1, fl = 30, fL2 = 177.9, and f2 = 20. The function L(x; fL, f) is the 
Lorentzian function of Equation (2.32). Assume statistical uncertainties (Ui = ~). 
Find X2 for the fit and the full error matrix. 

7.3. From the parameters listed in Table 7.7 for the fit of even terms to the data of Exam­
ple 7.3, determine the predicted value of the cross section for e = 90° and its uncer­
tainty. Calculate the uncertainty from the diagonal errors, listed in Table 7.7 and from 
the full error matrix listed in Table 7.8 and compare the two results. 

7.4. Fit fourth-degree power series polynomials instead of Legendre polynomials to the 
data of Example 7.3. Let x = cos e and fit a polynomial with all terms to X4 and an­
other polynomial with only the even terms. Compare your results to those obtained 
from the fit to Legendre polynomials displayed in Table 7.7. 

7.5. Derive the expression for "II and "12 of Equation (7.36). 
7.6. Derive an expression for P4(cos e). [See Equation (7.42).] 
7.7. Show by direct integration that Po(x), PI(x), and P2(x) are orthogonal and obey Equa­

tion (7.43). 
7.8. In an experiment to measure the angular distribution of elastically scattered particles, 

a beam of particles strikes a liquid hydrogen target and counts are recorded at selected 
angles to the direction of the incident beam. Measurements are made both with the tar­
get filled with liquid hydrogen (full target) and with an empty target (empty target). 
The empty-target measurements were made with one-half the number of incident par­
ticles used for the full-target signal. By subtracting the suitably scaled empty-target 
signal from the full-target signal, the angular distribution of scattering on pure hydro­
gen can be determined. 

Assume that the following data were obtained in such an experiment. Uncer­
tainties in the numbers of counts are statistical. 

cos e (lower limit) -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 
cos e (upper limit) -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 
Counts, full target 184 128 99 49 53 55 70 81 136 216 
Counts, empty target 5 4 4 3 4 9 8 7 

(a) Scale the empty-target data to the same number of incident antiprotons used in 
recording the full-target data and make a subtraction to obtain the number of in­
teractions on the hydrogen. Pay particular attention to the uncertainties in the dif­
ference. 

(b) Use the least-squares method to fit the function 

y(x) = aIPo(x) + a2Fl(x) + a3P2(x) 

to the subtracted data, to obtain the coefficients ai' a2, and a3, where the functions 
PL(x) are the Legendre polynomials defined in Equation (7.41). 

7.9. Follow the procedure outlined in Section 7.4 to find the exponent a in Equation (7.55), 
using the data of Example 6.2 (Table 6.2). 

7.10. A l-m-Iong plastic plate with rulings at lO-cm intervals is dropped through a photo­
gate to measure the acceleration of gravity g in an undergraduate laboratory experi­
ment. The time is recorded as each ruling passes through the gate. The passage of the 
first ruling starts the timer. Data from such an experiment are tabulated. The recorded 
time is related to the distance that the ruler has fallen by y = Yo - vot - 112gt2• Note 
that neither the initial height Yo nor the initial speed Vo are known. 
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Ruling # o 2 3 4 5 6 7 8 9 10 
Time(s) 0.000 0.079 0.132 0.174 0.212 0.244 0.271 0.301 0.325 0.349 0.373 

Use the least-squares method with a second-degree polynomial to find g and its 
uncertainty. Measure y from the photogate so that you can set y = 0 when ruling #0 
passes tht:: gate, y = 1 when ruling #1 passes, and so forth. Choose t as the indepen­
dent and y as the dependent variable. Assume a uniform uncertainty in t of 0.00 1 sand 
a negligible uncertainty in y. Because the uncertainty is in the independent variable, it 
must be transformed to the dependent variable by the method discussed in Section 6.1. 
This will require initial estimates of g and Vo. After the fit has been made you may 
wish to repeat the fit using estimates of g and Vo from the previous fit to improve the 
results. 



8.1 NONLINEAR FITTING 

CHAPTER 
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FIT TO AN 
ARBITRARY 

FUNCTION 

The methods of least squares and multiple regression developed in the previous 
chapters are restricted to fitting functions that are linear in the parameters as in 
Equation (7.3): 

m 

y(x)=~[aj.fj(x)] (8.1) 
j=! 

This limitation is imposed by the fact that, in general, minimizing X2 can yield a set 
of coupled equations that are linear in the m unknown parameters only if the fitting 
functions y(x) are themselves linear in the parameters. We shall distinguish between 
the two types of problems by referring to linear fitting for problems that involve 
equations that are linear in the parameters, such as those discussed in Chapters 6 and 
7, and nonlinear fitting for those problems that are nonlinear in the parameters. 

Example 8.1. In a popular undergraduate physics laboratory experiment, a real sil­
ver quarter is irradiated with thermal neutrons to create two short-lived isotopes of 
silver, 47AglO8 and 47Ag!lO, that subsequently decay by beta emission. Students count 
the emitted beta particles in 15-s intervals for about 4 min to obtain a decay curve. 
Data collected from such an experiment are listed in Table 8.1 and plotted on a semi-

en 
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FIGURES.1 
Number of counts detected from the decay of two excited states of silver as a function of time 
(Example 8.1). Time is reported at the end of each interval. Statistical uncertainties are assumed. The 
curve was obtained by a nonlinear least-squares fit of Equation (8.2) to the data. 

line because the probability function that describes the process is the sum of two ex­
ponential functions plus a constant background. We can represent the decay by the 
fitting function 

(8.2) 

where the parameter al corresponds to the background radiation and a2 and a3 corre­
spond to the amplitudes of the two excited states with mean lives a4 and as, respec­
tively. Clearly, Equation (8.2) is not linear in the parameters a4 and as, although it is 
linear in the parameters ab ab and a3' 

We can use a graphical analysis method to find the two mean lifetimes by plot­
ting the data on semilogarithmic paper after first subtracting from each data point the 
constant background contribution, which has been measured separately. (Note that the 
background counts have not been subtracted in Figure 8.1.) We then consider two re­
gions of the plot: region a, at small values of T (e.g., T < 120 s) in which the short­
lived state dominates the plot, and region b, at large values of T (e.g., T> 200 s) in 
which only the long-lived state contributes to the data. We can estimate the mean life­
time of the long-lived state by finding the slope of our best estimate of the straight line 
that passes through the data points in region b. From this result we can estimate the 
contribution of the long-lived component to region a and subtract that contribution 
from each of the data points, and thus make a new plot of the number of counts in re­
gion a, which we attribute to the short-lived state alone. The slope of the line through 
the corrected Doints gives us the mean lifetime of thf'. ~hort-liVf'I1 ~tMf'. T .inp<lr rpcrrpo_ 
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TABLE8.1 
Geiger counter data from an irradiated silver piece, recorded in 15-s intervals 

Point Measured Calculated Point Measured Calculated 
number Time counts counts number Time counts counts 

15 775 748.3 31 465 24 24.0 
2 30 479 519.8 32 480 30 23.0 
3 45 380 370.4 33 495 26 22.1 
4 60 302 272.0 34 510 28 21.3 
5 75 185 206.7 35 525 21 20.5 
6 90 157 162.7 36 540 18 19.8 
7 105 137 132.5 37 555 20 19.2 
8 120 119 111.5 38 570 27 18.5 
9 135 110 96.3 39 585 17 18.0 

10 150 89 85.0 40 600 17 17.4 
11 165 74 76.5 41 615 14 16.9 
12 180 61 69.7 42 630 17 16.5 
13 195 66 64.2 43 645 24 16.0 
14 210 68 59.5 44 660 11 15.6 
15 225 48 55.5 45 675 22 15.2 
16 240 54 51.9 46 690 17 14.9 
17 255 51 48.8 47 705 12 14.6 
18 270 46 45.9 48 720 10 14.3 
19 285 55 43.3 49 735 13 14.0 
20 300 29 40.9 50 750 16 13.8 
21 315 28 38.7 51 765 9 13.5 
22 330 37 36.7 52 780 9 13.3 
23 345 49 34.8 53 795 14 13.1 
24 360 26 33.1 54 810 21 12.9 
25 375 35 31.5 55 825 17 12.7 
26 390 29 30.0 56 840 13 12.6 
27 405 31 28.6 57 855 12 12.4 
28 420 24 27.3 58 870 18 12.3 
29 435 25 26.1 59 885 10 12.1 
30 450 35 25.0 

Note: The time is reported at the end of each interval. The calculated number of counts was found by method 4. 

Because analytic methods ofleast-squares fitting cannot be used for nonlinear 
fitting problems, we must consider approximation methods and make searches of 
parameter space. In the following sections we discuss four nonlinear fitting meth­
ods: a simple grid-search method in which we simply calculate X2 at trial values of 
the parameters, and search for those values of the parameters that yield a minimum 
value of X2, a gradient-search method that uses the slope of the function to improve 
the efficiency of the search, and two semianalytic methods that make use of the ma­
trix method developed in Chapter 7, with a linear approximation to the nonlinear 
functions. As examples, we shall determine the parameters (al ... a5) by fitting 
Equation (8.2) to the data of Example 8.1 using each of the four methods. The curve 
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Qj 

FIGURE 8.2 
Chi-square hypersurface as a function of two parameters. 

Method of Least Squares 

We can generalize the probability function, or likelihood function, of Equation (6.7) 
to any number of parameters, 

_ [ 1 ] {1 [Yi-Y(Xi)Y} P(al' a2, ... ,am) - II ITiy'l; exp -"2 ~ ITi (8.3) 

and, as in the previous chapters, maximize the likelihood with respect to the para-
meters by minimizing the exponent, or the goodness-of-fit parameter X2: 

X2 == ~ {:r [Yi - Y(Xi)J2} (8.4) 

where Xi and Yi are the measured variables, IT; is the uncertainty in Yi' and y(x;) are 
values of the function calculated at Xi' According to the method of least squares, the 
optimum values of the parameters aj are obtained by minimizing X2 simultaneously 
with respect to each parameter, 

ax2 a { 1 } 
aa. = aa. ~ IT? [Yi - y(x;)J2 = 0 

J J I 

= -2~{~[Yi - y(x;)] ay(x;)} 
ITi aaj 

(8.5) 

Taking partial derivatives of x2 with respect to each of the m parameters aj will yield 
m coupled equations in the m unknown parameters aj as in Section 7.1. If these equa­
tions are not linear in all the parameters, we must, in general, treat X2 as a continuous 
function of the m parameters, describing a hypersurface in an m-dimensional space, 
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value of X2. Figure 8.2 illustrates such a hyperspace for a function of two parameters. 
Alternatively, we may apply to the m equations obtained from Equations (8.5) ap­
proximation methods developed for finding roots of coupled, nonlinear equations. A 
combination of both methods is often used. 

Variation of X2 Near a Minimum 

For a sufficiently large event sample, the likelihood function becomes a Gaussian 
function of each parameter centered on those values ai that minimize X2: 

P(aJ = Ae-(araj)2/2<Tl (8.6) 

where A is a function of the other parameters, but not of aj • Comparing Equation 
(8.3) for the likelihood function with Equation (8.4) for X2, we observe that we can 
express X2 as 

(8.7) 

Then, from Equation (8.6), we can write 

X2 = (aj - aj)2 + C (8.8) 
u~ 

J 

to show the variation of X2 with any single parameter aj in the vicinity of a mini­
mum with respect to that parameter. The constant C is a function of the uncertain­
ties Ui and the parameters ak for k =1= j. Thus X2 varies as the square of distance from 
a minimum, and an increase of 1 standard deviation (u) in the parameter from the 
value a' at the minimum increases X2 by 1. For a more general proof, see Arndt and 

J 
MacGregor (1966), appendix II. 

We can see that this result is consistent with that obtained from a second-order 
Taylor expansion of X2 about the values ai, where the values of X2 and its deriva­
tives at a = a' are written as X6, aX6/aaj' and so forth: 

X2 = X6 + f {aaX6 (aj - an} + -2
1 f f {aa

2X
a
6 

. (ak - ale) (aj - aj)} (8.9) 
j=l aj k=l J=l ak aJ 

Because the condition for minimizing X2 is that the first partial derivative with re­
spect to each parameter vanish (i.e., aX2/aaj = 0), we can expect that near a local 
minimum in any parameter aj , X2 will be a quadratic function of that parameter. 

We can obtain another useful relation from Equation (8.8) by taking the sec­
ond derivative of X2 with respect to the parameter aj to obtain 

a2X2 2 
(8.10) 

aa~ u 2 
J J 

We obtain the following expression for the uncertainty in the parameter in terms of 
the curvature of the X2 function in the region of the minimum: 
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FIGURE 8.3 
Plot of X2 versus a single parameter a in the region of a local minimum. The location of the minimum 
is calculated by fitting a parabola through the three indicated data points. 

We note that for uncorrelated parameters, Equation (8.11) is equivalent to Equation 
(7.22) with Equation (7.25) for obtaining the uncertainties from the curvature matrix. 

We can also use the quadratic relation to find the approximate location ofax2 

minimum by considering the equation of a parabola that passes through three points 
that straddle the minimum, and solving for the value of the parameter at the mini­
mum, as illustrated in Figure 8.3. If we have calculated three values of X2, 
Xl = x2(ajl), X~ = x2(aj2), and X~ = x2(aj3)' where aj2 = ajl + .ilaj and aj3 = aj2 + 
.ila· then the value a! of the parameter at the minimum of the parabola is given by l' J 

[ 
X2 - X2 1] 

a; = aj3 - .ilaj 2 _ 32 2 ~ 2 + -2 
Xl X2 X3 

(8.12) 

In addition, we can estimate the errors in the fitting parameters aj by varying each 
parameter about its minimum to increase X2 by 1 from the minimum value. The 
variation u· in the parameter a, which will increase X2 by 1 from its value at the J J 
minimum of the parabola, is given by 

uj = .ilaj V;-2-(X-1---2-X"--~ -+-X--::~"--t--:-l (8.13) 

Alternatively, we can attempt to calculate the second derivative of X2 at the mini­
mum and find the standard deviation from Equation (8.11). 

If the parameters are correlated, the method summarized in Equation (8.13) for 
determining uncertainties in the parameters is valid only under the condition that, 
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We provide a more detailed discussion in Section 11.5. When the c?variant terms in 
the error matrix are important, it is best to obtain the full error matnx by the method 
described in Section 7.2. 

8.2 SEARCHING PARAMETER SPACE 

The method of least squares consists of determining the v~lues 20f ~he p~rameter~ aj 

of the function y(x) that yield a minimum for the functIOn X g~ve~ In E.quat.IO.n 
(8.4). For nonlinear fitting problems, th~re are severa~ wa~s of fIndIng this. ml.m­
mum value. In Sections 8.3 and 8.4 we discuss approximatIOn methods for fIndIng 
solutions to the m coupled nonlinear equations in m unknowns that result from the 
minimization procedure of Equation (8.5). 

Starting Values and Local Minima 

Fitting nonlinear functions to data samples sometimes ~ee~s to be more of an art 
than a science. In part, this is in the nature of the approximatIOn p~ocess, where the 
speed of convergence toward a solution may depend upon the chOIce of the met?od 
for finding solutions, the choice of starting values for the parameters: and possl?ly 
the choice of the step size. To use any of these methods, we .~~st flfSt det~rmIne 
starting values, estiq1ates to be used by the fitting routine for lmtIal calcula~IOns of 
the function and of chi square. For the pure search methods we must also defIne.step 
sizes, the initial variations of the parameters. Neither starting values nor step Sizes, 
of course are needed in linear fitting. 

An~ther problem in nonlinear fitting is the existence of multipl.e .solutions or 
local minima. For an arbitrary function there may be more than one mInimum of the 
X2 function within a reasonable range of values for the parameters, and.thus, more 
than one set of solutions of the m coupled equations. An unfortunate chOIce of start­
ing point may "drive" the solution toward a local minimum rather than to the a?­
solute minimum that we seek. Before attempting a nonlinear least-squares fit, 
therefore, it is useful to search the parameter space to locate the main minima and 
identify the desired range of parameters over which to refine the search. . 

The first step is to find starting values for the parameters. A convement ap­
proach, for which a computer graphics program is very useful, is to ~ake ~lots o~ the 
data with curves calculated from trial values of the parameters. By visual InSpectIOn, 
one can often determine acceptable starting values with little or no further calcula­
tions. A basic requirement is that the area under the plotted curve be approximately 
the same as that under the data. 

Another approach is to map the parameter space and search for values of ~he 
parameters that approximately minimize X2. In the si.mp~e~t b~te-force mappIng 
procedure, the permissible range of each parameter aj IS divided Into p equal Incre­
ments !lao so that the m-parameter space is divided into IIj=l ~ hypercubes. The 
value of ~2 is then evaluated at the vertices of each hypercube. This procedure 
yields a coarse map of the behavior of X2 as a fun~tion of all ~he parameters aj. At 
the vertex for which X2 has its lowest value, the size of the gnd can be reduced to 
obtain more precise values of the parameters. For a simple two- or three-parameter 
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fit, the parameters obtained by this procedure may be sufficiently precise that no 
further searching is required. For more than three parameters, the mapping is rather 
tedious and displaying the grid map is difficult. 

A variation on the regular lattice method is a Monte Carlo search of the 
m-dimensional space. Trial values of the parameters are generated randomly from 
uniform distributions of the parameters, selected within predefined ranges, and a 
value of X2 determined for each trial. After several trials, the set of trial values that 
gives the lowest value of X2 can be used as starting values. The general Monte Carlo 
method was discussed in Chapter 5. 

A more sophisticated method of locating the various minima of the X2 hyper­
surface involves traversing the surface from minimum to minimum by the path of 
lowest value in X2, as a river follows a ravine in travelling from lake to ocean. Start­
ing at a point in the m-dimensional space, the search traverses the length of the lo­
cal minimum, then continues in the same general direction but in a direction that 
minimizes the new values of X2. When a new local minimum is discovered, the 
search repeats the process until all local minimum have been located in the speci­
fied region of the space. 

For relatively straightforward fitting problems, it should be sufficient to plot 
the data, make a reasonable estimate of the parameters to be used as starting values 
in the search procedure, and perform the fit by one or more of the methods de­
scribed in the following sections. As a precaution, one should vary the starting val­
ues of the parameters to test whether or not the various fits converge to the same 
values of the parameters, within the expected uncertainties. If the dimensionality of 
the space is low enough, a grid of starting points may be used. For higher dimen­
sionality, a Monte Carlo method may be used to select random starting points. 

Bounds on the Parameters 

From a particular set of starting values for the parameters, the search may converge 
toward solutions that are physically unreasonable. In Example 8.1 negative values 
for the parameters are not acceptable, and the current trial value of one of the para­
meters a2> or a3, may limit the possibility of determining values of the others. For 
example, if a2 becomes very small or 0, a4 cannot be determined at all. If it is not 
possible to find starting values for the parameters that prevent the search from wan­
dering into these illegal regions, it may be necessary to place limits on them in the 
search procedure to keep them within physically allowable ranges. Simple if then 
statements in the routines may be sufficient. Care should be taken that the final 
value of any parameter is not at one of these artificially imposed limits. 

Selection and Adjustment of Step Sizes 

There are no hard and fast rules for selecting step sizes for the search methods. 
Clearly the steps will be different for different parameters and should be related to 
the slope of the X2 function. Very small step sizes result in slow convergence, 
whereas step sizes that are too large will overshoot the local minima and require 
constant readjustment to bracket the valleys. In the sample routines in Section 8.7, 
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we choose initial step sizes to be proportional to the starting values of the parame­
ters and readjust them if necessary after each local minimum is found. In the simple 
grid-search calculation, we adjust the step sizes to be those values that increase X2 
by approximately 2 from its value at the local minimum. 

Condition for Convergence 

A change in X2 per degree of freedom (X2/dof) of less than about 1 % from one trial 
set of parameters to the next is probably not significant. However, because of the 
problems of local minima and very flat valleys in the parameter space, it may not be 
sufficient to set an arbitrary condition for convergence, start a search, and let it run 
to completion. If the starting parameters are not chosen very carefully, the search 
may stop in a flat valley with an inappropriately large value of X2. If this happens, 
there are several possible ways to proceed. We can choose different starting values 
and retry the fit, as suggested in the previous sections, or we can set tighter conver­
gence requirements (e.g., .lX2/dof < 0.1 %) and rerun the search in the hope that the 
program will escape from the valley and reach the appropriate minimum. A conve­
nient approach for small problems is to observe the process of the search and to cut 
it off manually when it appears that a stable minimum has been found. If a suitable 
minimum cannot be found, then different starting values should be tried. When fit­
ting curves to several similar samples of data, we may find it satisfactory to estab­
lish suitable starting parameters, step sizes, and a cutoff criterion for the first set, 
and employ an automatic method for the remaining sets. 

Computer Illustration of Nonlinear Fitting 
Methods 

In the following sections we discuss and illustrate with computer routines four 
methods of fitting Equation (8.2) to the data of Example 8.1. 

Program 8.0. NON LI N FT (Appendix E) Common calling routine to test the 
four different fitting methods. Repeats the calculations until a x2-minimum is found. 
Variables are defined in the program until FITVARS and data input and output are 
handled in the program unit FITUTI L as in the fitting programs of Chapters 6 and 7. 
FITFu Nc8 calculates the fitting function. 

Step sizes for the fit are set initially in the routine FETCH PARAM ETERS 

to be a fraction of the starting values of the parameters. (The step sizes must not be 
scaled to the parameters throughout the calculation, however, lest they become 0 when 
a parameter is 0, which would halt the search in that parameter.) 

Tables 8.2, 8.3, 8.4, and 8.5 show values of X 2 and the parameters al through a 5 

for several stages of the calculation at the beginning, middle, and end of each of the 
four types of search. The tables include the time to find the solution relative to the time 
for the fastest procedure. 

Program 8.1. G RIDS EAR (Appendix E) Routine G RID LS illustrates the grid-
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Program 8.3. Ex P N D FIT (Appendix E) Routine CHI FIT illustrates fitting by 
expansion of the fitting function. 

Program 8.4. MARQFIT (Appendix E) Routine MARQUARDT illustrates fit­
ting by the gradient-expansion algorithm. 

Program 8.5. FIT FUN 8 (Appendix E) Fitting function and X 2-calculation for all 
fits called from Program 8.0. 

Program 8.6. MAKEAB 8 (Appendix E) Matrix set-up for non-linear fits. 

Program 8.7. N U M DER IV (Website) Numerical derivatives. 

Program B.l. MAT R I X (Appendix E) Matrix products and inversion. 

8.3 GRID·SEARCH METHOD 

If the variation of X 2 with each parameter a j is not very sensitive to the values of the 
other parameters, then the optimum parameter values can be obtained most simply 
by minimizing X 2 with respect to each of the parameters separately. This is the grid­
search method. The procedure is simply to select starting values of the parameters, 
find the value of one of the parameters that minimizes X 2 with respect to that para­
meter, set the parameter to that value, and repeat the procedure for each parameter 
in turn. The entire process is then repeated until a stable X 2 minimum is obtained. 

Grid search. The procedure for a grid search may be summarized as follows: 

1. Select starting values aj and step or increment sizes Aaj for each parameter and 
calculate X2 with the starting parameters. 

2. Increment one. parameter aj by ±Aaj and calculate X2, where the sign is chosen 
so that X 2 decreases. 

3. Repeat step 2 until X 2 stops decreasing and begins to increase. The increase in 
X2 indicates that the search has crossed a ravine and started up the other side. 

4. Use the last three values of aj (which bracket the minimum) and the associated 
values of X2 to determine the minimum of the parabola, which passes through 
the three points as illustrated in Figure 8.3. [See Equation (8.12).] 

5. Repeat to minimize X 2 with respect to each parameter in tum. 

6. Continue to repeat the procedure until the last iteration yields a predefined neg­
ligibly small decrease in X2. 

The main advantage of the grid-search method is its simplicity. With succes­
sive iterations of the search, the absolute minimum of the X2 function in parameter 
space can be located to any desired precision. 

The main disadvantage is that, if the variations of X2 with the parameters are 
~tr()nol\1 I'(),rrp.l~tprl tnpn thp o:::tInnrrv.lroh tA. tho. -rn~'t'\~"""11-rn 1""\"'11"1"1 
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FIGURES.4 
Contour plot of X2 as a function of two highly correlated variables. The zigzag line represents the 
search path approach to a local minimum by the grid-search method. 

parameters are not correlated, so that the variation of X2 with eac,h par~eter is in­
dependent of the variation with the other, then the axes of the elhpse wIll be p~ral­
leI to the coordinate axes. Thus, if a grid search is initiated near one end of a tilted 
ellipse, the search may follow a zigzag path as indicated by t~e s~li? line in Figure 
8.4 and the search will be very inefficient. Nevertheless, the SImpliCIty of the calcu­
lations involved in a grid search often compensates for this inefficiency. 

Program 8.1. GR I DSEAR (Appendix E) Routine GRIDLS illustrates the grid­
search method. 

The main search routine, G RID LS, is entered with the value of X2 

(C HIS Q R) as argument. In a loop over each of the m parameters in tum, the value of 
the parameter is varied until X2 has passed through a local minimum in the parameter. 
The three most recent values of X2 that bracket the minimum are stored in the variables 
CHI SQ 1 , CHI SQ 2, and CHIS Q 3. The best estimate of the parameter at this 
stage of the calculation is determined from the minimum of the parabola that passes 
through the three points. The step size (D E L T AA (J )) is then adjusted to be that 
value that increases X2 by 2 from its value at the local minimum. 

One pass through G RID LS corresponds to a single zigzag along the path of 
Figure 8.4. The search is repeated until X 2 does not change by more than the preset 
level, CHICUT. 

A call to the function 5 I GPARAB in the program unit FITUTI L at the end 
~ _ ~ ~ .... ~ . ___ .... __ £ .... 1- _ •• _ ~~-'"~':_4-WY !_ ................. t.. .................................. +"" ....... ~ ...... +~, ....... f" ... r'II. ........ no 
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TABLES.2 

Two exponentials plus constant background: grid-search method 

Trial X2 al a2 a3 a4 as 

0 406.6 10.0 900.0 80.0 27.0 225.0 
1 143.0 14.5 1332.3 106.8 27.7 207.2 
2 96.9 12.6 1233.9 127.9 28.2 198.4 
3 79.4 11.6 1155.1 140.2 28.8 192.2 
4 72.9 11.2 1100.3 147.0 29.3 189.2 

16 66.7 11.3 963.5 148.8 32.3 185.3 
17 66.7 11.3 962.5 148.2 32.4 185.8 

39 66.3 10.9 959.3 139.1 33.3 195.4 
40 66.2 10.8 959.2 138.9 33.3 195.7 

Uncertainties 0.6 28.3 4.5 0.8 5.0 

X2/dof = 1.23; probability = 12.1 %; relative time = 9.1 

Note: Stages in the fit to counts from the decay of excited states of silver. The values of X2 and the parameters are 
listed at the beginning, middle, and end of the search. The uncertainties in the parameters correspond to a change of 
1 in X2 from its value at the end of the search. 

Table 8.2 shows values of X2 and the parameters al through a5 for several 
stages of the calculation at the beginning, middle, and end of the search. The search 
is relatively slow, but eventually a satisfactory solution is found. Note that the cal­
culated uncertainties correspond to the diagonal terms in the error matrix for uncor­
related parameters. If correlations are considered to be important, the matrix 
inversion methods discussed in the following sections could be used to find better 
approximations to the uncertainties. 

8.4 GRADIENT-SEARCH METHOD 

The search could be improved if the zigzagging direction of travel in Figure 8.4 
were replaced by a more direct vector toward the appropriate minimum. In the gra­
dient-search method of least squares, all the parameters aj are incremented simulta­
neously, with relative magnitudes adjusted so that the resultant direction of travel in 
parameter space is along the gradient (or direction of maximum variation) of X 2. 

The gradient VX2 is a vector that points in the direction in which X2 increases 
most rapidly and has components in parameter space equal to the rate of change of 
X2 along each axis: 

(8.14) 
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n 2 _ aX2 _ x2(aj + fdaj) - x2(a) 
(vX )j - aaj - fdaj (8.15) 

where f is a fraction of the step size daj by which aj is changed in order to determine 
the derivative. 

The gradient has both magnitude and dimensions and, if the dimensions of the 
various parameters a are not all the same (which is usually the case), the compo­
nents of the gradient} do not even have the same dimensions. Let us define dimen­
sionless parameters b· by rescaling each of the parameters aj to a size that 

J h . 
characterizes the variation of X2 with aj rather roughly. We shall use t e step SIzes 
daj as the scaling constants, so that 

a· 
b·=-} 

J da. 
J 

The derivative with respect to bj then becomes 

aX2 aX2 
-=-da 
abj aaj J 

which may be calculated numerically as 

aX2 = x2(aj + fdaj) - x2(a) da
j 
= x2(aj + fdaj) - x

2
(aj) 

abj fdaj f 

(8.16) 

(8.17) 

(8.18) 

We can then define a dimensionless gradient "'I, with unit magnitude and components 

(8.19) 
"'Ij = ... / m ( 2/ b)2 V~j=l aX a j 

In the numerical calculation of Equation (8.18), the quantities daj andfoccur only 
in the argument of X2 and not as scale factors. 

The direction that the gradient-search method follows is the direction of steep­
est descent, which is opposite of the gradient "'I. The search begins by incrementing 
all parameters simultaneously by an amount daj' with relative value given b~ the 
corresponding component "'Ij of the dimensionless gradient and absolute magmtude 
given by the size constant da/ 

8a· = -'V·da· J lJ J 
(8.20) 

The minus sign ensures that the value of X 2 decreases. The size constant daj of 
Equation (8.20) is the same as that of Equation (8.16). 

There are several possible methods of continuing the gradient search after a 
first step. The most straightforward is to recompute the gradient after each change 
in the parameters. One disadvantage of this method is that it is difficult to approach 
the bottom of the minimum asymptotically because the gradient tends to 0 at the 
minimum. Another disadvantage is that recomputation of the gradient at each step 

. .. nt C'tl><lrroh hllt thp llCP of l~rO'pr ~.tpn ~17P:~ 
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rise again. At this point, the gradient is recomputed and the search continues in the 
new direction. Whenever the search straddles a minimum, a parabolic interpretation 
of X2 is used to improve the determination of the minimum. 

A more sophisticated approach would be to use second partial derivatives of 
X2 to determine changes in the gradient along the search path: 

ax21 ax21 m ( a2X2 ) - =- +2: -- 8ak 
aaj aj+8aj aaj aj k=] aajaak 

(8.21) 

If the search is already fairly near the mInImUm, this method does decrease 
the number of steps needed, but at the expense of more elaborate computation. If the 
search is not near enough to the minimum, this method can actually increase 
the number of steps required when first-order perturbations on the gradient are 
not valid. 

The efficiency of the gradient search decreases markedly as the search ap­
proaches a minimum because the evaluation of the derivative according to the 
method of Equation (8.18) involves taking differences between nearly equal num­
bers. In fact, at the minimum of X2, these differences should vanish. For this reason, 
one of the methods discussed in the following sections may be used to locate the ac­
tual minimum once the gradient search has approached it fairly closely. 

Program 8.2. GRAOSEAR (Appendix E) Routine GRAOLS illustrates the 
gradient -search method. 

On each entry to the main search routine, GRAOLS, the components of the 
gradient G RAOLS (J) are calculated numerically from Equation (8.18) in the proce­
dure CALCG RAO. The argument FRACT of this routine, corresponding to the 
variable f of Equation (8.18), determines the fraction of the step size (0 E L TAA) 
used in the numerical calculation of the partial derivative. Each parameter A(J) is 
then changed by the amount STEPDOWN*OELTAA(J)*GRAO(J), where 
STEPDOWN is a scaling factor that is set initially in the main program and read­
justed after each stage to the size needed to locate the minimum. 

The initial values of 0 E L T AA (J) determines to some extent the execution 
speed of each pass through the routine GRAD LS, and the value of CHI C UT deter­
mines when the search will stop. Because of the small gradient near the X2 minimum, 
it may take many steps to reach a reasonable value of X2, and the cutoff, CH I CUT, 

may have to be set to a very low value. For such cases, user intervention can be pro­
vided as an alternate method of stopping the search. 

At the conclusion of the search, the uncertainties in the parameters are estimated 
in the function 5 I G PARAS as in the routine GRAD LS. 

Table 8.3 shows values of X2 and the parameters a] through as for several 
stages of the calculation at the beginning, middle, and end of the search. For Exam­
ple 8.1, the gradient search is considerably faster than the grid-search approach 
because all the parameters are varied together at each step. However, the gradient­
search method has one disadvantage that is not illustrated. If the starting values of 
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TABLE8.3 
Two exponentials plus constant background: gradient-search method 

Trial X2 a1 a2 a3 a4 as 

0 406.6 10.0 900.0 80.0 27.0 225.0 
1 82.3 10.6 1061.0 94.0 34.4 254.2 
2 72.6 9.8 984.0 98.8 36.8 237.4 
3 69.8 9.9 966.9 100.9 36.8 244.6 
4 69.3 9.8 953.7 101.6 36.7 242.1 

19 66.6 8.9 952.2 114.7 35.5 233.6 
20 66.5 8.9 954.8 114.9 35.6 233.9 

Uncertainties 0.6 26.5 3.8 0.8 7.0 

X2/dof = 1.23; probability = 11.8%; relative time = 4.0 

Note: Stages in the fit to counts from the decay of excited states of silver. The values of X2 and the parameters are 
listed at the beginning, middle, and end of the search. The uncertainties in the parameters corresponding to a change 
of I in X 2 from its value at the end of the search. 

8.S EXPANSION METHODS 

Instead of searching the X 2 hypersurface to map the variation of X 2 with parameters, 
we should be able to find an approximate analytical function that describes the X 2 

hypersurface and use this function to locate the minimum, with methods developed 
for linear least-squares fitting. The approximations will introduce errors into the cal­
culated values of the parameters, but successive iterations of the analytical method 
should approach the X 2 minimum with increasing accuracy. The main advantage of 
such an approach is that the number of points on the X 2 hypersurface at which com­
putations must be made will be fewer than for a grid or gradient search. This ad­
vantage is somewhat offset by the fact that the computations at each point are 
considerably more complicated. However, the analytical solution essentially 
chooses its own step size and, thus, the user is spared the problem of trying to opti­
mize the step size for speed and precision. 

Parabolic Expansion of X2 

In Equation (8.9) we expanded X2 to second order in the parameters about a local 
. . 2 h I ffilll1mUm Xo were aj = aj: 

m {a x2 } I m m { a
2

X2 } X2=X6+ ~ -oSaj +-~ ~ --o-SajSak 
j=1 aaj 2 k=1 j=1 aajaak 

(8.22) 

which is equivalent to approximating the X2 hypersurface by a parabolic surface. 
Here we define Saj == aj - aj, and X5 is given by 
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. Applyi~g the method of least squares, we minimize X2 as expressed in Equa-
tlO~ (8.22) with respect to the increments (Saj) in the parameters, and solve for the 
optImum values of these increments to obtain 

aX2 aX2 m { a2X2 } --=_o+~ __ a-Sa. =0 k= I,m 
a(Sak) aak j= I aakaaj 1 

(8.24) 

The result is a set of m linear equations in Saj that we can write as 

k= I,m (8.25) 

with 

13k == -.! aX6 and cx'k ==.! a
2

X6 
2a~ J 2a~a~ (8.26) 

The factors ± Y2 are included for agreement with the conventional definitions of 
these quantities. 

As in Chapter 7, we can treat Equation (8.25) as a matrix equation: 

f3 = oa a (8.27) 

where f3 and oa are row matrices and a is a symmetric matrix of order m. We shall 
find that a is the curvature matrix discussed in Section 7.2, so named because it 
measures the curvature of the X2 hypersurface. 

Method of Computation 

The solution of Equation (8.27) can be obtained by matrix inversion as in Sec­
tion 7.2: 

m 

oa = f3E Sak = ~ (Ekj l3j ) (8.28) 
j=1 

where the error matrix E = a-I is the inverse of the curvature matrix. 
. If the parameters are independent of one another, that is, if the variation of X 2 

With respect to each parameter is independent of the values of the other parameters, 
then the cross-partial derivatives ajk (j =I=- k) will be 0 in the limit of a very large data 
sample and th~ matrix a ~ill be diagonal. The inverse matrix E will also be diago­
nal and EquatIOn (8.27) wIll degenerate into m separate equations: 

SCXj = I3j = aX5 --;- a2X5 
cx.. aa· aa+ 11 1 1 

(8.29) 

. Computation of the matrix elements by Equation (8.26) requires knowledge of 
the first and second derivatives of X 2 evaluated at the current values of the parame­
t~rs. Analytic forms of the derivatives are generally quickest to compute, but may be 
difficult or cumbersome to derive. Tf it i!': not convpnipnt or nm:.<:ihlf' to nrovinf' "n,,_ 
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for efficient calculations. The intervals A aj should be chosen to be large enough to 
avoid roundoff errors but small enough to furnish reasonably accurate values of the 
derivatives near the minimum: 

aX5 = X5(aj + Aaj' ak) - X5(aj' ak) 
aaj Aaj 

a2X5 = 4[X5(aj, ak) - 2X5(aj + 'bai2, ak) + X5(aj + Aaj' ak)] 
a2aj (Aay 

a2 X5 
-a a = [X5(aj' ak) 

aj ak 
- X5(aj + Aaj' ak) - x5(aj' ak + Aak) 
+ x5Caj + Aaj' ak + Aak)]I[AajAak] 

(8.30) 

In actual practice, calculations are faster and, in general, more accurate if the ele­
ments of the matrix €X are determined from the first-order expansion (to be dis­
cussed in the following text), which involves only first derivatives of y(x) with 
respect to the parameters, rather than the second derivatives of X2 as expressed in 
Equation (8.30). 

Fitting Procedure 

Within the limits of the approximation of the X2 hypersurface by a parabolic ex­
trapolation, we can solve Equation (8.27) directly to yield parameter increments 'baj 
such that X2 should be minimized for a; + 'baj. If the starting point is close enough 
to the minimum so that higher-order terms in the expansion can be neglected, this 
becomes an accurate and precise method. But if the starting point is not near 
enough, the parabolic approximation of the X 2 hypersurface is not valid and the re­
sults will be in error. In fact, if the starting point is so far from the minimum that the 
curvature of X2 is negative, the solution will tend toward a maximum rather than a 
minimum. During computation, therefore, the diagonal elements ITjj of the matrix €X 

must be set positive whether they are or not. The resulting magnitude for 'baj will be 
incorrect, but the sign will be correct. 

Expansion of the Fitting Function 

An alternative to expanding the X2 function to develop an analytic description for the 
hypersurface is to expand the fitting function y(x) in the parameters aj and to use the 
method of linear least squares to determine the optimum value for the parameter in­
crements 'baj. If we carry out the derivation rigorously and drop higher-order terms, 
we should achieve the same result as for the expansion of X 2 to first and second order. 

First-Order Expansion 

Let us expand the fitting function y(x) in a Taylor series about the point a;, to first 
order in the parameter increments 'baj = aj - a;: 
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y(x) = y'(x) + f [ay'(x) 'ba.] 
j=! aaj J 

(8.31) 

w~ere y'(x) is the value of the fitting function when the parameters have starting 
~OInt value~ a; ~nd the derivatives are evaluated at the starting point. The result is a 
hn~ar functIOn m the parameter increments 'baj to which we can apply the method 
of lmear least squares developed in Chapter 7. 

In ~his approximation, X2 can be expressed explicitly as a function of the pa­
rameter mcrements 'baj: 

X2 = L (-; {Yi - y'(xJ - f [aY'(xJ 'ba.]}2) 
(J', j=! aaj J 

(8.32) 

Following ~he method .of least squares, we minimize X 2 with respect to each, 
of the parameter mcrements 'baj by setting the derivatives equal to 0: 

aa:~ = -2L(-; {Yi - y'(xJ - f [aY'(xi) 'ba.]} ay'(xJ) = 0 k (J', j=! aaj J aak (8.33) 

As before, this yields the set of m simultaneous Equations (8.25), which can be ex­
pressed as the matrix Equation (8.27): 

(3 = oa a (8.34) 

where f3k is defined as in Equation (8.26) and ITjk is given by 

ITjk = L[-; ay'(xJ aY'(xJ] 
(J'i aaj aak 

(8.35) 

Second-Order Expansion 

Suppose we m.ake a Taylor expansion of the fitting function y(x) to second order in 
the parameter mcrements 'ba .. 

]" 

y(x) = y'(x) + f [ay'(x) 'baj] +! f f [azy,(x) da·da ] (8.36) 
j=! aaj 2 j=! k=1 aajaak J k 

. If we include .the l~s.t t~rm of Equation (8.36) in the expression for XZ of Equa-
~IOn (8.32) and agam rrumrruze XZ by setting to 0 the derivatives with respect to the 
mcrements 'baj' we again obtain Equation (8.25), this time with 

f3k == L {-; [Yi - Y'(xJ] ay'(xJ} = -! aX5 
(J'i aak 2 aak 

IT'k == ~ ~ {aY'(xJ ay'(xJ _ [ _ '( )] aZY'(xJ} 
J ~ Z a a Yi Y Xi (837) 

(J'i aj ak aajaak . 

=! aZX5 
2 aajaak 
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The resulting definitions for 13k and ajk are identical to those of Equation (8.26) ob­
tained by expanding the X2 function, and the x2-expansion method is therefore 
equivalent to a second-order expansion of the fitting function. 

Let us compare Equations (8.37) with the analogous Equations (7.14) and 
(7.15) for linear least-squares fitting. The definitions of o.jk in Equations (8.37) and 
(7.15) are equivalent in the linear approximation [See Equation (7.22)] and thus a 
corresponds to the curvature matrix. The definition of 13k in Equation (8.37) is 
equivalent, in the linear approximation, to the definition of 13k in Equations (7.14) 
except for the substitution of Yi - Y' (x;) for Yi' We can justify this substitution by 
noting that the solutions of Equation (8.34) are the parameter increments 3aj' 
whereas those of Equation (7.14) are the parameters themselves. In essence, we are 
applying linear least-squares methods to fit the parameter increments to difference 
data aYi between the actual data and the starting values of the fitting Y' (x;): 

aYi = Yi - y'(Xi) (8.38) 

Thus, the expression given in Equation (8.35) for o.jk is a first-order approxi­
mation to the curvature matrix that is given to second order in Equation (8.37). For 
linear functions, the second-order term vanishes. It is convenient to use the first­
order approximation for fitting nonlinear functions and thus avoid the necessity of 
calculating the second derivatives in Equation (8.37). We note that this procedure 
can be somewhat justified on the grounds that, in the vicinity of the X2 minimum, 
we should expect the factor of Yi - Y' (x;) in the expression for 0. of Equation (8.37) 
to be close to 0 so that the first term in the expression will dominate. j 

Program 8.3. EXPNOFIT (Appendix E) Routine CH I FIT illustrates non-linear 
fitting by expansion of the fitting function. The program is called repeatedly from the 
main program NONLiNFIT, until X2 passes through a minimum. EXPNOFIT 
calls the following routines to set up and manipulate the matrices. 

Program 8.6. MAKEAB8 (Appendix E) Sets up the 0. and 13 matrices. 
The routine uses the first-order approximation of Equation (8.35) to calculate the com­
ponents O/.jk of the curvature matrix. This is equivalent to neglecting terms in the sec­
ond derivatives of the fitting function y(x) in the expression for O/.jk in Equation (8.37). 
The routines in this program unit use numerical derivatives and therefore differ from 
those with the same names in Chapter 7, which use analytic derivatives. 

Program 8.7. N U M D E R IV (website) Numerical derivatives. 
Derivatives of X2 (x I SQ) are calculated numerically by the functions ox I SQ_OA, 

o2xI SQ_oA2, and 02XISQ_OAJ K in this program unit. To avoid repetitive cal­
culations, the values of the derivatives at each value of x and for the variation of each 
of the m parameters are calculated once for each trial and stored in arrays. If available, 
analytic expressions for the derivatives could be substituted directly for the functions 
to increase the speed and accuracy of the calculation. 

Program B.1. M A TR I X (Appendix E) Matrix multiplication and inversion. 

lSee Press et al. (1986), page 523. 
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TABLES.4 

Two exponentials plus constant background: X2 expansion method 

Trial X2 
at a2 a3 a4 as 

0 406.6 10.0 900.0 80.0 27.0 225.0 1 .86.2 11.1 933.8 140.4 33.8 170.5 2 66.6 10.8 861.2 128.9 33.9 3 66.1 201.7 10.4 958.2 131.2 34.0 205.4 
Uncertainties 1.8 49.9 21.7 2.5 30.5 

X2/dof = 1.22; probability = 12.4%; relative time = 1.0 

Note: Ad
ll 

stahges in the fit to counts from the decay of excited states of silver. The uncertainties in the parameters cor 
respon to t e square roots of the diagonal tenus in the error matrix. -

At ~he c?nclusion of the search, the inverse E of the final value of the curva­
tu~e matnx a IS treated as the error matrix, and the errors in the parameters are ob­
tamed from the square roots of the diagonal terms by calls to the function 
SIGMATRX in the unit FitFunc8. Table 8.4 shows values of X2 and the parameters 
a j through as for all stages of the calculation. 

8.6 THE MARQUARDT METHOD 

Convergence 

One ~isadvantage 2i~herent in the analytical methods of expanding either the fitting 
~unctIO~Y(X) or X. IS that although they converge quite rapidly to the point of min­
l1~um X from pomts nearby, they cannot be relied on to approach the minimum 
wIth .any accuracy f~om a poi~t outside the region where the X2 hypersurface is ap­
pr~xImatel~ parabolIc. In partIcular, if the curvature of the X2 hypersurface is used 
as III EquatIOn (8.37) or (8.2~), the analytical solution is clearly unreliable wheneve; 
~~e curvat~re becomes negative. Symptomatic of this problem is the need to set pos­
Itive the dIag~n.al elements o.jj of the matrix 0. so that all curvatures are treated as if 
they were posItive. 

~n .contrast, the gradient search of Section 8.4 is ideally suited for approaching 
the mmimum from far aw~y, but does not converge rapidly near the minimum. 
~herefore, we need an algonthm that behaves like a gradient search for the first por­
tion of a search. and behaves more like an analytical solution as the search con­
verg~s. In fact, It c~n be shown (see Marquardt 1963) that the path directions for 
gra?Ient an.d an~lyt~cal searches are nearly perpendicular to each other, and that the 
optimum dIrectIOn IS somewhere between these two vectors. 
. On~ advantage of c~mbining these two methods into one algorithm is that the 

SImpler fIr~t -order expansIOn o~ th~ anal~tical method will certainly suffice because 
the expansIOn need only be valId m the Immediate neighborhood of the minimum. 
Thus, to ca~culate the curvature ~at~x 0., we can use the approximation of Equation 
(8.35) and Ignore the second denvatIves of Equation (8.37). 
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Gradient-Expansion Algorithm 
A convenient algorithm (see Marquardt 1963), which combines the best features of 
the gradient search with the method of linearizing the fitting function, can be ob­
tained by increasing the diagonal terms of the curvature matrix a by a factor 1 ~ }.. 
that controls the interpolation of the algorithm between the two extremes. EquatIOn 

(8.34) becomes 

J3 = oa a' 
• , _ {CXjk(l +}..) for j = k 

wIth CXjk- f '~k 
CXjk or] -r-

(8.39) 

If}" is very small, Equations (8.39) are similar to the solution of Equation (8.34) de­
veloped from the Taylor expansion. If }.. is very large, the diagonal terms of the cur­
vature matrix dominate and the matrix equation degenerates into m separate 

equations 
(8,40) 

which yield the vector increment oa in the same direction as the vector J3 of Equa­
tion (8.37) (or opposite to the gradient of X2

). 

The solution for the parameter increments 8aj follows from Equations (8.39) 

after matrix inversion 

(8,41) 

where the 13k are given by Equation (8.37) and the matrix e' is the inverse of the ma­
trix a' with elements given by Equations (8.39). 

The initial value of the constant factor }.. should be chosen small enough to 
take advantage of the analytical solution, but large enough that X2 decreases. Be­
cause this algorithm approaches the gradient-search method with small steps for 
large }.., there should exist a value of }.. such that x2(a + 8a) < x2(a). The recipe 

given by Marquardt is: 

1. Compute x2(a). 

2. Start initially with}" = 0.001. 
3. Compute 8a and x2(a + 8a) with this choice of}... 
4. If x2(a + 8a) > x2(a), increase}.. by a factor of 10 and repeat step 3. 
5. If x2(a + 8a) < x2(a), decrease}.. by a factor of 10, consider a' = a + 8a to be 

the new starting-point, and return to step 3, substituting a' for a. 

For each iteration it may be necessary to recompute the parameter increments 
8a. from Equation (8.41), and the elements CXjk and I3j ofthe matrices, several times 
to Joptimize }... As the solution approaches the minimum, the value of}.. will decr~as.e 

_1_ ~ __ 1...1 1 ___ .... _ ... L __ !_.:_~~-..... ww.!+t.. ...... +""' ...... !+ .......... .-.+.:.................. A 1r'11.'1"(10 ...... 11...,....1t 
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TABLE8.S 

Two exponentials plus constant background: Marquardt method 

Trial X
2 a1 a2 a3 a4 as 

0 406.6 10.0 900.0 80.0 27.0 225.0 
1 82.9 1l.0 933.5 139.3 33.9 173.9 
2 66.4 10.8 960.1 l30.6 33.8 20l.2 
3 66.1 10.4 958.3 l31.4 33.9 205.0 

Uncertainties l.8 49.9 2l.7 2.5 30.5 

X2/dof = l.22; probability = 12.4%; relative time = l.0 

Note: All stages in the fit to counts from the decay of excited states of silver. The uncertainties in the parameters cor­
respond to the square roots of the diagonal terms in the error matrix. 

TABLE 8.6 

Elements of the error matrix (Marquardt method) 

11k 1 2 3 4 S 

3.38 -3.69 27.98 -2.34 -49.24 
2 -3.69 2492.26 81.89 -69.21 -3.90 
3 27.98 81.89 468.99 -44.22 -615.44 
4 -2.34 -69.21 -44.22 6.39 53.80 
5 -49.24 -3.90 -615.44 53.80 929.45 

Note: Error matrix from a fit to the radioactive silver data. The diagonal terms are the variances CT~ and the off­
diagonal terms are the covariances CT ~I of the parameters ak' 

Program 8.4. MARQFIT (Appendix E) Routine MARQUARDT illustrates fit­
ting by the gradient-expansion algorithm. 
The procedure uses the same program units as those in Program 8.3, and is identical to 
that pr~gram except for the adj~stment of the diagonal elements a)) of the matrix cx by 
the vanable LAM B DA accordmg to Equation (8.39). 

At the conclusion of the search, the inverse E of the final value of the curva­
ture matrix a is treated as the error matrix, and the errors in the parameters are ob­
tained from the square roots of the diagonal terms by calls to the function 
S I G MATRX in the unit FitFunc8. Table 8.5 shows values of X2 and the parameters 
a] through a 5 for all stages of the calculation. Table 8.6 shows the error matrix from 
the fit. 

8.7 COMMENTS 

~lthough the Marquardt method is the most complex of the four fitting routines, it 
IS also the clear ~inner for finding fits most directly and efficiently. It has the strong 
advantage of bemg reasonably insensitive to the starting values of the parameters 
<1IltJ,"' .......... l....: ....... _ ........ 1_~-. ___ 1_-_1_- 1 ..... -~ -- - ' 
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ranges. The Marquardt method also has the advantage over the grid- and gradient­
search methods of providing an estimate of the full error matrix and better calcula­
tion of the diagonal errors. 

The routines of Programs 8.3 and 8.4 were tested with both numerical and an­
alytical derivatives. Typical search paths with numerical derivatives are shown in 
Tables 8.4 and 8.5. For the sample problem with the assumed starting conditions, 
the minimum X2 was found in only a few steps by either method with essentially no 
time difference. Both methods are reasonably insensitive to starting values of para­
meters in which the fit is linear, but can be sensitive to starting values of the non­
linear parameters. Program 8.4 had remarkable success over a broad range of 
starting values, whereas Program 8.3 required better definition of the starting values 
of the parameters and generally required many more iterations. 

The uncertainties in the parameters for these fits were calculated from the di­
agonal terms in the error matrices and are, in general, considerably larger than the 
uncertainties obtained in the grid- and gradient-search methods. Because the latter 
errors were obtained by finding the change in each parameter to produce as change 
of X2 of 1 from the minimum values, without reoptimizing the fit, there is a strong 
suggestion that correlations among the parameters play an important role in fitting 
Figure 8.1. This point of view is supported by examination of the error matrix from 
the method 4 fit (Table 8.6), which shows large off-diagonal elements. 

With poorly selected starting values, the searches may terminate in local min­
ima with unacceptably high values of X2 and, therefore, with unacceptable final val­
ues for the parameters. Termination in the sample programs is controlled simply by 
considering the reduction in X2 from one iteration to the next and stopping at a pre­
selected difference. With this method, it is essential to check the results carefully to 
be sure that the absolute minimum has indeed been found. 

SUMMARY 

Nonlinear function: One that cannot be expressed as a sum of terms with the coef­
ficients of the terms. 
Minimum OfX2 (parabolic approximation): 

[ 
X2 - X2 1] 

a;=aj3-t::.aj 2_3222 2+-2 
XI X2 + X3 

Estimate of standard deviation from t::.X2 = 1: 

Uj = t::.aj Y2(xt - 2X~ + xD- 1 

Grid search: Vary each parameter in turn, minimizing X2 with respect to each para­
meter independently. Many successive iterations are required to locate the minimum 
of X2 unless the parameters are independent; that is, unless the variation of X2 with 
respect to one parameter is independent of the values of the other parameters. 
Gradient search: Vary all the parameters simultaneously, adjusting relative magni­
tudes of the variations so that the direction of propagation in parameter space is 
along the direction of steepest descent of X2. 
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Direction of steepest descent: Opposite the gradient V X2: 

(VX2)j = aX2 = x
2
(aj + ft::.a) - x(a) 

aaj ft::.a j 

8a, = _((ax2/aaj)t::.aJ) 

J y2.J'=I((aX2/aa)t::.ay 

Parabolic expansion ofx2: 

3a = f3e 

with 

Gr~dient-expansion algorithm-the Marquardt method: Make A just large enough 
to msure that X2 decreases: 

I _{IXjk(l +A) forj=k 
IX'k -

J IXjk forj -=1= k 

IXjk = 2:[~ ay(xi) ay(x;)] 
Ui aaj aak 

Uncertainty in parameter a/ IXaj = ejj corresponds to t::.X2 = 1. 

EXERCISES 

8.1. Use an interpolation method (see Appendix A) to find the equation of the parabola that 
p~s~es through the three points (Xl, Yl), (Xz, Y2), and (X3' Y3)' Find the value of x at the 
ll11mmum of the parabola and thus verify Equation (8.12). 

8.2. From the results of Exercise 8.1, verify Equation (8.13). 
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8.3. The following data represent histogram bin counts across a Lorentzian peak: 

Xi 1.824 1.828 1.832 1.836 1.840 1.844 1.848 1.852 1.856 1.860 

Yi 558 679 696 736 834 812 899 817 767 657 

(a) Use the grid-search method to fit the equation y(x) = APL(x; fL, f) to the data and 
find the maximum-likelihood value of fL, where PL(x; fL, r) is the Lorentzian func­
tion of Equation (2.32) and the known parameters are A = 75 and r = 0.055. As­
sume that x is given at the lower edge of each histogram bin and that the errors in y 
are statistical. Find the uncertainty in fL. 

Suggested procedure: (i) Calculate X2 at the peak of the distribution and at a value 
on each side. (ii) Find the minimum of a parabola that passes through the three 
points. (iii) Repeat the procedure with three points centered on the minimum X2 un­
til the value of fL has been determined to :'::0.001. 

(b) Repeat the procedure for a two-parameter fit, with r as the second unknown. 
8.4. Consider the histogram of measured time intervals displayed in Figure 1.2. The num­

bers of events in the bins bounded by t = 0.59 to 0.70s. 
2,2, 11,6, 12,8,4,3, 1, 1,0 

Fit a Gaussian curve [Equation (2.23)] to these data by the least-squares method to find 
fL, 0", and the amplitude of the curve A. Bins with fewer than seven events should be 
merged to improve the reliance on Gaussian statistics. Compare the parameters ob­
tained from the fit with those determined by taking the mean and standard deviation of 
the data. 

8.5. The following data correspond to counts recorded in Example 6.2 with the addition of 
an unknown randomly fluctuating background term a,. Use the Marquardt method to fit 
the equation C = a, + aid 2 to these data to find the parameters a, and a2 and the full 
error matrix. Assume statistical uncertainties. 

8.6. 

0.20 
944 

234 

0.25 0.30 0.35 
688 467 366 

5 6 

0040 0045 
316 317 

7 

0.50 
264 

8 9 

0.60 0.75 
251 214 

10 

1.00 
184 

Use the method of least squares to fit the five-parameter equation y(x) = a, + a2x + 
a3G(x; a4, as) to the following data where a4 = fL, as = 0", and G(x; fL, 0") is the Gauss-
ian curve of Equation (2.23). 

2 3 4 5 6 7 8 9 10 

Xi 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 
Yi 31 25 24 30 34 37 31 30 64 54 

11 12 13 14 15 16 17 18 19 20 

Xi 2.0 2.1 2.2 2.3 204 2.5 2.6 2.7 2.8 2.9 
Yi 95 94 78 79 43 54 58 52 46 41 

Use the Marquardt method and find an estimate of the error matrix. The value of x is 
given at the lower edge of each bin. Assume statistical uncertainties. 

8.7. To check the inverse-square relationship expressed in Coulomb's law, 

F= kQ,Q2/r2 
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Students in an undergraduate laboratory measured the force of electrostatic repulsion 
between two charged conducting spheres as a function of the distance between the cen­
ters of the spheres. 

They applied the same p~tential to each sphere so that each carried the same charge. 
Becaus~ of the mutual repulsIOn of the charges on the conducting spheres, the effective 
separatIOn of the two charge distributions is not simply the separation of the centers of 
the spheres. The resulting reduction in the repulsive force is a function of the separation 
r of the spheres and their radii a, given approximately by the correction factor 

f= 1 - 4(a/r)3 

where a = 1.9 cm in this experiment. Thus, the relation between the mutual force on the 
spheres and their separation, including the correction factor, can be expressed as 

Feoulomb = [1 -4(~ YJ k~~Q, 
The students used a t~rsion balance to study the variation of the repulsive force, so that 
t~e force was proportIOnal to the measured torsion angle. The relation between the tor­
SIOn angle 8 and the separation r of the centers of the spheres, including the correction 
factor, can be rewritten as a "fitting equation" 

8 = A[1 - 4(a/r)'] 

with unknown parameters, the scale factor A and the exponent e. 
The students obtained the following measurements of the torsion angle (8 in de­

grees) as a function of the separation between the centers of the spheres (r in cm). 

r i 5.0 6.0 
8i 264 233 

7.0 8.0 9.0 
179 136 111 

10.0 
84 

12.0 
63 

Assume that the uncertainty in the angle is :':: 1°. 

14.0 
53 

16.0 
33 

18.0 
30 

20.0 
27 

(a) Use one of the nonlinear fitting methods to determine the two parameters e and A 
of the fitting equation, and their uncertainties. 

(b) M~ke a be~ter estimate of the uncertainty in 8 by considering the uncertainty re­
qUIred to gIve X2 = number of degrees of freedom. 

(c) What effect does this change have on the uncertainties in the fitted parameters? 


