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CHAPTER 

9 
FITTING 

COMPOSITE 
CURVES 

9.1 LORENTZIAN PEAK ON QUADRATIC 
BACKGROUND 

Many fitting problems involve determining the parameters of a resona~t pea~ or 
peaks, superimposed upon a background si~nal: Ex~mples may. be found m v~nous 
types of spectroscopic studies where the objectIve IS to determme the propertIes of 
one or more resonant states. 

EXAMPLE 9.1 We consider a problem from nuclear or particle physics illustrated 
by the 4000-event histogram of Figure 9.1, which shows a large peak on a s~oo~hly 
varying background. We shall assume that the data have ~een ?ra:vn ~rom a dlstnbu­
tion that includes a resonant state described by the LorentzIan dlstnbutlOn, and that the 
background can be described by a second-degree pol~nomial in t~e energy E. I We 
shall attempt to fit Equation (9.1) to the data to determme the amplItude Ao, the reso­
nant energy Eo, and the full width at half maximum f. 

2 f/(2'iT) (91) 
y(E) = al + a2E + a3 E + Ao (E _ Eo)2 + (f /2)2 . 

We note that Equation (9.1) is linear in the parameters aj> az' and a3, but not in the 
parameters Eo and f. 

IThese "data" were actually generated by the Monte Carlo method described in Chapter 5. The para­
meters used in the generation are listed in the second column of Table 9.1. 
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Histogram data in bins of 0.10 GeV of the 4000 simulated events generated from Equation (9.13) with 
parameters listed in column 2 of Table 9.1. The solid curve illustrates a fit of Equation (9.1) to the 
data. The dashed curve indicates the polynomial background. 

We used the Marquardt method with numerical derivatives to fit Equation (9.1) 
to the histogram of Figure 9.1, because this is clearly the most flexible and convenient 
of the four methods considered in Chapter 8. The amplitudes of the polynomial func­
tion (al through a3), the amplitude of the Lorentzian peak (a4 = Ao), and the mean Eo 
and half-width f of the Lorentzian function (as and a6) were treated as free parameters 
of the fit. Starting values for as and a6 were obtained by inspecting the histogram of 
Figure 9.1; starting values for the other parameters, the coefficients of the various 
terms, were obtained by trial and error. Because the Marquardt method is exact for a 
function that is linear in the parameters, convergence of the fit is relatively insensitive 
to starting values of al through a4' The method is more sensitive to starting values for 
the Lorentzian parameters (Eo and f). If starting values were too far from the obvious 
parameters of the peak, the program would coast to a halt in a shallow local minimum 
with obviously incorrect values for the parameters, and with a higher than expected 
value of X2

• Starting values for all fits are listed in column 3 of Table 9.1. 
Results of this six-parameter fit to the distribution in Figure 9.1 are summarized 

in column 4 of Table 9.1 and the curve calculated from Equation (9.1) with the para­
meters found in the fit is plotted on the histogram of Figure 9.1. The dashed curve 
shows the contribution of background under the peak. The X2 probability of the fit 
(7.9%) is low, but acceptable. 

Because one ofthe objectives of the analysis of Example 9.1 is to determine 
Eo, the mean of the peak function of Equation (9.1), we must be careful in the 
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TABLE 9.1 

Results of least-squares fits of Equations (9.1) and (9.13) to data displayed in 
Figures 9.1 and 9.2 

Values 
used to Starting Six-parameter Six-parameter Nine-parameter 

generate values fit fit fit 
data for fit (Figure 9.1) (Figure 9.2-inset) (Figure 9.2) 

dof 24 54 51 
x2 34.3 72.9 56.0 
Px2 7.9% 4.4% 29.4 
Num 4000 3944 3927 3994 
al 1.0 2.2:±: 2.6 -2.2 :±: 1.3 -2.1 :±: 1.1 
a2 45.0 136.0:±: 8.1 73.9 :±: 3.7 73.7 :±: 3.6 
a3 -10. -31.6 :±: 3.1 -18.0 :±: 1.4 -18.0:±: 1.4 

Peak 1 

a4 (Ao) 20.0 79.8:±: 7.0 33.9 :±: 2.7 28.8:±: 3.0 
as (Eo) 1.0 1 0.9838 :±: 0.0068 0.9912 :±: 0.0050 0.9968 :±: 0.0044 
a6 (fo) 0.1 0.1 0.197 :±: 0.024 0.139 :±: 0.Q15 0.108 :±: 0.017 

Peak 2 

a7 (AI) 3.5 1 5.3:±: 2.2 
as (EI) 0.8 0.825 0.824 :±: 0.017 
a9 (f l ) 0.12 0.05 0.083 :±: 0.034 

choice of the value of the independent variable that we use in the fit. On the his­
togram of Figure 9.1, the value of E; at the left-hand edge of selected bins is indi­
cated, but for the fit we used the value of E at the center of each bin. If we had used 
values of E; from the left-hand edge ofthe histogram bins, the value for E? from the 
fit would have been too low by half a bin width. For wide bins and a rapIdly vary­
ing fitting function, it might be advisable to select the value of E; for each bin by 
weighting according to the steepness of the function. 

Note that the problem of selecting the absolute value of the abscissa corre­
sponding to the ordinate value was not important in the determination of the mean 
lifetimes in Example 8.1 because lifetimes are determined effectively from differ­
ences, rather than absolute values, of the independent variable. We must, however, 
always take care when we plot results of a fit that the curve is not displaced half a 
bin width from the data. 

Program 9.1 Lo R I NFl T (Appendix E) illustrates use of the Marquardt method 
to fit a Lorentzian peak on a quadratic background. 

9.2 AREA DETERMINATION 

When dealing with problems of peaks and backgrounds, we may wish to determine 
not only the position and width of a peak in a spectrum, but also the number of 
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events or area of the peak, which may measure the intensity of a transition or the 
strength of a reaction. When peaks are not well separated, or when the contribution 
from background is substantial, least-squares fitting can provide a consistent 
method of extracting such information from the data. 

The importance of consistency should not be underestimated. Whether or 
not the method chosen is the best possible method, as long as it involves a well­
understood and clearly specified procedure, other experimenters will be able to 
check and compare the results safe in the knowledge that their comparisons are 
justified and meaningful. The method of least squares is considered to be an unbiased 
estimator of the fitting parameters and all parameters are presumed to be estimated 
as well as possible. This assumption is based on the validity of both the fitting func­
tion in describing the data and the least-squares method. If we try to fit the data with 
an incorrect fitting function, or try to fit data with uncertainties that do not follow the­
Gaussian distribution, then the fitting procedure may not yield optimum results. 

Although we refer to the number of events as the area of a peak or plot, the 
true area is, of course, the number of events multiplied by the data interval or his­
togram bin width. Thus, to find the area Ap of the peak from the results of the fit in 
Example 9.1, we calculate 

_ foo f /(21T) 
Ap - _!o (E - EO)2 + (f /2)2 (9.2) 

Because we used the normalized form of the Lorentzian function, the integral is just 
the coefficient a4 obtained in the search Ap = Ao = a4' The area of the peak on the 
histogram is the product of the number of events Np in the peak and the width f1E of 
the histogram bin 

Ap = Np X f1E, 

so the number of events in the peak is given by 

Np = Ap/f1E (9.3) 

The result from Example 9.1 isNp = (79.8 ± 7.0)/0.1 = (798 ± 70) events. 
Alternatively, we might plot the background curve on the graph 

Yb(E) = al + a2E + a3E2 (9.4) 

and count the number of events in the peak above the background in a selected 
range encompassing the peak. We have indicated such a range by vertical dotted 
lines at Eo - 2f and Eo + 2f in Figure 9.1. With this method we should be obliged 
to estimate and correct for events outside the selected region. 

Uncertainties in Areas under Peaks 

If we calculate the area of the peak from Equations (9.2) and (9.3), then the un­
certainty should be estimated from the uncertainties in the parameters by the er­
ror propagation equation. We have used this method to obtain the uncertainty in 
the number of events of the peak of Figure 9.1 in the calculation that follows 
Equation (9.3). 
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The uncertainty 0" A in the area under a peak can also be estimated by consid­
ering the uncertainty in the parent distribution. If the data are distributed according 
to the Poisson distribution, the uncertainty in the areaAp is given by O"~ = Ap. If we 
obtain the area by counting the number of events above background, then the vari­
ance ofthe difference will be the sum (not the difference) of the variance ofthe to­
tal area under the peak and the variance of the subtracted background Ab: 

O"~ = O"i + O"~ = At + Ab 

where the subscripts p, b, and t correspond to peak, background, and total (= peak 
+ background). In order to keep St = At as small as possible, we should count 
events only in that region where the peak-to-background ratio is large and make 
corrections for the tails of the distribution. 

Area under a Curve with Poisson Statistics 

Curiously enough, if the data are distributed around each data point according to the 
Poisson distribution, as in a counting experiment, the method of least squares con­
sistently underestimates the area under a fitted curve by an amount approximately 
equal to the value of X2. To show this, let us consider fitting such data with an ar­
bitrary peak, represented by bfr,(x; f-L, 0") plus a polynomial background similar to 
Example 9.1 : 

y(x) = a + bf(x; f-L, 0") (9.5) 

where we have simplified the background to a single term a for clarity. 
U sing the method of least squares, we define X2 to be the weighted sum of the 

squares of deviations of the data from the fitted curve 

X2 = ~[:T (Yi - a - bf(x; f-L, 0"))2] (9.6) 

and obtain the solution by minimizing X2 simultaneously with respect to each of the 
parameters. The required derivatives with respect to the two parameters a and b, in 
which the function is linear, are 

a 2 [ 1 ] ~ = -2~ 2(Yi - a - bf(x; f-L, O"))f(x; f-L, 0") = 0 
ab O"i 

a 2 [ 1 ] a~ = -2~ O"T (Yi - a - bf(x; f-L, 0")) = 0 

(9.7) 

We can write X2 in terms of the derivatives of Equation (9.7) as 

[
yo ] 1 (a x2 aX2 ) X2 = ~ O"~ (Yi - a - bf(x; f-L, 0")) + 2 a aa + b ab (9.8) 

and setting the derivatives to 0 gives 

X2 = ~[~~ (Yi - a - bf(x; f-L, r))] (9.9) 
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If the data represent the number of counts per unit time in a detector, then they are 
distributed according to the Poisson distribution and we can approximate 0"7 = Yi. 
Equation (9.9) becomes 

X~n = 2:[yJa + bf(x; f-L, r))] 
= area (data) - area(fit) 

(9.10) 

Thus, we observe that the area under the total fit is underestimated by an amount 
equal to X~n. 

For this derivation we require only that the fitting function consist of a sum of 
terms, each one of which is multiplied by a coefficient 

m 

y(x) = ~ajJj(x) (9.11) 
j=l 

The functionjj(x) can contain any number of other parameters in nonlinear form, 
but may not contain any of the coefficients a·. Even reparameterizing the function 
of Equation (9.5) [or Equation (9.1)] and minimizing X 2 with respect to the area ex­
plicitly would not affect the discrepancy between the actual and estimated areas. 

Note that for data that are distributed with a constant uncertainty O"i = 0", the 
second equation of Equations (9.7) is sufficient to ensure that 2:y(xi) = 2:Yi. It is the 
assumption of a Poisson distribution for the data O"T = Yi that yields the discrepancy 
between the actual and estimated areas. 

If the agreement between the fit and the data should be exact, X2 = 0, then the 
estimated and actual areas would be equal. For a fitting function that is a good rep­
resentation of the data, the value of X2 will approximately equal the number of de­
grees of freedom, so that if there are many bins and a few parameters to be 
determined, the average discrepancy will be about 1 per bin. Thus, the correction 
may be negligible for distributions with large numbers of events. 

We would like to find ways to reduce the discrepancy. The fact that we know 
the approximate value of the discrepancy in the total histogram is, in itself, not very 
helpful because we do not know how to allocate the discrepancy between peak and 
background. We might find the ratio of the integral Ap of the peak [Equation (9.2)] 
to the integral A of the complete function Equation (9.1) and scale to the total num­
ber of events in the plot to estimate the number of events in the peak. This method 
assumes that the correction is proportional to the area. Another possibility is to 
make separate fits to the peak and background regions of the plot, so that we can try 
to assign the estimated correction separately to the two regions of the plot. 

One obvious way of reducing the discrepancy between the area of the mea­
sured and fitted data is to reduce the value of X2 at the minimum so that the correc­
tion is small. A method of accomplishing this reduction, which is not universally 
accepted but which can be justified by practical considerations, is the technique of 
smoothing the data, averaging in some mathematically acceptable way over adja­
cent bins. (See Appendix A.S). Under any smoothing process there can be no over­
all gain in information, and a net improvement of the fit to the area must be offset 
by an increased uncertainty in the estimation of other parameters, such as the width 
and position of the peak. But smoothing will decrease the value of X2 at the mini­
mum and thereby reduce the bias in the estimation of the area. 
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Referring to Table 9.1, we observe that the areas under the three fitted curves 
differ from the area under the data sample (4000 events), although the differences 
do not agree with the predicted values (X~n)' perhaps because of the complexity of 
the nonlinear fitting process. Linear least squares polynomial fits to appropriate 
data, such as the background distributions in Example 9.1, yield the expected dif­
ferences between the area of the data and the fitted curves. See Exercise 9.1. 

9.3 COMPOSITE PLOTS 

Single Peak and Background 

For a fitting function y(x) that is separable into a peak y/x) plus a background Yb(X), 
such as Equation (9.1), it may be convenient to consider at least some facets of the 
fitting procedure separately. The least-squares procedure for minimizing X2 with re­
spect to each of the parameters aj' 

a { 1 }=o 
aaj L o-T [Yi - Yb(Xi) - yp(x;)J2 (9.12) 

can be considered equally well in terms of fitting the sum of the curves y(x) to the to­
tal yield Yi or of fitting one function y/x) to the difference spectrum Y: = Yi - Yb(X). 
The only provision is that the uncertainties in the data points of (J": = (J"i must be the 
same in both calculations. 

If the background curve can be assumed to be a slowly varying function un­
der the peak, as in Figure 9.1, and may reasonably be interpolated under the peak 
from fitting on both sides, it may be preferable to fit the background curve Yb(X) 
outside the region of the peak and to fit the peak function y/x) only in the region 
of the peak. 

Such a procedure might help isolate special problems that result from fitting 
with an incorrect peak or background. The X2 function measures not only the devi­
ations of the parameters from an ideal fit, but also the discrepancy between the form 
chosen for the shape of the fitting function y(x) and the parent distribution of the 
data. If the shape of the fitting function does not represent that of the parent distrib­
ution exactly, the value of X2 may have large contributions from local data regions. 
By fitting separate regions of a plot, it may be possible to discover whether the dis­
agreement is in the background or the peak region. In the histogram of Figure 9.1, 
our interest is in the properties of the peak function, and not in the background, 
which we parameterize with a simple power series in E. However, the value of X2 
for the fit is calculated for the entire plot and includes contributions from discrep­
ancies between the background and the fitted curve, as well as between the peak and 
curve. We may be able to isolate problems to one or the other region by separating 
the fit into two parts. 

Another reason for making separate fits to regions of a plot is to search for start­
ing values for an overall fit. For example, when fitting a function that consists of peak 
functions plus background function, it may be useful first to fit the regions outside the 
peaks to get starting values for the background parameters and then to fit separately 
the region close to each peak, to find starting values for the peak parameters. 

Fitting Composite Curves 175 

As an example, assume that we wish to find starting values for the fit of Equa­
tion (9.1) to the data of Figure 9.1. The following procedure could be used: 

1. Separate the curve into three regions (a), (b), and (c) as indicated by the two 
vertical lines on Figure 9.1. 

2. F~t the background polynomial Y1(X) = a1 + a2E + a3E2 simultaneously to re­
gIOns below and above the peak to obtain provisional values for the parameters 
a] through a3. 

3. Fit the entire function of Equation (9.1) to the central region, with the fixed val­
ues of a] through a3 obtained in step 2 to obtain values for the parameters a4, a5' 
and a6. 

4. Fi.t the entire ~unction of Equation (9.1) simultaneously to regions (a) and (c), 
wIth the startmg values ,of the parameters a4 through a6 set to the values ob- , 
tained in steps 2 and 3 to obtain new values of the parameters a1 through a3. 

If the parameters continue to change significantly on each iteration, the 
process can be repeated from step 2 as required. Alternatively, it may be sufficient 
to skip step 3 and to fit for all parameters after step 2. 

~n .fi~ting the peak and background functions over different parts of the spec­
tru~, It IS Important to note that the complete function y(E) of Equation (9.1) must 
be fItted to both regions; that is, in the region outside the peak where the back­
ground is being fitted, the calculation of the tail of the peak must be included, and 
underneath the peak, the background terms must be included. 

Multiple Peaks 

Separation of closely spaced peaks is an important problem in many research fields. 
~lthough we should not attempt to extract information from our data by sorting in 
bms that are smaller than the uncertainties in our measurements, and should not use 
bin widths that are so narrow that the numbers of events in the bins are too small to 
satisf~ G~ussian statist~cs, we al~o should not err in the other direction and risk sup­
pressmg Important detaIls. Selectmg optimum bin sizes is critical. For some data sam­
ples, different bin widths for different regions of the data sample may be appropriate. 

EXAMPLE 9.2 We have noted that, although the 4.4% probability for the fit to the 
data of Example 9.1 is rather low, it could be acceptable. However, because the data 
were plotted in rather coarse bins (tlE = 0.1 GeV), some information may have been 
suppressed. To check this possibility, we plotted the data in smaller bins (tlE = 0.05 
GeV) as illustrated in Figure 9.2. (Note that in plotting Figure 9.2 we have eliminated 
some bins from the lower and upper edges of the histogram in order to enhance the 
display; all 60 bins are included in the fits.) 

Plotted in smaller bins, the large peak near E = 1.00 Ge V appears to be consid­
erably narrower than indicated in Figure 9.1. There is also a suggestion of a possible 
ex~ess of event~ in the bin centered at E = 0.825 Ge Von the low-energy side of the 
mam peak. As Illustrated by the curve on Figure 9.2, a fit of the two-peak Equation 
(9.13) to the narrow-bin data, seems to confirm the existence of a second peak. To 
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Histogram data in bins of 0.05 GeV of the 4000 simulated events shown in Figure 9.1. The solid 
curve illustrates a fit of Equation (9.13) to the data. The inset illustrates, in the region of the smaller 
peak, a fit of the single-peak Equation (9.1) to the entire data sample. 

obtain this fit, we chose as starting values for the mass and width of the second peak, 
0.825 and 0.05 GeV, respectively, 

2 ro/(21T) 
y(E) = al + a2E + a3E + Ao (E _ EO)2 + (ro/2)2 

r /(21T) 
(9.13) 

suggested by examination of Figure 9.2. . 
Results of the fit are listed in column 6 of Table 9.1. The 29.4% chi-squared 

probability for this fit is a marked improvement from 4.4% for the single-peak fit. The 
inset on Figure 9.2 shows the region of the smaller peak with a curve calculated by fit­
ting the single-peak Equation (9.1) to the entire data sample of Figure 9.2. Parameters 
determined in this fit are listed in column 5 of Table 9.1. 

We can estimate the statistical significance of the smaller peak in Example 
9.2 by counting the total number of events above the single-peak background 
(shown in the inset) and considering whether or not the excess is consistent with a 
statistical fluctuation. There are 102 events in the peak bin over a background of 
69.5 events, corresponding to a fluctuation of (102 - 69.5)\ \169.5 = 3.9 standard 
deviations in the background signal. Referring to Table C.2, we infer that there is 
a (1 - 0.99990) = 0.00010, or 0.01 % probability that we should obtain a result 
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this large, or larger, from a statistical fluctuation. Thus, the smaller peak appears to 
be very well established. 

But we should wait before rushing into publication; our analysis is not fin­
ished. We calculated the probability of finding a 3.9 standard deviation fluctuation 
in a particular bin. However, there are 60 bins in this data sample, and the fluctua­
tion could have appeared in any of them. The probability that a 3.9 standard devia­
tion would not appear in any of the 60 pairs is 0.999960, so the probability of 
observing the fluctuation in any of the bin pairs is 1 - 0.999960 - 0.6%. This prob­
ability is low enough to give us considerable confidence that the smaller peak is not 
a fluctuation. If we had some a priori reason, such as a theoretical prediction or ev­
idence from another experiment, to believe that the smaller peak should be located 
in the particular energy region where it appears, then the argument against a statis­
tical fluctuation would be even more compelling. 

While there appears to be firm statistical support for a second peak in the data' 
of Example 9.2, that support depends strongly on our understanding of the contri­
butions in the region of the second peak from the smooth background distribution 
and the tail of the large peak. If, for example, background counts were 10% higher, 
decreasing the excess by 10%, the fluctuation would decrease from 3.9 to 2.9 stan­
dard deviations and the probability of a fluctuation of this magnitude in any bin 
would increase from about 1 % to 20%, a considerably less compelling number. 

Are there further tests we can make on our data sample to help us understand 
the significance of our result? For problems such as this, where the statistical sig­
nificance of a result may be in question, the Monte Carlo method (Chapter 5) pro­
vides a powerful tool for more detailed examination. We shall use this technique in 
Chapter 11 to make a simple statistical test of these data. A full Monte Carlo pro­
gram, which incorporates all the known or estimated details involved in the cre­
ation of the data sample, is invaluable in the planning and analysis of a serious 
experiment. 

SUMMARY 

Background subtraction: 

(yp ---+ peak; Yb ---+ background) 

Uncertainty in area of peak: 

( = A + AB for Poisson statistics) 

Area under fitted peak curve: 

Discrepancy in area under a curve with Poisson statistics: 

X~in = ~[;~ (Yi - Y(Xi))] = area(data) - area (fit) 
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EXERCISES 

9.1 The following data are drawn from the background distribution illustrated b~ the 
dashed curve in Figure 9.1 The data points correspond to the numbers of counts ill 15 
histogram bins, which are 0.2 Ge V wide, each centered on the indicated value of E. 

E 0.1 0.3 0.5 0.7 0.9 
N 4 30 49 71 87 

Plot a of the data. 

1.1 1.3 1. 5 1.7 
91 120 136 147 

1.9 
133 

2.1 2.3 
130 118 

2.5 2.7 
142 122 

Use a linear-fitting technique, such as those described in Chapter 7, to fit a second-order 
polynomial to these data. Assume statistical uncertaint~es in the counts. Co~pare the 
number of events in the histogram to the number deterrmned by the fit. Is the dIfference 
consistent with the prediction of Equation (9.10)? 

9.2 Find the area ofthe peak in Figure 9.1 by counting the area between the vertical dotted 
lines and subtracting the estimated background. Refer to the data in Exercise 9.4. Esti­
mate the correction for the tails. Estimate the uncertainty in your determination of 
the area. 

9.3 Refer to the data of Exercise 8.6. Fit the histogram by the method outlined in Section 
9.3 with separate fits of the background second-order polynomial to the regions outside 
the peak and of tlIe Gaussian function to the region of the peak. 

9.4 The accompanying table lists the numbers of events in the histogram bins of Example 
9.1 fromE = 0.0 to 3.0 GeVin steps of 0.05 Gey. 
(a) Fit Equation (9.1) to the data to obtain the parameters for this distribution. Compare 

to the values of the parameters listed in column 5 of Table 9.1. 
(b) Repeat the fit with adjacent bins merged (i.e., combine bins 1 and 2, bins 3 and 4, 

etc.) and observe the effect on the value of X2, the determination of the area of the 
peak, and the determination of the mean and half-width of the peak. Assume statis­
tical uncertainties. 

7 2 6 12 15 18 31 29 27 27 41 35 37 37 63 71 102 95 115 202 
190 113 86 68 74 79 75 79 68 62 69 81 79 85 87 68 70 89 77 70 
71 62 85 62 73 70 59 61 77 61 62 73 67 71 75 66 73 71 71 49 

CHAPTER 

10 
DIRECT 

APPLICATION 
OF THE 

MAXIMUM­
LIKELIHOOD­

METHOD 

T he least-squares method is a powerful tool for extracting parameters from ex­
perimental data. However, before a least-squares fit can be made to a data set 

that consists of individual measurements or events, the events must be sorted into a 
histogram, which may obscure some detailed structure in the data. Because the 
least-squares method was derived from the principle of maximum likelihood, it 
might be better in some instances to use the maximum-likelihood method directly 
to compare experimental data to theoretical predictions, without the necessity of 
binning data into histograms with the corresponding loss of information. 

We have already used the method in Chapter 4 to find estimates for the mean 
and standard deviation of data obtained in repeated measurements of a single vari­
able, where we have assumed that the measurements were distributed according to 
Gaussian probability. Now, we extend the method to other distribution functions 
and to multiparameter fits. Maximum-likelihood methods can be applied directly to 
many "curve fitting" problems, and such fitting is almost as easy to use as the least­
squares method, and considerably more flexible. However, the direct maximum­
likelihood method requires computations for each measured event, rather than for 
each histogram bin as in least-squares fitting, and therefore the technique may be 
too slow for very large data samples. 

Direct maximum-likelihood calculations have an advantage over the least­
squares method for two particular types of problems: (1) low-statistics experiments 

179 



180 Data Reduction and Error Analysis for the Physical Sciences 

with insufficient data to satisfy the requirement of Gaussian statistics for individual 
histogram bins and (2) experiments in which the fitting function corresponds to a 
different probability density function for each measured event so that binning the 
data leads to a reduction in information and a loss of sensitivity in determining the 
parameters. If the data set is sufficiently large, then the least-squares method can be 
applied to problems of either type, and that method is generally preferred in view of 
its smaller computing requirement. At any rate, it is not possible to extract more 
than minimal information from a very small data set, so we should expect the direct 
maximum-likelihood method to be most useful for intermediate problems with 
modest data samples. 

10.1 INTRODUCTION TO MAXIMUM 
LIKELIHOOD 

The basic maximum-likelihood procedure is relatively simple. Assume that we have 
a collection of N events corresponding to the measurement of an independent vari­
able Xi and a dependent variable Yb where i runs from 1 to N. We wish to obtain the 
parameters, ai' a2, ... , am, of a fitting function Y(Xi) 0= Y(Xi; ai' a2, ... , am) from 
these data. For each event, we convert y(x) to a normalized probability density 
function 

(10.1) 

evaluated at the observed value Xi' The likelihood function L(al, a2, ... , am) is the 
product of the individual probability densities 

N 

L(al, a2, ... , am) = IT Pi 
i=1 

(10.2) 

and the maximum-likelihood values of the parameters are obtained by maximizing 
L(al> a2, ... , am) with respect to the parameters. 

In many experiments, the probability density function Pi will be made up of 
two components: a theoretical factor corresponding to the underlying principle be­
ing tested and an experimental factor corresponding to the biases introduced by ex­
perimental conditions. 

EXAMPLE 10.1 In Example 5.7 we presented a Monte Carlo program for studying 
biases that could arise in an experiment to measure the mean life of the short-lived K~ 
meson (or kaon). The example includes details of the experiment and Figure 5.4 illus­
trates schematically the experimental apparatus. 

In brief, the experiment involves measuring the distance between the point of 
production and point of decay of the kaon, determining the meson's velocity, and cal­
culating the meson's time of flight from production to decay. After correction for bias 
introduced by the finite size of the experimental apparatus, the mean life of the kaon 
could be determined from measurements of many such events. 

The dashed rectangle on Figure 5.4 indicates the region in which events are col-
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Frequency distribution of times of flight for 23,565 events that survived fiducial cuts in a 40,000-
event Monte Carlo generation, as a function of the proper time (in units of 10- 10 s). The exponential 
curve was calculated from the nominal value 'TK = 0.894 X IOx- 1O s to represent the expected 
distribution of the 40,000 generated events. 

fall within the fiducial region bias the final calculation of the mean life and therefore 
we must understand the biases and make corrections. 

In the following examples, we assume that the coordinates of the two vertices 
and the magnitude of the momentum of the decaying kaon have been determined. 

We used the Monte Carlo program of Example 5.7, with the mean life of the 
kaon set to its nominal value of'TK = 0.894 X lO- lOs, to generate 40,000 events in or­
der to study the efficiency of the detector with reasonably high precision. It is impor­
tant that the statistical uncertainties introduced in the determination of the efficiency 
function be negligible compared to the statistical and other uncertainties in the actual 
experiment. The distribution of the 23,565 generated events that survived fiducial cuts 
is shown as crosses in Figure 10.1 with the expected exponential distribution of the to­
taI40,000-event sample shown as a smooth curve. 

In Figure 10.2 we have plotted the resulting efficiency as a function of the times 
of flight of the kaons (the proper time) in their individual rest frames, with the effi-
"'~""''''''''''T j:~~_ .... +:~_ ...l_C: __ ...I __ ... L _ ___ L~_ 
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FIGURE 10.2 
Efficiency function e(T) = N(T)/N(T), calculated from the ratio of observed events (crosses) to 
expected events (smooth curve in Figure 10_1). The dotted line illustrates the region over which the 
efficiency reasonably may be assumed to be 100%_ 

We also used the Monte Carlo program, with different random-number seeds 
and the same nominal value of TK, to generate a small "data set" of 1000 events, of 
which 598 survived the fiducial cut, to use in testing our analysis procedures. 

We shall discuss several aspects of the analysis of such data in the following 
examples. 

EXAMPLE lO.la: Least-squares Method Figure 10.3 shows on a semilogarith­
mic plot the distribution, as crosses (x), of the 598 events that survived the fiducial 
cuts from the total sample of 1000 events generated in Example 10.1. The straight line 
shows the expected distribution if there had been no efficiency losses. In order to ex­
tract the mean life of the kaon from these data, we apply the efficiency function illus­
trated in Figure 10.2 to correct for losses. The corrected data points are plotted in 
Figure 10.3 as data points with vertical error bars corresponding to the statistical un­
certainties in the data, scaled by the efficiency factor. (Uncertainties in the correction 
factor were negligible.) The efficiency was assumed to be 100% in the region indi­
cated by the horizontal dotted line in Figure 10.2_ The very large error bars on "cor­
rected" points at the two ends of the plot result from scaling low-statistics data points 
and illustrate the problem of using data in regions of low efficiency. Generally, it is 
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Semilogarithmic plot of the frequency distribution of 598 events that survived fiducial cuts from a 
1000-event (Monte Carlo) data sample_ The uncorrected data are shown as crosses; the data corrected 
for efficiency losses are shown as data points with error bars_ The straight line shows the result of a 
linear least-squares fit to the corrected semilogarithmic data. 

wise to eliminate points that require such large corrections from the sample, because 
they contribute little to the overall result and depend heavily on the corrections_ 

From the linear slope of the logarithmic plot, illustrated by the straight line 
through the data points, we obtain an "experimental" mean life T = (0.925 ± 0.058). 
Alternatively, we could have used a nonlinear least-squares fitting technique to deter­
mine T directly from a linear plot of the data. 

Direct Maximum Likelihood 

Most actual experiments are more complex and have efficiency functions that are 
considerably more complicated than the one illustrated by our example. For such 
problems, application of direct maximum likelihood may be the preferable method 
for finding the best estimate of the parameters. To apply this method, we must 
define a probability function for each recorded event. 

The probability of observing a single event that survives for a time ti is 

(10.3) 
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The first factor Ai represents the detection efficiency, or probability that the particle 
will decay within a predefined fiducial volume within our apparatus, so that a satis­
factory measurement can be made of its flight time. This factor depends upon the co­
ordinates of the production and decay vertices of the decaying particle, its momentum 
vector, and the geometry of the fiducial volume. The second factor p(ti ; T) is propor­
tional to the probability that a particle of mean lifetime T will decay between time ti 
and ti + dt and is therefore proportional to e- tih. Equation (10.3) becomes 

(10.4) 

It might appear that the two factors in Equation (10.3) are independent, so that 
the detection efficiency factor is independent of the decay probability, but, as we 
have observed in the previous example, this is not generally true. Because of the fi­
nite size of our measuring apparatus, we may preferentially lose events that survive 
for very short times so that we can't make precise measurements of their flight 
paths, as well as those that survive for very long times and therefore decay outside 
the acceptable limits of our detectors. Losses of both types depend upon the mean 
life that we are attempting to determine, the "T" in the second factor of Equation 
(10.3). For each particle that is observed to decay within the apparatus, we can de­
fine a potential path length as the distance it would travel if it had not decayed. Be­
cause each decaying particle has a different potential path length, we must calculate 
geometric factors to correct for those particles that decay outside the detector. The 
correction factors will depend on the parameters and will be a function of the pro­
duction and decay coordinates and the momentum vectors of each decaying parti­
cle. Clearly, one element of good experiment design should be to minimize the 
dependence of these geometric correction factors on the parameters sought in the 
experiment. 

Normalization for Maximum Likelihood 

The factor Ai in Equation (10.4) corresponds to a normalization for each measure­
ment to assure unit probability for observing in this experiment any event that has 
the mean life, coordinates, and kinematics of the observed decaying particle. To de­
termine the normalizing factor Ai we refer to Figure 5.4 and consider the fiducial 
volume of our apparatus, indicated by the dashed rectangle. From each particle's 
production coordinates and momentum vector, we can determine the minimum dis­
tance d, that the particle must travel to enter the region and the maximum distance 
d2 it can travel before leaving the region. (We can, of course, observe some events 
outside the fiducial volume, but we reject them because they cannot be measured 
precisely.) These minimum and maximum distances d, and d2 must be converted to 
times of flight t, and t2 in the rest frame of the decaying particles, and the normaliz­
ing factors Ai can then be determined from the condition 

(10.5) 
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~r~bability or the likelih~od .f~nction for observing N such events in our experiment 
IS Just the product of the IndIVIdual probability functions: 

N N 

d'(T) = II Pi = II Aie-ti/T 
i=1 i=' 

(10.6) 

Parameter Search 

Our object is to find the value of the parameter T that maximizes this likelihood 
function. Because the probability of observing any particular event is less than 1, 
the product of a large number of such probabilities (one for each measured event) 
may be a v~ry small num?e~, and may, in fact, be too small for the computer to han­
dle. To aVOId problems, It IS usually preferable to maximize the logarithm of the 
likelihood function 

(10.7) 

rather than the like1iho~d function itself, so that the product of Equation (10.6) be­
comes a sum. The loganthms should be reasonable, negative numbers. For our partic­
ular example, the logarithm of the likelihood function of Equation (10.6) is given by 

M(T) = In [d'(T)] = L[lnAi - ~J (10.8) 

with Ai defined by Equation (10.5). Note that Ai is a function of the unknown 
parameter T, as well as of the production coordinates, momentum vector and fidu­
cial volume, and must be calculated separately for each event, and/or ~very trial 
value OfT. 

In general, this probleI?' like the corresponding nonlinear least-squares fitting 
problem, cannot be. s?l~e~ In closed form. However, either the grid- or gradient­
s~arch met~od of mInImIZIng the X2 function discussed in Chapter 8 can be adopted 
dIrectly. It IS only necessary to search for a maximum of M (or a minimum value of 
- M) with the same routines we used in Chapter 8 to find a minimum of X2. 

yve may note a correspondence between the quantity M(T), determined in 
EquatIOn. (10.7) from the likeli~ood function for individual events, and the good­
ness-of-flt parameter X2, determIned by Equation (8.7) from the likelihood function 
P(a) for binned data: 

X2 = -2In[d'(T)] + constant (10.9) 

In the limit of a large number of events, the two methods must yield the same value 
T' for the maximum-likelihood estimate of the parameter T. In both cases the likeli­
hood function will be a Gaussian function of the parameter near the optimum value 

d'(T) IX exp ( (T - T'F) 
2(J"2 (10.10) 
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EXAMPLE IO.lh Let us consider the simplest form of this problem. Assume that 
the unknown mean lifetime is sufficiently short so that our apparatus is large enough 
to include many lifetimes and, therefore, the loss of particles that decay at very long 
times is negligible. Let us also assume that our equipment can detect particles at very 
short as well as very long times. Then the limits on the normalization integral of Equa­
tion (10.5) become t] = 0 and t2 = 00 and Ai is the same for every event and is given 
by Ai = lit. The likelihood function becomes 

(10.11) 

with logarithm 

1 
M(-r) = In[1('T)] = -- L:ti - Nln 'T 'T 

(10.12) 

We can obtain the maximum of Equation (10.12) by taking the derivative of 
M('T) with respect to 'T and setting it to 0: 

dM(t) = !!...{_! L: ti - Nln 'T} 
d'T d'T 'T 

(10.13) 

The solution is 'T = "Lt/N; that is, the maximum-likelihood estimate of the mean life is 
just the mean of the individual lifetime measurements. We should have reached the 
same result if we had found the maximum of of;'(t) from Equation (10.11). 

EXAMPLE IO.le Suppose that we repeat the experiment, but with poorer experi­
mental resolution so that we cannot distinguish the decay vertex (X2' Y2, Z2) from the 
creation vertex (x], Y], z]) unless they are separated by a distance d j . For simplicity, we 
assume that the decaying particles are all produced with the same velocity, so that the 
lower cutoff distance d j translates into the same lower cutoff in time t] for all events. 
(In an actual experiment, of course, the decaying particles would be produced with 
various velocities, so that the calculated lower cutoff time t] would vary from event to 
event.) 

For this example, the normalization integral of Equation (10.5) becomes 

(10.14) 

which gives 

(10.15) 

The likelihood function becomes 
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so that 

_ _ [tl - tJ 
M - In of;' - L --- L In T 

T 
(10.17) 

Setting 

gives 

or 

dM(T) = 0 
dT 

~ L {[tl - tJ - In T} = - L {tl - til - !! = 0 
dT T T2 T 

(10.18) 

(10.19) 

(10.20) 

As we should expect, the lifetime T would have been overestimated if we had 
neglected to take account of the cutoff at short times. 

EXAMPLE IO.ld Let us consider a more realistic problem in which we have both 
short and long cutoffs on the observable path. We also assume that the unstable parti­
cles are produced at various locations within the target and with various momentum 
vectors p. 

For this example, we must calculate the normalization integral, Equation 
(10.5), separately for each event with individual values for tl and t2 determined from 
the minimum and maximum distance cutoffs, d l and d2, respectively. The resulting 
expression for the likelihood function is 

. N N [ e-I,h 1 of;' T = A·e-I,h = . () II I II [-I iT _ -/ h] 
;= 1 ;= 1 Tel e 2 

(10.21) 

with 

M('T) = In[of;'(T)] 

Setting to zero the derivative of M(T) with respect to T gives us the equation 
for the maximum-likelihood value of T. However, the resulting equation cannot be 
solved analytically for T although it could be solved by interpolation (see Appendix 
A). We choose, rather, to maximize M(T) by a one-dimensional grid-search method 
because search methods are more generally applicable to maximum-likelihood 
problems and can readily be extended to multiple parameter problems. 

10.2 COMPUTER EXAMPLE 

Sample Maximum Likelihood Fit 
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Example 10.la. The events were generated with -rK = 0.894 X 10- 10 s and the dis­
tribution ofthe selected events is illustrated by the crosses in Figure 10.3. 

Program 10.1 MAXLi KE (Appendix E) A grid-search method to maximize the 
logarithm of the likelihood function of Equation (l 0.21). The routines have been writ­
ten specifically for Example lO.ld. 
S TART UPsets the range of the parameter TAU for the search. 
F ETC H 0 AT A assigns the input data file, reads the limits of the fiducial region 
(d) and dz), reads data for individual events. 
SEARCH sets and increments TAU and calls LOGLi KE, which returns the loga­
rithm of the likelihood function M. Compares each calculated value of M to the pre­
ceding value. Terminates the search when M stops increasing and starts to decrease, 
indicating that M has passed through a local maximum. At termination, fits a parabola 
to the last three points to find a better estimate of TAU at the maximum. 
LOGLiKE calls LOGPROB to find the logarithm of the probability density for 
each event; sums to calculate the logarithm of the likelihood function. 
LOGPROB calculates the logarithm ofthe probability density for an event. 
ERR 0 R calculates the uncertainty 5 I G TAU in TAU AT MIN, the maximum like­
lihood value of the parameter TAU, by finding the change in TAU needed to decrease 
Mby M1 = 112. 
P LOTLi KEC U RYE (Not listed) calculates and plots the shape of the likelihood 
function in the region of the maximum. Plots a Gaussian curve with mean and stan­
dard deviation equal to TAU MIN and 0 TAU. 

Grid-Search Solution 

At each step the program increments -r by a preset amount Ll-r and repeats the cal­
culation until M(-r) has passed through a maximum and has started to decrease. The 
program fits a parabola to the three points that bracket the maximum to find the 
value -r' at the maximum of M(-r). For a more detailed problem, the program could 
be written to repeat the calculation with smaller values of Ll-r to find a better esti­
mate of -r', as in the fitting examples in Chapter 8. Either the grid- or gradient­
search method of Chapter 8 could be adapted to solve multiparameter problems. 

Results of the Fit 

We analyzed the data set twice: first with data selected in the nominal fiducial region 
(10 cm to 40 cm), which gave -r' = (0.943 ± 0.059) X 1O- lOs for the 598 events that 
survived the cut, and then, to test the sensitivity of the calculation to our choice of 
fiducial region, with data selected in the less-appropriate fiducial region with d1 = 10 
cm and d2 = 20 cm, which gave T' = (0.78 ± 0.14) X 1O- lOs for the 373 events that 
survived this cut. Plots of the relative values of the likelihood function versus trial 
values of the parameter T are shown as crosses in Figure IOAa for the data selected 
in the nominal fiducial region and in Figure 10.4b for data selected in the less-
.n. ___ ....... _~n+ ...... f"~r1.., ...... ~nl .... 'O'CT~"" ...... AV.:3vnor-t,::lt.r1 tha,1nr-nrrpl"'t firlllr"l!.f!l rpalf'ln ("lp~rlv <;!plp.rtt;;; 
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FIGURE 10.4 

Relative :a1ues of the likelihood function versus trial values of the parameter for events that passed 
the fidUCIal cuts for the decay vertex. The data points are indicated by crosses; the smooth Gaussian 
curv~s w~re ca1culat~d from Equation (10.10) with the values of the means and standard deviations 
ob~allled III the two fItS. (a) Nominal fiducial cuts: 10 - 40 cm; 598 events survived; T' = 0.943 X 
10 10 S, (f = 0.059 X 10- 10 s. (b) Incorrect fiducial cuts: 10 - 20 cm; 373 events survived' T' = 078 
X 10- 10 S, (f = 0.14 X 10- 10 s. ' . 

fewer events and, th~refore, gives a less-precise result. In an actual experiment, we 
should have to consIder a trade-off between the number of surviving events in the 
sample, and the precision with which those surviving events could be measured and 
choose our fiducial region to maximize the overall quality of the result. ' 

We observed that, for a sufficiently large event sample, the likelihood function 
should become Gaussian in the oarameters in th~ vir.initv of ~ v 2 minimllm (r..,. ., 
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maximum of the likelihood function) according to Equation (10.10), where T' is the 
value of the parameter T that maximizes the likelihood function. We show on Fig­
ures 10.4a and lO.4b Gaussian curves calculated from Equation (10.10), with T' and 
(J' determined by the respective fits. Both the data points and the Gaussian curves 
have been scaled to unit height at T = T'. The data points of Figure lO.4a closely 
follow the curve; in the lower statistics example in Figure 10.4b, the data points de­
part from the curve considerably. 

Uncertainties 

To estimate the uncertainty (J' in our determination of T', we found the change in T 

necessary to decrease M by AM = 112 from its value at the maximum T' (corre­
sponding to an increase of X 2 by 1 or a change of e -112 in the likelihood function ~. 
Because the likelihood function for the larger sample (Figure lO.4a) closely fol­
lowed the Gaussian form, our estimate of the uncertainty should be satisfactory. 
However, the smaller sample (Figure lO.4b) was skewed from the Gaussian, so that 
our estimate of the standard deviation might be somewhat low. For multiparameter 
fits it is often useful to plot contours of X2 (or of M) as a function of pairs of the pa­
rameters to study the uncertainties. (See Chapter 11.) 

There are several other ways to estimate the uncertainty in a parameter after 
performing a maximum-likelihood fit. If the distribution of the likelihood function 
is sufficiently close to a Gaussian, we can find (J'T from Equation (8.11): 

(J'2 
__ (a 2M(T))-1 

T aT2 (10.22) 

If it is not possible to calculate Equation (10.22) exactly (although it is possible for 
our example), we can find the second derivative by taking finite differences as dis­
cussed in Appendix A. 

If the likelihood function does not follow the Gaussian distribution, we can try 
a numerical integration of the likelihood function to find limiting values that include 
-68.3% of the total area, corresponding to the 1 standard deviation limit. Alterna­
tively, we may use a method suggested by Orear (1958) who points out that, for small 
event samples, where the likelihood function may not be very Gaussianlike, it may be 
preferable to calculate an average value of the second derivative through the equation 

a2M f[a 2M/aa2
] L(a) da 

aa2 JL(a)da 
(10.23) 

where a is the unknown parameter and the integrals are over the allowable range of 
the parameter. This procedure has the advantage over the method of Equation 
(10.22) of giving more weight to the tails of the distribution in cases where they 
drop off more slowly than those of a Gaussian curve. 

Another method of determining the uncertainties in the parameters is to use a 
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data, and to use the method outlined in Chapter 11 for determining confidence levels 
f?r our resu~ts. This method has the advantage that it depends only on the assump­
tIons made III the Monte Carlo generation, and not on any statistical expectations 
about the shape of the likelihood function. In many experiments, especially those 
with low statistics, it provides the most reliable estimate of parameter uncertainties. 

Goodness of Fit 

~ne disadvan~age of the direct maximum-likelihood method is that it does not pro­
VIde a convement test of the quality of the fit. The value at the peak of the likelihood 
func~i~n itself is n?t useful be~ause it represents only the maximized probability for 
obtaIllIllg our partIcular expenmental result and we have no way of predicting the 
expected probability. 

An estimate of the goodness of fit can be obtained by making a histogram or 
the data and comparing it to a prediction based on our best estimate of the parame­
ters. A Monte Carlo simulation of the experiment may be required to calculate the 
predicted distribution, with a X2 test to compare the data to the prediction. 

It is not always clear just which data variable should be histogrammed for this 
purpose. We would like to find that variable on which the parameters depend most 
strongly. For our sample problem, the lifetime T in the rest frames of the particles is 
an obvious choice, because that is the variable we would choose if we were to solve 
the proble~ by the least-squares method. However, it might be wise to try plots of 
several vanables to be sure that the fit is satisfactory. To test, we could generate with 
our ~onte Carlo program a large sample of events based on the parameters discov­
ered III each search, apply the fiducial cuts, and calculate X2 from the agreement be­
tween the Monte Carlo results and our data sample. We should be aware that, 
because we did not actually minimize X2 for the experimental distribution with re­
spect to the parameters, a satisfactory value of X2 may be at best an indication that 
nothing is drastically wrong with the solution. 

SUMMARY 

Normalized probability density function: 

Likelihood function: 

N 

L(ar. a2> ... , am) = II 11 
i=1 

Single-event probability density: Pi = Ai p(xi; a) where Ai is the detection efficiency 
and p(xi ; a) is proportional to the interaction probability 
Logarithm of likelihood function: M = In L = L: In Pi 
Maximization of L or of M: a L/aa

j
, = 0 or aM/aa, = 0 for all a, 

j J 
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Gaussianform of likelihood function for large data sample: 

(
(a - alY) 

L(aj) ex exp J 2a/ 
Uncertainties in parameters: 

Method for low statistics: 

a2M J[a 2M/aa2
] L(a)da 

aa2 fL(a) da 

EXERCISES 
10.1. In a scattering experiment, the angles of the scattered partic~es .are measured and t~e 

cosines of the angles in the center-of-mass rest frame of the mCIdent and targ~t P~I­
cles are calculated and recorded. Fifty such measurements, drawn from the dIstnbu­
tion y(x) = al + a2 cos28, are listed in the table. Use the direct maxi~~m-likelihood 
method to determine the values of the parameters al and a2. Note that It IS necessary to 
convert the distribution function y(x) to a nonnalized probability function and that the 
nonnalization constant will be different for each pair of trial values of al and a2' 

10.2. 

-0.999 -0.983 -0.956 -0.946 -0.933 -0.925 -0.916 -0.910 

-0.881 -0.739 -0.734 -0.717 -0.715 -0.675 -0.665 -0.649 

-0.621 -0.537 -0.522 -0.508 -0.499 -0.471 -0.460 -0.419 

-0.403 -0.311 -0.305 -0.281 -0.170 -0.162 -0.063 0.214 

0.438 0.444 0.508 0.586 0.638 0.677 0.721 0.730 

0.768 0.785 0.790 0.793 0.877 0.896 0.931 0.938 

0.948 0.993 

Because of the small amount of data, the uncertainties in the parameters al and a2 are 
so large that the values of the parameters are not very meaningful. Therefore, to com­
plete the problem, you should use the Monte Carlo program written for Exercise 5.8 
to generate 500 events and use your calculation to find the parameters from those data. 
Students in an undergraduate physics laboratory determined the mass of the A hyperon 
by measuring graphically the energies and the momentum vectors of the.pr?to~ and 
1T meson into which the A hyperons decayed. Because of the large uncertamtIes m the 
measurements, the calculated square of the masses of the decaying particles fonns a 
truncated Gaussian distribution that is limited on the low-mass side by (Mp + M",)2 = 
1.1617 (GeV/c2)2, but is not limited on the high-mass side. The following 50 numbers 
represent squares of the calculated masses in units of (GeV/c2

)2. 

1.2981 
1.3190 
1.2525 
1.2046 

1.2618 
1.2086 
1.3615 
1.2856 

1.2145 
1.2118 
1.1855 
1.1980 

1.2539 
1.2078 
1.2697 
1.2595 

1.4230 
1.2726 
1.2044 
1.1721 

1.3963 1.3701 
1.2438 1.1838 
1.3397 1.4317 
1.2608 1.1689 

1.2303 
1.1666 
1.2713 
1.4838 

1.3655 
1.1908 
1.2203 
1.1743 

1.2042 
1.1922 
1.2817 
1.2954 
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Use the direct maximum-likelihood method to fit a truncated Gaussian to these data to 
determine the maximum-likelihood value of the mass of the squared particle. A search 
in two-parameter space will be required since neither the mean nor the width of the 
distribution is known. 

Note that it is necessary to calculate numerically the nonnalization of the trun­
cated Gaussian for each pair of trial values of the mean and standard deviation of the 
Gaussian. function. It is advisable to set up a table of the integral of the standard 
Gaussian and to use interpolation to find the desired nonnalizations. A simple auto­
matic or manual grid search will suffice for maximizing the likelihood function. 

10.3. Use Program 5.4 (available on the website) to generate 1000 sample kaon decay 
events with nominal mean life 'I = 0.894 X 10-10 s. 
(a) Plot a histogram of the times of flight of all the generated kaons in their own rest 

frames (proper times). 
(b) Use Program 10.1 (available on the website), with nominal fiducial cuts on your 

data (d l = 10.0 cm and d2 = 40 cm) to repeat the analysis of Example 1O.1d to ' 
find the maximum likelihood solution 'I' for the kaon mean life. Plot a histogram 
of the events that survive the cuts. 

(c) With the value of 'I', which you determined in part (b), and random number seeds 
that are different from those used in part (a), generate 20,000 events to serve as 
your estimate of the parent distribution. Apply the nominal fiducial cuts to these 
data and plot a histogram of the data in the same bins as you used in part (b). 

(d) Calculate X2 for the agreement between your "experimental" histogram and the 
surviving events from the "parent" distribution. If the numbers of events in your 
bins of the parent distribution are large enough, their uncertainties can be ignored 
in this calculation. If they are not, you must use the combined statistical errors of 
the two distributions when calculating X2. 
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CHAPTER 

11 
TESTING 

THE FIT 

The method of least squares is based on the hypothesis that the optimum descrip­
tion of a set of data is one that minimizes the weighted sum of. the square~ of the 
deviation of the data Yi from the fitting function y(x). T~e sum IS character~zed by 
the variance of the fit S2, which is an estimate of the vanance of the data ~ . For a 
function y(x), which is linear in m parameters and is fitted to N data POInts, we 

have 

2 = _1_~{(I/anYi - y(xi)]2} = _1-L Wi[Yi - y(xJ]2 
s N - m (1/N)~(1/O"D N - m 

(1Ll) 

where the factor v = N - m is the number of degrees of freedom for .fitti?g N data 
points (implied in the unlabeled sums) with m parameters and the weIghtIng factor 

for each measurement is given by 

1/0"2 _ " 
Wi - (1/N)~(1/O"n 

(11.2) 

the inverse of the variance 0"7 that describes the uncertainties in each point, normal-
ized to the average of all the weighting factors. . .. 2 . . 

The variance of the fit S2 is also charactenzed by the statistIc X defIned In 

Equation (7.5) for polynomials: 

/ ".,1 
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with 
m 

y(x;) = L adk(xJ 
k=] 

The relationship between S2 and X2 can be seen most easily by comparing S2 

with the reduced chi-square X~, 

X2 S2 

X~ =-; = (O"n (11.4) 

where (O"n is the weighted average of the individual variances 

( 2) = (1/N)~((1/O"nO"n = f! "" ~J-l 
0", (1/N)~(1/O"n N 4.J 0"[ 

(11.5) 

and is equivalent to 0"2 if the uncertainties are all equal, O"i = 0". 

The parent variance of the data 0" 2 is a characteristic of the dispersion of the 
data about the parent distribution and is not descriptive of the fit. The estimated 
variance of the fit S2, however, is characteristic of both the spread of the data and the 
accuracy of the fit. The definition of X2, as the ratio of the estimated variance S2 to 
the parent variance 0"2 times the number of degrees of freedom v, makes it a conve­
nient measure of the goodness of fit. 

If the fitting function is a good approximation to the parent function, then the 
estimated variance S2 should agree well with the parent variance 0"2, and the value 
of the reduced chi-square should be approximately unity, X; = 1. If the fitting func­
tion is not appropriate for describing the data, the deviations will be larger and the 
estimated variance will be too large, yielding a value of X~ greater than 1. A value 
of X~ less than 1 does not necessarily indicate a better fit, however; it is simply a 
consequence of the fact that there exists an uncertainty in the determination of S2, 
and the observed values of X~ will fluctuate from experiment to experiment. A value 
of X~ that is very small may indicate an error in the assignment of the uncertainties 
in the measured variables. 

Distribution of X2 

The probability distribution function for X2 with v degrees of freedom is given by 

(x2 )1/2 (v - 2)e-x '/2 

px(x
2
; v) = 2v/2 r(v/2) (11.6) 

The chi-square distribution of Equation (11.6) is derived in many texts on statistics l 

but we shall simply quote the results here. 
The gamma function f(n) is equivalent to the factorial function n! extended to 

nonintegral arguments. It is defined for integral and half-integral arguments by the 
values at arguments of 1 and Y2 and a recursion relation: 
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f(1) = 1 f(n - 1) = nf(n) 

For integral values of n 

f(n+ l)=n! n = 0,1, ... 

For half-integral values of n 

f(n + 1) = n(n - l)(n - 2)' .. (3fz)(Y2 Y;) 
n = 1/2, 3fz, 5jz, ... 

(01.7) 

Calculating factorial functions can lead to computer overflow problems. For 
computational purposes it is convenient to replace the factorial form of the gamma 
function by a form of Stirling's approximation2

: 

f[n] = y!2;e-nn(n-1/2) (1 + 0.0833/n) 01.8) 

This approximation, which is accurate to -0.1 % for all n 2:: V~, avoids ~oth the 
problems of overflow in calculating factorials and the necessIty of testmg and 
choosing the appropriate form for integral or half-integral argument. The. trade-off 
is computer speed. Calculating exponentials may be slower than calculatmg facto­
rials, but high speed usually is not required for nonrepetitive calculations. 

If the function of the parent population is denoted by Yo(x), the value of X6 
determined from the parameters of the parent function 

X6=L{:r[Yi-YO(X;)p} 01.9) 

is distributed according to Equation (11.6) with v = N degrees of freedom. If the 
function y(x) used in the determination of X2 contains m parameters, the value of 
X2 calculated from Equation 01.3) is distributed according to Equation (11.6) with 
v = N - m degrees of freedom. 

More useful for our purposes than the probability density distribution Px(x
2

; v) 
of Equation 01.6) is the integral probability Px(X2

; v) between x 2 = X2 and X2 = 00: 

Px(X2; v) = foo Px(x2; v) dx2 01.10) 
X' 

Equation 01.10) describes the probability that a random set of n data points drawn 
from the parent distribution would yield a value of X2 equal to or greater than the 
tabulated value. 

Program 11.1. C H 12 PRO B (Appendix E) X2-probability. 
CHI PROBDENS computation of the function piX2; v) [Equation (11.6)] using 
function GAM MA to approximate the gamma function. 
CHI PRO B Numerical calculation of the integral, Equation (11.10), by Simpson's 
rule. If variable overflow is a problem, double-precision variables could be employed. 
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The calculation returns the integral to an accuracy of about :to. I %. The trade­
off on accuracy versus speed of computation is controlled by the value of the constant 
DX, the integration step. 

For the special case of 1 degree of freedom, v = 1, the x2-probability density 
function of Equation (11.6) takes the form 

Px(x2; v) = e-x2
/ 2/(2'ITX2)I!2 

which is difficult to integrate numerically near x = O. However, the integral is finite, 
and the function can be expanded in a Taylor series about x = 0 and integrated ana­
lytically. We use that technique for v = 1 and X2 < 2. 

Similarly, for v = 2, where the function takes the form 

Px(x 2 ; v) = e-x2
/
2/2 

the analytic form of the integral is used. 

For a fitting function that is a good approximation to the parent function, the 
experimental value of X~ should be close to one and the probability from Equation 
01.10) should be approximately 0.5. For poorer fits, the values of X~ will be larger 
and the associated probability will be smaller. There is an ambiguity in interpreting 
the probability because X~ is a function of the quality of the data as well as the 
choice of parent function, so that even correct fitting functions occasionally yield 
large values of X~. However, the probability of Equation 01.10) is generally either 
reasonably close to 0.5, indicating a reasonable fit, or unreasonably small, indicat­
ing a bad fit. In fact, for most purposes, the reduced chi-square X~ is an adequate 
measure of the probability directly. The probability will be reasonably close to 0.5 
so long as X~ is reasonably close to 1; that is, less than about 1.5. 

Example 11.1. Consider the solution of the problem of fitting two exponential 
curves plus a linear background to the data from the radioactive silver decay of 
Example 8.1. The fit (see Table 8.5) gave X 2 = 66.1 for 54 degrees of freedom, or 
X~ = 1.22, with Pix2; v) = 12.4%. We can interpret this result in the following way. 
Assume that the parameters we found are, indeed, the parameters ofthe parent distri­
bution. Then, suppose that we were to repeat our experiment many times, drawing 
many different data samples from that parent distribution. Our result indicates that in 
12.4% of those experiments we should expect to obtain fits that are no better than that 
listed in Table 8.5. 

11.2 LINEAR-CORRELATION 
COEFFICIENT 

Let us assume that we have made measurements of pairs of quantities Xi and Yi' We 
know from the previous chapters how to fit a function to these data by the least­
squares method, but we should stop and ask whether the fitting procedure is justi­
fied and whether, indeed, there exists a physical relationship between the variables 
Y :::Inn" Wh:::.t UIP ~rp ~~lcina hprp lC u,hpthpr n.r nrtot thp. "'l.rlr:lt1n.nc 1n tha. n.kc-o ... ..,.arl 
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For example, if, as in Example 6.1, we were to measure the potential differ­
ence across segments of a current -carrying wire as a function of the segment length, 
we should find a definite and reproducible correlation between the two quantities. 
But if we were to measure the potential of the wire as a function of time, even 
though there might be fluctuations in the observations, we should not find any sig­
nificant reproducible long-term relationship between the pairs of measurements. 

On the basis of our discussion in Chapter 6, we can develop a quantitative 
measure of the degree of correlation or the probability that a linear relationship 
exists between two observed quantities. We can construct a linear-correlation 
coefficient r that will indicate quantitatively whether or not we are justified in de­
termining even the simplest linear correspondence between the two quantities. 

Reciprocity in Fitting x Versus y 

Our data consist of pairs of measurements (Xi' y;). If we consider the quantity Y to be 
the dependent variable, then we want to know if the data correspond to a straight 
line of the form 

Y = a + bx (11.11) 

We have already developed the analytical solution for the coefficient b, which rep­
resents the slope of the fitted line given in Equation (6.12): 

N'Zx·1I· - 'Zx·'Zy· b = Ul I I 

N'ZXT - ('Zx;)2 
(11.12) 

where the weighting factors in (J"i have been omitted for clarity. If there is no corre­
lation between the quantities X and y, then there will be no tendency for the values 
of Y to increase or decrease with increasing x, and, therefore, the least-squares fit 
must yield a horizontal straight line with a slope b = O. But the value of b by itself 
cannot be a good measure of the degree of correlation because a relationship might 
exist that included a very small slope. 

Because we are discussing the interrelationship between the variables x and y, 
we can equally well consider x as a function of Y and ask if the data correspond to a 
straight-line form 

x = a' + b'y (11.13) 

The values of the coefficients a' and b' will be different from the values of the co­
efficients a and b in Equation (11.11), but they are related if the variables x and y are 
correlated. 

The analytical solution for the inverse slope b' is similar to that for b in Equa­
tion (11.12): 

b
' 

= N'i,XiYi - 'ZXi'ZYi 
N'ZYT - ('ZyJ2 

(11.14) 
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. If there is a complete correlation between x and y, then there exists a relation­
ShIP b.etween the coefficients a and b of Equation (11.11) and between a ' and b ' of 
EquatIOn (11.13). To see what this relationship is, we rewrite Equation (11.13): 

a ' 1 
Y = - b' + b' X = a + bx (11.15) 

and equate coefficients 

a' 
a= 

b' (11.16) 

. We see from Equation (11.16) that bb' = 1 for complete correlation. If there 
IS no co~elation, both band b' are 0 and Equations (11.16) do not apply. We. there­
fore defme, as a measure of the degree of linear correlation, the experimental linear­
correlation coefficient r == VW: 

r == N'ZXiYi - 'ZXi'ZYi 
[N'ZXT - ('ZxYJI/2[N'ZYT - ('Zy;)2JI!2 (11.17) 

The value of r ranges from 0, when there is no correlation, to ± 1, when there is 
complete correlation. The sign of r is the same as that of b (and b'), but only the ab­
solute magnitude is important. 

T~e correlation. ~oef"f!ci~nt ~ cannot be used directly to indicate the degree of 
correlatIOn. A probabIhty distrIbuhon for r can be derived from the two-dimensional 
Gau~sian distribution, but its evaluation requires a knowledge of the correlation co­
e~cIent p of th~ pare~t ~op~lation. A more common test of r is to compare its value 
WIth the pr?babIhty ~IstnbutIOn for the parent population that is completely uncorre­
lated; that IS, for WhICh p = O. Such a comparison will indicate whether or not it is 
probable that the data points could represent a sample derived from an uncorrelated 
pa~ent popUlation. If this probability is small, then it is more probable that the data 
pomts represent a sample from a parent popUlation where the variables are correlated. 

For a parent ~opulation with p = 0, the probability that any random sample of 
~ncorrela~e? expenmental data points would yield an experimental linear-correla­
hon coeffICIent equal to r is given by3 

I f[(v + 1)/2J 
P (r' v) = - (1 - 2)(v-2)/2 
r' y; f(v/2) r (11.18) 

where v = ~ - 2 is the number of degrees of freedom for an experimental sample 
of N data pomts. The gamma function for integral and half-integral values was de­
fined in Equation (11.7). 

Integral Probability 

A more useful distribution than that of Equation (11.18) is the probability PcCr; N) 
that a random sample of N uncorrelated experimental data points would yield an 
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experimental linear-correlation coefficient as large as or larger than the observed 
value of I rl. This probability is the integral of Pr(r; v) for v = N - 2: 

~(r; N) = 2 flpx(r; v) dx 
Jlrl 

v=N-2 01.19) 

With this definition, Pir; N) indicates the probability that the observed data 
could have come from an uncorrelated (p = 0) parent population. A small value 
of Pir; N) implies that the observed variables are probably correlated. 

Because Equation (11.19) cannot be integrated analytically, the function must 
be integrated either by making a series expansion of the argument and integrating 
term by term or by performing a numerical integration. With fast computers, the lat­
ter method is more convenient and generally applicable to such problems. 

Program 11.2 LCORLATE (Appendix E) Correlation probability computations. 
LCOR PROS computes the probability of Equation (11.19) by numerical integra­
tion. Input variables RCORR and NOSSERV correspond to the value of the ex­
perimentallinear-correlation coefficient and the number of observations, respectively. 
(The number of degrees of freedom is the number of observations minus 2.) The pro­
gram uses the following routines: LI NCORREL computes the functionplr; v) of 
Equation (11.18) using the approximation of Equation (11.8) for the gamma function 
(calculated by the function GAMMA in the program unit GENUTIL). Because 
LIN COR R E L is intended to be used as an argument to the integration routine 
S IMP SON, it can have only one argument. The parameter v is passed in the global 
variable pS IMPS by the calling routine. 
LI NCORPROS computes PcCr; v) of Equation (11.19) by numerically integrating 
LI NCORREL by Simpson's rule. The calculation returns the integral to an accuracy 
of about ±0.01. The trade-off on accuracy versus speed of computation is controlled 
by the value of the constant DX, the integration step. 

Example 11.2. For the data of Example 6.1, the linear-correlation coefficient r can 
be calculated from Equation (11.17) with the data of Table 6.1: 

9 X 779.3 - 450.0 X 12.44 

r = Y(9 X 28,500 - 450.02) X (9 X 21.32 - 12.442) 

= 0.9998 

The probability for determining, from an uncorrelated popUlation with 9 - 2 = 7 
degrees of freedom, a value of r equal to or larger than the observed value, can be cal­
culated from Equation (11.19) (see Table C.3). The result Pc(r; N) < 0.001 % indicates 
that it is extremely improbable that the variables x and V are linearly uncorrelated. Thus, 
the probability is high that the variables are correlated and the linear fit is justified. 

Similarly, in the experiment of Example 6.2, the linear-correlation coefficient 
can be calculated from Equation (11.17) by including the weighting factors a} = Yi as 
in Table 6.2, so that, for example, N is replaced by 2:Wi and 2:Xi is replaced by 2:WiXi, 

and so forth: 

0.03570 X 81.02 - 0.1868 X 10 
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Again, the probability Pc(r; N) for r = +0.9938 with v = 10 - 2 = 8 degrees 
offreedom is very small « 0.001 %), indicating that the change in counting rate Cis 
linearly correlated to a high degree of probability with x = lIr2, the inverse square of 
the distance between the source and counter. 

11.3 MULTIVARIABLE CORRELATIONS 

If the dependent variable Yi is a function of more than one variable, 

Yi = a + b1xil + b2X i2 + b3x i3 + . . . (11.20) 

we might investigate the correlation between Yi and each of the independent vari­
ables Xu or we might also enquire into the possibility of correlation between differ­
ent variables xu· Here, we use the first subscript i to represent the observation, as in 
the previous discussions, and the second subscriptj to represent the particular vari- ' 
able under investigation. The variables Xu could be different variables, or they could 
be functions of xi,J(x,), as in Chapter 7. We shall rewrite Equation (11.17) for the 
linear-correl~tion coefficient r in terms of another quantity SJk. 

We defIne the sample covariance SJk: 

1 
SJk == N _ 1 L [(xu - Xj) (Xik - Xk) 01.21) 

where the means Xj and Xk are given by 

_ 1 1 
Xj==NLXij and xk=NLXik 01.22) 

and the sums are taken over the range of the subscript i from 1 to N. The weights have 
been omitted for clarity. With this definition, the sample variance for one variable S2 

} ' 

2= 2 __ 1_ - 2 
Sj - Sjj - N _ 1 L(Xij - Xj) 

is analogous to the sample variance S2 defined in Equation (1.9): 

1 
S2 = N _ 1 L(Xi - X)2 

(11.23) 

01.24) 

It is important to note that the sample variances sJ defined by Equation 01.23) are 
measures of the ranges of variation of the variables and not of the uncertainties in 
the variables. 

Equation 01.21) can be rewritten for comparison with Equation 01.17) by 
substituting the definitions of Equation 01.22): 

1 
SJk == N _ 1 L [(Xij - Xj) (Xik - Xk)] 

1 
= N - 1 L(XijXik - XjXk) 01.25) 
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If we substitute xij for Xi and Xik for Yi in Equation (11.17), we can define the sample 
linear-correlation coefficient between any two variables Xi and Xk as 

(11.26) 

with the covariances and variances SJk' sJ, and s~ given by Equations (11.23) and 
(11.25). Thus, the linear-correlation coefficient between thejth variable Xj and the 
dependent variable Y is given by 

S2 
r. =.....11.... 
lY s.s 

1 Y 

(11.27) 

Similarly, the linear-correlation coefficient of the parent population of which 
the data are a sample is defined as 

(11.28) 

where a}, at and aA are the true variances and covariances of the parent popula­
tion. These linear-correlation coefficients are also known as product-moment corre­
lation coefficients. 

With these definitions we can consider either the correlation between the de­
pendent variable and any other variable rjy or the correlation between any two vari­
ables rjk' 

Polynomials 

In Chapter 7 we investigated functional relationships between Y and X of the form 

(11.29) 

In a sense, this is a variation on the linear relationship of Equation (11.20) where the 
powers of the single independent variable X are considered to be various variables 
Xj = xj. The correlation between the independent variable Y and the mth term in the 
power series of Equation (11.29), therefore, can be expressed in terms of Equations 
(11.23) through (11.27): 

(11.30) 
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Weighted Fit 

!f t~e.uncertainties in the data points are not all equal (ai -=1= a), we must include the 
mdIvI.dual standard deviations a i as weighting factors in the definition of variances, 
cov~anc~s, a?d c.orrelation coefficients. From Chapter 6 the prescription for intro­
ducmg weightmg IS to multiply each term in the sum by VaT. 

The formula for the correlation remains the same as Equations (11.26) and 
(11.27), but the ~ormulas of Equations (11.21) and (11.23) for calculating the vari­
ances and covanances must be modified: 

2 = l/(N - 1)~[(1/an (Xij - xj ) (Xik - Xk)] 
Sjk - (1/N)~(1/an 

sL= S2. = l/(N - 1)~[(1/aT) (Xu - xy] 
1 11.. (1/N)~(1/an 

(11.31) 

where the means Xj and Xk are also weighted means 

The weighting factors 

01.32) 

~or each d~ta point are the inverse of the variances aT that describe the uncertainties 
m each pomt, normalized to the average of all the weighting factors. 

Multiple-Correlation Coefficient 

W~ can extrapolat~ the concept of the linear-correlation coefficient, which charac­
t~nzes the correlatIOn between two variables at a time, to include multiple correla­
tIOns between groups of variables taken simultaneously. The linear-correlation 
coe.fficient r of Equ~tion (11.17) between y and X can be expressed in terms of the 
v~an~es and ~ovanances of Equation (11.31) and the slope b of a straight-line fit 
gIven m EquatIOn (11.12): 

4 2 
2 Sxy Sxy r =-=b-

S2S2 S2 
x y y 

(11.33) 

In analogy with this definition of the linear-correlation coefficient we define the 
multiple-correlation coefficient R to be the sum over similar terms f~r the variables 
of Equation (11.20): 

(11.34) 
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If we substitute xij for Xi and Xik for Yi in Equation (11.17), we can define the sample 
linear-correlation coefficient between any two variables Xi and Xk as 

2 Sjk 
rjk=­

SjSk 
(11.26) 

with the covariances and variances SJh sJ, and s~ given by Equations (11.23) and 
(11.25). Thus, the linear-correlation coefficient between the jth variable Xj and the 
dependent variable Y is given by 

2 Sjy 
r· =-
iY S.S 

J Y 

(11.27) 

Similarly, the linear-correlation coefficient of the parent population of which 
the data are a sample is defined as 

(11.28) 

where o}, O"f, and aJk are the true variances and covariances of the parent popula­
tion. These linear-correlation coefficients are also known as product-moment corre­
lation coefficients. 

With these definitions we can consider either the correlation between the de­
pendent variable and any other variable rjy or the correlation between any two vari­
ables rjk' 

Polynomials 

In Chapter 7 we investigated functional relationships between Y and X of the form 

(11.29) 

In a sense, this is a variation on the linear relationship of Equation (11.20) where the 
powers of the single independent variable X are considered to be various variables 
Xj = xj. The correlation between the independent variable Y and the mth term in the 
power series of Equation (11.29), therefore, can be expressed in terms of Equations 
(11.23) through (11.27): 

(11.30) 

Testing The Fit 203 

Weighted Fit 

!f t~e. uncertainties in the data points are not all equal (a i =1= a), we must include the 
mdlvldual standard deviations a; as weighting factors in the definition of variances 
cov~rianc~s, a~d c~)ffelation coefficients. From Chapter 6 the prescription for intro~ 
ducmg welghtmg IS to multiply each term in the sum by liar. 

The formula for the correlation remains the same as Equations (11.26) and 
(11.27), but the !ormulas of Equations (11.21) and (11.23) for calculating the vari­
ances and covanances must be modified: 

2 = l/(N - 1)L:[(l/ar)(xij - Xj)(Xik - Xk)] 
Sjk - (l/N)L:(l/af) 

S2 == s? = l/(N - 1)L:[(l/ar) (Xu - Xj)2] 
i ii. (l/N)L:(l/al) 

(11.31) 

where the means Xj and Xk are also weighted means 

L:X .. w. L:(x·.ja?) X. = __ 'i_' = Ii I 

J N L:(l/af) 

The weighting factors 

(11.32) 

for each data point are the inverse of the variances a? that describe the uncertainties 
in each point, normalized to the average of all the w~ighting factors. 

Multiple-Correlation Coefficient 

We can extrapolate the concept of the linear-correlation coefficient which charac­
t~rizes the correlation between two variables at a time, to include ~ultiple correla­
tIOns between groups of variables taken simultaneously. The linear-correlation 
coe.fficient r of Equation (11.17) between y and X can be expressed in terms of the 
v~nan~es and ~ovariances of Equation (11.31) and the slope b of a straight-line fit 
gIVen m EquatIOn (11.12): 

4 2 
2 _ Sxy _ Sxy 

r ---b- (11.33) 
S2S2 S2 x y y 

In analogy with this definition of the linear-correlation coefficient we define the 
multiple-correlation coefficient R to be the sum over similar terms f~r the variables 
of Equation (11.20): 

(11.34) 
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multiple-correlation coefficient R characterizes the fit of the data to the entire func­
tion. A comparison of the multiple-correlation coefficient for different functions is 
therefore useful in optimizing the theoretical functional form. 

We shall discuss in the following sections how to use these correlation coeffi­
cients to determine the validity of including each term in the polynomial of Equa­
tion (11.29) or the series of arbitrary functions of Equation (11.20). 

11.4 FTEST 

As noted in Section 11.1, the X 2 test is somewhat ambiguous unless the form of the 
parent function is known, because the statistic X2 measures not only the discrepancy 
between the estimated function and the parent function, but also the deviations be­
tween the data and the parent function simultaneously. We would prefer a test that 
separates these two types of information so that we can concentrate on the former 
type. One such test is the F test, which combines two different methods of deter­
mining a X2 statistic and compares the results to see if their relation is reasonable. 

F Distribution 

If two statistic XI and xi, which follow the X2 distribution, have been determined, 
the ratio of the reduced chi-squareds, X~I and X~2' is distributed according to the 
F distribution4 

01.3S) 

with probability density function 

. _ [[(VI + v2)/2] (VI)V/2 f l/2(v l -2) 
lj(f, VI> V2) - f(v/2)f(V2/2) V2 (1 + fv/V2)1/2(V1+V2) (11.36) 

where VI and V2 are the numbers of degrees of freedom corresponding to Xy and X~. 
By the definition of X~ [see Equation 01.4)], a ratio of ratios of variances 

X~l = sUay 
X~2 si/ai 

(11.37) 

is also distributed as F, where Sl and S2 are experimental estimates of standard devia­
tions a I and a 2 pertaining to some characteristic of the same or different distributions. 

As with our tests of X2 and the linear-correlation coefficient r, we shall be 
more interested in the integral probability 

PF(F; VI> V2) = J:Pf(f; VI> V2) df (11.38) 

which describes the probability of observing such a large value of F from a random 
set of data when compared to the correct fitting function. The integral function 
PF(F; VI> V2) is tabulated and graphed in Table C.S for a wide range of F, VI' and V2. 
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A word of caution is in order concerning the use of these tables. Because the sta­
tisti~ F.in Equ~tion (11.3S~ is defined as the ratio of two determinations ofX2 without 
specIfymg WhICh must be m the numerator, we can define two statistics FI2 and F21 , 

F - X~I F _ X~2 _ 1 
12 - 2 21 - 2 - - (11.39) 

Xv2 Xvi F12 

which must both be distributed according to the F distribution. 
If in some experiment our calculations yield a particular value of F 12, we can 

use Table C.S to determine whether such a large value is less than S% probable 
(Table C.6 and Figure C.6) or less than 1 % probable (Table C.7 and Figure C.7). If 
the test value is less than the tabulated values, we must also make sure that it is not 
too small. To do this, we compare the value 

01.40) 

to the same tables and graphs, noting that the values of VI and V2 are reversed. The 
values of VI and V2 specified in Table C.S correspond to the degrees of freedom for 
the numerator and denominator of Equation 01.39), respectively. 

Example 11.3. Suppose that FI2 = 0.2 with VI = 2 and V2 = 10. For Table C.6, the 
observed value of F12 may be as high as 4.10 and still be exceeded by about 5% of ran­
dom observations. Sim~larly, we compare F21 = lIFI2 = 5.0 with the 5% point for 
VI = 10 and V2 = 2, whlch has a value of 19.4. Because the values of F12 and Fare 
well within the 5% limits, we can have confidence in the fit. 21 

. What we are estimating in this example is the probability P F(FI2 ; VI' V2) that 
!'12 IS not too large and the probability PFOIF12 ; V2, Vl) that F12 is not too small. It 
IS tempting to simplify this procedure by assuming that 

PF(l!FI2 ; V2, VI) = PF(F12; VI> V2) (11.41) 

so that our test consists of determining F such that 

PF(F; VI> V2) = O.OS 

with the requirement that 

F> F12 > I/F 

This approximation is valid for reasonably large values of VI and V2 but not for small 
values of either, as in the preceding example, where we have 4.10> F12 > 1119.4. 

Multiple-Correlation Coefficient 

There are two ty~es Of. F tests that are no~ally performed on least-squares fitting 
proced~res. One .IS. deSIgned to test the entIre fit and can be related to the multiple­
correlatIOn coeffICIent R. The other, to be discussed later, tests the inclusion of an 
lIc1c1itionlll tP.rtn in thp. fittinp- fnnrtion 
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(11.42) 

this is a statistic that follows the X 2 distribution with N - 1 degrees of freedom 
(only one parameter 51 must be determined from the N data points). It is a character­
istic of quantities that follow the X 2 distribution. th~t th~y may be expressed as the 
sum of other quantities that also follow the X2 dIstnbutlOn such that the number of 
degrees of freedom of the original statistic is the sum of the numbers of degrees of 

freedom of the terms in the sum. 
By suitable manipulation and rearrangement, it can be shown that S; can be 

expressed as the sum of the two terms, 

S; = L(Yi - 51)2 = j~ l(Yi - Y) j~aj (ij - .D] + j~(Yi - L ajij)2 
(11.43) 

= f [ajL[(Yi - 51) (ij - j)]] + L[Yi - y(xJJ2 
j~1 

where the fitting function is of the form 

m 

Y(Xi) = Lajij(xi) (11.44) 
j~1 

and we have 

- 1 
jj = NLij(xJ (11.45) 

The left-hand side of Equation (11.43) is distributed as X2 with N - 1 degrees 
of freedom. The right-hand term is our definition of X2 from the Equation (.11.~) and 
has N - m degrees of freedom. Consequently, the middle term must be dIstnbuted 
according to the X2 distribution with m - 1 degrees.offreedom.. . . . 

By comparison with our definition of the multIple-correlatIOn coeffIcIent R III 
Equation (11.34), we can express this middle tern as a fraction R2 of the statistic S;: 

fajL[(Yi - 51)(ij - h)] = R2 L (Yi - 51)2 (11.46) 
j~1 

Equation (11.43) becomes 

(11.47) 

or 

S; = R2S; + (1 - R2)S; (11.48) 

where, as before, both terms on the right-hand side are distributed as X2, the first 
with m - 1 degrees of freedom and the secon~ with N - "! degrees .o~ freedom. 

Thus, the physical meaning of the multIple-correlatIOn coeffIcIent beco~es 
" PTlt Tt rl;,,;rlpc thp tr.t,,1 ,,,,Tn r.f <:nn"r,,<: r.f n""iMir.n<: S2 intn twn nllrt.<: Thf': fln:t 
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From the definition of Equation (11.35), we can define a ratio F R of the two 
terms in the right-hand side of Equation (11.47) that follow the F distribution with 
VI = m - 1 and with V2 = N - m degrees of freedom, 

_ R2/(m - 1) R2 (N - m) 
FR - X (11.49) (1 - R2)/(N - m) (1 - R2) (m - 1) 

From this definition of FR in terms of the multiple-correlation coefficient R, it is 
clear that a large value of FR corresponds to a good fit, where the multiple correla­
tion is good and R = 1. The F test for this statistic is actually a test that the coeffi­
cients are 0 (aj = 0). So long as FR exceeds the test value for F, we can be fairly 
confident that our coefficients are nonzero. If, on the other hand, FR < F, we may 
conclude that at least one of the terms in the fitting function is not valid, is decreas­
ing the multiple correlation by its inclusion, and should have a coefficient of O. 

Test of Additional Term 

Because of the additive nature of functions that obey the X2 statistics, we can form 
a new X2 statistic by taking the difference of two other statistics that are distributed 
as X2. In particular, if we fit a set of data with a fitting function with m terms, the re­
sulting value of chi-square associated with the deviations about the regression x2(m) 
has N - m degrees of freedom. If we add another term to the fitting function, the 
corresponding value of chi-square x2(m + 1) has N - m - 1 degrees of freedom. 
The difference between these two must follow the X2 distribution for 1 degree of 
freedom. 

If we form the ratio of the difference x2(m) - x2(m + 1) to the new value 
x~(m + 1), we can form a statistic Fx that follows the F distribution with VI = 1 and 
V2 = N - m - 1: 

F = x2(m) - x2(m + 1) = dX2 

x x2(m + 1)/(N - m - 1) X~ 
(11.50) 

This ratio is a measure of how much the additional term has improved the value of 
the reduced chi-square and should be small when the function with m + 1 terms does 
not significantly improve the fit over the function with m terms. Thus, we can be con­
fident in the relative merit of the new terms if the value of Fx is large. As for FR, this 
is really a test of whether the coefficient for the new term is 0 (am + I = 0). If Fx 
exceeds the test value for F, we can be fairly confident that the coefficient should not 
be 0 and the term, therefore, should be included. Table C.5 and Figure C.5 are useful 
for testing Fx' They give the value of F corresponding to various values of the prob­
ability PF(F; 1, V2) and various values of V2 for the case where VI = 1. Thus, rather 
than evaluating F for critical values of the probability (for example, 5% or 1 %), we 
can evaluate the probability corresponding to the observed value of Fx' 

A calculation of Fx could be built into a linear regression program and the re­
sulting value compared to a supplied test value F, to indicate whether or not the last 
tprrt1 In thp ~Pr1PC lC 11lct-if,,:3,..:J o:lnrl th.c:t.ra..f''' ..... '''' for.. .....1..,..+ ...... ___ ~ ___ L ____ . ------- .... _--
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number of terms in the calculation manually. One should, however, be aware that 
the important figure of merit for added terms is the difference of the two values of 
X2 divided by the new value X~ of the reduced chi-square. 

11.5 CONFIDENCE INTERVALS 

The object of data fitting is to obtain values for the parameters of the fitted function, 
and the uncertainties in the parameters. The quality of the fit is indicated by X 2 and its 
associated probability, and the uncertainties give the probabilities that our values of 
the fitted parameters are good estimates of the parent parameters. Whether we esti­
mate our parameters by the least-squares method or by direct application of the max­
imum-likelihood method, as discussed in Chapter 10, we must always estimate the 
uncertainty in our parameters to indicate numerically our confidence in our results. 

Generally, we assume Gaussian statistics and quote the standard deviation a 
in a result, where a appears in the Gaussian probability density function 

PG(x;fL,a)= a~exp[-~(X:fLYJ (11.51) 

and determines the width of the distribution. As noted in Chapter 2, approximately 
68.3% of the events of the Gaussian distribution fall within ±a of the mean fL and 
approximately 95.4% fall within ±2a. 

Confidence Level for One·Parameter Fit 

One way of looking at the 1 standard deviation limit is to consider that, in a series of 
repeated experiments, there is approximately a 68% chance of obtaining values within 
± a of the mean fL. Of course, we usually do not know fL, and perhaps not a either, but 
have determined experimentally only x and s, our estimate of the parameters. How­
ever, as long as our experimental estimates x and s are reasonably close to the true val­
ues fL and a, we can state that there is approximately a 68% probability that the true 
value of the measured parameter lies between x - s and x + s, or that at the 68.3% 
confidence level, the true value of the parameter lies between these two limits. 

We may wish to quote results in terms of other confidence levels. For exam­
ple, we refer to the ±2a limit as the 95.4% confidence interval, or we may quote a 
99% or 99.9% confidence level for a high-precision experiment. The conventional 
la and 2a limits are based on the Gaussian distribution, which mayor may not ap­
ply to the data in question, and even an experimental distribution that nominally fol­
lows Gaussian statistics is apt to deviate in the tails. 

For any distribution, represented by the normalized probability density func­
tion, Px(x; fL), we determine the probability that a measurement of the parameter will 
fall between x - a and x + b by the integral 

I
X+b 

Px = x-a Px(x; x) dx (11.52) 
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Relative values of the likelihood function versus trial values of the parameter for the 373-event 
sample of Example lO.ld. The data points (from Figure lO.4b) are indicated by crosses; the solid and 
dashed curves represent the results of fitting Gaussian curves separately to the two sides of the 
distribution. Parameters determined in the two fits are indicated on the graph. All measurements are in 
units of lO-1O s. 

symmetrical about the mean. The uncertainties in our measurements may not be 
symmetrical, although the asymmetry may be hidden if we assume Gaussian statis­
tics in our calculations. For example, the routines for finding uncertainties in para­
meters found by least-squares fitting (Chapters 7 and 8) generally assume a 
Gaussian distribution of the parameters and hence produce a single number for the 
uncertainties. 

Example 11.4. As an example of an asymmetrical probability distribution, consider 
the 373-event data sample of Example lO.ld. In Figure lOAb we plot as crosses the 
scaled values of the likelihood function for these data as a function of trial values of the 
parameter 'T. The data points exhibit a marked asymmetry about the mean 'T'. The dashed 
curve was calculated from Equation (10.10) with parameters obtained from the fit. 

To make a better determination of a from this curve, we considered the re­
gions on each side of the mean separately and estimated two separate standard de­
viations, aL and aR, with the aid of Equation (1.11). To reduce the effect of the 
right-hand side tail on the value of an we imposed a cutoff at 'T = 1.6 and used only 
those data points below the cutoff in this calculation. 

A (,"()n1n()f;!ltp f"nTUP fArtrl13,.-J nf' hur'\ no.1I"IC''''~n ......... n • .:+ .... + ........... 



210 Data Reduction and Error Analysis for the Physical Sciences 

the uncertainty in 'I, so that we could report 'I' = 0.78 ~8·.H, as indicated by the ar­
rows on Figure 11.1 rather than 'I' = 0.78 ± 0.14 as we did in Chapter 10. This is 
equivalent to finding the two positions at which the logarithm of the likelihood 
function has decreased by b.M = Y2 as discussed in Section 10.2. Clearly this result 
is somewhat subjective if either side of the curve does not follow the Gaussian 
form. For this example, the value of (T R depends on how much of the tail is included 
in the calculation. 

Confidence Levels for Multiparameter Fits 

The definition of the confidence level in a one-parameter experiment is generally 
straightforward. We can plot our data and observe if the distribution is Gaussian and 
estimate directly from the distribution of the probability that the true result lies be­
tween two specified values. When two or more variables have been determined and 
those variables exhibit some correlation, the definition of the confidence level be­
comes a little more difficult. Consider, for example, the determination of the mean 
lifetimes 'I I and 'T2 of two unstable silver isotopes of Example 8.1. The problem was 
treated in Chapter 8 as a five-parameter problem, with parameters a4 and as corre­
sponding to the two mean lifetimes, 'II and 'T2, respectively, and parameters ab a2, 
and a3 corresponding to the amplitudes of a uniform background and the two 
decaying states. The parameters of most interest in the experiment are a4 and as, and 
we want to define a joint confidence interval for those two variables. 

Figure 11.2 shows two sets of contours for the variation of X2 as a function of 
a4 and as from the least-squares fit by the Marquardt method discussed in Chapter 8. 
The small contours, drawn with solid lines, were calculated by holding the parame­
ters al> a2, and a3 fixed at their optimum values (see Table 8.5) and varying a4 and as 
to obtain increases in X2 of 1, 2, and 3 from the minimum value. The large contours, 
shown as dashed lines, were calculated by allowing ab a2, and a3 to vary to minimize 
X2 for each pair of values of a4 and as. The contour plots cover very different ranges 
because of the correlations of the displayed parameters, a4 and as, with the remain­
ing parameters al through a3' The tilt of the closed figures on each plot indicates the 
degree of correlation of parameters a4 and as with each other. In an ideal experiment, 
the contours are ellipses in the region of the X2 minimum and if a4 and as are not cor­
related, then, with suitable scaling of the axes, the ellipses are circles. 

Which plot should we use? Additionally, how do we determine a confidence 
interval; that is, a region of the a4-aS space in which we estimate there is, for exam­
ple, a -68% probability of finding the true values of the two parameters? 

First, we should note that, because the fitting function, Equation (8.2), is not 
linear in the parameters, the methods of testing described in the previous sections 
strictly do not apply. However, we are much more likely to run into nonlinear fitting 
problems than the easier linear problems, so we shall continue with this example. At 
any rate, the function is linear in parameters al through a3, and we could make a lin­
ear expansion of it, over a limited region, in the parameters a4 and as. In fact, this 
... n ...... ..., .. )... ..... ........... .-.~.n ....... +.." ............................... ....1 r..~ +~t+~ ..... ..,. ..... 1"'\..." l1-na,<"lr -fllnf"t1"''to""'C'' 11"\ rh-::ln.t~T' Q 
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T~~ sets of contours for the variation of X2 with parameters a4 and a5 in the region of the X2 
mmlmum. Data are from the least-squares fit by the Marquardt method discussed in Chapter 8. The 
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values. The large contours, shown as dashed lines, were calculated by allowing a a and a to vary 
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from the contour plot, we should consider the full range of the outer limit of the 
LlX2 = 1 contour, and not the intersection of that contour with the a4 axis. This is 
equivalent to allowing as to assume its best values for each chosen value of a4, as we 
have already assumed for the parameters al through a3' The two dashed vertical lines 
indicate the two limits on a4 that include the 1 standard deviation, or 68.3% of the 
probability, and the two horizontal lines indicate the 1 standard deviation limits for as. 

!low do we know that the vertical lines enclose 68.3% of the probability? By 
allowmg the four parameters ai' a2, a3, and as to find their optimum values for each 
chosen value of a4 and varying a4, we have separated our X2 fitting problem into two 
parts: a fit of N data points to m - 1 parameters with N - m - 1 degrees of free­
dom and a variation of LlX2 with a4 about the minimum X2, with 1 degree of free­
dom. As we observed in the previous section, the two variations separately must 
fo~l~w t~eir. ap~ropriate X2 distributions, so our variation of LlX2 obeys the X2 prob­
a?lh~y d~stnbutlOn for 1 degree of freedom. If we look at the integrated probability 
dlstnbutlOn P x for 1 degree of freedom [Table C.4, or calculated from Equation 
(11.10)], we see that X2 2: 1 corresponds to 31. 7% of the probability, or LlX2 < 1 
r()rrp~n()n(h,~ tn h.~ ':lot, ~1nll1IJirl" 1+ U10 n1~{"\J... i-r.. +~_.....1 ... t... ...... 1.!.-.-.! ... ~ .c~_.., _L ___ ...1 _ _ 1 _1 • 



212 Data Reduction and Error Analysis for the Physical Sciences 

To find the I standard deviation region encompassed by the joint variation of 
two parameters, a4 and as, with all other parameters optimized, we must draw the 
contour corresponding to that value of ~X2 for 2 degrees of freedom that includes 
68.3% of the probability. Referring again to Table C.4 or Equation 01.10), we find 
that we should draw the contour for ~X2 = 2.30, and for the 2 standard deviation 
contour, we should choose ~X2 = 6.14. Joint confidence intervals with more than 
two parameters are often of interest, but are difficult to display and are represented 
best by two-dimensional projections of contours for pairs of variables. 

Confidence Level for a Predicted Value 

Suppose the predicted value of a physical quantity is fL = 1000.0, and we have 
made a measurement and obtained the value x = 999.4 ± 2.0. At what confidence 
level is the predicted value consistent with our measurement? The question could be 
rephrased as, "What is the probability of obtaining from the predicted parent distri­
bution a distribution that is as bad as the one we got, or worse?" Because the shape 
of the parent distribution was not predicted, but only the value of the mean, we must 
use our value of the standard deviation, IT = 2.0, as an estimate of that of the parent 
distribution. If the distribution is known to follow Gaussian statistics, then the re­
quired confidence is twice the integral of the standard Gaussian probability function 
from x = 8 to 00, where 8 = I fL - xii IT = 11000.0 - 999.41/2.0. 

Now, suppose that the predicted value was necessarily positive-an intensity, 
for example. Then, we might again assume a Gaussian distribution, but only for 
positive values of the variable x, and therefore our confidence integral becomes the 
integral of the standard Gaussian from 8 to 00. However, because the total probabil­
ity must be normalized to 1, we again multiply the integral by 2 so that the proba­
bility or confidence level is the same for both problems. 

The method of determining the confidence level thus depends on the type 
of problem as well as the probability function that is applicable to the problem. 
For distributions that are symmetrical about their means, such as the Gaussian dis­
tribution, we generally consider the probability of obtaining a result that is the 
specified number of standard deviations from the mean, without regard to sign, 
unless a particular sign is excluded by the physical problem. For distributions 
such as the chi-square and Poisson distributions, which are only defined for posi­
tive values of their arguments, it is conventional to find a "one-sided" probability 
as in the case of the X2 distribution where we quote the probability of obtaining 
a value as large as or larger than the value we obtained for a given number of 
degrees of freedom. 

11.6 MONTE CARLO TESTS 

A Monte Carlo calculation can help us understand the statistical significance of our 
results and possibly obtain a better estimate of some of the parameters of the exper­
irnpnt A" '" hv-nroc1nrJ thf' MontI' r::lrlo nrOPT::lm m::lV ::ll~() heln Il~ identifv hiases 
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We want to find the probability of obtaining from a series of similar experiments a 
value x that differs from the predicted value f.L by 

~x 2:: IfL - xl (11.53) 

We can set up a Monte Carlo program to simulate our experiment and to gen­
erate events with the parameters predicted by the theoretical principle that we are 
testing and with the same cuts as those imposed by our experimental apparatus. 
S.UC? a program can be quite complex, but it may already exist at the time of analy­
SIS, If, for example, a Monte Carlo program was written to help plan the experiment. 
Or it might be possible to use some geometric and kinematic quantities from the ac­
tual experiment and only generate those parts of each event that are affected by the 
parameters in question. 

After the Monte Carlo program has been written and debugged, we can simu­
late repeated experiments with the same parent parameters and the same number of ' 
final measurements as in our real experiment. The data from each of these simulated 
experiments can be processed by our regular analysis program to obtain a group of 
"experimental" values of x, and from the distribution of these values we can esti­
mate the required probability. 

~x~mple 11.5. Let us use the Monte Carlo method to try to learn more about the sig­
mficance of the small peak in our data of Example 9.2. Examination of Figure 9.2 
leaves no doubt about the existence of a large peak at -1.0 Ge V. Without the fitted 
curve, the smaller peak near 0.8 Ge V would be considerably less striking and further 
analysis might be helpful. (We note that, if the small peak were indeed spurious, we 
s~ould have to refit the large peak to obtain a better estimate of its mean energy and 
wIdth.) In Chapter 9, we estimated the probability to be about 0.01 % that the smaller 
peak is just a fluctuation in a single bin above the single-peak background, with a 
probability of about 0.6% of such a fluctuation occurring in anyone of the 60 bins into 
which the data were sprted. These are quite compelling numbers. Can we support them 
with a more detailed calculation by the Monte Carlo method? 

We adapted to the study of this problem the Monte Carlo program and the least­
squa~es fitting program, which were used to generate and analyze the data in Chapter 
9. With the Monte Carlo program, we simulated the experiment according to Equation 
(9.1) to generate 4000 single-peak events in each of 1000 trial "experiments." The 
mean energy (Eo), half-width (f), and amplitude of the larger peak, and the amplitudes 
(a l through a3) of the quadratic background, were set to the values obtained in the six­
parameter fit, listed in Table 9.1. 

To each set of trial data we fitted Equation (9.13), using identical procedures to 
those used in Chapter 9, with the exception that, starting values for the parameters of 
the smaller peak (a7' as, and a9) were set to the values obtained in the nine-parameter 
fits of Chapter 9, listed in column 6 of Table 9.1. We selected those fits that yielded pa­
rameters of the lower peak consistent with the values determined in Chapter 9 by im­
posing the following conditions: (1) We required that both the chi-square probability 
and the amplitude of the smaller peak (a7) be equal to or greater than the correspond­
ing fitted values listed for the nine-parameter fit in Table 9.1; (2) We required that the 
central energy of that peak be within olus or minus one hi . ( 
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TABLE 11.1 

Results of generating 4000-event "experiments" from 
Equations (9.1) and (9.13) with parameters from fits listed 
in Table 9.1. We used several values of the amplitude Al of 
the smaller peak to test the sensitivities of our analysis to 
small and possibly spurious peaks. 

Al 

3.50 
1.75 
0.875 
0.000 

Equation Number of experiments Number of successes 

9.13 100 61 
9.13 100 18 
9.13 100 5 
9.1 1000 -5 

Chapter 9 for a single bin fluctuation. Tests made with other starting values and cuts 
for the smaller peak yielded similar numbers of survivors. 

To check our procedure, we also generated and analyzed 100 two-peak trial "ex­
periments" from Equation (9.13), with the parameters of the smaller peak set to the 
values from the nine-parameter fit listed in Table 9.1. From these 100 trials, 61, or 
61 %, survived the cuts. When we repeated the analysis with the amplitude of the 
smaller peak reduced by a factor of 2 (i.e., ai2), the success rate dropped to 18%, and 
a further reduction by anotherfactor of 2 (ai4) reduced the success rate to 5%. The re­
sults of analyses are summarized in Table 11.1. 

These results offer strong support for the existence of the smaller peak, and in­
dicate that in a 4000-event experiment we might detect with reasonable probability 
a peak with only one-fourth the amplitude of the current smaller peak. Clearly, a 
Monte Carlo simulation should play an important role in planning this type of ex­
periment. A carefully planned Monte Carlo program may be much better (and eas­
ier) than a detailed theoretical analysis for finding an answer to the question "How 
much data will be needed to establish (or disprove) the existence of a specified fea­
ture in a distribution." 

We offer a final word of caution on using the Monte Carlo technique to 
study the statistical significance of experimental results. For Examples 9.2 and 
11.5, we used a very simple problem to illustrate this technique. Yet, there are 
many opportunities for errors, which can lead to erroneous conclusions about the 
significance of our Chapter 9 data. In a larger study, it would be very easy to make 
a simple mistake that might lie undetected in the program and have a subtle effect 
on the results. It is important to test the program under a variety of conditions, and 
to examine results at intermediate stages before drawing conclusions from the re­
sult. In particular, if the results of the program lead to conclusions that violate in­
tuition about the experiment, we should check and recheck the calculation. The 
Monte Carlo method is very powerful, and can enable us to solve very difficult 
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SUMMARY 

Variance of the fit: 

S2 = _1_ 2:{(l/O})[Yi - y(xJJ2} = _1_ 2 

N - M (l/N)2:(l/o}) N - m L Wi[Yi - y(xJJ 

Weighting factors: 

Relationship between S2 and X 2: 

where 

(<Tn = l~ L :rrl 

Probability P/X2; v) that any random set of N data points will yield a value of 
chi-square as large as or larger than X2: 

f 
00 z il2(v-2)e-z/2 

PX(X
2
; v) = x' 2VI2r(v/2) dz 

Linear-correlation coefficient: 

r == N2:XiYi - 2:Xi2:Yi 
[N2:xT - (2:X;)2JI/2[N2:YT - (2:y;)2JI/2 

Pr~bability Pee:, N) that any random sample of uncorrelated experimental data 
pOints would Yield an experimental linear-correlation coefficient as large as or 
larger than I rl: 

J::(r; v + 2) = (I ~ ~ f[(v + 1)/2J (1 _ r2)(v-2)/2 
Jlrl V 1T f(v/2) 

Sample covariance: 

2 = l/(N - 1)2:[(l/<Tr)(xij - X) (Xik - Xk)J 
Sjk - (l/N) 2: (l/<Tf) with 

2: (x .. /<T?) 
- lj I x·= 
J 2: (l/<TT) 

Sample variance: <TJ = <TJj 
Sample linear-correlation coefficient: 

Multiple-correlation coefficient: 
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F test: 

2 
F= Xvi 

X~2 

F test for multiple-correlation coefficient R (jor v = N - m): 

_ R2/(m - 1) R2 (N - m) 
FR - (1 - R2)/(N - m) (1 - R2) X (m - 1) 

F test for X2 validity of adding (m + 1 )th term: 

F = x2(m) - x2(m + 1) = ,iX2 

x x2(m + 1 )/(N - m - 1) X~ 

Confidence limits: 10" ~ 68.3%; 20" ~ 95.4%; 30" ~ 99.7% 

EXERCISES 

11.1. Discuss the meaning of X 2 and justify the relationship between it and the sample 
variance S2 = X;. 

11.2. Compare the exact calculation of the gamma function r(n) of Equation (11.7) with 
the approximate calculation of Equation (11.8) for n = Y2, 1, 5Iz, 4, 0/2,10. 

11.3. From Equation (11.6), show that the x2-probability density for 1 degree offreedom 
can be written as 

e-x'/2 
p(X2)=_­

\h'lTX2 

Calculate to 1 % the probability of obtaining a value of X 2 that is less than 2.00 by 
expanding the function in a Taylor series and integrating term by term. 

11.4. For a typical number of degrees of freedom (v = 10), find, by numerically integrat­
ing Equation (11.6), the range of probability Px(X 2, v) for finding X2 as small as 0.5 
or as large as 1.5. Use the approximation for the gamma function of Equation (11.8). 

11.5. By numerically integrating Equation (11.6), find the probability of finding a value of 
X; = 1.5 with v = 100 degrees of freedom. (Note that double-precision variables 
must be used.) Would you consider this to be a reasonably good fit? 

11.6. Express the linear-correlation probability density of Equation (11.18) in terms of the 
approximation for the gamma function of Equation (11.8). 

11.7. Work out the details of the calculation of the linear-correlation coefficients r for Ex­
amples 6.1 and 6.2. 

11.8. If a set of data yields a zero slope b = 0 when fitted with Equation (11.11), what can 
you say about the linear-correlation coefficient r? Justify this value in terms of the 
correlation between Xi and Yi. 

11.9. Find the linear-correlation coefficient r, between the independent variable Ti and the 
npnpnnf'"nt v"ri"h1p V. for th", nM" of EX:lmn1", 7.1 
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11.11. Express the multi~le correlation R in terms of xij' Yi' and their averages. 
11.12. Evaluate the multIple-correlation coefficient R for the data of Example 7 1 
11.13. Is a large value of F good or bad? Explain. . . 

11.14. If we wish to set as an arbitrary criterion a probability of 0.01 for the F test what 
would be the reasonable average value for F test? x ' 

11.15. What different aspects of a fit do the FR and Fx tests represent? 

11.16. Apply t~e Fx test for the quadratic term to the data of Example 7.1 and state your 
conclUSIOns. (Refer to Table 7.4.) 

11.17. Sh~w the interm~diate steps in the derivation of Equation (11.43). 

11.18. ~stImate from FIgure 11.2 the 90% confidence limit for each of the two mean life­
tImes (a4 and as) of Example 8.1 when all variables are allowed to find their opti­
mum values. 



APPENDIX 

A 
NUMERICAL 

METHODS 

T here are several reasons why we might want to fit a function to a data sample, 
and several different techniques that we might use. If we wish to estimate para­

meters that describe the parent population from which the data are drawn, then the 
maximum-likelihood or least-squares method is best. If we wish to interpolate be­
tween entries in data tables to find values at intermediate points or to find numeri­
cally derivatives or integrals of tabulated data, then an interpolation technique will 
be more useful. Additionally, if we wish to obtain intermediate values between cal­
culated coordinate pairs in order to plot a smooth curve on a graph, then we may 
wish to use a spline fitting method. In this appendix we shall summarize some stan­
dard methods for treating the latter two types of problems, as well as some methods 
of finding the roots of nonlinear functions, a different sort of interpolation problem. 

A.1 POLYNOMIAL INTERPOLATION 

With modem fast computers, the need for interpolating within tables to find inter­
mediate values of tabulated functions has reduced markedly. Nevertheless, there are 
situations in which it may be convenient to represent a complicated function by a 
simple approximation over a limited range. For example, in a large Monte Carlo 
calculation, where computing time is a significant consideration, we may approxi­
mate a complex function by a simpler polynomial that can be calculated quickly. Al­
ternatively, we may save time by creating a probability integral once at the 
beginning of the program. and interpolating to find values of x corresponding to the 
randomly chosen values of y. 

For many purposes a linear or quadratic interpolation is satisfactory; that is, 
we fit a strai2:ht line to two coordinate pairs. or a parabola to three, and use the 
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i~ better and more convenient to represent a function over a limited region by a se­
nes of low-order approximations. 

Lagrange's Interpolation Method 

Here is a method that is easy to remember and can be used to expand a function to 
any order. We know it works because of the theorem that states that if you can find 
any nth-degree polynomial that passes exactly through n + I points, then you have 
fo~nd the o~e an~ onl~ nth-degree polynomial that passes through those points. 
Thmk about It. It IS ObVIOUS for n = I (2 points). 

Let us start with an easy problem. Suppose we have two coordinate pairs 
(xo, Yo) and (x], Yl), and we want to find the straight line that passes through both of 
them. We write a function of the form 

P(X) = YoAo(x) + YlAl(X) (AI) 

~nd search for ~ function Ao(x) that is I when x = Xo and 0 when x = x], and a func­
tIO~ Al(x) that IS I when x = Xl and 0 when x = Xo. We can guess the form. If we 
wnte Ao(x) a~ a fraction and set its numerator to (x - Xl), then Ao(x) will be 0 for 
x = Xl .and wIll be (xo - Xl) for X = Xo. But we want Ao(x) = I for X = xo, so the 
denomI~ator of A? must be (xo - Xl)' We can make similar arguments for Aix) and 
thus wnte as our mterpolation equation 

P(x) = Yo (x - Xl) + Yl (X - xo) (A2) 
(xo - Xl) (Xl - xo) 

. Suppose we want a parabola that passes through three points. Then we simply 
wnte 

P(X) = YoAo(x) + YlAl(X) + Y2A2(X) 

and, following the previous arguments, write 

P(x) = Yo (x = Xl) (X - X2) + Yl (X - xo) (X - X2) 
(xo Xl) (xo - X2) (Xl - Xo) (Xl - X2) 

+ (X - Xo) (X - Xl) 

Y2 (X2 - Xo) (X2 - Xl) 

(A3) 

(A4) 

The expansion to higher orders should be obvious. The kth term in an nth order ex­
pansion is given by the following product in which the j = k term must be omitted: 

n (x - xJ 
IT ( _ )Yk (excludingj = k) (A.S) 
j=O Xk Xj 

Note that the intervals in X need not be equally spaced. The interpolation for a 
well-behaved function Y = f(x) is completely general. 

Newton's Divided Differences 
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not very convenient for repetitive calculations. It is not ve~ conve.nient as. an ex­
pansion either, because increasing the order of the expanslOn reqUIre~ a~dmg an­
other factor to each term as well as adding another term. What we reqUire IS a more 
familiar form-a discrete analog of the Taylor expansion. For this we tum to New-

ton's method of divided differences. 
There are several forms of the divided differences expansion, roughly charac-

terized by the method we choose to define the differences, forw~rd, backward, ?r 
about a central point. We shall restrict ourselves here t? fo~ward dlffe~ences; th~t.lS, 
we calculate the variation of y with respect to x by taking mcrements m the pOSItIve 

x direction. 
Again, consider a set of data points, (xo, Yo), (Xl' Yl), (X2, Y2), '.' .. L~t us 

assume that we wish to make a linear interpolation from Xo to some pomt x Wl~ a 
first-degree polynomial. We define the zeroth divided difference as the functIOn 

itselff(x) evaluated at X = xo: 

f[xo] == f(xo) = Yo 

The first divided difference is defined to be 

f[ ] 
= f[XI] - f[xo] 

Xo, Xl - ( ) 
Xl -xo 

which is the slope of a linear function. Then, for a linear function, 

f[x, xo] = f[xo, Xl] 

or 

f[xo] - f[x] _ f[XI] - f[xo] 
(xo - X) - (Xl - xo) 

which, on rearrangement of the terms, gives the first-order expansion 

f[XI] - f[xo] 
PI(X) = f[xo] + (x - xo) ( _ ) 

Xl Xo 

= f[xo] + (X - xo)f[xo, Xl] 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

where we have written PI(X) instead off(x) to indicate that the expansion is a poly-

nomial approximation to the functionf(x). ., . 
To find the second-order expansion, we consider the second dIvIded dIfferences 

f[
x X x]= f[x2, Xl] - f[Xi> xo] (A.ll) 

0' i> 2 - (X2 - Xl) (Xl - xo) 

which corresponds to the slope of the slope, or the second derivative. This must be 

constant for a second-order function, so we have 

f[x, Xo, Xl] = f[xo, Xl> X2] (A.12) 

which leads to the second-order expansion 
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Remainders 

The extrapolation formula for an nth-order expansion is only exact when the func­
tion itself is an nth-degree polynomial. Otherwise, the remainder at X after n terms 
RnCx), defined as the difference between the original functionf(x) and the expansion 
Pn(x), is given by 

,Rn(x) = f(x) - Pn(x) 
(A. 14) 

Calculation of the remainder requires the value of the functionf(x) at x, which is 
generally not available. (If it were, we might not be doing this expansion.) However, 
it may be possible to make an estimate offn(x), or to use a nearby value, and thus 
find an estimate of Rn(x). An expression for the remainder can also be obtained in 
terms of the (n + I)th derivative of the function. I 

Uniform Spacing 

The divided difference expressions have a particular convenient form when the in­
tervals in X are uniform; that is, if X2 - Xl = X3 - X2 = X; - X;-l = h. The divided 
difference of the previous discussion can be written 

f[ ] 
= f[XI] - f[xo] _ flf(xo) 

Xo, Xl (_) - h 
Xl Xo 

or 

flf(xo) == f(XI) - f(xo) and h = Xl - X2 

and higher-order differences become 

fl2f(xo) == fl[flf(xo)] = flf(XI) - flf(xo), etc. 

If we define the relative distance along the interval by 

u = (x - xo)/h 

we can write for the nth-order expansion, 

F:z(x) =f(xo) + uflf(xo) + u(u - I)fl2f(xo)/2! + ... 
+ u(u - 1) ... (u - n - I)flnf(xo)/n! 

(A. IS) 

(A. 16) 

(A. 17) 

(A. 18) 

Equation (A.I8) is a finite difference analog of the familiar Taylor expansion with 
the important difference that the factors multiplying the coefficients fl"J(xo)/n! are 
not successive powers of the relative distance from the starting point, but rather the 
product of relative distances from successive points used in the expansion, because 
(u - 1) = (x - Xo - h)/h = (x - xl)/h, and so forth. 

Extrapolation 

Equations (A.IS) through (A.18) are perfectly general for fitting exactly n sequen-
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TABLEA.l 

Uniform differences for cos e 
e 

(degrees) y ,11 ,12 ,13 ,14 

0 1.0000 -0.0489 -0.0931 0.0139 0.0078 
18 0.9511 -0.1420 -0.0792 0.0217 0.0056 
36 0.8090 -0.2212 -0.0575 0.0273 
54 0.5878 -0.2788 -0.0302 
72 0.3090 -0.3090 
90 -0.0000 

TABLEA.2 

Extrapolation from 0 to 10° and from 0 to 75° in various orders 

e 
(degrees) 

10 
75 

cos e 

0.9848 
0.2588 

1 

0.9728 
0.7961 

2 

0.9843 
0.1819 

Order 

3 

0.9851 
0.2481 

4 

0.9848 
0.2589 

,1s 

-0.0021 

5 

0.9848 
0.2588 

position of the first data point (xo, Yo) can be anywhere, but for optimum interpola­
tion, the values of Xo and Xn should straddle the interpolation point x and be approx­
imately equidistant from it. 

The same formula can be used for extrapolating to values beyond the region 
of data, but the uncertainties in the validity of the approximation increase as x gets 
farther from the average of Xl and Xn- The approximation is limited by both the de­
gree of the interpolating polynomial and by uncertainties in the coefficients of the 
polynomial resulting from fluctuations in the data. 

Example A.I. Table A.l shows a uniform divided difference table for the cosine 
function for a range of the argument e between 0 and 90°. Table A.2 shows values of 
cos e for e = 10 and 75° calculated from the divided difference table in orders 1 
through 5. The interpolation starts at 0° so that only the top row of Table A. 1 is used and 
thus, e > 18°, the calculation is an extrapolation. The true value of cos e is also listed. 
As we should expect, the large extrapolation to 75° is very poor in low order. Usually, 
an approximation can be improved by increasing the number of terms in the expansion. 
However, the better method would be to drop to a different line of the table; that is, to 
ensure that the calculation is an interpolation rather than an extrapolation. 

A.2. BASIC CALCULUS: 
DIFFERENTIATION AND INTEGRATION 
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Differentiation 

Let/(x) be a function of the variable x. If x increases by an amount Llx, the function 
vanes by an amount Llf = f(x + Llx) - f(x) The ratI·o A -rIA . f h I· .. . . I.J.j' I.J.X IS a measure 0 t e 
re atIv~ vanatlon off(x) WIth x. In the limit, as Llx becomes infinitesimally small 
the :atI? LlflLlx for a continuous functionf(x) approaches an asymptotic value th~ 
derzvatlVe dfldx of the functionj(x) with respect to x. ' 

df(x) == lim f(x + Llx) - f(x) 
dx Llx---+O Llx (A. 19) 

The derivative off(x) atx = Xo is written df(xo) and corresponds to the slope of the 
f . dx 
unctIOn evaluated at Xo or the tangent to the curve at that point. 

Example A.2. To fin~· the derivative of f(x) = x n, we can expand the function' 
f(x + Llx) to fIrst order III a Taylor series. 

Thus, with n = 4, we havef(x) = X4 and dfldx = 4r 3. 

d(xn) . (xn + nxn-ILh) - Xh 
--= hm 
dx Il.x---+O Llx 

nxn-ILlx 
-..,--- = nx n - I 

Llx 

Example A.3 For fix) = sin x, we can write 

sin (x + Llx) = (sin x) (cos Llx) + (sin Llx) (cos x) 

and again expandf(x) to obtain 

d(sin x) . sin (x + Llx) - sin x 
---= hm 

dx Il.x---+O Llx 

= lim (sin x) (cos Llx) + (sin Llx) (cos x) - sin x 
Ilx---+O Llx 

= sin x + (Llx) (cos x) - sin x 
Llx = cos x 

Similarly, for f(x) = cos x, we find dfldx = -sin x. 

SUMS ~N~ PRODUC!S . T?e derivative of a sum of functions is equal to the sum of 
the denvatIves of the mdIvIdual functions. Consider the function 

f(x) = g(x) + hex) 

The derivative of this function is the sum of the derivatives of the individual terms. 

df(x) = dg(x) + dh(x) 
dx dx dx 
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f(x) = g(x) X h(x) 

We can rewrite Equation (A.19) as 

. [ df(X)] 
lim f(x + Llx) = hm f(x) = Llx d 
ax~o ax~o x 

(A.20) 

and show that 

d[g(x) X h(x)] = lim g(x + Llx)h(x : Llx) - g(x)h(x) 
dx ax~o x 

= lim _1 {[g(X) + Llx dg(X)] [h(X) + Llx d~~)]_ g(X)h(X)} 
ax~o Llx dx 

=g(x)dh(x) + h(x)dg(x) 
dx dx 

FUNCTIONS OF FUNCTIONS If the functionf(x) can be expressed as a function 

of a function g(x) of x, 

f(x) = f[g(x)] 

the derivative offix) with respect to x can be expressed in t~rms of the derivative.of 
g(x) with respect to x. If we expand the definition ~f EquatlOn (A.19) for ~he denv­
ative, we can make use of the relationship of EquatlOn (A.20) to expand sull further. 

f[g(x) + Llx d~(X)] - f[g(x)] 
df(x) _ r x 
dx - axl~o Llx 

f[g(x)] + Llx ~ ¥1a -f[g(x)] 

lim Llx 
ax~o 

(A.2l) 

Example A.4 Iff(x) = (a - bX 3 )2, defin~ g(~) = a + bx 3 so thatf(x) = [g(X)]2. 
The first factor in Equation (A.2l) is the denvauve of a square, and the second factor 

is the derivative of a cubic polynomial. 

df(x) = 2g(x) = 2(a + bx3) 

dg(x) 

dg(x) = 3bx2 
dx 

r..HF.R_ORnF.R nRRTVATTVRS Hi Qher-order derivatives are defined as deriva-

Numerical Methods 225 

d
2
f(x) ==!{ [df(X)] 

dx2 dx dx 

For the nth-order derivative dnf(x)ldx n
, we simply take the derivative n times in 

succession. For example, iff(x) = X4 as in Example A.2, the second derivative is 
12x 2• Similarly, the fourth derivative of either sin x or cos x is equal to itself. 

PARTIAL DERIVATIVES If the functionf(x, y) is dependent on two variables x and 
y, we must define derivatives of the function with respect to each of the independent 
variables. To determine the partial derivative offwith respect to x, af/ax, we con­
sider that y is a constant and proceed as we would for an ordinary derivative. Simi­
larly, to determine the partial derivative af/ay we consider that x is constant. 

af(x, y) ==' lim f(x + Llx, y) - f(x, y) = df(x) 
ax ax~o Llx dx 

af(x, y) lim f(x, y + Lly) - f(x, y) = df(y) 
ay ay~o Lly dy 

Higher-order partial derivatives include not only higher-order derivatives with 
respect to one variable, but also cross-partial derivatives with respect to two or more 
variables simultaneously. 

a2f(x, y) == ~ [af(x, y)] 
ax2 ax ax 

a2f(x, y) == ~ [af(x, y)] = ~ [af(x, y)] = a
2
f(x, y) 

ax ay ax a yay ax ay ax 

MINIMA AND MAXIMA A functionf(x) is said to have a local minimum at x = Xmin 
if the values of f(x min ± Llx) are larger than the value of f(xmin) for infinitesimal 
changes Llx about xmin' Similarly, the function has a local maximum if the values of 
f(x max ± Llx) are smaller thanf(x maJ. At either a minimum or a maximum of a func­
tion, the derivative of the function is zero, 

df(xm) = 0 
dx 

corresponding to a tangent that is parallel to the x-axis. 
The question of whether the function is a minimum or a maximum at Xm can 

be resolved by examining the second derivative. If the second derivative is positive, 
the curvature of the function is upward andf(xm ) is a minimum. If the second de­
rivative is negative, the f(x m) is a maximum. 

FUNCTIONS OF MORE THAN ONE VARIABLE With functions of more than one 
variable, for examDle {(x. v). we ciln ~ti11 ron "ir/PT thp fnn£'t'r.n tA hn"o n ~;-;- .• -
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Integration 
Integration is the inverse of differentiation. To find the integral F(x) of the func­

tionf(x), 

F(x) = ff(x)dx 

.' dF(x) 
we must fllld a functIOn F(x) such that -----;];- = f(x). 

However, this definition is not unique. An undetermined constant must be added to 
the solution to allow for the fact that the derivative of a constant is zero. 

Example A.S Consider the integral of the function f(x) = x 3. We observe that 
F(x) = x4/4 is a solution: 

dF(x) = d(x
4
/4) = x3 = f(x) 

dx dx 

However, F(x) = x4/4 + C is also a solution, where C is any quantity that is not 
a function of x. Thus, the solution to an indefinite integral must include an added 

constant. 

A definite integral is the integral of a function between two specific values of 

the independent variable, and is written 

/= ff(X)dX 

To find the definite integral of a function, we integrate it, calculate the value of the 
integral at x = b and at x = a, and find the difference between the two values. This 
is equivalent to calculating the area under the functionf(x) between the two limits 

a and b. 

Example A.6 Consider the integral of the function f(x) = x 3 between the limits 
x = 1.0 and x = 2.0. 

1= . f(x)dx = x3dx = x4/4 = [24 - 14]/4 = 15/4 f 
2 0 f 2.0 \2.0 

1.0 1.0 1.0 

Note that a definite integral is not a function of variable of integration x. 

From the results of Example A.3, 

f sin x dx = - cos x + C and f cos x dx = sin x + C 

A.3. NUMERICAL DIFFERENTIATION 
AND INTEGRATION 

'th thp. intpmollltion exnressions discussed in Section A.I. it is relatively straight-
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Differentiation 

We can differentiate Equation (A. 18) to find approximations for the derivatives of 
the functionf(x). We obtain 

dP,,(x) 1 dP(x) 
-;;;- = h do. = [,:If(xo) + (20. - 1),:l2f(xo)/2! 

+ (30. 2 
- 60. + 2),:l3f(xo)/3! + .. ']/h 

(A. 22) 

and 

We sho~ld note that the use of forward differences introduces an asymmetry in the 
calcu~atlOn. For a g~neral solution, we could replace the forward differences by cen" ' 
tral ?Ifferences, WhICh are taken symmetrically about a central starting point. For a 
partIcular proble~, we can usually arrange the expansion to provide reasonable 
s.ymmetry of the dIfferences about the point of interest. Thus, we can replace Equa­
tIons (A.22) and (A.23) by 

d~;X) = ,:If(xo)/h = f(x + h/2) ~ f(x - h/2) (A. 24) 

and 

d
2
P"(x) = ,:l2f(x )/h2 = f(x + h) - 2f(x) + f(x - h) 

dx2 0 h 2 (A.2S) 

Integration 

!ntegr~ting Equation (A. 1 ~) leads to expressions for calculating the numerical integral 
I? VarIOUS orders, ?ependlllg on the number of terms in the polynomial approxima­
tIO? Ther~ are VarIOUS forms for each order, depending on how we choose the limits 
of lllte~ratIOn. We quote three of the most useful forms with the remainder estimates. 

FIrst-order, endpoint trapezoidal 

iX' h h3 

f(x) dx = -2 [J(xo) + f(x j)] - - f(2)(~) 
Xo 12 

(first-order closed-end trapezoidal) 

tf(x) dx = 2hf(xj) + ~3 f2)(~) (first-order open end) 

Ix, h h5 

f(x) dx = -3 [J(xo) + 4f(Xl) + f(X2)] - - f(4)(~) 
Xo 90 

(second-order closed-end Simpson's rule) 
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Note the large reduction on the error estimate in going from either of the first-order 
approximations to the second-order approximation. 

For an integral over an extended range of x, it is usually advisable to employ 
a series of first- or second-order integrals over sections of the function, rather than 
to attempt to fit a large region with a higher-order function. In fact, it can be shown 
that the gain in accuracy in going from a second- to a third-order numerical integral 
is relatively small, and, for the same number of calculations of the ordinate Yj' the 
second-order Simpson rule may be more accurate than the third-order form. This re­
lation applies in general to even and odd orders, so that, to make a significant im­
provement in the numerical integration of a function, one should advance to the 
next higher even order. 

Thus, to find the integral by Simpson's rule of f(x) over an extended range 
between x = Xo and x = Xm we divide the region into n equal intervals in x, with 
nh = (x n - xo), to obtain 

Ix/(x) dx = ~ [J(xo) + 4f(Xl) + 2f(:xz) + 4f(X3) + ... 
Xo 3 

_ )] _ nh 5 (4)() + 4f(Xn-l) - f(xn 180 f ~ (A. 26) 

where ~ is the value of x somewhere in the range of integration. 

Program A.I 5 I M PSO N (Appendix E) calculates an extended integral by the 
second-order approximation of Equation (A.26). See Programs 11.1 and 11.2 for ex­
amples of the use of this routine. 

The user supplies four arguments: 
1. FUN CT: the name of the function to be integrated. The function must have one 
real argument. If other arguments are required, they must be made accessible to the 
function as global variables. 
2. N I NT: the number of double intervals. The interval is calculated as ox = 

(H I LI M-LOLI M)\(2 *N I NT); 
3. LoLIM and 
4. HILI M: the integration limits. 

A.4 CUBIC SPLINES 

If we attempt to represent by an nth-degree polynomial a function that is tabulated 
at n + 1 points, we are apt to obtain disappointing results if n is large. The poly­
nomial will necessarily coincide with the data points, but may exhibit large oscilla­
tions between points. In addition, if there are many data points, the calculations can 
become rather cumbersome. It is often better to make several low-order polynomial 
fits to separate regions of the function, and this procedure is usually satisfactory for 
simple interpolation in tables. However, if we want a smooth function, which passes 
through the data points, the results may not be satisfactory. 

SUDDose we have calculated a function at n + 1 points, and want to represent 

Numerical Methods 229 

the plot. It is unlikely that they will combine to form a smooth curve. What do we 
~o ~lOw? Reac? for our p~n~i~ and trusty drafting spline? No, we call up our spline 
fIttmg subroutIne and let It Jom up the separate fits for us. 

Spline fitting procedures have other uses besides plotting pretty curves on 
graphs, but the plotting function is of interest to us and is easily illustrated. Suppose 
we c?~ose to make a series of cubic fits to successive groups of data points. What 
CO~dItIOnS d0 we ne~d to produce a smooth curve that passes through the data 
POInts? We want the fIrst and second derivatives, as well as the function itself, to be 
conti~uous at the data points. Suppose we consider a separate cubic polynomial for 
ea~h Interval on th~ graph, or a total of n polynomials for the n + 1 points. Then we 
~nte the polynomIa~ eq~ation, take derivatives, and, at each data point, equate the 
fIrst and second denvatIves of the left-side polynomial to those of the right-side 
polynomial. 

Foll~wing the met~od ~iscussed in Thompson (1984), we begin by writing the" 
Taylor senes for the CUbIC polynomial for interval i, expanded about the point Xi 

y(x) = y(xJ + (x - xJ d~~J + (x - xy ddx~xJ /2! 
+ (x - xY ddx~J/3! (A.27) 

where the function and derivatives are evaluated at Xi. This can be written in a more 
concise form as 

y(x) = Yi + (x - xi)Y; + (x - xJ2 y ;'/2 

+ (x - XY(Y;'t-l - yT)/6h (A.28) 

where Y; and y7 stand for the first and second derivatives evaluated at x = x. and 
the third derivative has been replaced by its divided difference form, which i~ ex­
act for a cubic function. At x = Xi' we have Y = Yi' as required. We can also set 
x = xi+ 1 = Xi + h and solve the equation 

Y(Xi+l)=Yi+(Xi+l-Xi)Y;+(Xi+1 -x..)2y;'/2 

+ (Xi + 1 - XY(Y7+1 + yT)/6h (A. 29) 
to obtain 

Yi+l - Yi = hy; + h2[2y7 + Y;'t-l]/6 (A.3D) 

We repeat the calculation, using the equation for y(x) in interval i-I [i.e., we 
replace i by i-I in Equation (A.29)], 

y(x) = Yi-l + (x - Xi-l)Y;-1 + (x - Xi-l)2y;'-/2 

+ (x - Xi- 1)3(y7 - Y;-I)/6h 

and again require that y(x) = Y(Xi) at the ith data point and obtain 

Yi - Yi-l = hY;-1 + h2[2Y:~1 + y;']/6 

(A.31) 

(A. 32) 
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y'(x) = Y; + (x - xJy;' + (x - xY(y7+1 - y7)/2h (A.33) 

which we equate to the first derivative in the interval i-I at the position x = Xi' to 

obtain 

y; - Y;-l = h[y';+ y7-1J/2 (A. 34) 

Similarly, equating the derivatives at the boundary x = Xi + 1 gives 

, , - h[y" "J/2 Yi+l - Yi - i+1Yi (A.35) 

(Repeating the procedure with the second derivative leads to an identity, .be~ause 
our use of the divided difference form for the third derivative assures .con~mUlty of 
the second derivative across the boundaries.) Eliminating the first denvatIves from 
Equations (A.30), (A.32), (A.34), and (A.35) gives us the spline equation 

(A.36) 

with 

Di = Y[Yi+l - 2Yi + Yi-l]lh2 (A.37) 

Note that the Di are proportional to the second differences of the ta~ulated d~ta and 
are all known. We can write Equation (A.36) as a set of linear equatIOns relatIng the 
unknown variables y", beginning with i = 2 and ending with i = n - 1: 

y';+4y~+ y:l 

Y:; + 4y'~ + Y:; 
=D2 (A.38a) 

(A.38b) 

Y~-3 + 4Y~-2 + Y~-l = Dn - 2 (A.38c) 

Y~-2 + 4Y~_1 + y~ = D n - I (A.38d) 

These equations can be solved for the second derivatives Y ':'. as ~ong as we 
know the values of y'; and y~. One possibility is to set the second de~va~lves ~o 0 to 
obtain natural splines. Alternatively, we may use the true second denvatIves, If they 
are known or a numerical approximation. 

For ;xample, suppose we have only four points to consider. Then, if we know 
y'; and Y:;, we can solve the simultaneous Equations (A.38a) a~d (A.38~) for Y2 and 
Y3' Similarly, if we have a full set of n equations, we can rewnte .Eq~atIOn (A.3~a) 
to express Y" = (D - y'; - y:l)/4, and substitute this expressIOn mto EquatIOn 

2 2 1" "f th t (A.38b) to eliminate y~. Then, we repeat the procedure to e nmnate ~3 rom. e ne~ 
equation. We continue this procedure until we reach the last equatIOn, WhICh wIll 
contain only terms in y';, y~ _ I, and y~. Because y'; andy ~ ~e known,.w.e can solve 
this equation for Y ~ _ 1, and then work back down the cham determmmg s~cces­
sively y~ _ 2' y~ _ 3' and so forth, until we reach Equation (A.38a) from ,;;hICh we 
determine the last unknown y:;. Once we have found the values of the Y i' we can 
find the Y: from Equation (A.30) or (A.32), and use Equation (A.28) to interpolate 

in each interval. 
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An interesting alternative method of solving the set of simultaneous equa­
tions, Equations (A.38), is to set them up in a spreadsheet program. Then, when the 
boundary values y'; and y';, are supplied, the program will readjust the variables un­
til they stabilize at the solutions to Equations (A.38). Although this method is not 
very practical for graphical applications where we want to build the solution into 
our plotting program, it does provide a quick way of finding the second derivatives 
and an interesting illustration of the solution. 

As with all techniques, a certain amount of care must be exercised in using 
spline routines. The choice of a second derivative at the boundary may have an im­
portant effect on the interpolation at the ends of the function, and a wrong choice, 
for example, can produce undesirable shapes at the edges of a plot. Then too, al­
though the spline routine assures a smooth variation between the data points, with 
continuity of the function and first and second derivative across the points, it cannot 
guarantee that there will be no peculiar oscillation between the points. 

ProgramA.2 SPLINE INTERPOLATION (AppendixE) 
SPLI N EMAKE numerically calculates a table of second derivatives for a spline in­
terpolation by the method discussed in the previous paragraphs. 
S P LI N E I NT performs the interpolation. For simplicity, we have chosen to store 
only the second derivatives and to calculate the first and third derivatives as needed in 
functions 0 1 yoX 1 and D3yox3. If speed is important, the derivatives could be 
computed and stored in arrays. 

A spline interpolation routine is especially useful for plotting curves on graphs. 
The routine has been used to produce many of the graphs in this book. 

A.S ROOTS OF NONLINEAR EQUATIONS 

Finding roots of nonlinear equations is essentially the reverse of an interpolation 
problem. When we interpolate a function, our object is to find a value of the depen­
dent variable y at a specific value of the independent variable x. When we are 
searching for the root of a function, we are trying to find the value of x at a particu­
lar value, usually 0, of y. However, interchanging the variables completely changes 
the nature of the problem. Interpolation involves straightforward application of 
well-defined equations that are independent of the form of the original function: 
Finding roots of nonlinear equations may require different equations for different 
problems and almost always requires some sort of a search and iteration procedure. 

The diffraction of light by a single slit provides an interesting example of a 
nonlinear equation. It is well known that the position of the interference maxima 
and minima from double slits and diffraction gratings can be determined analyti­
cally from consideration of the phase difference between the rays that pass 
through each slit, but only the minima of the diffraction pattern of a single slit can 
be found in this way. To find the position of a maximum, with the exception of the 
central one, we must differentiate the expression for the intensity with respect to 
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In Equation (A.39), 10 is the intensity of the light at the central maximum (9 = 0),1 
is the intensity at angle 9, "A is the wavelength of the light, and a is the slit width. 
The position of the maximum is given by solving 

dl (Sin ex) . dex = 2I 0 "7 (ex cos ex - sm ex) = 0 (A.40) 

to obtain the value ex r at the root of the equation 

f(ex) = ex r - tan ex r = 0 (A.41) 

The first root is at exr = O. The other roots cannot be calculated analytically and 
must be found by an iterative method. An approximate solution can be obtained by 
rewriting Equation (A.4l) as 

ex r = tan ex r (A.42) 

and plotting separately the left and right sides to find the intersection of the straight 
line and the tangent curves. There are several mathematical ways to solve the prob­
lem, but making a plot of the function is always a good starting procedure. 

Trial-and-Error: The Half-Interval Method 

With a personal computer, trial-and-error may be a suitable method for solving the 
occasional root finding problem. An orderly approach is advisable and the half­
interval method is convenient. The procedure is to write a little program that re­
quests a trial value of the root and calculates the function and displays its value. The 
initial trial value might be obtained from a graph, or perhaps by mapping the func­
tion for various values of the independent variable x, until a reasonable estimate of 
the root has been obtained. Then, a second trial x is submitted, which produces a 
value of Y on the other side of the root. The half-interval method begins at this point. 
The procedure is to select a third trial value that is midway between the two that 
bracket the root. For the fourth trial value, we use the mean of the most recent value, 
and whichever of the two previous trials was on the other side of the root. The 
process continues until the root is found to the desired accuracy. 

This rather primitive method of root finding could be improved with a little 
programming to let the program decide which root to choose, to calculate the mean, 
and perform the next trial. The program could proceed in a loop until the root had 
been found to a predefined degree of accuracy, or the calculation could be stopped 
manually. However, if we are willing to program that little bit of logic, slightly more 
effort will produce a much faster root-finding program. 

Secant Methods 

The gain in speed comes from using the slope of the function in the calculation. We 
begin with two trial estimates of the root, Xk and Xk + 1, preferably, but not necessar-
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f(x) = Yk + (x - Xk) (Yk+1 - Yk) 
(xk+ 1 - Xk) 

(A.43) 

",,:here we have wr~tten. Yk = f(Xk) and so forth. Setting f(x) = 0 and solving for x 
gIves us an approXImatIOn to the value of x at the root: 

x = Xk - Yk Xk+1 - xk = XkYk+1 - Xk+IYk 
Yk+1 - Yk Yk+1 - Yk 

(A.44) 

For the next trial, we r~place Xk+1 or Xk+2 by the value x found in Equation (A.44) 
and repeat the calculat~on. Th~ p.rocess can be repeated until the root is approxi­
mated as closely as deSIred. ThIS IS the first-order secant method. 

There are various ways of choosing which of the previous values of x (x or 
Xk + I). to keep for the next iteration. The simplest is to keep the most recent va\ue 
a.nd dI~card the older value. ~nother way is to choose whichever is closer to the root, 
[l.e., gIves a smaller value of.f{x)]. A third is to start the process with two values that 
straddle the root (i.e., give opposite signs for YI and Yz) and to continue to choose 
values that straddle the root after each iteration. This is the Regulo-Falsi method. 

Clearly any me~hod .wi~l find the root most quickly if the starting values are 
close to the ~oot, but, m pnnciple, the secant methods will almost always find a root 
of th~ functIOn, eventually. With some functions, such as those that are antisym­
metnc about the root, there is the possibility that the search by the Regulo-Falsi 
~etho~,. for example, will jump back and forth across the root and never approach 
It. AddItIonally, for functions with several roots, we may not always find the one we 
want. Problems may also arise if two roots are very close together. 

Newton-Raphson Method 

Instead of calculating the slope by finite differences, as in the secant method we 
could use the tangent, or derivative of the function, if it can be calculated. Then: we 
can replace Equation (A.43) by 

f(x) = Yk + (x - x) df(Xk) 
k dx (A.45) 

~here Xk and Yk are the values of x andf(x) after the kth iteration. We find the next es­
tImate Xk+ 1 for the root, as before, by settingf(x) in Equation (A.45) to zero to obtain 

_ . df(Xk) 
Xk+ 1 - Xk - Yk --:- -;;;- (A.46) 

Example A.7 Table A.3 shows steps in an iterative calculation of the second and 
third roots of Equation (A.41) by the secant and Newton-Raphson methods. Starting 
values were chosen by examining a plot of tan x versus x. 

Simultaneous Nonlinear Equations 
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TABLEA.3 
Determination of the first two nonzero roots of a = tan a 

First root Second root 

Trial x 

0 4.40000 
4.53598 

2 4.50186 
3 4.49375 
4 4.49341 
5 4.49341 

0 4.40000 
0 4.50000 
1 4.49047 
2 4.49332 
3 4.49341 
4 4.49341 
5 

y 

(a) Newton's Methodt 

1.30368 
-1.07376 
-0.17769 
-0.00679 
-0.00001 
-0.00000 

(b) Secant Method:j: 

1.30368 
-0.13733 

0.05854 
0.00184 

-000003 
0.00000 

x 

7.70000 
7.73028 
7.72545 
7.72525 
7.72525 

7.80000 
7.70000 
7.71051 
7.72819 
7.72491 
7.72524 
7.72525 

tThe calculation continues without assistance after the initial trial value has been selected 

y 

1.25713 
-0.31270 
-0.01188 
-0.00002 
-0.00000 

-10.70682 
1.25713 
0.78849 

-0.17931 
0.02025 
0.00047 

-0.00000 

:j:Two x, y pairs are required for each stage of the calculation. After the first trial, the most recently calculated x, y pair 
was used with whichever of the two previous pairs was closer to the root. 

solve for the parameters a and b. We used the secant method to solve these 
equations. 

Consider the two equations 

Ia(U, v) = 0 and fb(U, v) = 0 (A.47) 

(A.48) 

and, following Equation (A.43), write for a first-order expansion 
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Ifwe assume thatla andfb are linear in U and v, we can find a first approximation to 
the roots by settingla(u, v) andfb(u, v) to zero in Equation (A.49) and solving the 
two coupled linear equations for U and v: 

ulau + vlav - uolau - vofav + fa(uo, vo) = 0 
Ufbu + vfbv - uofbu - vofbv + fb(uo, vo) = 0 

Solution by the determinant method gives 

and 

with 

U2 = u = (Afbv - Blav)ID 

V2 = v = (Bfau - Afbu)ID 

D = laJbv - favfbu 

A;= -uofau - vofav + fiuo, vo) 

B = -UOfbu - VOfbv + fb(UO, vo) 

(A50) 

(A51) 

(A52) , 

We then repeat the procedure with coordinate pairs (Ub VI) and (Ub vz), to obtain the 
next approximation, until the roots have been found to the desired degree of accuracy. 

A.6 DATA SMOOTHING 

The concept of smoothing is not one that meets with universal approval. The dis­
cussion that follows should be considered with one caveat: For rigorously valid 
least-squares fitting, smoothing is neither desirable nor permissible; however, there 
are cases where smoothing can be beneficial, and, therefore, the techniques are 
introduced. 

Consider, for example, the discussion of Section 9.2 of the determination of 
the area under a peak from a least-squares fit to a histogram of the data. Least­
squares fitting techniques applied to data that are distributed according to Poisson 
distributions, rather than Gaussian distributions, underestimate the area of a peak by 
an amount equal to the value of X2

• We have seen that we can improve the result by 
decreasing the value of X2 at its minimum. Similarly, if the shape of the fitting func­
tion does not exactly simulate that of the parent distribution, a better fit to the data 
by decreasing X2 can yield an improved estimate of the area under a peak. 

Another example that might benefit from application of a smoothing algo­
rithm is the parameterization of data for use in a Monte Carlo or other program. In 
preparing experimental proposals, it is often necessary to estimate yields and distri­
butions based on currently available data. Such data are often sparse and generally 
must be expressed in parametric form for ease and speed of use in the Monte Carlo 
simulation program. Smoothing can be useful to average out fluctuations and allow 
the data to be expressed with a few parameters by a least-squares fit or an interpo­
lation procedure. 

In other words, if rigorously valid results are not required, but rather an aver­
aged estimate of the distribution, smoothing mav helD 0 
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For example, an improved estimate of the area under a peak would be accompanied 
by an increased uncertainty in the estimates of the width and position of the peak. 

Whatever smoothing or other manipulation is done must conserve the infor­
mation pertaining to the desired parameters. The averaging techniques that we shall 
discuss, for example, conserve the area under a peak but not the width of the peak 
Similarly, this method would be useful for improving the estimate of the constant 
term of a polynomial but not the coefficients of the other terms. 

Data smoothing is similar to the data "smearing" introduced in Chapter 5 to 
simulate measuring uncertainties in "measurements" generated by a Monte Carlo 
program. In the Monte Carlo program we used Gaussian smearing; that is, we al­
lowed each event a Gaussian probability distribution about its mean. 

In this section, we are dealing with binned data, and thus, for Gaussian 
smoothing, could consider a Gaussian integration that spreads each event over ad­
jacent bins. Because our object here is to smooth the data, we are at liberty to 
choose the width of the smearing function to produce the desired degree of unifor­
mity in the data, limited by the requirement that we do not damage the very variable 
we are trying to study. 

The binomial distribution is a useful smoothing function. Suppose we want to 
smooth low statistics experimental data that follow a Gaussian peak in a way that 
preserves the area under the peak. Let us assume that the background slope is gen­
tle enough that smoothing will not affect its determination drastically. 

We can approximate the Gaussian peak with a binomial distribution with p = 1;1 

(see Section 2.1): 

1 _ (x - JL)2 (l)n n! 
y(x) = 0"yi2; e 1/2 -0"- = 2: X!(n - X)! 

We can relate the widths 0" and the means of the two distributions 

0"~=np(l-p)=n/4=0"2 X=np=n/2 X=JL 

to find the relationships among the parameters 

n = 40"2 X = X - JL + n/2 = x - JL + 20"2 

We can then express the binomial distribution of Equation (A.53) as 

y(x) = G Y(n/2 + x - JL)~~n/2 - x + JL)! 

(A.53) 

(A54) 

(A.55) 

(A.56) 

Let us smooth the data by averaging over adjacent channels with a binomial 
distribution spanning three channels: 

y'(x) = 1/4y(x - 1) + 1/2y(x) + 1/4y(x + 1) (A.57) 

If we fold this averaging into the distribution of Equation (A.53), the result is also 
binomial: 
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The new distribution has the same mean x = JL but a larger width 0"'2 = n' /4 = 
(n + 2)/4 with the variance increased by 1;1: 

(A.59) 

~imilarly, we could smooth over five channels by using a formula similar to 
EquatIOn (A.57) but with five terms with coefficients given by the binomial expansion 

y"(x) = 1/16y(x - 2) + 1/4y(x - 1) + 3/8y(x) 
+ 1/4y(x+ 1)+ 1/16y(x+2) (A.60) 

A five-channel. smoothing is identical to two successive smoothings over three 
channels an~ YIelds a variance t~at is increased accordingly, 0""2 = 0"2 + 1. Any 
such smoothmgs over 2n + 1 adjacent channels is equivalent to n smoothings over 
three channels. 

If we apply the smoothing of Equation (A.57) to a Gaussian distribution the­
re~ulting distrib~tion .wi~l al~o be nearly Gaussian because the shapes of the bino­
mIal an.d GaussIan dlstn~u~lOns are n~arly alike. In fact, if we are applying the 
smoothmg because the ongmal sh~pe IS not Gaussian enough, the averaging may 
m~ke the ~hape more ~early GaUSSIan. If we apply binomial smoothing to a distrib­
utIOn that IS not GaUSSIan, we should be aware that we are distorting the shape of the 
peak and making it more Gaussian. 

~f the width of the original Gaussian is not too small (0" > 1), the increase of 
E~uatIOn (A.59) should not be drastic because the addition is in quadrature. For a 
w~dth ?" = 2, for example, the new width 0"' = 2 is only 5% larger. If the original 
WIdth IS very s~all (0" < 1), the approximation of Equation (A.53) is not valid be­
cause the C?aus~Ian and binomial distributions are only similar in the limits of large 
n. A GaUSSIan fIt to the data without smoothing would not be valid either however 
?ec~use t~e pa~ame~ers ~f t~e fi.t are only meaningful if 0" ;::::: 1. Because the averag~ 
~ng I~self IS a bmo~al ~lst:lbu~IOn, the result is still expected to be a better approx­
ImatIon to a Gaus~Ian ~Istnb~tlOn than the original data. For a smoothing over three 
channels, a GaUSSIan fIt reqUIres 0" ;::::: VV2 for the original data. 
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B 
MATRICES 

B.1 DETERMINANTS 

In applying the method of least squares to both linea: and. nonlinear functio~s, .we 
required the solution of a set of n simultaneous equatIOns III n unknowns ai snmlar 
to the following: 

Yl = alXll + a2 X 12 + a3 X 13 

Y2 = a]X2] + a2 Xn + a3 X23 

Y3 = a j X3l + a2 X32 + a3 X33 

(B.l) 

where the constants y. and x.. are known quantities calculated from the data. 
The symmetry ~f the right-hand side suggests that we write elements of the 

equations in a two-dimensional array 

(B.2) 

and separate the other terms and coefficients into one-dimensional arrays. 

and (B.3) 

Such arrays are called matrices, and we can write Equations (B.l) in matrix 
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Alternatively, because in our problems the matrix (Y is always symmetric, that is, the 
element (Xij is equal to the element (Xji' we can write the matrices a and (3 as row 
matrices 

a = [al a2 a3J 

and express Equation (B.l) as 

and 

(3=a·(Y 

(B.5) 

(B.6) 

We shall be concerned primarily with linear one-dimensional matrices and 
with symmetric square two-dimensional matrices that have the same number of 
rows and columns and are mirror-symmetric about the diagonal. Consider a square 
matrix A: 

All Al2 Alk A]n 
A2J A22 A2k A2n 

A= 
Aj] Aj2 Ajk Ajn 

(B.7) 

An] An2 Ank Ann 

The degree of the matrix A is the number n of rows and columns; the jkth el­
ement (or component) of the matrix is Ajk; the diagonal terms are Ajj. If the matrix is 
diagonally symmetric, Ajk = Atg and there are n2 elements but only n(n + 1)/2 dif­
ferent elements. 

Matrix Algebra 

If A and B are two square symmetric matrices of degree n, then their sum S is a 
square symmetric matrix of degree n with elements that are the sums of the corre­
sponding elements of the two matrices 

A+B=S (B.8) 

The product P of the matrices A and B is a square matrix of degree n, with el­
ements determined in the following way: 

n 

AB=P IJk = 2: (AjmBmk) (B.9) 
m=] 

The elements of the jth row of A are multiplied by the elements of the kth column 
of B and the products are summed to obtain the jkth element of P. In general, the 
matrix P wiII not be symmetric. 

If a is a linear onf':-riimf'.n"ion,:,1 m<ltr;Y thp nr"rl""t "f' A ~~rI ~:n ~_1" ... ~1l ...I~ 
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(B.lO) 

Ani Ann an cn 

If a is a row matrix, it must multiply the square matrix on the left to yield another 

row matrix r. 

All A ln 

[al ... aj ... an] Ajl Ajk Ajn 

Ani Ann 
n 

= [rl ... rk ... rn] rj = ~ (ajAjk) (B.ll) 
j~1 

The product of two linear matrices depends .on th.e order of multiplication: The 
product of a row matrix a times a column matnx b 1S a ~calar. If ~he order 1S r~­
versed, the result is a square matrix that is diagonal; that 1S, for wh1ch only the d1-
agonal terms are nonzero: 

Determinants 

The determinant of a square matrix is defined in terms of its algebra: The or~er of 
the determinant of a square matrix is equal to the degree n of the matnx. In th1s sec­
tion, we shall mainly use determinants of order 3 as examples, altho~gh, u~less oth­
erwise specified, the comments apply to matrices of all orders. MampulatlOn of the 
rows may be substituted for columns throughout. 

1. The determinant of the unity matrix is I where the unity matrix is defined as the 
diagonal matrix with all diagonal elements equal to I: 
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2. If a column matrix of degree n is added to one column of a square matrix of de­
gree n, the determinant of the result is the sum of the determinant of the origi­
nal square matrix plus that of another square matrix obtained by substituting the 
column matrix for the modified column: 

All + al AJ2 Al3 All AI2 Al3 al AI2 Al3 
. A21 + a2 A22 A23 = A2J A22 A23 + a2 A22 A23 (B.14) 
A31 + a3 A32 A33 A3l A32 A33 a3 A32 A33 

3. If one column of a square matrix is multiplied by a scalar, the determinant of 
the result is the product of the scalar and the determinant of the original matrix: 

CAli Al2 Al3 All AI2 Al3 
CA2l A22 A23 =c A2l A22 A23 (B.I5) 
CA31 · A32 A33 A3l A32 A33 

4. If two columns of a square matrix are interchanged, the determinant retains the 
same magnitude but changes sign: 

AJ2 All Al3 All AJ2 Al3 
A22 A2J A23 = - A2J A22 A23 (B.16) 

5. The minor Ajk of an elementAjk of a square matrix of degree n is defined as the 
determinant of the square matrix of degree n - I formed by removing the jth 
row and the kth column: 

All Al2 Al3 
A = A2J A22 A23 

A31 A32 A33 

(B.17) 

6. The cofactor cof(Ajk) of an element Ajk of a square matrix of degree n is defined 
as the product of the minor and a phase factor: 

(B.I8) 

7. With the preceding definitions 5 and 6, the determinant of a square matrix of 
degree n can be expressed in terms of cofactors of minors: 

IAI = ± [Ajkcof(Ajk)] = ± [(-I)j+kAjkAjk] 
k~1 k~1 

(B.19) 

Equation (B.19) is an iterative definition, because the cofactor is itself a deter­
minant. The determinant of a matrix of degree 1, however, is equal to the single 
element of that matrix. The determinant of a square matrix of degree 2 is en­
countered often enough to make its explicit formula useful: 

ill ,,"\ 
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(B.2I) 

Computation 

Matrix computation is generally simpler if we can manipulate matrices into diago­
nal form in which only the diagonal elements Ajj are nonzero. The determinant of a 
diagonal matrix is equal to the product of all the diagonal elements and the trace is 

their sum: 
n 

I A diag I = II Ajj 
j=1 

(B.22) 

If we combine rules 2, 3, and 4 of the algebra for determinants, we can show 
that the determinant of a matrix is unchanged if the elements of any column, multi­
plied by an arbitrary scalar, are added to the elements of any other column. The de­
terminant of the sum is equal to the sum of the two determinants, but one of these 
determinants has two identical columns except for a scalar factor that may be ex­
tracted, and is therefore equal to 0: 

All + cA\2 AI2 Al3 All A\2 Al3 AJ2 AJ2 Al3 
A21 + cA22 A22 A23 = A21 A22 A23 +c A22 A22 A23 (B.23) 

A31 + cA32 A32 A33 A31 A32 A33 A32 A32 A33 

=IAI 
Thus, it is possible to eliminate all elements except one from a row by suc­

cessively subtracting one column, appropriately scaled, from each of the others. For 
example, if we perform the subtraction 

A.I 
A"k = A.k - AI' _J_ 

] ] ] All 
(B.24) 

on each row except the first, we eliminate all elements of the first column except A II 
to obtain 

All AI2 Al3 
X = 0 A22 A23 

o A~12 A'33 

(B.2S) 

Similarly, if we subsequently start with element A;2 and subtract an appropri­
ately scaled second row from the rest of the rows, 

A}k = Ajk - A'2k Ajkl A;2 (B.26) 

all the elements of the second column vanish except A;2: 

IAll 0 A';31 
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Note that A;2 is not the original value A22, but is modified as a result of the first 
subtraction. 

By successively subtracting rows (or columns) scaled to their diagonal ele­
ments, we can produce a matrix that is diagonal. In practice, it is sufficient to elim­
inate only half of the nondiagonal elements so that all elements on one side of a 
diagonal are 0: 

All 0 0 All AI2 Al3 All 0 0 
A= A2J A22 0 0 A22 A 23 0 A22 0 

A31 A32 A33 0 0 A33 0 0 A33 
= AllA22A 33 

(B.28) 

B.2 SOLUTION OF SIMULTANEOUS 
EQUATIONS BY DETERMINANTS 

Consider ~he following set ofthree equations in three coefficients ai' a2, and a3. We 
shall consIder the Yk and Xjk to be known quantities; that is, constants: 

YI = alXll + a2X I2 + a3X 13 

Y2 = a lX 21 + a2X 22 + a3X 23 

Y3 = a l X 31 + a2X 32 + a3 X 33 

(B.29) 

Let us consider the set of equations as if they were one matrix equation as in 
Equation (B.IO): 

[
YI] _ [XII XI2 

X13] [a l
] Y2 - X2J X22 X23 a2 

Y3 X31 X32 X33 a3 

(B.30) 

with a and y represented by linear matrices and X represented by a square matrix. If 
w.e multiply t.he first equation of Equations (B.29) by the cofactor of XII in the ma­
tnx of EquatIOn (B.30), multiply the second equation by the cofactor of X and 

I · I 21> 
mu tIp y the third by the cofactor of X3 1> then the sum of the three equations is an 
equation involving determinants according to Equation (B.I8): 

YI X\2 Xl3 Xli X\2 Xl3 X\2 X\2 X\3 
Y2 X22 X23 =al X21 X22 X23 + a2 X22 X22 X23 
Y3 X32 X33 X31 X32 X33 X32 X32 X33 

X13 X12 X13 
+ a3 X23 X22 X23 (B.3l) 

X33 X32 X33 

The determinants in the two rightmost terms of Eauation rR.11) hoth vilni~h 
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X!2 X13 
X 22 X23 
X 32 X33 (B.32) 
X12 X13 

al = 
Xli 
X21 X 22 X23 
X31 X32 X33 

The denominator is the determinant of the square matrix X of Equat.ion. (B.30) and 
the numerator is the determinant of a matrix that is formed by substltutmg the col-
umn matrix Y for the first column of the X m~trix. . . . 

Similarly, Cramer's rule gives the solutIOn for. the] th coeffICIent aj of a set of 
n simultaneous equations as the ratio of two determmants: 

n 

Yk = L (ajXkj ) 
j=1 

IX'(j)1 
aj=lif 

k = l,n 

(B.33) 

The denominator is the determinant of the X matrix. The numerator IX'(j)1 is the 
determinant of the matrix formed by substituting the y matrix for the jth column .. 

A matrix is singular if its determinant is O. If the X matrix is singular, there IS 
no solution for Equation (B.33). For example, if two of the n simulta~eous equa­
tions are identical, except for a scale factor, there are really only n - Imde~endent 
simultaneous equations, and therefore no solution for the n u~knowns. In thIS case, 
the X matrix has two identical rows and therefore a 0 determmant. 

Solution by Matrix Equations 

Let us consider Equation (B.33) as if it were a matrix equation as in.Equatio~ 
(B.30). If the X matrix is square, we can consider the y.and a l~near ma.tnces as e~­
ther column matrices as in Equation (B.lO) or row matnces as m EquatIon (B.ll). 

[Yk] = [aJ[Xkj] (B.34) 

If we could multiply this matrix by another matrix X' such that the right-ha~d.side 
becomes just the linear matrix a, then we will hav~ ~ur soluti?n for the coeffICIents 
aj directly. The multiplication of matrices is aSSOCIatIve; that IS, 

A(BC) = (AB)C (B.35) 

Therefore, we require a matrix X' such that if it is multiplied by the matrix X, the 

result is the unity matrix: 

[XkJ [X kj ] = 1 (B.36) 

The matrix X' that satisfies Equation (B.36) is called the inverse matrix X-I 

Matrices 245 

(B.37) 

We can express Equation (B.37) in more conventional form to give the solution for 
each of the coefficients a/ 

n 

aj = L (Yk K ,,)) (B.38) 
k=1 

Thus, the solution for the n unknowns with n simultaneous equations is reduced to 
evaluating the elements of the inverse matrix X-I. 

B.3 MATRIX INVERSION 

The adjoint At of a matrix A is defined as the matrix obtained by substituting for 
each element Ajk the cofactor. of the transposed element Ak/ 

AJk = cof(Ak) (B.39) 

For a square symmetric matrix, the transposition makes no difference. 
The inverse matrix A -I defined in Equation (B.36) may be evaluated by di­

viding the adjoint matrix At by the determinant of A: 

At 
A-I-~ 

jk -IAI (B.40) 

To show that this equality holds, we multiply both sides of Equation (B.40) by 
IAIA. 

(B.41) 

Diagonal terms of the matrices in Equation (B.41) are equivalent to the formula of 
Equation (B.19) for evaluating the determinant: 

(B.42) 

Off-diagonal elements can be shown to vanish like those of the determinants of 
Equation (B.31). If the matrix A is singular (that is, if I A I = 0), the inverse matrix 
A-I does not exist and there is no solution to the matrix equation of Equation 
(B.34). 

Gauss-Jordan Elimination 

The formula of Equation (B.40) is generally too cumbersome for use in computing 
the inverse of a matrix. Instead, the Gauss-Jordan method of elimination is used to 
invert a matrix by building up the inverse matrix from a unity matrix while reduc­
ing the original matrix to unity. 
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and adding the same rows scaled to the same constants), the ratio ~emain~ unchang~d. 
If we perform the proper manipulation, we can change the denommator mto the umty 
matrix; the numerator must then become equal to the inverse matrix A -I. 

Let us write the 3 X 3 matrix A and the 3 X 3 unity matrix side by side and 
manipulate both to reduce the matrix A to the unity matrix. We start by using ~he 
formula of Equation (B.24) to eliminate the two off-diagonal elements of the fust 

column: 

[An A!2 An] [~ 
0 

~] A21 A22 A23 1 

A31 A32 A33 0 

All Al2 Al3 1 0 0 

A21 A21 _ A21 1 0 0 A22 -AI2A A23 -Al3A All 
11 11 

A31 A31 _ A21 0 1 0 A32 -A!2A A33 -Al3 A All II II 

Now, we divide the first row by All to get a diagonal element of 

1 

A21 A2] o A22 - Al2A- A23 - A!3 A 
II 11 

A31 A31 o A32 - A!2A- A33 - A!3 A 
11 11 

1 o 0 
AlI 

_A21 1 0 
AlI 

_ A21 0 1 
AlI 

(B.43) 

(B.44) 

The left matrix now has the proper first column. Let us relabel the matrices B 
(on the left) and B' (on the right) and perform the corresponding manipulations to 
obtain zeros in place of BI2 and B32, and then divide the second row by B22: 

Bl2 B' B' B!2 - BI2 0 
1 0 Bl3 - B23 B22 11 - 21 B22 B22 

(B.4S) B23 B"21 1 0 
B22 B22 B22 

o 1 

B32 B' B' B32 - B32 1 o 0 B33 - B23 -B 31 - 21 -B B 
22 22 22 

After similar manipulation of the third column, the matrix on the left becomes the 
unity matrix and that on the right, therefore, must be the inverse matrix. 

For computational purposes, even this method is somewhat inefficient in that 
two matrices must be manipulated throughout. Note, however, that at each stage of 
the reduction, there are only n (or three) useful columns of information in the two 
matrices. As each column is eliminated from the left matrix, the corresponding col-
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(B.43), but instead of applying this formula to the first column, we divide the first 
column by -All to get the first column on the right of Equation (B.43); the diago­
nal element must be divided twice to become llA ll. Divide the rest of the first row 
by A II to get the composite of the two matrices of Equation (B.44): 

1 AI2 Al3 
All All All 

_A21 A21 A2] 

All 
A22 -AI2A A23 -Al3A (B.46) 

13 11 

_A21 A31 A31 
All 

A32 -A!2
A 

A33 -Al3A 
11 II 

A corresponding manipulation of the second column yields a matrix with the 
first two columns identical to those of the right side of Equation (B .45) whereas the 
last column is identical to that of the left side of Equation (B.4S). Thus the inverse 
matrix is accumulated in the space vacated by the original matrix. 

Computer Routine PROGRAM B.l MATRIX (WEBSITE) includes two 
r~utines, MATI NV and Ll NEAR BvSQ UAR E. MATI NV inverts a square ma­
tnx and c.al~ulates it~ d~terminant,. substituting the inverted matrix into the same array 
as the ongmal matrIX. Input vanables are AR RA v, the matrix to be inverted, and 
NOR 0 E R, the order of its determinant. 
.. The initi~l program loop iterates through the n columns of the matrix, reorga­

lllzmg the ~atnx to get the largest element in the diagonal in order to reduce rounding 
errors and Improve computational precision. The inversion procedure discussed above 
is then carried out and the determinant 0 ET of the matrix is calculated from the diag­
onalized matrix. After inversion, the inverted matrix is stored back in AR RA V and the 
variable 0 ET, the value of the determinant of the original matrix, is returned. 

. LI N EARBvSQUAR E multiplies a linear matrix (on the right) by a square 
matnx (on the left). For example, see Equation (B.30). 



APPENDIX 

C 
GRAPHS 

AND 
TABLES 

The tables and graphs in this appendix m:e p~ovi~ed for easy ref~~ence. C~mputer 
routines for calculating several of the dlstnbutlOns and proba?lhty functlOns ~e 

listed in Appendix E. Routines are also available on the website for calculatmg 

probabilities. 

C.l GAUSSIAN PROBABILITY 
DISTRIBUTION 
The probability density functionpG(x; tJ-, a) for the Gaussian or normal error distri­

bution is given by 

PG(X; tJ-, a) = a0; exp [-~ (x ~ tJ- YJ 
If measurements of a quantity x are distributed in this manne~ around a mean tJ- ~i~h 
standard deviation a, the probability dP G (x; tJ-, a) for observmg a valu~ of~, wlthm 
an infinitesimally small interval dx, in a random sample measurement IS given by 

dPG(x; tJ-, a) = pdx; tJ-, a) dx 

Values of the probability density function PG (x; tJ-, a) are tabulated in Table 
~C' ':l .fnnrot1nn n:f th~ A;rnpnC';nnlpcc r1P"l~t-i{'\n 

/ 
/ 

/ 
;' 

TABLEC.l 

/ 

/" I 
/ 

f.l 

x 

PG(X,fl,fJ) 

Gaussian probability density distribution. The Gaussian or normal error 
distributionpG(x; fL, 0') versus Z = Ix - fLl/O' 

z 0.00 

0.0 0.39894 
0.1 0.39695 
0.2 0.39104 
0.3 0.38139 
0.4 0.36827 

0.01 0.02 0.03 

0.39892 0.39886 0.39876 
0.39654 0.39608 0.39559 
0.39024 0.38940 0.38853 
0.38023 0.37903 0.37780 
0.36678 0.36526 0.36371 

0.04 0.05 0.06 0.07 0.08 

0.39862 0.39844 0.39822 0.39797 0.39767 
0.39505 0.39448 0.39387 0.39322 0.39253 
0.38762 0.38667 0.38568 0.38466 0.38361 
0.37654 0.37524 0.37391 0.37255 0.37115 
0.36213 0.36053 0.35889 0.35723 0.35553 

0.09 

0.39733 
0.39181 
0.38251 
0.36973 
0.35381 

0.5 0.35207 0.35029 0.34849 0.34667 0.34482 0.34294 0.34105 0.33912 0.33718 0.33521 
0.6 0.33322 0.33121 0.32918 0.32713 0.32506 0.32297 0.32086 0.31874 0.31659 0.31443 
0.7 0.31225 
0.8 0.28969 
0.9 0.26609 

1.0 0.24197 
1.1 0.21785 
1.2 0.19419 
1.3 0.17137 
1.4 0.14973 

0.31006 0.30785 0.30563 0.30339 0.30114 0.29887 0.29659 0.29431 0.29200 
0.28737 0.28504 0.28269 0.28034 0.27799 0.27562 0.27324 0.27086 0.26848 
0.26369 0.26129 0.25888 0.25647 0.25406 0.25164 0.24923 0.24681 0.24439 

0.23995 0.23713 0.23471 0.23230 0.22988 0.22747 0.22506 0.22266 0.22025 
0.21546 0.21307 0.21069 0.20831 0.20594 0.20357 0.20122 0.19887 0.19652 
0.19186 0.18955 0.18724 0.18494 0.18265 0.18038 0.17811 0.17585 0.17361 
0.16915 0.16694 0.16475 0.16256 0.16039 0.15823 0.15609 0.15395 0.15184 
0.14764 0.14557 0.14351 0.14147 0.13944 0.13742 0.13543 0.13344 0.13148 

1.5 0.12952 0.12759 0.12567 0.12377 0.12189 0.12002 0.11816 0.11633 0.11451 0.11271 
1.6 0.11093 0.10916 0.10741 0.10568 0.10397 0.10227 0.10059 0.09893 0.09729 0.09567 
1.7 0.09406 0.09247 0.09090 0.08934 0.08780 0.08629 0.08478 0.08330 0.08184 0.08039 
1.8 0.07896 0.07755 0.07615 0.07477 0.07342 0.07207 0.07075 0.06944 0.06815 0.06688 
1.9 0.06562 0.06439 0.06316 0.06196 0.06077 0.05960 0.05845 0.05731 0.05619 0.05509 

2.0 0.05400 0.05293 0.05187 0.05083 0.04981 0.04880 0.04781 0.04683 0.04587 0.04492 
2.1 0.04399 0.04307 0.04217 0.04129 0.04041 0.03956 0.03871 0.03788 0.03707 0.03627 
2.2 0.03548 0.03471 0.03395 0.03320 0.03247 0.03175 0.03104 0.03034 0.02966 0.02899 
2.3 0.02833 0.02769 0.02705 0.02643 0.02582 0.02522 0.02464 0.02406 0.02350 0.02294 
2.4 0.02240 0.02187 0.02135 0.02083 0.02033 0.01984 0.01936 0.01889 0.01843 0.01798 

2.5 0.01753 0.01710 0.01667 0.01626 0.01585 0.01545 0.01506 0.01468 0.01431 0.01394 
2.6 0.01359 0.01324 0.01290 0.01256 0.01224 0.01192 0.01160 0.01130 0.01100 0.D1071 
2.7 0.01042 0.01015 0.00987 0.00961 0.00935 0.00910 0.00885 0.00861 0.00837 0.00814 
2.8 0.00792 0.00770 0.00749 0.00728 0.00707 0.00688 0.00668 0.00649 0.00631 0.00613 
2.9 0.00595 0.00578 0.00562 0.00546 0.00530 0.00514 0.00500 0.00485 0.00471 0.00457 

3.0 
3.5 
4.0 
4.5 
5.0 
5.5 

0.00 

0.0044318 
0.00087269 
0.00013383 
0.000015984 
0.0000014868 
0.00000010771 

0.10 

0.0032668 
0.00061191 
0.000089264 
0.000010141 
0.00000089730 
0.00000006183 

0.20 

0.0023841 
0.00042479 
0.000058945 
0.0000063701 
0.00000053614 
0.00000003514 

0.30 

0.0017226 
0.00029195 
0.000038536 
0.0000039615 
0.00000031716 
0.00000001978 

0.40 

0.0012322 
0.00019866 
0.000024943 
0.0000024391 
0.00000018575 
0.00000001102 
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FIGUREC.l 
Gaussian probability density distribution, PG(x; /-L, er) versus z = Ix - /-LIfer 

for z ranging from 0.0 to 3.0 in increments of ~.01 .and up to 5.9 in i~cremen~s 
of 0.1. This function is graphed on a semi-loganthmic scale as a functIOn of z 1ll 

Figure c.l. 

C.2 INTEGRAL OF GAUSSIAN 
DISTRIBUTION 

The integral P G(x; fL, 0') of the probability density function PG(x; fL, 0') for the 
Gaussian or normal error distribution is given by 

1 jfL+zrr ll(X - fL)2] P (x; fL, 0') = ~~ exp -2 -- dx 
G 0' V 2'IT fL-Zrr 0' 

with 

I 

~ 
TABLEC.2 

f1 - zeY f1 f1 + ZeY 

X 

Integral of Gaussian distribution. The integral of the Gaussian probability 
density distribution. FG(x; Jot, rr) versus z = Ix - Jotl/rr 

z 0.00 

0.0 0.0 
0.1 0.07966 
0.2 0.15852 
0.3 0.23582 
0.4 0.31084 

0.01 0.02 0.03 

0.00798 0.01596 0.02393 
0.08759 0.09552 0.10343 
0.16633 0.17413 0.18191 
0.24344 0.25103 0.25860 
0.31819 0.32551 0.33280 

0.04 0.05 

0.03191 0.03988 
0.11134 0.11924 
0.18967 0.19741 
0.26614 0.27366 
0.34006 0.34729 

0.06 0.07 0.08 

0.04784 0.05581 0.06376 
0.12712 0.13499 0.14285 
0.20514 0.21284 0.22052 
0.28115 0.28862 0.29605 
0.35448 0.36164 0.36877 

0.09 

0.07171 
0.15069 
0.22818 
0.30346 
0.37587 

0.5 0.38292 0.38995 0.39694 0.40389 0.41080 0.41768 0.42452 0.43132 0.43809 0.44481 

0.6 0.45149 0.45814 0.46474 0.47131 0.47783 0.48431 0.49075 0.49714 0.50350 0.50981 
0.7 0.51607 0.52230 0.52847 0.53461 0.54070 0.54674 0.55274 0.55870 0.56461 0.57047 
0.8 0.57629 0.58206 0.58778 0.59346 0.59909 0.60467 0.61021 0.61570 0.62114 0.62653 
0.9 0.63188 0.63718 0.64243 0.64763 0.65278 0.65789 0.66294 0.66795 0.67291 0.67783 

1.0 0.68269 0.68750 0.69227 0.69699 0.70166 0.70628 0.71085 0.71538 0.71985 0.72428 
l.l 0.72866 
1.2 0.76985 
1.3 0.80639 
1.4 0.83848 

0.73300 0.73728 0.74152 
0.77371 0.77753 0.78130 
0.80980 0.81316 0.81647 
0.84145 0.84438 0.84727 

0.74571 0.74985 0.75395 0.75799 0.76199 
0.78502 0.78869 0.79232 0.79591 0.79945 
0.81975 0.82298 0.82616 0.82930 0.83240 
0.85012 0.85293 0.85570 0.85843 0.86112 

1.5 0.86638 
1.6 0.89039 
1.7 0.91086 
1.8 0.92813 
1.9 0.94256 

2.0 0.95449 
2.1 0.96426 
2.2 0.97219 
2.3 0.97855 

0.86895 0.87148 0.87397 
0.89259 0.89476 0.89689 
0.91272 0.91456 0.91636 
0.92969 0.93123 0.93274 
0.94386 0.94513 0.94638 

0.95556 0.95661 0.95764 
0.96513 0.96599 0.96682 
0.97289 0.97358 0.97425 
0.97911 0.97965 0.98019 

0.87643 0.87885 0.88123 0.88358 0.88588 
0.89898 0.90105 0.90308 0.90507 0.90703 
0.91813 0.91987 0.92158 0.92326 0.92491 
0.93422 0.93568 0.93711 0.93851 0.93988 
0.94761 0.94882 0.95000 0.95115 0.95229 

0.76595 
0.80294 
0.83546 
0.86377 

0.88816 
0.90896 
0.92654 
0.94123 
0.95340 

0.96338 
0.97147 
0.97797 
0.98315 

2.4 0.98360 0.98404 0.98448 0.98490 0.98531 0.98571 0.98610 0.98648 0.98686 0.98722 

0.95864 0.95963 0.96059 0.96154 0.96247 
0.96764 0.96844 0.96922 0.96999 0.97074 
0.97490 0.97555 0.97617 0.97679 0.97739 
0.98071 0.98122 0.98172 0.98221 0.98268 

2.5 0.98758 0.98792 0.98826 0.98859 
2.6 0.99067 0.99094 0.99120 0.99146 
2.7 0.99306 0.99327 0.99347 0.99366 
2.8 0.99489 0.99504 0.99520 0.99534 
2.9 0.99627 0.99638 0.99650 0.99661 

3.0 
3.5 
4.0 
4.5 
5.0 

0.00 

0.9973002 
0.99953474 
0.999936656 
0.9999932043 
o 9999994?(';,7 

0.10 

0.9980648 
0.99968178 
0.999958684 
0.9999957748 

0.98891 0.98922 
0.99171 0.99195 
0.99385 0.99404 
0.99549 0.99563 
0.99672 0.99682 

0.20 

0.9986257 
0.99978440 
0.999973308 
0.9999973982 

0.98953 0.98983 0.99012 0.99040 
0.99218 0.99241 0.99264 0.99285 

0.99422 0.99439 0.99456 0.99473 
0.99576 0.99589 0.99602 0.99615 
0.99692 0.99702 0.99712 0.99721 

0.30 0.40 

0.99903315 
0.99985530 
0.999982920 
0.9999984132 

0.99932614 
0.999903805 
0.999989174 
0.99999904149 
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FIGURE C.2 .) _ Ix _ I/IT 
Integral of the Gaussian probability density distributIOn, PG(x; [1, IT versus z - [1 

If measurements of the quantity x are distributed according to t~e Gaussian distrib­
ution around a mean j.L with standard deviation fJ, PG(x; j.L, fJ) IS equal t~ the prob­
ability for observing a value of x in a rando~ sample measurement that IS between 

- ZfJ and j.L + ZfJ; that is, it is the probabIlIty that Ix - j.L1 < ZfJ. . 

j.L Values of the integral P G(x; j.L, fJ) are tabulated in Table C.2 a~ a. functIOn of z, 
for Z ranging from 0.0 to 3.0 in increments of 0.01 and up t~ 5.9 III ~ncr~ments of 
0.1. This function is graphed on a probability scale as a functIOn of Z III FIgure C.2. 

A related function is the error function erf Z: 

erf Z = ,,~fz e-z'dz = PG (zV2; 0,1) 
V'IT -z 

The function that is tabulated and graphed is the shaded area between the limits 
j.L ± ZfJ as indicated. 

C.3 LINEAR-CORRELATION 
COEFFICIENT 
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1 r[(v + 1)/2J 
P (r v) = - (1 - r2)(v-2)/2 
r, y;;;: f(v/2) 

The probability of observing a value of the correlation coefficient larger than r for 
a random sample of N observations with v degrees of freedom is the integral of this 
probability pccr; N): 

P (r N) = _1_ f[(v + 1)/2]( 1 (1 _ X 2)(V-2)/2 dx 
e, y;;;: f(v/2) Jlrl v=N-2 

If two variables of a parent population are uncorrelated, the probability that a 
random sample of N observations will yield a correlation coefficient for those two 
variables greater in magnitude than Irl is given by Peer; N). 

Values of the coefficient I rlcorresponding to various values of the probability 
Peer; N) are tabulated in Table C.3 for N ranging from 3 to 100, and values of 
PcCr; N) ranging from 0.001 to 0.5. The functional dependence of r corresponding 
to representative values of PcCr, N) is graphed on a semi-logarithmic scale as a 
smooth variation with the number of observations N in Figure C.3. 

The function that is tabulated and graphed is the shaded area under the tails of 
the probability curve for values larger than Irl as indicated. 

C.4 X2 DISTRIBUTION 

The probability density distribution pxCX2; v) for X2 is given by 

1 
P ()( 2. v) = (X2) (v-2)/2e-x'/2 
x' 2vI2r(V/2) 

The probability of observing a value of X2 that is larger than a particular value for a 
random sample of N observations with v degrees of freedom is the integral of this 
probability PxCX2; v): 

1 foo , p.. (X2. v) = (X2)(v-2)/2 e-x 12d(x2) 
x' 2vI2f(V/2) x' 

Values of the reduced chi-square X~ = X21v corresponding to various values of 
the integral probability P x(X2; v) of exceeding X2 in a measurement with v degrees 
of freedom are tabulated in Table CA for v ranging from 1 to 200. The functional 
dependence of PxCX2; v) corresponding to representative values of v is graphed in 
Figure CA as a smooth variation with the reduced chi-square X~. 

Thp fllnr-tl{'\n thtlt ~C' tnh,..lni- ....... ,.1 .... -.....:1 ___ ~_L_...1 ~~ .c1 
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A 
-1 -r 0 r 1 

x 
0 

TABLEC.3 
Linear-correlation coefficient. The linear-correlation coefficient r versus the 

S 

number of observations N and the corresponding probability Pc (r; N) of 

~ 

exceeding r in a random sample of observations taken from an uncorrelated 

;: 
;;: 

parent population (p = 0) 
.€ 

p 

~ 
..0 
8 

0 0.. 
on bJ) 

N 0.50 0.20 0.10 0.050 0.020 0.010 0.005 0.002 0.001 
<= 
'6 
<= 
0 

3 0.707 0.951 0.988 0.997 1.000 1.000 1.000 1.000 1.000 

4 0.500 0.800 0.900 0.950 0.980 0.990 0.995 0.998 0.999 

0.. 
c;, 

0.404 0.687 0.805 0.878 0.934 0.986 

Q.) 

5 
0.959 0.974 0.991 

!:: 
0 

6 0.347 0.608 0.729 0.811 0.882 0.917 0.942 0.963 0.974 
g < u 

Q.) 

7 0.309 0.551 0.669 0.754 0.833 0.875 0.906 0.935 0.951 

en -5 
<= 

8 0.281 0.507 0.621 0.707 0.789 0.834 0.870 0.905 0.925 

0 '0 
.~ <= 

'" 

9 0.260 0.472 0.582 0.666 0.750 0.798 0.836 0.875 0.898 
~ < 

10 0.242 0.443 0.549 0.632 0.715 0.765 0.805 0.847 0.872 

o en 
c;, 

N.g <= 
0 

11 0.228 0.419 0.521 0.602 0.685 0.735 0.776 0.820 0.847 

'+-< '.g 0 

12 0.216 0.398 0.497 0.576 0.658 0.708 0.750 0.795 0.823 

'- 1: Q.) 
..0 Q.) 

13 0.206 0.380 0.476 0.553 0.634 0.684 0.726 0.772 0.801 
S 

c;, 
..0 

14 0.197 0.365 0.458 0.532 0.612 0.661 0.703 0.750 0.780 
" 0 
Z '+-< 

15 0.189 0.351 0.514 0.592 

0 

0.441 0.641 0.683 0.730 0.760 
'-
Q.) 

16 0.182 0.338 0.426 0.497 0.623 

..0 

0.574 0.664 0.711 0.742 
S 

17 0.176 0.327 0.412 0.482 0.558 0.606 0.647 0.694 0.725 

::i 
<= 

18 0.170 0.317 0.400 0.468 0.543 0.590 0.631 0.678 0.708 

Q.) 

-5 

19 0.165 0.308 0.389 0.456 0.529 0.575 0.616 0.662 0.693 

c;, 
::i 

20 0.160 0.299 0.378 0.444 0.516 0.561 0.602 0.648 0.679 

c;, 
'-
Q.) 

22 0.152 0.284 0.360 0.423 0.492 0.537 0.576 

> 

0.622 0.652 
food 

24 0.145 0.271 0.344 0.404 0.472 0.515 0.554 0.599 0.629 

~ ~ 
Q.)-

26 0.138 0.260 0.330 0.388 0.453 0.496 0.534 0.578 0.607 

.~ Q.) 

~ !:: 

28 0.133 0.250 0.317 0.374 0.437 0.479 0.515 0.559 0.588 
""' 0 Q.) u 

30 0.128 0.241 0.306 0.361 0.423 0.463 0.499 0.541 0.570 

o -u 0 
<= <= 

32 0.124 0.233 0.296 0.349 0.409 0.449 0.484 0.526 0.554 

o Q.) 
.~ '-

34 0.120 0.225 0.287 0.339 0.397 0.436 0.470 0.511 0.539 

~ '" _ c;, 

Q.) Q.) 

36 0.116 0.219 0.279 0.329 0.386 0.424 0.458 0.498 0.525 

r')!:::O 
• 0 '" 

38 0.113 0.213 0.271 0.320 0.376 0.413 0.446 0.486 0.513 00 'D '" U Y'e 
ci ci 

'<j' N 0 r.l 1;i ~ 

40 0.110 0.207 0.264 0.312 0.367 0.403 0.435 0.474 0.501 
ci ci ci ~ 1:l Q.) 

42 0.107 0.202 0.257 0.304 0.358 0.393 0.425 0.463 0.490 

~.~ ...c::: 
~~:: 

44 0.104 0.197 0.251 0.297 0.350 0.384 0.416 0.453 0.479 
.1 jU;)!:J!J1;)O:J UOlj1l1;)JJO:J Jll;)uq .... ...c:::'" 

""' E-d5 

46 0.102 0.192 0.246 0.291 0.342 0.376 0.407 0.444 0.469 

48 0.100 0.188 0.240 0.285 0.335 0.368 0.399 0.435 0.460 

50 0.098 0.184 0.235 0.279 0.328 0.361 0.391 0.427 0.451 

60 0.089 0.168 0.214 0.254 0.300 0.330 0.358 0.391 0.414 

70 0.082 0.155 0.198 0.235 0.278 0.306 0.332 0.363 0.385 

Q() () ()77 () 1<1<; o lR" 0))0 O)fiO 02Rfi 0.311 0.340 0.361 
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TABLEC.4 
(continued) 

p 

v 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.001 
0 v x2 

1 0.708 1.074 1.642 2.706 3.841 x2 
2 0.916 5.412 6.635 10.827 1.204 1.609 2.303 2.996 3.912 TABLEC.4 3 0.982 1.222 1.547 2.084 

4.605 6.908 

X2 distribution. Values of the reduced chi-square x; = X21v corresponding to 4 1.011 
2.605 3.279 3.780 5.423 1.220 1.497 1.945 2.372 2.917 5 3.319 4.617 

the probability P ix2; v) of exceeding X2 versus the number of degrees of 1.026 1.213 1.458 1.847 2.214 2.678 3.017 4.102 

freedom v 6 1.035 1.205 1.426 1.774 2.099 
7 2.506 2.802 3.743 1.040 1.198 1.400 1.717 2.010 2.375 2.639 

P 8 1.044 1.191 1.379 1.670 
3.475 

1.938 2.271 9 1.046 1.184 2.511 3.266 1.360 1.632 1.880 2.187 2.407 
0.99 0.98 0.95 0.90 0.80 0.70 0.60 0.50 10 1.047 1.178 1.344 1.599 

3.097 
v 1.831 2.116 2.321 2.959 

11 1.048 1.173 1.330 1.570 1.789 2.056 1 0.00016 0.00063 0.00393 0.0158 0.0642 0.148 0.275 0.455 12 1.049 2.248 2.842 1.168 1.318 1.546 2 0.0100 0.0202 0.0515 0.105 0.223 0.357 0.511 0.693 13 
1.752 2.004 2.185 2.742 1.049 1.163 

3 0.0383 0.0617 0.117 0.195 0.335 0.475 0.623 0.789 1.307 1.524 1.720 1.959 2.130 14 1.049 1.159 1.296 1.505 1.692 
2.656 

4 0.0742 0.107 0.178 0.266 0.412 0.549 0.688 0.839 15 1.049 1.919 2.082 2.580 
5 0.111 0.150 0.229 0.322 0.469 0.600 0.731 0.870 1.155 1.287 1.487 1.666 1.884 2.039 2.513 
6 0.145 0.189 0.273 0.367 0.512 0.638 0.762 0.891 16 1.049 1.151 1.279 1.471 I.~ 

0.177 0.310 0.405 0.546 0.667 0.785 0.907 17 1.048 1.148 
1.852 2.000 2.453 7 0.223 1.271 1.457 

8 0.206 0.254 0.342 0.436 0.574 0.691 0.803 0.918 18 1.048 1.145 
1.623 1.823 1.965 2.399 1.264 1.444 1.604 1.797 1.934 2.351 9 0.232 0.281 0.369 0.463 0.598 0.710 0.817 0.927 19 1.048 1.142 1.258 1.432 1.586 1.773 1.905 10 0.256 0.306 0.394 0.487 0.618 0.727 0.830 0.934 20 1.048 1.139 1.252 1.421 

2.307 
1.571 1.751 1.878 2.266 11 0.278 0.328 0.416 0.507 0.635 0.741 0.840 0.940 22 1.047 1.134 1.241 1.401 1.542 12 0.298 0.348 0.436 0.525 0.651 0.753 0.848 0.945 24 1.046 1.712 1.831 2.194 1.129 1.231 1.383 13 0.316 0.367 0.453 0.542 0.664 0.764 0.856 0.949 26 1.517 1.678 1.791 2.132 1.045 1.125 1.223 1.368 14 0.333 0.383 0.469 0.556 0.676 0.773 0.863 0.953 28 
1.496 1.648 1.755 2.079 

15 0.349 0.399 0.484 0.570 0.687 0.781 0.869 0.956 
1.045 1.121 1.215 1.354 1.476 1.622 30 1.724 2.032 1.Q44 1.118 1.208 1.342 1.459 1.599 1.696 16 0.363 0.413 0.498 0.582 0.697 0.789 0.874 0.959 1.990 

17 0.377 0.427 0.510 0.593 0.706 0.796 0.879 0.961 32 1.043 1.115 1.202 1.331 1.444 34 1.578 1.671 1.953 18 0.390 0.439 0.522 0.604 0.714 0.802 0.883 0.963 1.042 1.112 1.196 1.321 1.429 1.559 1.649 1.919 19 0.402 0.451 0.532 0.613 0.722 0.808 0.887 0.965 36 1.042 1.109 1.191 1.311 1.417 1.541 1.628 1.888 20 0.413 0.462 0.543 0.622 0.729 0.813 0.890 0.967 38 1.041 1.106 1.186 
40 

1.303 1.405 1.525 1.610 1.861 22 0.434 0.482 0.561 0.638 0.742 0.823 0.897 0.970 1.041 1.104 1.182 1.295 1.394 1.511 1.592 1.835 24 0.452 0.500 0.577 0.652 0.753 0.831 0.902 0.972 42 1.040 1.102 1.178 26 0.469 0.516 0.592 0.665 0.762 0.838 0.907 0.974 44 
1.288 1.384 1.497 1.576 1.812 1.039 1.100 1.174 1.281 28 0.484 0.530 0.605 0.676 0.771 0.845 0.911 0.976 46 1.375 1.485 1.562 1.790 

30 0.498 0.544 0.616 0.687 0.779 0.850 0.915 0.978 
1.039 1.098 1.170 1.275 1.366 1.473 48 1.548 1.770 1.038 1.096 1.167 1.269 1.358 1.462 32 0.511 0.556 0.627 0.696 0.786 0.855 0.918 0.979 50 1.038 1.094 1.535 1.751 

34 0.523 0.567 0.637 0.704 0.792 0.860 0.921 0.980 1.163 1.263 1.350 1.452 1.523 1.733 
36 0.534 0.577 0.646 0.712 0.798 0.864 0.924 0.982 60 1.036 1.087 1.150 1.240 1.318 
38 0.545 0.587 0.655 0.720 0.804 0.868 0.926 0.983 70 1.034 1.081 

1.410 1.473 1.660 1.139 1.222 1.293 1.377 1.435 1.605 40 0.554 0.596 0.663 0.726 0.809 0.872 0.928 0.983 80 1.032 1.076 1.130 1.207 
90 1.031 

1.273 1.351 1.404 1.560 
42 0.563 0.604 0.670 0.733 0.813 0.875 0.930 0.984 1.072 1.123 1.195 1.257 1.329 1.379 
44 0.572 0.612 0.677 0.738 0.818 0.878 0.932 0.985 100 1.029 1.069 1.117 1.185 

1.525 
1.243 1.311 1.358 1.494 46 0.580 0.620 0.683 0.744 0.822 0.881 0.934 0.986 120 1.027 1.063 1.107 1.169 1.221 48 0.587 0.627 0.690 0.749 0.825 0.884 0.936 0.986 140 1.026 1.283 1.325 1.446 

50 0.594 0.633 0.695 0.754 0.829 0.886 0.937 0.987 1.059 1.099 1.156 1.204 1.261 160 1.299 1.410 1.024 1.055 1.093 1.146 1.191 1.243 60 0.625 0.662 0.720 0.774 0.844 0.897 0.944 0.989 180 1.023 1.278 1.381 1.052 1.087 1.137 70 0.649 0.684 0.739 0.790 0.856 0.905 0.949 0.990 1.179 1.228 1.261 1.358 200 1.022 1.050 
80 0.669 0.703 0.755 0.803 0.865 0.911 0.952 0.992 1.083 1.130 1.170 1.216 1.247 1.338 
90 0.686 0.718 0.768 0.814 0.873 0.917 0.955 0.993 

100 0.701 0.731 0.779 0.824 0.879 0.921 0.958 0.993 

120 0.724 0.753 0.798 0.839 0.890 0.928 0.962 0.994 
140 0.743 0.770 0.812 0.850 0.898 0.934 0.965 0.995 

f\ ('u:::o (\ not;: 
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C.S F DISTRIBUTION 

The probability distribution for F is given by 

_ [[(VI + v2)/2J (VI)V/2 f(v,-2)/2 
Pf(f, VI> V2) - f(vI/2)f(v2/2) V2 (1 + fV/V2 )1/2(v, + v,) 

The probability of observing a value of F that is larger than a particular value 
for a random sample with VI and v2 degrees of freedom is the integral of this 
probability: 

PF(F; v], V2) = L"'PfU; v], V2) df 

Values of F corresponding to various values of the integral probability 
PF(F; v], V2) of exceeding F in a measurement are tabulated in Table C.S for VI = 1 
and graphed in Figure C.S as a smooth variation with the probability. Values of F 
corresponding to various values of VI and V2 ranging from 1 to 00 are listed in Table 
C.6 and graphed in Figure C.6 for PF(F; Vb V2) = O.OS and in Table C.7 and Figure 
C.7 for PF(F; v], v2) = 0.01. These values were adapted by permission from Dixon 
and Massey (1969). 

The function that is tabulated and graphed is the shaded area under the tail of 
the probability curve for values larger than F as indicated. 

C.6 STUDENT'S t DISTRIBUTION 

The probability distribution for Student's t is given byl 

__ I_[[(v+ 1)/2J ( ~)-(V+l)/2 
f(t, v) - ~ f(vI2) 1 + V 

Student's t distribution describes, as a function of the number of degrees of freedom 
v, the distribution of the parameter t = Ix - xii S JL' where t is the number of standard 
deviations S JL of the sample distribution by which x differs from x. This distribution 
takes account of the fact that the sample standard deviation sJL is an estimate of the 
parent standard error (TJL and, as such, will vary for different samples drawn from the 
same parent distribution, just as the sample means vary. If x represents the mean of 
N numbers and x is not derived from the data, then V = N - 1. If both x and x are 
means, sJL must be the joint standard deviation of both x and x, and V must be the to­
tal number of degrees of freedom. In the limit of large numbers of degrees of free­
dom, Student's t and Gaussian probability distributions agree; for small v, that is, 
low-statistics experiments, the Gaussian distribution overestimates the probability 
and Student's t is preferred. 

Table C.8 lists probabilities obtained by integrating Student's t distribution 
from x = x - tSJL to x = X + tSJL where t = Ix - xl/sw The integrals are listed as 
functions of t and of the number of degrees of freedom v. The values corresponding 
to Gaussian probability (which are independent of v) are listed in the last column. 

'''Review of Particle Physics" The European Physical Journal C. vol. 15 (2000), p. 193. 
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0 

F f 

TABLEC.5 
F distribution, v = 1. Values of F corresponding to the probability PF(F;1, V2) 

of exceeding F (with VI = 1 degrees of freedom) versus the larger number of 

\0 
0 
0 

degrees of freedom V2' ~ 
0 
0 

Degrees 
of Probability (P) of exceeding F 

freedom 
V2 0.50 0.25 0.10 0.05 0.025 0,01 0.005 0.001 

N 

1 1.000 5.83 39.90 161.00 648.00 4050.00 16200.00 406000.0 

2 0.667 2.57 8.53 18.50 38.50 98.50 198.00 998.0 

0 
0 

3 0.585 2.02 5.54 10.10 17.40 34.10 55.60 167.0 

4 0.549 1.81 4.54 7.71 12.20 21.20 31.30 74.1 

":6 r.: ,....; 

5 0.528 1.69 4.06 6.61 10.00 16.30 22.80 47.2 
A 
15 

~ 

6 0.515 1.62 3.78 5.99 8.81 13.70 18.60 35.5 ~ 0 .... 

7 0.506 1.57 3.59 5.59 8.07 12.20 16.20 29.2 
0 0 <8 

8 0.499 1.54 3.46 5.32 7.57 11.30 14.70 25.4 ~ 
N 
~ 

9 0.494 1.51 3.36 5.12 7.21 10.60 13.60 22.9 

"0 
~ <= 
2 

oj 

10 0.490 1.49 3.28 4.96 6.94 10.00 12.80 21.0 
\0 ~ 
0 0.. 
0 '" ::l 
0 '" .... 

11 0.486 1.47 3.23 4.84 6.72 9.65 12.20 19.7 

12 0.484 1.46 3.18 4.75 6.55 9.33 11.80 18.6 

(\) 
;> 

15 0.478 1.43 3.07 4.54 6.20 8.68 10.80 16.6 

~ 
OJ) 

20 0.472 1.40 2.97 4.35 5.87 8.10 9.94 14.8 
<= 
:0 

24 0.469 1.39 2.93 4.26 5.72 7.82 9.55 14.0 

(\) 
(\) 
OJ 
>< 

30 0.466 1.38 2.88 4.17 5.57 7.56 9.18 13.3 

(\) 

'+-< 

40 0.463 1.36 2.84 4.08 5.42 7.31 8.83 12.6 

0 

----

60 0.461 1.35 2.79 4.00 5.29 7.08 8.49 12.0 
;i' 

120 0.458 1.34 2.75 3.92 5.15 6.85 8.18 11.4 

,...;-

00 0.455 1.32 2.71 3.84 5.02 6.63 7.88 10.8 ~ 
;;... 

lI) .~ 

Note: For larger values of the probability P, the value of F is approximately F = [1.25( I - PlY 8 u] 
0 ~~ 

0 0 0 0 0 
0 

\0 ~ r'1 N - 00 \0 ~ r'1 ;;;J5.. 
(r = 1(1).1 

~ (\) 
... ..c: 
r..E-< 
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TABLEC.6 
F distribution, 5 %. Values of F corresponding to the probability 
PF(F; VI, V2) = 0.05 of exceeding F for VI versus V2 degrees of freedom 

Degrees 
of Degrees of freedom VI 

freedom 
V2 2 4 6 8 10 15 20 

200.00 225.00 234.00 239.00 242.00 246.00 248.00 

2 19.00 19.20 19.30 19.40 19.40 19.40 19.40 

3 9.55 9.12 8.94 8.85 8.79 8.70 8.66 

4 6.94 6.39 6.16 6.04 5.96 5.86 5.80 

5 5.79 5.19 4.95 4.82 4.73 4.62 4.56 

6 5.14 4.53 4.28 4.15 4.60 3.94 3.87 

7 4.74 4.12 3.87 3.73 3.64 3.51 3.44 

8 4.46 3.84 3.58 3.44 3.35 3.22 3.15 

9 4.26 3.63 3.37 3.23 3.14 3.01 2.94 

10 4.10 3.48 3.22 3.07 2.98 2.85 2.77 

11 3.98 3.36 3.09 2.95 2.85 2.72 2.65 

12 3.89 3.26 3.00 2.85 2.75 2.62 2.54 

15 3.68 3.06 2.79 2.64 2.54 2.40 2.33 

20 3.49 2.87 2.60 2.45 2.35 2.20 2.12 

24 3.40 2.78 2.51 2.36 2.25 2.11 2.03 

30 3.32 2.69 2.42 2.27 2.16 2.01 1.93 

40 3.23 2.61 2.34 2.18 1.08 1.92 1.84 

60 3.15 2.53 2.25 2.10 1.99 1.84 1.75 

120 3.07 2.45 2.18 2.02 1.91 1.75 1.66 

00 3.00 2.37 2.10 1.94 1.83 1.67 1.57 

100 

253.00 
19.50 
8.55 
5.66 
4.41 

3.71 
3.27 
2.97 
2.76 
2.59 

2.46 
2.35 
2.12 
1.91 
1.80 

1.70 
1.59 
1.48 
1.37 
1.24 

o 
V) 

""' o 
V) 

o 
o 
II 
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TABLE C.7 
F distribution, 1 %. Values of F corresponding to the probability 
PF(F; VI, V2) = 0.01 of exceeding F for VI versus V2 degrees of freedom 

Degrees 
of Degrees of freedom VI 

freedom 
V2 2 4 6 8 10 15 20 100 

5000.00 5620.00 5860.00 5980.00 6060.00 6160.00 6210.00 6330.00 

2 99.00 99.20 99.30 99.40 99.40 99.40 99.40 99.50 

3 30.80 28.70 27.90 27.50 27.20 26.90 26.70 26.20 

4 18.00 16.00 15.20 14.80 14.50 14.20 14.00 13.60 

5 13.30 11.40 10.70 10.30 10.10 9.72 9.55 9.13 
0 ;:: 
:.s 

6 10.90 9.15 8.47 8.10 7.87 7.56 7.40 6.99 
co 

7 9.55 7.85 7.19 6.84 6.62 6.31 6.16 5.75 
,D 

8 

8 8.65 7.01 6.37 6.03 5.81 5.52 5.36 4.96 
Po. 

9 8.02 6.42 5.80 5.47 5.26 4.96 4.81 

co 

4.42 
.... 

10 7.56 5.99 5.39 5.06 4.85 4.56 4.41 4.01 
.8 
;:i' 

11 7.21 5.67 5.07 4.74 4.54 4.25 4.10 3.71 
"0 
§ 

12 6.93 5.41 4.82 4.50 4.30 4.01 3.86 3.47 
;: ;: 

15 6.36 4.89 4.32 4.00 3.80 3.52 3.37 2.98 
E E 0 

20 5.85 4.43 3.87 3.56 3.37 3.09 2.94 2.54 

'0 0 
II.l "0 
II.l II.l 

24 5.61 4.22 3.67 3.36 3.17 2.89 2.74 2.33 
<l:: II.l 
'+-< <l:: 
0 4-< 

30 5.39 4.02 3.47 3.17 2.98 2.70 2.55 2.13 
on 0 
II.l 

'" 
40 5.18 3.83 3.29 2.99 2.80 2.52 2.37 1.94 

~ II.l 
OJ) e 

60 4.98 3.65 3.12 2.82 2.63 2.35 2.20 1.75 
~ ~ 

120 4.79 3.48 2.96 2.66 2.47 2.19 2.03 1.56 

"0 
4-< 

4.61 3.32 2.80 2.51 2.32 2.04 1.88 1.36 

0 

00 

'" .... 
II.l 

,D 
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TABLEC.8 • • 
P~x; J.l-, 0') versus t = Ix - J.l-I/O'; Integral of Student's t distribution between 
x - x - ts", and x + ts "" expressed in percent. 

v =N-1 

Gaussiau 
2 3 4 5 6 8 10 12 16 20 25 30 35 40 50 probability 

0.6 39.1 40.9 41.9 42.5 43.0 43.5 43.8 44.0 44.3 44.5 44.6 44.7 44.8 44.8 44.9 45.1 
0.7 44.4 46.6 47.8 48.5 49.0 49.6 50.0 50.3 50.6 50.8 51.0 51.1 51.1 51.2 51.3 51.6 
0.8 49.3 51.8 53.2 54.0 54.6 55.3 55.8 56.1 56.5 56.7 56.9 57.0 57.1 57.2 57.3 57.6 
0.9 53.7 56.6 58.1 59.1 59.7 60.6 61.1 61.4 61.9 62.1 62.3 62.5 62.6 62.7 62.8 63.2 
1.0 57.8 60.9 62.6 63.7 64.4 65.3 65.9 66.3 66.8 67.1 67.3 67.5 67.6 67.7 67.8 68.3 

1.1 61.4 64.8 66.7 67.9 68.7 69.7 70.3 70.7 71.2 71.6 71.8 72.0 72.1 72.2 72.3 72.9 
1.2 64.7 68.4 70.4 71.6 72.5 73.6 74.2 74.7 75.2 75.6 75.9 76.0 76.2 76.3 76.4 77.0 
1.3 67.7 71.6 73.7 75.0 75.9 77.0 77.7 78.2 78.8 79.2 79.5 79.7 79.8 79.9 80.0 80.6 
1.4 70.4 74.4 76.6 78.0 78.9 80.1 80.8 81.3 81.9 82.3 82.6 82.8 83.0 83.1 83.2 83.8 
1.5 72.8 77.0 79.2 80.6 81.6 82.8 83.6 84.1 84.7 85.1 85.4 85.6 85.7 85.9 86.0 86.6 

1.6 75.0 79.2 81.5 83.0 83.9 85.2 85.9 86.4 87.1 87.5 87.8 88.0 88.1 88.3 88.4 89.0 
1.7 76.9 81.3 83.6 85.0 86.0 87.3 88.0 88.5 89.2 89.5 89.9 90.1 90.2 90.3 90.5 91.1 
1.8 78.7 83.1 85.4 86.8 87.8 89.1 89.8 90.3 90.9 91.3 91.6 91.8 92.0 92.1 92.2 92.8 
1.9 80.2 84.7 87.0 88.4 89.4 90.6 91.3 91.8 92.4 92.8 93.1 93.3 93.4 93.5 93.7 94.3 
2.0 81.7 86.1 88.4 89.8 90.8 92.0 92.7 93.1 93.7 94.1 94.4 94.5 94.7 94.8 94.9 95.4 

2.1 83.0 87.4 89.7 91.0 92.0 93.1 93.8 94.3 94.8 95.1 95.4 95.6 95.7 95.8 95.9 96.4 
2.2 84.1 88.5 90.8 92.1 93.0 94.1 94.8 95.2 95.7 96.0 96.3 96.4 96.6 96.6 96.8 97.2 
2.3 85.2 89.5 91.7 93.0 93.9 95.0 95.6 96.0 96.5 96.8 97.0 97.1 97.3 97.3 97.4 97.9 
2.4 86.2 90.4 92.6 93.9 94.7 95.7 96.3 96.7 97.1 97.4 97.6 97.7 97.8 97.9 98.0 98.4 
2.5 87.1 91.3 93.3 94.6 95.4 96.3 96.9 97.2 97.6 97.9 98.1 98.2 98.3 98.3 98.4 98.8 

2.6 87.9 92.0 94.0 95.2 95.9 96.8 97.4 97.7 98.1 98.3 98.5 98.6 98.6 98.7 98.8 99.1 
2.7 88.6 92.6 94.6 95.7 96.5 97.3 97.8 98.1 98.4 98.6 98.8 98.9 98.9 99.0 99.1 99.3 
2.8 89.3 93.2 95.1 96.2 96.9 97.7 98.1 98.4 98.7 98.9 99.0 99.1 99.2 99.2 99.3 99.5 
2.9 89.9 93.8 95.6 96.6 97.3 98.0 98.4 98.7 99.0 99.1 99.2 99.3 99.4 99.4 99.5 99.6 
3.0 90.5 94.3 96.0 97.0 97.6 98.3 98.7 98.9 99.2 99.3 99.4 99.5 99.5 99.5 99.6 99.7 

3.2 91.5 95.1 96.7 97.6 98.2 98.7 99.1 99.2 99.4 99.6 99.6 99.7 99.7 99.7 99.8 99.9 
3.4 92.4 95.8 97.3 98.1 98.6 99.1 99.3 99.5 99.6 99.7 99.8 99.8 99.8 99.9 99.9 99.9 
3.6 93.1 96.3 97.7 98.5 98.9 99.3 99.5 99.6 99.8 99.8 99.9 99.9 99.9 99.9 99.9 100.0 
3.8 93.7 96.8 98.1 98.8 99.1 99.5 99.7 99.8 99.8 99.9 99.9 99.9 99.9 100.0 100.0 100.0 
4.0 94.3 97.2 98.4 99.0 99.3 99.6 99.8 99.8 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 

Note: The Gaussian probability for each value of t is listed in the last column. 

APPENDIX 

D 
HISTOGRAMS 

AND 
GRAPHS 

Graphs of experimental data and of theoretical predictions have always been im­
portant tools for scientists, in both the actual performance of research and in 

presentations of results. In recent years we have seen a proliferation of graphics dis­
plays as fast inexpensive computers and printers have facilitated the display-making 
process. Scientists have benefited from the new techniques and equipment, with 
many excellent commercial programs available for creating high-quality scientific 
graphics suitable for pUblication. 

In science, the object is to present results in a straightforward manner so that 
relevant points are illustrated clearly and without bias. Graphs with suppressed ze­
ros, which are common in advertisements, are not often seen in scientific papers. 
Bar graphs tend to be simple histograms rather than the multibar, brightly colored 
displays of magazines and newspapers. In fact, although the use of color is growing, 
especially in direct publication on the Internet, few scientific preprints and papers 
are printed in color, although discrete use can clarify graphical presentations signif­
icantly. Error bars, which are rare indeed in advertisements, are essential in a scien­
tific presentation. Exaggerated perspective and distorted scales have very limited 
use in scientific work whereas semi logarithmic plots that are often used in science 
are not often seen in business publications. 

It is often convenient to have graphics routines that are part of a simulation or 
an analysis program, rather than to use a separate graphing program. For example, 
in a Monte Carlo simulation, it is essential to be able to produce histograms and data 
graphs quickly at each stage of the study. Generations of scientists have made sim-

. . 
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More elegant and detailed graphs can be created by using the graphics features 
of particular programming languages, and those provided by data analysis programs 
and spreadsheets. Such programs can produce high-quality graphs and charts suitable 
for presentations and publications. Many of the graphs in this book, such as those in 
Chapter 2, were created by programs written in Fortran and Pascal. Others, such as 
those in Chapter 11, were created in Origin, a very powerful data analysis program 
with strong graphing features. 

D.I MAKING A GRAPH 

Whether a scientific graph is produced by hand or by computer, there are several ba­
sic principles that should be followed. The graph should be large enough to be read 
and understood easily, with appropriately proportioned abscissa and ordinate. Axes 
should be labeled with large, clean letters, and the axes scales should be clearly in­
dicated. If more than a single function is displayed, or if both data and curves are 
displayed, a box, or legend, may be superimposed on the graph to indicate the 
meaning of different symbols. In scientific journals, a description of the graph is 
generally included as text below the abscissa label. In internal papers and preprints, 
these descriptions are often collected in a separate section of the paper. For visual 
presentation, some descriptive material may be included in a box on the graph, but 
it is important that text be large enough to be clearly legible. One should avoid scat­
tering too much material over any graph, which gives a busy appearance. A properly 
made graph should not require many words of explanation. 

It is generally advisable to plot the independent variable as the abscissa and 
the dependent variable as the ordinate. However, if the independent data have a high 
degree of uncertainty while the corresponding measurements of the dependent data 
can be made with high precision, then it might be wise to interchange the two axes 
to simplify least-squares fitting. 

Reasonable, convenient values and intervals should be chosen for the scale 
marks on the two axes. For example, if abscissa values range from ° to 400, it might 
be reasonable to divide the x-axis into eight parts and thus to mark the abscissa with 
major, labeled ticks at 0, 100, 200, 300, and 400, with minor ticks half-way be­
tween. Dividing the axis into six parts and putting ticks at 66.7, l33.3, and so forth, 
would make it very difficult for a reader to interpret. 

In general, error bars should be included for ordinate variables except for sim­
ple histograms where the text clearly specifies that the uncertainties are statistical 
and therefore given by the square root of the value of the coordinate. Unless other­
wise noted, error bars generally indicate the standard deviation. Error bars usually 
are not necessary for abscissa variables. However, if appropriate, they may be 
drawn to indicate the resolution of the measurement or setting, or they may simply 
indicate the range of the variable over which data have been collected or grouped, 
as in the case of the width of a histogram bin. The text must explain the meaning of 
such error bars. If no error bar is shown for the abscissa, then it is useful to draw a 
,..~ .... ,.,.l.o. '""-"t'" I""\th.o.:T" C1urnhnl Ilt ,:a.o::aroh rlo::ato::a n{'\1nt tn ;n(fir-~tp thp n()fI;!ltl(ln nf thp (,pntr!=ll v~l-

D.2 GRAPHICAL ESTIMATION OF 
PARAMETERS 
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A graph of y versus x often provides a convenient way of estimating parameters of 
the relation y = y(x). The simplest example is the straight line 

y =A +Bx (D.l) 

wher~ the ~lope and the intercept can be estimated by making a graph and drawing 
a straight lllle th~t .relates y ~o x. Clearly the better way to handle this problem is by 
a least -squares fIttlllg techmque, but the graphical method can be useful in both re­
search and instructional laboratories for obtaining quick preliminary estimates of 
experimental results. 

If we wish to find from the graph the uncertainty in our estimate of the slope, , 
then we should attempt to draw two lines through the data, corresponding to esti­
mates of the largest and smallest reasonable slopes, Sl and S2. We should take ac­
count in the uncertainties in the data points, if they are available, and, because we 
are trying to estimate the uncertainty as a standard deviation, we should attempt to 
draw these two lines to bracket about two-thirds of the data points-not all the 
points. Making this estimate is often difficult and subjective, especially if there are 
few points and they exhibit a lot of scatter. The mean slope s is just the average of 
our two slopes, 

(0.2) 

and an approximate estimate of the uncertainty is the magnitude of half the difference 

(0.3) 

To gain practice in determining parameters from a graph, it is a worthwhile 
e~ercise to estimate the parameters from the graph and to compare those estimates 
wIth the results of a least-squares fit to the data. We should note that the two lines 
selected to give a reasonable estimate of the uncertainty in the slope may not be the 
sam.e two lines .we might cJ:aw to obtain a reasonable estimate of the uncertainty in 
th~ llltercept. FIgure 0.1 dIsplays the data of Figure 1.1 b, with lines bracketing the 
POlllts to show (a) reasonable ranges for estimating the intercept, and (b) reasonable 
ranges for estimating the slope. These lines were actually calculated from the results 
of a least-squares fit of the equation Y = A + Bx to the data, which yielded the pa­
rameters A and B and their uncertainties (TA and (TB. We calculated the two lines in 
Figure D.la from the equations Y = (A ± (TA) + Bx and those in Figure D.lb from 
the equations Y = A + (B ± (TB)X. We note that these lines are just particular exam­
ples of an infinite number of such lines corresponding to all combinations of the 
slope and intercept within one standard deviation ranges, and in any given graph, a 
decision must be made on which lines to draw. In particular, allowing the lines to in-
tersect at the interr.ent il\: in Picrllrp n lh tn,,,, nAt "";"0 tho ho~' ~~1 ... :~_ ~1.'- ____ 1_ 'L 
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Semilogarithmic Graphs 

When dealing with an exponential decay function, it is convenient to display the ac­
tivity as a function of time on a semilogarithmic graph. That is, if the relation is 

y(t) = yoe-at (D.4) 

we plot a graph of log(y) versus x. Fortunately semilogarithmic graph paper is read­
ily available so that it is not necessary actually to calculate any logarithms to make 
this plot. We merely have to select paper with the appropriate number of powers of 
10 for our plot, label the axes, and plot y versus x on the graph. Such a graph is il­
lustrated in Figure 8.1 for Example 8.l. 

Semilogarithmic graph paper comes in various cycles, corresponding to the 
number of decades or powers of 10 that can be plotted on a single sheet. Thus, for , 
example, on three-cycle paper we can plot y values that range from 1 to 1000 (or 
from 0.01 to 10.0, etc.). Note that we can never plot y values that are zero or nega­
tive on semilogarithmic paper. This is a problem when dealing with subtracted dis­
tributions, such as the counting experiment of Example 8.1, where, if we wish to 
plot the number of counts remaining after we have subtracted the average back­
ground from cosmic rays, we discover that, at large times, some bins have negative 
net counts. Those points, of course, cannot be displayed on a semilogarithmic 
graph. A full, least-squares fit to the total, unsubtracted data sample is clearly the 
right way to solve this problem, but if we are to attempt a graphical solution, we 
should be aware of this limitation. 

We can determine from our data the parameter a in Equation (D.4) by finding 
the slope of the straight line on the semilogarithmic graph just as we found the slope 
on ordinary graph paper for a simple linear plot. Note that when calculating the 
slope we must compute the logarithms of the y values. Thus, if the two ends of the 
straight line have coordinates (Xl' Yl) and (X2' Y2), the slope is given by 

(D.5) 

The uncertainty in the slope can again be determined by drawing two straight 
lines that bracket the mean slope, although the logarithmic form of the plot de­
creases the accuracy in this determination. 

Full-Logarithmic Graphs 

If we wish to display a power relation of the form y = Axn
, we may make a plot of 

y versus X on full-logarithmic paper or log-log paper. The result will be a straight 
line with slope n and we can obtain the slope, and therefore the exponent n, from the 
graph. This technique could be used, for example, to check the lIr2 law for radia­
tion intensity as a function of distance, by plotting a graph of intensity versus dis-
t~nl"'p. nn In.f"l"_lr\.f"'r ...... n __ ~ .... 
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introduced into the uncertainties in the process. Plotting on semilogarithmic or 
full-logarithmic paper is equivalent to such a variable change and we should at­
tempt to compensate for these distortions, if necessary. 

D.3 HISTOGRAMS AND FREQUENCY 
PLOTS 

If we wish to display the frequency distribution of a measured variable x, then a his­
togram is generally the simplest and clearest form of presentation. For example, we 
may have observed particles emitted in the decay of an unstable state and wish to 
present the number detected in successive time intervals as in Example 2.4. Alter­
natively, we may have measured secondary particles in a scattering experiment and 
wish to display the distribution of their energies. In such cases, we can display the 
frequency distribution of the individual measurements, or events, as a histogram of 
fix) versus x, where fix) is the number of events that have values of x between Xi and 
Xi + Ax, and Ax is the histogram interval or bin width. 

An alternate procedure for displaying binned data, which is especially useful 
for distributions with large numbers of bins, or for data with nonstatistical uncer­
tainties, is to make a regular graph of frequency versus the measured variable, afre­
quency plot, with the data points indicated by crosses and uncertainties by error 
bars. This procedure is especially convenient when there are many bins or when er­
ror bars must be displayed, as illustrated in Figure 8.1. 

A convenient procedure for finding the frequency distribution of (or binning) 
a continuous variable x is to label a bin with a tick mark at the lower limit Xl of the 
bin and to count within a bin those events for which Xi::::; X < Xi + Ax. This is suit­
able for most, but not all, data sets. Choice of the bin width depends on a number of 
factors. In the ideal situation with a large quantity of high-precision data, the bin 
width could be chosen to be very small. However, in real experiments, the number 
of events may not be very large and each X coordinate will have some uncertainty. 
As a general rule, the bin width should not be less than the uncertainty in the mea­
sured variable X and one should be very wary of any data structure that is narrower 
than the uncertainty in x. If the number of events is relatively small, then even wider 
binning may be necessary. With such data, the competition between statistical sig­
nificance and resolution of narrow effects in the histogram may become important. 
A histogram with less than ten events in its highest bin is not generally very infor­
mative, considering that the uncertainty in that bin will be over 30%. 

A problem arises when the bin width of a histogram is close to or equal to the 
least count of the data. This can happen when the data are integral numbers or with 
data that have been collected by a digital device. The previous suggestions that 
the histogram bins be labeled with the lower limit at the left of the bin may not be 
reasonable for such data, and it may be better to place tick marks at the center 
of the bins. 
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0.46 0.48 0.50 

Histogram of measu~ed times plotted with the bin width equal to the least count of a digital clock. The 
numbers on the abSCIssa correspond to the lower time limit of the bin. The dashed Gaussian curve was 
c~lculated fro~ the mean and standard deviation of the measurements. The solid curve was calculated 
WIth the mean Increased by half the bin width to correct for the truncation of the data. 

timer starts when the ball is released and stops when it hits the floor. Uncertainties in 
the measurements ,come mainly from variations in the starting and stopping times. 

The s~ude~t s ~easurements have been plotted in the histogram of Figure D.2 
where the bIll WIdth is equal ~o the least count (O.OIts). We assume that the digital 
clock truncates t?e measured tImes so each time measurement corresponds to the left­
hand ~dge ?f a bI~ ~nd the actual value of the time is somewhere within the bin limits. 
Thus, III this case It IS appropriate to indicate the lower value of the bin limit at the left­
hand edge of the bin. 

The d~sh.ed Gaussian curve was calculated from the mean (t = 0.431 s) and 
standard de~IatIOn (s = 0.0184) of the measurements. The curve clearly is shifted to 
the left relative to the .data. The discrepancy is caused by the fact that we neglected to 
correct for the truncatIOn of the data by the digital clock. To correct the mean we must 
add to it half the width of a bin to obtain t = 0.431 + 0.005 = 0.436 s. The Gaussian 
curve, calculated from the corrected mean, is shown as a solid line. 

Normalized Curves on Histograms 

When superimposing a theoretical curve on a data histogram, we often want to scale 
the area of thp r.lIrvp to th>lt of th", h;dron-r.,rn ror'~ ~~ __ ~1; __ .t. __ .. _ .. _ 'T'L ___ _ 
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to unit area, such as the Gaussian probability function of Equation (2.23). The area 
of one event on the histogram is equal to the bin width Lli multiplied by a unit in­
terval on the ordinate. Thus, the total area of the histogram is equal to the bin width 
multiplied by the total number of events (A = NLli). To scale the curve to the area 
of the histogram, we multiply the values P(Xi), calculated from the equation of the 
probability distribution, by the product of the number of events on the plot and the 
bin width, so that the plotted curve becomes 

(D.6) 

D.4 GRAPHICS ROUTINES 
We include source files on the website for routines which can be used to make sim­
ple graph and histograms. Most of the sample computer routines in this book make 

calls to these routines. 

Program D.I QUIKSCRP (website) accepts data that define graphs and -
histograms and writes a script file that can be read and interpreted by the executable 
program QDISPLAY.EXE (website) to produce displays on the monitor. Details of 
the calling procedures can be seen in the routine PLOTIT in the program unit 
\C HAPT-6\FITUTI L (website) called from the program \C HAPT-6\FITLI N E 

(APPENDIX E). For this program QuikScrp writes an output file FITLI N E.SCR. 

Program D.2 QUI KH 1ST (website) collects data and presents a character-based 
histogram on the monitor. Printed output is also available. PROGRAM 5.2: 

\C HAPT-5\POISDCAY illustrates use of this program. 

Program D.3 QDISPLAY. EXE (website) is an executable program that reads a 
script file written by QUI KSCR P and interprets the file to create a graphics display 
on the monitor. The command line instruction for running Q DIS P LAY with the 
script file produced by the program FITLI NE is QDISPLAY FITLI NE. 

APPENDIX 

E 
COMPUTER 
ROUTINES 

IN FORTRAN 

T~iS appen~ix list.s several routines that illustrate the material of the text. The rou­
tmes are lIsted m Fortran 77, an old, but quite readable version of that ever­

popular programming language. All routines have been tested; however, most of them 
req~ires subsidi.ary routines and drivers that are not listed. Complete programs and 
routmes are aVaJJ~ble on the Web in C++ as well as in Fortran. Readers are urged to 
log onto the websIte at www.mhhe.comlbevington to download these programs. 

We have tried to keep the routines simple, trading efficiency for clarity where 
necessary. To m~ke explicit which modules are required to form a complete pro­
gram, and to aVOld the need for command strings to link the object programs into an 
executable program, we have chosen to use the INC L U D E statement to present the 
compiler with a single source file from which to compile a single object module in­
corporating all required routines. We also use the INC L U D E statement to copy 
blocks of co M M 0 N and other variable-defining statements into routines. 

Because readers may not be familiar with Fortran, we list a few basic princi­
ple.s t~at .should help in understanding the instructions and following their logic. 
ThIS lIst mcludes only a selection of language elements that appear in the sample 
programs. 

STATEMENTS 

The format of Fortran statements was defined in terms of the 80-column Hollerith 
card: 
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columns 2-5: statement label (a number); 
column 6: reserved for a single digit number to indicate a continuation of 

the statement from the previous line; 
columns 7-72: program statements; 
columns 73-80: not used. 

Although it is not necessary to follow rigorously this scheme with a modem 
interactive compiler on a personal computer (for example, "tabs" can be used), the 
general order must be followed. 

PROGRAM FLOW 

Program flow can be controlled by I F statements, by IF TH EN statements (with 
ELSEIF and ENDIF), by DO AND DOWHILE statements that may refer to a 
termination label (all statements labels are numerical) or to the DO terminator; 
ENDDo, and by GOTO statements. Excessive use of the GOTO statement can lead 
to very confusing programs. In order to facilitate following the program flow, we 
have indented groups of instructions that are accessed through a control statement, 
such as IF THEN, or DO. 

Examples 
DO 1001 = 1 TO 20 

x=1 

Y( I) = SQRT(X) 

100 CONTINUE 

VARIABLE DEFINITIONS 

DO I = 1 TO 20 
x=1 

Y = SQRT(X) 

ENDDo 

x=l 

DO WHILE X .LE. 20 
Y = SQRT(X) 

x=x+l 

ENDDo 

Fortran does not require the rigorous variable typing of newer languages. As default 
typing, variables with names beginning with I, J, K, L, M, or N are defined as 
I NT E G E R; variable names beginning with other letters are identified as REA L. 

However, we have attempted to identify most of the variables in the routines and in 
some instances have violated the default typing for program clarity. 

Examples 
INTEGER S 1, s3, Nit 01 
REAL X, T, TPRIME, SIGMA Til .01 
LOGICAL NEXTVAR/.FALSE'/ 

Note that the variables N, SIGMAT and, NEXTVAR in the preceding examples 
have been initialized to the values to, 1.0, and FALSE, respectively. The DATA 

statement also can be used to initialize variables. DATA SQRTPl/l.77245391 

Other types include: 

CHARACTER 

COMPLEX 

DOUBLE PRECISION 
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Variables defined in named COM M 0 N statements are available to any routine 
that includes the statement. Local variables can be defined in DIM ENS ION 

STATEMENTS. Array sizes may be defined in PARAMETER statements or di­
rectly in a COMMON or DIMENSION statement. 

Examples 
PARAMETER(MAXPARAM to) 
COMMON/FITVARS! NPTS, M, NFREE, MARRAY(MAXPARAM), 
ZARRAY(200) 

DIMENSION NPLAN(30). 

Fortran has several types of subprograms that can be called from another rou­
tine: SUBROUTINE and FUNCTION are the most common. Data types defined 
in a subprogram must be consistent with the definitions in the calling routine. A 
function name must specify its own data type. 

Examples 
CALL SETRANDOMDEVIATESEED(S 1, s2, S3) 
TPRIME = GAUSSSMEAR(T,SIGMAT) 

REAL FUNCTION GAUSSSMEAR(X,DX) 

SUBROUTINE SETRANDOMDEVIATESEED(SA,SB,SC) 

The INC L U D E statement copies the specified file into the body of the 
program. 

Example 
INCLUDE ,\CHAPT-5\MoNTEINC.FOR' 

As well as comment statements that begin with a "C" in column 1, comments 
may appear in statement lines, preceded by the exclamation point (!). 
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E.1 Routines from Chapter 5 
C PROGRAM 5.1: \CHAPT-5\HOTROD.FoR 

C SIMULATED VARIATION OF TEMPERATURE ALONG A METAL ROD 

C 10 CM ROD-TEMPERATURE IS ZERO AT ONE END, 100 DEGREES C AT OTHER. 

C USES MONTELIB 

PROGRAM HOTROD 
INTEGER S I, S2, s3, Nil 01 1--- GENERATE 10 POINTS AT I CM INTERVALS 

REAL X, T, TPRIME, SIGMATII.OI !--- WITH AN UNCERTAINTY OF +-1 DEGREE 

REAL GAUSSSMEAR 

sl = 1171 

s2 = 343 

s3 = 1322 

CALL SETRANDOMDEVIATESEED{SI, s2, s3) 

PRINT *,' 

x = -0.5 

HOT ROD TEST DATA, SIGMA=', SIGMAT 

DO 100 I = I, N 

x = x + 1.0 ! ___ POSITION ALONG ROD 

T = 10.0*X !--- CALCULATE MEAN TEMPERATURE AT POINT 

TPRIME = GAUSSSMEAR{T,SIGMAT) !--- SMEAR IT 

PRINT *,1, X, T, TPRIME 

100 CONTINUE 

CALL EXIT 

END 

INCLUDE C:\CHAPT-5\MONTELlB.FOR 

C PROGRAM 5.2: \CHAPT-5\POISDCAY.FOR 

C SIMULATED DECAY OF AN UNSTABLE STATE. 

C USES QUIKHIST, MONTELIB 

PROGRAM POISDCAY 
1 ___ GENERATE A 200-EVENT POISSON HISTOGRAM 

REAL LO/O/, INT/1/, HI/221 

INTEGER NEVENTS/400/, POISSONDEVIATE 

REAL Mu/8.41 

INTEGER sl, s2, S3, I, K 

REAL X 

SI = 1171 

s2 = 343 

s3 = 1322 

CALL SETRANDOMDEVIATESEED{S I, S2, s3) 

CALL HISTINIT{' ') !---OUTPUT FILE NAME OR ' , FOR MONITOR OUTPUT 

CALL H ISTSETUP{ I ,LO,INT,HI,'POISSON - COUNTS/1 0 SEC') 

K=POISSONDEVIATE{MU,.TRUE.) !--- INITIALIZE - MAKE THE TABLE 

DO 100 I = I, NEvENTS 

K = POISSONDEVIATE{MU,.FALSE.) 

X=K 

CALL H ISTOGRAM{ I ,X) 

100 CONTINUE 
CALL HISTDISPLAYALL{.FALSE.) !DUMMY ARG-COMPAT. WITH QUIKSCRP 

CALL EXIT 

END 

INCLUDE \CHAPT-5\MONTELlB.FoR 

1",,...1 lin!" \ApP!"ND-D\OUIKHIST.FOR !REPLACE WITH QUIKSCRP FOR GRAPHICS 

C PROGRAM 5.3: \CHAPT-5\MONTELIB.FoR 

C MONTE CARLO LIBRARY ROUTINES 
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SUBROUTINE SETRANDOMDEVIATESEED{SA,SB,SC) 

I NCLU DE '\C HAPT-5\MoNTEI NC. FOR' 

INTEGER SA, SB, sc 

SEEDI = SA 

SEED2 = SB 

SEED3 ;" SC 

RETURN 

END 

SUBROUTINE GETRANDOMDEVIATESEED{SA,SB,SC) 

INCLUDE ,\CHAPT-5\MoNTEINC.FOR' 

INTEGER SA, SB, SC 

SA = SEEDI 

SB = SEED2 

sc = SEED3 

RETURN 

END 

REAL FUNCTION RANDOMDEVIATE{) !--- WICHMANN AND HILL 

I NCLU DE '\C HAPT-5\MoNTEI NC. FOR' 

REAL TEMP 

SEED I = 171 *MOD{SEED 1,177) - 2*{SEED I I 177) 

IF (SEED I .LT. 0 ) SEEDI = SEEDI + 30269 

SEED2 = 172*MOD{SEED2, (76) - 35*{SEED2 I 176) 

IF (SEED2 .L T. 0 ) SEED2 = SEED2 + 30307 

SEED3 = 170*MOD{SEED3, 178) - 63*{SEED3 I (78) 

IF (SEED3 .L T. 0 ) SEED3 = SEED3 + 30323 

TEMP = SEED 1130269. + SEED2/30307. + SEED3/30323. 

RANDOMDEVIATE = TEMP-AINT{TEMP) 

RETURN 

END 

C -FIND A RANDOM VARIABLE DRAWN FROM THE GAUSSIAN DISTRIBUTION-

REAL FUNCTION RANDOMGAUSSDEVIATE{) 1--- BOX-MUELLER 

INCLUDE ,\CHAPT-5\MONTEINC.FOR' 

LOGICAL NEXTVARI.FALSE.I 

REAL R, F, ZI, Z2, XI RANGAUSS, RANDOMDEVIATE 

IF (NEXTVAR) THEN 

NEXTVAR = .FALSE. 

RANDOMGAussDEVIATE = X2RANGAUSS 

ELSE 

100 ZI = -I + 2*RANDOMDEVIATE{) 

z2 = -I + 2*RANDOMDEVIATE{) 

R = ZI*ZI + Z2*Z2 

IF (R .GE. I) GOTO 100 

F = SQRT{-2*ALOG{R)/R) 

x I RANGAUSS = Z I *F 

X2RANGAUSS = Z2*F 

RANDoMGAlJ.c:::.c:::nJ:"vl.dTt:' _ V1CAIo.Ir"'A •• "" ... 
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NEXTVAR = .TRUE. 

ENDIF 

RETURN 

END 

REAL FUNCTION GAUSSSMEAR(X,DX) 

REAL x, DX 

REAL RANDOMGAuSSDEVIATE 

GAUSSSMEAR = X + RANDOMGAUSSDEVIATEO * DX 

RETURN 

END 

C -RECURSION METHOD FOR POISSON PROBABILITY (P(N,M). To FIND P(N,M) MUST 

C ALL WITH SUCCESSIVE ARGUMENTS J=O, I , .. N. MAX Mu=85, NO LIMIT ON X 

REAL FUNCTION POISSONRECUR(J, M) 

INCLUDE ,\CHAPT-5\MONTEINC.FOR' 

INTEGER J 

REAL M 

IF (J.EQ.O) THEN 

POISS = EXP(-M) 

ELSE 

POISS = (POISS*M)!J 

ENDIF 

!--- POISS = (MI\J)EXP(-MU!J) 

POISSONRECUR = POISS 

RETURN 

END 

C -FIND A RANDOM VARIABLE DRAWN FROM THE POISSON DISTRIBUTION 

INTEGER FUNCTION POISSONDEVIATE(MU, INIT) 

INCLUDE ,\CHAPT-5\MONTEINC.FOR' 

INTEGER I, X, N 

REAL MU, P, R, POISSONRECUR 

LOGICAL INIT 

IF (INIT) THEN ! --- MAKE TABLE OF SUMS ---

N = AINT(MU + 8* SQRT(MU» I ---IE., 8*SIGMA 

IF (N .GT. MAXBINS ) THEN 

PRINT *, 'OVERFLOW ERROR IN ROUTINE POISSON DEVIATE' 

CALL EXIT 

ENDIF 

PTABLE(O) = POISSONRECUR(O,MU) 

DO 100 I = I, N- I 

P = POISSONRECUR(I,MU) 

PTABLE(I) = PTABLE(i-I)+P 

100 CONTINUE 

PTABLE(N) = 

ELSE 

X = -I 

R = RANDOMDEVIATEO 

200 X = I + X 

! --- ASSURE UNIT PROBABILITY ---

I --- GENERATE AN EVENT ---

IF (PTABLE(X) .LE. R) GOTO 200 1- REPEAT UNTIL PTABLE(X) >= X 

POISSON DEVIATE = X 
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ENDIF 

RETURN 

END 

PROGRAM 5.4: \CHAPT-5\KDECAY.FOR 

C ILLUSTRATION OF EXAMPLE 5.7 

C PROGRAM 5.5: \CHAPT-S\MoNTEINC.FoR 

C COMMON FOR MONTE CARLO LIBRARY 

(WEBSITE) 

COMMON!MC! SEEDI, SEED2, SEED3, X2RANGAUSS, POISS, PTABLE 

PARAMETER (MAXBINS = 100) 

INTEGER SEED I, SEED2, SEED3 

REAL X2RANGAUSS, PTABLE(O:MAXBINS) 

REAL*8 POISS 

C ---------------END MONTE INC -----------------________ _ 

E.2 Routines from Chapter 6 
C PROGRAM 6. I: \CHAPT-6 FITLINE.FoR 

C LEAST-SQUARES FIT TO A STRAIGHT LINE BY METHOD OF DETERMINANTS 

C USES FITUTIL 

PROGRAM FITLINE 

C -------------------------- M A I N R 0 UTI N E ---------------------__ 

INCLUDE '\CHAPT-6 FITVARS.FoR' 

CHARACTER*40 TITLE 

CHARACTER*I VORG, READCHAR 

INTEGER I 

REAL DET, CHI2, CALCCHISQ 

M=2 !--- FIND 2 PARAMETERS 
PRINT *, '(V)OLTS OR (G)EIGER? ' 

VORG = READCHARO 

IF (VORG .EQ. 'V') THEN 

CALL FETCHDATA(,\CHAPT-6\VOLTS.DAT' ,TITLE) 

ELSEIF «VORG .EQ. 'G') .OR. (VORG .EQ. 'G'» THEN 

CALL FETCHDATA(,\CHAPT-6\GEIGER.DAT',TITLE) 

DO I 00 I = I , N PTS 

X(i) = I!X(I)**2 

!--- EXAMPLE 6. I 

!--- EXAMPLE 6.2 

!--- FITTING I!RI\2 
100 CONTINUE 

I 

2 

ENDIF 

CALL LlNEFIT(DET) 

CALL CALCULATEY !--- FILL ARRAY YCALC FOR CALCCHISQ AND PLOTIT 

CHI2 = CALCCHISQO 

CALL OUTPUT(.FALSE. , 'CON', CHI2, TITLE) !--- FALSE FOR NO ERROR MATRIX 

IF (VORG .EQ. 'V') THEN 

CALL PLOTIT('FITLlNE.SCR',.FALSE.,.FALSE., !---SCRPT FILE,LOG?,SPLINE? 

'C', ABS(X(2)-X( I »!20, !--- DATA CIRCLE, RAD OF CIRCLE 

0.0, 0.0, 100.0, 3.0, !--- XI,YI,X2,Y2 
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3 5, 6, !--- # X-DIV, # Y-DIV 

4 'X (CM)', 'POTENTIAL DIFF(ERENCE (VOLTS)') !--- AXIS LABELS 

2 

ELSEIF (VORG .EQ. 'G') THEN 

CALL PLOTIT('FITLINE.SCR',.FALSE. ,.FALSE., 

'C', ABS(x(2)-X( I »/50, 0.0,0.0, 30.0, 1000.0, 6, 5, 

'SQUARED INVERSE DISTANCE (IIM A 2)', 'NUMBER OF COUNTS PER SEC') 

ENDIF 

READ * 

CALL CLOSEGRAPHICS 

END 

SUBROUTINE CALCULATEY 

INCLUDE ,\CHAPT-6\FITVARS.FOR' 

INTEGER I 

DO 1001= I , NPTS 

1--- FILLS ARRAY YCALC 

YCALC(I) = A( I) + A(2)*X(I) 

100 CONTINUE 

RETURN 

END 

REAL FUNCTION CALCCHISQ() 1--- ASSUMES ARRAY yCALC HAS BEEN FILLED 

INCLUDE ,\CHAPT-6\FITVARS.FOR' 

INTEGER I 

REAL CHI2 

CHI2=0. 

DO 100 I = I , NPTS 

CHI2 = CHI2 + ( (Y(I)-YCALC(I»/SIGY(I»**2 

100 CONTINUE 

CALCCHISQ = CHI2 

RETURN 

END 

SUBROUTINE LINEFIT(DET) 

INCLUDE ,\CHAPT-6\FITVARS.FoR' 

REAL DET 

INTEGER I 

REAL SUMWT, SUMX, SUMY, SUMX2, SUMY2, SUMXY, WEIGHT 

SUMWT = 0 

SUM = 0 

SUMY = 0 

SUMX2 = 0 

sUMY2 = 0 

SUMXY = 0 

C --------- ACCUMULATE WEIGHTED SUMS ----------­

DO 100 1= I , NPTS 

WEIGHT = I/SIGY(I)**2 

SUMWT 

SUMX 

= SUMWT + WEIGHT 

= SUMX + WEIGHT * X(I) 

SUMY 

SUMX2 

sUMY2 

SUMXY 

100 CONTINUE 
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= SUMY + WEIGHT * Y(I) 

= SUMX2 + WEIGHT * X(I)**2 

= SUMY2 + WEIGHT * Y(I)**2 

= SUMXY + WEIGHT * X(I)*Y(I) 

C ---CALCULATE THE PARAMETERS - CUT OUT IF DETERMINANT IS NOT> 0 __ _ 

DET = SUMWT * SUMX2 - SUMX * SUMX 

IF(DET.GT.O) THEN 

A( I) = (SUMx2*sUMY - SUMX*SUMXY)/DET 

A(2) = (SUMXY*SUMWT - SUMX*SUMY) IDET 

SIGA( I) = SQRT(SUMX2/DET) 

SIGA(2) = SQRT(SUMWT/DET) 

ELSE 

CALL ERRORABORT('DETERMINANT < OR = 0 IN LINEFIT') 

ENDIF 

RETURN 

END 

INCLUDE ,\CHAPT-6\FITUTIL.FOR' FITUTIL INCLUDES QUIKSCRP.FoR 

C PROGRAM 6.2: \CHAPT-6\FITVARS.FoR (WEBSITE) 

C INCLUDE FILE OF CONSTANTS, VARIABLES AND ARRAYS FOR LEAST-SQUARES FITS 

C ALL GLOBAL TYPES, CONSTANTS AND VARIABLES ARE DECLARED HERE. 

C THE ARRAY LIMITS MAXDATA AND MAXPARAM CAN BE SET AS REQUIRED 

C PROGRAM 6.3: \CHAPT-6\FITUTIL.FOR 

C GENERAL UTILITY ROUTINES 

E.3 Routines from Chapter 7 
C PROGRAM 7.1: \CHAPT-7\MULTREGR.FoR 

FOR PARTICULAR PROBLEMS. 

(WEBSITE) 

C LEAST-SQUARES FIT TO A POWER SERIES AND TO LEGENDRE POLYNOMIALS. 

C USES FITFUNC7, MAKEAB7, MATRIX, FITUTIL 

C 

C 

PROGRAM MULTREGR 

M = NUM OF PARAMETERS, NPTS=NUMBER OF DATA PAIRS 

DATA AND UNCERTAINTIES ARE IN ARRAYS X, Y, DY. ' 

INCLUDE ,\CHAPT-6\FITVARS.FoR' 

COMMON IFITVARS7/PAE 

CHARACTER * I PAE 

REAL DET, CHI2, CALCCHISQ 

INTEGER I 

LOGICAL SPL 

CHARACTER* I READCHAR 

CHARACTER*40 TITLE 

PRINT *, '(PlOWER SERIES, (A)LL LEGENDRE TERMS TO L = 4,' 
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PRINT *, 'OR (E)VEN LEGENDRE TERMS(L = 0,2,4).' 

PRINT *, 'TYPE P,A OR E ' 

PAE = READCHAR() 

1000 FORMAT(A I) 

IF (PAE .EQ. 'P') THEN 

CALL FETCH DATA (,\CHAPT-7\THERMCOU.DAT', TITLE) 

PRINT *, 'TYPE NUMBER OF PARAMETERS' 

READ *, M 

ELSEIF (PAE .EQ. 'A') THEN 

CALL FETCH DATA('\C HAPT-7\LEGEN DRE.DAT' ,TITLE) 

M=5 

ELSEIF (PAE .EQ. 'E' ) THEN 

CALL FETCHDATA(,\CHAPT-7\LEGENDRE.DAT',TlTLE) 

M=3 

ENDIF 1--- PAE 

CALL MAKEBETA 

CALL MAKEALPHA 

1--- SET UP THE LINEAR BETA MATRIX 

1--- SET UP THE SQUARE ALPHA MATRIX 

CALL MATINV(M, ALPHA, DET) 1--- INVERT ALPH TO GET EPSILON MATRIX 

CALL LlNEARBySQUARE(M,BETA,ALPHA,A) 1--- BETA X EPS = PARAMETER MATRIX 

CALL CALCULATEY 

CHI2 = CALCCHISQ() 

DO lOa I = I, M 

SIGA(I) = SQRT(ALPHA(I,I» 

I 00 CONTINUE 

I 

2 
3 

4 

I 

2 

CALL OUTPUT(.TRUE., 'CON', CHI2, TITLE) 1--- TRUE TO PRINT ERROR MATRIX 

IF (M .GT. 2 ) THEN 

SPL = .TRUE. 1--- PLOT A CURVE 

ELSE 

SPL = .FALSE. 1--- PLOT A LINE 

ENDIF 

IF (PAE .EQ. 'P') THEN 

CALL PLOTIT('MULTREGR.SCR', .FALSE., SPL, 1--- FILE,LOG?,SPLINE 

'C', (x(2)-x( I »/12, 1--- DATA CIRCLES, RADIUS OF DATA CIR 

-10., -2.,110.,4., 1--- XI,YI, X2,Y2 

6, 6, 1- X,Y GRID MARKS 

'TEMPERATURE (DEGREES CELSIUS)','VOLTAGE (MV)') 

ELSE IF «PAE .EQ. 'A') .OR. (PAE .EQ. 'E'» THEN 

CALL PLOTIT('MULTREGR.SCR', .FALSE., .TRUE., 

'C', (x(2)-x( I »/10, a., 0.,180., 1500., 6, 6, 

'THETA(DEGREES)', 'NUMBER OF COUNTS') 

ENDIF 1--- PAE 

CALL CLosEGRAPHICS 

END 

I NCLU DE '\C HAPT-7\FITFu Nc7. FOR' 

I NCLU DE '\C HAPT-7\MAKEAB7 .FOR' 

INCLUDE ,\CHAPT-6\FITUTlL.FOR' 

INCLUDE '\APPEND-B\MATRIX.FOR' 

::: PROGRAM 7.2: \CHAPT-7\FITFUNC7.FoR 

::: FITTING FUNCTIONS FOR CHAPTER 7 EXAMPLES. 

REAL FUNCTION POWERFUNC(K, XX) 

INTEGER K 

REAL XX 

REAL YY 

INTEGER I 

YY = I 
IF (K .GT. I ) THEN 

DOIOOI=2,K 

YY=XX*YY 

100 CONTINUE 

ENDIF 

POWERFUNC = YY 

RETURN 

END 

REAL FUNCTION LEGFUNC(K, XX) 
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C DEFINE SEPARATE TERMS IN A SERIES, Y = AO*LO(X) + A I *L I (X) + .. 
C NOTE K = I CORRESPONDS TO ZEROTH ORDER. 

C VAR PAE: CHAR 'P'-POWER SERIES, 

C 'A'-ALL LEGENDRE TERMS TO ORDER M, 

C 'E'-EVEN LEGENDRE TERMS} 

C 

lOa 

COMMON IFITVARS7/PAE 

CHARACTER * I PAE 

INTEGER K 

REAL XX 

INTEGER KK, I 

REAL c, P1/3.14159/, LEGPOLY(II) 1--- I.E., OTH THRU 10TH ORDER 

IF (PAE .EQ. 'E') KK = 2*K - I 

IF (PAE .EQ.'A') KK = K 

C = COS(PI*XXlI80) 

LEGPOLY( I) = I 1--- FOR BETTER EFFICIENCY, COULD CALC ONCE AND SAVE 

IF (KK .GT. I ) THEN 

LEGPOLY(2) = C 

IF (KK .GT. 2 ) THEN 

DO 100 I = 3, KK 

LEGPOLY(I)=«2*1-1 )*C*LEGPOLY( I-I )-(1-1 )*LEGPOLY(I-2»/1 

CONTINUE 

ENDIF !--- KK> 2 

ENDIF 1--- KK> 

LEGFuNC = LEGPOLY(KK) 

RETURN 

END 

REAL FUNCTION FUNCT(K, XX) 

INTEGER K 

REAL XX 

REALLEGFUNC,POWERFUNC 

COMMON IFITVARS7/PAE 

CHARACTER * I PAE 
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IF «PAE .EQ. 'A') .OR. (PAE.EQ.'E'» FUNCT = LEGFUNC(K,XX) 

IF (PAE .EQ. 'P') FUNCT = POWERFUNC(K,XX) 

RETURN 

END 

SUBROUTINE CALCULATEY 

INTEGER I, K 

REAL YY, FUNCT 

INCLUDE ,\CHAPT-6\FITVARS.FOR' 

DO I 00 I = I, N PTS 

YY = 0 

DO 200 K = I, M 

YY = YY + A(K) * FUNCT(K,X(I» 

200 CONTINUE 

YCALC(I) = YY 

100 CONTINUE 

RETURN 

END 

REAL FUNCTION CALCCHISQ() !--- ASSUMES ARRAY YCALC HAS BEEN FILLED 

INTEGER I 

REAL CHI2 

I NCLU DE '\C HAPT-6\FITVARS. FOR' 

CHI2=0. 

DO I 00 I = I, N PTS 

CHI2 = CHI2 + ( (Y(I)-YCALC(I» I SIGY(I»**2 

I 00 CONTINUE 

CALCCHISQ = CHI2 

RETURN 

END 

C PROGRAM 7.3: \CHAPT-7\MAKEAB7.FOR 

C ROUTINES TO SET UP THE BETA AND ALPHA MATRICES FOR LINEAR REGRESSION 

C USES MATRIX, FITFuNC7 

C 

SUBROUTINE MAKEBETA 

INTEGER I, K 

!--- MAKE THE BETA MATRICES 

REAL FUNCT 

INCLUDE 'C:\CHAPT-6\FITVARS.FoR' 

DO 100 K=I, M 

BETA(K)=O 

DO 200 1= I, NPTS 

BETA(K)=BETA(K) + Y(I)*FUNCT(K, X(I»/sIGY(I)**2 

200 CONTINUE 

100 CONTINUE 

RETURN 

END 

SUBROUTINE MAKEALPHA 

INTEGER I,J,K 

REAL FUNCT 

!--- MAKE THE ALPHA MATRICES 

I NCLU DE 'C :\C HAPT-6\FITVARS. FOR' 

DO 100J=I, M 

DO 200 K=I, M 

ALPHA(J,K)=O 

DO 3001= I, NPTS 
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ALPHA(J,K) = ALPHA(J,K)+FuNCT(J, X(I»*FUNCT(K, X(I»/SIGY(I)**2 

300 CONTINUE 

200' CONTINUE 

100 CONTINUE 

RETURN 

END 

E.4 Routines from Chapter 8 
C PROGRAM 8.0: \CHAPT-8\NONLlNFT.FoR 

C MAIN CALLING ROUTINE FOR NON-LINEAR FITTING METHODS 

C USES GRIDSEAR, GRADSEAR, EXPNDFIT, MARQFIT, FITFUNCS, MAKEABS, 

C NUMDERIV, MATRIX, FITUTIL 

PROGRAM NONLINFT 

INTEGER TRIAL, J, METHOD 

REAL STEPDOWN, LAMBDA, CHISQR, CALCCHISQ 

CHARACTER*40 TITLE 

REAL STEPSCALE(4)/0.49999, 0.99999, 0.001, 0.0011 

INCLUDE ,\CHAPT-6\FITVARS.FoR' 

PRINT *,' (I )GRID SEARCH, (2)GRADIENT SEARCH' 

PRINT *,' (3)CHISQ EXPANSION, (4)FUNCTION EXPANSION' 

PRINT *, 'TYPE I, 2, 3, OR 4 ---' 

READ *, METHOD 

CHICUT = 0.01 

STEPDoWN = 0.1 !--- STEP DOWN THE GRADIENT IN GRADLS 

LAMBDA = 0.001 !--- FOR MARQUARDT METHOD ONLY 

STEPSIZE = STEPSCALE(METHOD) 1--- SCALES DELTAA(J) 

CALL FETCHDATA(,\CHAPT-S\RADIODK.HST',TITLE) 

CALL FETCH PARAMETERS !--- USES NPTS, MUST FOLLOW FETCH DATA 

TRIAL = 0 

CHISQR = CALCCHISQ() 

CHIOLD = CHISQR + CHICUT + 
DO WHILE (ABS(CHIOLD - CHISQR) .GE. CHICUT) 

CHIOLD = CHISQR 

PRINT 1000, TRIAL, CHISQR 

1000 FORMAT(' TRIAL #',14,' CHISQ =', FIO.I) 

PRINT 1100, (A(J), J = I,M) 

1100 FORMAT(6FI2.4) 

110 

120 

130 

PRINT * 
GOTO(IIO, 120, 130,140), METHOD 

CALL GRIDLS(CHISQR) 

GOTO 150 

CALL GRADLS(CHISQR, STEPDOWN) 

GOTO 150 

CALL CHIFIT(CHISQR) 

GOTO ISO 
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140 CALL MARQUARDT(CHISQR, CHICUT, LAMBDA) 

150 TRIAL = TRIAL + I 
ENDDo 

151 CALL CALCULATEY 

200 

IF «METHOD .EQ. I) .OR. (METHOD .EQ. 2» THEN 

DO 200 J = I, M 

SIGA(J) = SIGPARAB(J) 

CONTINUE 

!--- DCHI2 = I 

CALL OUTPUT(.FALSE., 'CON' ,CHISQR, TITLE) !--- NO ERROR MATRIX 

ELSEIF «METHOD .EQ. 3) .OR. (METHOD .EQ. 4» THEN 

IF (METHOD .EQ. 4 ) THEN 

CALL MARQUARDT(CHISQR,CHICUT,O) 

ENDIF 

DO 300 J = I, M 

SIGA(J) = SIGMATRX(J) 

!--- GET ERROR MATRI 

!--- ERROR MATRIX 

300 CONTINUE 

I 

CALL OUTPUT(.TRUE., 'CON', CHISQR, TITLE) !--- WITH ERROR MATRIX 

ENDIF 

CALL PLOTIT('NONLIN.SCR', .TRUE., .TRUE., 1--- SCRPT FILE, LOG?, SPLINE? 

'C', (X(2)-X( I »/5, 1--- DATA CIRCLES, RADIUS OF CIRCLES 

2 0., I., 900., 1000., !--- RANGES-X I ,YI ,X2,Y2 

3 6, 6, !--- NUM X-AXIS DIV, NUM Y-AXIS DIV 

4 'TIME (SEC)', 'NUMBER OF COUNTS') !--- AXIS LABELS 

CALL CLOSEGRAPHICS 

END 

C SAMPLE FITTING FUNCTION FOR NON-LINEAR FtTS 

C EXAMPLE IS SUM OF 2 EXPONENTIALS ON A CONSTANT BACKGROUND 

REAL FUNCTION EXPF(A,X) 

REAL A,X 

REAL YY, ARG 

ARG = ABS(XlA) 

IF (ARG .GT. 60 ) THEN 

YY = 0 

ELSE 

YY = EXP(-ARG) 

ENDIF 

ExpF = YY 

RETURN 

END 

FUNCTION YFUNCTION(XX) !--- REAL 

REAL YFUNCTION, XX, ExpF 

INCLUDE '\CHAPT-6\FITVARS.FoR' 

YFUNCTION = A( I) + A(2)*EXPF(A(4),XX) + A(3)*ExpF(A(5),XX) 

RETURN 

END 

INCLUDE '\CHAPT-8\GRIDSEAR.FoR' 

INCLUDE '\CHAPT-8\GRADSEAR.FOR' 

INCLUDE '\CHAPT-8\ExPNDFIT.FoR' 

!--- I-GRID SEARCH METHOD 

!--- 2-GRADIENT SEARCH METHOD 

1--- 3-FuNCTION EXPANSION METHOD 
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INCLUDE ,\CHAPT-8\MARQFIT.FoR' !--- 4-MARQUARDT METHOD 

INCLUDE ,\CHAPT-6\FITUTIL.FOR' 

INCLUDE ,\CHAPT-8\FITFuNC8.FoR' 

INCLUDE ,\CHAPT-8\MAKEAB8.FoR' 

INCLUDE ,\CHAPT-8\NuMDERIV.FOR' 

INCLUDE '\APPEND-B\MATRIX.FoR' 

C PROGRAM·8.1: \CHAPT-B\GRIDSEAR.FOR 

!--- USED BY ALL METHODS 

!--- USED BY METHODS 4 AND 5 

!--- USED BY METHODS 4 AND 5 

1--- USED BY METHODS 4 AND 5 

C NON-LINEAR FIT BY THE GRID-SEARCH METHOD 

C USES FITFUNCB, FITUTIL 

SUBROUTINE GRIDLS(CHISQR) 

REAL CHISQR 

REAL CALCCHISQ 

REAL SAVE,DELTA, DELTA I ,DEL I ,DEL2,AA,BB,CC,DISC,ALPH ,X I ,X2 

INTEGER J 

INCLUDE ,\CHAPT-6\FITVARS.FoR' 

CHISQ2 = CALCCHISQ() 

C -FIND LOCAL MINIMUM FOR EACH PARAMETER-

DO 100 J = I, M 

DELTA = DELTAA(J) 

A(J) = A(J) + DELTA 

CHISQ3 = CALCCHISQ() 

IF (CHISQ3 .GT. CHISQ2 ) THEN 

DELTA = -DELTA 1--- STARTED IN WRONG DIRECTION 

A(J) = A(J) + DELTA 

SAVE = CHISQ2 !--- INTERCHANGE 2 AND 3 SO 3 IS LOWER 

CHISQ2 = CHISQ3 

CHISQ3 = SAVE 

ENDIF 1--- IF (CHISQ3 ... 

C -INCREMENT OR DECREMENT A(J) UNTIL CHI SQUARED INCREASES-

I 10 CONTINUE 

CHISQI = CHISQ2 

CHISQ2 = CHISQ3' 

A(J) = A(J) + DELTA 

CHISQ3 = CALCCHISQ() 

1--- MOVE BACK TO PREPARE FOR QUAD FIT 

IF (CHISQ3 .LE. CHISQ2) GOTO 110 

C -FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS­

DELI = CHISQ2 - CHISQI 

DEL2 = CHISQ3 - 2*CHISQ2 + CHISQI 

DELTAI = DELTA * (DELI/DEL2 + 1.5) 

A(J) = A(J) - DELTA I 

CHISQ2 = CALCCHISQ() !--- AT NEW LOCAL MINIMUM 

C -ADJUST DELTA FOR CHANGE OF 2 FROM CHISQ AT MINIMUM-

AA = DEL2/2 !--- CHISQ = AA*A(J)**2 + BB*A(J) + CC 

BB = DEL I - DEL2/2 

cc = CHISQI-CHISQ2 

DISC = BB**2 -4*AA*(CC-2) !--- CHISQR DIFF(ERENCE) = 2 

IF (DISC .GT. 0 ) THEN !--- IF NOT, THEN PROBABLY NOT PARABOLIC YET 

DISC =SQRT(DISC) 

ALPH = (-BB - DISC)/(2*AA) 
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xl = ALPH*DELTA + A(I) - 2*DELTA !--- A(J) AT CHlsQ MINIMUM+2 

DISC = BB**2 - 4*AA*CC 

IF (DISC.GT.O ) THEN 

DISC = SQRT(DISC) 

ELSE 

DISC = 0 1--- ELiM ROUNDING ERR 

ENDIF 

ALPH = (-BB - DISC)/(2*AA) 

x2 = ALPH*DELTA + A( I) - 2*DELTA 1--- A(J) AT CHlsQ MINIMUM 

DELTA = XI - x2 

DELTAA(J) = DELTA 

ENDIF 

100 CONTINUE 

CHlsQR = CHIsQ2 

RETURN 

!--- IF (DISC .GT. 0 ... 

!--- DO J 

END 

C PROGRAM B.2: \CHAPT-B\GRADSEAR.FOR 

C NON-LINEAR LEAST-SQUARES FIT BY GRADIENT SEARCH METHOD 

C USES FITFUNCB, FITUTIL 

SUBROUTINE CALCGRAD 

INTEGER J 

REAL SUM, DELTA, FRACT/O.OOI/, CALCCHlsQ 

INCLUDE ,\CHAPT-6\FITVARS.FoR' 

SUM = 0 

DO 100 J = I, M 

CHIsQ2 = CALCCHlsQ() 

DELTA = FRACT * DELTAA(J) !--- DIFF(ERENTIAL ELEMENT FOR GRADENT 

A(J) = A(J) + DELTA 

CHlsQI = CALCCHlsQ() 

A(J) = A(J) - DELTA 

GRAD(J) = CHIsQ2 - CHlsQI 

SUM = SUM + GRAD(J)**2 

!--- 2*DELTA*GRAD 

100 CONTINUE 

DO 200 J = I, M 

GRAD(J) = DELTAA(J)*GRAD(J)/sQRT(SUM) 

200 CONTINUE 

RETURN 

END 

SUBROUTINE GRADLS(CHlsQR, STEPDOWN) 

REAL CHlsQR, STEPDOWN 

REAL STEPsUM, STEPI, CALCCHlsQ 

INTEGER J 

INCLUDE ,\CHAPT-6\FITVARS.FoR' 

!--- STEP * GRAD 

CALL CALCGRAD !--- CALCULATE THE GRADIENT 

C -EVALUATE CHlsQR AT NEW POINT AND MAKE SURE CHlsQR DECREASES­

CHIsQ3 = CHIsQ2 + I 

DO WHILE (CHlsQ3 .GT. CHlsQ2) 

DO J = I, M 

A(J) = A(J) + STEPDoWN * GRAD(J) 1 SLIDE DOWN 
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ENDDo 

CHIsQ3 = CALCCHlsQ() 

IF (CHlsQ3 .GE. CHIsQ2 ) THEN 

DO J = I, M ! MUST HAVE OVERSHOT MINIMUM 

A(J) = A(J) - STEPDoWN * GRAD(J) ! RESTORE 

ENDDo 

STEPDOWN = STEPDoWN/2 

ENDIF 

ENDDO 

STEPsUM = 0 

! DECREASE STEPslZE 

C -INCREMENT PARAMETERS UNTIL CHlsQR STARTS TO INCREASE­

DO WHILE (CHlsQ3 .LT. CHlsQ2) 

STEPsUM = STEPsUM + STEPDoWN ! COUNTS TOTAL INCREMENT 

CHlsQI = CHIsQ2 

CHIsQ2 = CHIsQ3 

DO J = I, M 

A(J) = A(J) + STEPDoWN * GRAD(J) 

ENDDo 

CHIsQ3 = CALCCHlsQ() 

ENDDo IDOWHILE 

C -FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS-

STEP I =STEPDOWN*«CH IsQ3-CH IsQ2)/(CH IsQ 1-2*CH IsQ2+CH IsQ3)+0.5) 

DO J = I, M 

A(J) = A(J) - STEPI * GRAD(J) ! MOVE TO MINIMUM 

ENDDo 

CHlsQR = CALCCHlsQ() 

STEPDOWN = STEPsUM 

RETURN 

END 

! START WITH THIS NEXT TIME 

C PROGRAM B.3: \CHAPT-B\EXPNDFIT.FOR 

C NON-LINEAR LEAST-SQUARES FIT BY EXPANSION OF THE FITTING FUNCTION 

C USES FITFUNCB, MAKEABB, MATRIX 

SUBROUTINE CHIFIT(CHlsQR) 

INTEGER J 

REAL DET, CALCCHlsQ 

1 NCLU DE '\C HAPT-6\FITVARS. FOR' 

CALL MAKEBETA 

CALL MAKEALPHA 

CALL MATINV(M, ALPHA, DET) !--- INVERT MATRIX 

CALL L1NEARBysQUARE(M,BETA,ALPHA,DA) !--- EVALULATE PARAM 

INCREMENTS 

DO 100 J = I, M 

A(J) = A(J) + DA(J) 1--- INCREMENT TO NEXT SOLUTION. 

100 CONTINUE 

PRINT *,'A',(A(J),J=I,M) 

CHlsQR = CALCCHlsQ() 

RETURN 

END 
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C PROGRAM 8.4: \CHAPT-8\MARQFIT.FOR 

C NON-LINEAR FIT BY THE GRADIENT-EXPANSION (MARQUARDT) METHOD 

C USES FITFUNC9, MAKEAB8, MATRIX 

lOa 

200 

300 

SUBROUTINE MARQUARDT(CHISQR, XICUT, LAMBDA) 

INTEGER J 

REAL CHISQR, XICUT, LAMBDA 

REAL DET, CALCCHISQ 

INCLUDE ,\CHAPT-6\FITVARS.FOR' 

DO 

CALL MAKEBETA 

CALL MAKEALPHA 

DO 100 J = I, M 

ALPHA(J,J) = (I + LAMBDA) * ALPHA(J,J) 

CONTINUE 

CALL MATINV(M, ALPHA, DET) !--- INVERT MATRIX 

IF (LAMBDA .LE. a ) RETURN !--- FINAL CALL TO GET THE ERROR MATRIX. 

CALL LlNEARBYSQUARE(M,BETA,ALPHA,DA)!--- EVAL PARAM INCREMENTS 

CHISQI = CHISQR 

DO 200 J = I, M 

A(J) = A(J) + DA(J) 1--- INCR TO NEXT SOLUTION 

CONTINUE 

CHISQR = CALCCHISQ() 

IF ( CHISQR .LE. CHISQI + XICUT ) RETURN 

DO 300 J = I, M 

A(J) = A(J)-DA(J) !--- RETURN TO PREY SOLUTION 

CONTINUE 

CHISQR = CALCCHISQ() 

LAMBDA = 10*LAMBDA !--- AND REPEAT THE CALC, WITH LARGER LAMBDA 

END DO 

END 

C PROGRAM 8.5: \CHAPT-8\FITFUNC8.FOR 

C USES FITVARS 

C -THE FOLLOWING ROUTINES ARE GENERAL FOR FITTING ANY FUNCTION­

SUBROUTINE CALCULATEY 

REAL YFUNCTION 

I NCLU DE '\C HAPT-6/FITVARS. FOR' 

DO lOa I = I, NPTS 

YCALC(I) = YFUNCTION(X(I» 

I 00 CONTINUE 

RETURN 

END 

REAL FUNCTION CALCCHISQ() 

REAL CHI2, YFUNCTION 

INCLUDE ,\CHAPT-6/FITVARS.FoR' 

CHI2=0. 

DO 100 I = I, N PTS 

CHI2 = CHI2 + ( (Y(I)-YFUNCTION(X(I»)/SIGY(I»**2 

I 00 CONTINUE 

CALCCHISQ = CHI2 

RETURN 

END 
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C -STANDARD DEVIATION CALC'D FROM CHISQ CHANGE OF I (PARABOLA FIT) 

REAL FUNCTION SIGPARAB(J) 

INTEGER J 

REAL CALCCHISQ 

INCLUDE '\CHAPT-6/FITVARS.FOR' 

CHISQ2 = CALCCHISQ() 

A(J) = A(J) + DELTAA(J) 

CHISQ3 = CALCCHISQ() 

A(J) = A(J) - 2*DELTAA(J) 

CHISQI = CALCCHISQ() 

A(J) = A(J) + DELTAA(J) 

SIGPARAB = DELTAA(J)*SQRT(2/(CHISQ 1-2*CH ISQ2+CH ISQ3» 

RETURN 

END 

C -STANDARD DEVIATION CALC'D FROM DIAGONAL TERMS IN ERROR MATRIX 

REAL FUNCTION SIGMATRX(J) 

INTEGER J 

REAL SIG 

INCLUDE ,\CHAPT-6/FITVARS.FOR' 

SIG = SQRT(ABS(ALPHA(J,J») 

IF (ALPHA(J,J) .LT. 0) SIG = - SIG !--- NOTE- AN ERROR 

SIGMATRX = SIG 

RETURN 

END 

C PROGRAM 8.6: \CHAPT-8\MAKEAB8.FoR 

C MATRIX SET-UP FOR NON-LINEAR FITS 

C USES FITFUNC8, NUMDERIV 

C 

SUBROUTINE MAKEBETA 

INTEGER J 

!---MAKE BETA MATRICES FOR NON-LINEAR FITTING 

INCLUDE ,\CHAPT-6/FITVARS.FOR' 

DO lOa J = I, M 

BETA(J) = -0.5*DXISQ_DA(J) 

100 CONTINUE 

RETURN 

END 

SUBROUTINE MAKEALPHA 1--- ALPHA MATRICES FOR NON-LINEAR FITTING 

INTEGER J, K 

INCLUDE ,\CHAPT-6\FITVARS.FOR' 

DO lOa J = I, M 

ALPHA(J,J) = 0.5 * D2XISQ_DA2(J) 

IF (ALPHA(J,J) .EQ. a ) THEN 

PRINT *, 'DIAGONAL ELEMENT IS ZERO, J =',J 

STOP 

ENDIF 
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200 

100 

400 

300 

IF (J .GT. I ) THEN 

DO 200 K = I, J-I 

ALPHA(J,K) = 0.5*D2XISQ_DAJK(J,K) 

ALPHA(K,J) 

CONTINUE 

ENDIF 

ALPHA(J,K) 

!--- DO K 

!--- IF J 

CONTINUE !--- DO J 

DO 300 J = I, M 

IF (ALPHA(J,J) .LT. 0) THEN 

ALPHA(J,J) = -ALPHA(J,J) 

IF (J .GT. I ) THEN 

DO 400 K = I, J-I 

ALPHA(J,K) = ° 
ALPHA(K,J) = ° 

CONTINUE !---

ENDIF !---

ENDIF !---

CONTINUE !---

RETURN 

END 

DO K 

IF J 

IF ALPHA 

FOR J 

E.S Routines from Chapter 9 
C PROGRAM 9.1: \CHAPT-9\LoRENFIT.FoR 

C MAIN CALLING ROUTINE FOR FIT TO LORENTZIAN + POLYNOMIAL 

C USES FITFuNC9, MARQFIT, MATRIX, NUMDERIV, MAKEA88, FITUTIL 

PROGRAM LOREN FIT 

CHARACTER*40 TITLE 

INTEGER TRIAL, J 

REAL XSHIFT, CHISQR, LAMBDA, YFUNCTION 

REAL STEPSCALE(4)1 0.49999, 0.99999, 0.00 I, 0.001/ 

INCLUDE 'C:\F\CHAPT-6\FITVARS.FOR' 

CHICUT = 0.01 

LAMBDA = 0.001 

STEPSIZE = STEPSCALE(4) 

! FOR MARQUARDT METHOD ONLY 

! SCALES DELTAA[J] 

CALL FETCH DATA('\F\C HAPT-9\SINGLE.HsT', TITLE) 

XSHIFT = (x(2)- X( I »/2 

DO J = I, NPTS 

X(J) = X(J) + XSHIFT MOVE TO BIN CENTER 

ENDDo 

CALL FETCH PARAMETERS USES NPTS, MUST FOLLOW FETCH DATA 

TRIAL = ° 
CHISQR = CALCCHISQ() 

CHIOLD = CHISQR + CHICUT + I 
DO WHILE (ABS(CHIOLD - CHISQR) .GT. CHICUT) 

CHIOLD = CHISQR 

PRINT *,'TRIAL #',TRIAL,' CHISQ = ',CHISQR 

PRINT *, (A(J), J = I, M) 

CALL MARQUARDT(CHISQR, CHICUT, LAMBDA) 

TRIAL = I + TRIAL 

ENDDO 

CALL CALCULATEY 

CALL MARQUARDT(CHISQR,CHICUT,O) 

DO J = I, M 

SIGA(J) = SIGMATRX(J) 

ENDDo 
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! GET ERROR MATRIX 

! ERROR MATRIX 

CALL OUTPUT(.TRUE., 'CON', CHISQR,TITLE) I WITH ERROR MATRIX 

DO J = 1", NPTS 

X(J) = X(J) - XSHIFT 

ENDDo 

RESTORE TO LEFT EDGE 

CALL PLOTIT('LoRENFIT.SCR',.FALSE.,.TRUE.,! SCRIPT FILE, LOG?, SPLINE? 

'H',O.O, ! HIST, O(NOT USED) 

2 0.0, 0.0, 3.0, 220.0, ! X I, Y I, X2, Y2 FOR PLOT 

3 6, 6, NUM GRID MARKS X,Y 

4 'E (GEV)', 'NUMBER OF COUNTS') ! LABELS 

C -PLOT THE BACKGROUND­

A(4) = 0.0 

A(7) = 0.0 

DO J = I, NPTS 

YCALC(J) = YFUNCTION(X(J» 

ENDDo 

CALL SPLINEMAKE(NPTS,O,O,X,YCALC) 

CALL SCURVE( 1,40,5,0.025, X) I SPLINE CURVE 

CALL CLOSEGRAPHICS 

END 

C LORENTZIAN PEAK ON A QUADRATIC BACKGROUND 

REAL FUNCTION YFUNCTION(XX) ! LORENTZIAN ON POLYNOMIAL 

REAL XX 

REAL YY, P1/3.14159271 

I NCLU DE '\F\C HAPT-6\FITVARS. FOR' 

YY = A( I) + A(2)*xx + A(3)*XX**2 + A(4)*A(6)/(2*PI) 

I«XX-A(5»**2 + A(6)**2/4) 

YFUNCTION = YY 

RETURN 

END 

I NCLU DE '\F\C HAPT-6\FITUTI L. FOR' 

I NCLU DE '\F\C HAPT-9\FITFu Nc9. FOR' 

INCLUDE '\F\CHAPT-8\MARQFIT.FOR' 

I NCLU DE '\F\C HAPT-8\MAKEA88. FOR' 

INCLUDE ,\F\CHAPT-8\NuMDERIV.FoR' 

INCLU DE '\F\APPEN D-8\MATR IX. FOR' 

E.6 Routines from Chapter 10 
C PROGRAM IO.I:\CHAPT-IO\MAXLlKE.FoR 

C DIRECT MAXIMUM LIKELIHOOD EXAMPLE 

C USES FITUTIL, QUIKSCRP 

PROGRAM MAXLIKE 

MARQUARDT METHOD 

USED BY MARQFIT 

USED BY MARQFIT 

USED BY MARQFIT 

REAL SIGTAU, TAUMAX, MAXM !--- M IS LOG OF LIKELIHOOD FUNCTION 

INCLUDE '\CHAPT-I O\MAXLINCL.FOR' 
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CALL GETDATA(,\CHAPT-I O\TEST.DAT') 

CALL SEARCH(TAUMAX, MAXM) 

!--- WAS DA50 

CALL WRITEOUTPUT(SIGTAU, TAUMAX, MAXM) 

CALL PLOTLIKECURVE(TAUMAX, SIGTAU, MAXM) 

CALL CLOSEGRAPHICS 

END 

SUBROUTINE GETDATA(INFILE) 

INTEGER IEvNUM 

CHARACTER*(*) INFILE 

CHARACTER TITLE(80) 

I NCLU DE '\C HAPT-I O\MAXLI NCL.FOR' 

C = 3.00 

LOSEARCH = 0.50 

HISEARCH = 1.5 

TAUSTEP = 0.0 I 

xLo = 0.50 

xHI = 1.2 

YLO = 0.0 

YHI = 1.2 

!--- SEARCH RANGE 

!--- PLOT RANGE 

NTRIALS = (HISEARCH - LOSEARCH)trAUSTEP 

OPEN(5, INFILE) !--- INPUT DATA FILE 

READ(5, *) TITLE 

PRINT *,' ',TITLE 

READ(5, *) NEVENTS, MASS, D I, D2 

IEVNuM = I 

NEvENTS = 0 

DO WHILE (lEVNUM .GT.O) 

READ(5, *) IEvNuM, XPRODUCTION, pLAB, XDECAY 

IF (IEVNUM .GT.O) THEN 

IF «XDECAY .GE. DI) .AND. (XDECAY .LT. D2» THEN 

NEvENTS = I + NEVENTS 

LTOTsCALE = MASS/(c*pLAB) !--- = II(C*BETA*GAMMA) 

TIMES(NEVENTS)=(XDECAY - XPRODUCTION)*LTOTSCALE !---PROPER T 

C CONVERT DI AND D2 TO TIME LIMITS, LoTLIM AND HITLlM, 

C I.E., INTEGRATION LIMITS IN PROPER TIME FROM THE PRODUCTION VERTEX. 

LoTLlM(NEVENTS) = (DI - XPRODUCTION)*LTOTSCALE 

HITLlM(NEVENTS) = (D2 - XPRODUCTION)*LTOTsCALE 

ENDIF 

ENDIF 

ENDDO 

PRINT *, 'END OF FILE -', IEVNUM, ' EVENTS READ' 

PAUSE 

RETURN 

END 

REAL FUNCTION LOGPROB(K, TAU) 

INTEGER K 

REAL TAU 

REAL A, B 

I NCLU DE '\CHAPT-I O\M AX LI NCL. FOR' 

C 

C 

C 

C 

C 
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DI AND D2 ARE BEGINNING AND END OF THE FIDUCIAL REGION. 

MUST CVT TO LoTLIM AND HITLIM WHICH ARE INTEGRATION LIMITS IN PROPER 

TIME, 

MEASURED FROM PRODUCTION VERTEX. 

Now, CALC PROBABILITY-

B = EXP(-HITLlM(K)trAU) 

A = EXP(-LOTLIM(K)/TAU) 

PROB = 'EXP(-TlMES(K)trAU)/(TAU*(A - B» 

LOGPROB = ALOG(PROB) 

RETURN 

END 

REAL FUNCTION LOGLlKE(T) 

REAL T, LOGPROB 

INTEGER I 

REAL M, PROB 

INCLUDE '\CHAPT-I O\MAXLINCL.FOR' 

M = 0.0 

DO 100 I = I, NEvENTS 

PROB = LOGPROB(I,T) 

M = PROB + M 

100 CONTINUE 

LOGLIKE = M 

RETURN 

END 

SUBROUTINE SEARCH(TAUATMAX, MAXM) 

REALTAUATMAX, MAXM 

INTEGER TRIAL 

REAL MI, M2, M3, DELI, DEL2, DELTAI, TAU, MLIKELI, LOGLIKE 

I NCLU DE '\C HAPT-I O\MAXLINCL.FOR' 

M2 = -1000 

MAXM = -I .OE20 

TAU LOSEARCH 

DO 100 TRIAL = 0, NTRIALS 

MLIKELI = LOGLIKE(TAU) 

PRINT *,'TRIAL',TRIAL,' TAU=', TAU,' LOG LlKELIHOOD=',MLlKELI 

M3 = MLIKELI 

IF (M3 .GT. M2 ) THEN !--- REMEMBER, THESE ARE NEGATIVE 

MI = M2 

M2 = M3 

ELSE !--- LEAVING MAXIMUM 

FIND MAXIMUM OF PARABOLA DEFINED BY LAST THREE POINTS-

DELI = M2 - M I 

DEL2 = M3 - 2*M2 + M I 

DELTA I = TAUSTEP * (DELI/DEL2 + 1.5) 

TAU = TAU - DELTAI 

TAUATMAX = TAU 

MAXM = LOGLlKE(TAU) !--- AT MAXIMUM OF PARABOLA 

RETURN 

ENDIF 
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TAU = TAU + TAU STEP 

100 CONTINUE 

RETURN 

END 

REAL FUNCTION ERROR(T, DT) !--- I/SQRT(-2ND DERIVATIVE OF LOG(L» 

REAL T, DT 

REAL TI, T2, D2YDT2, ERR, LOGLiKE 

TI = T - DT 

T2 = T + DT 

D2YDT2 = (LOGLiKE(T2) - 2*LOGLiKE(T) + LOGLiKE(TI »/DT**2 

ERR = I/SQRT(-D2YDT2) 

ERROR = ERR 

RETURN 

END 

C PROGRAM 10.2 \CHAPT-IO\MAXLINCL.FOR 

C INCLUDE FILE FOR MAXLiKE 

E.7 Routines from Chapter 11 
C PROGRAM 11.1: \CHAPT-II\CHI2PROB.FOR 

(WEBSITE) 

C CALCULATE CHI"2 PROB. DENS. & THE CHI"2 PROB. INTEGRAL 

C USES CHIPROBDENS AND CHIPROB 

PROGRAM CHI2PROB 

REAL CHI2, CHIPROB 

INTEGER NFREE 

PRINT *,'CALCULATE CHI2 PROBABILITY DENSITY FUNCTION & INTEGRAL', 

, PROBABILITY' 

PRINT *, 'TYPE NUM DEG OF FREEDOM AND CHI2. (EXIT ON "C)' 

READ *, NFREE, CHI2 

PRINT 1000, CHIPROBDENS(CHI2, NFREE), CHIPROB(NFREE, CHI2) 

1000 FORMAT(' CHI"2 PROB. DENS. = ',F7.3,', CHI"2 PROBABILlTY=',F7.3) 

PRINT *,' ***** NOTE THAT TABLE C.4 REFERS TO CHI"2/NFREE****' 

END 

C THE FOLLOWING THREE ROUTINES ARE INCLUDED 

C IN THE PROGRAM UNIT C:\CHAPT-6\FITUTIL.FOR (WEBSITE) 

REAL FUNCTION CHIPROB(NFREE, CHI2) 

EXTERNAL CHIX 

!--- MAX NFREE = 56 

COMMON/uTIU GLSIMPS 

REAL CHIX, SIMPSON, GLSIMPS 

INTEGER NFREE 

REAL PI, CHI2, CLiM, INTFROMLIM 

DATA CLiM 12/, 

INTFROMLIM 10.157/, 

!--­

!---

EXPANSION LIMIT FOR NFREE = I 

INTEGRAL FROM CLiM TO INFINITY 

2 DXO 10.21 !--- DETERMINES ACCURACY OF INTEGRATION 

3 P1/3. 14 1591 

INTEGER NINT 

IF (CHI2 .GE. I) THEN 

NINT = 5 

ENDIF 
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IF (CHI2 .GT. 15*SQRT(NFREE) ) THEN !--- QUICK CUTOUT 

CHIPROB = 0 

ELSE 

GLSIMPS = FLOAT(NFREE)/2 !--- GLSIMPS IS GLOBAL FOR CHIX 
IF (NFREE .EQ. I) THEN 

IF (CHI2 .LT. CLIM ) THEN 

CHIPROB = I-SQRT(CHI2/2/PI)* 

(2 - CHI2*(1/3 - CHI2*(1/20 - CHI2*(1/168 - CHI211728»» 

ELSE 

CHIPROB = INTFROMLiM - SIMPSON(CHIX,NINT,CLiM,CHI2) 

IGAMMA(NFREE/2.0)/2.0**(NFREEl2.0) 

ENDIF !--- IF (CHI2 ... ) 

ELSE IF (NFREE .EQ. 2 ) THEN 

CHIPROB = EXP("CHI2/2) !--- INTEGRABLE 

ELSE 

CHIPROB = I - SIMPSON(CHIX, NINT, 0, CHI2) 

IGAMMA(NFREE/2.0)/2.0**(NFREE/2.0) 

ENDIF 1--- IF (NFREE ... ) 

ENDIF 

RETURN 

END 

1--- IF (NFREE ... ) 

REAL FUNCTION CHIPROBDENS(X,NFREE) 

REAL NUM, DEN, H, X 

INTEGER NFREE 

H = NFREE/2.0 

NUM = X**(H-I) * EXP(-Xl2) 

DEN = 2**H * GAMMA(H) 

CHIPROBDENS = NUM/DEN 

RETURN 

END 

C USED BY CHIPROB (FOR SIMPSON WHICH ALLOWS ONLY I ARGUMENT.) 

REAL FUNCTION CHIX(X) 

COMMON/uTIU GLSIMPS 

REAL GLSIMPS 

REAL X 

IF (X.EQ.O) THEN 

CHIX = 0.0 

ELSE 

CHIX = X**(GLSIMPS-I )*EXP(-Xl2) 1--- GLSIMPS = H = NFREE/2 

ENDIF 

RETURN 

END 

C THIS FOLLOWING ROUTINE IS INCLUDED 

C IN THE PROGRAM UNIT \CHAPT-6\FITUTlL.FOR (WEBSITE) 

C ApPROXIMATE GAMMA FUNCTION WITH H = NFREE/2 

REAL FUNCTION GAMMAf ... \ 
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REAL H, P1/3.14159271 

GAMMA = SQRT(2.0*pl) * EXP(-H)*(H**(H-0.5» * (1.0 + 0.083S/H) 

RETURN 

END 

C PROGRAM 11.2: \CHAPT-II\LcORPROB.FoR 

C CALCULATE LINEAR CORRELATION PROBABILITY INTEGRAL 

C USES LCORLATE 

PROGRAM LCORPROB 

INTEGER NOBSERV 

REAL LlNCORPROB, RCORR 

PRINT *, 'TEST INTEGRAL OF LINEAR CORRELATION FUNCTION' 

PRINT *, 'TYPE-# OBSERVATIONS, LINEAR CORRELATION COEFFICIENT: ' 

READ*, NOBSERV, RCORR 

PRINT *, 'INTEGRAL CORRELATION FUNCTION= " 

LINCORPROB(NOBSERV-2, RCORR) 

END 

INCLUDE '\CHAPT-II\LCORLATE.FoR' 

C LINEAR-CORRELATION PROBABILITY FUNCTION AND INTEGRAL 

C USES FITUTIL 

REAL FUNCTION LlNCORPROB(NFREE, HILIM) 

EXTERNAL LINCORREL 

INTEGER NFREE 

REAL HILIM 

!--- FOR USE IN FUNCTION SIMPSON 

REAL DX 10.011, LOLlM/O.O/, LINCORREL, SIMPSON 

INTEGER NINT 

COMMON/UTILlGLSIMPS 

GLSIMPS = NFREE 1--- GLOBAL FOR FUNCTION LINCORREL (FOR SIMPSON) 

NINT = INT«HILIM - LOLIM)/DX) 

LINCORPROB = 1-2*SIMPSON(LINCORREL, NINT, LOLIM, HILIM) 

RETURN 

END 

REAL FUNCTION LINCORREL(R) 

REAL R 

COMMON/UTlLlGLSIMPS !--- GLSIMS = NFREE MUST BE GLOBAL FOR 

DATA SQRTPl/l.77245391 I FUNCT "SIMPSONS" WHICH ALLOWS ONLY 1 ARG 

LlNCORREL = GAMMA«GLSIMPS+ I )/2)/GAMMA(GLSIMPS/2) 

*EXP( (GLSIMPS-2)/2 .. ALOG( I - R**2»/SQRTPI 

RETURN 

END 

E.8 Routines from Appendix A 
PROGRAM A.I SIMPSON 

C THE FOLLOWING ROUTINE IS INCLUDED 

C IN THE PROGRAM UNIT \CHAPT-6\FITUTIL (WEBSITE) 

C -SIMPSON'S RULE FOR "FUNCTX(X:REAL):REAL" 

C IF FUNCTX HAS OTHER PARAMETERS, THEY MUST BE GLOBAL, E.G., GLSIMPS 
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REAL FUNCTION SIMPSON{FUNCTX, NINTS, LOLlM, HILlM) !--_ 2 CALCS/INTERVAL 

EXTERNAL FUNCTX !--- THIS STATEMENT REQ'D IN CALLING PGM ALSO 

REAL FUNCTX, SUM, X, DX, LOLlM, HILIM 

INTEGER NINTS, I 

X = LoLiM 

DX = (HILIM - LOLlM)/(2*NINTS) 

SUM=FuNCTX(X) 

SUM= SUM - FUNCTX{HILlM) 

DO 100 I = I, NINTS 

X=X+2*DX 

SUM=SUM + 4*FUNCTX{X-DX) + 2*FUNCTX(X) 
100 CONTINUE 

SUM = SUM 

SIMPSON = SUM*DXlS.O 

RETURN 

END 

PROGRAM A.2 SPLINE INTERPOLATION 

C PROGRAM A.I: \APPEND-A\SPLINTST.FOR 

C TEST CUBIC SPLINE INTERPOLATION 

PROGRAM SPLINTsT 

CHARACTER TlTLE(80) 

REAL D2A, D2B, XS, X{ I 00), Y{ 100), SPLINEINT 

INTEGER N, I 

OPEN(5,'\APPEND-A\SPLINE.DAT') 1--- TEST DATA FILE 

R EAD{5, 1000) TITLE 

PRINT 1000, , ',TITLE 

1000 FORMAT(80A I) 

READ{5,*) N, D2A, D2B !--- NO. OF POINTS, 2ND DERIVATIVES AT BOUNDARY 
PRINT *,'DATA TABLE: N=', N 

PRINT *,' X Y' 
DO 100 I = I, N 

READ{S,*) X(I), Y(I) 

PRINT *, X(I), Y(I) 

100 CONTINUE 

CALL SPLINEMAKE(N, D2A, D2B, X, Y) 

CLOSErS) 

200 PRINT *,'TYPE A VALUE OF X (EXIT WITH "C)' 

READ *, XS 

PRINT *, 'INTERPOLATED Y = " SPLINEINT{XS) 
GOTO 200 

END 

C ROUTINES FOR CUBIC SPLINE INTERPOLATION. 

C CONSTANT INTERVALS IN THE INDEPENDENT VARIABLE ARE ASSUMED. 

SUBROUTINE SPLINEMAKE(NN, D2YDX2A, D2YDX28, XIN, YIN) 
INTEGER NN 

REAL D2YDX2A, D2YDX28, XIN{IOO), YIN{IOO) 

C -COMMON VARIABLES SET IN SPLINEMAKE, USED IN SPLINEINT­

COMMON/SPLINES/N, H, XX{ 100), YY{ 100), D2YDX2( I 00) 
INTEGER N 
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REAL H, XX, YY, D2YDX2 

INTEGER I 

REAL A(IOO), DELT1(IOO), DELT2(100), B(IOO) 

N = NN 1--- USED BY SPLININT, THROUGH COMMON/SPLINES/ 

H = (XIN(N) - XIN( I »/(N-I) 

DO 100 I = I, N 

XX(I) = XIN(I) 

YY(I) = YIN(I) 

100 CONTINUE 

D2YDX2( I) = D2YDX2A 1--- END VALUES OF 2ND DERIVATIVES FROM INPUT 

D2YDX2(N) = D2YDX2B 

A(2) = 4 

DO 200 I = 3, N-I 

A(I) = 4-I/A(I-I) 1--- COEFFICIENTS 

200 CONTINUE 

DO 300 I = 2, N 

DELTI (I) = YIN(I) - YIN(I-I) 1--- I ST DIFFERENCES 

300 CONTINUE 

DO 400 I = 2, N-I 1--- 2ND DIFFERENCES X 6 

DELT2(1) = 6*(DELTI (1+ I) - DELTI (I»/(H*H) 

400 CONTINUE 

B(2) = DELT2(2) - D2YDX2( I) 1--- B COEFFICIENTS 

DO 500 1= 3, N-I 

B(I) = DELT2(1) - B(I-I )/A(I-I) 

500 CONTINUE 

B(N-I) = B(N-I ) - D2YDX2(N) 

D2YDX2(N-I) = B(N-I )/A(N-I) 

DO 600 I = N-2, 2, -I 

D2YDX2(1) = (B(I) - D2YDX2(1+ I »/A(I) 1--- 2ND DERIVATIVES 

600 CONTINUE 

RETURN 

END 

REAL FUNCTION DYDX(I) 1--- FIRST DERIVATIVE (WEBSITE) 

INTEGER I 

COMMON/SPLINES/N, H, XX( 100), YY( I 00), D2YDX2( 100) 

INTEGER N 

REAL H, XX, YY, D2YDX2 

DYDX = (YY(I+I)-YY(I»/H - H*(D2YDX2(1)/3+D2YDX2(1+1)/6) 

RETURN 

END 

REAL FUNCTION D3YDX3(1) 1--- THIRD DERIVATIVE (WEBSITE) 

INTEGER I 

COMMON/SPLINES/N, H, XX( I 00), YY( I 00), D2YDX2( I 00) 

INTEGER N 

REAL H, XX, YY, D2YDX2 

D3YDX3 = (D2YDX2(1+1) - D2YDX2(1»/H 

RETURN 

END 
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REAL FUNCTION SPLINEINT(X) 1--- INTERPOLATE IN TABLE (FROM SPLINEMAKE) 

REAL x 

COMMON/SPLINES/N, H, XX(IOO), YY(IOO), D2YDX2(100) 

INTEGER N 

REAL H, XX, YY, D2YDX2, DYDX, D3YDX3, OX 

INTEGER I 

I = INT«X-XX( I »/H)+ I 

IF (I .LT. I) I = I 

IF (I .GT. N-I ) I = N-I 

OX = X -XX(I) 

C -INTERPOLATE 

IF (I .EQ. N ) THEN 

SPLINEINT = YY(I) 

ELSE 

SPLINEINT = YY(I) + (DYDX(I) + (D2YDX2(1)/2 +D3YDX3(1)/6*DX)*DX)*DX 
ENDIF 

RETURN 

END 

E.9 Routines from Appendix B 
C PROGRAM B.I: \APPEND-B\MATRIX.FOR 

C INVERT A SQUARE MATRIX 

C USES FITVARS 

SUBROUTINE MATlNV(M, MARRAY, DET) 

INTEGER M 

REAL MARRAY( I 0, I 0), DET 

INTEGER IK( 10), JK( I 0) 

INTEGER I, J, K, L 

REAL AMAX, SAVE 

DET=O 

C -FIND LARGEST ELEMENT 

DO 100 K = I, M 

AMAX=O 

1500 

300 

200 

DO 200 1= K, M 

DO 300 J = K , M 

IF ( ABS(MARRAY(I,J» .GT. ABS(AMAX» THEN 

AMAX = MARRAY(J,J) 

IK(K) = I 

JK(K) = J 

ENDIF 

CONTINUE !--- DO J 

CONTINUE !--- DO I 

IF (AMAX .EQ. 0) RETURN 1--- WITH 0 DETERMINANT AS SIGNAL 

DET = I 

C -INTERCHANGE ROWS AND COLUMNS TO PUT AMAX IN MARRAY(K,K) 

1= IK(K) 

IF (I .LT. K) THEN 

GOTO 1500 

ELSEIF (I .GT. K) THEN 

nn .4nn 1- t u 
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400 

SAVE = MARRAY(K,J) 

MARRAY(K,J) = MARRAY(I,J) 

MARRAY(I,J) = -SAVE 

CONTINUE 1--- DO J 

ENDIF 

J = JK(K) 

IF (J .LT. K) THEN 

GOTO 100 

!--- IF I 

ELSEIF (J .GT. K ) THEN 

DO SOO I = I, M 

SAVE = MARRAY(I,K) 

MARRAY(I,K) = MARRAY(I,J) 

MARRAY(I,J) = -SAVE 

SOO CONTINUE !--- DO I 

ENDIF !--- IF J 

C -ACCUMULATE ELEMENTS OF INVERSE MATRIX 

DO 600 I = I, M 

I 

600 

800 

700 

I 

900 

IF (I .NE. K) 

MARRAY(I,K) = -MARRAY(I,K)/AMAX 

CONTINUE !--- DO I 

DO 700 I = I, M 

DO 800 J = I, M 

IF ((I .NE. K) .AND. (J .NE. K) ) 

MARRAY(I,J) = MARRAY(I,J) + MARRAY(I,K)*MARRAY(K,J) 

CONTINUE 

CONTINUE 

DO 900 J = I, M 

IF (J .NE. K) 

!--- DO J 

!--- DO I 

MARRAY(K,J) = MARRAY(K,J)/AMAX 

CONTINUE 

MARRAY(K,K) = I/AMAX 

DET = DET * AMAX 

1--- DO J 

100 CONTINUE 1--- DO K 

C -RESTORE ORDERING OF MATRIX 

1100 

1200 

DO I 000 L = I, M 

K=M+I-L 

J = IK(K) 

IF (J .GT. K) THEN 

DO I I 00 I = I, M 

SAVE = MARRAY(I,K) 

MARRAY(I,K) = -MARRAY(I,J) 

MARRAY(I,J) = SAVE 

CONTINUE 1--- DO I 

ENDIF !--- IF J 

1= JK(K) 

IF (I .GT. K ) THEN 

DO I 200 J = I, M 

SAVE = MARRAY(K,J) 

MARRAY(K,J) = -MARRAY(I,J) 

MARRAY(I,J) = SAVE 

CONTINUE !--- DO J 

ENDIF 

1000 CONTINUE 

RETURN 

END 

!--- IF I 

1--- DO L 
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SUBROUTINE LlNEARBYSQUARE(M, A, B, C) !--- MATRIX PRODUCT 

INTEGER M 

REALA(IO), B(IO,IO), C(IO) 

INTEGER I,J 

DO 100 I = I, M 

C(I)=O 

DO 200 J = I, M 

C(I)=C(I) +A(J)*B(I,J) 

200 CONTINUE 

100 CONTINUE 

RETURN 

END 

E.I0 Routines from Appendix C 
C PROGRAM C. I: \APPEND-C\STUDENTST.FOR 

C CALCULATES BOTH THE GAUSSIAN PROBABILITY 

C 

C 

C 

AND THE STUDENT'S T PROBABILITY FOR EXCEEDING A GIVEN VALUE 

OF (MU-X)/SIGMA, WHERE MU IS THE MEAN VALUE OF X AND SIGMA IS 

THE UNCERTAINTY IN THE MEAN. 

C FOR SPEED, AND TO REDUCE POSSIBILITY OF OVERFLOW, WE 

C CALCULATE THE RATIO OF THE GAMMA FUNCTIONS DIRECTLY 

C IN FUNCTION GAMMACONST. 

C To IMPROVE SPEED AND ACCURACY BY USING SIMPSON'S FOR INTEGRATION 

C 

PROGRAM STU DENTS_ T 

REAL GP,TP, T 

INTEGER NU 

PRINT *, 'TYPE NDOF AND T = IMU - XI/SIGMA ' 

READ *, NU, T 

CALL GTPROB(GP, TP, NU, T) 

PRINT 1100, 100*TP, tOO*(t-TP) 

PRINT 1200, tOO*GP, 100*(I-GP) 

1100 FORMAT(' PROB (STUDENT"S T) = ',FS.2,'%, I-PROB = ',FS.2, '%') 

1200 FORMAT(' PROB (GAUSSIAN) = ',FS.2, '%, I-PROB = ',FS.2,'%') 

END 

REAL FUNCTION STUDENTST(NU, T, G) 

INTEGER NU 

REAL T, G, X 

ISTUDENT'S T DISTRIBUTION 

C X = (I/SQRT(NU*PI) * (GAMMA({NU+ I )/2)/GAMMA(NUl2»*( t +T"2/NU)"(-(NU+ I )/2) 

X = G*EXP( (-(NU+ I )/2)* ALOG( t +T*T/NU» 

STUDENTST = X 

END 

REAL FUNCTION GAUSS(xl 
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REAL pI/3. 14159/,X 

GAUSS = EXP(-x*Xl2)/SQRT(2*PI) 

RETURN 

END 

C GAUSSIAN AND STUDENT'S T PROBABILITIES 

C 

SUBROUTINE GTPROB(GPROB, TPROB, N, T) !INTEGRAL FROM -T TO +T 

REAL GPROB, TPROB,T 

INTEGER N 

REAL GAM, TI, SUMT, SUMG, DT 

GAM = GAMMACONST(N) !RATIO OF GAMMAS - FOR SPEED 

DT = 0.0001 !INTEGRATION STEP 

TI = 0 

SUMT = 0 

SUMG = 0 

DOWHILE «TI .LT. T) .AND. (SUMT*DT .LT. 0.5» ISIMPLE INTEGRATION. 

REPLACE BY SIMPSON'S RULE FOR BETTER SPEED AND ACCURACY 

SUMT = SUMT + STUDENTST(N,TI ,GAM) 

SUMG = SUMG + GAUSS(TI) 

TI = TI + DT 

ENDDO 

TPROB = 2*SUMT*DT 

GPROB = 2*SUMG*DT 

RETURN 

END 

REAL FUNCTION GAMMACONST(N) 

C G = GAMMA«H+ I )/2)/GAMMA(H/2)/SQRT(H*PI) 

PRE-CALCULATE RATIO FOR SPEED AND TO AVOID OVERFLOW C 

INTEGER N 

REAL pI/3. 14159/ 

REAL H, YI ,Y2, G 

H = N 

YI = -0.5*(H+ I) + 0.5*(H) *ALOG(0.5*(H+ I» 

Y2 = -0.5*H + 0.5*(H-I )*ALOG(0.5*H) 

G = EXP(Y I-Y2)*( I +0.0833/(0.5*(H+ I »)/« I +0.0833/(0.5*H» 

I *SQRT(H*PI» 

GAMMACONST = G 

RETURN 

END 

END 

E.ll Routines from Appendix D 
C PROGRAM 0.1: \APPEND-D\QUIKSCRP.FoR 

C CREATE A SCRIPT FILE TO DISPLAY SIMPLE GRAPHS AND HISTOGRAMS 

C THE FILE IS READ AND INTERPRETED BY \APPEND-D\QDISPLAY.ExE 

C PROGRAM 0.2: \APPEND-D\QUIKHIST.FOR 

C ASSIGNS DATA TO HISTOGRAM BINS AND PLOTS HISTOGRAM EITHER 

C AS SCREEN CHARACTERS OR IN SCREEN GRAPHISC THROUGH QUIKSCRP 
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ANSWERS TO SELECTED EXERCISES 

Chapter 1 

1.1. (a) 5 (b) 2 (c) 2 
(f) 1 (g) 3 (h) 3 

1.3. (a) 980. (b) 84,000 
(e) 4.0 (f)NA 

(d) 5 
(i) 3 

(i) 4.0 X 102 (j) 3.0 X 104 

(e) 4 
(j)4 

(c) 0.0094 
(g) 5300 

(d) 3.0 X 102 

(h) 4.0 X 102 

1.5. Mean = 73.48; median = 73; most probable value = 70 
1.7. Standard deviation = 15.52 

Chapter 2 

2.2. (a) 20 (b) 6 (c) 120 (d) 270, 725 
2.3. For p = 1/2,0.015625,0.093750,0.234375,0.31250, 0.234375, 0.093750, 

0.015625 
2.6. 4.1 for one lemon; 37 for two lemons; 1000 for three lemons 
2.9. (a) 2.3 = 2 students (b) 8% 
2.13. (a) 0.0011 (b) -3 X 10-20 

2.15. Mean number hitting counter in the 200-ns time interval: 
00 00 

x = LXPp(x; /-1) = /-1; mean number recorded = LIPp(x; /-1) = 
x=o x=] 

1 - PP(O, /-1) = 1 - e- fL ; Efficiency = (1 - e-fL)//-1. 

2.17. r = r rP(r)dr = 6CR4; rp(r)dr = 1, so C = 1/(2R3) and r = 3R 

Chapter 3 

3.3. The relative uncertainty in r should be one-half the relative uncertainty in L. 
3.5. 1.503 ± 0.024 
3.7. (a) 15300 ± 6700 (b) 165 ± 11 
3.9. Ii = 3.61; s = 1.88 

309 
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Chapter 4 

4.1. S = 2.18; IT", = 0.44 
4.3. Fig. 2.3: X2 = 1.39 for 5 bins; X2

v = 0.35 
Fig. 2.4: X2 = 4.88 for 7 bins; X2v = 0.81 

4.7. Mean total counts in I-min interval = 123.2; IT = 9.4; IT", = 3.0 
(a) Background counts in I-min interval = 11.6; IT = 1.5 
(b) Difference = 111.6 ± 3.3 counts per minute from the source 

4.9. 32.81 ± 0.46 
4.11. (a) 1.96IT = 31.0 or 3.1 % 

(b) 1.96s = 30.1 or 3.0%. 
4.13. (c) X2 = 14.7 (calculated with IT) 

(d) (X2)= v=N-l = 12 

Chapter 5 

5.10. For 6 rows: (b) 8,48, 120, 160, 120,48,8 (c) IT = 1.22 

Chapter 6 

6.1. a = 114.3 ± 9.6; b = 9.58 + 0.89, X2 = 10.1 
6.4. b = 3.60 ± 0.03; X2 = 11.9 

Chapter 7 

7.2. al = 512.0 ± 45.9; a2 = 348.3 ± 21.8; X2 = 13.2 
U11 = 21.09; U12 = U21 = -147.1; U22 = 476.1 

7.4. All terms: X2 = 17.21 for 12 degrees of freedom 
Even terms: X2 = 17.59 for 14 degrees of freedom 
al = (849.6 ± 15.4) - (335.5 ± 85.7)x2 + (847.3 ± 87.8).0 with x = cos(e) 

7.10. al = 0.0001 ± 0.0009; a2 = Va = 0.871 ± 0.018 
al = g/2 = 4.870 ± 0.057 (after iterating) 

Chapter 8 

8.3. (a) /J- = 1.8741 ± 0.0005; X2 = 13.70 
(b) /J- = 1.8471 ± 0.0005; r = 0.0555 ± 0.0008; X2 = 13.3 

8.4. al = 148.6 ± 31.0; a2 = 31.0 ± 1.1; X2 = 13.0 
E11 = 65.6; E12 = E2J = -6.26; E22 = 1.156 

Chapter 9 

9.4. (b) X2 = 34.2 for 24 degrees of freedom 
Fitted parameters al through a6: 

Answers to Selected Exercises 311 

-2.2 136. -31.6 79.8 0.098 0.20 
Uncertainties SI through S6: 

2.6 8. 3.1 7.0 0.007 0.02 

Chapter 10 

10.1. al = 4.16; a2 = 22.8 at the maximum ofthe likelihood function 

Chapter 11 

11.4. Approximately 10% probability 
11.5. Approximately 0.1 % probability; not a very good fit 
11.9. 0.9985 
11.10. 0.9729 
11.12. 0.9997 
11.14. F = 10 for VI = 1; F = 5 for VI::; V2 

11.18. LlX2 = 2.7; a4 = 3.4::'j·.1; as = 205::.~g 



Absolute precision, 3 
Accuracy, 2, 14 

A 

precision versus, 2-3 
Anderson, R. L., 131 
Arbitrary function, least-squares fit to, 142-165 
Area determination, 170-177 

composite plots 
multiple peaks, 175-177 
single peak and background, 174-175 

under curve with Poisson statistics, 
172-174,177 

uncertainties in areas under peaks, 171-172 
Arndt, R. A., 146 
Array. See also Matrix 

one-dimensional, 238 
two-dimensional, 238 

Average, 9 
Average deviation, 10, II, 15 
Average variance, 58 

B 
Background 

fitting composite curves and, 168-177 
subtraction, 177 

Bell-shaped curve, 7. See also Gaussian 
distribution 

Bin width, 110, 175,272 
Binomial distribution, 17-23,32-33 

mean and standard deviation of, 20-23 
Poisson distribution as approximation to, 

23-24 
smoothing of data, 236-237 

Binomial theorem, 20 
Bounding parameters, 149 
Box-Milller method, 85, 86, 96 
Breit-Wigner resonance, 32 

INDEX 

C 
Calculus, basic principles, 222-226 

differentiation, 223-225 
integration, 226 

Cauchy distribution, 31. See also Lorentzian 
distribution 

Chauvenet's criterion, 56 
Chi-square (X2

), 65-71, 108, 114,210-211 
constraints and degrees of freedom, 70-71 
definition, 67 
expansion of, 156-161, 165 
expectation value, 67, 69, 70 
F test determination of, 204-208, 216 
generalizations of, 69-70 
graphs and tables, 71, 256-258 
hypersurface, 145-146, 149, 156-158 
maximum likelihood method and, 103-104 
minimization, 117, 128, 135, 142, 145-151 

(See also Least-squares method) 
probability distribution, 65-71, 195-197, 253 
reduced,68, 71,195,197,208 
variance relationship to, 194-195,215 
variation near a minimum, 146-147 

CHI2PROB routine, 196-197,298-300 
CHIFIT routine, 151, 160 
Cofactor of a matrix element, 241, 243 
Column matrix, 239, 241, 244 
Combinations, 19 
Composite curves, fitting, 168-177 
Computer calculation of uncertainty, 47-48 
Computer routines, 275-306 

Appendix A: Simpson's rule, 300-301 
Appendix A: Spline interpolation, 301-303 
Appendix B: Matrix, 247, 303-305 
Appendix C: Student's t test, 305-306 
Appendix D: Graphs and histograms, 

274,306 
Chapter 5: Monte Carlo, 86, 278-281 
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Computer routines-Cant. 
Chapter 6: Fit to straight line, 106-107, 

281-283 
Chapter 7: Least-squares fitting with matrices, 

124-125,283-287 
Chapter 8: Nonlinear fitting, 150-151, 152, 

155,160,163,287-294 
Chapter 9: Lorentzian peak on quadratic 

background, 170,294-295 
Chapter 10: Maximum likelihood method, 

188,295-298 
Chapter 11: Chi-square probability, 196-197, 

298-300 
Chapter 11: Linear correlation, 200, 300 
program flow, 276 
variable definitions, 276-277 

Confidence interval (level), 37, 63, 
208-212 

for multiparameter fit, 210-212 
for one-parameter fit, 208-210 
for predicted value, 212 

Continuous distribution, 12-14,28,31 
Convergence in nonlinear fit, 150, 161 
Correlation 

linear-correlation coefficient, 197-203, 
252-255 

multivariable,201-204 
Covariance, 41, 43, 48, 123 

sample, 201, 215 
Cramers rule, 244 
Cubic splines, 228-231 
Curvature matrix (u), 123, 124, 147, 157, 

160-163 
Curves, fitting composite, 168-177 

D 
Data points 

elimination of, 56 
outlying, 55, 56 
weighting, 56-57, 203 

Data smearing, 86, 90, 96, 236 
Data smoothing, 173,235-237 
Degeneracy, 19 
Degree, matrix, 239 
Degrees of freedom, 64, 70-71 
Dependent variable, 98-99 

graphing, 268 
histogram, 110 
linear relationship, 98-99, 102 
uncertainty assignment to, 102 

Determinant 
matrix, 240-243 
solution for fit to a polynomial, 116-121 

Determinants, method of, 105, 106 

Deviate. See also Random numbers 
Gaussian, 96 
uniform, 79, 95 

Deviation 
average, 10, 11, 15 
definition, 9-10 
standard (See Standard deviation) 

Diagonal error, 164 
Diagonal matrix, 157,242,243 
Differentiation, 223-225, 227 

functions of functions, 224 
higher-order derivatives, 224-225 
minima and maxima, 225 
multi variable functions, 225 
partial derivatives, 225 
sums and products, 223-224 

Discarding data, 56, 59-60 
Discrepancy, 6 

in area under a curve with Poisson statistics, 
173-174,177 

Discrete distribution, 12, 25 
Dispersion, 10,57, 195 
Distribution. See also specific distributions 

binomial, 17-23,32-33,236-237 
Cauchy, 31 
chi-square (X2), 65-71,195-197,253 
continuous, 12-14,28,31 
discrete, 12, 25 
exponential, 88-94, 96 
F,204-208 
Gaussian, 17,27-31,33,236-237,248-252 
Lorentzian, 31-32, 33,168-170 
mean, median, and mode of, 9-14 
normalized, 81, 95 
parental, 7-9, 11, 13, 14 
Poisson, 17,23-27,31,33,37-38,87-89, 

111-114,172-174 
random numbers from, 81-84 
sample, 7, 11, 13 
standard deviation, 10-14,25,29,32,38,208 
Student's t, 63-65, 259, 266 
uniform, 81-83 
variance, 10-11, 15,20,61 

Distribution function. See Probability density 
function 

Divided differences method, 220-222 
Double-precision variables, 196 

E 
Efficiency in Monte Carlo method, 94-95 
Error, 6, 14 

definition, 1 
diagonal, 164 
discrepancy compared, 6 

Error-Cant. 
illegitimate, 1 
measuring, 1-5 
propagation, 39-41, 48, 109 
random, 3-4, 7, 14 
relative, 94 
specific formulas, 41-46, 48-49 
standard, 6, 54, 63 
statistical, 60 
systematic, 2, 3, 14, 55 

Error analysis, 2, 6, 36-49 
Error bars, 2, 267, 268 
Error function, 252. See also Gaussian 

distribution 
Error matrix (€), 124-126, 134, 138, 157, 

163-164. See also Inverse matrix 
Error propagation equation, 41, 48 
Estimates of error 

approximation, 47 
in experiments, 5-6 
in linearfit, 107-110 
matrix method, 123-126 
in mean, 53-55, 57-59 
in measurements, 3-4 

Expansion methods for nonlinear fitting, 
156-161,165 

Expectation value, 12, 14,67,69,70 
EXPNDFIT routine, 151, 160,291 
Exponential distribution, random numbers from, 

88-94,96 
Extrapolation, 221-222 

F 
F test, 204-208, 216 

for additional term, 207-208 
for chi-square (X2), 204-208, 216 
for multiple-correlation, 205-207,216 
probability density function, 259 
tables and graphs, 204-205, 260-265 

Factorial function (n!), 195-196 
FGENUTIL routine, 107 
FITFUN8 routine, 151,292-293 
FITFUNC7 routine, 125, 134,284-286 
FITLINE routine, 106,281-283 
FITUTIL routine, 106, 281-283, 300 
FITVARS routine, 106,282,283 
Fluctuations 

nonstatistical, 55 
statistical, 60-63, 71,114,176-177 

Frequency plot, 272 
Full-logarithmic graphs, 271-272 
Full-width at half maximum f. See Half-width f 
Function. See also Probability density function 

garnma,64,195-196 
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Function-Cant. 
linear, 99, 103, 114, 116-135, 137, 138 
nonlinear, 135-137, 139, 164 

G 
Gamma function f (n), 64, 195-196 
Gaussian deviate, 96 
Gaussian distribution, 7,17,27-31, 33 

characteristics, 28 
integral probability, 30, 250-252 
Lorentzian distribution compared, 32, 33 
mean and standard deviation, 29-30 
Poisson distribution compared, 31 
random numbers from, 84-87 
smoothing of data, 236-237 
standard deviation, 208 
standard form, 29, 30, 33 
tables and graphs, 30, 248-252 

Gaussian smearing, 86, 90, 236 
Gauss-Jordan method of elimination, 245-247 
Goodness of fit. See Chi-square (X2) 
Gradient-expansion algorithm, 162, 165 
Gradient-search method for nonlinear fit, 

153-156, 164 
GRADLS routine, 150, 155 
GRADS EAR routine, 150, 155,290-291 
Graphs, 267-274 

chi-square distribution, 258 
computer routines, 274 
creating, 268 
error bars, 267, 268 
F distribution, 261, 263, 265 
frequency plot, 272 
full-logarithmic, 271-272 
Gaussian distribution, integral of, 252 
Gaussian probability density distribution, 250 
histograms, 272-274 
linear-correlation coefficient, 255 
parameter estimation, 269-272 
semilogarithmic, 271 

Grid-search method for nonlinear fit, 
151-153, 164 

GRIDLS routine, 150, 152 
GRIDSEAR routine, 150, 152, 289-290 

H 
Half-width f, 28, 31-32 
Hill, 1. D., 80 
Histogram, 7, 8, 13,272-274 

bin width, 110, 175,272 
normalized curves on, 273-274 

Histogram bins, 179-180 
HISTOGRAM routine, 88 
HOTROD routine, 86, 278 
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Houseman, E. E., 131 
Hypercubes, 148 
Hypersurface, 145-146, 149, 156-158 

I 
Illegitimate error, 1 
Independent parameters for fit to a polynomial, 

127-135 
Independent variable, 98-99 

graphing, 268 
histogram, 110 
linear relationship, 98-99, 102 

Instrumental uncertainty, 36--37, 38-39, 71 
Integral probability, 30,199-201,204 
Integration, 226, 227-228. See also Numerical 

integration 
Interpolation. See Polynomial interpolation 
Inverse matrix, 123, 124, 157,244,245-247 

K 
KDECAY routine, 92, 281 
Knuth, D., 80 

L 
Lagrange's method of polynomial 

interpolation, 219 
LCORLATE routine, 200, 300 
LCORPROB routine, 200, 300 
Least-squares method 

composite curves, 171-174 
linear correlation and, 198 
maximum likelihood method and, 103-104, 

179-193 
multiple-correlation and, 205 
for nonlinear fitting, 142-164 

expansion of X2
, 156--161, 165 

gradient-search method, 153-156, 164 
grid-search method, 151-153, 164 
Marquardt method, 161-164, 165 

for polynomial linear function, 
116--135,138 

coefficients, estimates of, 129-130 
determinant solution, 116-121 
independence of parameters, 127-135 
Legendre polynomials, 132-134 
matrix solution, 122-127, 132, 138 
orthogonal polynomials, 129 
spreadsheet use, 126-127 

for straight line, 102-114,270 
error estimation, 107-110 
limitations, 11 0-111 
Poisson statistics use, 111-114 

Legendre polynomials, 132-134, 139 

Likelihood function, 145, 180, 185-187, 189, 
191. See also Maximum likelihood method 

Gaussian form of, 145, 192 
logarithm of, 191 
maximization of, 191 
variation near a minimum, 146 

Linear function, 99,103,114,116--135, 
137, 138 

Linear matrix, 126,239,240,243,244 
Linear regression, 122, 135-137 
Linear simultaneous equations, 105, 111-112 
LINEARBYSQUARE routine, 247, 305 
Linear-correlation coefficient (r), 197-203,215, 

252-253 
graphs and tables, 254--255 

Local maxima, 225 
Local minima, 148-149, 150,225 
Logarithms 

graphs, 271-272 
linear regression use of, 135-137 
in maximum likelihood method, 

185-187, 191 
Lorentzian distribution, 31-32, 33 

half-width, 31-32 
Lorentzian peak on quadratic background, 

168-170 
mean and standard deviation, 32 

LORINFIT routine, 170, 294--295 
Low statistics, method for, 192 

M 
MacGregor, M. H., 145 
MAKEAB7 routine, 125, 286--287 
MAKEAB8 routine, 151, 160,293-294 
MARQFIT routine, 151, 163,292 
Marquardt, D. w., 161 
Marquardt method, 161-164, 165, 169,210 
MARQUARDT routine, 151, 163 
MATINV routine, 247 
Matrix, 239-243 

cofactor of an element, 241, 243 
column, 239, 241, 244 
computation, 242-243 
curvature, 123, 124, 147, 157, 160-163 
degree, 239 
determinants, 240-243 
diagonal, 157,242,243 
erro~ 124--126, 134, 138, 157, 163-164 
estimation of errors, 123-126 
inverse, 123, 124, 157,244,245-247 
linear, 126, 239, 240, 243, 244 
minor of an element, 241 
multiple regression solution, 122 
row, 122,239,240 

Matrix-Cant. 
singular, 244 
solution 

for linear least-squares fit, 122-127, 
132, 138 

for nonlinear fit, 144, 156--165 
of simultaneous equations, 243-245 

square, 126,239,240,241,243,244,245 
symmetric, 122, 123, 124,239,245 
trace, 242 
unity, 124, 240, 244, 246 

MATRIX routine, 125, 151, 160,303-305 
Maximum likelihood method, 51-53, 57, 

112-113 
basic procedure, 180-183 
computer example, 187-190 
direct application, 179-192 
goodness of fit, 103, 191 
least-squares method and, 103-104, 179-180 
logarithm use, 185-187, 191 
normalization for, 184--185, 191 
parameter search, 185-187 
uncertainties in parameters, 190-191, 192 

MAXLIKE routine, 187-188,295-298 
MAXLlNCL routine, 298 
Mean (fL) of a distribution, 9-14, 15 

binomial distribution, 20 
estimated error in, 53-55, 57-59 
Gaussian distribution, 29 
Lorentzian distribution, 32 
maximum likelihood method of calculation, 

51-53,57 
Poisson distribution, 25 
variance of, 53-54, 71 

Mean (~) of a sample, 9, 11, 15 
weighted, 71 

Measuring errors, 1-5 
Measuring uncertainties and linear fit, 101-102 
Median, 9, 10, 14 
Minor of a matrix element, 241 
Mode, 9, 10 
Monte Carlo method, 190 

Box-Miiller method, 85, 86, 96 
efficient generation, 94--95 
exponential distribution, 88-94, 96 
Gaussian distribution, 84--87 
in nonlinear fitting, 149 
numerical integration, 82-83 
overview, 76--78 
Poisson distribution, 87-88, 89 
random numbers, 76--81 
rejection method, 83-84, 96 
statistical significance and, 212-214 
transformation method, 81-83, 95 

MONTELLIB routine, 86, 278-280 
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Most probable value, 9-10, 15 
MUltiple regression, 122, 124 
Multiple-correlation coefficient (R), 

203-207,215 
F test and, 205-207 

Multivariable correlations, 201-204 
MULTREGR routine, 124, 283-284 

N 
Natural splines, 230 
Newton-Raphson method for roots of nonlinear 

equations, 233 
Newton's method of divided differences, 

220-222 
Nonlinear equations 

roots, finding, 231-235 
simultaneous, 233-235 

Nonlinear fitting, 142-164 
expansion of X2, 156--161, 165 
gradient-search method, 153-156, 164 
grid-search method, 151-153, 164 
local minima, 148-149, 150 
Marquardt method, 161-164, 165 
Monte Carlo method use, 149 
starting values of parameters, 148 

Nonlinear functions, 135-137, 139, 164 
NONLlNFf routine, 150, 287-289 
Nonstatistical fluctuations, 55 
Normal error distribution. See Gaussian 

distribution 
Normalized curves on histograms, 273-274 
Normalized distribution, 81, 95 
Normalized form of the Lorentzian function, 171 
Normalized probability density function, 83, 

184--185,191,208 
Notation, use of Greek and Latin letter, 7 
NUMDERIV routine, 151, 160 
Numerical integration, 75, 82-83,227-228 

chi-square probability, 196--197 
linear correlation, 200 

o 
Orear, Jay, 190 
Orthogonal polynomials, 128, 130, 138-139 
Outlying data points, 55, 56 

p 
Parabolic expansion of X2, 156--157 
Parameter estimation, graphical, 269-272 
Parameter space, searching, 144--165 

bounding parameters, 149 
expansion methods, 156-161, 165 
gradient-search method, 153-156, 164 
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Parameter space, searching-Cont. 
grid-search method, 151-153, 164 
Marquardt method, 161-164, 165 
matrix methods, 156-165 
step sizes, 149-150 

Parental distribution, 7-9, 11, 13, 14 
Peak 

area determination, 170-177 
composite plots 

multiple peaks, 175-177 
single peak and background, 174-175 

Lorentzian on quadratic background, 
168-170 

Permutations, 18-19 
Plot. See also Graphs 

composite, 174-177 
frequency, 272 

POISDECAYroutine, 88, 278 
Poisson distribution, 17, 23-27, 31, 33 

as approximation to binomial distribution, 
23-24 

area under a curve, 172-174, 177 
derivation of, 24 
fitting a straight line, 111-114 
Gaussian distribution compared, 31 
mean, 25 
random numbers from, 87-88, 89 
standard deviation, 25, 38 
statistical uncertainty and, 37-38 
summed probability, 26-27 
variance, 61 

POISSONDEVIATE routine, 88, 280 
POISSONRECUR routine, 88, 280 
Polynomial, 202, 207 

least-square fitto, 116-135, 138 
Legendre, 132-134, 139 
orthogonal, 128, 130-131, 138-139 

Polynomial interpolation, 218-222 
divided differences, 220-222 
extrapolation, 221-222 
Lagrange's method, 219 
remainder, 221 
uniform spacing, 221 

Power series, 116, 118, 174,202 
Precision, 2, 14 

absolute versus relative, 3 
accuracy versus, 2-3 

Probability density function p(x), 7, 12 
binomial, 23 
chi-square (X2), 195-197,215,253 
F distribution, 260-265 
Gaussian, 28, 30, 208, 248-252 
Lorentzian, 31 
normalized, 83, 208 

Probability distribution. See Distribution 

Probability tests, 63-65 
Probable error (ape), 30 
Product-moment correlation coefficients. See 

Linear-correlation coefficient 
Propagation of errors, 39-41, 109 
Pseudorandom numbers, 78-80, 95. See also 

Random numbers 

Q 
QDISPLAY routine, 206, 274 
QUIKHIST routine, 274, 278, 306 
QUIKSCRProutine, 274, 306 

R 
Random error, 3-4, 7, 14 
Random number generator, 79-80 
Random numbers, 76-77 

correlations, checking for, 81 
from probability distributions 

exponential, 88-94, 96 
Gaussian, 84-87 
Poisson, 87-88 
rejection method, 83-84 
transformation method, 81-83 

pseudorandom numbers, 78-80, 95 
shuffling, 79 

Recursion relation 
gamma function, 195-196 
Legendre polynomials, 132, 139 
for Poisson distribution, 25 
for random numbers, 79 

Reduced chi-square (X2), 68, 71, 195, 197,208 
Regression 

linear, 122, 135-137 
multiple, 122, 124 

Regulo-Falsi method, 233 
Rejection method for Monte Carlo calculation, 

83,96 
Relative error, 94 
Relative precision, 3 
Reproducibility of results, 2 
Resonant behavior, 31, 32, 33, 168 
Root mean square, 11 
Roots of nonlinear equations, 231-235 

half-interval, 232 
Newton-Raphson method, 233 
secant methods, 232-233, 234-235 
for simultaneous linear equations, 233-235 

Roundoff, 4-5,14,111 
Routines. See Computer routines 
Row matrix, 122, 239, 240 

S 
Sample covariance, 201, 215 
Sample distribution, 7, 11, 13 

Sample linear-correlation coefficient, 202 
Sample mean (~), 9, 11, 15,71 
Sample standard deviation a, 32 
Sample variance (S2), 11, 15, 138,201,215 
Scientific notation, 4 
Searching parameter space. See Parameter space, 

searching 
Secant methods, for finding roots, 232-235 
Second moment, 11 
Semilogarithmic graphs, 271 
Shuffling random numbers, 79 
Significant figures, 4-5, 14 
SIMPSON routine, 228, 300-301 
Simpson's rule, 196,200,228 
Simultaneous equations 

matrix determinant solution, 243-245 
nonlinear, 233-235 

Singular matrix, 244 
Slope, 269 
Smearing, data, 86, 90, 96, 236 
Smoothing, data, 173, 235-237 
SPLINEINT routine, 231 
SPLINEMAKE routine, 231, 301-303 
Splines, 228-231 
SPLINTST routine, 301 
Spreadsheet, linear least-squares fitting with, 

126-127 
Square matrix, 126,239,240,241,243, 

244,245 
Standard deviation of the mean. See Standard 

error 
Standard deviation a, 10-11, 15 

confidence interval, 63 
of Gaussian distribution, 29,208 
of Lorentzian distribution, 32 
as measure of uncertainty, 37 
outlying data point removal and, 56 
of Poisson distribution, 25, 38 
sample, 32 

Standard error, 6, 54, 63 
Starting values of parameter search, 148 
Statistical error, 60 
Statistical fluctuations, 60-63, 71, 114, 176-177 
Statistical significance in Monte Carlo test, 

212-214 
Statistical uncertainty, 37-38, 106 
Steepest descent, direction of, 154, 165 
Step sizes, search, 149-150 
Stirling's approximation, 196 
Student's t distribution, 63-65, 259, 266 
STUDENTST routine, 305-306 
Summed probability, 26-27 
Symmetric matrix, 122, 123, 124,239,245 
Symmetrical uncertainty, 209 
Systematic error, 2, 3, 14, 55 
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T 
Tables 

chi-square distribution, 256-257 
F distribution, 260, 262, 264 
Gaussian distribution, integral of, 251 
Gaussian probability density distribution, 249 
linear-correlation coefficient, 254 
Student's t distribution, 266 

Taylor series expansion, 39, 145, 158-159,220, 
221,229 

Thompson, W. J., 228 
Tolerance, 37 
Trace, matrix, 242 
Transformation integral, 95 
Transformation method for Monte Carlo 

calculation, 81-83, 95 

u 
Uncertainty, 2, 5-6, 14 

approximation, 47 
in areas under peaks, 171-172, 177 
in coefficients, 114 
computer calculation of, 47-48 
dependent variable, assigning to, 102 
instrumental, 36-37, 38-39, 71 
in linear fit, 107-110 
measuring, linear fit and, 101-102 
minimizing, 6 
in parameters after maximum-likelihood fit, 

190-191, 192 
propagation, 39-41 
relative, 57-59 
simple formulas, 41-46, 48-49 
standard deviation as measure of, 11,22,37 
statistical, 37-38, 106 
symmetrical, 209 

Uniform deviates, 79, 95. See also Random 
numbers 

Uniform distribution, 81-83 
Uniform variance, 114 
Unity matrix, 124, 240, 244, 246 

V 
Variables, dependent and independent, 98-99 
Variance a 2, 40-41, 43-44 

average, 58 
binomial distribution, 20 
definition, 10-11 
of distributions, 11, 15, 20, 61 
estimated uniform, 114 
of the fit, 194-195,215 
of the mean (",,), 53-54, 58, 71 
of parameters from fit, 107, 109-110, 123 
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Variance a 2-Cont. 
Poisson distribution, 61 
sample, 11, 15, 138,201,215 

w 
Weighted mean, 71 
Weighting data, 56-57, 203 
Weighting factors, 57, 203, 215 
Wichmann, B. A., 80 
Wichmann-Hill algorithm, 80 


