CHAPTER

FITTING
ii» COMPOSITE
CURVES

9.1 LORENTZIAN PEAK ON QUADRATIC
BACKGROUND

Many fitting problems involve determining the parameters of a resonant peak or
peaks, superimposed upon a background signal. Ex_amples may be found in various
types of spectroscopic studies where the objective is to determine the properties of
one or more resonant states.

EXAMPLE 9.1 We consider a problem from nuclear or particle physics illustrated
by the 4000-event histogram of Figure 9.1, which shows a large peak on a srr.loo.thly
varying background. We shall assume that the data have been firayvn from a distribu-
tion that includes a resonant state described by the Lorentzian distribution, and that the
background can be described by a second-degree polynomial in t'he energy E.! We
shall attempt to fit Equation (9.1) to the data to determine the amplitude A, the reso-
nant energy Eg, and the full width at half maximum I'.

r/(2w)

(E—Eo* +(T/27 G

y(E) =a, + azE + (13E2 +A0

We note that Equation (9.1) is linear in the parameters a,, a,, and a;, but not in the
parameters Ejand I

These “data” were actually generated by the Monte Carlo method described in Chapter 5. The para-
meters used in the generation are listed in the second column of Table 9.1.
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FIGURE 9.1

Histogram data in bins of 0.10 GeV of the 4000 simulated events generated from Equation (9.13) with
parameters listed in column 2 of Table 9.1. The solid curve illustrates a fit of Equation (9.1) to the
data. The dashed curve indicates the polynomial background.

We used the Marquardt method with numerical derivatives to fit Equation (9.1)
to the histogram of Figure 9.1, because this is clearly the most flexible and convenient
of the four methods.considered in Chapter 8. The amplitudes of the polynomial func-
tion (a, through a;), the amplitude of the Lorentzian peak (a4 = Ag), and the mean E,
and half-width I of the Lorentzian function (as and a4) were treated as free parameters
of the fit. Starting values for as and g, were obtained by inspecting the histogram of
Figure 9.1; starting values for the other parameters, the coefficients of the various
terms, were obtained by trial and error. Because the Marquardt method is exact for a
function that is linear in the parameters, convergence of the fit is relatively insensitive
to starting values of g through a,. The method is more sensitive to starting values for
the Lorentzian parameters (E, and I). If starting values were too far from the obvious
parameters of the peak, the program would coast to a halt in a shallow local minimum
with obviously incorrect values for the parameters, and with a higher than expected
value of X2 Starting values for all fits are listed in column 3 of Table 9.1.

Results of this six-parameter fit to the distribution in Figure 9.1 are summarized
in column 4 of Table 9.1 and the curve calculated from Equation (9.1) with the para-
meters found in the fit is plotted on the histogram of Figure 9.1. The dashed curve
shows the contribution of background under the peak. The x? probability of the fit
(7.9%) is low, but acceptable.

Because one of the objectives of the analysis of Example 9.1 is to determine
Ey, the mean of the peak function of Equation (9.1), we must be careful in the




170 Data Reduction and Error Analysis for the Physical Sciences

TABLE 9.1 . .

Results of least-squares fits of Equations (9.1) and (9.13) to data displayed in
] Figures 9.1 and 9.2

Values )
used to Starting Six-parameter Six-parameter Nine-parameter
generate values fit ) fit
data for fit (Figure 9.1) (Figure 9.2-inset) (Figure 9.2)

dof 24 54 51
- X2 343 72.9 56.0
*; P, 7.9% 4.4% 29.4

N):lm 4000 3944 3927 3994

a; 1.0 1 22*26 —22+13 -21*x1.1

a, 45.0 1 136.0 + 8.1 739+ 37 737+ 3.6

a, —10. 1 -31.6 £3.1 -180+x14 -18.0=x14

Peak 1

a (Ag) 20.0 1 798 7.0 33.9+27 288 £3.0

as (Ep) 1.0 1 0.9838 £ 0.0068 0.9912 = 0.0050  0.9968 = 0.0044

ag (1) 0.1 0.1 0.197 + 0.024 0.139 * 0.015 0.108 = 0.017

Peak 2
— — 5322

a; (A) 35 1

az (Ey) 0.8 0.825 — — 0.824 * 0.017

ag (T') 0.12 0.05 — — 0.083 + 0.034

choice of the value of the independent variable that we use in the fit. On t‘he_ hi§—
togram of Figure 9.1, the value of E; at the left-hand edge of selected bins is indi-
cated, but for the fit we used the value of E at the center of each bin. If we had used
values of E; from the left-hand edge of the histogram bins, the value for E, from the
fit would have been too low by half a bin width. For wide bins and a rapidly vary-
ing fitting function, it might be advisable to select the value of E;, for each bin by
weighting according to the steepness of the function. ‘

Note that the problem of selecting the absolute value of the.absassa corre-
sponding to the ordinate value was not important in the determingtlon of the mean
lifetimes in Example 8.1 because lifetimes are determined effectively from differ-
ences, rather than absolute values, of the independent variable. We must, however,
always take care when we plot results of a fit that the curve is not displaced half a
bin width from the data.

Program 9.1 LORINFIT (Appendix E) illustrates use of the Marquardt method
to fit a Lorentzian peak on a quadratic background.

9.2 AREA DETERMINATION

When dealing with problems of peaks and backgrounds, we may wish to determine
not only the position and width of a peak in a spectrum, but also the number of
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events or area of the peak, which may measure the intensity of a transition or the
strength of a reaction. When peaks are not well separated, or when the contribution
from background is substantial, least-squares fitting can provide a consistent
method of extracting such information from the data.

The importance of consistency should not be underestimated. Whether or
not the method chosen is the best possible method, as long as it involves a well-
understood and clearly specified procedure, other experimenters will be able to
check and compare the results safe in the knowledge that their comparisons are
Justified and meaningful. The method of least squares is considered to be an unbiased
estimator of the fitting parameters and all parameters are presumed to be estimated
as well as possible. This assumption is based on the validity of both the fitting func-
tion in describing the data and the least-squares method. If we try to fit the data with
an incorrect fitting function, or try to fit data with uncertainties that do not follow the-
Gaussian distribution, then the fitting procedure may not yield optimum results.

Although we refer to the number of events as the area of a peak or plot, the
true area is, of course, the number of events multiplied by the data interval or his-

togram bin width. Thus, to find the area A, of the peak from the results of the fit in
Example 9.1, we calculate

e I/@m)
A= |40 (E—Eo7 + (127 62

Because we used the normalized form of the Lorentzian function, the integral is just
the coefficient a, obtained in the search Ap = Ay = a,. The area of the peak on the

histogram is the product of the number of events Np in the peak and the width AE of
the histogram bin

Ap=Np X AE,
so the number of events in the peak is given by
Ny =Ap/AE 9.3)
The result from Example 9.1 is Np = (79.8 £ 7.0)/0.1 = (798 * 70) events.
Alternatively, we might plot the background curve on the graph
Y(E)=a, + ay,E + a;E? 9.4)

and count the number of events in the peak above the background in a selected
range encompassing the peak. We have indicated such a range by vertical dotted
lines at Ey, — 2I'" and E;, + 2T in Figure 9.1. With this method we should be obliged
to estimate and correct for events outside the selected region.

Uncertainties in Areas under Peaks

If we calculate the area of the peak from Equations (9.2) and (9.3), then the un-
certainty should be estimated from the uncertainties in the parameters by the er-
ror propagation equation. We have used this method to obtain the uncertainty in

the number of events of the peak of Figure 9.1 in the calculation that follows
Equation (9.3).
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The uncertainty o, in the area under a peak can also be estimated by consjd—
ering the uncertainty in the parent distribution. If the data are distributed according
to the Poisson distribution, the uncertainty in the area A, is given by oi=A, If we
obtain the area by counting the number of events above background, then the vari-
ance of the difference will be the sum (not the difference) of the variance of the to-
tal area under the peak and the variance of the subtracted background A,

where the subscripts p, b, and ¢ correspond to peak, background, and total (= peak
+ background). In order to keep s, = A, as small as possible, we should count
events only in that region where the peak-to-background ratio is large and make
corrections for the tails of the distribution.

Area under a Curve with Poisson Statistics

Curiously enough, if the data are distributed around each data point according to the
Poisson distribution, as in a counting experiment, the method of least squares con-
sistently underestimates the area under a fitted curve by an amount apprqximately
equal to the value of x2. To show this, let us consider fitting such data Wl‘th an ar-
bitrary peak, represented by bf,(x; w, ) plus a polynomial background similar to
Example 9.1:

y(x) = a + bf(x; 1, o) 9.5)

where we have simplified the background to a single term a for clarity.
Using the method of least squares, we define x* to be the weighted sum of the
squares of deviations of the data from the fitted curve

x> = E[ﬁ (vi—a—bf(x; ., cr))2} (9.6)

and obtain the solution by minimizing x? simultaneously with respect to each of tl}e
parameters. The required derivatives with respect to the two parameters a and b, in
which the function is linear, are

%——sz = —22[&%(% —a— bf(-x7 M, ()'))f(X, K, G):l = O

—‘aX . —_—
o —ZE[U—%(y,- —a— bf(x; p, 0'))} =0
We can write x2 in terms of the derivatives of Equation (9.7) as
i 1{ ax2,,0x*
X2=2[3]—%(yi—a—bf(x; M, 0'))}4‘5(0%4%7% 9.8)

and setting the derivatives to O gives

X2 = EBZ- (yi—a—bf(x; p, 1“))] 0.9)
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If the data represent the number of counts per unit time in a detector, then they are
distributed according to the Poisson distribution and we can approximate o? = y,.
Equation (9.9) becomes

X min = 2 yi(a + bf (x; p, )]

= area(data) — area(fit) ©.10)

Thus, we observe that the area under the total fit is underestimated by an amount
equal to X2,

For this derivation we require only that the fitting function consist of a sum of
terms, each one of which is multiplied by a coefficient

y(x) = Z'"Iaj £x) 9.11)

The function f(x) can contain any number of other parameters in nonlinear form,
but may not contain any of the coefficients a;. Even reparameterizing the function
of Equation (9.5) [or Equation (9.1)] and minimizing x ? with respect to the area ex-
plicitly would not affect the discrepancy between the actual and estimated areas.

Note that for data that are distributed with a constant uncertainty o; = o, the
second equation of Equations (9.7) is sufficient to ensure that Zy(x;) = Zy,. It is the
assumption of a Poisson distribution for the data % = y, that yields the discrepancy
between the actual and estimated areas.

If the agreement between the fit and the data should be exact, 2 = 0, then the
estimated and actual areas would be equal. For a fitting function that is a good rep-
resentation of the data, the value of x? will approximately equal the number of de-
grees of freedom, so that if there are many bins and a few parameters to be
determined, the average discrepancy will be about 1 per bin. Thus, the correction
may be negligible for distributions with large numbers of events.

We would like to find ways to reduce the discrepancy. The fact that we know
the approximate value of the discrepancy in the total histogram is, in itself, not very
helpful because we do not know how to allocate the discrepancy between peak and
background. We might find the ratio of the integral A, of the peak [Equation (9.2)]
to the integral A of the complete function Equation (9.1) and scale to the total num-
ber of events in the plot to estimate the number of events in the peak. This method
assumes that the correction is proportional to the area. Another possibility is to
make separate fits to the peak and background regions of the plot, so that we can try
to assign the estimated correction separately to the two regions of the plot.

One obvious way of reducing the discrepancy between the area of the mea-
sured and fitted data is to reduce the value of x? at the minimum so that the correc-
tion is small. A method of accomplishing this reduction, which is not universally
accepted but which can be justified by practical considerations, is the technique of
smoothing the data, averaging in some mathematically acceptable way over adja-
cent bins. (See Appendix A.5). Under any smoothing process there can be no over-
all gain in information, and a net improvement of the fit to the area must be offset
by an increased uncertainty in the estimation of other parameters, such as the width
and position of the peak. But smoothing will decrease the value of x2 at the mini-
mum and thereby reduce the bias in the estimation of the area.
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Referring to Table 9.1, we observe that the areas under the three fitt'ed curves
differ from the area under the data sample (4000 events), although the dlffere':nces
do not agree with the predicted values (x 2., perhaps becaus.e of Fhe complexn)_/ of
the nonlinear fitting process. Linear least squares polynomial fits to appropriate
data, such as the background distributions in Example 9.1, yield the expected dif-
ferences between the area of the data and the fitted curves. See Exercise 9.1.

9.3 COMPOSITE PLOTS

Single Peak and Background

For a fitting function y(x) that is separable into a peak y,(x) plus a background Vp(X),
such as Equation (9.1), it may be convenient to consider at least some facets pf the
fitting procedure separately. The least-squares procedure for minimizing x? with re-
spect to each of the parameters a;,

=0

—6% {% [yi = yolx:) — yP(xi)]z} (9.12)
' i

can be considered equally well in terms of fitting the sum of the curves, y(x) to the to-

tal yield y; or of fitting one function y,(x) to the differencej spectrulln yi=y; — yplx).

The only provision is that the uncertainties in the data points of o] = o; must be the

same in both calculations. . .

If the background curve can be assumed to be a slowly varying function un-
der the peak, as in Figure 9.1, and may reasonably be interpolated under the peak
from fitting on both sides, it may be preferable to fit the backgrounq curve y,,.(x)
outside the region of the peak and to fit the peak function y,(x) only in the region
of the peak. »

Such a procedure might help isolate special problems that result from flttlng
with an incorrect peak or background. The x* function measures not only the devi-
ations of the parameters from an ideal fit, but also the discrepancy l?et\?veeq the form
chosen for the shape of the fitting function y(x) and the parent distribution _of t'he
data. If the shape of the fitting function does not represent that of the parent d1s}r1b—
ution exactly, the value of x? may have large contributions from local data regions.
By fitting separate regions of a plot, it may be possible to d1§cover whethe?r the dis-
agreement is in the background or the peak region. In the h1st0gram of Figure 9.1,
our interest is in the properties of the peak function, and not in the background5
which we parameterize with a simple power series in E. However, the valu‘e of x
for the fit is calculated for the entire plot and includes contributions from discrep-
ancies between the background and the fitted curve, as well as between the peak e_md
curve. We may be able to isolate problems to one or the other region by separating
the fit into two parts.

Another reason for making separate fits to regions of a plot is to search for start-
ing values for an overall fit. For example, when fitting a function that gonsists qf peak
functions plus background function, it may be useful first to fit the regions outside the
peaks to get starting values for the background parameters and then to fit separately
the region close to each peak, to find starting values for the peak parameters.
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As an example, assume that we wish to find starting values for the fit of Equa-
tion (9.1) to the data of Figure 9.1. The following procedure could be used:

1. Separate the curve into three regions (a), (b), and (c) as indicated by the two
vertical lines on Figure 9.1.

2. Fit the background polynomial y,(x) = a; + a,E + a;E? simultaneously to re-
gions below and above the peak to obtain provisional values for the parameters
a, through a,.

3. Fit the entire function of Equation (9.1) to the central region, with the fixed val-

ues of a, through a; obtained in step 2 to obtain values for the parameters a,, as,
and ay.

4. Fit the entire function of Equation (9.1) simultaneously to regions (a) and (c),
with the starting values of the parameters a, through a, set to the values ob- -
tained in steps 2 and 3 to obtain new values of the parameters a, through as.

If the parameters continue to change significantly on each iteration, the
process can be repeated from step 2 as required. Alternatively, it may be sufficient
to skip step 3 and to fit for all parameters after step 2.

In fitting the peak and background functions over different parts of the spec-
trum, it is important to note that the complete function y(E) of Equation (9.1) must
be fitted to both regions; that is, in the region outside the peak where the back-
ground is being fitted, the calculation of the tail of the peak must be included, and
underneath the peak, the background terms must be included.

Multiple Peaks

Separation of closely spaced peaks is an important problem in many research fields.
Although we should not attempt to extract information from our data by sorting in
bins that are smaller than the uncertainties in our measurements, and should not use
bin widths that are so narrow that the numbers of events in the bins are too small to
satisfy Gaussian statistics, we also should not err in the other direction and risk sup-
pressing important details. Selecting optimurn bin sizes is critical. For some data sam-
ples, different bin widths for different regions of the data sample may be appropriate.

EXAMPLE 9.2 We have noted that, although the 4.4% probability for the fit to the
data of Example 9.1 is rather low, it could be acceptable. However, because the data
were plotted in rather coarse bins (AE = 0.1 GeV), some information may have been
suppressed. To check this possibility, we plotted the data in smaller bins (AE = 0.05
GeV) as illustrated in Figure 9.2. (Note that in plotting Figure 9.2 we have eliminated
some bins from the lower and upper edges of the histogram in order to enhance the
display; all 60 bins are included in the fits.)

Plotted in smaller bins, the large peak near E = 1.00 GeV appears to be consid-
erably narrower than indicated in Figure 9.1. There is also a suggestion of a possible
excess of events in the bin centered at E = 0.825 GeV on the low-energy side of the
main peak. As illustrated by the curve on Figure 9.2, a fit of the two-peak Equation
(9.13) to the narrow-bin data, seems to confirm the existence of a second peak. To
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FIGURE 9.2 . .
Histogram data in bins of 0.05 GeV of the 4000 simulated events shown in Figure 9.1. The solid
curve illustrates a fit of Equation (9.13) to the data. The inset illustrates, in the region of the smaller
peak, a fit of the single-peak Equation (9.1) to the entire data sample.

obtain this fit, we chose as starting values for the mass and width of the second peak,
0.825 and 0.05 GeV, respectively,

I, /(2m)
Eg)* +(To/2)?

y(E)= a, + a2E+ a3E2 +A0(E——

Iem 9.13)

t A (E-E\)*+(T/2)?

suggested by examination of Figure 9.2.

Results of the fit are listed in column 6 of Table 9.1. The 29.4% chi-squared
probability for this fit is a marked improvement from 4.4% for the single-peak fit. The
inset on Figure 9.2 shows the region of the smaller peak with a curve calculated by fit-
ting the single-peak Equation (9.1) to the entire data sample of Figure 9.2. Parameters
determined in this fit are listed in column 5 of Table 9.1.

We can estimate the statistical significance of the smaller peak in Example
9.2 by counting the total number of events above the single-peak packgrqund
(shown in the inset) and considering whether or not the excess is consistent with a
statistical fluctuation. There are 102 events in the peak bin over a background of
69.5 events, corresponding to a fluctuation of (102 — 69.5\V69.5 = 3.9 standar_d
deviations in the background signal. Referring to Table C.2, we infer that there is
a (1 — 0.99990) = 0.00010, or 0.01% probability that we should obtain a result
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this large, or larger, from a statistical fluctuation. Thus, the smaller peak appears to
be very well established.

But we should wait before rushing into publication; our analysis is not fin-
ished. We calculated the probability of finding a 3.9 standard deviation fluctuation
in a particular bin. However, there are 60 bins in this data sample, and the fluctua-
tion could have appeared in any of them. The probability that a 3.9 standard devia-
tion would not appear in any of the 60 pairs is 0.9999%, so the probability of
observing the fluctuation in any of the bin pairs is 1 — 0.9999% ~ 0.6%. This prob-
ability is low enough to give us considerable confidence that the smaller peak is not
a fluctuation. If we had some a priori reason, such as a theoretical prediction or ev-
idence from another experiment, to believe that the smaller peak should be located
in the particular energy region where it appears, then the argument against a statis-
tical fluctuation would be even more compelling.

While there appears to be firm statistical support for a second peak in the data
of Example 9.2, that support depends strongly on our understanding of the contri-
butions in the region of the second peak from the smooth background distribution
and the tail of the large peak. If, for example, background counts were 10% higher,
decreasing the excess by 10%, the fluctuation would decrease from 3.9 to 2.9 stan-
dard deviations and the probability of a fluctuation of this magnitude in any bin
would increase from about 1% to 20%, a considerably less compelling number.

Are there further tests we can make on our data sample to help us understand
the significance of our result? For problems such as this, where the statistical sig-
nificance of a result may be in question, the Monte Carlo method (Chapter 5) pro-
vides a powerful tool for more detailed examination. We shall use this technique in
Chapter 11 to make a simple statistical test of these data. A full Monte Carlo pro-
gram, which incorporates all the known or estimated details involved in the cre-
ation of the data sample, is invaluable in the planning and analysis of a serious
experiment.

SUMMARY

Background subtraction:
yp(¥)=y(x) = y5(x)  (yp—> peak; y, —> background)
Uncertainty in area of peak:
05,=0%+03  (=A+ Agfor Poisson statistics)

Area under fitted peak curve:

+-c0
Ap= J_w}’P (x) dx

Discrepancy in area under a curve with Poisson statistics:

Xain =2, [% (yi— y(x,-))} = area(data) — area(fit)

‘
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EXERCISES

9.1 The following data are drawn from the background distribution illustrated by the
dashed curve in Figure 9.1 The data points correspond to the numbers of counts in 15
histogram bins, which are 0.2 GeV wide, each centered on the indicated value of E.

E 01 03 05 07 09 11 13 15 17 19 21 23 25 27
N 4 30 49 71 87 91 120 136 147 133 130 118 142 122

Plot a of the data.

Use a linear-fitting technique, such as those described in Chapter 7, to fit a second-order

polynomial to these data. Assume statistical uncertainties in the counts. Compare the

number of events in the histogram to the number determined by the fit. Is the difference

consistent with the prediction of Equation (9.10)?

9.2 Find the area of the peak in Figure 9.1 by counting the area between the vertical dotted
lines and subtracting the estimated background. Refer to the data in Exercise 9.4. Esti-
mate the correction for the tails. Estimate the uncertainty in your determination of
the area.

9.3 Refer to the data of Exercise 8.6. Fit the histogram by the method outlined in Section
9.3 with separate fits of the background second-order polynomial to the regions outside
the peak and of the Gaussian function to the region of the peak.

9.4 The accompanying table lists the numbers of events in the histogram bins of Example
9.1 from E = 0.0 to 3.0 GeV in steps of 0.05 GeV.

(a) Fit Equation (9.1) to the data to obtain the parameters for this distribution. Compare
to the values of the parameters listed in column 5 of Table 9.1.

(b) Repeat the fit with adjacent bins merged (i.e., combine bins 1 and 2, bins 3 and 4,
etc.) and observe the effect on the value of ¥ the determination of the area of the
peak, and the determination of the mean and half-width of the peak. Assume statis-
tical uncertainties.

7 2 6 12 15 18 31 29 27 27 41 35 37 37 63 71 102 95 115 202
190 113 8 68 74 79 75 79 68 62 69 81 79 85 87 68 70 89 77 70
71 62 85 62 73 70 59 61 77 61 62 73 67 71 75 66 73 71 71 49

CHAPTER

10

DIRECT
APPLICATION
OF THE
MAXIMUM-
LIKELIHOOD
METHOD

The least-squares method is a powerful tool for extracting parameters from ex-
perimental data. However, before a least-squares fit can be made to a data set
that consists of individual measurements or events, the events must be sorted into a
histogram, which may obscure some detailed structure in the data. Because the
least-squares method was derived from the principle of maximum likelihood, it
might be better in some instances to use the maximum-likelihood method directly
to compare experimental data to theoretical predictions, without the necessity of
binning data into histograms with the corresponding loss of information.

We have already used the method in Chapter 4 to find estimates for the mean
and standard deviation of data obtained in repeated measurements of a single vari-
able, where we have assumed that the measurements were distributed according to
Gaussian probability. Now, we extend the method to other distribution functions
and to multiparameter fits. Maximum-likelihood methods can be applied directly to
many “curve fitting” problems, and such fitting is almost as easy to use as the least-
squares method, and considerably more flexible. However, the direct maximum-
likelihood method requires computations for each measured event, rather than for
each histogram bin as in least-squares fitting, and therefore the technique may be
too slow for very large data samples.

Direct maximum-likelihood calculations have an advantage over the least-
squares method for two particular types of problems: (1) low-statistics experiments
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with insufficient data to satisfy the requirement of Gaussian statistics for individual
histogram bins and (2) experiments in which the fitting function corresponds to a
different probability density function for each measured event so that binning the
data leads to a reduction in information and a loss of sensitivity in determining the
parameters. If the data set is sufficiently large, then the least-squares method can be
applied to problems of either type, and that method is generally preferred in view of
its smaller computing requirement. At any rate, it is not possible to extract more
than minimal information from a very small data set, so we should expect the direct
maximum-likelihood method to be most useful for intermediate problems with
modest data samples.

10.1 INTRODUCTION TO MAXIMUM
LIKELIHOOD

The basic maximum-likelihood procedure is relatively simple. Assume that we have
a collection of N events corresponding to the measurement of an independent vari-
able x; and a dependent variable y,, where i runs from 1 to N. We wish to obtain the
parameters, a;, 4, . . . , 4, of a fitting function y(x;) = y(x;; a, a, . . ., a,,) from
these data. For each event, we convert y(x;) to a normalized probability density
function

P, =P(x;a,ay...,4,) (10.1)
evaluated at the observed value x;. The likelihood function .Z(a;, a,, . . ., a,,) is the
product of the individual probability densities

N
Llayay...,a,)=[1F (10.2)

i=1

and the maximum-likelihood values of the parameters are obtained by maximizing
ay, ay, . . ., a,) with respect to the parameters.

In many experiments, the probability density function P; will be made up of
two components: a theoretical factor corresponding to the underlying principle be-
ing tested and an experimental factor corresponding to the biases introduced by ex-
perimental conditions.

EXAMPLE 10.1 In Example 5.7 we presented a Monte Carlo program for studying
biases that could arise in an experiment to measure the mean life of the short-lived K¢
meson (or kaon). The example includes details of the experiment and Figure 5.4 illus-
trates schematically the experimental apparatus.

In brief, the experiment involves measuring the distance between the point of
production and point of decay of the kaon, determining the meson’s velocity, and cal-
culating the meson’s time of flight from production to decay. After correction for bias
introduced by the finite size of the experimental apparatus, the mean life of the kaon
could be determined from measurements of many such events.

The dashed rectangle on Figure 5.4 indicates the region in which events are col-
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FIGURE 10.1

Frequency distribution of times of flight for 23,565 events that survived fiducial cuts in a 40,000-
event Monte Carlo generation, as a function of the proper time (in units of 107! 5). The exponential
curve was calculated from the nominal value T = 0.894 X 10x~s to represent the expected
distribution of the 40,000 generated events.

fall within the fiducial region bias the final calculation of the mean life and therefore
we must understand the biases and make corrections.

In the following examples, we assume that the coordinates of the two vertices
and the magnitude of the momentum of the decaying kaon have been determined.

We used the Monte Carlo program of Example 5.7, with the mean life of the
kaon set to its nominal value of Tk = 0.894 X 10719, to generate 40,000 events in or-
der to study the efficiency of the detector with reasonably high precision. It is impor-
tant t.hat the statistical uncertainties introduced in the determination of the efficiency
functl.on be negligible compared to the statistical and other uncertainties in the actual
experiment. The distribution of the 23,565 generated events that survived fiducial cuts
is shown as crosses in Figure 10.1 with the expected exponential distribution of the to-
tal 40,000-event sample shown as a smooth curve.

In Figure 10.2 we have plotted the resulting efficiency as a function of the times
of flight of the kaorp15 (the proper time) in their individual rest frames, with the effi-

LY + L 1
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Efficiency function €(T) = N(T)/N(T), calculated from the ratio of observed events (crosses) to
expected events (smooth curve in Figure 10.1). The dotted line illustrates the region over which the
efficiency reasonably may be assumed to be 100%.

Semilogarithmic plot of the frequency distribution of 598 events that survived fiducial cuts from a
1000-event (Monte Carlo) data sample. The uncorrected data are shown as crosses; the data corrected
for efficiency losses are shown as data points with error bars. The straight line shows the result of a
linear least-squares fit to the corrected semilogarithmic data.

We also used the Monte Carlo program, with different random-number seeds
and the same nominal value of T, to generate a small “data set” of 1000 events, of
which 598 survived the fiducial cut, to use in testing our analysis procedures.

We shall discuss several aspects of the analysis of such data in the following .

wise to eliminate points that require such large corrections from the sample, because

they contribute little to the overall result and depend heavily on the corrections.
From the linear slope of the logarithmic plot, illustrated by the straight line

through the data points, we obtain an “experimental” mean life T = (0.925 * 0.058).

examples.

P Alternatively, we could have used a nonlinear least-squares fitting technique to deter-
EXAMPLE 10.1a: Least-squares Method Figure 10.3 shows on a semilogarith- mine = directly from a linear plot of the data.
mic plot the distribution, as crosses (x), of the 598 events that survived the fiducial
cuts from the total sample of 1000 events generated in Example 10.1. The straight line 3 . . T
shows the expected disptribution if there h§d been no efficierf::y losses. In orde§ to ex- Direct Maximum Likelihood
tract the mean life of the kaon from these data, we apply the efficiency function illus- Most actual experiments are more complex and have efficiency functions that are
trated in Figure 10.2 to correct for losses. The corrected data points are plotted in ) considerably more complicated than the one illustrated by our example. For such
Figure 10.3 as data points with vertical error bars corresponding to the statistical un- problems, application of direct maximum likelihood may be the preferable method
certainties in the data, scaled by the efficiency factor. (Uncertainties in the correction for finding the best estimate of the parameters. To apply this method, we must

factor were negligible.) The efficiency was assumed to be 100% in the region indi-
cated by the horizontal dotted line in Figure 10.2. The very large error bars on “cor-
rected” points at the two ends of the plot result from scaling low-statistics data points
and illustrate the problem of using data in regions of low efficiency. Generally, it is P.=A;p(t;7) (10.3)

define a probability function for each recorded event.
The probability of observing a single event that survives for a time ¢ is
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The first factor A; represents the detection efficiency, or probability that the particle
will decay within a predefined fiducial volume within our apparatus, so that a satis-
factory measurement can be made of its flight time. This factor depends upon the co-
ordinates of the production and decay vertices of the decaying particle, its momentum
vector, and the geometry of the fiducial volume. The second factor p(z; T) is propor-
tional to the probability that a particle of mean lifetime T will decay between time ¢
and #; + dt and is therefore proportional to e~/". Equation (10.3) becomes

P= Aie-—t,-/'r 10.4)

It might appear that the two factors in Equation (10.3) are independent, so that
the detection efficiency factor is independent of the decay probability, but, as we
have observed in the previous example, this is not generally true. Because of the fi-
nite size of our measuring apparatus, we may preferentially lose events that survive
for very short times so that we can’t make precise measurements of their flight
paths, as well as those that survive for very long times and therefore decay outside
the acceptable limits of our detectors. Losses of both types depend upon the mean
life that we are attempting to determine, the “1” in the second factor of Equation
(10.3). For each particle that is observed to decay within the apparatus, we can de-
fine a potential path length as the distance it would travel if it had not decayed. Be-
cause each decaying particle has a different potential path length, we must calculate
geometric factors to correct for those particles that decay outside the detector. The
correction factors will depend on the parameters and will be a function of the pro-
duction and decay coordinates and the momentum vectors of each decaying parti-
cle. Clearly, one element of good experiment design should be to minimize the
dependence of these geometric correction factors on the parameters sought in the
experiment.

Normalization for Maximum Likelihood

The factor A; in Equation (10.4) corresponds to a normalization for each measure-
ment to assure unit probability for observing in this experiment any event that has
the mean life, coordinates, and kinematics of the observed decaying particle. To de-
termine the normalizing factor A; we refer to Figure 5.4 and consider the fiducial
volume of our apparatus, indicated by the dashed rectangle. From each particle’s
production coordinates and momentum vector, we can determine the minimum dis-
tance d, that the particle must travel to enter the region and the maximum distance
d, it can travel before leaving the region. (We can, of course, observe some events
outside the fiducial volume, but we reject them because they cannot be measured
precisely.) These minimum and maximum distances d; and d, must be converted to
times of flight ¢, and ¢, in the rest frame of the decaying particles, and the normaliz-
ing factors A; can then be determined from the condition

['210,- dt, = A,-Jtze"f/Tdt,- =1 (10.5)
1 t

t i
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Pr(_)bability or the likelihood function for observing N such events in our experiment
1s just the product of the individual probability functions:

N N
Z(T)=HIP,-=HA,-e""/T (10.6)
i= i=1

Parameter Search

Our iject is to find the value of the parameter T that maximizes this likelihood
function. Because the probability of observing any particular event is less than 1,
the product of a large number of such probabilities (one for each measured event)
may be a very small number, and may, in fact, be too small for the computer to han-

d'le. To avoid problems, it is usually preferable to maximize the logarithm of the
likelihood function

M= .7/ (10.7)

rather than the likelihood function itself, so that the product of Equation (10.6) be-
comes a sum. The logarithms should be reasonable, negative numbers. For our partic-
ular example, the logarithm of the likelihood function of Equation (10.6) is given by

M(7) = In[ £ ()] = z[mA,. - ﬂ (10.8)

with A; defined by Equation (10.5). Note that A; is a function of the unknown
p?lrameter 7, as well as of the production coordinates, momentum vector, and fidu-
cial volume, and must be calculated separately for each event, and for every trial
value of 7.

In general, this problem, like the corresponding nonlinear least-squares fitting
problem, cannot be solved in closed form. However, either the grid- or gradient-
s;arch method of minimizing the x? function discussed in Chapter 8 can be adopted
directly. It is only necessary to search for a maximum of M (or a minimum value of
—M) with the same routines we used in Chapter 8 to find a minimum of X2

We may note a correspondence between the quantity M(7), determined in
Equation (10.7) from the likelihood function for individual events, and the good-
ness-of-fit parameter x2, determined by Equation (8.7) from the likelihood function
P(a) for binned data:

x* = —2In[ £ (7)] + constant (10.9)

II;l the limit of a large number of events, the two methods must yield the same value
7’ for the mammum-likelihood estimate of the parameter 7. In both cases the likeli-
hood function will be a Gaussian function of the parameter near the optimum value

— N2
(7)o exp (—%—J)—) (10.10)
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EXAMPLE 10.1b Let us consider the simplest form of this problem. Assume that
the unknown mean lifetime is sufficiently short so that our apparatus is large enough
to include many lifetimes and, therefore, the loss of particles that decay at very long
times is negligible. Let us also assume that our equipment can detect particles at very
short as well as very long times. Then the limits on the normalization integral of Equa-
tion (10.5) become ¢, = 0 and ¢, = % and A; is the same for every event and is given
by A; = 1/t. The likelihood function becomes

e*t.-/-r

L) =TAe " =11 (10.11)

.
with logarithm
M(z)=In[ £ (7)) = —%Et,-—Nln"r (10.12)

We can obtain the maximum of Equation (10.12) by taking the derivative of
M(7) with respect to T and setting it to 0:

dM(t)_i 1 _
a _dT[ e Nm] (10.13)
1 N ’
a2t =0

The solution is T = X¢/N; that is, the maximum-likelihood estimate of the mean life is
just the mean of the individual lifetime measurements. We should have reached the
same result if we had found the maximum of Z(¢) from Equation (10.11).

EXAMPLE 10.1c  Suppose that we repeat the experiment, but with poorer experi-
mental resolution so that we cannot distinguish the decay vertex (x,, y,, Z,) from the
creation vertex (x;, y;, z;) unless they are separated by a distance ;. For simplicity, we
assume that the decaying particles are all produced with the same velocity, so that the
lower cutoff distance d; translates into the same lower cutoff in time ¢, for all events.
(In an actual experiment, of course, the decaying particles would be produced with
various velocities, so that the calculated lower cutoff time ¢, would vary from event to
event.)

For this example, the normalization integral of Equation (10.5) becomes

A,.re'ff/wt,. =1 (10.14)
f
which gives
et,/"r
Ai = _’T— (1015)

The likelihood function becomes
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so that
M=In £ = [tl — ti]
nL=ym_—— - Xl (10.17)
Setting
dM(r) _
7 0 (10.18)
gives
d [tl - tz] tl - ti N
R LS RS e
or
2] 2y
T N N 4 (10.20)

As we should expect, the lifetime T would have been overestimated if we had
neglected to take account of the cutoff at short times.

EXAMPLE 10.1d Let us consider a more realistic problem in which we have both
short and long cutoffs on the observable path. We also assume that the unstable parti-
cles are produced at various locations within the target and with various momentum
vectors p.

For this example, we must calculate the normalization integral, Equation
(10.5)', separately for each event with individual values for ¢, and ¢, determined from
the minimum and maximum distance cutoffs, d, and d,, respectively. The resulting
expression for the likelihood function is

) =TT e =[] |
L) =114 =]] e — e (10.21)

i=1
with
M(z) = o[ £ (7]

Setting to zero the derivative of M(7) with respect to 7 gives us the equation
for the max1rpum—hkelihood value of 7. However, the resulting equation cannot be
solved analytically for 7 although it could be solved by interpolation (see Appendix
A). We choose, rather, to maximize M(t) by a one-dimensional grid-search method

because search methods are more generally applicable to maximum-likelihood
problems and can readily be extended to multiple parameter problems.

10.2 COMPUTER EXAMPLE

Sample Maximum Likelihood Fit
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Example 10.1a. The events were generated with T, = 0.894 X 10719 s and the dis-
tribution of the selected events is illustrated by the crosses in Figure 10.3.

Program 10.1 MAXLIKE (Appendix E) A grid-search method to maximize the
logarithm of the likelihood function of Equation (10.21). The routines have been writ-
ten specifically for Example 10.1d.

STARTUP sets the range of the parameter TAU for the search.

FETCHDATA assigns the input data file, reads the limits of the fiducial region
(d, and d,), reads data for individual events.

SEARCH sets and increments TAU and calls LOGLI1KE, which returns the loga-
rithm of the likelihood function M. Compares each calculated value of M to the pre-
ceding value. Terminates the search when M stops increasing and starts to decrease,
indicating that M has passed through a local maximum. At termination, fits a parabola
to the last three points to find a better estimate of TAU at the maximum.
LOGLIKE calls LOGPROB to find the logarithm of the probability density for
each event; sums to calculate the logarithm of the likelihood function.

LOGPROB calculates the logarithm of the probability density for an event.
ERROR calculates the uncertainty SIGTAU in TAUATMIN, the maximum like-
lihood value of the parameter TAU, by finding the change in TAU needed to decrease
Mby AM = 1/2.

PLOTLIKECURVE (Not listed) calculates and plots the shape of the likelihood
function in the region of the maximum. Plots a Gaussian curve with mean and stan-
dard deviation equal to TAUMIN and DTAU.

Grid-Search Solution

At each step the program increments T by a preset amount At and repeats the cal-
culation until M(r) has passed through a maximum and has started to decrease. The
program fits a parabola to the three points that bracket the maximum to find the
value 7' at the maximum of M(t). For a more detailed problem, the program could
be written to repeat the calculation with smaller values of At to find a better esti-
mate of 7', as in the fitting examples in Chapter 8. Either the grid- or gradient-
search method of Chapter § could be adapted to solve multiparameter problems.

Results of the Fit

We analyzed the data set twice: first with data selected in the nominal fiducial region
(10 cm to 40 cm), which gave 7' = (0.943 = 0.059) X 10~'% for the 598 events that
survived the cut, and then, to test the sensitivity of the calculation to our choice of
fiducial region, with data selected in the less-appropriate fiducial region with d;, = 10
cm and d, = 20 cm, which gave ' = (0.78 = 0.14) X 10~'% for the 373 events that
survived this cut. Plots of the relative values of the likelihood function versus trial
values of the parameter T are shown as crosses in Figure 10.4a for the data selected
in the nominal fiducial region and in Figure 10.4b for data selected in the less-
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FIGURE 10.4

Relative yalues of the likelihood function versus trial values of the parameter for events that passed

the fiducial cuts for the decay vertex. The data points are indicated by crosses; the smooth Gaussian

curves were calculat;d from Equation (10.10) with the values of the means and standard deviations

(I)Btalloned in the two fits. (a) Nominal fiducial cuts: 10 — 40 cm; 598 events survived; ' = 0.943 X
"8, 0= 0.059 X 107195, () Incorrect fiducial cuts: 10 — 20 cm: 373 t rvived: 1/ =

X 10-0 o b a e o ; events survived; v’ = 0.78

fewer events and, therefore, gives a less-precise result. In an actual experiment, we
should have to consider a trade-off between the number of surviving events in’ the
sample, and the precision with which those surviving events could be measured, and
choose our fiducial region to maximize the overall quality of the result. ’

We observed that, for a sufficiently large event sample, the likelihood function
should become Ganceian in the narammotare Sm flha <8 afte o 5 e e T
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maximum of the likelihood function) according to Equation (10.10), where 1’ is the
value of the parameter 7 that maximizes the likelihood function. We show on Fig-
ures 10.4a and 10.4b Gaussian curves calculated from Equation (10.10), with t" and
o determined by the respective fits. Both the data points and the Gaussian curves
have been scaled to unit height at T = 1’. The data points of Figure 10.4a closely
follow the curve; in the lower statistics example in Figure 10.4b, the data points de-
part from the curve considerably.

Uncertainties

To estimate the uncertainty o in our determination of 7', we found the change in T
necessary to decrease M by AM = 1/2 from its value at the maximum 1’ (corre-
sponding to an increase of x2 by 1 or a change of e~!2 in the likelihood function .£).
Because the likelihood function for the larger sample (Figure 10.4a) closely fol-
lowed the Gaussian form, our estimate of the uncertainty should be satisfactory.
However, the smaller sample (Figure 10.4b) was skewed from the Gaussian, so that
our estimate of the standard deviation might be somewhat low. For multiparameter
fits it is often useful to plot contours of x? (or of M) as a function of pairs of the pa-
rameters to study the uncertainties. (See Chapter 11.)

There are several other ways to estimate the uncertainty in a parameter after
performing a maximum-likelihood fit. If the distribution of the likelihood function
is sufficiently close to a Gaussian, we can find o, from Equation (8.11):

o2 = (ﬂ“—ﬂ)_l (10.22)

T 72

If it is not possible to calculate Equation (10.22) exactly (although it is possible for
our example), we can find the second derivative by taking finite differences as dis-
cussed in Appendix A.

If the likelihood function does not follow the Gaussian distribution, we can try
a numerical integration of the likelihood function to find limiting values that include
~68.3% of the total area, corresponding to the 1 standard deviation limit. Alterna-
tively, we may use a method suggested by Orear (1958) who points out that, for small
event samples, where the likelihood function may not be very Gaussianlike, it may be
preferable to calculate an average value of the second derivative through the equation

@ _[[0°M/3a*) £ (a)da
da | £ (a) da

where a is the unknown parameter and the integrals are over the allowable range of
the parameter. This procedure has the advantage over the method of Equation
(10.22) of giving more weight to the tails of the distribution in cases where they
drop off more slowly than those of a Gaussian curve.

Another method of determining the uncertainties in the parameters is to use a

A ntn Fldn Aanlanlatine 40 nendiina cimailatad data cate rammnarahls ta e meaonred

(10.23)

|
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data, and to use the method outlined in Chapter 11 for determining confidence levels
fpr our results. This method has the advantage that it depends only on the assump-
tions made in the Monte Carlo generation, and not on any statistical expectations
about the shape of the likelihood function. In many experiments, especially those
with low statistics, it provides the most reliable estimate of parameter uncertainties.

Goodness of Fit

Qne disadvantage of the direct maximum-likelihood method is that it does not pro-
vide a convenient test of the quality of the fit. The value at the peak of the likelihood
funcpon itself is not useful because it represents only the maximized probability for
obtaining our particular experimental result and we have no way of predicting the
expected probability.

An estimate of the goodness of fit can be obtained by making a histogram of~
the data and comparing it to a prediction based on our best estimate of the parame-
ters. .A Monte Carlo simulation of the experiment may be required to calculate the
predicted distribution, with a ¥ test to compare the data to the prediction.

It is not always clear just which data variable should be histogrammed for this
purpose. We would like to find that variable on which the parameters depend most
strongly. For our sample problem, the lifetime T in the rest frames of the particles is
an obvious choice, because that is the variable we would choose if we were to solve
the problem by the least-squares method. However, it might be wise to try plots of
several variables to be sure that the fit is satisfactory. To test, we could generate with
our Monte Carlo program a large sample of events based on the parameters discov-
ered in each search, apply the fiducial cuts, and calculate x?* from the agreement be-
tween the Monte Carlo results and our data sample. We should be aware that
because we did not actually minimize x? for the experimental distribution with re—,
spect to the parameters, a satisfactory value of Xx* may be at best an indication that
nothing is drastically wrong with the solution.

SUMMARY

Normalized probability density function:
F=P(x;,a,a,,...,a,)

Likelihood function:

4

L(apay, ..., a,)=T[P

i=

—

Single-event probability density: P, = A;-p(x;; a) where A, is the detection efficiency
and p(x; a) is proportional to the interaction probability

Logarithm of likelihood function: M = In # = 3 In P;

Maximization of £ or of M: d.Z1da; = 0 or 0M/da; = O for all a;
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Gaussian form of likelihood function for large data sample:

ZL(a;) < exp (—M>

20?

Uncertainties in parameters:

2 -1
o2 = 8?M(a))
/ da?

Method for low statistics:

@/[ _[[9*M/ 4] £(a)da
da® [£(a)da

EXERCISES

10.1.

10.2.

In a scattering experiment, the angles of the scattered particles are measured and the
cosines of the angles in the center-of-mass rest frame of the incident and target parti-
cles are calculated and recorded. Fifty such measurements, drawn from the distribu-
tion y(x) = a, + a, cos?0, are listed in the table. Use the direct maximum-likelihood
method to determine the values of the parameters @, and a, Note that it is necessary to
convert the distribution function y(x;) to a normalized probability function and that the
normalization constant will be different for each pair of trial values of a; and a,.

—0.999 —0.983 -0.956 —0.946 —0.933 -0925 —0916 —0.910

—0.881 -0.739 —-0.734 —0.717 -0.715 -0.675  —0.665 —0.649

-0.621 —0.537 -0.522  —-0.508 -0.499 —0.471 —0.460 —0.419

—0.403 —0.311 -0305 —0.281 —0.170 -0.162  —0.063 0.214
0.438 0.444 0.508 0.586 0.638 0.677 0.721 0.730
0.768 0.785 0.790 0.793 0.877 0.896 0.931 0.938
0.948 0.993

Because of the small amount of data, the uncertainties in the parameters a, and a, are
so large that the values of the parameters are not very meaningful. Therefore, to com-
plete the problem, you should use the Monte Carlo program written for Exercise 5.8
to generate 500 events and use your calculation to find the parameters from those data.
Students in an undergraduate physics laboratory determined the mass of the A hyperon
by measuring graphically the energies and the momentum vectors of the proton and
1 meson into which the A hyperons decayed. Because of the large uncertainties in the
measurements, the calculated square of the masses of the decaying particles forms a
truncated Gaussian distribution that is limited on the low-mass side by (M, + M) =
1.1617 (GeV/c?)?, but is not limited on the high-mass side. The following 50 numbers

represent squares of the calculated masses in units of (GeV/cH

12981 12618 1.2145 12539 14230 1.3963 13701 1.2303 13655 12042
13190 12086 12118 12078 12726 1.2438 1.1838 1.1666 1.1908 1.1922
12525 13615 1.1855 12697 12044 13397 14317 1.2713 12203 1.2817
S i hece 11090 19505 11771 12608 1.1680 1.4838 1.1743 1.2954

10.3.
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Use the direct maximum-likelihood method to fit a truncated Gaussian to these data to

fietermjne the maximum-likelihood value of the mass of the squared particle. A search

in two-parameter space will be required since neither the mean nor the width of the
distribution is known.

Note that it is necessary to calculate numerically the normalization of the trun-
cated Gaussian for each pair of trial values of the mean and standard deviation of the
Gauss%an, function. It is advisable to set up a table of the integral of the standard
Gau.ss1an and to use interpolation to find the desired normalizations. A simple auto-
matic or manual grid search will suffice for maximizing the likelihood function.

Use Program 5.4 (available on the website) to generate 1000 sample kaon decay

events with nominal mean life 1 = 0.894 X 10710,

(a) Plot a histogram of the times of flight of all the generated kaons in their own rest
frames (proper times).

(b) Use Program 10.1 (available on the website), with nominal fiducial cuts on your
dgta (d; = 10.0 cm and d, = 40 cm) to repeat the analysis of Example 10.1d to -
find the maximum likelihood solution 7' for the kaon mean life. Plot a histogram
of the events that survive the cuts.

(c) With the value of 7', which you determined in part (b), and random number seeds
that are different from those used in part (a), generate 20,000 events to serve as
your estimate of the parent distribution. Apply the nominal fiducial cuts to these
data and plot a histogram of the data in the same bins as you used in part (b).

@ Calc.ulate x? for the agreement between your “experimental” histogram and the
sgrvwing events from the “parent” distribution. If the numbers of events in your
pms of the parent distribution are large enough, their uncertainties can be ignored
in this calculation. If they are not, you must use the combined statistical errors of
the two distributions when calculating 2.



CHAPTER

11

TESTING
THE FIT

11.1 x2TEST FOR GOODNESS OF FIT

The method of least squares is based on the hypothesis that the optimum descrip-
tion of a set of data is one that minimizes the weighted sum of the squares of the
deviation of the data y; from the fitting function y(x;). The sum 1s character;zed by
the variance of the fit s2, which is an estimate of the var¥ance of the data o*. For a
function y(x;), which is linear in m parameters and is fitted to N data points, we

have

1 2{(1/0’2)[)"_Y(xi)]2} _ 1 _ Y12 11.1
= ey = wily; — y(x)] (11.1)
N—m (1/N)=(1/c?) Nem 2l

where the factor v = N — m is the number of degrees of freedom for ﬁttipg N data
points (implied in the unlabeled sums) with m parameters and the weighting factor
for each measurement is given by

s

Lo} (11.2)
" (/NE(1 /o)
the inverse of the variance o? that describes the uncertainties in each point, normal-

ized to the average of all the weighting factors. . o .
The variance of the fit s2 is also characterized by the statistic X defined in

Equation (7.5) for polynomials:
(4 1 R
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with
y(x) = él a fi(x;)

The relationship between s? and x? can be seen most easily by comparing s2
with the reduced chi-square x2,

= lo?) (11.4)

where (o?) is the weighted average of the individual variances

NS/l _[1 1]
o == 2

1
and is equivalent to o2 if the uncertainties are all equal, o; = o.

The parent variance of the data o2 is a characteristic of the dispersion of the
data about the parent distribution and is not descriptive of the fit. The estimated
variance of the fit s2, however, is characteristic of both the spread of the data and the
accuracy of the fit. The definition of x2, as the ratio of the estimated variance s? to
the parent variance ¢ times the number of degrees of freedom v, makes it a conve-
nient measure of the goodness of fit.

If the fitting function is a good approximation to the parent function, then the
estimated variance s? should agree well with the parent variance o2, and the value
of the reduced chi-square should be approximately unity, x2 = 1. If the fitting func-
tion is not appropriate for describing the data, the deviations will be larger and the
estimated variance will be too large, yielding a value of x2 greater than 1. A value
of x2 less than 1 does not necessarily indicate a better fit, however; it is simply a
consequence of the fact that there exists an uncertainty in the determination of 5?2,
and the observed values of x2 will fluctuate from experiment to experiment. A value
of x2 that is very small may indicate an error in the assignment of the uncertainties
in the measured variables.

(11.5)

Distribution of x?

The probability distribution function for x? with v degrees of freedom is given by
2\1/2(v—2) ,—x¥2
2. 1) — (x?) €
Py(x% V) 22T (v/2)

The chi-square distribution of Equation (11.6) is derived in many texts on statistics!
but we shall simply quote the results here.

The gamma function I'(n) is equivalent to the factorial function n! extended to
nonintegral arguments. It is defined for integral and half-integral arguments by the
values at arguments of 1 and %2 and a recursion relation:

(11.6)
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ry=1 T(A)=Va Ta-1)=nl@ )
For integral values of

Tn+1)=n n=01,... L i

For half-integral values of n
T+ D=n—1)(—2)- () (V)
n="Y,3%,%,...

/

Calculating factorial functions can lead to computer overflow problems. For
computational purposes it is convenient to replace the factorial form of the gamma
function by a form of Stirling’s approximation*:

I'[n]= V2me "n®=2(1 + 0.0833/n) (11.8)

This approximation, which is accurate to ~0.1% for ail n = 1/?, avoids poth the
problems of overflow in calculating factorials and the necessity of testing and
choosing the appropriate form for integral or half-integral argument. The‘ trade-off
is computer speed. Calculating exponentials may be slower than calqulatmg facto-
rials, but high speed usually is not required for nonrepetitive calculations.

If the function of the parent population is denoted by y,(x), the value of X3
determined from the parameters of the parent function

X6 = 2[% [yi = yo(x,-)]z} (11.9)
is distributed according to Equation (11.6) with v = N degrees of freedom. If the
function y(x) used in the determination of x? contains m parameters, the value .of
x?2 calculated from Equation (11.3) is distributed according to Equation (11.6) with
v = N — m degrees of freedom.

More useful for our purposes than the probability density distribution py(x%; v)
of Equation (11.6) is the integral probability Py(x?; v) between x2 = x*and x> = o

P )= szx(xa ) dx? (11.10)

Equation (11.10) describes the probability that a random set of n data points drawn
from the parent distribution would yield a value of x? equal to or greater than the
tabulated value.

Program 11.1. CHI2PROB (Appendix E) x2-probability. . .
CHIPROBDENS computation of the function px(xz; v) [Equation (11.6)] using
function GAMMA to approximate the gamma function.

CHIPROB Numerical calculation of the integral, Equation (11.10), by Simpson’s
rule. If variable overflow is a problem, double-precision variables could be employed.
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The calculation returns the integral to an accuracy of about £0.1%. The trade-
off on accuracy versus speed of computation is controlled by the value of the constant
DX, the integration step.

For the special case of 1 degree of freedom, v = 1, the x?-probability density
function of Equation (11.6) takes the form

px(xz; v) — e*xz/Z/(quXZ)l/Z

which is difficult to integrate numerically near x = 0. However, the integral is finite,
and the function can be expanded in a Taylor series about x = 0 and integrated ana-
lytically. We use that technique for v = 1 and x? < 2.

Similarly, for v = 2, where the function takes the form

pX(Xz; v) = e—xl/2/2

the analytic form of the integral is used.

For a fitting function that is a good approximation to the parent function, the
experimental value of x2 should be close to one and the probability from Equation
(11.10) should be approximately 0.5. For poorer fits, the values of x2 will be larger
and the associated probability will be smaller. There is an ambiguity in interpreting
the probability because x2 is a function of the quality of the data as well as the
choice of parent function, so that even correct fitting functions occasionally yield
large values of x2. However, the probability of Equation (11.10) is generally either
reasonably close to 0.5, indicating a reasonable fit, or unreasonably small, indicat-
ing a bad fit. In fact, for most purposes, the reduced chi-square x? is an adequate
measure of the probability directly. The probability will be reasonably close to 0.5
so long as x2 is reasonably close to 1; that is, less than about 1.5.

Example 11.1. Consider the solution of the problem of fitting two exponential
curves plus a linear. background to the data from the radioactive silver decay of
Example 8.1. The fit (see Table 8.5) gave x2? = 66.1 for 54 degrees of freedom, or
X2 = 1.22, with P,(x% v) = 12.4%. We can interpret this result in the following way.
Assume that the parameters we found are, indeed, the parameters of the parent distri-
bution. Then, suppose that we were to repeat our experiment many times, drawing
many different data samples from that parent distribution. Our result indicates that in
12.4% of those experiments we should expect to obtain fits that are no better than that
listed in Table 8.5.

11.2 LINEAR-CORRELATION
COEFFICIENT

Let us assume that we have made measurements of pairs of quantities x; and y,, We
know from the previous chapters how to fit a function to these data by the least-
squares method, but we should stop and ask whether the fitting procedure is justi-

fied and whether, indeed, there exists a physical relationship between the variables
v and v What we are ackino here ic whathar ar nnt tha variatinnce in tha nhocarmiad
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For example, if, as in Example 6.1, we were to measure the potential differ-
ence across segments of a current-carrying wire as a function of the segment length,
we should find a definite and reproducible correlation between the two quantities.
But if we were to measure the potential of the wire as a function of time, even
though there might be fluctuations in the observations, we should not find any sig-
nificant reproducible long-term relationship between the pairs of measurements.

On the basis of our discussion in Chapter 6, we can develop a quantitative
measure of the degree of correlation or the probability that a linear relationship
exists between two observed quantities. We can construct a linear-correlation
coefficient r that will indicate quantitatively whether or not we are justified in de-
termining even the simplest linear correspondence between the two quantities.

Reciprocity in Fitting x Versus y

Our data consist of pairs of measurements (x;, y,). If we consider the quantity y to be
the dependent variable, then we want to know if the data correspond to a straight

line of the form
y=a+ bx (11.11)

We have already developed the analytical solution for the coefficient b, which rep-
resents the slope of the fitted line given in Equation (6.12):

= NSx = (Sx)? (11.12)

b
where the weighting factors in g; have been omitted for clarity. If there is no corre-
lation between the quantities x and y, then there will be no tendency for the values
of y to increase or decrease with increasing x, and, therefore, the least-squares fit
must yield a horizontal straight line with a slope & = 0. But the value of b by itself

cannot be a good measure of the degree of correlation because a relationship might

exist that included a very small slope.
Because we are discussing the interrelationship between the variables x and y,

we can equally well consider x as a function of y and ask if the data correspond to a
straight-line form

x=a +by (11.13)
The values of the coefficients a’ and b’ will be different from the values of the co-

efficients ¢ and b in Equation (11.11), but they are related if the variables x and y are

correlated.
The analytical solution for the inverse slope b’ is similar to that for b in Equa-

tion (11.12):
b = N3xy — 2x2y;
NZy}—(2y)?

(11.14)
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_ If there is a complete correlation between x and ¥, then there exists a relation-
ship bgtween the coefficients a and b of Equation (11.11) and between ¢’ and b' of
Equation (11.13). To see what this relationship is, we rewrite Equation (11.13):

al

. 1
y——;%—;x:a%—bx (11.15)
and equate coéfficients

7

a 1

_F b:E

. We see from Equation (11.16) that bb’ = 1 for complete correlation. If there
1S no correlation, both b and b are 0 and Equations (11. 16) do not apply. We. there-
fore define, as a measure of the degree of linear correlation, the experimental linear-
correlation coefficient r = \/bb': )

a =

(11.16)

N3xy, — 2x3y;
[NZ2x} = (Zx)]2[NZy? - (Sy, 7]

The value of r ranges from 0, when there is no correlation, to =1, when there is
complete correlation. The sign of r is the same as that of b (and b’), but only the ab-
solute magnitude is important.

The correlation coefficient r cannot be used directly to indicate the degree of
correlgﬂon. A probability distribution for r can be derived from the two-dimensional
Gau§s1an distribution, but its evaluation requires a knowledge of the correlation co-
efﬁc1ent p of the parent population. A more common test of r is to compare its value
with the probability distribution for the parent population that is completely uncorre-
lated; that is, for which p = 0. Such a comparison will indicate whether or not it is
probable that the data points could represent a sample derived from an uncorrelated
parent population. If this.probability is small, then it is more probable that the data
points represent a sample from a parent population where the variables are correlated.

For a parent population with p = 0, the probability that any random sample of
upcorrelated experimental data points would yield an experimental linear-correla-
tion coefficient equal to r is given by?

po(rsv) = \}1_1- F[(;(—:/lz))/z](l — p2)e-2/2 (11.18)

r

(11.17)

where v = N — 2 is the number of degrees of freedom for an experimental sample
qf N Qata points. The gamma function for integral and half-integral values was de-
fined in Equation (11.7).

Integral Probability

A more useful distribution than that of Equation (11.18) is the probability P (r; N)
that a random sample of N uncorrelated experimental data points would vield an
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experimental linear-correlation coefficient as large as or larger than the observed
value of }r| This probability is the integral of p,(r; v) forv =N — 2:

1
Ps(r;N)=2J plriv)ds  v=N-2 (11.19)
17l

With this definition, P(r; N) indicates the probability that the observed data
could have come from an uncorrelated (p = 0) parent population. A small value
of P,(r; N) implies that the observed variables are probably correlated.

Because Equation (11.19) cannot be integrated analytically, the function must
be integrated either by making a series expansion of the argument and integrating
term by term or by performing a numerical integration. With fast computers, the lat-
ter method is more convenient and generally applicable to such problems.

Program 11.2 LCORLATE (Appendix E) Correlation probability computations.
LcORPROB computes the probability of Equation (11.19) by numerical integra-
tion. Input variables RCORR and NOBSERYV correspond to the value of the ex-
perimental linear-correlation coefficient and the number of observations, respectively.
(The number of degrees of freedom is the number of observations minus 2.) The pro-
gram uses the following routines: LINCORREL computes the function p(r; v) of
Equation (11.18) using the approximation of Equation (11.8) for the gamma function
(calculated by the function GAMMA in the program unit GENUTIL). Because
LINCORREL. is intended to be used as an argument to the integration routine
SIMPSON, it can have only one argument. The parameter v is passed in the global
variable PS1MPS by the calling routine.

LINCORPROB computes P(r; v) of Equation (11.19) by numerically integrating
LINCORREL by Simpson’s rule. The calculation returns the integral to an accuracy
of about =0.01. The trade-off on accuracy versus speed of computation is controlled
by the value of the constant DX, the integration step.

Example 11.2. For the data of Example 6.1, the linear-correlation coefficient r can
be calculated from Equation (11.17) with the data of Table 6.1:
e 9 X 779.3 —450.0 X 12.44
\/(9 X 28,500 — 450.0%) X (9 X 21.32 — 12.44?)
= 0.9998

The probability for determining, from an uncorrelated population with 9 — 2 =7
degrees of freedom, a value of r equal to or larger than the observed value, can be cal-
culated from Equation (11.19) (see Table C.3). The result P,(r; N) < 0.001% indicates
that it is extremely improbable that the variables x and V are linearly uncorrelated. Thus,
the probability is high that the variables are correlated and the linear fit is justified.

Similarly, in the experiment of Example 6.2, the linear-correlation coefficient
can be calculated from Equation (11.17) by including the weighting factors a? = y, as
in Table 6.2, so that, for example, N is replaced by 2w, and Zx; is replaced by Zw;x;,
and so forth:

0.03570 X 81.02 — 0.1868 X 10
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Again, the probability P (r; N) for r = +0.9938 withv = 10 — 2 = § degrees
c?f freedom is very small (< 0.001%), indicating that the change in counting rate C is
linearly correlated to a high degree of probability with x = 1/r2, the inverse square of
the distance between the source and counter.

11.3 MULTIVARIABLE CORRELATIONS

If the dependent variable y, is a function of more than one variable,
Yi=a+bixiy + byx;y + byxyy + - - - (11.20)

we might investigate the correlation between y, and each of the independent vari-
ables x; or we might also enquire into the possibility of correlation between differ-
ent variables x;. Here, we use the first subscript i to represent the observation, as in
the previous discussions, and, the second subscript j to represent the particular vari- -
able under investigation. The variables x; could be different variables, or they could
b_e functions of x; f(x,), as in Chapter 7. We shall rewrite Equation (11.17) for the
linear-correlation coefficient r in terms of another quantity s3,.

We define the sample covariance s:

1
S =7 210 — %) (e — %) (11.21)

where the means X; and X, are given by

__ 1 _ 1
XJ=N,2 x,-j and xk:NE Xik (11.22)

and the sums are taken over the range of the subscript i from 1 to N. The weights have
been omitted for clarity. With this definition, the sample variance for one variable s},

B 1 -
sp=sh= N—1 25— x) (11.23)

is analogous to the sample variance s? defined in Equation (1.9):

1
SZZWE(X,-—XY (11.24)

It is important to note that the sample variances s? defined by Equation (11.23) are
measures of the ranges of variation of the variables and not of the uncertainties in
the variables.

.Equation (11.21) can be rewritten for comparison with Equation (11.17) by
substituting the definitions of Equation (11.22):

P S - _
Sk = N—1 E [(xij - xj) (xik - xk)]

1
= N1 ZFiku — 4X) (11.25)
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If we substitute x;; for x; and x;, for y; in Equation (11.17), we can define the sample
linear-correlation coefficient between any two variables x; and x; as
§2
r, =2 (11.26)
Jk
S jsk

with the covariances and variances s%, s7, and s} given by E_quatiqns (11.23) and
(11.25). Thus, the linear-correlation coefficient between the jth variable x; and the

dependent variable y is given by
§2
r, == (11.27)
o S;Sy
Similarly, the linear-correlation coefficient of the parent population of which
the data are a sample is defined as

2
Tk (11.28)

Pix =
J a0y

where o7, 07, and o}, are the true variances and covariances of the parent popula-
tion. These linear-correlation coefficients are also known as product-moment corre-

lation coefficients. . '
With these definitions we can consider either the correlation between the de-

pendent variable and any other variable r;, or the correlation between any two vari-
ables ry.

Polynomials

In Chapter 7 we investigated functional relationships between y and x of the form
y=ag+ax+ax®+axd+--- (11.29)

In a sense, this is a variation on the linear relationship of Equation (11 .'20) Whe.re the
powers of the single independent variable x are considered to be various Varl.ables
x; = x/. The correlation between the independent variable y aqd the mth term in the
pjower series of Equation (11.29), therefore, can be expressed in terms of Equations
(11.23) through (11.27):

my
Fry = —
TS,
1 1
R
N-1 [ N (11.30)

1 2
§7=——" [Ey? — ) }
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Weighted Fit

If the uncertainties in the data points are not all equal (o; # o), we must include the
individual standard deviations 0; as weighting factors in the definition of variances,
covariances, and correlation coefficients. From Chapter 6 the prescription for intro-
ducing weighting is to multiply each term in the sum by /o2

The formula for the correlation remains the same as Equations (11.26) and
(11.27), but the formulas of Equations (11.21) and (11.23) for calculating the vari-
ances and covariances must be modified:

2 V(N = DE[1/0?) (x; = X)) (s — %]

jk

(I/N)2(1/0?)
21— o = VN = DE[1/0}) (x; — )] (11.31)
S; =8y N (1/N)2(1/Ui2) )

where the means X; and X, are also weighted means
_ Exijwi E(xij/(’iz)
x. = =
! N 2(1/0?)

The weighting factors

__ o}
w; = (VN)ETU%’) (11.32)

for each data point are the inverse of the variances o? that describe the uncertainties
in each point, normalized to the average of all the weighting factors.

Multiple-Correlation Coefficient

We can extrapolate the concept of the linear-correlation coefficient, which charac-
terizes the correlation between two variables at a time, to include multiple correla-
tions between groups of variables taken simultaneously. The linear-correlation
coefficient r of Equation (11.17) between ¥ and x can be expressed in terms of the
variances and covariances of Equation (11.31) and the slope b of a straight-line fit
given in Equation (11.12):

54 52
Syl s (11.33)
5385 s}

In analogy with this definition of the linear-correlation coefficient, we define the

multiple-correlation coefficient R to be the sum over similar terms for the variables
of Equation (11.20):

2 HY_ & 5;
B=3\55 =260 (11.34)

v i=1 Ay
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If we substitute x;; for x; and x;, for y; in Equation (11.17), we can define the sample
linear-correlation coefficient between any two variables x; and x; as
2

S
ry =~ (11.26)

with the covariances and variances s%, s, and s given by Eguatiqns (11.23) and
(11.25). Thus, the linear-correlation coefficient between the jth variable x; and the

dependent variable y is given by

r,=—% (11.27)

Similarly, the linear-correlation coefficient of the parent population of which
the data are a sample is defined as

2
O
P = —= (11.28)

9%k

where o7, 07, and o7, are the true variances and covariances of the parent popula-
tion. These linear-correlation coefficients are also known as product-moment corre-

lation coefficients. _ '
With these definitions we can consider either the correlation between the de-

pendent variable and any other variable r;, or the correlation between any two vari-
ables ry.

Polynomials

In Chapter 7 we investigated functional relationships between y and x of the form
y=ag+ax+ax*+ax>+--- (11.29)

In a sense, this is a variation on the linear relationship of Equation (11.20) Whgre the
powers of the single independent variable x are considered to be various varl'ables
x; = x/. The correlation between the independent variable y agd the mth term in the
power series of Equation (11.29), therefore, can be expressed in terms of Equations
{11.23) through (11.27):

_ Smy
rmy_S S
mey
1 1
R =iy [ by,
N- 1[ N (11.30)
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Weighted Fit

If the uncertainties in the data points are not all equal (o; # o), we must include the
individual standard deviations o, as weighting factors in the definition of variances,
covariances, and correlation coefficients. From Chapter 6 the prescription for intro-
ducing weighting is to multiply each term in the sum by 1/c2.

The formula for the correlation remains the same as Equations (11.26) and
(11.27), but the formulas of Equations (11.21) and (11.23) for calculating the vari-
ances and covariances must be modified:

I/(N = )Z[(1/0?) Oy — %) (i — %)

= (I/N)2(1/a?)
2= = /(N - 1)Z[(1/c?) (x; — %)% (11.31)
T (1/N)2(1/a?)

where the means X; and ¥, are also weighted means
% = Zx;w; _ Z(xy/0})
N =(1/a?)

The weighting factors
__ 1o}
YT /NS (e

for each data point are the inverse of the variances o7 that describe the uncertainties
in each point, normalized to the average of all the weighting factors.

(11.32)

Multiple-Correlation Coefficient

We can extrapolate the concept of the linear-correlation coefficient, which charac-
terizes the correlation between two variables at a time, to include multiple correla-
tions between groups of variables taken simultaneously. The linear-correlation
coefficient r of Equation (11.17) between ¥ and x can be expressed in terms of the
variances and covariances of Equation (11.31) and the slope b of a straight-line fit
given in Equation (11.12):
4 2
= p (11.33)
5555 55
In analogy with this definition of the linear-correlation coefficient, we define the
multiple-correlation coefficient R to be the sum over similar terms for the variables
of Equation (11.20):

n 2 n )
rRE=3 <bj %) =2 <b,-:—’ r,-y> (11.34)
y 1= v

j=1

I
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multiple-correlation coefficient R characterizes the fit of the data to the entire func-
tion. A comparison of the multiple-correlation coefficient for different functions is
therefore useful in optimizing the theoretical functional form.

We shall discuss in the following sections how to use these correlation coeffi-
cients to determine the validity of including each term in the polynomial of Equa-
tion (11.29) or the series of arbitrary functions of Equation (11.20).

11.4 F TEST

As noted in Section 11.1, the x? test is somewhat ambiguous unless the form of the
parent function is known, because the statistic x2 measures not only the discrepancy
between the estimated function and the parent function, but also the deviations be-
tween the data and the parent function simultaneously. We would prefer a test that
separates these two types of information so that we can concentrate on the former
type. One such test is the F test, which combines two different methods of deter-
mining a x? statistic and compares the results to see if their relation is reasonable.

F Distribution

If two statistic x? and x3, which follow the ¥? distribution, have been determined,
the ratio of the reduced chi-squareds, x?2, and X2, is distributed according to the
F distribution*

2

Xi/vy
= (11.35)

=X,

with probability density function
T[vi +v2)/2] (v, |2 [

; = = 11.36
B =50 a0, \vs) T+ gy (11:36)

V2
where v; and v, are the numbers of degrees of freedom corresponding to x7 and x3.
By the definition of x? [see Equation (11.4)], a ratio of ratios of variances

Xy _ si/ot (11.37)

Xs, s3i/o3
is also distributed as F, where s, and s, are experimental estimates of standard devia-
tions o, and o, pertaining to some characteristic of the same or different distributions.
As with our tests of x? and the linear-correlation coefficient r, we shall be

more interested in the integral probability

Pu(F; vy, vy) = J:pf( Fovy, v) df (11.38)

which describes the probability of observing such a large value of F from a random
set of data when compared to the correct fitting function. The integral function
Py(F; vy, vy) is tabulated and graphed in Table C.5 for a wide range of F, v, and v,.
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A word of caution is in order concerning the use of these tables. Because the sta-
tistic F in Equation (11.35) is defined as the ratio of two determinations of x? without
specifying which must be in the numerator, we can define two statistics F pand Fy),

_Xn _Xn_ 1
F X2 Fa X Fi (11.39)
which must both be distributed according to the F distribution.

If in some experiment our calculations yield a particular value of F 12, We can
use Table C.5 to determine whether such a large value is less than 5% probable
(Table C.6 and Figure C.6) or less than 1% probable (Table C.7 and Figure C.7). If
the test value is less than the tabulated values, we must also make sure that it is not
too small. To do this, we compare the value

Fy =1/Fy, (11.40) .

to the same tables and graphs, noting that the values of v 1 and v, are reversed. The
values of v, and v, specified in Table C.5 correspond to the degrees of freedom for
the numerator and denominator of Equation (11.39), respectively.

Example 11.3.  Suppose that F;, = 0.2 with v, = 2 and v, = 10. For Table C.6, the
observed value of F;, may be as high as 4.10 and still be exceeded by about 5% of ran-
dom observations. Similarly, we compare F,, = 1/F 12 = 5.0 with the 5% point for
v; = 10 and v, = 2, which has a value of 19.4. Because the values of F 12 and F; are
well within the 5% limits, we can have confidence in the fit.

. What we are estimating in this example is the probability Pr(F\,; vy, v,) that
F 12 18 not too large and the probability P-(1/F,,; v,, v;) that F 12 1S not too small. It
is tempting to simplify this procedure by assuming that

Pr(1/F 33 v5,v)) = Bo(F1p; v1, vy) (11.41)
so that our test consists of determining F such that
Pe(F; vy, v,) = 0.05
with the requirement that
F>F,>1/F

This approximation is valid for reasonably large values of v; and v, but not for small
values of either, as in the preceding example, where we have 4.10 > F 12> 1/194.

Multiple-Correlation Coefficient

There are two types of F tests that are normally performed on least-squares fitting
procedures. One is designed to test the entire fit and can be related to the multiple-

correlation coefficient R. The other, to be discussed later, tests the inclusion of an
additional ferm 1n tho Fttimo F11m ot e
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$2=3(y,—y)? (11.42)

this is a statistic that follows the x? distribution with N — 1 degree;s of freedom
(only one parameter y must be determined from the N data points). It is a character-
istic of quantities that follow the x 2 distribution that thf:y may be expressed as the
sum of other quantities that also follow the x2 distribution such that the number of
degrees of freedom of the original statistic is the sum of the numbers of degrees of

freedom of the terms in the sum. _ )
By suitable manipulation and rearrangement, it can be shown that S35 can be

expressed as the sum of the two terms,

S§=E(yi—?)2=i{(yi—?)iaj(ﬁ—fj) + 30— Sahy
= = = (11.43)
= 3 @S =9 (= H+ = ye)P

where the fitting function is of the form

¥ = Sy fi(x) (11.44)
=1
and we have
1
fi= N2 (11.45)

The left-hand side of Equation (11.43) is distributed as x?* with N — 1 degrees
of freedom. The right-hand term is our definition of x? from the Equation (.1 1.3) and
has N — m degrees of freedom. Consequently, the middle term must be distributed

according to the x 2 distribution with m — 1 degrees of freedom.. - '
By comparison with our definition of the multiple-correlation COCfflle‘:nF R 12n
Equation (11.34), we can express this middle tern as a fraction R? of the statistic S3:

3 a3l 0 (5= FI=R 0~ (11.46)
Equation (11.43) beéomes
S(i- 9= RS-y H1- RS- (14D
or

$2=R2S2+ (1 — R?)S? (11.48)

where, as before, both terms on the right-hand side are distributed as x?, the first
with m — 1 degrees of freedom and the second with N — m degrees.of freedom.
Thus, the physical meaning of the multiple-correlation coefficient becomes

Nd e e A e md s Tha Firat
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From the definition of Equation (11.35), we can define a ratio Fy of the two
terms in the right-hand side of Equation (11.47) that follow the F distribution with
v; = m — 1 and with v, = N — m degrees of freedom,

Fo— R%/(m — 1) __Rr (N—m)
ISR =R 1)

From this definition of F  in terms of the multiple-correlation coefficient R, it is
clear that a large value of Fy corresponds to a good fit, where the multiple correla-
tion is good and R == 1. The F test for this statistic is actually a test that the coeffi-
cients are 0 (g; = 0). So long as Fj exceeds the test value for F, we can be fairly
confident that our coefficients are nonzero. If, on the other hand, F < F, we may
conclude that at least one of the terms in the fitting function is not valid, is decreas-
ing the multiple correlation by its inclusion, and should have a coefficient of 0.

(11.49)

Test of Additional Term

Because of the additive nature of functions that obey the x? statistics, we can form
anew x? statistic by taking the difference of two other statistics that are distributed
as x2. In particular, if we fit a set of data with a fitting function with m terms, the re-
sulting value of chi-square associated with the deviations about the regression x%(m)
has N — m degrees of freedom. If we add another term to the fitting function, the
corresponding value of chi-square x2(m + 1) has N — m — 1 degrees of freedom.
The difference between these two must follow the x? distribution for 1 degree of
freedom.

If we form the ratio of the difference x?(m) — x*(m + 1) to the new value
X2(m + 1), we can form a statistic F, that follows the F" distribution with v; = 1 and
vw=N—-—-m-—1:

oo X = xm+1) AX?
X Xm+ )/ N-m—1) X

This ratio is a measure of how much the additional term has improved the value of
the reduced chi-square and should be small when the function with m + 1 terms does
not significantly improve the fit over the function with m terms. Thus, we can be con-
fident in the relative merit of the new terms if the value of F is large. As for Fy, this
is really a test of whether the coefficient for the new term is 0 (@,  , = 0). If F,,
exceeds the test value for F, we can be fairly confident that the coefficient should not
be 0 and the term, therefore, should be included. Table C.5 and Figure C.5 are useful
for testing F,. They give the value of F corresponding to various values of the prob-
ability P, (F; 1, v,) and various values of v, for the case where v; = 1. Thus, rather
than evaluating F for critical values of the probability (for example, 5% or 1%), we
can evaluate the probability corresponding to the observed value of F),.

A calculation of F, could be built into a linear regression program and the re-

X
sulting value compared to a supplied test value F, to indicate whether or not the last

(11.50)
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number of terms in the calculation manually. One should, however, be aware that
the important figure of merit for added terms is the difference of the two values of
x 2 divided by the new value x2 of the reduced chi-square.

11.5 CONFIDENCE INTERVALS

The object of data fitting is to obtain values for the parameters of the fitted function,
and the uncertainties in the parameters. The quality of the fit is indicated by x 2 and its
associated probability, and the uncertainties give the probabilities that our values of
the fitted parameters are good estimates of the parent parameters. Whether we esti-
mate our parameters by the least-squares method or by direct application of the max-
imum-likelihood method, as discussed in Chapter 10, we must always estimate the
uncertainty in our parameters to indicate numerically our confidence in our results.

Generally, we assume Gaussian statistics and quote the standard deviation o
in a result, where o appears in the Gaussian probability density function

1 1fx~n\?
PG(x;M,O'):G\/E;exp[—E< 0_”)] (11.51)

and determines the width of the distribution. As noted in Chapter 2, approximately
68.3% of the events of the Gaussian distribution fall within =o of the mean . and
approximately 95.4% fall within *2o.

Confidence Level for One-Parameter Fit

One way of looking at the 1 standard deviation limit is to consider that, in a series of
repeated experiments, there is approximately a 68% chance of obtaining values within
*¢ of the mean . Of course, we usually do not know , and perhaps not ¢ either, but
have determined experimentally only X and s, our estimate of the parameters. How-
ever, as long as our experimental estimates x and s are reasonably close to the true val-
ues . and o, we can state that there is approximately a 68% probability that the true
value of the measured parameter lies between X — s and X + s, or that at the 68.3%
confidence level, the true value of the parameter lies between these two limits.

We may wish to quote results in terms of other confidence levels. For exam-
ple, we refer to the =20 limit as the 95.4% confidence interval, or we may quote a
99% or 99.9% confidence level for a high-precision experiment. The conventional
1o and 20 limits are based on the Gaussian distribution, which may or may not ap-
ply to the data in question, and even an experimental distribution that nominally fol-
lows Gaussian statistics is apt to deviate in the tails.

For any distribution, represented by the normalized probability density func-
tion, p,{x; p), we determine the probability that a measurement of the parameter will
fall between X — a and x + b by the integral

X+b
B= f P.(X; x) dx (11.52)

x—a
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FIGURE 11.1

Relative values of the likelihood function versus trial values of the parameter for the 373-event
sample of Example 10.1d. The data points (from Figure 10.4b) are indicated by crosses; the solid and
dashed curves represent the results of fitting Gaussian curves separately to the two sides of the

distribution.lgarameters determined in the two fits are indicated on the graph. All measurements are in
units of 10710,

symmetrical about the mean. The uncertainties in our measurements may not be
symmetﬁcal, although the asymmetry may be hidden if we assume Gaussian statis-
tics in our calculations. For example, the routines for finding uncertainties in para-
meter§ found by least-squares fitting (Chapters 7 and 8) generally assume a
Gauss1a}n Qistﬂbution of the parameters and hence produce a single number for the
uncertainties.

Example 11.4.  As an example of an asymmetrical probability distribution, consider
the 373-event data sample of Example 10.1d. In Figure 10.4b we plot as crosses the
scaled values of the likelihood function for these data as a function of trial values of the
parameter 1. The data points exhibit a marked asymmetry about the mean 7'. The dashed
curve was calculated from Equation (10.10) with parameters obtained from the fit.

. To make a better determination of ¢ from this curve, we considered the re-
gions on each side of the mean separately and estimated two separate standard de-
viations, o and og, with the aid of Equation (1.11). To reduce the effect of the
right-hand side tail on the value of o,, we imposed a cutoff at T = 1.6 and used only
those data points below the cutoff in this calculation.
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the uncertainty in 7, so that we could report T/ = 0.78 %13, as indicated by the ar-
rows on Figure 11.1 rather than 7" = 0.78 = 0.14 as we did in Chapter 10. This is
equivalent to finding the two positions at which the logarithm of the likelihood
function has decreased by AM = V2 as discussed in Section 10.2. Clearly this result
is somewhat subjective if either side of the curve does not follow the Gaussian
form. For this example, the value of g depends on how much of the tail is included
in the calculation.

Confidence Levels for Multiparameter Fits

The definition of the confidence level in a one-parameter experiment is generally
straightforward. We can plot our data and observe if the distribution is Gaussian and
estimate directly from the distribution of the probability that the true result lies be-
tween two specified values. When two or more variables have been determined and
those variables exhibit some correlation, the definition of the confidence level be-
comes a little more difficult. Consider, for example, the determination of the mean
lifetimes 7, and T, of two unstable silver isotopes of Example 8.1. The problem was
treated in Chapter 8 as a five-parameter problem, with parameters @, and a; corre-
sponding to the two mean lifetimes, 7, and T,, respectively, and parameters a,, a,,
and a; corresponding to the amplitudes of a uniform background and the two
decaying states. The parameters of most interest in the experiment are a, and as, and
we want to define a joint confidence interval for those two variables.

Figure 11.2 shows two sets of contours for the variation of x? as_a function of
a4 and a; from the least-squares fit by the Marquardt method discussed in Chapter 8.
The small contours, drawn with solid lines, were calculated by holding the parame-
ters a;, a,, and a; fixed at their optimum values (see Table 8.5) and varying a, and as
to obtain increases in x? of 1, 2, and 3 from the minimum value. The large contours,
shown as dashed lines, were calculated by allowing a,, a,, and a; to vary to minimize
x? for each pair of values of a, and as. The contour plots cover very different ranges
because of the correlations of the displayed parameters, a, and as, with the remain-
ing parameters a, through a,. The tilt of the closed figures on each plot indicates the
degree of correlation of parameters a, and as with each other. In an ideal experiment,
the contours are ellipses in the region of the x? minimum and if a, and a5 are not cor-
related, then, with suitable scaling of the axes, the ellipses are circles.

Which plot should we use? Additionally, how do we determine a confidence
interval; that is, a region of the a,-as space in which we estimate there is, for exam-
ple, a ~68% probability of finding the true values of the two parameters?

First, we should note that, because the fitting function, Equation (8.2), is not
linear in the parameters, the methods of testing described in the previous sections
strictly do not apply. However, we are much more likely to run into nonlinear fitting
problems than the easier linear problems, so we shall continue with this example. At
any rate, the function is linear in parameters a, through a;, and we could make a lin-
ear expansion of it, over a limited region, in the parameters a, and as. In fact, this

wxrinn tha lhnniao Af a manthAad AF Fittina nanlinaar fiainctiane 1in T hantar
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FIGURE 11.2

Tv.vq sets of contours for the variation of x? with parameters a, and as in the region of the x2
minimum. Data are from the least-squares fit by the Marquardt method discussed in Chapter 8. The
smz}ll coptours, drawn with solid lines, were calculated by holding parameters a, through a, fixed at
their optimum while varying a, and as to obtain increases in x2 of 1, 2, and 3 from the minizmum
values. The large contours, shown as dashed lines, were calculated by allowing a,, a,, and a, to v

to minimize x? for each pair of values of a, and as. T P

from the contour plot, we should consider the full range of the outer limit of the
sz' = 1 contour, and not the intersection of that contour with the a4 axis. This is
equivalent to allowing as to assume its best values for each chosen value of a,, as we
ha\(e already assumed for the parameters a | through a;. The two dashed vertical lines
indicate the two limits on a, that include the 1 standard deviation, or 68.3% of the
probability, and the two horizontal lines indicate the 1 standard deviation limits for s,

How do we know that the vertical lines enclose 68.3% of the probability? By
allowing the four parameters a,, a,, as, and as to find their optimum values for each
chosen value of a, and varying a,, we have separated our x? fitting problem into two
parts: a fit of N data points to m — 1 parameters with N — m — 1| degrees of free-
dom and a variation of Ax? with a, about the minimum x% with 1 degree of free-
dom. As we observed in the previous section, the two variations separately must
follow their appropriate 2 distributions, so our variation of Ax? obeys the x? prob-
al?iliFy di_stribution for 1 degree of freedom. If we look at the integrated probability
distribution Px for 1 degree of freedom [Table C.4, or calculated from Equation
(11.10)], we see that x> = 1 corresponds to 31.7% of the probability, or Ax? <1
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To find the 1 standard deviation region encompassed by the joint variation of
two parameters, a, and as, with ail other parameters optimized, we must c.lraw the
contour corresponding to that value of Ax? for 2 degrees of frf?edom that 1nclufles
68.3% of the probability. Referring again to Table C.4 or Equation (11.10), we f}nd
that we should draw the contour for Ax? = 2.30, and for the 2 standard deviation
contour, we should choose Ax? = 6.14. Joint confidence intervals with more than
two parameters are often of interest, but are difficult to display gnd are represented
best by two-dimensional projections of contours for pairs of variables.

Confidence Level for a Predicted Value

Suppose the predicted value of a physical quantity is w = 1000.0, and we have
made a measurement and obtained the value ¥ = 999.4 * 2.0. At what confidence
level is the predicted value consistent with our measurement? Thg question coul‘d b.e
rephrased as, “What is the probability of obtaining from the predicted parent distri-
bution a distribution that is as bad as the one we got, or worse?” Because the shape
of the parent distribution was not predicted, but only the value of the mean, we must
use our value of the standard deviation, o = 2.0, as an estimate of that of the parent
distribution. If the distribution is known to follow Gaussian statistics, then the re-
quired confidence is twice the integral of the standard Gaussian probability function
from x = & to o, whereS=|;L—X|/U=|1000.0—999.4|/2.p: . '

Now, suppose that the predicted value was necessarily positive—an intensity,
for example. Then, we might again assume a Gaussian distribution, but only for
positive values of the variable x, and therefore our confidence integral becomes the
integral of the standard Gaussian from & to «. However, because the total probabil-
ity must be normalized to 1, we again multiply the integral by 2 so that the proba-
bility or confidence level is the same for both problems.

The method of determining the confidence level thus depends on the type
of problem as well as the probability function that is applicable to the pr.oblem.
For distributions that are symmetrical about their means, such as the Gaussian dis-
tribution, we generally consider the probability of obtaining a result that is'the
specified number of standard deviations from the mean, without reggrd.to sign,
unless a particular sign is excluded by the physical problem. For_dlstrlbutloqs
such as the chi-square and Poisson distributions, which are only defined for posi-
tive values of their arguments, it is conventional to find a “one-sided” probat_nl‘lty
as in the case of the x? distribution where we quote the probability of obtaining
a value as large as or larger than the value we obtained for a given number of
degrees of freedom.

11.6 MONTE CARLO TESTS

A Monte Carlo calculation can help us understand the statistical significance of our
results and possibly obtain a better estimate of some of the parameters of the exper-
iment Ac a hvonradnet the Monte Carlo nrooram mav algo heln us identifv biases
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We want to find the probability of obtaining from a series of similar experiments a
value ¥ that differs from the predicted value p. by

Ax=lp — x| (11.53)

We can set up a Monte Carlo program to simulate our experiment and to gen-
erate events with the parameters predicted by the theoretical principle that we are
testing and with the same cuts as those imposed by our experimental apparatus.
Such a program can be quite complex, but it may already exist at the time of analy-
sis, if, for example, a Monte Carlo program was written to help plan the experiment.
Or it might be possible to use some geometric and kinematic quantities from the ac-
tual experiment and only generate those parts of each event that are affected by the
parameters in question.

After the Monte Carlo program has been written and debugged, we can simu-
late repeated experiments with the same parent parameters and the same number of *
final measurements as in our real experiment. The data from each of these simulated
experiments can be processed by our regular analysis program to obtain a group of
“experimental” values of X, and from the distribution of these values we can esti-
mate the required probability.

Example 11.5. Let us use the Monte Carlo method to try to learn more about the sig-
nificance of the small peak in our data of Example 9.2. Examination of Figure 9.2
leaves no doubt about the existence of a large peak at ~1.0 GeV. Without the fitted
curve, the smaller peak near 0.8 GeV would be considerably less striking and further
analysis might be helpful. (We note that, if the small peak were indeed spurious, we
should have to refit the large peak to obtain a better estimate of its mean energy and
width.) In Chapter 9, we estimated the probability to be about 0.01% that the smaller
peak is just a fluctuation in a single bin above the single-peak background, with a
probability of about 0.6% of such a fluctuation occurring in any one of the 60 bins into
which the data were sorted. These are quite compelling numbers. Can we support them
with a more detailed calculation by the Monte Carlo method?

We adapted to the study of this problem the Monte Carlo program and the least-
squares fitting program, which were used to generate and analyze the data in Chapter
9. With the Monte Carlo program, we simulated the experiment according to Equation
(9.1) to generate 4000 single-peak events in each of 1000 trial “experiments.” The
mean energy (Eo), half-width (I'), and amplitude of the larger peak, and the amplitudes
(a, through a;) of the quadratic background, were set to the values obtained in the six-
parameter fit, listed in Table 9.1.

To each set of trial data we fitted Equation (9.13), using identical procedures to
those used in Chapter 9, with the exception that, starting values for the parameters of
the smaller peak (a;, ag, and a,) were set to the values obtained in the nine-parameter
fits of Chapter 9, listed in column 6 of Table 9.1. We selected those fits that yielded pa-
rameters of the lower peak consistent with the values determined in Chapter 9 by im-
posing the following conditions: (1) We required that both the chi-square probability
and the amplitude of the smaller peak (a,) be equal to or greater than the correspond-
ing fitted values listed for the nine-parameter fit in Table 9. 1; (2) We required that the
central energv of that peak be within plus or miniic ane hictagram kim (0 OE (LXTS g
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TABLE 11.1

Results of generating 4000-event “experiments” from
Equations (9.1) and (9.13) with parameters from fits listed
in Table 9.1. We used several values of the amplitude A, of
the smaller peak to test the sensitivities of our analysis to
small and possibly spurious peaks.

Aq Equation Number of experiments Number of successes
3.50 9.13 100 61
1.75 9.13 100 18
0.875 9.13 100 5
0.000 9.1 1000 ~5

Chapter 9 for a single bin fluctuation. Tests made with other starting values and cuts
for the smaller peak yielded similar numbers of survivors.

To check our procedure, we also generated and analyzed 100 two-peak trial “ex-
periments” from Equation (9.13), with the parameters of the smaller peak set to the
values from the nine-parameter fit listed in Table 9.1. From these 100 trials, 61, or
61%, survived the cuts. When we repeated the analysis with the amplitude of the
smaller peak reduced by a factor of 2 (i.e., a,/2), the success rate dropped to 18%, and
a further reduction by another factor of 2 (a,/4) reduced the success rate to 5%. The re-
sults of analyses are summarized in Table 11.1.

These results offer strong support for the existence of the smaller peak, and in-
dicate that in a 4000-event experiment we might detect with reasonable probability
a peak with only one-fourth the amplitude of the current smaller peak. Clearly, a
Monte Carlo simulation should play an important role in planning this type of ex-
periment. A carefully planned Monte Carlo program may be much better (and eas-
ier) than a detailed theoretical analysis for finding an answer to the question “How
much data will be needed to establish (or disprove) the existence of a specified fea-
ture in a distribution.”

We offer a final word of caution on using the Monte Carlo technique to
study the statistical significance of experimental results. For Examples 9.2 and
11.5, we used a very simple problem to illustrate this technique. Yet, there are
many opportunities for errors, which can lead to erroneous conclusions about the
significance of our Chapter 9 data. In a larger study, it would be very easy to make
a simple mistake that might lie undetected in the program and have a subtle effect
on the results. It is important to test the program under a variety of conditions, and
to examine results at intermediate stages before drawing conclusions from the re-
sult. In particular, if the results of the program lead to conclusions that violate in-
tuition about the experiment, we should check and recheck the calculation. The
Monte Carlo method is very powerful, and can enable us to solve very difficult
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SUMMARY
Variance of the fit:
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F test:

2
F=Xa
X2

Pr(Fivy,vy) = J;_I#(ﬂ Vi, Vo) df

F test for multiple-correlation coefficient R (forv = N — m):

RYm—-1) R? (N—m)

(1-R)/N—m) (1-R? X (m—1)

FR=

F test for X? validity of adding (m + 1)th term:

Xom) —x*m+ 1)  _ Ax?

XD/ N-m 1) ¢

Confidence limits: 10 —> 68.3%; 20 —> 95.4%; 36 — 99.7%

EXERCISES

11.1.

11.2.

11.3.

11.4.

11.5.

11.6.

11.7.

11.8.

11.9.

Discuss the meaning of x? and justify the relationship between it and the sample
variance s2 = x2.

Compare the exact calculation of the gamma function I'(n) of Equation (11.7) with
the approximate calculation of Equation (11.8) for r = 14, 1, %, 4, 95,10.

From Equation (11.6), show that the x2-probability density for 1 degree of freedom
can be written as

e—*/2

@)= \ 2mx?

Calculate to 1% the probability of obtaining a value of x? that is less than 2.00 by
expanding the function in a Taylor series and integrating term by term.

For a typical number of degrees of freedom (v = 10}, find, by numerically integrat-
ing Equation (11.6), the range of probability P, (x?, v) for finding x? as small as 0.5
or as large as 1.5. Use the approximation for the gamma function of Equation (11.8).
By numerically integrating Equation (11.6), find the probability of finding a value of
x2 = 1.5 with v = 100 degrees of freedom. (Note that double-precision variables
must be used.) Would you consider this to be a reasonably good fit?

Express the linear-correlation probability density of Equation (11.18) in terms of the
approximation for the gamma function of Equation (11.8).

Work out the details of the calculation of the linear-correlation coefficients r for Ex-
amples 6.1 and 6.2.

If a set of data yields a zero slope b = 0 when fitted with Equation (11.11), what can
you say about the linear-correlation coefficient r? Justify this value in terms of the
correlation between x; and y;.

Find the linear-correlation coefficient r; between the independent variable T; and the
denendent variahle V. for the data of Fxamnle 7.1

11.11.
11.12.
11.13.
11.14.

11.15.
11.16.

11.17.
11.18.
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Express the multiple correlation R in terms of X;j> ¥i» and their averages.
Evaluate the multiple-correlation coefficient R for the data of Example 7.1.
Is alarge value of F good or bad? Explain.
If we wish to set as an arbitrary criterion a probability of 0.01 for the F. test what
would be the reasonable average value for F test? T
;‘Vhalt different aspects of a fit do the F r and F| tests represent?

the F, test for t i
CO;;}; 1}1,] SionS'X(Refer . %zb(llgz;c'lf)tlc term to the data of Example 7.1 and state your
Show the intermediate steps in the derivation of Equation (11.43).
Estimate from Figure 11.2 the 90% confidence limit for each of the two mean life-

times (a, and as) of Example 8.1 when all variables are allowed to find their opti-
mum values.



APPENDIX

A

NUMERICAL
METHODS

here are several reasons why we might want to fit a function to a data sample,

and several different techniques that we might use. If we wish to estimate para-
meters that describe the parent population from which the data are drawn, then the
maximum-likelihood or least-squares method is best. If we wish to interpolate be-
tween entries in data tables to find values at intermediate points or to find numeri-
cally derivatives or integrals of tabulated data, then an interpolation technique will
be more useful. Additionally, if we wish to obtain intermediate values between cal-
culated coordinate pairs in order to plot a smooth curve on a graph, then we may
wish to use a spline fitting method. In this appendix we shall summarize some stan-
dard methods for treating the latter two types of problems, as well as some methods
of finding the roots of nonlinear functions, a different sort of interpolation problem.

A.1 POLYNOMIAL INTERPOLATION

With modern fast computers, the need for interpolating within tables to find inter-
mediate values of tabulated functions has reduced markedly. Nevertheless, there are
situations in which it may be convenient to represent a complicated function by a
simple approximation over a limited range. For example, in a large Monte Carlo
cajculation, where computing time is a significant consideration, we may approxi-
mate a complex function by a simpler polynomial that can be calculated quickly. Al-
ternatively, we may save time by creating a probability integral once at the
beginning of the program. and interpolating to find values of x corresponding to the
randomly chosen values of y.

For many purposes a linear or quadratic interpolation is satisfactory; that is,
we fit a straight line to two coordinate pairs. or a parabola to three, and use the
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is better and more convenient to represent a function over a limited region by a se-
ries of low-order approximations.

Lagrange’s Interpolation Method

Here is a method thaF is easy to remember and can be used to expand a function to
any order. We know it wprks because of the theorem that states that if you can find
any nth-degree polynomial that passes exactly through n + 1 points, then you have
foupd the one and only nth-degree polynomial that passes through those points.
Think about it. It is obvious for n = 1 (2 points).

Let us start with an easy problem. Suppose we have two coordinate pairs
(x0, ¥0) and (x;, y,), and we want to find the straight line that passes through both of
them. We write a function of the form

P(x) = Yoho(x) + 31Ay(x) (A1)
a.nd search for a function Ay(x) that is 1 when x = Xp and O when x = x;, and a func-
tion A,(x) that is 1 when x = x; and O when x = Xo. We can guess the’form If we
write Ay(x) as a fraction and set its numerator to (x — xy), then Ay(x) will bé 0 for
X =x gnd will be (xo — x)) for x = x,. But we want Ag(x) = 1 for x = x,, so the
denomlpator of Ap must be (x, — x;). We can make similar arguments for A ’(x) and
thus write as our interpolation equation ’

-, b=x — X
P =0 —);1)) 1 (S‘l = XO)) (A2)

' Suppose we want a parabola that passes through three points. Then we simply
write
P(x) = yA0(x) + ¥, Ay(x) + y,4,(x) (A.3)
and, following the previous arguments, write

P(x) =y, (= x) (x — x) + (X~ x) (x—x)
(o —x) (% —x) (X1 = %) (x; — x,)
(= x) (x—x)
(x2 = o) (4 — x,)
The gxpa_msi_on to higher orders should be obvious. The kth term in an nth order ex-
pansion is given by the following product in which the J = k term must be omitted:
ﬁ (x —x;)
j=0 (= x;)
Note that the intervals in x need not be equally spaced. The interpolation for a
well-behaved function y = f(x) is completely general.

(A4)

Ty

Ye (excluding j = k) (A.5)

Newton’s Divided Differences
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not very convenient for repetitive calculations. It is not very convenient as an ex-
pansion either, because increasing the order of the expansion requires adding an-
other factor to each term as well as adding another term. What we require is 4 more
familiar form—a discrete analog of the Taylor expansion. For this we turn to New-
ton’s method of divided differences.

There are several forms of the divided differences expansion, roughly charac-
terized by the method we choose to define the differences, forward, backward, or
about a central point. We shall restrict ourselves here to forward differences; that is,
we calculate the variation of y with respect to x by taking increments in the positive
x direction.

Again, consider a set of data points, (xo, yo)s (*1, vy, (X2, ¥2), - . . - Letus
assume that we wish to make a linear interpolation from x, to some point X with a
first-degree polynomial. We define the zeroth divided difference as the function

itself f(x) evaluated at x = xo.

flxo]=£(x0) = Yo (A.6)
The first divided difference is defined to be
ST — flxol
Xo, X1 | == (A7)
f [ 0 1] ( x - xO)
which is the slope of a linear function. Then, for a linear function,
flx, xo] = f [0, x1] (A-8)
or
fPl =[] _ ] =T a9
(o — x) (o — Xo)
which, on rearrangement of the terms, gives the first-order expansion

P =t e 20 L=

= f o] + (x = x0)f [xo5 Xy (A.10)

where we have written P,(x) instead of f(x) to indicate that the expansion is a poly-

nomial approximation to the function f0). . '
To find the second-order expansion, we consider the second divided differences

AL [x1, Xo] (A1)

f oo 0 32] = (x, = xp) (g — %)

which corresponds to the slope of the slope, or the second derivative. This must be
constant for a second-order function, so we have

fl:x’ Xos xl] =f[x0’ X1 xz] (A12)

P R TR .
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Remainders

The extrapolation formula for an nth-order expansion is only exact when the func-
tion itself is an nth-degree polynomial. Otherwise, the remainder at x after n terms
R,(x), defined as the difference between the original function f(x) and the expansion
P, (x), is given by

‘R, (x) = f(x) = B(x)
=(x = x0) (x = xp) - -+ (x = x,)f[x X0, X1, - - -, X, (A.14)

Calculation of the remainder requires the value of the function f(x) at x, which is
generally not available. (If it were, we might not be doing this expansion.) However,
it may be possible to make an estimate of f,(x), or to use a nearby value, and thus
find an estimate of R,(x). An expression for the remainder can also be obtained in
terms of the (n + 1)th derivative of the function.!

Uniform Spacing

The divided difference expressions have a particular convenient form when the in-
tervals in x are uniform; that is, if x, — x; = x5 — x, = x; — x;,-; = h. The divided
difference of the previous discussion can be written

P . L Y1)

(1 = Xo) h
or
Af(xo)=f(x) —f(xo) and h=x —x, (A.15)
and higher-order differences become
A%f(x0) = A[Af(x0)] = Af(x1) — Af(xo), ete. (A.16)
If we define the relative distance along the interval by
a=(x—x)/h (A.17)

we can write for the nth-order expansion,

B(x) = f(xo0) T aAf(xo) + at(a — DA f(x)/2! + - - -
+afa—1) - (a—n—1)A(x,)/n! (A.18)
Equ?tion (A.18) is a finite difference analog of the familiar Taylor expansion with
the important difference that the factors multiplying the coefficients A*f{x,)/n! are
not successive powers of the relative distance from the starting point, but rather the

product of relative distances from successive points used in the expansion, because
(a — 1) = (x — x; — W)/h = (x — x;)/h, and so forth.

Extrapolation

Equations (A.15) through (A.18) are perfectly general for fitting exactly n sequen-

42al Avanm?ler e e a o
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TABLE A.1
Uniform differences for cos 6
)
(degrees) y Ay A, Ay A, A
0 1.0000 —0.0489 —0.0931 0.0139 0.0078 —0.0021
18 0.9511 —0.1420 —0.0792 0.0217 0.0056
36 0.8090 —0.2212 —0.0575 0.0273
54 0.5878 —0.2788 —0.0302
72 0.3090 —-0.3090
90 —0.0000
TABLE A.2
Extrapolation from 0 to 10° and from 0 to 75° in various orders
Order
0
(degrees) cos 0 1 2 3 4 5
10 0.9848 0.9728 0.9843 0.9851 0.9848 0.9848
75 0.2588 0.7961 0.1819 0.2481 0.2589 0.2588

position of the first data point (x, yo) can be anywhere, but for optimum interpola-
tion, the values of x4 and x,, should straddle the interpolation point x and be approx-
imately equidistant from it.

The same formula can be used for extrapolating to values beyond the region
of data, but the uncertainties in the validity of the approximation increase as x gets
farther from the average of x, and x,. The approximation is limited by both the de-
gree of the interpolating polynomial and by uncertainties in the coefficients of the
polynomial resulting from fluctuations in the data.

Example A.1. Table A.1 shows a uniform divided difference table for the cosine
function for a range of the argument 8 between O and 90°. Table A.2 shows values of
cos B for 6 = 10 and 75° calculated from the divided difference table in orders 1
through 5. The interpolation starts at 0° so that only the top row of Table A.1 is used and
thus, 6 > 18°, the calculation is an extrapolation. The true value of cos 0 is also listed.
As we should expect, the large extrapolation to 75° is very poor in low order. Usually,
an approximation can be improved by increasing the number of terms in the expansion.
However, the better method would be to drop to a different line of the table; that is, to
ensure that the calculation is an interpolation rather than an extrapolation.

A.2. BASIC CALCULUS:
DIFFERENTIATION AND INTEGRATION
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Differentiation

Let. S (x) be a function of the variable x. If x increases by an amount Ax, the function
varies by an amount Af = f(x + Ax) — f(x). The ratio A flAxis a m,easure of the
relauv‘e variation of f{x) with x. In the limit, as Ax becomes infinitesimally small
the .ratlo Af/Ax for a continuous function f(x) approaches an asymptotic value the,
derivative dffdx of the function Jix) with respect to x. ’

afx) _ . fx + Ax) - £
d —ﬁa*—ig—ﬁz (A.19)

e derivative of f(x) at x = x, is written e and corresponds to the slope of the

function evaluated at x, or the tangent to the curve at that point.

Example A.2 To find the derivative of f(x) = x" &
‘ = x", we can d i
SO + Ax) to first order in a Taylor series. expand the function
Thus, with n = 4, we have f(x) = x* and dfldx = 4¢3,
dix") _ lim @ + nx"1Ax) — xh
dx Ax—>0 Ax
_nx"'Ax

Ax

= nxn*]

Example A.3 For Sfix) = sin x, we can write

sin (x + Ax) = (sin x) (cos Ax) + (sin Ax) (cos x)

and again expand f{x) to obtain

d(sinx) _ lim S (x+ Ax)—sinx

dx Ax—0 Ax
= lim (sin x) (cos Ax) + (sin Ax) {cos x) — sinx
Ax—>0 Ax
_ sinx + (Ax)(cos x) - sin x
Ax =cos x

Similarly, for f(x) = cos x, we find dfldx = —sin x.

SUMS AND PRODUCTS ‘The derivative of a sum of functions is equal to the sum of
the derivatives of the individual functions. Consider the function

f(x) = g(x) + h(x)
The derivative of this function is the sum of the derivatives of the individual terms.

df(x) _ ds(x) _ dn(x)
dx dx dx
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f(x) = g(x) X h(x)

We can rewrite Equation (A.19) as

. df(x
Aiiin)of(x + Ax) = A!rn_n)0 {f(x) = Ax e } (A20)

and show that
d[g(x) X h(x)] _ lim g(x + Ax)h(x + Ax) — g(x)h(x)

Ax—>0 Ax
= lim ﬁ [[g(x) + Ax ifi%x—)} {h(x) + Ax d}:lg)] - g(x)h(x)}
dh(x) dg(x)

=gt h(x) =

FUNCTIONS OF FUNCTIONS If the function f(x) can be expressed as a function
of a function g(x) of x,
fx)=fl8(x)]

the derivative of f{x) with respect to x can be expressed in terms of the derivative'of
g(x) with respect to x. If we expand the definition of Equation (A.19) for 'the deriv-
ative, we can make use of the relationship of Equation (A.20) to expand still further.

f[g(x) + Ax d—fg—)} —fle()]
lim

dftx) _
dx Ax—0 Ax
dg(x) df(x)
x)]+ Ax == == — fg(x)]
_ Alir_n)of [g(x)] + dzx a0 718 A
_ dfx) dg(x)
dg(x) dx

Example A4 If f(x) = (@ — bx3)2, define g(x) = a + bx’ so that f(x) = [g()*
The first factor in Equation (A.21) is the derivative of a square, and the second factor
is the derivative of a cubic polynomial.

dg(x 2
%% =2g(x) = 2(a + bx%) —‘Z(;) = 3bx

d_fi(i) — 2(a + bx?)3bx? = 6bx*(a + bx?)
X

e e e A ad ae deriva-
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&) _ d [L()]
dx* dx| dx

For the nth-order derivative d"f(x)/dx", we simply take the derivative n times in
succession. For example, if f(x) = x* as in Example A.2, the second derivative is
12x2, Similarly, the fourth derivative of either sin x or cos x is equal to itself.

PARTIAL DERIVATIVES If the function f(x, y) is dependent on two variables x and
v, we must define derivatives of the function with respect to each of the independent
variables. To determine the partial derivative of f with respect to x, df/ox, we con-
sider that y is a constant and proceed as we would for an ordinary derivative. Simi-
larly, to determine the partial derivative df/dy we consider that x is constant.

) _ o £t A ) = y) _ df)

ax Ax—>0 Ax dx
o0 y) oy [+ AY) = f(x,9) _ dY)
dy Ay—>0 Ay dy

Higher-order partial derivatives include not only higher-order derivatives with
respect to one variable, but also cross-partial derivatives with respect to two or more
variables simultaneously.

67(x,y)zi[3f(x,y)}

dx? x| ox
82f(r,y) _ 0 [af(x, y)} _ 9 [8f(x, y)] _9f(xy)
ox dy 0x ay dy ox dy dx

MINIMA AND MAXIMA A function f(x) is said to have a local minimum at x = x ;,
if the values of f(x,,;, = Ax) are larger than the value of f(x;,) for infinitesimal
changes Ax about x ;.. Similarly, the function has a local maximum if the values of
[ (xax = Ax) are smaller than f(x ). At either a minimum or a maximum of a func-
tion, the derivative of the function is zero,

df(xn) _
dx 0

corresponding to a tangent that is parallel to the x-axis.

The question of whether the function is a minimum or a maximum at x,, can
be resolved by examining the second derivative. If the second derivative is positive,
the curvature of the function is upward and f(x,,) is a minimum. If the second de-
rivative is negative, the f(x,,) is a maximum.

FUNCTIONS OF MORE THAN ONE VARIABLE With functions of more than one
variable, for example f(x. v). we can still concider the fiinctinn tn hova o mniniaee
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Integration
Integration is the inverse of differentiation. To find the integral F(x) of the func-
tion f(x),
F(x)= | f(x)dx
. . dF(x)
we must find a function F(x) such that P f(x).

However, this definition is not unique. An undetermined constant must be added to
the solution to allow for the fact that the derivative of a constant is zero.

Example A.5 Consider the integral of the function f(x) = x> We observe that
F(x) = x*/4 is a solution:
dF(x) _d(x*/4) _
dx dx
However, F(x) = x%4 + C is also a solution, where C is any quantity that is not
a function of x. Thus, the solution to an indefinite integral must include an added
constant.

x> =f(x)

A definite integral is the integral of a function between two specific values of
the independent variable, and is written

I= Lbf(x)dx

To find the definite integral of a function, we integrate it, calculate the value of the
integral at x = b and at x = g, and find the difference between the two values. This
is equivalent to calculating the area under the function f(x) between the two limits

a and b.

Example A.6 Consider the integral of the function f(x) = x* between the limits
x=1.0and x =20.

20 20 20
I= J flx)dx= J x3dx=x4/4llo=[24— 14)/4 = 15/4
1.0 10 .
Note that a definite integral is not a function of variable of integration x.

From the results of Example A.3,
[sinxdx = —cosx+C and [cosxdx=sinx+C

A.3. NUMERICAL DIFFERENTIATION
AND INTEGRATION

et a1t e e ae ] e Qantion A 1 it 1 relativelv Straight'
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Differentiation

( . ) f a

dP(x) 1dP,
T)E) = 225 () + (20— )8 ()2

(a2~ 60+ QNS )3+ Y D

and

d’B(x)_ 1 d [ap, i
dx? _EEEJ{ dix)J:[Af(xo)Jf(a—1)A3f(xo)+---]/h2 (A23)

We sh01'11d note that the use of forward differences introduces an asymmetry in the

calcu}auon. For a ggneral solution, we could replace the forward differences by cen-"

tral fllfferences, which are taken symmetrically about a central starting point. For a

Eartwultar p;ogle(rln%fwe can usually arrange the expansion to provide reasonable
ymmetry of the differences about the point of interest. Th

s (.3 and (A 35y oy p . Thus, we can replace Equa-

dP, e —
B _ sy = LoD Sl = 1)

(A.24)

and

d*B(x) _ A f(xo)/h? = flx+h)— 2£gx) + flx — k)

dx? (A.25)

Integration

.Integr.atlng Equation (A.18) leads to expressions for calculating the numerical integral
in various orders, depending on the number of terms in the polynomial approxil%la—
tlop. Therc? are various forms for each order, depending on how we choose the limits
of integration. We quote three of the most useful forms with the remainder estimates

First-order, endpoint trapezoidal .

i h 3
Lof(x) dx = 5 [f(xo) + f(x1)] = % A(g)

(first-order closed-end trapezoidal)

£ 3
Lo fx)dx =2hf(x) + % JP(&) (first-order open end)

X9 h 5
J 6 =5 110 + 47 )+ )]~ o

(second-order closed-end Simpson’s rule)
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Note the large reduction on the error estimate in going from either of the first-order
approximations to the second-order approximation.

For an integral over an extended range of x, it is usually advisable to employ
a series of first- or second-order integrals over sections of the function, rather than
to attempt to fit a large region with a higher-order function. In fact, it can be shown
that the gain in accuracy in going from a second- to a third-order numerical integral
is relatively small, and, for the same number of calculations of the ordinate y;, the
second-order Simpson rule may be more accurate than the third-order form. This re-
lation applies in general to even and odd orders, so that, to make a significant im-
provement in the numerical integration of a function, one should advance to the
next higher even order.

Thus, to find the integral by Simpson’s rule of f(x) over an extended range
between x = x; and x = x,, we divide the region into n equal intervals in x, with

nh = (x, — x;), to obtain

[ 0) dx = 5 1)+ 410) + 2f(00) + ) + -+

_nmw

FafGn ) = f)] - T fOE) (A26)

where £ is the value of x somewhere in the range of integration.

Program A.1 SIMPSON (Appendix E) calculates an extended integral by the
second-order approximation of Equation (A.26). See Programs 11.1 and 11.2 for ex-
amples of the use of this routine.

The user supplies four arguments:
1. FUNCT: the name of the function to be integrated. The function must have one
real argument. If other arguments are required, they must be made accessible to the

function as global variables.
2. NINT: the number of double intervals. The interval is calculated as DX =

(HILIM-LOLIMI\(2*NINT);
3. LoLIM and
4, HILIM: the integration limits.

A4 CUBIC SPLINES

If we attempt to represent by an nth-degree polynomial a function that is tabulated
at n + 1 points, we are apt to obtain disappointing results if » is large. The poly-
nomial will necessarily coincide with the data points, but may exhibit large oscilla-
tions between points. In addition, if there are many data points, the calculations can
become rather cumbersome. It is often better to make several low-order polynomial
fits to separate regions of the function, and this procedure is usually satisfactory for
simple interpolation in tables. However, if we want a smooth function, which passes
through the data points, the results may not be satisfactory.

Suppose we have calculated a function at » + 1 points, and want to represent
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the plot. It is unlikely that they will combine to form a smooth curve. What do we
dp pow? Reach for our pencil and trusty drafting spline? No, we call up our spline
f1tt1ngSSIibroutine and let it join up the separate fits for us. ’
pline fitting procedures have other uses besides lotting pr

graphs, but the plotting function is of interest to us and is epasily ilgiuztfztlgd(.:lgsgfs)o?el
we chgose to make a series of cubic fits to successive groups of data points. What
copdltlons do we need to produce a smooth curve that passes through the data
pomFs? We want the first and second derivatives, as well as the function itself, to be
contlpuous at the data points. Suppose we consider a separate cubic polynonn:al for
ea(_:h interval on the graph, or a total of n polynomials for the n + 1 points. Then we
write the polynomial equation, take derivatives, and, at each data point, equate the
first and second derivatives of the left-side polynomial to those of th:e right-side
polynomial.

Follgwing the method discussed in Thompson (1984), we begin by writing the*
Taylor series for the cubic polynomial for interval i, expanded about the point x,

Y(0) = y(x) + (x — xi)% (=) d;yx(;ci) b1

3
+(x — x,)° d dy(3x,~) 31 (A27)
X

Wher'e the function and derivatives are evaluated at x;. This can be written in a more
concise form as
yE) =y + (x— x)yi+(x— x)? /2
+ (= 501 = ¥0)/6h (A2
Wherg v} an(.l yﬁ»’. stand for the first and second derivatives evaluated at x = x; and
the third derlyatlve h.as been replaced by its divided difference form, which is ex-
act for a cubic function. At x = X, we have y = y, as required. We can also set
X = X;y1 = X; T h and solve the equation
Y(ie1) = 35+ (e — )i+ (g — x;)?yi/2
(e —x) (ya + y7)/6h (A.29)
to obtain
Yiv1 T Yi = hy; + h?[2y] + yi+1/6 (A.30)
W? repfaat the calculation, using the equation for y(x) in interval ; — 1 [i.e., we
replace i by i — 1 in Equation (A.29)], ’

YE) =y + (= x)y), + (= xi-)?y71/2

x5 i 1)/6h 3
and again require that y (x) = y(x,) at the ith data point and obtain
Yi = Y1 =hyio + R 2y + yi1/6 (A.32)
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Y(®) =y (x = x)yi+ (= %) (¥ier — i)/ 2k (A.33)
which we equate to the first derivative in the interval i — 1 at the position x = x;, to
obtain

i i =hlyi+yii)/2 (A34)
Similarly, equating the derivatives at the boundary x = x; . | gives
Vi1 = yi=hlyiayil/2 (A.35)

(Repeating the procedure with the second derivative leads to an identity, ‘be<.:ause
our use of the divided difference form for the third derivative assures continuity of
the second derivative across the boundaries.) Eliminating the first den'yatwes from
Equations (A.30), (A.32), (A.34), and (A.35) gives us the spline equation

yiig H4yi+yi =D, (A.36)
with
D;=y[yir1 — 2y Hyim1)/R? (A.37)

Note that the D, are proportional to the second differences of the tal?ulated de'tta and
are all known. We can write Equation (A.36) as a set of linear equations relating the
unknown variables y”, beginning with i = 2 and ending withi=n— 1

yi+4ys+ ¥ =D, (A.38a)
ys+4y5+ i =D, (A.38b)
yast 4yt Yaou =D, (A.38¢)

yu_,+4y, 1t y,=D, (A.38d)

These equations can be solved for the second derivatives y ’,-’,‘as 10ng as we
know the values of y’ and y,. One possibility is to set the second der'lvagves to 0to
obtain natural splines. Alternatively, we may use the true second derivatives, if they
are known, or a numerical approximation. . .

For example, suppose we have only four points to consider. Then, if we know
y" and y 4, we can solve the simultaneous Equations (A.38a) ar}d (A.38b) for y, and
y5. Similarly, if we have a full set of n equations, we can rewrite ‘Equ'atlon (A.3$a)
to express y5 = (D, — y1 — ¥3)/4, and substitute this e).(pr.essmn"mto Equation
(A.38b) to eliminate y5. Then, we repeat the procedure to eliminate Y3 from t'he next
equation. We continue this procedure until we reach the last equation, which will
contain only terms in y7, y, — 1, and y;,. Because yiandy, are known,‘w.e can solve
this equation for y; _ |, and then work back down the‘ chain determining succes-
sively y" _,, ¥’ — 3, and so forth, until we reach Equation (A.38a) from which we
determine the last unknown yj. Once we have found the values of the y7, we can
find the y; from Equation (A.30) or (A.32), and use Equation (A.28) to interpolate
o i

.
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An interesting alternative method of solving the set of simultaneous equa-
tions, Equations (A.38), is to set them up in a spreadsheet program. Then, when the
boundary values y'; and y', are supplied, the program will readjust the variables un-
til they stabilize at the solutions to Equations (A.38). Although this method is not
very practical for graphical applications where we want to build the solution into
our plotting program, it does provide a quick way of finding the second derivatives
and an interesting illustration of the solution.

As with all techniques, a certain amount of care must be exercised in using
spline routines. The choice of a second derivative at the boundary may have an im-
portant effect on the interpolation at the ends of the function, and a wrong choice,
for example, can produce undesirable shapes at the edges of a plot. Then too, al-
though the spline routine assures a smooth variation between the data points, with
continuity of the function and first and second derivative across the points, it cannot
guarantee that there will be no peculiar oscillation between the points. )

ProgramA.2 SPLINE INTERPOLATION (Appendix E)

SPLINEMAKE numerically calculates a table of second derivatives for a spline in-
terpolation by the method discussed in the previous paragraphs.

SPLINEINT performs the interpolation. For simplicity, we have chosen to store
only the second derivatives and to calculate the first and third derivatives as needed in
functions D 1YDX 1 and D3YDX3. If speed is important, the derivatives could be
computed and stored in arrays.

A spline interpolation routine is especially useful for plotting curves on graphs.
The routine has been used to produce many of the graphs in this book.

A.5 ROOTS OF NONLINEAR EQUATIONS

Finding roots of nonlinear equations is essentially the reverse of an interpolation
problem. When we interpolate a function, our object is to find a value of the depen-
dent variable y at a specific value of the independent variable x. When we are
searching for the root of a function, we are trying to find the value of x at a particu-
lar value, usually 0, of y. However, interchanging the variables completely changes
the nature of the problem. Interpolation involves straightforward application of
well-defined equations that are independent of the form of the original function:
Finding roots of nonlinear equations may require different equations for different
problems and almost always requires some sort of a search and iteration procedure.

The diffraction of light by a single slit provides an interesting example of a
nonlinear equation. It is well known that the position of the interference maxima
and minima from double slits and diffraction gratings can be determined analyti-
cally from consideration of the phase difference between the rays that pass
through each slit, but only the minima of the diffraction pattern of a single slit can
be found in this way. To find the position of a maximum, with the exception of the
central one, we must differentiate the expression for the intensity with respect to

1. . 1.
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In Equation (A.39), [, is the intensity of the light at the central maximum (6 = 0), {
is the intensity at angle 6, \ is the wavelength of the light, and a is the slit width.
The position of the maximum is given by solving

dl sin o . _
o 21, <?> (cosa —sina)=0 (A.40)

to obtain the value «, at the root of the equation
fl@)=a,~tana,=0 (A41)

The first root is at o, = 0. The other roots cannot be calculated analytically and
must be found by an iterative method. An approximate solution can be obtained by
rewriting Equation (A.41) as

o, =tana, (A.42)

and plotting separately the left and right sides to find the intersection of the straight
line and the tangent curves. There are several mathematical ways to solve the prob-
lem, but making a plot of the function is always a good starting procedure.

Trial-and-Error: The Half-Interval Method

With a personal computer, trial-and-error may be a suitable method for solving the
occasional root finding problem. An orderly approach is advisable and the half-
interval method is convenient. The procedure is to write a little program that re-
quests a trial value of the root and calculates the function and displays its value. The
initial trial value might be obtained from a graph, or perhaps by mapping the func-
tion for various values of the independent variable x, until a reasonable estimate of
the root has been obtained. Then, a second trial x is submitted, which produces a
value of y on the other side of the root. The half-interval method begins at this point.
The procedure is to select a third trial value that is midway between the two that
bracket the root. For the fourth trial value, we use the mean of the most recent value,
and whichever of the two previous trials was on the other side of the root. The
process continues until the root is found to the desired accuracy.

This rather primitive method of root finding could be improved with a little
programming to let the program decide which root to choose, to calculate the mean,
and perform the next trial. The program could proceed in a loop until the root had
been found to a predefined degree of accuracy, or the calculation could be stopped
manually. However, if we are willing to program that little bit of logic, slightly more
effort will produce a much faster root-finding program.

Secant Methods

The gain in speed comes from using the slope of the function in the calculation. We
begin with two trial estimates of the root, x, and x, , ;, preferably, but not necessar-
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.ﬂﬂ=n+@—w0%?f%% (A43)
+ k

Where we have wr.itten. Y& = flx) and so forth. Setting fix) = 0 and solving for x
gives us an approximation to the value of x at the root:

kxk+1 —xkzxkykﬂ — X1 Yk
Ye+1 — Vi Yer1 = i

For the next trial, we replace x,.,, or Xe+2 by the value x found in Equation (A.44)
and repeat the calculation. The process can be repeated until the root is approxi-
mated as closely as desired. This is the first-order secant method.

There are various ways of choosing which of the previous values of x (x, or
Xy 4 1). to keep for the next iteration. The simplest is to keep the most recent value
apd d1§card the older value. Another way is to choose whichever is closer to the root.-
[i.e., gives a smaller value of f{x)]. A third is to start the process with two values that
straddle the root (i.e., give opposite signs for y1 and y,) and to continue to choose
values that straddle the root after each iteration. This is the Regulo-Falsi method.

Clearly any method will find the root most quickly if the starting values are
close to the root, but, in principle, the secant methods will almost always find a root
of thp function, eventually. With some functions, such as those that are antisym-
metric about the root, there is the possibility that the search by the Regulo-Falsi
method, for example, will jump back and forth across the root and never approach
it. Additionally, for functions with several roots, we may not always find the one we
want. Problems may also arise if two roots are very close together.

X=X~ (A.44)

Newton-Raphson Method

Instead of calculating the slope by finite differences, as in the secant method, we
could use the tangent, or derivative of the function, if it can be calculated. Then, we
can replace Equation (A.43) by

df(x
f®=ﬂ+@—n%%£ (A.45)
where x; and y, are the values of x and JS(x) after the kth iteration. We find the next es-

timate x,.,, for the root, as before, by setting f(x) in Equation (A.45) to zero to obtain

d
Xiev1 = Xp = Y+ %xk) (A.46)

E).(ample A7 Tahle A.3 shows steps in an iterative calculation of the second and
third roots of Equation (A.41) by the secant and Newton-Raphson methods. Starting
values were chosen by examining a plot of tan x versus x.

Simultaneous Nonlinear Equations
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TABLE A3
Determination of the first two nonzero roots of & = tan o
First root Second root
Trial X y X y
(a) Newton’s Methodt
0 4.40000 1.30368 7.70000 1.25713
1 4.53598 —1.07376 7.73028 —0.31270
2 4.50186 —0.17769 7.72545 —0.01188
3 4.49375 —0.00679 7.72525 —0.00002
4 4.49341 —0.00001 7.72525 —0.00000
5 4.49341 —0.00000
(b) Secant Methodi

0 4.40000 1.30368 7.80000 —10.70682
0 4.50000 —0.13733 7.70000 1.25713
1 4.49047 0.05854 7.71051 0.78849
2 4.49332 0.00184 7.72819 —-0.17931
3 4.49341 —000003 7.72491 0.02025
4 4.49341 0.00000 7.72524 0.00047
5 7.72525 —0.00000

FThe calculation continues without assistance after the initial trial value has been selected
$Two x, y pairs are required for each stage of the calculation. After the first trial, the most recently calcutated x, y pair
was used with whichever of the two previous pairs was closer to the root.

solve for the parameters a and b. We used the secant method to solve these

equations.
Consider the two equations

fou,v)=0 and f,(u,v)=0 (A47)
which we wish to solve for « and v. We define the first partial divided differences,

_ Saluy, vo) = fu(ug, Vo)
o]=

f;zu :fa[uO’ VO; Uy, V

ul—uo
fov = Jaltto, vos g, vi] = Lt ‘;1):{“(”0’ ¥
99~ ) (A48
u ] - s VQ,
Fou = Filtto, vo3 y, v =2 b(‘)l_ubo .
_ Joluo, vi) = fi(ug, vo)
Jov = folttgs Vo3 g, vi] = _— vll—vo

and, following Equation (A.43), write for a first-order expansion
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If we assume that f, and f, are linear in u and v, we can find a first approximation to
the roots by setting f,(u, v) and Jo(u, v) to zero in Equation (A.49) and solving the
two coupled linear equations for u and v:
uf;zu + Vf;zv - uOf;zu - vOf;zv +f;1(u0’ VO) =0
uﬁm + vﬁ)v - u()ﬁ?u - v()fbv +fl‘7(u0’ VO) =0
Solution by the determinant method gives
U)=u= (Afbv - Bﬁzv)/D

and vy = v = (Bfy — Afy,)/D (A.51)

(A.50)

with

D =-f;zu\f}7\/ _-f;zv.f.bll
A= _uof;zu - vof;zv +fa(u0’ vO) (A52)‘
B = —uq fo = VoS + fioltg, vo)

We then repeat the procedure with coordinate pairs (1, v1) and (u,, v,), to obtain the
next approximation, until the roots have been found to the desired degree of accuracy.

A.6 DATA SMOOTHING

The concept of smoothing is not one that meets with universal approval. The dis-
cussion that follows should be considered with one caveat: For rigorously valid
least-squares fitting, smoothing is neither desirable nor permissible; however, there
are cases where smoothing can be beneficial, and, therefore, the techniques are
introduced.

Consider, for example, the discussion of Section 9.2 of the determination of
the area under a peak from a least-squares fit to a histogram of the data. Least-
squares fitting techniques applied to data that are distributed according to Poisson
distributions, rather than Gaussian distributions, underestimate the area of a peak by
an amount equal to the value of 2. We have seen that we can improve the result by
decreasing the value of 2 at its minimum. Similarly, if the shape of the fitting func-
tion does not exactly simulate that of the parent distribution, a better fit to the data
by decreasing x* can yield an improved estimate of the area under a peak.

Another example that might benefit from application of a smoothing algo-
rithm is the parameterization of data for use in a Monte Carlo or other program. In
preparing experimental proposals, it is often necessary to estimate yields and distri-
butions based on currently available data. Such data are often sparse and generally
must be expressed in parametric form for ease and speed of use in the Monte Carlo
simulation program. Smoothing can be useful to average out fluctuations and allow
the data to be expressed with a few parameters by a least-squares fit or an interpo-
lation procedure.

In other words, if rigorously valid results are not required, but rather an aver-
aged estimate of the distribution. smoothine mav heln ahfain e ealiald o oo
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For example, an improved estimate of the area under a peak would be accompanied
by an increased uncertainty in the estimates of the width and position of the peak.

Whatever smoothing or other manipulation is done must conserve the infor-
mation pertaining to the desired parameters. The averaging techniques that we shall
discuss, for example, conserve the area under a peak but not the width of the peak
Similarly, this method would be useful for improving the estimate of the constant
term of a polynomial but not the coefficients of the other terms.

Data smoothing is similar to the data “smearing” introduced in Chapter 5 to
simulate measuring uncertainties in “measurements” generated by a Monte Carlo
program. In the Monte Carlo program we used Gaussian smearing; that is, we al-
lowed each event a Gaussian probability distribution about its mean.

In this section, we are dealing with binned data, and thus, for Gaussian
smoothing, could consider a Gaussian integration that spreads each event over ad-
jacent bins. Because our object here is to smooth the data, we are at liberty to
choose the width of the smearing function to produce the desired degree of unifor-
mity in the data, limited by the requirement that we do not damage the very variable
we are trying to study.

The binomial distribution is a useful smoothing function. Suppose we want to
smooth low statistics experimental data that follow a Gaussian peak in a way that
preserves the area under the peak. Let us assume that the background slope is gen-
tle enough that smoothing will not affect its determination drastically.

We can approximate the Gaussian peak with a binomial distribution with p = ¥4
(see Section 2.1):

W (-G s e
We can relate the widths ¢ and the means of the two distributions
oy=np(l—p)=nfd=0> X=np=n/2 x=pn (A54)
to find the relationships among the parameters
n=4¢> X=x—pn+n/2=x~pn+20? (A.55)

We can then express the binomial distribution of Equation (A.53) as

1Y\ n!
Y= <§> (n/2 + x— Wn/2 — x+ ) (A.56)

Let us smooth the data by averaging over adjacent channels with a binomial
distribution spanning three channels:

Y (x)=1/4y(x — 1)+ 1/2y(x) + 1/4y(x + 1) (A.57)

If we fold this averaging into the distribution of Equation (A.53), the result is also
binomial:

/—1\..4L’\ Vs . ~N\
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The new distribution has the same mean x = p but a larger width 62 = p'/4 =
(n + 2)/4 with the variance increased by Va:

0_r2=0-2_|_ 1/2 (A59)

Similarly, we cquld smooth over five channels by using a formula similar to
Equation (A.57) but with five terms with coefficients given by the binomial expansion

Y'(x) = 1/16y(x — 2) + 1/4y(x — 1) + 3/8y(x)
+ 1/4y(x + 1) + 1/16y(x + 2) (A-60)

A five-channel smoothing is identical to two successive smoothings over three
channels and yields a variance that is increased accordingly, 0”2 = o2 + 1. Any
such smoothings over 2n + 1 adjacent channels is equivalent to n smoothings over
three channels.

.If we apply the smoothing of Equation (A.57) to a Gaussian distribution. the
re§ult1ng distribution will also be nearly Gaussian because the shapes of the b,ino—
mial aqd Gaussian distributions are nearly alike. In fact, if we are applying the
smoothing because the original shape is not Gaussian enough, the averaging may
m:dke the §hape more nearly Gaussian. If we apply binomial smoothing to a distrib-
ution that is not Gaussian, we should be aware that we are distorting the shape of the
peak and making it more Gaussian.

¥f the width of the original Gaussian is not too small (o > 1), the increase of
Equatlon (A.59) should not be drastic because the addition is in quadrature. For a
W}dth o= 2, for example, the new width ¢’ = 2 is only 5% larger. If the original
width is very small (o < 1), the approximation of Equation (A.53) is not valid be-
cause the Gaussian and binomial distributions are only similar in the limits of large
n. A Gaussian fit to the data without smoothing would not be valid either, however.
‘peca.luse the parameters of the fit are only meaningful if ¢ = 1. Because the averag-,
ing 1.tself is a binomial djstribution, the result is still expected to be a better approx-
1mation to a Gaussian distribution than the original data. For a smoothing over three
channels, a Gaussian fit requires o = \/1/2 for the original data.
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MATRICES

B.1 DETERMINANTS

In applying the method of least squares to both linear and nonlinear functior}s, we
required the solution of a set of # simultaneous equations in n unknowns g; similar

to the following:
yi=a Xy taX,t+a Xy
va=a, Xy tay Xy T 03Xy (B.1)
y3=a; X3 T ar Xz + a3 Xs;

where the constants y; and X;; are known quantities calculated frgm the data.
The symmetry of the right-hand side suggests that we write elements of the

equations in a two-dimensional array

Xl 1 X12 X13
[ X21 X22 X23 (B 2)
X31 X32 X33

and separate the other terms and coefficients into one-dimensional arrays.

ay Y1
a=|a, and B=|» (B.3)
as V3

Such arrays are called matrices, and we can write Equations (B.1) in matrix

~
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Alternatively, because in our problems the matrix « is always symmetric, that is, the
element o;; is equal to the element a;, we can write the matrices a and B as row
matrices

a=[a; a, a) and b=[yi ¥y, ¥ (B.5)

and express Equation (B.1) as
B=a -« (B.6)

We shall be concerned primarily with linear one-dimensional matrices and
with symmetric square two-dimensional matrices that have the same number of
rows and columns and are mirror-symmetric about the diagonal. Consider a square
matrix A:

- -
Ay Ap o Ay e Ay,
Ay Ay o Ay o Ay
A Ay Aj2 Ajk Al (B.7)

i

Anl AnZ ot Ank T Ann

The degree of the matrix A is the number n of rows and columns; the jkth el-
ement (or component) of the matrix is Ay; the diagonal terms are A ;- If the matrix is
diagonally symmetric, Ay = Ay and there are n? elements but only n(n + 1)/2 dif-
ferent elements.

Matrix Algebra

If A and B are two square symmetric matrices of degree n, then their sum S is a
square symmetric matrix of degree » with elements that are the sums of the corre-
sponding elements of the two matrices

A+B=S  S;=A,+B, (B.8)

The product P of the matrices A and B is a square matrix of degree n, with el-
ements determined in the following way:

AB=P Py = ZI(Aj’”B'"") (B.9)
The elements of the jth row of A are multiplied by the elements of the kth column
of B and the products are summed to obtain the jkth element of P. In general, the

matrix P will not be symmetric.
If 2 is a linear one-dimencional matriy tha nradint af A and a fe Anle coall A-
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All s ‘e Aln a Cll
Ajl Ajk Ajn a, | =1 C CjszI(Ajkak) (BlO)
Anl . Ann Lan Cp

If a is a row matrix, it must multiply the square matrix on the left to yield another
row matrix r.

All ot '” A.ln
[al Ve aj N an] A]I oo A]k A]n
LAnl A
=[r = o r] rj:zl(afAfk) (B.11)
j=

The product of two linear matrices depends on the order of multiplication.. The
product of a row matrix a times a column matrix b is a scalar. If 'the order is re-
versed, the result is a square matrix that is diagonal; that is, for which only the di-

agonal terms ar¢ nonzero:

b,
@ a,)| i |=2 (a;b)
b,| 7!
albl e 0 e 0
bl ' . . P :
M o al=| 0 - ap 0 (B.12)
0 0 a,b

Determinants

The determinant of a square matrix is defined in terms of its algebra.' The or.der of
the determinant of a square matrix is equal to the degree 7 of the matrix. In this sec-
tion, we shall mainly use determinants of order 3 as examples, althoggh, upless oth-
erwise specified, the comments apply to matrices of all orders. Manipulation of the
rows may be substituted for columns throughout.

1. The determinant of the unity matrix is 1 where the unity matrix is defined as the
diagonal matrix with all diagonal elements equal to 1:
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. If a column matrix of degree  is added to one column of a square matrix of de-

gree n, the determinant of the result is the sum of the determinant of the origi-
nal square matrix plus that of another square matrix obtained by substituting the
column matrix for the modified column:

Aptar Ap Al Ay Ap Apl e AL Ag
1Ay tay Ay Ay(=Ay Ay Ap|+la, Ay Ay (B.14)
Az tas Ay Ay |Ay Ay Ay |as An As

. If one column of a square matrix is multiplied by a scalar, the determinant of

the result is the product of the scalar and the determinant of the original matrix:
Ay Ap Ap Ay Ap Ap
Ay Ay Ap|=clAy Ay Ay (B.15) -
Azt Az Asz Ay Ay Ay

. If two columns of a square matrix are interchanged, the determinant retains the

same magnitude but changes sign:
Ap Ay Ap Ay Ap Ap
Ay Ay Ap|= —|Ay Ap Ay (B.16)
Ay Ay A Az Ay As

. The minor A% of an element A, of a square matrix of degree 7 is defined as the

determinant of the square matrix of degree n — 1 formed by removing the jth
row and the kth column:

All A12 Al3 A A
A=|4, A, A, A= A“ A” (B.17)
) Ay Ay As 2

- The cofactor cof(Ay,) of an element A, of a square matrix of degree n is defined

as the product of the minor and a phase factor:

cof (A ;) = (—1)7*kAdk (B.18)

. With the preceding definitions 5 and 6, the determinant of a square matrix of

degree n can be expressed in terms of cofactors of minors:

|A| =kE [AjkCOf(Ajk)] =kE [(= 1)j+kAjkAjk] (B.19)
=1 =1

Equation (B.19) is an iterative definition, because the cofactor is itself a deter-

minant. The determinant of a matrix of degree 1, however, is equal to the single

element of that matrix. The determinant of a square matrix of degree 2 is en-

countered often enough to make its explicit formula useful:

@ bl 0 /B
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Ay Ap Ap
Ay A Ay A Ay A
Ay Axp An :A11A22 Aza ~An AZ AZ +Ap Ai AZ B.21)
3
A3 Az Ax 2
Computation

Matrix computation is generally simpler if we can manipulate matrices into diago-
nal form in which only the diagonal elements A;; are nonzero. The determinant of a
diagonal matrix is equal to the product of all the diagonal elements and the trace is
their sum:

|A diog | = ﬁAjj (B.22)
L

If we combine rules 2, 3, and 4 of the algebra for determinants, we can show
that the determinant of a matrix is unchanged if the elements of any column, multi-
plied by an arbitrary scalar, are added to the elements of any other column. The de-
terminant of the sum is equal to the sum of the two determinants, but one of these
determinants has two identical columns except for a scalar factor that may be ex-
tracted, and is therefore equal to O:

A11+CA12 A12 A13 All A12 A13 AlZ A12 A13
Ay tchAy Ap Api=|Axn Ap Ap|tce Ay Ay Axp (B.23)
Ayt Ay Ap Axp| |Ay Ap As Ay Ay Ay
=[A]
Thus, it is possible to eliminate all elements except one from a row by suc-

cessively subtracting one column, appropriately scaled, from each of the others. For
example, if we perform the subtraction

' J1

w=Ap Ay (B.24)

on each row except the first, we eliminate all elements of the first column except A
to obtain

All A12 A13
A=|0 Ay Ay (B.25)
0 Ay Ay

Similarly, if we subsequently start with element A3, and subtract an appropri-
ately scaled second row from the rest of the rows,

M= Ay — Ay AL /Ay, (B.26)
all the elements of the second column vanish except Ay:
lA,, 0 A”.]
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Note that Aj, is not the original value A,,, but is modified as a result of the first
subtraction.

By successively subtracting rows (or columns) scaled to their diagonal ele-
ments, we can produce a matrix that is diagonal. In practice, it is sufficient to elim-
inate only half of the nondiagonal elements so that all elements on one side of a
diagonal are O:

Ay 00 Ay Ap Al |[An 00

A=Ay Ay 0|={0 Ay Ax|={0 Ay O

Az An An 0 0 Ay 0 0 A,
=AjApAs (B.28)

B.2 SOLUTION OF SIMULTANEOUS
EQUATIONS BY DETERMINANTS

Consider t.he following set of three equations in three coefficients a;, a,, and a;. We
shall consider the y, and X to be known quantities; that is, constants:

yi=a Xy +a X+ aXy;
Y2 = a1 Xyt ar Xy + asXy; (B.29)
V3=a1X3 + ar Xy + a3 Xs

Let us consider the set of equations as if they were one matrix equation as in
Equation (B.10):

N Xy X X3 || @y
=X X Xn||a (B.30)
Y3 X3 X3 Xy || as

with a and y represented by linear matrices and X represented by a square matrix. If
we multiply the first equation of Equations (B.29) by the cofactor of X, in the ma-
trix Qf Equation (B.30), multiply the second equation by the cofactor of X,,, and
multlply the third by the cofactor of X3, then the sum of the three equations is an
equation involving determinants according to Equation (B.18):

1 Xp X Xu Xp X X X X3
Y2 Xn Xn|=a|Xy Xpn Xp|ta|Xy Xpn Xn
Vi X3 X X1 X Xi X Xy Xy
X3 Xip Xi3
+a31 Xy Xon X (B.31)
X3 Xy Xy

The determinants in the two rightmost terms of Eauation (B.31) hoth vanich
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i X2 Xi3
2 Xp Xos

vy X3 X
g =22 =l (B.32)
Xll X12 X13
X1 X Xp3
X31 X32 X33

The denominator is the determinant of the square matrix X of Equation (B.30) and
the numerator is the determinant of a matrix that is formed by substituting the col-

umn matrix y for the first column of the X matrix.
Similarly, Cramér’s rule gives the solution for the jth coefficient g; of a set of

n simultaneous equations as the ratio of two determinants:
Y™ 2
J

:1(‘11 1)
X'(j)|

g = (B.33)
X

7

k=1,n

The denominator is the determinant of the X matrix. The numerator |X’( ])| is the
determinant of the matrix formed by substituting the y matrix for the jth column.

A matrix is singular if its determinant is 0. If the X matrix is singular, there is
no solution for Equation (B.33). For example, if two of the n simultaneous equa-
tions are identical, except for a scale factor, there are really only n — 1 independent
simultaneous equations, and therefore no solution for the n unknowns. In this case,
the X matrix has two identical rows and therefore a 0 determinant.

Solution by Matrix Equations

Let us consider Equation (B.33) as if it were a matrix equation as in Equation
(B.30). If the X matrix is square, we can consider the y and a linear matrices as ei-
ther column matrices as in Equation (B.10) or row matrices as in Equation (B.11):

(i) = [a;][ X)) (B.34)

If we could multiply this matrix by another matrix X' such that the right-hand side
becomes just the linear matrix a, then we will have our solution for the coefficients
a; directly. The multiplication of matrices is associative; that is,

A(BC)=(AB)C (B.35)

Therefore, we require a matrix X' such that if it is multiplied by the matrix X, the
result is the unity matrix:

Xyl W] =1 (B.36)

e e N ot eaticfiee Bauation (B.36) is called the inverse matrix X!
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[y (Xl ™" = [a;]1 =[a] (B.37)

We can express Equation (B.37) in more conventional form to give the solution for
each of the coefficients a;:

a; =k§1(ka;}) (B.38)

Thus, tI'Ie solution for the » unknowns with »n simultaneous equations is reduced to
evaluating the elements of the inverse matrix X 1.

B.3 MATRIX INVERSION

The adjoint AT of a matrix A is defined as the matrix obtained by substituting for
each element A the cofactor of the transposed element A,;:

Al = cof(A) (B.39)
For a square symmetric matrix, the transposition makes no difference.
- The inverse matrix A1 defined in Equation (B.36) may be evaluated by di-
viding the adjoint matrix A" by the determinant of A:
Ak
A7l = ,X]I (B.40)

,”l:g)lilow that this equality holds, we multiply both sides of Equation (B.40) by

|A[AA™T =|A[1=AA! (B.41)

Diagopal terms of the matrices in Equation (B.41) are equivalent to the formula of
Equation (B.19) for evaluating the determinant:

[A]= 3 (4] =3 [4ecof (4] (B.42)

Off—di.agonal elements can be shown to vanish like those of the determinants of
Equation (B.31). If the matrix A is singular (that is, if |A| = 0), the inverse matrix

_1 . . .
33 34c;oes not exist and there is no solution to the matrix equation of Equation

Gauss-Jordan Elimination

The‘ formula of Equa'tion (B.40) is generally too cumbersome for use in computing
Fhe inverse of a matrix. Instead, the Gauss-Jordan method of elimination is used to
invert a matrix by building up the inverse matrix from a unity matrix while reduc-
ing the original matrix to unity.

Cancider the invarca matrmiv A =1 an éhn cneia ~fao o
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and adding the same rows scaled to the same constants), the ratio r'emain_s unchan ge?d.
If we perform the proper manipulation, we can changg the denormpator_ 11nto the unity
matrix; the numerator must then become equal to the inverse matrix A -

Let us write the 3 X 3 matrix A and the 3 X 3 unity matrix side by s1F1e and
manipulate both to reduce the matrix A to the unity rr}atrix. We start by usmgf_the
formula of Equation (B.24) to eliminate the two off-diagonal elements of the first

column:

Ay Ap Ag 100
Ay Ay An 010
Ay Ay As 001
Ay Ap Ap i 00
A A, Ay
0 Azz—Ale—i A23—A13A——“ ™ 10 (B.43)
Ay Ay Ay
A, Ay AT 0 1
0 A32 12 All 33 13 All All
Now, we divide the first row by A, to geta diagonal_element of
1 ‘ﬂ.z_ éﬁ T L 0 0T
All All All
A A21 A21
0 Azz—AuA—i A23—A13Z-1—1 . 10 (B.44)
A Ay Ay
0 A=Ayt An—Any || =z 01
L 1 JL

The left matrix now has the proper first column. Let us rf_:label th'e matﬁces B
(on the left) and B (on the right) and perform the corresponding manipulations to
obtain zeros in place of By, and B, and then divide the second row by B!

| |
Bu||p _p Be Bz g
10 313_323 B, B\, — By By, B,
Bx Ei L 0 (B.45)
01 By, By, By,
B ’ ' B32 B32
00 333_3233_22 B31_BZIB—2; _3_22 1

After similar manipulation of the third column, the matr%x on the left‘ becomes the
unity matrix and that on the right, therefore, must be ‘the inverse n}atn)f. N
For computational purposes, even this method is somewhat inefficient in that
two matrices must be manipulated throughout. Note, howeve.:r, that at eac.h stage of
the reduction, there are only » (or three) useful columns _Of information in .the two
matrices. As each column is eliminated from the left matrix, the corresponding col-

Matrices 247

(B.43), but instead of applying this formula to the first column, we divide the first
column by —A/; to get the first column on the right of Equation (B.43); the diago-
nal element must be divided twice to become 1/4;. Divide the rest of the first row
by A, to get the composite of the two matrices of Equation (B.44):

r -
All A11 All
A A A
_14—?1 A22 - A1214_?; A23 - A1314_ji' (B46)
Ay Az Asy
——= Ay —Ap—— Ay —A,—
R i )

A corresponding manipulation of the second column yields a matrix with the .
first two columns identical to those of the right side of Equation (B.45) whereas the
last column is identical to that of the left side of Equation (B.45). Thus the inverse
matrix is accumulated in the space vacated by the original matrix.

Computer Routine PROGRAM B.1 MATRIX (WEBSITE) includes two
routines, MATINV and LINEARBYSQUARE. MATINY inverts a square ma-
trix and calculates its determinant, substituting the inverted matrix into the same array
as the original matrix.! Input variables are ARRAY, the matrix to be inverted, and
NORDER, the order of its determinant.

The initial program loop iterates through the n columns of the matrix, reorga-
nizing the matrix to get the largest element in the diagonal in order to reduce rounding
errors and improve computational precision. The inversion procedure discussed above
is then carried out and the determinant DET of the matrix is calculated from the diag-
onalized matrix. After inversion, the inverted matrix is stored back in ARRAY and the
variable DET, the value of the determinant of the original matrix, is returned.

LINEARBYSQUARE multiplies a linear matrix (on the right) by a square
matrix (on the left). For example, see Equation (B.30).
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GRAPHS
AND
TABLES

he tables and graphs in this appendix are provided for easy ref§r'ence. Cqmputer
T routines for calculating several of the distributions and probaplllty functions are
listed in Appendix E. Routines are also available on the website for calculating

probabilities.

C.1 GAUSSIAN PROBABILITY
DISTRIBUTION

The probability density function pg(x; ., o) for the Gaussian or normal error distri-
bution is given by

__1 Y EalAY
pc(x;u,d)—meXp A\

If measurements of a quantity x are distributed in this manner around a mean p 'wiFh
standard deviation o, the probability dPg (x; w, o) for observing a valuej of X, within
an infinitesimally small interval dx, in a random sample measurement is given by

dPs(x; w, 0) = po(X; W, 0)dx

Values of the probability density function pg (x; W, o) are tabulated in Table

TABLE C.1

Pe(x.4.0)

|
Ve

|
[]
|
1
|
!
°
X

Gaussian probability density distribution. The Gaussian or normal error
distribution p;(x; p, o) versus z = lx — pl/o

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.39894 0.39892 0.39886 0.39876 (0.39862 0.39844 0.39822 0.39797 0.39767 0.39733
0.1 0.39695 0.39654 0.39608 0.39559 0.39505 0.39448 0.39387 0.39322 0.39253 0.39181
0.2 0.39104 039024 0.38940 0.38853 0.38762 0.38667 0.38568 0.38466 0.38361 0.38251
0.3 0.38139 0.38023 0.37903 0.37780 0.37654 0.37524 037391 0.37255 0.37115 0.36973
04 0.36827 036678 0.36526 0.36371 0.36213 0.36053 0.35889 0.35723 0.35553 0.35381
0.5 0.35207 0.35029 0.34849 0.34667 0.34482 0.34294 0.34105 0.33912 0.33718 0.33521
0.6 0.33322 033121 032918 032713 032506 0.32297 0.32086 0.31874 0.31659 0.31443
0.7 031225 031006 0.30785 0.30563 030339 0.30114 0.29887 0.29659 0.29431  0.29200
0.8 0.28969 0.28737 0.28504 0.28269 0.28034 027799 0.27562 0.27324 0.27086 0.26848
09 026609 026369 0.26129 0.25888 0.25647 0.25406 0.25164 (0.24923 0.24681 0.24439
1.0 0.24197 023995 0.23713 023471 023230 022988 0.22747 0.22506 0.22266 0.22025
1.1 021785 021546 021307 0.21069 020831 0.20594 0.20357 0.20122 0.19887 0.19652
12 0.19419 0.19186 0.18955 0.18724 0.18494 0.18265 0.18038 0.17811 0.17585 0.17361
1.3 0.17137 0.16915 0.16694 0.16475 0.16256 0.16039 0.15823 0.15609 0.15395 0.15184
14 0.14973  0.14764 0.14557 0.14351 0.14147 0.13944 0.13742 0.13543 0.13344 0.13148
1.5 012952 0.12759 0.12567 0.12377 0.12189 0.12002 0.11816 0.11633 0.11451 0.11271
1.6 0.11093  0.10916 0.10741 0.10568 0.10397 0.10227 0.10059 0.09893 0.09729  0.09567
1.7 0.09406 0.09247 0.09090 0.08934 0.08780 0.08629 0.08478 0.08330 0.08184 0.08039
1.8 0.07896 0.07755 0.07615 0.07477 0.07342 0.07207 0.07075 0.06944 0.06815 0.06688
1.9 0.06562 0.06439 0.06316 0.06196 0.06077 0.05960 0.05845 0.05731 0.05619 0.05509
2.0 0.05400 0.05293 0.05187 0.05083 0.04981 0.04880 0.04781 0.04683 0.04587 0.04492
2.1 0.04399 0.04307 0.04217 0.04129 0.04041 0.03956 0.03871 0.03788 0.03707 0.03627
2.2 0.03548 0.03471 0.03395 0.03320 0.03247 0.03175 0.03104 0.03034 0.02966 0.02899
2.3 0.02833 0.02769 0.02705 0.02643 0.02582 0.02522 0.02464 0.02406 0.02350 0.02294
2.4 0.02240 0.02187 0.02135 0.02083 0.02033 0.01984 0.01936 0.01889 0.01843 0.01798
2.5 001753 0.01710 0.01667 0.01626 0.01585 0.01545 0.01506 0.01468 0.01431 0.01394
2.6 0.01359 001324 001290 0.01256 0.01224 001192 0.01160 0.01130 0.01100 0.01071
2.7 0.01042 0.01015 0.00987 0.00961 0.00935 0.00910 0.00885 0.00861 0.00837 0.00814
2.8 000792 0.00770 0.00749 0.00728 0.00707 0.00688 0.00668 0.00649 0.00631 0.00613
2.9 0.00595 0.00578 0.00562 0.00546 0.00530 0.00514 0.00500 0.00485 0.00471 0.00457
0.00 0.10 0.20 0.30 0.40

3.0 0.0044318 0.0032668 0.0023841 0.0017226 0.0012322

3.5 0.00087269 0.00061191 0.00042479 0.00029195 0.00019866

4.0 0.00013383 0.000089264 0.000058945 0.000038536 0.000024943
4.5 0.000015984 0.000010141 0.0000063701 0.0000039615 0.0000024391
5.0 0.0000014868 0.00000089730 0.00000053614 0.00000031716 0.00000018575
5.5 0.00000010771 0.00000006183 0.00000003514 0.00000001978 0.00000001102
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FIGURE C.1 o e
Gaussian probability density distribution, pg(x; ., o) versus z = Ix —

for z ranging from 0.0 to 3.0 in increments of 0.01 and up to 5.9 in i.rlcremenFs
of 0.1. This function is graphed on a semi-logarithmic scale as a function of z in

Figure C.1.

C.2 INTEGRAL OF GAUSSIAN
DISTRIBUTION

The integral Pg(x; p, o) of the probability density function pg(x; w, o) for the
Gaussian or normal error distribution is given by

1 o 1fx— ¥y
FPs(x; p, 0) = ——J exp [—5<—0 ) }dx

oV =2z

with

TABLE C.2 '
Integral of Gaussian distribution,
density distribution. P(x

' pc(x,/l, o)

H—-20 u p+zo

X

The integral of the Gaussian
3 M, o) versus z = |x — pl/o

probability

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
00 00 0.00798  0.01596 0.02393 0.03191  0.03988 0.04784 0.05581 0.06376 0.07171
0.1 0.07966 0.08759 0.09552 0.10343  0.11134 0.11924 0.1 2712 0.13499 0.14285 0.15069
02 0.15852 0.16633 0.17413 0.18191  0.18967 0.19741 020514 0.21284 0.22052 0.22818 .
03 023582 0.24344 0.25103 0.25860 0.26614 0.27366 0.28 115 0.28862 0.29605 0.30346
04 031084 0.31819 0.32551 033280  0.34006 0.34729 0.35448 0.36164 0.36877 0.37587
05 038292 038995 0.39694 0.40389  0.41080 0.41768 042452 043132 0.43809 0.44481
0.6 045149 045814 046474 047131 047783 0.4843] 049075 049714 0.50350 0.50981
0.7 051607 0.52230 0.52847 0.53461  0.54070 0.54674 0.55274  0.55870 0.56461 0.57047
0.8 057629 0.58206 0.58778 0.59346  0.59909 0.60467 0.61021  0.61570 0.62114 0.62653
0.9 0.63188 0.63718 0.64243 0.64763  0.65278 0.65789 0.66294  0.66795 0.67291 0.67783
1.0 0.68269 0.68750 0.69227 0.69699  0.70166  0.70628 0.71085 0.71538 0.71985 0.72428
L1 072866  0.73300 0.73728 0.74152  0.74571 0.74985 0.75395  0.75799 0.76199 0.76595
12 076985 0.77371 0.77753 0.78130  0.78502  0.78869 0.79232  0.79591 0.79945 0.80294
1.3 0.80639 0.80980 0.81316 0.81647 081975 0.82298 0.82616  0.82930 0.83240 0.83546
14 0.83848 0.84145 0.84438 0.84727 0.85012 0.85293 0.85570 0.85843 0.86112 0.86377
1.5 0.86638 0.86895 0.87148 0.87397  0.87643 0.87885 0.88123 0.88358 0.88588 0.88816
1.6 0.89039 0.89259 0.89476 0.89689  0.89898  0.90105 0.90308  0.90507 0.90703 0.90896
L7 09108 0.91272 091456 0.91636 091813 0.91987 0.92158  0.92326 0.92491 0.92654
1.8 092813 0.92969 093123 0.93274  0.93422  0.93568 0.93711  0.93851 0.93988 0.94123
1.9 094256 0.94386 094513 0, 94638  0.94761  0.94882 0.95000 0.95115 0.95229 0.95340
2.0 095449 0095556 095661 0.95764  0.95864 0.95963 0.96059 0.96154 0.96247 0.96338
2.1 096426  0.96513 0.96599 0.96682  0.96764 0.96844 0.96922  0.96999 0.97074 0.97147
22 097219 097289 097358 0.97425  0.97490 0.97555 0.97617 0.97679 0.97739 0.97797
2.3 097855 097911 0.97965 0.98019  0.98071 0.98122 0.98172  0.98221 0.98268 0.98315
2.4 098360 0.98404 0.98448 0.98490  0.98531 0.98571 0.98610 0.98648 0.98686 0.98722
25 098758  0.98792 0.98826 0.98859  0.98891 0.98922 0.98953  0.98983 0.99012 0.99040
26 099067 0.99094 0.99120 0.99146  0.99171 0.99195 099218  0.99241 0.99264 0.99285
27 099306 0.99327 0.99347 0.99366  0.99385 0.99404 099422 0.99439  0.99456 0.99473
2.8 099489  0.99504 0.99520 0.99534 099549 0.99563 0.99576  0.99589 0.99602 0.99615
29 099627 0.99638 0.99650 0.99661  0.99672 0.99682 0.99692  0.99702 0.99712  0.99721

0.00 0.10 0.20 030 0.40
3.0 0.9973002 0.9980648 0.9986257 0.99903315 0.99932614
3.5 0.99953474 0.99968178 0.99978440 0.99985530 0.999903805
4.0 0.999936656 0.999958684 0.999973308 0.999982920 0.999989174
4.5 0.9999932043 0.9999957748 0.9999973982 0.9999984132 0.99999904 149
50 0 Q000Q0AN £ PP o
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FIGURE C.2

Integral of the Gaussian probability density distribution, p(x; w, o) versus z = lx — wl/c

If measurements of the quantity x are distributed according to the Gaussian d1strlll;—

ution around a mean p. with standard deviation o, P (x; p, o) is equal to tll;e prob-

ability for observing a value of x in a rando'rr} sample measurement that is between

i — zo and p + zo; that is, it is the probability that !x — pl <zo. ' )
Values of the integral P(x; ., o) are tabulated in Table C.2 as a'functlon o 21,’

for z ranging from 0.0 to 3.0 in increments of 0.01 and up to 591in %nc;'ement(s: 3

0.1. This function is graphed on a probability scale as a function of z in Figure C.2.
A related function is the error function erf Z:

z
erf Z= _I_J e~?dz = Py(z V20, 1)
z

Vr

The function that is tabulated and graphed is the shaded area between the limits
. £ zo as indicated.

C.3 LINEAR-CORRELATION
COEFFICIENT

[P IES H E TSRS TP / N Faen tha linanr narralatinn ~nafficiont » foar v
Lo ) IRRSURRPURI N S BFI B e R Rat T .. an
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Pirn = F[(F(Jvr/g/z] (1= r2)e=2

The probability of observing a value of the correlation coefficient larger than r for

a random sample of N observations with v degrees of freedom is the integral of this
probability P (r; N):

1 F[(v+1)/2]1 2\(v—2)/2 = N —
Va T2 Lr,(l_x)( Pl v=N-2

F(r;N)=

If two variables of a parent population are uncorrelated, the probability that a
random sample of N observations will yield a correlation coefficient for those two .
variables greater in magnitudé than |7 is given by P (r; N).

Values of the coefficient Irlcorresponding to various values of the probability
P(r; N) are tabulated in Table C.3 for N ranging from 3 to 100, and values of
P(r; N) ranging from 0.001 to 0.5. The functional dependence of r corresponding
to representative values of P(r, N) is graphed on a semi-logarithmic scale as a
smooth variation with the number of observations N in Figure C.3.

The function that is tabulated and graphed is the shaded area under the tails of
the probability curve for values larger than 7! as indicated.

C4 x2DISTRIBUTION
The probability density distribution (X% v) for x? is given by

px(x*v) 2)v=2)/2p-x/2

1
= 272 X

The probability of observing a value of x? that is larger than a particular value for a

random sample of N observations with v degrees of freedom is the integral of this
probability P,(x?; v):

1 0
2.0 2\ 0=2/2 ,—x2/2 3( 1.2
RO ) = e ) e )

Values of the reduced chi-square X2 = x* corresponding to various values of
the integral probability P, (x% v) of exceeding x? in a measurement with v degrees
of freedom are tabulated in Table C.4 for v ranging from 1 to 200. The functional
dependence of P(x%v) corresponding to representative values of v is graphed in
Figure C.4 as a smooth variation with the reduced chi-square y2

The fitretimm thed 2o eodeed s 1 1



TABLE C.3

Linear-correlation coefficient. The 1
number of observations N and the correspon
exceeding r in a random sample of observations tak

b p(xv)

parent population (p = 0)

w Ob=m=—-—-—

inear-correlation coefficient r versus the
ding probability P.(r; N) of
en from an uncorrelated

P
N 0.50 0.20 0.10 0.050 0.020 0.010 0.005 0.002 0.001
3 0.707 0.951 0.988 0.997 1.000 1.000 1.000 1.000 1.000
4 0.500 0.800 0.900 0.950 0.980 0.990 0.995 0.998 0.999
5 0.404 0.687 0.805 0.878 0.934 0.959 0.974 0.986 0.991
6 0.347 0.608 0.729 0.811 0.882 0917 0.942 0.963 0.974
7 0.309 0.551 0.669 0.754 0.833 0.875 0.906 0.935 0.951
8 0.281 0.507 0.621 0.707 0.789 0.834 0.870  0.905 0.925
9 0.260 0.472 0.582 0.666 0.750 0.798 0.836 0.875 0.898
10 0.242 0.443 0.549 0.632 0.715 0.765 0.805 0.847 0.872
11 0.228 0419 0521 0.602 0.685 0.735 0.776 0.820 0.847
12 0.216 0.398 0.497 0.576 0.658 0.708 0.750 0.795 0.823
13 0.206 0.380 0.476 0.553 0.634 0.684 0.726 0.772 0.801
14 0.197 0.365 0.458 0.532 0.612 0.661 0.703 0.750 0.780
15 0.189 0.351 0.441 0.514 0.592 0.641 0.683 0.730 0.760
16 0.182 0.338 0.426 0.497 0.574 0.623 0.664 0.711 0.742
17 0.176 0.327 0.412 0482 0.558 0.606 0.647 0.694 0.725
18 0.170 0.317 0.400 0.468 0.543 0.590 0.631 0.678 0.708
19 0.165 0.308 0.389 0.456 0.529 0.575 0.616 0.662 0.693
20 0.160 0.299 0.378 0.444 0.516 0.561 0.602 0.648 0.679
22 0.152 0.284 0.360 0.423 0.492 0.537 0.576 0.622 0.652
24 0.145 0.271 0.344 0.404 0.472 0.515 0.554 0.599 0.629
26 0.138 0.260 0.330 0.388 0453 0.496 0.534 0.578 0.607
28 0.133 0.250 0.317 0.374 0.437 0.479 0515 0.559 0.588
30 0.128 0.241 0.306 0.361 0423 0.463 0.499 0.541 0.570
32 0.124 0.233 0.296 0.349 0.409 0.449 0.484 0.526 0.554
34 0.120 0.225 0.287 0.339 0.397 0.436 0470 0.511 0.539
36 0.116 0.219 0.279 0.329 0.386 0.424 0.458 0.498 0.525
38 0.113 0213 0.271 0.320 0.376 0.413 0.446 0.486 0.513
40 0.110 0.207 0.264 0.312 0.367 0.403 0.435 0474 0.501
42 0.107 0.202 0.257 0.304 0.358 0.393 0.425 0.463 0.490
44 0.104 0.197 0.251 0.297 0.350 0.384 0416 0.453 0.479
46 0.102 0.192 0.246 0.291 0.342 0.376 0.407 0.444 0.469
48 0.100 0.188 0.240 0.285 0.335 0.368 0.399 0435 0.460
50  0.098 0.184 0.235 0.279 0.328 0.361 0.391 0.427 0.451
60  0.089 0.168 0.214 0.254 0.300 0.330 0.358 0.391 0.414
70 0.082 0.155 0.198 0.235 0278 0.306 0.332 0.363 0.385
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that the variables are not correlated.
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TABLE C.4
x? distribution. Values of the reduced chi-square x2 = x*v corresponding to

the probability P,(x?; v) of exceeding x? versus the number of degrees of

pz(xz’ V)

v

x2
x2

freedom v
P
v 0.99 0.98 0.95 0.90 0.80 0.70 0.60 0.50
1 0.00016 0.00063 0.00393 0.0158 0.0642 0.148 0.275 0.455
2 0.0100 0.0202 0.0515 0.105 0.223 0.357 0.511 0.693
3 0.0383 0.0617 0.117 0.195 0.335 0475 0.623 0.789
4 0.0742 0.107 0.178 0.266 0.412 0.549 0.688 0.839
5 0.111 0.150 0.229 0.322 0.469 0.600 0.731 0.870
6 0.145 0.189 0.273 0.367 0.512 0.638 0.762 0.891
7 0.177 0.223 0.310 0.405 0.546 0.667 0.785 0.907
8 0.206 0.254 0.342 0.436 0.574 0.691 0.803 0.918
9 0.232 0.281 0.369 0.463 0.598 0.710 0.817 0.927
10 0.256 0.306 0.394 0.487 0.618 0.727 0.830 0.934
11 0.278 0.328 0.416 0.507 0.635 0.741 0.840 0.940
12 0.298 0.348 0.436 0.525 0.651 0.753 0.848 0.945
13 0.316 0.367 0.453 0.542 0.664 0.764 0.856 0.949
14 0.333 0.383 0.469 0.556 0.676 0.773 0.863 0.953
15 0.349 0.399 0.484 0.570 0.687 0.781 0.869 0.956
16 0.363 0.413 0.498 0.582 0.697 0.789 0.874 0.959
17 0.377 0.427 0.510 0.593 0.706 0.796 0.879 0.961
18 0.390 0.439 0.522 0.604 0.714 0.802 0.883 0.963
19 0.402 0.451 0.532 0.613 0.722 0.808 0.887 0.965
20 0.413 0.462 0.543 0.622 0.729 0.813 0.890 0.967
22 0.434 0.482 0.561 0.638 0.742 0.823 0.897 0.970
24 0.452 0.500 0.577 0.652 0.753 0.831 0.902 0.972
26 0.469 0.516 0.592 0.665 0.762 0.838 0.907 0.974
28 0.484 0.530 0.605 0.676 0.771 0.845 0911 0.976
30 0.498 0.544 0.616 0.687 0.779 0.850 0915 0.978
32 0.511 0.556 0.627 0.696 0.786 0.855 0.918 0.979
34 0.523 0.567 0.637 0.704 0.792 0.860 0.921 0.980
36 0.534 0.577 0.646 0.712 0.798 0.864 0.924 0.982
38 0.545 0.587 0.655 0.720 0.804 0.868 0.926 0.983
40 0.554 0.596 0.663 0.726 0.809 0.872 0.928 0.983
42 0.563 0.604 0.670 0.733 0.813 0.875 0.930 0.984
44 0.572 0.612 0.677 0.738 0.818 0.878 0.932 0.985
46 0.580 0.620 0.683 0.744 0.822 0.881 0.934 0.986
48 0.587 0.627 0.690 0.749 0.825 0.884 0.936 0.986
50 0.594 0.633 0.695 0.754 0.829 0.886 0.937 0.987
60 0.625 0.662 0.720 0.774 0.844 0.897 0.944 0.989
70 0.649 0.684 0.739 0.790 0.856 0.905 0.949 0.990
80 0.669 0.703 0.755 0.803 0.865 0.911 0.952 0.992
90 0.686 0.718 0.768 0.814 0.873 0.917 0.955 0.993
100 0.701 0.731 0.779 0.824 0.879 0.921 0.958 0.993
120 0.724 0.753 0.798 0.839 0.890 0.928 0.962 0.994
0.743 0.770 0.812 0.850 0.898 0.934 0.965 0.995

TABLE C.4
(continued)
v 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.001
1 0.7
! 0 9(1)2 }.%j }.ggg g;gg gggé 5412 6.635 10.827
. . . . ! 3912 4.605 6
3 0.982 1222 1.547 2,084 o
. . . 2.605 3.279 378
;1 Lou 1220 1497 1.945 2372 2917 3.31(9) ng;
026 1213 1.458 1.847 2214 2678 3.017 4102
s }.gz(s) ifgg i.:(z)g 1774 2.099 2.506 2.802 3.743
. . . 1717 2,010 2375 2 '
8 1.044 1.191 1379 1670 ; Pt ro
. . . 1.938 2271 2511
9 1.046 1184 1360 1632 ' o
. . . 1.880 2.187 2.407
10 1.047 1178 1.344 1599 1.831 2.116 2321 28?3
11 ! Loss 1173 1330 1570 1789 2,056 2248 2.842
1 1.8;13 Hgg ig(l)g 1.546 1752 2.004 2.185 2742
. . . 1.524 1.720 1.959 2 '
14 1.049 1.159 1.296 1.505 ' poe >o0
. . . 1.692 1.919 2082
15 1.049 1.155 1287 1.487 1.666 1.884 2.039 ggfg
16 ll.gig List 1279 1471 1644 1.852 2,000 2453
. 148 1271 1457 1.623 1.823 ' '
18 1.048 1,145 1.264 1.444 60 ' Lo 20
. . ) 1.604 1797 1.934
19 1.048 1142 1258 1432 ’ Yo
. . . 1.586 1773 1.905
20 1.048 1.139 1252 1421 1571 1751 1.878 '22;22
;i }.gjg Hgg }gg} 1.401 1.542 1712 1.831 2.194
. . . 1383 1517 1.678 1 i
2 1.045 1125 1.223 1.368 ' 755 > 0%
. . . 1496 1.648 1755
gg 1035 1121 1215 1.354 1.476 1622 1724 ;8;;
044 1118 1.208 1342 1.459 1599 1.696 1.990
gi }.8:; H 5 }:12(9)2 1331 1.444 1.578 1671 1.953
. . . 1321 1.429 1559 1.64 '
36 1.042 1.109 1.191 13 ' pas a5
. . 311 1.417 1.541 1.628
ig 1041 1,106 1.186 1303 1.405 1.525 1.610 }ggf
041 1.104 1.182 1.295 1.394 1511 1.592 1.835
ﬁ }.(0)40 1.102 1178 1.288 1.384 1497 1.576 1.812
4 1.033 Il.égg H;g 1281 1.375 1485 1.562 1790
. . . 1275 1366 1473 1.548 :
4513 ;.838 1.096 1167 1.269 1.358 1.462 1.535 i??f
038 1.094 1.163 1263 1350 1452 1.523 1733
";8 11‘832 11833 }gg 1.240 1318 1.410 1.473 1.660
. . . 1222 1293 1377 1 '
80 1032 1.076 1.130 1.20 ‘ pr 56
. . 207 1273 1.351 1.404
90 1.031 LO72 1123 1.195 : . 133
. . . 1.257 1329 1.379
100 1.029 1.069 1117 1.185 1243 1311 1.358 i:i;i
}ig ;.g;g }ggg }.(1)(9)7 1.169 1221 1.283 1.325 1.446
. . 099 1156 1.204 1261 '
160 1.024 1.055 1.093 1.146 : ' 778 e
. . . 1.191 1.243 1278
180 1.023 1.052 1.087 1 ' 358
. . 137 1.179 1228 1.261
200 1.022 1.050 1.083 1.130 1170 1216 1247 ;333
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C.5 F DISTRIBUTION
The probability distribution for F is given by

(f . )= F[(V] + V2)/2] h v,/2 f(v]72)/2
PrlJ, Vi, Vo F(V1/2)F(V2/2) v, (1 +fv1/v2)1/2(vl+vz)
The probability of observing a value of F that is larger than a particular value

for a random sample with v, and v, degrees of freedom is the integral of this
probability:

Be(Fs vy, v;) = prf(f; vy, Vo) df

Values of F corresponding to various values of the integral probability
Pr(F; vy, v,) of exceeding F in a measurement are tabulated in Table C.5 for vi=1
and graphed in Figure C.5 as a smooth variation with the probability. Values of F
corresponding to various values of v, and Vv, ranging from 1 to % are listed in Table
C.6 and graphed in Figure C.6 for P(F; vi, v;) = 0.05 and in Table C.7 and Figure
C.7 for Pe(F; v}, v,) = 0.01. These values were adapted by permission from Dixon
and Massey (1969).

The function that is tabulated and graphed is the shaded area under the tail of
the probability curve for values larger than F as indicated.

C.6 STUDENT’S ¢ DISTRIBUTION
The probability distribution for Student’s ¢ is given by!

2\—(v+1)/2

vy = —] T[(v+ 1)/2] <1 N ;_) w+1)
\/ (V’IT) r (V/ 2) 1%
Student’s ¢ distribution describes, as a function of the number of degrees of freedom
v, the distribution of the parameter t = |x — 3| |/s,, where ¢ is the number of standard
deviations s, of the sample distribution by which x differs from *. This distribution
takes account of the fact that the sample standard deviation $,, 18 an estimate of the
parent standard error o, and, as such, will vary for different samples drawn from the
same parent distribution, just as the sample means vary. If ¥ represents the mean of
N numbers and x is not derived from the data, thenv = N — 1. If both x and ¥ are
means, s, must be the joint standard deviation of both x and X, and v must be the to-
tal number of degrees of freedom. In the limit of large numbers of degrees of free-
dom, Student’s ¢ and Gaussian probability distributions agree; for small v, that is,
low-statistics experiments, the Gaussian distribution overestimates the probability
and Student’s ¢ is preferred.

Table C.8 lists probabilities obtained by integrating Student’s ¢ distribution
fromx = x — Is, tox = X + 15, where r = |x — xl/s,. The integrals are listed as
functions of ¢ and of the number of degrees of freedom v. The values corresponding
to Gaussian probability (which are independent of v) are listed in the last column.

!“Review of Particle Physics” The European Physical Journal C, vol. 15 (2000, p. 193.
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TABLE C.5 aticl : s :
F distribution, v = 1. Values of F corresponding to the probability Px(F;1, 129 H
of exceeding F (with v, = 1 degrees of freedom) versus the larger number of :
degrees of freedom v,. £ H
Degrees : §L ‘
of Probability (P) of exceeding F ] £ g
freedom i ] i
vy 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.001 i i e i
1 1000 583 3990 16100 64800  4050.00  16200.00 406000.0 ; i it : 3@
2 0.667 2.57 8.53 18.50 38.50 98.50 198.00 998.0 t t i
3 0585 202 554 1010 1740 34.10 55.60 167.0 Ejt
4 0.549 1.81 4.54 7.71 12.20 21.20 31.30 74.1 i T Mo H EE
5 0.528 1.69 4.06 6.61 10.00 16.30 22.80 47.2 . Hi t
6 0.515 1.62 3.78 5.99 8.81 13.70 18.60 35.5 H H Eig
7 0.506 1.57 3.59 5.59 8.07 12.20 16.20 20.2 i i
8 0.499 1.54 3.46 5.32 7.57 11.30 14.70 254 & = £
9 0.494 1.51 3.36 5.12 7.21 10.60 13.60 229 SEEe t 2 i
10 0.490 1.49 3.28 4.96 6.94 10.00 12.80 21.0 o HH
11 0.486 1.47 3.23 4.84 6.72 9.65 12.20 19.7 =222 = =
12 0.484 1.46 3.18 4.75 6.55 9.33 11.80 18.6 E::
15 0.478 143 3.07 4.54 6.20 8.68 10.80 16.6 e £ o
20 0.472 1.40 2.97 4.35 5.87 8.10 9.94 14.8 ; 5 HE : i
24 0.469 1.39 2.93 4.26 5.72 7.82 9.55 14.0 ! Siisgeey emanay Sz I
> o 3
30 0466 138  2.88 4.17 557 7.56 9.18 133 / N
40 0.463 1.36 2.84 4.08 5.42 7.31 8.83 12.6 i £ oo SR o
60 0.461 1.35 2.79 4.00 5.29 7.08 8.49 12.0 f = SEES:
120 0.458 1.34 2.75 392 5.15 6.85 8.18 11.4 t H
0 0455 132 271 3.84 5.02 6.63 7.88 10.8
Note: For larger values of the probability P, the value of F is approximately F = [1.25(1 — P2 1 i:; i :__ H
1T H
i L i
8 g R IS4 © © ©
(r="a4

0.001

The probability P{F; 1, v,) of exceeding F versus F and v, forv, = 1.

FIGURE C.5
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TABLE C.6
F distribution, 5%. Values of F corresponding to the probability
Pu(F; vy, v2) = 0.05 of exceeding F for v, versus v, degrees of freedom
Degrees
of Degrees of freedom v, 5E H i e S
freedom 5 i i i I =
v, 2 4 6 8 10 15 20 100 =t o IS
:é 4 3
1 20000 22500 23400  239.00 24200 24600 24800  253.00 EH i HElREicESe j ikt e EEEERREE 8
2 19.00 19.20 19.30 19.40 19.40 19.40 19.40 19.50 £ s j <
3 9.55 9.12 8.94 8.85 8.79 8.70 8.66 8.55 ESTREESES i i i 2 = 2 ~
4 6.94 6.39 6.16 6.04 5.96 5.86 5.80 5.66 5 i ki il iccRase 2 s
5 5.79 5.19 4.95 4.82 4.73 4.62 4,56 4.41 £ £t A
: & i iE £ &
6 5.14 4.53 4.28 4.15 4.60 3.94 3.87 3.71 sREEESCml Lo i FiEE - =
7 474 4.12 3.87 3.73 3.64 3.51 344 3.27 , EEEECHHiIl iSinme B EEEeseeed @ >
8 446  3.84 3.58 3.44 3.35 322 315 2.97 : P : HHE i g 3
9 426 3.63 3.37 3.23 3.14 3.01 2.94 2.76 j i gy P e g
10 4.10 3.48 3.22 3.07 2.98 2.85 2.77 2.59 e i £ EEESEESERCC B g
11 3.98 3.36 3.09 2.95 2.85 2.72 2.65 2.46 i £ i HREe g
12 3.89 3.26 3.00 2.85 2.75 2.62 2.54 2.35 ; i HHH < <
15 3.68 3.06 2.79 2.64 2.54 2.40 2.33 2.12 : T ;HE;N o S g SR ] ik g 5
20 3.49 2.87 2.60 245 2.35 2.20 2.12 1.91 4 T o 5%3 g i i of L L 3 g
24 3.40 2.78 2.51 2.36 2.25 2.11 2.03 1.80 £8 sty uBE 1ol ! - & E”
=S — HeHH SEEE EEE 4y
30 3.32 2.69 2.42 2.27 2.16 2.01 1.93 1.70 fae i e 2 3
40 3.23 2.61 2.34 2.18 1.08 1.92 1.84 1.59 ] jiitis A 8
60 3.15 253 225 2.10 1.99 1.84 1.75 1.48 E il iy i A b
120 3.07 245 2.18 2.02 1.91 1.75 1.66 1.37 | ESISEESSSu mmane i e 2 ik H 2
o 3.00 2.37 2.10 1.94 1.83 1.67 1.57 1.24 E=SSess HE i S o .. £
1 EEESEss 2 3
= = Yt
- i T =]
£ i ! 5 B e 2
A T HHEH o
e HHEH o4 K8 mRAN HHHH H =
= 553 H £EEEE H EEEEEE o0 g
SES! EEE H SSSSEESS = =
]
B Z8i2 52 i Ei=S k=
HHHH- o P H H g
j I:a o g
Ea ¥ 8 ERns s TH >
s figis <
I : HE z
K i f & % ‘-:;)
= - =
3 - - S 2 &S §
(%S = 901d) 4 E 8 2
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TABLE C.7
F distribution, 1%. Values of F corresponding to the probability
Pu(F; vy, vy) = 0.01 of exceeding F for v, versus v, degrees of freedom
Degrees
of Degrees of freedom v,
freedom
v, 2 4 6 8 10 15 20 100 EE e : 8
1 500000 562000 5860.00 5980.00 6060.00 6160.00 621000  6330.00 giifiges: tBgesasy ot
2 99.00  99.20 9930  99.40 99.40 99.40  99.40 99.50 i il i
3 30.80  28.70 2790 2750 2720 2690 2670 26.20
4 18.00 16.00 15.20 14.80 14.50 1420  14.00 13.60 Bifeii =
5 13.30 11.40 10.70 10.30 10.10 9.72 9.55 9.13 flugins: 18 : iz M e e “ =
6 10.90 9.15 8.47 8.10 7.87 756  7.40 6.99 R Al s : ik 3
7 9.55 7.85 7.19 6.84 6.62 6.31 6.16 5.75 it - 8 .
8 8.65 7.01 6.37 6.03 5.81 5.52 5.36 4.96 @ A
9 8.02 6.42 5.80 547 526 4.96 4.81 4.42 EEnses SaEEs i i fEitessees 5
10 7.56 5.99 5.39 5.06 485 4.56 441 4.01 , i s 2e 3t = T
§ H I3
11 721 5.67 5.07 474 4.54 4.25 4.10 3.71 : 8 £ E
12 6.93 5.41 482 4.50 4.30 4.01 3.86 3.47 i EERE! iitiiidaia i 2 =
15 6.36 4.89 432 4.00 3.80 3.52 3.37 298 i; i< B Hen I JES [y ﬁ g g
20 5.85 443 3.87 3.56 3.37 309 294 2.54 Y I8 o g 0 J W o o 3 3
24 5.61 4.22 3.67 3.36 3.17 2.89 2.74 2.33 i ol i s = £
[=}
30 5.39 4.02 3.47 3.17 2.98 2.70 255 2.13 ~ il it 8 E
40 5.18 3.83 3.29 2.99 2.80 2.52 237 1.94 : jiii i i i i & 8
60 4.98 3.65 3.12 2.82 2.63 2.35 2.20 1.75 E i a) b
120 479 3.48 2.96 2.66 2.47 2.19 2.03 1.56 i - Z;
o 4.61 3.32 2.80 2.51 2.32 2.04 1.88 1.36 HiiiE et i £ HEEEiEiEESCEES @
i 2
i i £
o [P -]
i SEi: i 28
£ i ~ =8
~ S
BN o
it i it £2
H 1 N’ O
; y 1T H :é ﬁl |:i [ &O It
g it i I Q 3 'E:
g g I = E3f
- Ry
(%1 =901d) 4 E 8 &




266 Data Reduction and Error Analysis for the Physical Sciences

TABLE C.8
Pi(x; p, o) versus t = lx — pl/o; Integral of Student’s ¢ distribution between
x=X—1s, and X + Sy expressed in percent.

v=N-1

Gaussian
t 2 3 4 5 6 8 10 12 16 20 25 30 35 40 50 probability

0.6 | 39.1 409 41.9 425 43.0 43.5 43.8 440 443 445 446 447 448 448 449 45.1
0.7 | 444 466 47.8 485 49.0 49.6 50.0 50.3 506 50.8 510 511 SI1.1 512 513 51.6
0.8 | 493 51.8 53.2 54.0 54.6 55.3 558 56.1 565 567 569 57.0 57.1 572 573 57.6
0.9 | 53.7 56.6 58.1 59.1 59.7 60.6 61.1 614 619 62.1 623 625 626 627 628 63.2
1.0 | 57.8 60.9 62.6 63.7 644 653 659 663 668 67.1 673 675 676 677 6718 68.3

1.1 | 61.4 64.8 66.7 67.9 68.7 69.7 70.3 70.7 712 716 718 720 721 722 723 72.9
1.2 | 64.7 684 704 71.6 725 73.6 742 747 752 756 759 760 762 763 764 77.0
1.3 |1 67.7 71.6 73.7 75.0 759 77.0 77.7 782 788 792 795 797 798 799 80.0 80.6
1.4 1704 744 76.6 78.0 78.9 80.1 80.8 81.3 819 823 826 828 83.0 83.1 832 83.8
1.5 1728 770 79.2 80.6 81.6 82.8 83.6 84.1 847 851 854 856 857 859 860 86.6

1.6 | 75.0 79.2 81.5 83.0 839 852 859 864 87.1 875 878 880 881 883 884 89.0
1.7 | 769 81.3 83.6 85.0 86.0 87.3 88.0 88.5 89.2 895 899 901 902 903 905 91.1
1.8 | 78.7 83.1 854 86.8 87.8 89.1 89.8 90.3 909 91.3 916 918 920 921 922 92.8
1.9 | 80.2 84.7 87.0 884 89.4 90.6 913 91.8 924 928 93.1 933 934 935 937 94.3
2.0 | 81.7 86.1 88.4 89.8 90.8 92.0 92.7 93.1 93.7 941 944 945 947 948 949 95.4

2.1 | 83.0 874 89.7 91.0 92.0 93.1 938 943 948 951 954 956 957 958 959 96.4
2.2 | 84.1 885 90.8 92.1 93.0 94.1 948 952 957 960 963 964 966 966 96.8 97.2
23| 852 895 91.7 93.0 939 950 95.6 96.0 965 968 97.0 97.1 973 973 974 97.9
2.4 | 86.2 904 926 93.9 947 957 963 96.7 97.1 974 976 977 978 979 980 98.4
2.5 | 87.1 91.3 933 94.6 954 963 969 972 976 979 981 982 983 983 984 98.8

2.6 | 87.9 92.0 940 952 959 968 97.4 97.7 98.1 983 985 986 986 987 988 99.1
2.7 | 88.6 92.6 946 957 96.5 97.3 97.8 98.1 984 986 988 989 989 99.0 99.1 99.3
2.8 [ 89.3 932 95.1 962 969 97.7 98.1 984 987 989 990 991 992 992 993 99.5
29 | 899 93.8 956 96.6 97.3 98.0 984 987 99.0 99.1 992 993 994 994 995 99.6
3.0 | 90.5 943 96.0 97.0 97.6 98.3 98.7 98.9 992 993 994 995 995 995 99.6 99.7

32 1915 951 96.7 97.6 98.2 98.7 99.1 992 994 99.6 99.6 997 99.7 99.7 99.8 99.9
34 (924 958 97.3 98.1 98.6 99.1 99.3 99.5 99.6 99.7 998 998 99.8 999 99.9 99.9
3.6 [93.1 96.3 97.7 98.5 98.9 99.3 99.5 99.6 99.8 99.8 999 999 999 999 999 100.0
3.8 1937 96.8 98.1 98.8 99.1 99.5 99.7 99.8 998 999 999 999 999 100.0 100.0 100.0
4.0 [ 943 97.2 984 99.0 99.3 99.6 99.8 99.8 999 99.9 100.0 100.0 100.0 100.0 100.0 100.0

Note: The Gaussian probability for each value of ¢ is listed in the last column.

APPENDIX

HISTOGRAMS
AND
GRAPHS

Graphs of experimental data and of theoretical predictions have always been im-
portant tools for scientists, in both the actual performance of research and in
presentation§ of results. In recent years we have seen a proliferation of graphics dis-
plays as fast_ Inexpensive computers and printers have facilitated the display-making
process. Scientists have benefited from the new techniques and equipment, with
many.excellent commercial programs available for creating high-quality scie:ntiﬁc
graphics suitable for publication.

In sci;nce, the object is to present results in a straightforward manner so that
relevanF points are illustrated clearly and without bias. Graphs with suppressed ze-
ros, which are common in advertisements, are not often seen in scientific papers.
B.ar graphs tend to be simple histograms rather than the multibar, brightly colored
dlsplqys of magazines and newspapers. In fact, although the use of color is growing
espec%ally in direct publication on the Internet, few scientific preprints and papers’
are printed in color, although discrete use can clarify graphical presentations signif-
1.ca.1ntly. Error bars, which are rare indeed in advertisements, are essential in a scien-
t1f1c' pres_entation. Exaggerated perspective and distorted scales have very limited
use in scientific work whereas semilogarithmic plots that are often used in science
are not often seen in business publications.

It is.often convenient to have graphics routines that are part of a simulation or
an analysis program, rather than to use a separate graphing program. For example
ina Montg Carlo simulation, it is essential to be able to produce histograms and daté
graphs quickly at each stage of the study. Generations of scientists have made sim-

D0e B1tOOTa1mne Of 1M Are At et om b o oom T A e, I .
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More elegant and detailed graphs can be created by using the graphics features
of particular programming languages, and those provided by data analysis programs
and spreadsheets. Such programs can produce high-quality graphs and charts suitable
for presentations and publications. Many of the graphs in this book, such as those in
Chapter 2, were created by programs written in Fortran and Pascal. Others, such as
those in Chapter 11, were created in Origin, a very powerful data analysis program
with strong graphing features.

D.1 MAKING A GRAPH

Whether a scientific graph is produced by hand or by computer, there are several ba-
sic principles that should be followed. The graph should be large enough to be read
and understood easily, with appropriately proportioned abscissa and ordinate. Axes
should be labeled with large, clean letters, and the axes scales should be clearly in-
dicated. If more than a single function is displayed, or if both data and curves are
displayed, a box, or legend, may be superimposed on the graph to indicate the
meaning of different symbols. In scientific journals, a description of the graph is
generally included as text below the abscissa label. In internal papers and preprints,
these descriptions are often collected in a separate section of the paper. For visual
presentation, some descriptive material may be included in a box on the graph, but
it is important that text be large enough to be clearly legible. One should avoid scat-
tering too much material over any graph, which gives a busy appearance. A properly
made graph should not require many words of explanation.

It is generally advisable to plot the independent variable as the abscissa and
the dependent variable as the ordinate. However, if the independent data have a high
degree of uncertainty while the corresponding measurements of the dependent data
can be made with high precision, then it might be wise to interchange the two axes
to simplify least-squares fitting.

Reasonable, convenient values and intervals should be chosen for the scale
marks on the two axes. For example, if abscissa values range from 0 to 400, it might
be reasonable to divide the x-axis into eight parts and thus to mark the abscissa with
major, labeled ticks at 0, 100, 200, 300, and 400, with minor ticks half-way be-
tween. Dividing the axis into six parts and putting ticks at 66.7, 133.3, and so forth,
would make it very difficult for a reader to interpret.

In general, error bars should be included for ordinate variables except for sim-
ple histograms where the text clearly specifies that the uncertainties are statistical
and therefore given by the square root of the value of the coordinate. Unless other-
wise noted, error bars generally indicate the standard deviation. Error bars usually
are not necessary for abscissa variables. However, if appropriate, they may be
drawn to indicate the resolution of the measurement or setting, or they may simply
indicate the range of the variable over which data have been collected or grouped,
as in the case of the width of a histogram bin. The text must explain the meaning of
such error bars. If no error bar is shown for the abscissa, then it is useful to draw a

rivnla Ar athar cxrmhanl at aarh data naint £n indicate the noacition of the central val-
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D.2  GRAPHICAL ESTIMATION OF
PARAMETERS

A graph‘of y versus x often provides a convenient way of estimating parameters of
the relation y = y(x). The simplest example is the straight line

y=A+ Bx (D.1)

wherc': the slope and the intercept can be estimated by making a graph and drawing
a straight line that relates y to x. Clearly the better way to handle this problem is by
a least-squares fitting technique, but the graphical method can be useful in both re-
search and instructional laboratories for obtaining quick preliminary estimates of
experimental results.

If we wish to find from the graph the uncertainty in our estimate of the slope
then we should attempt to draw two lines through the data, corresponding to esti-, )
mates of the largest and smallest reasonable slopes, s; and s,. We should take ac-
count i‘n the uncertainties in the data points, if they are available, and, because we
are trying to estimate the uncertainty as a standard deviation, we should attempt to
dra‘lw these two lines to bracket about two-thirds of the data points—not all the
points. .Makjng this estimate is often difficult and subjective, especially if there are
few points and they exhibit a lot of scatter. The mean slope s is just the average of
our two slopes,

S = (SI + S2)/2 (D2)
and an approximate estimate of the uncertainty is the magnitude of half the difference
o =|s;—s5,|/2 (D.3)

'To gain Practice in determining parameters from a graph, it is a worthwhile
exercise to estimate the parameters from the graph and to compare those estimates
with the results of a least-squares fit to the data. We should note that the two lines
selected to .give areasonable estimate of the uncertainty in the slope may not be the
same two lines we might draw to obtain a reasonable estimate of the uncertainty in
thf% intercept. Figure D.1 displays the data of Figure 1.1b, with lines bracketing the
points to shov_v (a) reasonable ranges for estimating the intercept, and (b) reasonable
ranges for estimating the slope. These lines were actually calculated from the results
of a least-squares fit of the equation ¥ = A + Bx to the data, which yielded the pa-
rameters A and B and their uncertainties 04 and 0. We calculated the two lines in
Figure D:la from the equations ¥ = (4 + 0,4) + Bx and those in Figure D.1b from
the equations ¥ = A + (B + o)x. We note that these lines are just particular exam-
ples of an infinite number of such lines corresponding to all combinations of the
slope and intercept within one standard deviation ranges, and in any given graph, a

decisi ioh 1 : . . ;
sion must be made on which lines to draw. In particular, allowing the lines to in-
tersect at the intercant ac 11 Tatrea TY Tl o e oo s e % L. o



FIGURE D.1

ure 1.1b plotted to show separately the range of *1 standard deviation

bitrary.

squares fit of a straight line to the data of Fig

(a) in the intercept, and (b) in the slope. Units on the axes are ar

Results of a least-
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Semilogarithmic Graphs

When dealing with an exponential decay function, it is convenient to display the ac-
tivity as a function of time on a semilogarithmic graph. That is, if the relation is

¥(£) = yoe= (D.4)

we plot a graph of log(y) versus x. Fortunately semilogarithmic graph paper is read-
ily available so that it is not necessary actually to calculate any logarithms to make
this plot. We merely have to select paper with the appropriate number of powers of
10 for our plot, label the axes, and plot y versus x on the graph. Such a graph is il-
lustrated in Figure 8.1 for Example 8.1.

Semilogarithmic graph paper comes in various cycles, corresponding to the
number of decades or powers of 10 that can be plotted on a single sheet. Thus, for .
example, on three-cycle papér we can plot y values that range from 1 to 1000 (or
from 0.01 to 10.0, etc.). Note that we can never plot y values that are zero or nega-
tive on semilogarithmic paper. This is a problem when dealing with subtracted dis-
tributions, such as the counting experiment of Example 8.1, where, if we wish to
plot the number of counts remaining after we have subtracted the average back-
ground from cosmic rays, we discover that, at large times, some bins have negative
net counts. Those points, of course, cannot be displayed on a semilogarithmic
graph. A full, least-squares fit to the total, unsubtracted data sample is clearly the
right way to solve this problem, but if we are to attempt a graphical solution, we
should be aware of this limitation.

We can determine from our data the parameter a in Equation (D.4) by finding
the slope of the straight line on the semilogarithmic graph just as we found the slope
on ordinary graph paper for a simple linear plot. Note that when calculating the
slope we must compute the logarithms of the y values. Thus, if the two ends of the
straight line have coordinates (x;, y;) and (x,, ¥,), the slope is given by

g = In(y,) — In(y,) - In(y,/y1)
X2 T X X2 T X

(D.5)

The uncertainty in the slope can again be determined by drawing two straight
lines that bracket the mean slope, although the logarithmic form of the plot de-
creases the accuracy in this determination.

Full-Logarithmic Graphs

If we wish to display a power relation of the form y = Ax", we may make a plot of
y versus x on full-logarithmic paper or log-log paper. The result will be a straight
line with slope # and we can obtain the slope, and therefore the exponent n, from the
graph. This technique could be used, for example, to check the 1/r* law for radia-
tion intensity as a function of distance, by plotting a graph of intensity versus dis-

tanra nn lnn_laa nanar
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introduced into the uncertainties in the process. Plotting on semilogarithmic or
full-logarithmic paper is equivalent to such a variable change and we should at-
tempt to compensate for these distortions, if necessary.

D.3 HISTOGRAMS AND FREQUENCY
PLOTS

If we wish to display the frequency distribution of a measured variable x, then a his-
togram is generally the simplest and clearest form of presentation. For example, we
may have observed particles emitted in the decay of an unstable state and wish to
present the number detected in successive time intervals as in Example 2.4. Alter-
natively, we may have measured secondary particles in a scattering experiment and
wish to display the distribution of their energies. In such cases, we can display the
frequency distribution of the individual measurements, or events, as a histogram of
f(x) versus x, where f(x;) is the number of events that have values of x between x; and
x; + Ax, and Ax is the histogram interval or bin width.

An alternate procedure for displaying binned data, which is especially useful
for distributions with large numbers of bins, or for data with nonstatistical uncer-
tainties, is to make a regular graph of frequency versus the measured variable, a fre-
quency plot, with the data points indicated by crosses and uncertainties by error
bars. This procedure is especially convenient when there are many bins or when er-
ror bars must be displayed, as illustrated in Figure 8.1.

A convenient procedure for finding the frequency distribution of (or binning)
a continuous variable x is to label a bin with a tick mark at the lower limit x; of the
bin and to count within a bin those events for which x; =< x < x; + Ax. This is suit-
able for most, but not all, data sets. Choice of the bin width depends on a number of
factors. In the ideal situation with a large quantity of high-precision data, the bin
width could be chosen to be very small. However, in real experiments, the number
of events may not be very large and each x coordinate will have some uncertainty.
As a general rule, the bin width should not be less than the uncertainty in the mea-
sured variable x and one should be very wary of any data structure that is narrower
than the uncertainty in x. If the number of events is relatively small, then even wider
binning may be necessary. With such data, the competition between statistical sig-
nificance and resolution of narrow effects in the histogram may become important.
A histogram with less than ten events in its highest bin is not generally very infor-
mative, considering that the uncertainty in that bin will be over 30%.

A problem arises when the bin width of a histogram is close to or equal to the
least count of the data. This can happen when the data are integral numbers or with
data that have been collected by a digital device. The previous suggestions that
the histogram bins be labeled with the lower limit at the left of the bin may not be
reasonable for such data, and it may be better to place tick marks at the center
of the bins.
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FIGURE D.2

Histogram of measured times plotted with the bin width equal to the least count of a digital clock. The
numbers on the abscissa correspond to the lower time Limit of the bin. The dashed Gaussian curve; was
ca.lculated from the mean and standard deviation of the measurements. The solid curve was calculated
with the mean increased by half the bin width to correct for the truncation of the data.

timer starts when the ball is released and stops when it hits the floor. Uncertainties in
the measurements come mainly from variations in the starting and stopping times.

The student’s measurements have been plotted in the histogram of Figure D.2
where the bin width is equal to the least count (0.01ts). We assume that the digit:dl
clock truncates the measured times so each time measurement corresponds to the left-
hand e.dge of a bin and the actual value of the time is somewhere within the bin limits
Thus, in this case it is appropriate to indicate the lower value of the bin limit at the left:
hand edge of the bin.

The dashed Gaussian curve was calculated from the mean (f = 0.431 s) and
standard deviation (s = 0.0184) of the measurements. The curve clearly is shifted to
the left relative to the data. The discrepancy is caused by the fact that we neglected to
correct for the truncation of the data by the digital clock. To correct the mean we must
add to it half the width of a bin to obtain 7 = 0.431 + 0.005 = 0.436 s. The Gaussian
curve, calculated from the corrected mean, is shown as a solid line,

Normalized Curves on Histograms

When superimposing a theoretical curve on a data histogram, we often want to scale
the area of the c1irve 0 that ~f tho Lot o= . . s
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to unit area, such as the Gaussian probability function of Equation (2.23). The area
of one event on the histogram is equal to the bin width Ax multiplied by a unit in-
terval on the ordinate. Thus, the total area of the histogram is equal to the bin width
multiplied by the total number of events (A = NAx). To scale the curve to the area
of the histogram, we multiply the values p(x,), calculated from the equation of the
probability distribution, by the product of the number of events on the plot and the
bin width, so that the plotted curve becomes

y(x;) = p(x;) X NAx (D.6)

D.4 GRAPHICS ROUTINES

We include source files on the website for routines which can be used to make sim-
ple graph and histograms. Most of the sample computer routines in this book make

calls to these routines.

Program D.1 QUIKSCRP (website) accepts data that define graphs and -
histograms and writes a script file that can be read and interpreted by the executable
program QDISPLAY.EXE (website) to produce displays on the monitor. Details of
the calling procedures can be seen in the routine PLOTIT in the program unit
\C HAPT-6\FITUTIL (website) called from the program \CHAPT-6\FITLINE
(APPEND!X E). For this program QuikScrp writes an output file FITLINE. SCR.

Program D.2 QUIKHIST (website) collects data and presents a character-based
histogram on the monitor. Printed output is also availablee PROGRAM 5.2:
\C HAPT-5\PoIsDCAY illustrates use of this program.

Program D.3 QDISPLAY.EXE (website) is an executable program that reads a
script file written by QUIKSCRP and interprets the file to create a graphics display
on the monitor. The command line instruction for running QDISPLAY with the
script file produced by the program FITLINE is QDISPLAY FITLINE.

APPENDIX

E

COMPUTER
ROUTINES
IN FORTRAN

his appendix lists several routines that illustrate the material of the text. The rou-

tines are listed in Fortran 77, an old, but quite readable version of that ever-
popu.lar programming language. All routines have been tested; however, most of them
requires subsidiary routines and drivers that are not listed. Complete programs and
routines are available on the Web in C++ as well as in Fortran. Readers are urged to
log onto the web_site at www.mhhe.com/bevington to download these programs.

We have tried to keep the routines simple, trading efficiency for clarity where
necessary. To make explicit which modules are required to form a complete pro-
gram, and to avoid the need for command strings to link the object programs into an
executable program, we have chosen to use the INCLUDE statement to present the
compiler with a single source file from which to compile a single object module in-
corporating all required routines. We also use the INCLUDE statement to copy
blocks of coMMON and other variable-defining statements into routines.

Because readers may not be familiar with Fortran, we list a few basic princi-
ple.s tl}at should help in understanding the instructions and following their logic
This list includes only a selection of language elements that appear in the sample;
programs.

STATEMENTS

Th(:,i format of Fortran statements was defined in terms of the 80-column Hollerith
card:



276 Data Reduction and Error Analysis for the Physical Sciences

columns 2-5: statement label (a number);
column 6: reserved for a single digit number to indicate a continuation of
the statement from the previous line;

columns 7-72: program statements;
columns 73-80:  not used.

Although it is not necessary to follow rigorously this scheme with a modern
interactive compiler on a personal computer (for example, “tabs” can be used), the
general order must be followed.

PROGRAM FLOW

Program flow can be controlled by 1 F statements, by IF THEN statements (with
ELSEIF and ENDIF), by DO AND DOWHILE statements that may refer to a
termination label (all statements labels are numerical) or to the DO terminator;
ENDDO, and by coTO statements. Excessive use of the GOTO statement can lead
to very confusing programs. In order to facilitate following the program flow, we
have indented groups of instructions that are accessed through a control statement,
such as IF THEN, or DO.

Examples
po 1001 = 1 TO 20 pol=1T1T020 Xx =1
X =1 =1 DO WHILE X .LE. 20
Y(1) = SQRT(X) Y = SQRT(X) Y = SQRT(X)
100 CONTINUE ENDDO X=x+1
ENDDO
VARIABLE DEFINITIONS

Fortran does not require the rigorous variable typing of newer languages. As default
typing, variables with names beginning with 1, J, K, L, M, or N are defined as
INTEGER; variable names beginning with other letters are identified as REAL.
However, we have attempted to identify most of the variables in the routines and in
some instances have violated the default typing for program clarity.

Examples

INTEGER s1, S3, N/10/

REAL X, T, TPRIME, SIGMAT/1.0/
LOGICAL NEXTVAR/.FALSE./

Note that the variables N, SIGMAT and, NEXTVAR in the preceding examples
have been initialized to the values 10, 1.0, and FALSE, respectively. The DATA
statement also can be used to initialize variables. DATA SQRTPI1/1.7724539/
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Other types include:

CHARACTER
COMPLEX
DOUBLE PRECISION

'Vanables defined in named COMMON statements are available to any routine
that includes the statement. Local variables can be defined in DIMENSION
STATEMENTS. Array sizes may be defined in PARAMETER statements or di-
rectly in a COMMON or DIMENSION statement.

Examples
PARAMETER (MAXPARAM 1 0)

COMMON/FITVARS/ NPTS, M NFREE, MARR
» M, , AY(MAX
ZARRAY(200) ( PARAM).

DIMENSION NPLAN(30).

' Fortran has several types of subprograms that can be called from another rou-
tine: SUBROUTINE and FUNCTION are the most common. Data types defined
in a gubprogram must be consistent with the definitions in the calling routine. A
function name must specify its own data type.

Examples

CALL SETRANDOMDEVIATESEED(S 1 , S2, S3)
TPRIME = GAUSSSMEAR(T,SIGMAT)

REAL FUNCTION GAUSSSMEAR(X,DX)

SUBROUTINE SETRANDOMDEVIATESEED(SA,SB,SC)

The INCLUDE statement copies the specified file into the body of the
program,

Example
INCILLUDE NCHAPT-5\MONTE]I NC.FOR’

As well as comment statements that begin with a “C” in column 1, comments

may appear in statement lines, preceded by the exclamation point (!).
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i.1 Routines from Chapter 5

~
-
-
~
-
-~
-

PROGRAM 5.1: \CHAPT-5\HOTROD.FOR
SIMULATED VARIATION OF TEMPERATURE ALONG A METAL ROD

{0 CM ROD-TEMPERATURE IS ZERO AT ONE END,
Usgs MONTELIB

100 DEGREES C AT OTHER.

PROGRAM HOTROD
INTEGER S1, 82, $3, N/10/ 1--- GENERATE 10 POINTS AT 1 CM INTERVALS

REAL X, T, TPRIME, SIGMAT/1.0/ I--- WITH AN UNCERTAINTY OF +4+-1 DEGREE

REAL GAUSSSMEAR

st =1171
s2 = 343
s3 = 1322

CALL SETRANDOMDEVIATESEED(S1, s2, s3)
HoT RoD TEST DATA, SIGMA=', SIGMAT

PRINT *,'
x =-0.5
po 1001 =1, N
X =X+ 1.0 {--- POSITION ALONG ROD
T = 10.0*X {--- CALCULATE MEAN TEMPERATURE AT POINT

TPRIME = GAUSSSMEAR(T,SIGMAT) l--- SMEAR IT

PRINT *,I, X, T, TPRIME

100 CONTINUE

CALL EXIT

END
INCLUDE CACHAPT-5\MONTELIB.FOR

C PROGRAM 5.2: \CHAPT-5\POISDCAY.FOR
C SIMULATED DECAY OF AN UNSTABLE STATE.
C USES QUIKHIST, MONTELIB

PROGRAM POISDCAY |--- GENERATE A 200-EVENT POISSON HISTOGRAM

REAL LO/O/, INT/1/, HI/22/

INTEGER NEVENTS/400/, POISSONDEVIATE
REAL MU/8.4/

INTEGER S1, 82,83, I, K

REAL X
st =1171
s2 = 343
s3 = 1322

CALL SETRANDOMDEVIATESEED(S1, 2, s3)
CALL HISTINIT(' %) 1---QUTPUT FILE NAME OR '' FOR MONITOR OUTPUT

CALL HISTSETUP(1,LO,INT,HI,'POISSON - COUNTS/10 SEC')
K=POISSONDEVIATE(MU,. TRUE.) 1--- INITIALIZE - MAKE THE TABLE
po 1001 = 1, NEVENTS

K = POISSONDEVIATE(MU,.FALSE.)

X =K

CALL HISTOGRAM(1,X)

100 CONTINUE

CALL HISTDISPLAYALL(.FALSE.) IDUMMY ARG-COMPAT. WITH QUIKSCRP

CALL EXIT
END
INCLUDE \CHAPT-5\MONTELIB.FOR

e i rmemi R WM ITL M NIKECERED FOR CGRAPHICS

Computer Routines in Fortran

C PROGRAM 5.3: \CHAPT-5\MONTELIB.FOR
C MONTE CARLO LIBRARY ROUTINES

SUBROUTINE SETRANDOMDEVIATESEED(SA,SB,SC)
INCLUDE \CHAPT-5\MONTEINC.FOR'
INTEGER SA, $B, SC

SEED] = SA
SEED2 = SB
SEED3 = s5C
RETURN
END

SUBROUTINE GETRANDOMDEVIATESEED(SA,SB,SC)
INCLUDE \CHAPT-5\MONTEINC.FOR!

INTEGER SA, SB, SC

SA = SEED]1

SB SEED2

SC = SEED3

RETURN

END

REAL FUNCTION RANDOMDEVIATE() f--- WICHMANN AND HiLL
INCLUDE \CHAPT-5\MONTEINC.FOR'

REAL TEMP

SEEDI1 = 171*MOD(SEED1,177) - 2*(SEED1 / 177)

IF (SEED1 .LT. O ) SEED1 = SEED! + 30269

SEED2 = 172*MOD(SEED2,176) - 35*(SEED2 / 176)

IF (SEED2 .LT. Q) SEED2 = SEED2 + 30307

SEED3 = 170*MOD(SEED3,178) - 63*(SEED3/ 178)

IF (SEED3 .LT. O ) SEED3 = SEED3 + 30323

TEMP = SEED1/30269. + SEED2/30307. + SEED3/30323.
RANDOMDEVIATE = TEMP-AINT(TEMP)

RETURN

END

C -FIND A RANDOM VARIABLE DRAWN FROM THE GAUSSIAN DISTRIBUTION-

100

REAL FUNCTION RANDOMGAUSSDEVIATE()
INCLUDE \CHAPT-5\MONTEINC.FOR!'
LOGICAL NEXTVAR/.FALSE./
REAL R, F, 21, Z2, X1 RANGAUSS, RANDOMDEVIATE
IF (NEXTVAR) THEN

NEXTVAR = .FALSE.

RANDOMGAUSSDEVIATE = X2RANGAUSS
ELSE

z1 -1 + 2*RANDOMDEVIATE()

z2 =-1 + 2*RANDOMDEVIATE()

R =2Z1*Z1 + z2*22

IF (R .GE. 1) GOTO 100

F = SQRT(-2*ALOG(R)/R)

X1RANGAUSS = Z1*F

X2RANGAUSS = Z2*F

RANDOMGALISGDFVIATE =~ Y I DARMMA At 1mm

I--- BOX-MUELLER
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NEXTVAR = .TRUE.
ENDIF
RETURN
END

REAL FUNCTION GAUSSSMEAR(X,DX)

REAL X, DX

REAL RANDOMGAUSSDEVIATE

GAUSSSMEAR = X + RANDOMGAUSSDEVIATE() * DX
RETURN

END

C -RECURSION METHOD FOR POISSON PROBABILITY (P(N,M). TO FIND P(N,M) MUST

C ALL WITH SUCCESSIVE ARGUMENTS J=0,1,..N. MAX MU=85, NO LIMIT ON X
REAL FUNCTION POISSONRECUR(J, M)
INCLUDE \CHAPT-S\MONTEINC.FOR'
INTEGER J
REAL M
IF (J.LEQ.O ) THEN
POISS = EXP(-M)
ELSE
POISS = (POISS*M)/J
ENDIF
POISSONRECUR = POISS
RETURN
END

l--- POISS = (MAJ)EXP(-MU/J)

C -FIND A RANDOM VARIABLE DRAWN FROM THE POISSON DISTRIBUTION
INTEGER FUNCTION POISSONDEVIATE(MU, INIT)
INCLUDE \CHAPT-5\MONTEINC.FOR'
INTEGER I, X, N
REAL MU, P, R, POISSONRECUR

LOGICAL INIT
IF (INIT ) THEN ! --- MAKE TABLE OF SUMS ---

N = AINT(MU + 8* SQRT(MU)) 1 ---1E., 8*SIGMA

IF (N .GT. MAXBINS ) THEN
PRINT *, 'OVERFLOW ERROR IN ROUTINE POISSON DEVIATE'

CALL EXIT
ENDIF
PTABLE(O) = POISSONRECUR(O,MU)
po 1001 =1, N-1

P = POISSONRECUR(I,MU}
PTABLE(l) = PTABLE(I1-1)+P

100 CONTINUE
PTABLE(N) = 1 ! --- ASSURE UNIT PROBABILITY ---
ELSE | --- GENERATE AN EVENT ---

X=-1
R = RANDOMDEVIATE()

200 X=1+X
IF (PTABLE(X) .LE. R) GOTO 200 |— REPEAT UNTIL PTABLE(X) >= X

PalccONDEVIATE = X

(o4

PROGRAM 5.4: \CHAPT-B\KDECAY.FOR
C ILLUSTRATION OF EXAMPLE 5.7

Computer Routines in Fortran 281

ENDIF
RETURN
END

(WEBSITE)

C PROGRAM 5.5: \CHAPT-5\MONTEINC.FOR
C COMMON FOR MONTE CARLO LIBRARY

COMMON/MC/ SEED1!, SEED2, SEED3, X2RANGAUSS, PoIss, PTABLE
PARAMETER (MAXBINS = 100)

INTEGER SEED1, SEED2, SEED3

REAL X2RANGAUSS, PTABLE(O:MAXBINS)

REAL*8 PoOISS
--------- END MONTEINC

E.2 Routines from Chapter 6

C PROGRAM 6.1: \CHAPT-6 FITLINE.FOR

C LEAST-SQUARES FIT TO A STRAIGHT LINE BY METHOD OF DETERMINANTS
C Uses FITUTIL

PROGRAM FITLINE

100

MAIN ROUTINE--=---e--ceommamemeeeee
INCLUDE \CHAPT-6 FITVARS.FOR!'
CHARACTER*40 TITLE

CHARACTER*1 VORG, READCHAR

INTEGER |

REAL DET, CHI2, CALCCHISQ

M=2 I--- FIND 2 PARAMETERS
PRINT *, (V)OLTS OR (G)EIGER? '
VORG = READCHAR()
IF (VORG .EQ. 'V') THEN
CALL FETCHDATA(NCHAPT-6\VOLTS.DAT' ,TITLE)
ELSEIF ((VORG .EQ. 'G') .OR. (VORG .EQ. 'G')) THEN
CALL FETCHDATA(NCHAPT-6\GEIGER.DAT',TITLE)

!--- EXAMPLE 6.1

{--- EXAMPLE 6.2

DO 100i =1, NPTS
X(1) = 1/%0)**2 I--- FITTING 1/RA2
CONTINUE

ENDIF

CALL LINEFIT(DET)
CALL CALCULATEY
CHI2 = CALCCHISQ()

I---= FILL ARRAY YCALC FOR CALCCHISQ AND PLOTIT

CALL OUTPUT(.FALSE. , 'CON', CHI2, TITLE) !--- FALSE FOR NO ERROR MATRIX
IF (VORG .EQ. 'V') THEN
CALL PLOTIT('FITLINE.SCR',.FALSE.,.FALSE., 1---SCRPT FILE,LOG?,SPLINE?

'C!, ABS(X(2)-X(1))/20,
0.0, 0.0, 100.0, 3.0,

!--- DATA CIRCLE, RAD OF CIRCLE
I--- X1,Y1,X2,Y2
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100

5,6 {--- # X-DIV, # Y-DIV

X (CM)', 'POTENTIAL DIFF(ERENCE (VOLTS)') !--- AXIS LABELS
ELSEIF (VORG .EQ. 'G') THEN

CALL PLOTIT(FITLINE.SCR',.FALSE. ,.FALSE.,

'C', ABS(X(2)-X(1))/50, 0.0, 0.0, 30.0, 1000.0, 6, 5,

1ISQUARED INVERSE DISTANCE (1/MA2)', 'NUMBER OF COUNTS PER SEC')
ENDIF
READ *
CALL CLOSEGRAPHICS
END
SUBROUTINE CALCULATEY 1--- FILLS ARRAY YCALC
INCLUDE \CHAPT-6\FITVARS.FOR'
INTEGER 1|
po 100 1= 1, NPTS
YCALC(1) = A(1) + A(2)*X(1)
CONTINUE
RETURN
END
REAL FUNCTION CALCCHISQ() !--- ASSUMES ARRAY YCALC HAS BEEN FILLED
INCLUDE \CHAPT-6\FITVARS.FOR'
INTEGER |
REAL CHI2
CH12=0.
po 1001 =1, NPTs
CHI2 = CcHI2 + ( (Y(1)-YCALC(1))/SIGY(1))**2
CONTINUE
CALCCHISQ = CHI2
RETURN
END

SUBROUTINE LINEFIT(DET)

INCLUDE \CHAPT-6\FITVARS.FOR'

REAL DET

INTEGER I

REAL SUMWT, SUMX, SUMY, SUMX2, SUMY2, SUMXY, WEIGHT
SUMWT =0

SUM =0

SUMY =0

SUMX2 =0

suMY2 =0

SUMXY = O

----- ACCUMULATE WEIGHTED SUMS --=--=-----
po 100 1= 1, NPTs

WEIGHT = 1/SIGY(1)**2

SUMWT = SUMWT + WEIGHT
SUMX = SUMX + WEIGHT * X(1)
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SUMY = SUMY + WEIGHT * v(I)
SUMX2 = SUMXZ2 + WEIGHT * X(1)**2
SUMY2 = SUMYZ2 + WEIGHT * Y(i)**2
SUMXY =

SUMXY + WEIGHT * X(1)*Y(I)
100 CONTINUE

C ---CALCULATE THE PARAMETERS - CUT OUT IF DETERMINANT IS NOT > O ---

DET = SUMWT * SUMX2 - SUMX * SUMX
IF (DET .GT. O ) THEN

A(l) = (SUMX2*SUMY - SUMX*SUMXY)/DET
A(2) = (SUMXY*SUMWT - SUMX*SUMY) /DET
SIGA(1) = SQRT(SUMX2/DET)
SIGA(2) = SQRT(SUMWT/DET)
ELSE
CALL ERRORABORT('DETERMINANT < OR = O IN LINEFIT")
ENDIF
RETURN
END

INCLUDE \CHAPT-6\FITUTIL.FOR' ! FiTUTIL INCLUDES QUIKSCRP.FOR

C PROGRAM 6.2: \CHAPT-6\FITVARS.FOR (WEBSITE)
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C INCLUDE FILE OF CONSTANTS, VARIABLES AND ARRAYS FOR LEAST-SQUARES FITS

C ALL GLOBAL TYPES, CONSTANTS AND VARIABLES ARE DECLARED HERE.
C THE ARRAY LIMITS MAXDATA AND MAXPARAM CAN BE SET AS REQUIRED

FOR PARTICULAR PROBLEMS.

C PROGRAM 6.3: \CHAPT-6\FITUTIL.FOR
C GENERAL UTILITY ROUTINES

(WEBSITE)

E.3 Routines from Chapter 7
C PROGRAM 7.1: \CHAPT-7\AMULTREGR.FOR

C LEAST-SQUARES FIT TO A POWER SERIES AND TO LEGENDRE POLYNOMIALS.

C UsEs FITFUNC7, MAKEAB7, MATRIX, FITUTIL

PROGRAM MULTREGR
C M = NUM OF PARAMETERS, NPTS=NUMBER OF DATA PAIRS,
C DATA AND UNCERTAINTIES ARE IN ARRAYS X, Y, DY.

INCLUDE \CHAPT-6\FITVARS.FOR!'

COMMON /FITVARS7/PAE

CHARACTER * 1 PAE

REAL DET, CHI2, CALCCHISQ

INTEGER |

LoGicAL sPL

CHARACTER*1 READCHAR

CHARACTER*40 TITLE

PRINT *, '(P)OWER SERIES, (A)LL LEGENDRE TERMS TO L=4,
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PRINT *, 'OR (E)VEN LEGENDRE TERMS(L = 0,2,4).
PRINT *, 'TYPE P,AORE'
PAE = READCHAR()
FORMAT(A1)
IF (PAE .EQ. 'P") THEN
CALL FETCHDATA (\CHAPT-7\THERMCOU.DAT', TITLE)
PRINT *, 'TYPE NUMBER OF PARAMETERS'
READ *, M
ELSEIF (PAE .EQ. 'A') THEN
CALL FETCHDATA(N\CHAPT-7\LEGENDRE.DAT',TiTLE)
M=5
ELSEIF (PAE .EQ. 'E') THEN
CALL FETCHDATA(\CHAPT-7\LEGENDRE.DAT',TITLE)
M=3
ENDIF 1--- PAE
CALL MAKEBETA {--- SET UP THE LINEAR BETA MATRIX
CALL MAKEALPHA l--- SET UP THE SQUARE ALPHA MATRIX
CALL MATINV(M, ALPHA, DET) 1--- INVERT ALPH TO GET EPSILON MATRIX
CALL LINEARBYSQUARE(M,BETA,ALPHA,A) !--- BETA X EPS = PARAMETER MATRIX
CALL CALCULATEY
CHI2 = CALCCHISQ()

Do 1001 =1, M
SIGA(1) = SQRT(ALPHA(ILI))
CONTINUE
CALL OUTPUT(.TRUE., 'CON', CHI2, TITLE) !--- TRUE TO PRINT ERROR MATRIX
IF (M .GT. 2 ) THEN
spL = .TRUE. l--- PLOT A CURVE
ELSE
sPL = .FALSE. {--- PLOT A LINE
ENDIF

IF (PAE .EQ. 'P') THEN
CALL PLOTIT(MULTREGR.SCR', .FALSE., SPL, I--- FILE,LOG?,SPLINE
ICY, (X(2)-X(1))/12, 1--- DATA CIRCLES, RADIUS OF DATA CIR
-10.,-2.,110., 4., 1--- x1,Y1, X2,Y2
6, 6, I— X,Y GRID MARKS
'"TEMPERATURE (DEGREES CELSIUS)','VOLTAGE (MV)")

ELSE IF ((PAE .EQ. 'A") .OR. (PAE .EQ. 'E')) THEN
CALL PLOTIT(MULTREGR.SCR', .FALSE., .TRUE,,
c), (X(2)-x(1))/10, ©O., 0.,180., 1500, 6, 6,
"THETA(DEGREES)', 'NUMBER OF COUNTS')

ENDIF 1--- PAE

CALL CLOSEGRAPHICS

END

INCLUDE \CHAPT-7\FITFUNC7.FOR'

INCLUDE \CHAPT-7\MAKEAB7.FOR'

INCLUDE \CHAPT-6\FITUTIL.FOR'

INCLUDE NAPPEND-B\MATRIX.FOR!'

PROGRAM 7.2: \CHAPT-7\FITFUNC7.FOR
FITTING FUNCTIONS FOR CHAPTER 7 EXAMPLES.
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REAL FUNCTION POWERFUNC(K, XX)

INTEGER K

REAL XX

REAL YY

INTEGER |

YY = 1

IF(K.GT. 1) THEN
DO 100 I= 2, K
YY = XX * YY

100 CONTINUE

ENDIF

POWERFUNC = YY

RETURN

END

REAL FUNCTION LEGFUNC(K, XX)
C DEFINE SEPARATE TERMS IN A SERIES, Y = AO*LO(X) + AT*L1(X) + ..
C NOTE K = 1 CORRESPONDS TO ZEROTH ORDER.
C VAR PAE : CHAR 'P'-POWER SERIES,
C 'A'-ALL LEGENDRE TERMS TO ORDER M,
C 'E'-EVEN LEGENDRE TERMS}
C
COMMON /FITVARS7/PAE
CHARACTER *1 PAE
INTEGER K
REAL XX
INTEGER KK, |
REAL C, PI/3.14158/, LEGPOLY(11) l--- 1.E., OTH THRU 10TH ORDER
IF (PAE .EQ. 'E') KK = 2*K - 1
IF (PAE .EQ.'A') KK =K
C = COS(PI*XX/180)
LEGPOLY(1) = 1 I--- FOR BETTER EFFICIENCY, COULD CALC ONCE AND SAVE
IF (KK .GT. 1 ) THEN
LEGPOLY(2) = C
IF (KK .GT. 2 ) THEN
DO 100 1 = 3, KK
LEGPOLY()=((2*1-1)*C*LEGPOLY(I-1)-(1-1)*LEGPOLY(1-2))/I
100 CONTINUE

ENDIF I--- KK> 2
ENDIF lee- KK > 1
LEGFUNC = LEGPOLY(KK)
RETURN

END

REAL FUNCTION FUNCT(K, XX)
INTEGER K

REAL XX

REAL LEGFUNC, POWERFUNC
COMMON /FITVARS7/PAE
CHARACTER * 1 PAE

285
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200

100

IF ((PAE .EQ. 'A") .OR. (PAE.EQ.'E')) FUNCT = LEGFUNC(K,XX)
IF (PAE .EQ. 'P') FUNCT = POWERFUNC(K,XX)

RETURN

END

SUBROUTINE CALCULATEY
INTEGER I, K
REAL YY, FUNCT
INCLUDE \CHAPT-6\FITVARS.FOR'
Do 100 I=1, NPTS
Yy =0
DO 200K =1, M
YY = YY + A(K) * FUNCT(K,X(1))
CONTINUE
YCALC(l) = YY
CONTINUE
RETURN
END

REAL FUNCTION CALCCHISQ() !--- ASSUMES ARRAY YCALC HAS BEEN FILLED

INTEGER |
REAL CHI2
INCLUDE \CHAPT-6\FITVARS.FOR'
CH12=0.
Do 1001 = 1, NPTS
CHI2 = CHI2 + ( (Y(1)-YCALC(1)) / SIGY(1))**2

100 CONTINUE

CALCCHISQ = CHI2
RETURN
END

C PROGRAM 7.3: \CHAPT-7\MAKEAB7.FOR
C ROUTINES TO SET UP THE BETA AND ALPHA MATRICES FOR LINEAR REGRESSION

C UseES MATRIX, FITFUNCY

C

SUBROUTINE MAKEBETA 1--- MAKE THE BETA MATRICES

INTEGER I, K
REAL FUNCT
INCLUDE 'C\CHAPT-6\FITVARS.FOR'
DO 100 K=1, M
BETA(K)=0
po 200 1=1, NPTS
BETA(K)=BETA(K) + Y(1)*FUNCT(K, X(1))/sSIGY(1)**2

200 CONTINUE
100 CONTINUE

RETURN
END

SUBROUTINE MAKEALPHA I--- MAKE THE ALPHA MATRICES

INTEGER 1,J,K
Preal ELINCT
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INCLUDE 'C:\CHAPT-6\FITVARS.FOR!'
DO 100 J=1, M
DO 200 K=1, M
ALPHA(J,K)=0
DO 300 i1=1, NPTS

ALPHA(J,K) = ALPHA(J,K)+FUNCT(J, X(1))*FUNCT(K, X(DYSIGY (1)*+2

300 CONTINUE
200 CONTINUE
100 CONTINUE
RETURN
END

E.4 Routines from Chapter 8
C PROGRAM 8.0: \CHAPT-8\NONLINFT.FOR
C MAIN CALLING ROUTINE FOR NON-LINEAR FITTING METHODS
C USES GRIDSEAR, GRADSEAR, EXPNDFIT, MARQFIT, FITFUNCB, MAKEABS
(ot NUMDERIV, MATRIX, FITUTIL
PROGRAM NONLINFT
INTEGER TRIAL, J, METHOD
REAL STEPDOWN, LAMBDA, CHISQR, CALCCHISQ
CHARACTER*40 TITLE
REAL STEPSCALE(4)/0.49999, 0.99999, 0.001, 0.001/
INCLUDE NCHAPT-6\FITVARS.FOR'
PRINT *,'  (1)GRID SEARCH, (2)GRADIENT SEARCH'
PRINT *,'  (3)CHISQ EXPANSION, (4)FUNCTION EXPANSION'
PRINT *, 'TYPE 1, 2, 3, 0R 4 ---'
READ *, METHOD
CHICUT = 0.01
STEPDOWN = O.1 l--- STEP DOWN THE GRADIENT IN GRADLS
LAMBDA = 0.001 !1--- FOR MARQUARDT METHOD ONLY
STEPSIZE = STEPSCALE(METHOD) I--- SCALES DELTAA(J)
CALL FETCHDATA(\CHAPT-8\RADIODK.HST',TITLE)

’

CALL FETCHPARAMETERS l--- USES NPTS, MUST FOLLOW FETCHDATA

TRIAL =0
CHISQR = CALCCHISQ()
CHIOLD = CHISQR + CHICUT + 1
DO WHILE (ABS(CHIOLD - CHISQR) .GE. CHICUT)
CHIOLD = CHISQR
PRINT 1000, TRIAL, CHISQR
1000 FORMAT(' TRIAL #', 14, ' CHISQ =, F10.1)
PRINT 1100, (A(J), J = 1,M)
1100 FORMAT(6F12.4)
PRINT *
GOTO (110, 120, 130, 140) , METHOD
110 CALL GRIDLS(CHISQR)

GOTO 150

120 CALL GRADLS(CHISQR, STEPDOWN)
GOTO 150

130 CALL CHIFIT(CHISQR)
GOTO 150
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140
150

151

200

300

HhWN —

CALL MARQUARDT(CHISQR, CHICUT, LAMBDA}
TRIAL = TRIAL +1

ENDDoO

CALL CALCULATEY

IF ((METHOD .EQ. 1) .OR. (METHOD .EQ. 2)) THEN

Do 200J=1,M

SIGA(J) = SIGPARAB(J) I--- DCHI2 =1
CONTINUE
CALL OUTPUT(.FALSE., 'CON' ,CHISQR, TITLE) I--- NO ERROR MATRIX

ELSEIF ((METHOD .EQ. 3) .OR. (METHOD .EQ. 4)) THEN
IF (METHOD .EQ. 4 ) THEN

CALL MARQUARDT(CHISQR,CHICUT,0) l--- GET ERROR MATRI

ENDIF
DO300J=1, M
SIGA(J) = SIGMATRX(J) l--- ERROR MATRIX
CONTINUE
CALL OUTPUT(.TRUE., 'CON', CHISQR, TITLE) !--- WITH ERROR MATRIX
ENDIF
CALL PLOTITCNONLIN.SCR', . TRUE., .TRUE., I--- SCRPT FILE, LOG?, SPLINE?
'C, (X(2)-X(1))/5, 1--- DATA CIRCLES, RADIUS OF CIRCLES
0., 1., 900., 1000., !--- RANGES-X1,Y1,X2,Y2
6, 6, I--- NUM X-AXIS DIV, NUM Y-AXIS DIV
'TIME (SEC)', 'NUMBER OF COUNTS') !--- AXIS LABELS
CALL CLOSEGRAPHICS
END

C SAMPLE FITTING FUNCTION FOR NON-LINEAR FiTS
C EXAMPLE IS SUM OF 2 EXPONENTIALS ON A CONSTANT BACKGROUND

REAL FUNCTION EXPF(A,X)
REAL A,X

REAL YY, ARG

ARG = ABS(X/A)

IF (ARG .GT. 60 ) THEN

Yy =0
ELSE
YY = EXP(-ARG)
ENDIF
EXPF = YY
RETURN
END
FUNCTION YFUNCTION(XX) !--- REAL

REAL YFUNCTION, XX, EXPF

INCLUDE \CHAPT-6\FITVARS.FOR'

YFUNCTION = A(1) + A(2)*EXPF(A(4),XX) + A(3)*EXPF(A(5),XX)
RETURN

END
INCLUDE \CHAPT-8\GRIDSEAR.FOR' {--- 1-GRID SEARCH METHOD
INCLUDE \CHAPT-8\GRADSEAR.FOR' l--- 2-GRADIENT SEARCH METHOD

INCILUDE \CHAPT-R\FYPNDFIT FOR' laee B-FLINCTION EXPANSION METHOD
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INCLUDE \CHAPT-8\MARQFIT.FOR' I!--- 4-MARQUARDT METHOD
INCLUDE \CHAPT-6\FITUTIL.FOR'

INCLUDE \CHAPT-8\FITFUNCS8.FOR' 1--- USED BY ALL METHODS
INCLUDE \CHAPT-8\MAKEABS8.FOR' I--- USED BY METHODS 4 AND 5
INCLUDE \CHAPT-8\NUMDERIV.FOR' I--- USED BY METHODS 4 AND 5
INCLUDE \APPEND-B\MATRIX.FOR' I--- USED BY METHODS 4 AND 5

C PROGRAM 8.1: \CHAPT-8\GRIDSEAR.FOR
C NON-LINEAR FIT BY THE GRID-SEARCH METHOD
C USES FITFUNCS, FITUTIL
SUBROUTINE GRIDLS(CHISQR)
REAL CHISQR
REAL CALCCHISQ
REAL SAVE,DELTA, DELTA1,DEL1,DEL2,AA,BB,CC,DISC,ALPH,X1,X2
INTEGER J
INCLUDE \CHAPT-6\FITVARS.FOR!'
CHISQ2 = CALCCHISQ()
C -FIND LOCAL MINIMUM FOR EACH PARAMETER-

po 100J =1, M
DELTA = DELTAA(J)
A(J) = A(J) + DELTA

CHISQ3 = CALCCHISQ()
IF (CHISQ3 .GT. CHISQ2 ) THEN
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DELTA = -DELTA I--- STARTED IN WRONG DIRECTION
A(J) = A(J) + DELTA
SAVE = CHISQ2 {--- INTERCHANGE 2 AND 3 SO 3 IS LOWER

CHISQ2 = CHISQ3
CHISQ3 = SAVE
ENDIF l-—- IF (CHISQ3 ...
C -INCREMENT OR DECREMENT A(J) UNTIL CHI SQUARED INCREASES-
110 CONTINUE
CHISQ!1 = CcHISQ2 {--- MOVE BACK TO PREPARE FOR QUAD FIT
CHISQ2 = CHISQ3
A(J) = A(J) + DELTA
CHISQ3 = CALCCHISQ()
IF (CHISQ3 .LE. CHISQ2) GOTO 110
C -FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS-
DEL!1 = CHISQ2 - CHISQI
DEL2 = CHISQ3 - 2*CHISQ2 + CHISQI
DELTAl = DELTA * (DEL!1/DEL2 + 1.5)
A(J) = A(J) - DELTAI
CHISQ2 = CALCCHISQ() [--- AT NEW LOCAL MINIMUM
C -ADJUST DELTA FOR CHANGE OF 2 FROM CHISQ AT MINIMUM-
AA = DEL2/2
BB = DEL1 - DEL2/2
CC = CHISQ1-CHISQ2

DISC = BB**2 -4*AA*(CC-2) I--- CHISQR DIFF(ERENCE) = 2

IF (DISC .GT. O ) THEN I--- IF NOT, THEN PROBABLY NOT PARABOLIC YET

DISC =SQRT(DISC)
ALPH = (-BB - DISC)/(2*AA)

I--- CHISQ = AA*A(J)**2 + BB*A(J) + CC
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X1 = ALPH*DELTA + A(1) - 2*DELTA [--- A(J) AT CHISQ MINIMUM+2
DISC = BB**2 - 4*AA*CC
IF (DISC.GT.O ) THEN

DISC = SQRT(D1ISC)

ELSE
piIsc =0 {--- ELIM ROUNDING ERR
ENDIF
ALPH = (-BB - DISC)/(2*AA)
X2 = ALPH*DELTA + A(1) - 2*DELTA [--- A(J) AT CHISQ MINIMUM

DELTA = X1 - X2
DELTAA(J) = DELTA
ENDIF f-e-
100 CONTINUE {--- PO J
CHISQR = CH1SQ2
RETURN
END

IF (DisC .GT. O ...

C PROGRAM 8.2: \CHAPT-B\GRADSEAR.FOR
C NON-LINEAR LEAST-SQUARES FIT BY GRADIENT SEARCH METHOD
C UsES FITFUNCS, FITUTIL

SUBROUTINE CALCGRAD

INTEGER J
REAL SUM, DELTA, FRACT/0.001/, CALCCHISQ

INCLUDE \CHAPT-6\FITVARS.FOR'

SUM =0
po100J=1,M
cHISQ2 = CALCCHISQ()
DELTA = FRACT * DELTAA(J) !--- DIFF(ERENTIAL ELEMENT FOR GRADENT
A(J) = A(J) + DELTA
CHISQ1 = CALCCHISQ()
A(J) = A(J) - DELTA
GRAD(J) = CHISQ2 - CHISQI l--- 2*DELTA*GRAD
SUM = SUM + GRAD(J)**2
100 CONTINUE
DO200 J =1, M
GRAD(J) = DELTAA(J)*GRAD(J)/SQRT(SUM) l--- STEP * GRAD
200 CONTINUE
RETURN
END

SUBROUTINE GRADLS(CHISQR, STEPDOWN)
REAL CHISQR, STEPDOWN
REAL STEPSUM, STEP1, CALCCHISQ

INTEGER J
INCLUDE \CHAPT-6\FITVARS.FOR'
CALL CALCGRAD I--- CALCULATE THE GRADIENT

C -EVALUATE CHISQR AT NEW POINT AND MAKE SURE CHISQR DECREASES-
CHISQ3 = cHISQ2 + 1
DO WHILE (CHISQ3 .GT. CHISQ2)

poJ=1,M
A IY — ALIY 4 o ETAAAIRAE O ADADRTIY L 1T 1 MYOWA AN
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ENDDO
CHISQ3 = CALCCHISQ()
IF (CHISQ3 .GE. CHISQ2 ) THEN

poJ=1,M ! MUST HAVE OVERSHOT MINIMUM
A(J) = A(J) - STEPDOWN * GRAD(J) | RESTORE
ENDDoO
STEPDOWN = STEPDOWN/2 | DECREASE STEPSIZE
ENDIF
ENDDO

STEPSUM = 0O
C -INCREMENT PARAMETERS UNTIL CHISQR STARTS TO INCREASE-
DO WHILE (CHISQ3 .LT. CHISQ2)
STEPSUM = STEPSUM + STEPDOWN [ COUNTS TOTAL INCREMENT
CHISQ1 = CHISQ2
CHISQ2 = CHISQ3

poJ=1,M .
A(J) = A(J) + STEPDOWN * GRAD(J)
ENDDO
CHISQ3 = CALCCHISQ()
ENDDO IDOWHILE

C -FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS-
STEP1=STEPDOWN*((CHISQ3-CHISQ2)/(CHISQI1 -2*CHISQ2+CHISQ3)+0.5)

DoJ=1,M
A(J) = A(J) - STEP1 * GRAD(J) ! MOVE TO MINIMUM
ENDDO

CHISQR = CALCCHISQ()
STEPDOWN = STEPSUM
RETURN

END

| START WITH THIS NEXT TIME

C PROGRAM 8.3: \CHAPT-8\EXPNDFIT.FOR
C NON-LINEAR LEAST-SQUARES FIT BY EXPANSION OF THE FITTING FUNCTION
C UsteEs FITFUNC8, MAKEABS8, MATRIX

SUBROUTINE CHIFIT(CHISQR)

INTEGER J

REAL DET, CALCCHISQ

INCLUDE \CHAPT-6\FITVARS.FOR'

CALL MAKEBETA

CALL MAKEALPHA

CALL MATINV(M, ALPHA, DET) f--- INVERT MATRIX
CALL LINEARBYSQUARE(M,BETA,ALPHA,DA) !--- EVALULATE PARAM
INCREMENTS
DO 100 J=1, M
A(J) = A(J) + DA(J) I--- INCREMENT TO NEXT SOLUTION.

100 CONTINUE
PRINT *,'A',(A(J),J=1,M)
CHISQR = CALCCHISQ()
RETURN
END
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C PROGRAM 8.4: \CHAPT-8\MARQFIT.FOR
C NON-LINEAR FIT BY THE GRADIENT-EXPANSION (MARQUARDT) METHOD
C UseS FITFUNCS, MAKEABS8, MATRIX
SUBROUTINE MARQUARDT(CHISQR, XICUT, LAMBDA)
INTEGER J
REAL CHISQR, XICUT, LAMBDA
REAL DET, CALCCHISQ
INCLUDE \CHAPT-6\FITVARS.FOR'
DO
CALL MAKEBETA
CALL MAKEALPHA

DO 100J =1, M
ALPHA(J,J) = (1 + LAMBDA) * ALPHA(J,J)
100 CONTINUE
CALL MATINV(M, ALPHA, DET) I--- INVERT MATRIX
IF (LAMBDA .LE. O ) RETURN !--- -FINAL CALL TO GET THE ERROR MATRIX.
CALL LINEARBYSQUARE(M,BETA,ALPHA,DA)!--- EVAL PARAM INCREMENTS
CHISQ1 = CHISQR
DO 2004 =1, M
A(J) = A(J) + DA(J) l--- INCR TO NEXT SOLUTION
200 CONTINUE

CHISQR = CALCCHISQ()
IF { CHISQR .LE. CHISQ1 + XICUT ) RETURN

Do 300J=1,M
A(J) = A(J)-DA(J) [--- RETURN TO PREV SOLUTION
300 CONTINUE
CHISQR = CALCCHISQ()
LAMBDA = 10*LAMBDA !--- AND REPEAT THE CALC, WITH LARGER LAMBDA
END DO
END

C PROGRAM 8.5: \CHAPT-8\FITFUNCS8.FOR

C UsgeS FITVARS

C -THE FOLLOWING ROUTINES ARE GENERAL FOR FITTING ANY FUNCTION-
SUBROUTINE CALCULATEY
REAL YFUNCTION
INCLUDE \CHAPT-6/FITVARS.FOR'

DO 1001 =1, NPTS
YCALC(1) = YFUNCTION(X(1))
100 CONTINUE
RETURN
END

REAL FUNCTION CALCCHISQ()

REAL CHI2, YFUNCTION

INCLUDE \CHAPT-6/FITVARS.FOR'

CHI12=0.

DO 1001 =1, NPTS

CHI2 = CHI2 + ( (Y(I)-YFUNCTION(X(1)))/SIGY(1))**2

100 CONTINUE

CALCCHISQ = CHI2
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RETURN
END

C -STANDARD DEVIATION CALC'D FROM CHISQ CHANGE OF 1 (PARABOLA FIT)

REAL FUNCTION SIGPARAB(J)
INTEGER J

REAL CALCCHISQ

INCLUDE \CHAPT-6/FITVARS.FOR'
CHISQ2 = CALCCHISQ()

A(J) = A(J) + DELTAA(J) -
CHISQ3 = CALCCHISQ()

A(J) = A(J) - 2*DELTAAWJ)
CHISQ1 = CALCCHISQ()

A(J) = A(J) + DELTAA(J)
SIGPARAB = DELTAA(J)*SQRT(2/(CHISQ1-2*CHISQ2+CHISQ3))
RETURN

END

C -STANDARD DEVIATION CALC'D FROM DIAGONAL TERMS IN ERROR MATRIX

REAL FUNCTION SIGMATRX(J)

INTEGER J

REAL siG

INCLUDE \CHAPT-6/FITVARS.FOR!'

SIG = SQRT(ABS(ALPHA(J,J)))

IF (ALPHA(J,J) .LT. O ) SIG = - SIG !--- NOTE- AN ERROR
SIGMATRX = sIG

RETURN

END

C PROGRAM 8.6: \CHAPT-8\MAKEABS.FOR
C MATRIX SET-UP FOR NON-LINEAR FITS
C Uses FITFUNC8, NUMDERIV

C

100
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SUBROUTINE MAKEBETA 1---MAKE BETA MATRICES FOR NON-LINEAR FITTING

INTEGER J
INCLUDE \CHAPT-6/FITVARS.FOR'
DO 1002 =1, M

BETA(J) = -0.5*DXISQ_DA(J)
CONTINUE
RETURN
END

SUBROUTINE MAKEALPHA !--- ALPHA MATRICES FOR NON-LINEAR FITTING
INTEGER J, K
INCLUDE \CHAPT-6\FITVARS.FOR'
DO 100J =1, M

ALPHA(J,J) = 0.5 * D2XISQ_DAZ2(J)

IF (ALPHA(J,J) .EQ. O ) THEN

PRINT *, 'DIAGONAL ELEMENT IS ZERO, J =',J
STOP
ENDIF
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IF (J .GT. 1 ) THEN

DO 200 K= 1, J-1
ALPHA(J,K) = 0.5*D2XISQ_DAJK(J,K)
ALPHA(K,J) = ALPHA(J,K)
200 CONTINUE I--- DO K
ENDIF 1-—- [F J
100 CONTINUE f--- Do J

DO 300J=1, M
IF (ALPHA(J,J) .LT. O ) THEN
ALPHA(J,J) = -ALPHA(J,J)
IF (J .GT. 1 ) THEN
DO 400K =1, J-1
ALPHA(J,K) = O
ALPHA(K,J) = O

400 CONTINUE f--- DO K
ENDIF l--- IFJ
ENDIF l--- |F ALPHA
300 CONTINUE f--- FOR J
RETURN
END

E.5 Routines from Chapter 9
C PROGRAM 8.1:\CHAPT-O\LORENFIT.FOR
C MAIN CALLING ROUTINE FOR FIT TO LORENTZIAN + POLYNOMIAL
C Uses FITFUNCY, MARQFIT, MATRIX, NUMDERIV, MAKEABS, FITUTIL
PROGRAM LORENFIT
CHARACTER*40 TITLE
INTEGER TRIAL, J
REAL XSHIFT, CHISQR, LAMBDA, YFUNCTION
REAL STEPSCALE(4)/ 0.49999, 0.99999, 0.001, 0.001/
INCLUDE '"C:\FN\CHAPT-6\FITVARS.FOR!'
CHICUT = 0.01
LAMBDA = 0.001 ! FOR MARQUARDT METHOD ONLY
STEPSIZE = STEPSCALE(4) ! SCALES DELTAA[J]
CALL FETCHDATA(\F\CHAPT-O\SINGLE.HST',TITLE)
XSHIFT = (X(2)- X(1))/2

po J =1, NPTS
X(J) = X(J) + XSHIFT ! MOVE TO BIN CENTER
ENDDO
CALL FETCHPARAMETERS | USES NPTS, MUST FOLLOW FETCHDATA
TRIAL =0
CHISQR = CALCCHISQ()

CHIOLD = CHISQR + CHICUT +1

DO WHILE (ABS(CHIOLD - CHISQR) .GT. CHICUT)
CHIOLD = CHISQR
PRINT *,'TRIAL #',TRIAL,' CHISQ = '",CHISQR
PRINT *, (A(J), J = 1, M)
CALL MARQUARDT(CHISQR, CHICUT, LAMBDA)
TRIAL = 1 + TRIAL

1
2
3
4
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ENDDO
CALL CALCULATEY
CALL MARQUARDT(CHISQR,CHICUT,Q) | GET ERROR MATRIX
poJ=1,M

SIGA(J) = SIGMATRX(J) I ERROR MATRIX
ENDDO

CALL OUTPUT(.TRUE., 'CON!', CHISQR,TITLE) ! WITH ERROR MATRIX
Do J =1, NPTS

DO J = 1, NPTS
YCALC(J) = YFUNCTION(X(J))
ENDDO
CALL SPLINEMAKE(NPTS,0,0,X,YCALC)
CALL SCURVE(1, 40, 5, 0.025, X) | SPLINE CURVE
CALL CLOSEGRAPHICS
END

C LORENTZIAN PEAK ON A QUADRATIC BACKGROUND

REAL FUNCTION YFUNCTION(XX) ! LORENTZIAN ON POLYNOMIAL
REAL XX

REAL YY, PI/3.1415927/

INCLUDE \FA\CHAPT-6\FITVARS.FOR'

YY = A(1) + A(2)*XX + A(B)*XX**2 + A(4)*A(6)/(2*PI)
J((XX-A(5))**2 + A(6)**2/4)

YFUNCTION = YY

RETURN

END

INCLUDE \F\CHAPT-6\FITUTIL.FOR!'

INCLUDE \F\CHAPT-O\FITFUNC9.FOR'

INCLUDE \F\CHAPT-8\MARQFIT.FOR' ! MARQUARDT METHOD
INCLUDE \F\CHAPT-8\MAKEABS8.FOR! I USED BY MARQFIT
INCLUDE \FA\CHAPT-8\NUMDERIV.FOR' ! USED BY MARQFIT
INCLUDE \F\APPEND-B\MATRIX.FOR' ! USED BY MARQFIT

E.6 Routines from Chapter 10

C PROGRAM 10.1: \CHAPT-1O\MAXLIKE.FOR
C DIRECT MAXIMUM LIKELIHOOD EXAMPLE

C USESs FITUTIL, QUIKSCRP

PROGRAM MAXLIKE
REAL SIGTAU, TAUMAX, MAXM !--- M IS LOG OF LIKELIHOOD FUNCTION
INCLUDE \CHAPT-1O0\MAXLINCL.FOR'
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X(J) = X(J) - XSHIFT | RESTORE TO LEFT EDGE
ENDDO
CALL PLOTIT('LORENFIT.SCR!',.FALSE.,.TRUE.,! SCRIPT FILE, LOG?, SPLINE?
'H', 0.0, ! HIST, O(NOT USED)
0.0, 0.0, 3.0, 220.0, 1 Xt, Y1, X2, Y2 FOR PLOT
6, 6, ! NUM GRID MARKS X,Y
'E (GEV)', 'NUMBER OF COUNTS") ! LABELS
C -PLOT THE BACKGROUND-
A(4) = 0.0
A(7) = 0.0
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CALL GETDATA(\CHAPT-1O\TEST.DAT") 1--- WAS DABO
CALL SEARCH(TAUMAX, MAXM)

CALL WRITEOUTPUT(SIGTAU, TAUMAX, MAXM)

CALL PLOTLIKECURVE(TAUMAX, SIGTAU, MAXM)

CALL CLOSEGRAPHICS

END

SUBROUTINE GETDATA(INFILE)
INTEGER IEVNUM

CHARACTER*(*) INFILE

CHARACTER TITLE(80)

INCLUDE \CHAPT-1O\MAXLINCL.FOR'

c = 3.00

LOSEARCH = 0.50

HISEARCH = 1.5 {--- SEARCH RANGE
TAUSTEP = 0.01

XlL.o = 0.50 I--- PLOT RANGE

XH1 =1.2

YLO = 0.0

YHI =1.2

NTRIALS = (HISEARCH - LOSEARCH)/TAUSTEP
OPEN(S, INFILE) {--- INPUT DATA FILE

READ(S, *) TITLE
PRINT *,' " TITLE
READ(5, *) NEVENTS, MASS, D1, D2
1IEVNUM = 1
NEVENTS = O
DO WHILE (IEVNUM .GT.O)

READ(S, *) IEVNUM, XPRODUCTION, PLAB, XDECAY

IF (IEVNUM .GT.0) THEN

IF ((XDECAY .GE. D1) .AND. (XDECAY .LT. D2)) THEN
NEVENTS = 1 + NEVENTS

LTOTSCALE = MASS/(C*PLAB) !--- = 1/(C*BETA*GAMMA)
TIMES(NEVENTS)=(XDECAY - XPRODUCTION)*LTOTSCALE !---PROPER T

C CONVERT D! AND D2 TO TIME LIMITS, LOTLIM AND HITLIM,

C

|.E., INTEGRATION LIMITS IN PROPER TIME FROM THE PRODUCTION VERTEX.

LOTLIM(NEVENTS) = (D1 - XPRODUCTION)*LTOTSCALE
HITLIM(NEVENTS) = (D2 - XPRODUCTION)*LTOTSCALE
ENDIF
ENDIF

ENDDO

PRINT *, 'END OF FILE -', IEVNUM, ' EVENTS READ'

PAUSE

RETURN

END

REAL FUNCTION LOGPROB(K, TAU)
INTEGER K

REAL TAU

REAL A, B

INCI UDE \CHAPT-1O\MAXLINCL.FOR'

100
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D1 AND D2 ARE BEGINNING AND END OF THE FIDUCIAL REGION.

MUST CVT TO LOTLIM AND HITLIM WHICH ARE INTEGRATION LIMITS IN PROPER

TIME,

MEASURED FROM PRODUCTION VERTEX.
Now, CALC PROBABILITY-

B = EXP(-HITLIM(K)/TAU)

A = EXP(-LOTLIM(K)/TAU)

PROB = EXP(-TIMES(K)/TAU)/(TAU*(A - B))
LOGPROB = ALOG(PROB)

RETURN

END

REAL FUNCTION LOGLIKE(T)
REAL T, LOGPROB
INTEGER 1
REAL M, PROB )
INCLUDE NCHAPT-10\MAXLINCL.FOR'
M =0.0
DO 100 | = 1, NEVENTS
PROB = LOGPROB(I,T)
M = PROB + M
CONTINUE
LOGLIKE = M
RETURN
END

SUBROUTINE SEARCH(TAUATMAX, MAXM)

REAL TAUATMAX, MAXM

INTEGER TRIAL

REAL M1, M2, M3, DEL1, DEL2, DELTAI1, TAU, MLIKELI, LOGLIKE
INCLUDE \CHAPT-1O\MAXLINCL.FOR'

M2 = -1000
MAXM = -1.0E20
TAU = LOSEARCH

DO 100 TRIAL = O, NTRIALS
MLIKEL! = LOGLIKE(TAU)
PRINT *,'TRIAL',TRIAL,' TAU=', TAU,' LOG LIKELIHOOD=',MLIKELI
M3 = MLIKELI

IF (M3 .GT. M2 ) THEN !--- REMEMBER, THESE ARE NEGATIVE
M1 = M2
M2 = M3

ELSE f--- LEAVING MAXIMUM

FIND MAXIMUM OF PARABOLA DEFINED BY LAST THREE POINTS-

DELI1 = M2 - M1
DEL2 = M3 -2*M2 + M1
DELTA1 = TAUSTEP * (DELI/DEL2 + 1.5)
TAU = TAU - DELTAI
TAUATMAX = TAU
MAXM = LOGLIKE(TAU) [--- AT MAXIMUM OF PARABOLA
RETURN

ENDIF
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TAU = TAU + TAUSTEP NINT = 5
100 CONTINUE ENDIF
RETURN IF (CHI2 .GT. 15*SQRT(NFREE) ) THEN !--- QUICK CUTOUT
END CHIPROB = 0O
ELSE
REAL FUNCTION ERROR(T, DT) !--- 1/SQRT(-2ND DERIVATIVE OF LOG(L)) GLSIMPS = FLOAT(NFREE)/2 l1--- GLSIMPS IS GLOBAL FOR CHIX
REAL T, DT IF (NFREE .EQ. 1) THEN
REAL T1, T2, D2YDT2, ERR, LOGLIKE IF (CHI2 .LT. cLIM ) THEN
T1 =T-DT CHIPROB = 1-SQRT(CH!12/2/Pi)*

1 (2 - CHI2*(1/3 - CHI2*(1/20 - CHI2*(1/168 - CHI2/1728))))
ELSE

CHIPROB = INTFROMLIM - SIMPSON(CHIX,NINT,CLIM,CHI2)

T2 =T+ DT
D2YDT2 = (LOGLIKE(T2) - 2*LOGLIKE(T) + LOGLIKE(T1))/DT**2

ERR = 1/SQRT(-D2YDT2)
ERROR = ERR 1 /GAMMA(NFREE/2.0)/2.0**(NFREE/2.0)
RETURN ENDIF -~ IF (CHI2 ...)
e ELSE IF (NFREE .EQ. 2 ) THEN
CHIPROB = EXP(-CHI2/2) l1--- INTEGRABLE
ELSE
C PROGRAM 10.2 \CHAPT-1O\MAXLINCL.FOR  (WEBSITE) CHIPROB = 1 - SIMPSON(CHIX, NI o
= 1- HIX, NINT, O, CHI2)
FIL MAXLIKE
C INCLUDE E FOR L 1 /GAMMA(NFREE/2.0)/2.0**(NFREE/2.0)
. ENDIF 1--- IF (NFRE
E.7 Routines from Chapter 11 ENDIF ( E..)
C PROGRAM 11.1: \CHAPT-11\CHI2ZPROB.FOR B RETURN I--- IF (NFREE ...)
C CALCULATE CHI*2 PROB. DENS. & THE CHIA2 PROB. INTEGRAL END
C UseEs CHIPROBDENS AND CHIPROB :
PROGRAM CHI2PROB REAL FUNCTION CHIPROBDENS(X,NFREE)

REAL CHI2, CHIPROB REAL NUM, DEN, H, X
INTEGER NFREE i INTEGER NFREE
PRINT *,'CALCULATE CHI2 PROBABILITY DENSITY FUNCTION & INTEGRAL', H = NFREE/2.0

{ ' PROBABILITY' NUM = X**(H-1) * EXP(-X/2)
PRINT *, 'TYPE NUM DEG OF FREEDOM AND CHI2. (EXIT ON ~C)' DEN = 2**H * GAMMA(H)
READ *, NFREE, CHI2 CHIPROBDENS = NUM/DEN

PRINT 1000, CHIPROBDENS(CHI2, NFREE), CHIPROB(NFREE, CHI2) RETURN
1000 FORMAT(' CHIA2 PROB. DENS. = ',F7.3,', CHI*2 PROBABILITY=',F7.3) END
PRINT *,' ***** NOTE THAT TABLE C.4 REFERS TO CHIA2/NFREE****!
END C USED BY CHIPROB (FOR SIMPSON WHICH ALLOWS ONLY | ARGUMENT.)

REAL FUNCTION CHIX(X)
COMMON/UTIL/ GLSIMPS
REAL GLSIMPS

C THE FOLLOWING THREE ROUTINES ARE INCLUDED
C IN THE PROGRAM UNIT CACHAPT-6\FITUTIL.FOR (WEBSITE)

REAL FUNCTION CHIPROB(NFREE, CHI2) 1--- MAX NFREE = 56 REAL x
EXTERNAL CHIX IF (X.EQ.O) THEN
COMMON/UTIL/ GLSIMPS CHIX=0.0
REAL CHIX, SIMPSON, GLSIMPS ELS;_HX o .
INTEGER NFREE EnDn X**(GLSIMPS-1)*EXP(-X/2) I--- GLSIMPS = H = NFREE/2
REAL PI, CHI2, CLiM, INTFROMLIM RETURN
DATA cLIM /2/, {--- EXPANSION LIMIT FOR NFREE = 1 END
1 INTFROMLIM /0.157/, -~ INTEGRAL FROM CLIM TO INFINITY
2 DXO /0.2/ I--- DETERMINES ACCURACY OF INTEGRATION

C THIS FOLLOWING ROUTINE IS INCLUDED
C IN THE PROGRAM UNIT \CHAPT-6\FITUTIL.FOR (WEBSITE)
C APPROXIMATE GAMMA FUNCTION WITH H = NFREE/2

REAL FUNCTION (GAMMA{ 1)

3 PI/3.14159/
INTEGER NINT
IF (CHI2 .GE. 1) THEN
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REAL H, PI/3.1415927/

GAMMA = SQRT(2.0*P1) * EXP(-H)*(H**(H-0.5)) * (1.0 + 0.0833/H)
RETURN

END

C PROGRAM 11.2:\CHAPT-1 I\L.LCORPROB.FOR
C CALCULATE LINEAR CORRELATION PROBABILITY INTEGRAL
C USES LCORLATE
PROGRAM LCORPROB
INTEGER NOBSERV
REAL LINCORPROB, RCORR
PRINT *, 'TEST INTEGRAL OF LINEAR CORRELATION FUNCTION'
PRINT *, 'TYPE-# OBSERVATIONS, LINEAR CORRELATION COEFFICIENT: '
READ *, NOBSERV, RCORR
PRINT *, 'INTEGRAL CORRELATION FUNCTION= ',
1 LINCORPROB(NOBSERV-2, RCORR)
END
INCLUDE \CHAPT-1 INLCORLATE.FOR'

C LINEAR-CORRELATION PROBABILITY FUNCTION AND INTEGRAL
C UsEs FITUTIL
REAL FUNCTION LINCORPROB(NFREE, HILIM)
EXTERNAL LINCORREL I--- FOR USE IN FUNCTION SIMPSON
INTEGER NFREE
REAL HILIM
REAL DX /0.01/, LOLiM/0.0/, LINCORREL, SIMPSON
INTEGER NINT
COMMON/UTIL/GLSIMPS

GLSIMPS = NFREE !|--- GLOBAL FOR FUNCTION LINCORREL (FOR SIMPSON)
NINT = INT((HILIM - LOLIM)/DX)

LINCORPROB = 1-2*SIMPSON(LINCORREL, NINT, LOLIM, HILIM)

RETURN

END

REAL FUNCTION LINCORREL(R)
REAL R
COMMON/UTIL/GLSIMPS I--- GLSIMS = NFREE MUST BE GLOBAL FOR
DATA SQRTPI1/1.7724539/ I FUNCT "SIMPSONS" WHICH ALLOWS ONLY ! ARG
LINCORREL = GAMMA((GLSIMPS+1)/2)/GAMMA(GLSIMPS/2)
1 *EXP( (GLSIMPS-2)/2 * ALOG(1 - R**2))/SQRTPI
RETURN
END

E.8 Routines from Appendix A

PROGRAM A.l SIMPSON

C THE FOLLOWING ROUTINE IS INCLUDED

C IN THE PROGRAM UNIT \CHAPT-6\FITUTIL (WEBSITE)

C -SIMPSON'S RULE FOR "FUNCTX(X:REAL):REAL"

C IF FUNCTX HAS OTHER PARAMETERS, THEY MUST BE GLOBAL, E.G., GLSIMPS

O —

ST

3
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REAL FUNCTION SIMPSON(FUNCTX, NINTS, LOLIM, HILIM) I--- 2 CALCS/INTERVAL
EXTERNAL FUNCTX [--- THIS STATEMENT REQ'D IN CALLING PGM ALSO
REAL FUNCTX, suM, X, DX, LOLIM, HILIM
INTEGER NINTS, |
X =LoLIM
DX = (HILIM - LOLIM)/(2*NINTS)
SUM=FUNCTX(X)
SUM= SUM - FUNCTX(HILIM)
DO 1001 = 1, NINTS
X=X+2*DX
SUM=SUM + 4*FUNCTX(X-DX) + 2*FUNCTX(X)
100 CONTINUE
SUM = SUM
SIMPSON = SUM*DX/3.0
RETURN
END

PROGRAM A.2 SPLINE INTERPOLATION

C PROGRAM A.1: \APPEND-A\SPLINTST.FOR

C TEST CUBIC SPLINE INTERPOLATION
PROGRAM SPLINTST
CHARACTER TITLE(80)
REAL D2A, D2B, XS, X(100), Y(100), SPLINEINT
INTEGER N, |
OPEN(5,’\APPEND-A\SPLINE.DAT')
READ(5,1000) TITLE
PRINT 1000, ' ", TITLE

1000 FORMAT(80A1)

I--- TEST DATA FILE

READ(5,*) N, D2A, D2B !--- NO. OF POINTS, 2ND DERIVATIVES AT BOUNDARY
PRINT *,'DATA TABLE: N=', N

PRINT *, X Y'

DO 1001 =1, N

READ(5,*) x(1), Y(1)
PRINT *, x(1), Y(I)
100 CONTINUE
CALL SPLINEMAKE(N, D2A, D2B, X, Y)
CLOSE(5)
200 PRINT *,'TYPE A VALUE OF X (EXIT WITH AC)!
READ *, xs
PRINT *, 'INTERPOLATED Y = ', SPLINEINT(XS)
GOTO 200
END

C ROUTINES FOR CUBIC SPLINE INTERPOLATION.

C CONSTANT INTERVALS IN THE INDEPENDENT VARIABLE ARE ASSUMED.
SUBROUTINE SPLINEMAKE(NN, D2YDX2A, D2YDXx2B, XxIN, YIN)
INTEGER NN
REAL D2vDx2A, D2YDX2B, XIN(100), YIN( 100)

~COMMON VARIABLES SET IN SPLINEMAKE, USED IN SPLINEINT-

COMMON/SPLINES/N, H, XX( 100), YY(100), D2YDX2(100)
INTEGER N

C
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REAL H, XX, YY, D2YDX2

INTEGER |

REAL A(100), DELT1(100), DELT2(100), B(100)

N = NN {--- USED BY SPLININT, THROUGH COMMON/SPLINES/
H = (XIN(N) - XIN(1))/(N-1)

Do 1001=1,N

XX(1) = XIN(I)
YY(1) = YIN(I)
100 CONTINUE

D2YDX2(1) = D2YDX2A I--- END VALUES OF 2ND DERIVATIVES FROM INPUT
D2YDX2(N) = D2YDX2B
A2) = 4
DO 200 1 = 3, N-1
A(1) = 4-1/A(1-1) I--- COEFFICIENTS

200 CONTINUE
DO 3001 =2, N

DELT1(1) = YIN(I) - YIN(I-1) [--- 1ST DIFFERENCES
300 CONTINUE
DO 400 | = 2, N-1 {--- 2ND DIFFERENCES X 6

DELT2(1) = 6*(DELTI1(1+1) - DELT1(1))/(H*H)
400 CONTINUE
B(2) = DELT2(2) - D2YDX2(1) [--- B COEFFICIENTS
DO 500 1= 3, N-1
B(1) = DELT2(I) - B(I-1)/A(I-1)
500 CONTINUE
B(N-1) = B(N-1) - D2YDX2(N)
D2YDX2(N-1) = B(N-1)/A(N-1)
DO 600 | = N-2, 2, -1
D2YDX2(1) = (B(1) - D2YDX2(14+1))/A(1) !--- 2ND DERIVATIVES
600 CONTINUE
RETURN
END

REAL FUNCTION DYDX(1) !--- FIRST DERIVATIVE (WEBSITE)
INTEGER 1

COMMON/SPLINES/N, H, XX(100), YY(100), b2YDX2(100)
INTEGER N

REAL H, XX, YY, D2YDX2

DYDX = (YY{1+1)-YY(1))/H - H*(D2YDX2(1)/3+D2YDX2(i+1)/6)
RETURN

END

REAL FUNCTION D3YDX3(i) I--- THIRD DERIVATIVE (WEBSITE)
INTEGER |

COMMON/SPLINES/N, H, XX(100), YY(100), D2YDX2(100)
INTEGER N

REAL H, XX, YY, D2YDX2

D3YDX3 = (P2YDX2(1+1) - D2YDX2(1))/H

RETURN

END
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REAL FUNCTION SPLINEINT(X) !--- INTERPOLATE IN TABLE (FROM SPLINEMAKE)
REAL X

COMMON/SPLINES/N, H, XX(100), YY(100), D2YDX2(100)

INTEGER N

REAL H, XX, YY, D2YDX2, DYDX, D3YDX3, DX

INTEGER |

I = INT((x—xx(i))/H)+l

IF(.LT. 1) 1=1

IF (1 .GT. N-1 )1 = N-1
DX = X -XX(1)
C -INTERPOLATE
IF (1 .EQ. N ) THEN
SPLINEINT = YY(I)
ELSE
SPLINEINT = YY(1) + (DYDX(1) + (D2YDX2(1)/2 +D3YDX3(1)/6*DX)*DX)*DX
ENDIF .
RETURN
END

E.9 Routines from Appendix B
C PROGRAM B.1: \APPEND-B\MATRIX.FOR
C INVERT A SQUARE MATRIX
C UsEs FITVARS
SUBROUTINE MATINV(M, MARRAY, DET)
INTEGER M
REAL MARRAY(10,10), DET
INTEGER IK(10), JK(10)
INTEGER I, J, K, L
REAL AMAX, SAVE

DET=0
C -FIND LARGEST ELEMENT
PO 100 K=1,M "
AMAX=0
1500 DO 200 1=K, M

DO 300J=K,M

IF ( ABS(MARRAY(1,J)) .GT. ABS(AMAX) ) THEN
AMAX = MARRAY(1,J)

TK(K) = |
JK(K) = J
ENDIF
300 CONTINUE {--- DO J
200 CONTINUE !--- Do I
IF (AMAX .EQ. O ) RETURN [--- WITH O DETERMINANT AS SIGNAL
DET =1
C -INTERCHANGE ROWS AND COLUMNS TO PUT AMAX IN MARRAY(K,K)
I = IK(K)
IF (I .LT. K) THEN
GOTO 1500

ELSEIF (1 .GT. K) THEN
DO AN 1 = 1 sa
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SAVE = MARRAY(K,J)
MARRAY(K,J) = MARRAY(1,J)
MARRAY(1,J) = -SAVE
400 CONTINUE {--- DO J
ENDIF I-—- IF 1
J = JK(K)
IF (J .LT. K) THEN
GoTO 100
ELSEIF (J .GT. K) THEN
Do SOOI =1, M
SAVE = MARRAY(I,K)
MARRAY(1,K) = MARRAY(1,J)
MARRAY(l,J) = -SAVE
500 CONTINUE [--- DO
ENDIF - IF J
C -ACCUMULATE ELEMENTS OF INVERSE MATRIX
DO6OOI =1, M
IF (1 .NE. K)
1 MARRAY(1,K) = -MARRAY(l,K)/AMAX
600 CONTINUE {--- DO I
DO 7001 =1, M
po80OOJ =1, M
IF ((1 .NE. K) .AND. (J .NE. K))

1 MARRAY(1,J) = MARRAY(l,J) + MARRAY(I,K)*MARRAY(K,J)

800 CONTINUE I--- DO J
700 CONTINUE l-w- DO 1
DO 900J =1, M
IF (J .NE. K)
1 MARRAY(K,J) = MARRAY(K,J)JAMAX
800 CONTINUE {--- DO J

MARRAY(K,K) = 1/AMAX
DET = DET * AMAX

100 CONTINUE I--- DO K
C -RESTORE ORDERING OF MATRIX
DO 1000 L =1,M
K=M+1-L
J = IK(K)
IF (J .GT. K) THEN
po 11001 =1, M

SAVE = MARRAY(I,K)
MARRAY(I,K) = -MARRAY(1,J)
MARRAY(Il,J) = SAVE

1100 CONTINUE I--- DO 1
ENDIF {--- IF J
I = JK(K)

IF (1 .GT. K) THEN
DO 1200J =1, M
SAVE = MARRAY(K,J)
MARRAY(K,J) = -MARRAY(1,J)
MARRAY(!,J) = SAVE
1200 CONTINUE I--—- DO J
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ENDIF I--- IF 1
1000 CONTINUE I--- Do L
RETURN
END
SUBROUTINE LINEARBYSQUARE(M, A, B, C) !--- MATRIX PRODUCT
INTEGER M

REAL A(10), B(10,10), c(10)
INTEGER 1,J
Do 100 I=1,M
c(l)=0
DO200J =1, M
c(1)=c(1) +A(J)*B(1,J)
200 CONTINUE
100 CONTINUE
RETURN
END

E.10 Routines from Appendix C
C PROGRAM C.1: \APPEND-C\STUDENTST.FOR
C CALCULATES BOTH THE GAUSSIAN PROBABILITY
C AND THE STUDENT'S T PROBABILITY FOR EXCEEDING A GIVEN VALUE
C  OF (MU-X)/SIGMA, WHERE MU IS THE MEAN VALUE OF X AND SIGMA IS
C THE UNCERTAINTY IN THE MEAN.
C FOR SPEED, AND TO REDUCE POSSIBILITY OF OVERFLOW, WE
C CALCULATE THE RATIO OF THE GAMMA FUNCTIONS DIRECTLY
C IN FUNCTION GAMMACONST.
C TO IMPROVE SPEED AND ACCURACY BY USING SIMPSON’S FOR INTEGRATION
C
PROGRAM STUDENTS_T
REAL GP,TP, T
INTEGER NU
PRINT *, 'TYPE NDOF AND T = |[MU - x}/s1GMA '
READ *, NU, T
CALL GTPROB(GP, TP, NU, T)
PRINT 1100, 100*TP, 100*(1-TP)
PRINT 1200, 100*GP, 100*(1-GP)

1100 FORMAT(' PROB (STUDENT"S T) = 'F5.2,'%, 1-PROB = ',F5.2, %)
1200 FORMAT(' PROB (GAUSSIAN) = ,F5.2, '%, 1-PROB = ',F5.2,'%")
END

REAL FUNCTION STUDENTST(NU, T, G) ISTUDENT'S T DISTRIBUTION
INTEGER NU
REAL T, G, x

305

C X = (1/SQRT(NU*PI) * (GAMMA((NU+1)/2)/GAMMA(NU/2))* (1 +TA2/NU)A(-(NU+1)/2)

X = G*EXP( (-(NU+1)/2)* ALOG(1+T*T/NU))
STUDENTST = X
END

REAL FUNCTION GAUSS(X)
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REAL PI/3.14159/,X

GAUSS = EXP(-X*X/2)/SQRT(2*PI)
RETURN

END

C GAUSSIAN AND STUDENT'S T PROBABILITIES

SUBROUTINE GTPROB(GPROB, TPROB, N, T} INTEGRAL FROM -T TO +T
REAL GPROB, TPROB,T

INTEGER N

REAL GAM, T1, SUMT, SUMG, DT

GAM = GAMMACONST(N) IRATIO OF GAMMAS - FOR SPEED
DT = 0.0001 IINTEGRATION STEP

T1 =0

SUMT = O

SUMG = O

DOWHILE ((T1 .LT. T) .AND. (SUMT*DT .LT. 0.5)) ISIMPLE INTEGRATION.

C REPLACE BY SIMPSON'S RULE FOR BETTER SPEED AND ACCURACY

SUMT = SUMT + STUDENTST(N,T1,GAM)
SUMG = SUMG + GAUSS(T1)
T1 =TIl + DT

ENDDO

TPROB = 2*SUMT*DT

GPROB = 2*SUMG*DT

RETURN

END

REAL FUNCTION GAMMACONST(N)

C G = GAMMA((H+1)/2)/GAMMA(H/2)/SQRT(H*PI)
C PRE-CALCULATE RATIO FOR SPEED AND TO AVOID OVERFLOW

INTEGER N

REAL PiI/3.14159/

REAL H, Y1,Y2, G

H =N

Y1 = -0.5*(H+1) + 0.5*(H) *ALOG(O.5*(H+1))
Y2 = -0.5*H + O.5*(H-1)*ALOG(0O.5*H)

G = EXP(Y1-Y2)*(1+0.0833/(0.5*(H+1)))/((1+0.0833/(0.5*H))
1 *SQRT(H*PI))

GAMMACONST = G

RETURN

END

END

E.11 Routines from Appendix D

C PROGRAM D.1: \APPEND-D\QUIKSCRP.FOR

C CREATE A SCRIPT FILE TO DISPLAY SIMPLE GRAPHS AND HISTOGRAMS
C THE FILE 1S READ AND INTERPRETED BY \APPEND-D\QDISPLAY.EXE

C PROGRAM D.2: \APPEND-D\QUIKHIST.FOR
C ASSIGNS DATA TO HISTOGRAM BINS AND PLOTS HISTOGRAM EITHER

C AS SCREEN CHARACTERS OR IN SCREEN GRAPHISC THROUGH QUIKSCRP

B et
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ANSWERS TO SELECTED EXERCISES

Chapter 1

1.1. (@) 5 ) 2 (0 2 @5 (e) 4
N1 ®3 w3 @3 () 4

1.3. (a) 980. (b) 84,000 (c) 0.0094
(e) 4.0 (/INA (g) 5300
@) 4.0Xx10? ()3.o0x10¢

1.5. Mean = 73.48; median = 73; most probable value = 70

1.7. Standard deviation = 15.52

(d) 3.0 X 10?
(h) 4.0 X 10?

Chapter 2

2.2. (a) 20 ) 6 (c) 120 (d) 270,725
2.3. (1;(2;1];6—251/2 0.015625, 0.093750, 0.234375, 0.31250, 0.234375, 0.093750,

2.6. 4.1 for one lemon; 37 for two lemons; 1000 for three lemons
2.9. (a) 2.3 = 2 students b)) 8%
2.13. (a) 0.0011 (b) ~3 X 107

2.15. Mean number hitting counter in the 200-ns time interval:

= ExPP(x M) = w; mean number recorded = Ele(x n) =
=1
| —PP(O w) =1 — e ¥ Efficiency = (1 — e ”)/u

2.17. 7 = L rP(r)dr = 6CR*, L P(r)dr =1,s0 C = 1/2R%and 7 = 3R

Chapter 3

3.3. The relative uncertainty in r should be one-half th

35 | soy uve ur e relative uncertainty in L.
3.7. (a) 15300 = 6700 (b) 165 £ 11

39. n=3.61;5s=1.88
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Chapter 4

41. s =2.18;0, = 0.44
4.3. Fig. 2.3: x* = 1.39 for 5 bins; x?, = 0.35
Fig. 2.4: x> = 4.88 for 7 bins; x2, = 0.81
4.7. Mean total counts in 1-min interval = 123.2; 0 = 9.4; 0, = 3.0
(a) Background counts in 1-min interval = 11.6; 0 = 1.5
(b) Difference = 111.6 = 3.3 counts per minute from the source
4.9. 32.81 £ 0.46
4.11. (@) 1.960 =31.00r3.1%
(b) 1.96s = 30.1 or 3.0%.
4.13. (¢) x* = 14.7 (calculated with o)
@ (P)=v=N-1=12

Chapter 5
5.10. For 6 rows: (b) 8, 48, 120, 160, 120, 48, 8 (c) 0=122

Chapter 6

6.1. a = 114.3 £ 9.6; b = 9.58 + 0.89, x> = 10.1
6.4. b =3.60 = 0.03; x> = 11.9

Chapter 7

7.2. a, =512.0 = 459; a, = 348.3 £ 21.8; x> = 13.2
o = 21.09; o)y = ay = —147.1; ayy = 476.1
7.4. All terms: x> = 17.21 for 12 degrees of freedom
Even terms: x> = 17.59 for 14 degrees of freedom
a; = (849.6 = 15.4) — (335.5 = 85.7)x% + (847.3 + 87.8)x* with x = cos(6)
7.10. g, = 0.0001 = 0.0009; a, = v, = 0.871 £ 0.018
a = g/2 = 4.870 = 0.057 (after iterating)

Chapter 8

8.3. (a) p = 1.8741 %= 0.0005; x% = 13.70
(b) m = 1.8471 = 0.0005; T = 0.0555 = 0.0008; x2 = 13.3

84. a, = 148.6 = 31.0;a, = 31.0 * 1.1; 2 = 13.0

€, = 65.6; €, = € = —6.20; €5, = 1.156

ST T
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Chapter 9

9.4. (b) x* = 34.2 for 24 degrees of freedom
Fitted parameters a, through ay;

—-2.2 136. —31.6 79.8 0.098 0.20
Uncertainties s, through s:

2.6 & 3.1 7.0 0.007 0.02

Chapter 10

10.1. a, = 4.16; a, = 22.8 at the maximum of the likelihood function

Chapter 11

11.4. Approximately 10% probability

11.5. Approximately 0.1% probability; not a very good fit
11.9. 0.9985 ’ Ve :

11.10. 0.9729
11.12, 0.9997
11.14. F=10forv,=1;F =35 forv,=v,
11.18. Ax*> =2.7;a,= 3445, a5 = 205%73




INDEX

A

Absolute precision, 3
Accuracy, 2, 14
precision versus, 2-3
Anderson, R. L., 131
Arbitrary function, least-squares fit to, 142-165
Area determination, 170-177
composite plots
multiple peaks, 175-177
single peak and background, 174-175
under curve with Poisson statistics,
172-174, 177
uncertainties in areas under peaks, 171-172
Arndt, R. A, 146
Array. See also Matrix
one-dimensional, 238
two-dimensional, 238
Average, 9
Average deviation, 10, 11, 15
Average variance, 58

B

Background
fitting composite curves and, 168-177
subtraction, 177

Bell-shaped curve, 7. See also Gaussian

distribution

Bin width, 110, 175, 272

Binomial distribution, 17-23, 32-33
mean and standard deviation of, 20-23
Poisson distribution as approximation to

23-24

smoothing of data, 236-237

Binomial theorem, 20

Bounding parameters, 149

Box-Miiller method, 85, 86, 96

Breit-Wigner resonance, 32

>

C

Calculus, basic principles, 222-226
differentiation, 223-225
integration, 226
Cauchy distribution, 31. See also Lorentzian
distribution
Chauvenet’s criterion, 56
Chi-square (x2), 65-71, 108, 114, 210-211
constraints and degrees of freedom, 70-71
definition, 67
expansion of, 156-161, 165
expectation value, 67, 69, 70
F test determination of, 204-208, 216
generalizations of, 69-70
graphs and tables, 71, 256-258
hypersurface, 145-146, 149, 156-158
maximum likelihood method and, 103-104
minimization, 117, 128, 135, 142, 145-151
(See also Least-squares method)
probability distribution, 65-71, 195-197, 253
reduced, 68, 71, 195, 197, 208
variance relationship to, 194-195, 215
variation near a minimum, 146-147
CHI2PROB routine, 196197, 298-300
CHIFIT routine, 151, 160
Cofactor of a matrix element, 241, 243
Column matrix, 239, 241, 244
Combinations, 19
Composite curves, fitting, 168—177
Computer calculation of uncertainty, 4748
Computer routines, 275-306
Appendix A: Simpson’s rule, 300-301
Appendix A: Spline interpolation, 301-303
Appendix B: Matrix, 247, 303-305
Appendix C: Student’s ¢ test, 305-306
Appendix D: Graphs and histograms,
274, 306
Chapter 5: Monte Carlo, 86, 278-281
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Computer routines—Cont.
Chapter 6: Fit to straight line, 106-107,
281-283
Chapter 7: Least-squares fitting with matrices,
124-125, 283-287
Chapter 8: Nonlinear fitting, 150-151, 152,
155, 160, 163, 287-294
Chapter 9: Lorentzian peak on quadratic
background, 170, 294-295
Chapter 10: Maximum likelihood method,
188, 295-298
Chapter 11: Chi-square probability, 196-197,
298-300
Chapter 11: Linear correlation, 200, 300
program flow, 276
variable definitions, 276277
Confidence interval (level), 37, 63,
208-212
for multiparameter fit, 210-212
for one-parameter fit, 208-210
for predicted value, 212
Continuous distribution, 12-14, 28, 31
Convergence in nonlinear fit, 150, 161
Correlation
linear-correlation coefficient, 197203,
252-255
multivariable, 201-204
Covariance, 41, 43, 48, 123
sample, 201, 215
Cramérs rule, 244
Cubic splines, 228-231
Curvature matrix (o), 123, 124, 147, 157,
160-163
Curves, fitting composite, 168-177

D

Data points

elimination of, 56

outlying, 55, 56

weighting, 56-57, 203
Data smearing, 86, 90, 96, 236
Data smoothing, 173, 235-237
Degeneracy, 19
Degree, matrix, 239
Degrees of freedom, 64, 70-71
Dependent variable, 9899

graphing, 268

histogram, 110

linear relationship, 98-99, 102

uncertainty assignment to, 102
Determinant

matrix, 240243

solution for fit to a polynomial, 116-121
Determinants, method of, 105, 106

Deviate. See also Random numbers
Gaussian, 96
uniform, 79, 95
Deviation
average, 10, 11, 15
definition, 9-10
standard (See Standard deviation)
Diagonal error, 164
Diagonal matrix, 157, 242, 243
Differentiation, 223-225, 227
functions of functions, 224
higher-order derivatives, 224-225
minima and maxima, 225
multivariable functions, 225
partial derivatives, 225
sums and products, 223-224
Discarding data, 56, 59-60
Discrepancy, 6
in area under a curve with Poisson statistics,
173-174, 177
Discrete distribution, 12, 25
Dispersion, 10, 57, 195
Distribution. See also specific distributions
binomial, 17-23, 32-33, 236-237
Cauchy, 31
chi-square (x?), 65-71, 195-197, 253
continuous, 12-14, 28, 31
discrete, 12, 25
exponential, 88-94, 96
F, 204-208
Gaussian, 17, 27-31, 33, 236-237, 248-252
Lorentzian, 31-32, 33, 168-170
mean, median, and mode of, 9-14
normalized, 81, 95
parental, 7-9, 11, 13, 14
Poisson, 17, 23-27, 31, 33, 37-38, 87-89,
111-114, 172-174
random numbers from, 81-84
sample, 7, 11, 13
standard deviation, 10-14, 25, 29, 32, 38, 208
Student’s ¢, 63-65, 259, 266
uniform, 81-83
variance, 10-11, 15, 20, 61
Distribution function. See Probability density
function
Divided differences method, 220-222
Double-precision variables, 196

e e

E
Efficiency in Monte Carlo method, 94-95
Error, 6, 14
definition, 1
diagonal, 164
discrepancy compared, 6

Error—Cont.
illegitimate, 1
measuring, 1-5
propagation, 3941, 48, 109
random, 34, 7, 14
relative, 94
specific formulas, 4146, 4849
standard, 6, 54, 63
statistical, 60
systematic, 2, 3, 14, 55
Error analysis, 2, 6, 3649
Error bars, 2, 267, 268
Error function, 252. See also Gaussian
distribution
Error matrix (€), 124126, 134, 138, 157
163-164. See also Inverse matrix
Error propagation equation, 41, 48
Estimates of error
approximation, 47
in experiments, 5-6
in linear fit, 107-110
matrix method, 123-126
in mean, 53-55, 57-59
in measurements, 3—4
Expansion methods for nonlinear fitting,
156-161, 165
Expectation value, 12, 14, 67, 69, 70
EXPNDFIT routine, 151, 160, 291
Exponential distribution, random numbers from
88-94, 96
Extrapolation, 221-222

s

3

F

F test, 204208, 216

for additional term, 207-208

for chi-square (x?), 204208, 216

for multiple-correlation, 205-207, 216

probability density function, 259

tables and graphs, 204-205, 260-265
Factorial function (n!), 195-196
FGENUTIL routine, 107
FITFUNS routine, 151, 292-293
FITFUNCT routine, 125, 134, 284-286
FITLINE routine, 106, 281-283
FITUTIL routine, 106, 281-283, 300
FITVARS routine, 106, 282, 283
Fluctuations

nonstatistical, 55

statistical, 60-63, 71, 114, 176-177
Frequency plot, 272
Full-logarithmic graphs, 271-272
Full-width at half maximum I, See Half-width T'
Function. See also Probability density function

gamma, 64, 195-196
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Function—Conz.
linear, 99, 103, 114, 116-135, 137, 138
nonlinear, 135-137, 139, 164

G

Gamma function I' (n), 64, 195-196
Gaussian deviate, 96
Gaussian distribution, 7, 17, 27-31, 33
characteristics, 28
integral probability, 30, 250252
Lorentzian distribution compared, 32, 33
mean and standard deviation, 29-30
Poisson distribution compared, 31
random numbers from, 8487
smoothing of data, 236-237
standard deviation, 208 .
standard form, 29, 30, 33
tables and graphs, 30, 248-252
Gaussian smearing, 86, 90, 236
Gauss-Jordan method of elimination, 245-247
Goodness of fit. See Chi-square (x?)
Gradient-expansion algorithm, 162, 165
Gradient-search method for nonlinear fit,
153-156, 164
GRADLS routine, 150, 155
GRADSEAR routine, 150, 155, 290-291
Graphs, 267-274
chi-square distribution, 258
computer routines, 274
creating, 268
error bars, 267, 268
F distribution, 261, 263, 265
frequency plot, 272
full-logarithmic, 271-272
Gaussian distribution, integral of, 252
Gaussian probability density distribution, 250
histograms, 272-274
linear-correlation coefficient, 255
parameter estimation, 269-272
semilogarithmic, 271
Grid-search method for nonlinear fit,
151-153, 164
GRIDLS routine, 150, 152
GRIDSEAR routine, 150, 152, 289-290

H

Half-width I, 28, 31-32
Hill, I. D., 80
Histogram, 7, 8, 13, 272-274

bin width, 110, 175, 272

normalized curves on, 273274
Histogram bins, 179-180
HISTOGRAM routine, 88
HOTROD routine, 86, 278
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Houseman, E. E., 131
Hypercubes, 148
Hypersurface, 145-146, 149, 156-158

Illegitimate error, 1
Independent parameters for fit to a polynomial,
127-135
Independent variable, 98-99
graphing, 268
histogram, 110
linear relationship, 98-99, 102
Instrumental uncertainty, 36-37, 38-39, 71
Integral probability, 30, 199-201, 204
Integration, 226, 227-228. See also Numerical
integration
Interpolation. See Polynomial interpolation
Inverse matrix, 123, 124, 157, 244, 245-247

K
KDECAY routine, 92, 281
Knuth, D., 80

L

Lagrange’s method of polynomial
interpolation, 219
LCORLATE routine, 200, 300
LCORPRORB routine, 200, 300
Least-squares method
composite curves, 171-174
linear correlation and, 198
maximum likelihood method and, 103104,
179-193
multiple-correlation and, 205
for nonlinear fitting, 142-164
expansion of 2, 156-161, 165
gradient-search method, 153-156, 164
grid-search method, 151-153, 164
Marquardt method, 161-164, 165
for polynomial linear function,
116-135, 138
coefficients, estimates of, 129-130
determinant solution, 116-121
independence of parameters, 127-135
Legendre polynomials, 132-134
matrix solution, 122-127, 132, 138
orthogonal polynomials, 129
spreadsheet use, 126—127
for straight line, 102-114, 270
error estimation, 107-110
limitations, 110-111
Poisson statistics use, 111-114
Legendre polynomials, 132-134, 139

Likelihood function, 145, 180, 185-187, 189,

191. See also Maximum likelihood method

Gaussian form of, 145, 192

logarithm of, 191

maximization of, 191

variation near a minimum, 146
Linear function, 99, 103, 114, 116-135,

137, 138

Linear matrix, 126, 239, 240, 243, 244
Linear regression, 122, 135-137
Linear simultaneous equations, 105, 111-112
LINEARBYSQUARE routine, 247, 305

Linear-correlation coefficient (r), 197-203, 215,

252-253
graphs and tables, 254-255
Local maxima, 225
Local minima, 148-149, 150, 225
Logarithms
graphs, 271-272
linear regression use of, 135-137
in maximum likelihood method,
185-187, 191
Lorentzian distribution, 31-32, 33
half-width, 31-32
Lorentzian peak on quadratic background,
168-170
mean and standard deviation, 32
LORINFIT routine, 170, 294-295
Low statistics, method for, 192

M

MacGregor, M. H., 145
MAKEABT7 routine, 125, 286-287
MAKEABS routine, 151, 160, 293-294
MARQFIT routine, 151, 163,292
Marquardt, D. W,, 161
Marquardt method, 161-164, 165, 169, 210
MARQUARDT routine, 151, 163
MATINYV routine, 247
Matrix, 239-243
cofactor of an element, 241, 243
column, 239, 241, 244
computation, 242243
curvature, 123, 124, 147, 157, 160-163
degree, 239
determinants, 240-243
diagonal, 157, 242, 243
error, 124-126, 134, 138, 157, 163-164
estimation of errors, 123-126
inverse, 123, 124, 157, 244, 245-247
linear, 126, 239, 240, 243, 244
minor of an element, 241
multiple regression solution, 122
row, 122, 239, 240

Matrix—Cont.
singular, 244
solution
for linear least-squares fit, 122-127,
132,138
for nonlinear fit, 144, 156-165
of simultaneous equations, 243-245
square, 126, 239, 240, 241, 243, 244, 245
symmetric, 122, 123, 124, 239, 245
trace, 242
unity, 124, 240, 244, 246
MATRIX routine, 125, 151, 160, 303-305
Maximum likelihood method, 51-53, 57,
112-113
basic procedure, 180-183
computer example, 187-190
direct application, 179-192
goodness of fit, 103, 191
least-squares method and, 103-104, 179-180
logarithm use, 185-187, 191
normalization for, 184-185, 191
parameter search, 185-187
uncertainties in parameters, 190-191, 192
MAXLIKE routine, 187-188, 295-298
MAXLINCL routine, 298
Mean () of a distribution, 9-14, 15
binomial distribution, 20
estimated error in, 53-55, 57-59
Gaussian distribution, 29
Lorentzian distribution, 32
maximum likelihood method of calculation,
51-53, 57
Poisson distribution, 25
variance of, 53-54, 71
Mean (§) of a sample, 9, 11, 15
weighted, 71
Measuring errors, 1-5
Measuring uncertainties and linear fit, 101-102
Median, 9, 10, 14
Minor of a matrix element, 241
Mode, 9, 10
Monte Carlo method, 190
Box-Miiller method, 85, 86, 96
efficient generation, 94-95
exponential distribution, 88-94, 96
Gaussian distribution, 8487
in nonlinear fitting, 149
numerical integration, 82-83
overview, 76-78
Poisson distribution, 87-88, 89
random numbers, 76-81
rejection method, 83-84, 96
statistical significance and, 212-214
transformation method, 81-83, 95
MONTELLIB routine, 86, 278-280
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Most probable value, 9-10, 15
Multiple regression, 122, 124
Multiple-correlation coefficient (R),
203-207, 215
F test and, 205-207
Multivariable correlations, 201-204
MULTREGR routine, 124, 283-284

N

Natural splines, 230
Newton-Raphson method for roots of nonlinear
equations, 233
Newton’s method of divided differences,
220-222
Nonlinear equations
roots, finding, 231-235
simultaneous, 233-235
Nonlinear fitting, 142-164
expansion of ¥, 156161, 165
gradient-search method, 153-156, 164
grid-search method, 151-153, 164
local minima, 148-149, 150
Marquardt method, 161-164, 165
Monte Carlo method use, 149
starting values of parameters, 148
Nonlinear functions, 135-137, 139, 164
NONLINFT routine, 150, 287-289
Nonstatistical fluctuations, 55
Normal error distribution. See Gaussian
distribution
Normalized curves on histograms, 273-274
Normalized distribution, 81, 95
Normalized form of the Lorentzian function, 171
Normalized probability density function, 83,
184-185, 191, 208
Notation, use of Greek and Latin letter, 7
NUMBDERIY routine, 151, 160
Numerical integration, 75, 82-83, 227-228
chi-square probability, 196-197
linear correlation, 200

0]
Orear, Jay, 190
Orthogonal polynomials, 128, 130, 138-139
Outlying data points, 55, 56

P

Parabolic expansion of x2, 156-157
Parameter estimation, graphical, 269-272
Parameter space, searching, 144-165
bounding parameters, 149
expansion methods, 156-161, 165
gradient-search method, 153156, 164
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Parameter space, searching—Conr.
grid-search method, 151-153, 164
Marquardt method, 161-164, 165
matrix methods, 156-165
step sizes, 149-150

Parental distribution, 7-9, 11, 13, 14

Peak
area determination, 170-177
composite plots

multiple peaks, 175-177
single peak and background, 174-175
Lorentzian on quadratic background,
168-170

Permutations, 18-19

Plot. See also Graphs
composite, 174-177
frequency, 272

POISDECAY routine, 88, 278

Poisson distribution, 17, 23-27, 31, 33
as approximation to binomial distribution,

23-24
area under a curve, 172-174, 177
derivation of, 24
fitting a straight line, 111-114
Gaussian distribution compared, 31
mean, 25
random numbers from, 87-88, 89
standard deviation, 25, 38
statistical uncertainty and, 37-38
summed probability, 26-27
variance, 61

POISSONDEVIATE routine, 88, 280

POISSONRECUR routine, 88, 280

Polynomial, 202, 207
least-square fit to, 116-135, 138
Legendre, 132-134, 139
orthogonal, 128, 130-131, 138-139

Polynomial interpolation, 218-222
divided differences, 220222
extrapolation, 221-222
Lagrange’s method, 219
remainder, 221
uniform spacing, 221

Power series, 116, 118, 174, 202

Precision, 2, 14

absolute versus relative, 3
accuracy versus, 2-3
Probability density function p(x), 7, 12
binomial, 23
chi-square (x?), 195-197, 215, 253
F distribution, 260-265
Gaussian, 28, 30, 208, 248-252
Lorentzian, 31
normalized, 83, 208
Probability distribution. See Distribution

Probability tests, 63-65

Probable error (o), 30

Product-moment correlation coefficients. See
Linear-correlation coefficient

Propagation of errors, 39-41, 109

Pseudorandom numbers, 78—80, 95. See also
Random numbers

Q

QDISPLAY routine, 206, 274
QUIKHIST routine, 274, 278, 306
QUIKSCRP routine, 274, 306

R

Random error, 3-4, 7, 14
Random number generator, 79-80
Random numbers, 76-77
correlations, checking for, 81
from probability distributions
exponential, 88-94, 96
Gaussian, 8487
Poisson, 87-88
rejection method, 83-84
transformation method, 81-83
pseudorandom numbers, 78-80, 95
shuffling, 79
Recursion relation
gamma function, 195-196
Legendre polynomials, 132, 139
for Poisson distribution, 25
for random numbers, 79
Reduced chi-square (x?), 68, 71, 195, 197, 208
Regression
linear, 122, 135-137
multiple, 122, 124
Regulo-Falsi method, 233
Rejection method for Monte Carlo calculation,
83,96
Relative error, 94
Relative precision, 3
Reproducibility of results, 2
Resonant behavior, 31, 32, 33, 168
Root mean square, 11
Roots of nonlinear equations, 231-235
half-interval, 232
Newton-Raphson method, 233
secant methods, 232-233, 234-235
for simultaneous linear equations, 233-235
Roundoff, 4-5, 14, 111
Routines. See Computer routines
Row matrix, 122, 239, 240

S

Sample covariance, 201, 215
Sample distribution, 7, 11, 13

i
;

Sample linear-correlation coefficient, 202
Sample mean (§), 9, 11, 15, 71

Sample standard deviation o, 32

Sample variance (s?), 11, 15, 138, 201, 215
Scientific notation, 4

Searching parameter space. See Parameter space.

searching
Secant methods, for finding roots, 232-235
Second moment, 11
Semilogarithmic graphs, 271
Shuffling random numbers, 79
Significant figures, 4-5, 14
SIMPSON routine, 228, 300-301
Simpson’s rule, 196, 200, 228
Simultaneous equations
matrix determinant solution, 243-245
nonlinear, 233-235
Singular matrix, 244
Slope, 269
Smearing, data, 86, 90, 96, 236
Smoothing, data, 173, 235-237
SPLINEINT routine, 231
SPLINEMAKE routine, 231, 301-303
Splines, 228-231
SPLINTST routine, 301
Spreadsheet, linear least-squares fitting with,
126-127
Square matrix, 126, 239, 240, 241, 243,
244, 245
Standard deviation of the mean. See Standard
error
Standard deviation o, 10-11, 15
confidence interval, 63
of Gaussian distribution, 29, 208
of Lorentzian distribution, 32
as measure of uncertainty, 37
outlying data point removal and, 56
of Poisson distribution, 25, 38
sample, 32
Standard error, 6, 54, 63
Starting values of parameter search, 148
Statistical error, 60
Statistical fluctuations, 60-63, 71, 114, 176-177
Statistical significance in Monte Carlo test,
212214
Statistical uncertainty, 37-38, 106
Steepest descent, direction of, 154, 165
Step sizes, search, 149-150
Stirling’s approximation, 196
Student’s ¢ distribution, 63-65, 259, 266
STUDENTST routine, 305-306
Summed probability, 26-27
Symmetric matrix, 122, 123, 124, 239, 245
Symmetrical uncertainty, 209
Systematic error, 2, 3, 14, 55
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T
Tables
chi-square distribution, 256-257
F distribution, 260, 262, 264
Gaussian distribution, integral of, 251
Gaussian probability density distribution, 249
linear-correlation coefficient, 254
Student’s ¢ distribution, 266
Taylor series expansion, 39, 145, 158-159, 220,
221,229
Thompson, W. J., 228
Tolerance, 37
Trace, matrix, 242
Transformation integral, 95
Transformation method for Monte Carlo
calculation, 81-83, 95 -

U
Uncertainty, 2, 5-6, 14
approximation, 47
in areas under peaks, 171-172, 177
in coefficients, 114
computer calculation of, 4748
dependent variable, assigning to, 102
instrumental, 36-37, 38-39, 71
in linear fit, 107-110
measuring, linear fit and, 101-102
minimizing, 6
in parameters after maximum-likelihood fit,
190-191, 192
propagation, 39-41
relative, 57-59
simple formulas, 4146, 4849
standard deviation as measure of, 11, 22, 37
statistical, 37-38, 106
symmetrical, 209
Uniform deviates, 79, 95. See also Random
numbers
Uniform distribution, 8183
Uniform variance, 114
Unity matrix, 124, 240, 244, 246

A%

Variables, dependent and independent, 98-99
Variance o2, 4041, 43-44

average, 58

binomial distribution, 20

definition, 10-11

of distributions, 11, 15, 20, 61

estimated uniform, 114

of the fit, 194-195, 215

of the mean (p), 53-54, 58, 71

of parameters from fit, 107, 109-110, 123
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Variance o>—Cont.
Poisson distribution, 61
sample, 11, 15, 138, 201, 215

w

Weighted mean, 71

Weighting data, 56-57, 203
Weighting factors, 57, 203, 215
Wichmann, B. A,, 80
Wichmann-Hill algorithm, 80




