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1. The shapes of the individual Poisson distributions governing the fluctuations in

the observed y; are nearly Gaussian.

2. The uncertainties o in the observr.nio
ties in the data and may be approximated by

ns y; may be obtained from the unce_m_in-
a? = y, for statistical uncertaintics.

SUMMARY

Linear function: y(x) = a + bx.
Chi-square:

2
1
g E[;;(y.- — 8+ bx.)]
i i ters
Least-squares fitiing procedure: Minimize x! with respect 10 each of the parame

simultancously.

Solutions for least-squares fit of a siraight line:
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EXERCISES

6.1, Fit the data of Example 6.2 as if all the data had equal uncenainties o, ~ o = 14.5,
where o 15 the average of the given values of o. Note that the fited parameters are in
dependent of the value of &, but the values of X°, o, and o, are not.

6.2. Derive Equation (6.23) from Equatons (6.21) and (6.22).

6.3. Show that Equation (6.12) reduces to Equauon (6.13) 1l o; = 0.

6.4, Derive a formula for making a linear fit to data with an intercept at the origin so that
y = bx. Apply your method to fit a straight line through the origin 1o the following co-
ordinate pairs. Assume uniform unceriainties a; = 1.5 in y,. Find x* for the fit and the
unceriainty in b.

5 | 2 4 6 B 10 12 4 16 18 0 2 24
% I 53 144 207 300 350 413 527 557 630 721 805 H79

6.5. A student hangs masses on a spnng and measures the spring’s exlension as a function
of the applied force in order to find the spring constant k. Her measurements are:

Mass (kg) 200 300 400 S00 600 700 800 900
Extension (¢m) 51 55 59 68 74 15 8.6 94

There is an uncertainty of 0.2 in each measurement of the exiension. The uncerainty in
the masses is negligible, For a perfect spring, the extension AL of the spring will be re-
Iated to the applied force by the relation kAL = F, where F = mg, and AL = L — Ly,
and Ly is the unstretched length of the spring. Use these data and the method of least
squares (o find the spring constant £, the unsiretched length of the spring Lo, and their
uncertainties. Find x? for the fit and the associated probability.

6.6. Outline a procedure for solving the simuliancous Equations (6.27). Refer to Ap-
pendix A,

6.7. A student measures the temperature (T) of water in an insulated flask at times (¢) sepa-
rated by | minute and abtains the following values:

M | o 1 2 3 45 6 1 8
w'c) ] 98.51 9850 98.50 9849 9852 9849 98.52 9845 9847

{a) Calculate the mean temperature and its standard error.

(&) To test whether or not the water is coaling, plot a graph of the temperatures versus
the time and make a least-squares fit of a straight line to the data. Is there a statisti-
cally significant slope to the graph?

(c} Noie that the intercept is not identical to the mean value of the lemperature you cal-
culated in part (a). Now, shift the time coordinates by 4 s so that the mean time is
0. Refit the data with the new values of T. Is the intercept now identical to the mean
value of T?

{d) Clearly, the resulls of this experiment cannot depend upon the time at which the
measurements were made. Show that, if the mean value of x is equal 1o zero, then
the intercept & calculated from Equation (6.13) ts identicaily equal 10 the mean
value of y.
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Computer fits Routines used for fitting a series of Legendre polynomials to these data
are included in Program 7.1. The procedure LEGPOLY in the program unit
FITFUNCY calculates the terms of the Legendre polynomials through tenth order.
The procedure is selected through a branch on the vaniable PAE in the function Funct
with PAE = ‘A’ forall terms to order m = s — |, ar PAE = ‘E’ to fit with just the
even terms. Note that the index & of the term in the fitting function, in general, does
not correspond (o the order L of the Legendre polynomial.

The efficiency of the calculation (and therefore the speed of the linear regression
calculation) could be improved in a number of ways. The simplest change would be
to calculate the functions once at each value of the independent variable and siore
the calculated values in an array.

Parameters obtained by fitting a series in Legendre polynomials for terms up
to L = 4 are listed in Table 7.7. Separate fits were made with all terms and with only
the even terms in the series. As expecied, the coefficients of terms involving odd or-
ders are comparable to their uncertainties and negligible compared to those involv-
ing even poynomials. The full error matrix for the fit with even terms is listed in
Table 7.8.

In view of the strong theoretical argument that only even Legendre polynomi-
als are required for this reactien, it would be appropriate to fit a series that includes
only the even terms. The parameters obtained in this fit are also displayed in Table
7.7, and the numbers of counts calcutated from these parameters are listed. The func-
tion calculated with even terms is illustrated as a curve on the data of Figure 7.2.

Because we are fitting with orthogonal functions, we might have expected to
obtain identical values for the coefficient a; from both fits. (We expect the higher-
order even coefficients to change because the presence or absence of lower-order
coefficients must affect the higher coefficients.) The fact that there is some depen-
dence of ag on higher-order terms is a result of the fact that a given experiment does
not sample uniformly the entire range of the Legendre polynomial, so the orthogo-
nality relation Equation (7.43) is not satisfied by a finite data set. This is in contrast

to the situation in the previous section, where we set up orthogonal functions based
on the data themselves. Nevertheless, it is generally good practice to use orthogonal

TABLE 7.7
Coefficients and x? from least-squares fit to Legendre polynominl series
x! a a ay a, ay
All terms 17.2(14%) 9374 =176 07 =128 259 = 14 10x17 158 = 18
Even erms 17.6{22%) 9381 =75 261 = 14 161 = 16
TABLE 7.8
Error matrix for a least-squares fit to even Legendre polynomiuls
56.24 —5.256 -6.272
—5.256 186.5 -26.90
~6.272 -2690 2198
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ﬁnin_g functions whencver possible to minimize both the comelations between co-

efficients and the dependence of higher coefficients on the presence of lower ones,

The values of x? and the x*-probability for the twao fits are also given in Table

7.7. We note that x? for the three-parameter fit is necessarily higher than that for the

:ti\;:pammeter fit, but x* per degree of freedom is smailer and the x-probability is
ET.

7.4 NONLINEAR FUNCTIONS

In all the procedures developed so far we have assumed that the fiting function was
linear in the coefficients. By that we mean that the function can be expressed as a
sum of separate terms each multiplied by a single coefficient. How can we fit data
with a function that is not linear in the coefficients? For example, suppose we have
measured the distribution of decay times of an unstable state and that the distribu-
tion can be represented by the normalized function P(¢) = (lim)e™", where 7 is the
mean lifetime of the state. Can we find the parameter T by the least-squares method?
The me!ho_d of least squares does not yield a straightforward analytical solution for
such functions. In Chapter 8 we investigate methods of searching parameter space
for values of the coefficients that will minimize the goodness-of-fit criterion X'
Here we consider approximate solutions to such problems using linear-regression
lechniques.

Linearization

It is possible to transform some functions into linear functions. For example, if we
were to fit an exponential decay problem of the form

y=aget (7.46)
where 2 and b are the unknown parameters, it would seem reasonable to take loga-
rithms of both sides and to fit the resulting straight line equation

Iny=Ina-bx (7.47)

The method of least squares minimizes the value of ¥ 2 with
, respect to each of
the coefficients In a and In b where x? is given by i P "

=3 [—L[In yi+Ina- bx;]’] (7.48)

a'?

where we must use weighted uncenainties o in
. ; instead of o; 1o account for the trans-
formation of the dependent variable: '

! JR42 d!l" )’r) l
o= = — 7.49
¥ ! 0; ) a; ( K )

The importance of weighting the uncertainties is illustrated in Figure 7.3, which
shows the funcupn of Equation (7.46) graphed both on a linear and on a logarithmic
scale. (For ?Io!ung. we use logarithms to base 10 rather than natural logarithms.)
The uncertainties are given by o; = ‘\/;, and therefore increase with increasing y;.
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8.1 NONLINEAR FITTING

The methods of least squares and mu!tiplc
chapters are restricted to fitting functions
Equation (7.3):

regression developed in the previous
hat are linear in the parameters as in

3= Bla ) (8.1)
2

This limitation is imposed by the fact that, in peneral, minimizing X cunfy'llek:_ ;1[ set
of coupled equations that are linear in the mr unknown paramelers qnly i : :; [ mﬁ
functions v(x) are themselves linear in the paramelers. We shall Lllslmgllltsu: _ |w:ia‘:r'=
the two types of problems by referring to linear fitnng !’fflr q@banghl lt m?and
equations that are linear in the parameters, such as those filscu::sed in . aplers

7. und nonlinear firting for those problems that are nonlinear in the parameters.

3 2 8.1.  In a popular undergraduate physics laboratory experiment, a real sil-
E‘:tn:;:::: is irmdiul::'g with thenmal nevtrons 10 create (Wo slimt.'t-hv:d |slo\upes oll‘
silver, pAR"™ and ;Ag"®, that subsequenily decay by beta emission. Students coun
the emitted beta particles in 15-5 intervals for nbc_mt 4 min to obtain a decay curvc:
Data collected from such an experiment are listed in Table 8.1 and plotted 0;! a semi
Jogarithmic graph in Figure 8.1 The data are reporied at the end of e;i'ch 15-s m‘te;;
val, just as they were recorded by a scaler. The data points do not fall on a strug
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FIGURE 8.1

Number of counts detecied from the decay of two excited states of silver as a function of ume
{Example 8.1). Time is reporied at the end of each interval. Statistical uncertainties are assumed. The
curve was obtained by a nonlinear leasi-squares fit of Equation (8.2) 1o the data.

line because the probabitity function that describes the process is the sum of two ex-
ponential functions plus a constant background. We can represent the decay by the
fitting function

¥(x)=ay +aeio 4 gyets (8.2)

where the parameter ¢y corresponds to the background radistion and a, and ay come-
spond to the amplitedes of the two excited states with mean lives a, and a4, respec-
nvely. Clearly, Equation (8.2) is not lincar in the parameters a, and ay, although it is
linear tn the parameters a;, a5, and a;.

We can use a graphical analysis method 1o find the two mean lifetimes by plot-
ting the data on semiloganthmic paper after first subtracting frem each data point the
constant background contribution, which has been measured separately. (Note that the
background counts have not been subtracted in Figure 8.1.) We then consider two re-
gions of the plot: region g, at small values of T’ (e.g., T < 120 s) in which the short-
lived state dominates the plot, and region b, at large values of T(e.g.. T > 200 s) in
which only the long-lived state contributes to the data, We can estimaie the mean life-
time of the long-lived state by finding the slope of our best estimate of the siraight line
that passes through the data points in region b. From this result we can estimate the
contribution of the long-lived component to region 2 and subtract that contribution
from each of the data points, and thus make a new plot of the number of counts in re-
gion a, which we atiribule to the shor-lived state alone, The slope of the line through
the corrected points gives us the mean lifetime of the short-lived state. Linear regres-
sion techniques discussed in Section 7.4 could be used to find the slope of the graph in
each region.
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TABLE 8.1
Geiger counter data from an irradinted silver piece, recorded in 15-5 intervals

Point Measured Calculated Point Measured Calculated
number Time counts counts number  Time counts counts
1 15 775 T48.3 k)| 465 24 240
2 30 479 519.8 32 480 30 23.0
3 45 380 3704 33 495 26 2.1
4 60 1] 2720 34 510 28 213
5 5 185 206.7 35 525 21 205
6 %0 157 162.7 36 540 18 19.8
7 105 137 1325 37 555 20 19.2
8 120 119 1115 38 570 27 185
9 135 110 96.3 39 585 17 180
10 150 89 85.0 40 600 17 174
11 165 ™ 765 41 615 4 169
12 180 61 69.7 42 630 17 165
13 195 66 642 43 645 ] 16.0
14 210 68 59.5 4+ 660 ] 15.6
15 225 48 55.5 45 675 22 152
6 240 54 51.9 46 690 17 149
17 255 51 48.8 47 705 12 14.6
18 270 46 459 48 720 10 143
19 285 55 433 49 735 13 140
20 300 29 409 50 750 16 138
21 315 28 387 51 765 9 135
22 330 37 367 52 780 9 133
2 345 49 348 53 795 14 13.1
2 360 26 330 54 810 21 129
15 375 35 3.5 55 825 17 127
26 390 b 300 56 840 13 126
7 405 3l 286 57 855 12 124
28 420 24 13 58 870 18 123
29 435 25 26.1 59 885 10 12,1
30 450 35 250

Note: The time is reported ai the end of each interval, The calculated number of counts was found by method 4.

Because analytic methods of least-squares fitting cannot be used for nonlinear
fitting problems, we must consider approximation methods and make scarches of
parameter space. In the following sections we discuss four nonlinear fitting meth-
ods: a simple grid-search method in which we simply calculate x* at wrial values of
the parameters, and search for those values of the parameters that yield a minimum
value of x*, a gradicnt-search method that uses the slope of the function to improve
the efficiency of the scarch, and two semianalytic methods that make use of the ma-
trix method developed in Chapter 7, with a linear approximation to the nonlinear
functions. As examples, we shall determine the parameters (g, . . . ds) by fitting
Equation (8.2) to the data of Example 8.1 using each of the four methods. The curve
on Figure 8.1 is the result of such a fit.

< i asandid
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FIGURE 8.2
Chi-square hypersurface as a function of two parameters.

Method of Least Squares

We can generalize the probability function, or likeliho i i
ol - , or likelihood function, of Equation (6.7)

P(ay s ... a0)= H[m\:’i}] exp {—% z[l;cﬂﬂlﬂ (8.3)

and, as in the previous chaplers, maximize the likelihood wi
e previ s with respect to the -
meters by minimizing the exponent, or the goodness-of-fit pamnetl:' X -

x’EE[lb:-y(rf)]z] (84)

o}

where x, and y, are the measured variables, o, i inty i

‘ , @; is the uncenainty in y,, and y(x,) are
val;es of lhc; func;-lol.r: calculated at x;. According to the method of le:;sl squﬁc;) the
opumum values of the parameters a; are obtained by minimizing %2 si ,
vyl s ] y minimizing x* simultaneously

x_ 3

da,  aq [E,l‘iz (= )’(If)]z] =0
= ‘ZELL‘: [y —¥(x) E“i(f)]

Taking partial derivatives of x? with respect to each of the m parameters a; will yi

m coupled equauons in the m unknown paramelers g; as in Seglion FLIE él‘:;;[eﬂ::
tions are not linear in all the paramelers, we must, in general, treat x* as a continuous
function of the /m parameters, describing a hypersurface in an m-dimensional spice
as expressed by Equation (8.4), and search that space for the appropriate minimurt;

(8.5)
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value of k. Figure 8.2 illusirates such a hyperspace for a function of two parameters.
Aliernatively, we may apply to the m equations obtained from Equations (8.5) ap-
proximation methods developed for finding roots of coupled, nonlinear equations. A
combination of both methods is often used.

Variation of x* Near a Minimum

For a sufficienily large event sample, the likelihood function becomes a Gaussian
function of each parameter centered on those values a; that minimize x*:

Pla) = Ae~lma)ie] (8.6)

where A is a function of the other parameters, but not of a;. Comparing Equation
(8.3) for the likelihood function with Equation (8.4) for x?, we observe that we can
express X as

x*=—2In[Pla,, az,... 4+ 23 In(o; V2w) (8.7)
Then, from Equation (8.6), we can write

-}
v= !.‘L.;'Jl i (8.8)
ay
{0 show the variation of x? with any single parameter a; in the vicinity of a mini-
mum with respect to that parameter. The constant C is a function of the uncertain-
ties o, and the parameters a, for k # j. Thus x? varies as the square of distance from
a minimum, and an increase of 1 standard deviation (o) in the parameter from the
value aj at the minimum increases x* by 1. For a more general proof, see Arndt and
MacGregor (1966), appendix IL
We can see that this result is consistent with that obtained from a second-order
Taylor expansion of x* about the values aj, where the values of x* and its deriva-
lives at @ = a’ are wrilien as X3, dxg/da;, and so forth:
P £ PR IS € N (L' S _,]

X" = Xd T ’§| aaj (aj aj)] + 2"2‘ jgl [(Mlanj (ak al) (a) a;) (8'9)
Because the condition for minimizing x? is that the first partial derivative with re-
spect (o each parameter vanish (i.c., dx’/da; = 0), we can expect that near a local
mintmum in any parameter 4, x* will be a quadratic function of that purameter.

We can obtain another useful relation from Equation (8.8) by taking the sec-
ond derivative of x* with respect to the parameter g; to obtain

Py 2
—_——=— 8.10
3a? o 8.1

We obtain the following expression for the uncertainty in the parameter in terms of
the curvature of the X2 function in the region of the minimum:

2y2\~1
o} = z(ﬂ—"—) @.11)

bl
daj

e ks ENRIT PRV W PR v G 2 L~
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FIGURE 83
Plot of x* versus a single parameter a in the region of a focal mimmum. The
iy location of

1s calculated by fiting a parabola through the three indicated data points. fhe munmn

We note that for uncorrelated parameters, Equation (8.11) is equivalent 10 ati
(7.22) with Equation {7.25) for obtaining the uncertainties frm?lq the cunraturEq n:luul':;n
. We can also use the quadratic relation to find the approximate location of a x*
minimum by considering the equation of a parabola that passes through three poinis
that slradd_le the minimum, and solving for the value of the parameter at the mini-
mzum. as illustrated in Figure 8.3. If we have calculated three values of x2,
xi = ¥ x3 = x¥ap), and x3 = x*(ap), where ap = a;) + Ag;and ajy = ap +
Aay, then the value a; of the parameter at the minimum of the parabola is giv:nll_:\y

' xi—x3 1
al=a.,=- Aa e
o "[xf -a+a 2]

(8.12)

In addition, we can estimate the errors i i i
' in the fiuin, eters a; by v
parameter about its mini i 2 f ey e i
am D minimum to increase x? by 1 from the minimum value. The
variation @, in the parameter a;, which will increase x* by | from its value ai the
minimum of the parabola, is given by

a; = Aa; V2(xi ~ 2x3 + x3)”! (8.13)

Alternauvely, we can attempt to calculate the second derivative of x? at the mini-
mum and find the standard deviation from Equation (8.11).

[f_' lhc parameters are comrelated, the method summarized in Equation (8.13) for
dglennlnlng' uncertainties in the parameters is valid only under the condition that,
withg; = aj * g}, x* be minimized with respect to all other parameters. This condi-
tion severely limits the usefulness of this procedure for determining the uncertainties.
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we choose initial step sizes to be proportional (o the starting values of the parame-
ters and readjust them if necessary after each local minimurm is found. In the simple
grid-search calculation, we adjust the step sizes to be those values that increase x?
by approximalely 2 from its value at the local minimum.

Condition for Convergence

A change in x? per degree of freedom (x*/dof) of less than about 1% from one trial
set of paramelers to the next is probably not significant. However, because of the
problems of local minima and very flat valleys in the parameter space, it may not be
sufficient to set an arbitrary condition for convergence, start a search, and let it un
1o completion. If the starting paramelers are not chosen very carefully, the search
may stop in a flat valley with an inappropriately large value of x2 If this happens,
there are several possible ways to proceed. We can choose different starting values
and retry the fit, as suggested in the previous sections, or we can set tighter conver-
gence requirements (e.g., Ax*/dof < 0.1%) and rerun the search in the hope that the
program will escape from the valley and reach the appropriate minimum. A conve-
nient approach for small problems is to observe the process of the search and to cut
it off manually when it appears that a stable minimum has been found. If a suitable
minimum cannot be found, then different starting values should be tried. When fit-
ting curves to several similar samples of data, we may find it satsfactory to estab-
lish suitable starting parameters, step sizes, and a cutoff criterion for the first set,
and employ an automatic method for the remaining sets.

Computer Nlustration of Nonlinear Fitting
Methods

In the following sections we discuss and illustrate with computer routines four
methods of fitting Equation (8.2) to the data of Example 8.1.

Program 8.0. NONLINFT (Appendix E) Common calling rouline to test the
four different fitting methods. Repeats the calculations until a x2-minimum is found.
Variables are defined in the program until FITVARS and data input and output are
handled in the program unit FITUTIL as in the fitting programs of Chapters 6 and 7.
FITFUNCB calculates the fining function.

Step sizes for the fit are set initinlly in the routine FETCHPARAMETERS
10 be a fraction of the starting values of the parameters. (The step sizes must not be
scaled to the parameters throughout the calculaion, however, lest they become 0 when
a parameter is 0, which would halt the search in that parameter.)

Tables 8.2, 8.3, 8.4, and 8.5 show values of x? and the parameters a, through a5
for several stages of the calculation at the beginning, middle, and end of each of the
four types of search. The tables include the time to find the solution relative to the time
for the fastest procedure.

Program 8.1. GRIDSEAR (Appendix E) Routine GRIDLS illustrates the grid-
search method.

Program 8.2. GRADSEAR (Appendix E} Routine GRADLS illustrates the
gradient-search method.
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Program 83. EXPNDFIT (Appendix E) Routine CH(FIT illustrates fitung by

expansion of the fitlung function.

Program 84. MARQFIT (Appendix E) Routi i
P ne MAR -
ting by the gradient-expansion algorithm. QUAROT e

Program85. FiTFUNS (A di i i i
gl e (Appendix E) Fitting function and x *-calculation for all

Program 8.6. MAKEABBS (Appendix E) Matrix set-up for non-linear fits.
Program 8.7. NUMDERIV (Website) Numerical derivatives.

Program B.1. MATRIX (Appendix E) Matrix products and inversion.

8.3 GRID-SEARCH METHOD

It;h the variation of x* with each‘ parameter a, is not very sensilive to the values of the
other p:'u'z_trr.u:lv:rs5 :hf:n the optimum parameter values can be obtained most simply
by minimizing x* with respect to each of the parameters separately. This is the grid-
search method. The procedure is simply to select starting values of the paramgers
find the value of one of the parameters that minimizes x* with respect te that nra:
meler, set the parameter to that value, and repeat the procedure for each pamrEeler
in turn. The entire process is then repeated until a stable x* minimum is obtained.

Grid search. The procedure for a grid search may be summarized as follows:

1.  Select siarting values a, and step or i parame
7 P Or increment sizes A
caleulate x? with the starting parameters. s terand

2, Increment one elerg; by + igni
ey pamm ra; by =Aa, and calculate x?, where the sign is chosen

3 RCMI stcp 2 until XJ SI.OPS decreasin and begins 10 inc 3 increase in
g gins rease. The
2 T M i
X indicates that the search has crossed a ravine and started up the other side,

4. Usethe Inst2 three valm.?s of a; (which bracket the minimum) and the associated
values of x ‘o del-enmne the minimum of the parabola, which passes through
the three points as illustrated in Figure 8.3. [See Equation (8.12).]

5. Repeat to minimize x? with respect to each parameter in turn.

6. Continue to repeat the procedure until the last iteration yi
lgibly Seotlt docnes e ast iteration yields a predefined nep-

) The main advantage of the grid-search me is its simplici
sive iterations of the search, the absolute minimtllhn:?):'su:;s ;;I?Er[t::ctlllg(n ?rfma:::ﬁ:::;
space .;:hm be located to any desired precision. .
e main disadvantage is that, if the variations of x? with the param
il.mngly correlated, then the approach to the minimum mﬁy be very sl;ow. Cﬁ;?df:
or exnzmple. the contour plot of x? as a function of two parameters in Figure 8 4.
The x? contours are generally approximately elliptical near the minimum The
degree of correlation of the parameters is indicated by the tilt of the elfipse. If two
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FIGURE B4 ) _
Contour plot of x* as a function of two highly correlated variables. The zigzag line represents the

search path approach to a local minimum by the grid-search method.

parameters are not correlated, so that the variation of x* with each parameter is in-
depend::tsor the variation with the other, then the axes of the ellipse will be pnmld
lel to the coordinate axes. Thus, if a grid search is _|nm:ued near one c::sd t?f a tilie
ellipse, the search may follow a zigzag path as indicated by lpe sqh_d line in Figure
8.4 and the search will be very inefficient. Nevertheless, u]e §1mp11F|ty of the calcu-
lations involved in a grid search often compensates for this inefficiency.

Program B.1. GRIDSEAR (Appendix E) Routine GRIDLS illustrates the gnd-
mh-ll_::m“ search routine, GRIDLS, is entered willl_ the value of x?
(CH1SQR) as argument. In a loop over each of the m parameters in tum, the value of
the parameter is varied until x? has passed through a l9cnl minimum in the pamr_nollcr.
The three most recent values of x* that bracket the minimum are stored in the variab es
CHISQl, CHISQ2, and CH15Q3. The best estimate of the parameter at this
stage of the calculation is determined from the minimum l_)f the pnn-zbnln that lf:st;ﬂ.:
through the theee points. The step size (DELTAA(S )-) s then adjusted 1o al
value that increases x? by 2 from its value at the local minimum. .
One pass through GRIDL.S corresponds to a single zigzag along the path o
Figure 8.4. The search is repeated until x? does not change by more than the preset
ferel iﬂnﬁﬂu function SIGPARAB in the program unit FITUTI L at the end
of the scarch retumns an estimate of the uncertainty in each parameters in wm l'fum a
calculation of the independent variation needed to increase x? by | from its minimum

value.
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TABLE 8.2
Two exponentials plus constant background: grid-search method
“Trial x" a ay ay a; as
0 406.6 100 900.0 80.0 27.0 2250
1 1430 1.5 13323 106.8 277 207.2
2 9.9 126 12339 127.9 282 198.4
3 794 1.6 1155.1 140.2 288 192.2
4 729 1.2 1100.3 147.0 293 189.2
16 66.7 (T ] 9635 1488 13 185.3
17 66.7 1.3 962.5 148.2 324 185.8
39 663 109 959.3 139.1 333 195.4
40 66.2 10.8 959.2 138.9 133 195.7
Uncertainties 0.6 283 45 08 50

x'fdof = 1.23; probability = 12.1%; relative tithe = 9.1

Note: Stages in the fit 10 counts from the decay of excited states of silver, The values of x* and the parameters are
listed ot the beginning, middle, and end of the search. The inties in the p correspond to a change of
Lin x? from its value a1 the end of the search.

Table 8.2 shows values of x2 and the parameters a, through a; for several
stages of the calculation at the beginning, middle, and end of the search, The search
is relatively slow, but eventually a satisfactory solution is found. Note that the cal-
culated uncerainties correspond to the diagonal terms in the error matrix for uncor-
related parameters, If correlations are considered 1o be important, the matrix
inversion methods discussed in the following sections could be used to find better
approximations to the uncertainties.

84 GRADIENT-SEARCH METHOD

The search could be improved if the zigzagging direction of travel in Figure 8.4
were replaced by a more direct vector toward the appropriate minimum. In the gra-
dient-search method of least squares, all the parameters g; are incremented simulta-
neously, with relative magnitudes adjusted so that the resultant direction of travel in
parameter space is along the gradient (or direction of maximum variation) of x%.

The gradient Vx? is a vector that points in the direction in which x? increases
most rapidly and has components in parameter space equal to the rate of change of
x* along each axis:

=3 [%ﬁ—: a,.] (8.14)

=1

where d; indicates a unil vector in the direction of the a; coordinate axis. In order to
determine the gradient, we estimate the parntizl derivatives numerically as discussed
in Appendix A:

Adds e — . - o)
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(vx3), = axt _ Xy +fba) — x(a) (8.15)
XU~ aq; fAg;

where fis a fraction of the step size Aa; by which a; is changed in order to determine
e de';'lI:: ::&m has both magnitude and dimensions and, if the dimensions of the
various paramelers g, are nol all the same (which is usulally the case), the compo-
nents of the gradient do not even have the same dimensions. Let us deﬁnc_dlmlt;ln-
sionless parameters by by rescaling each of the parameters a; to a sizé at
characterizes the variation of x* with ; rather roughly. We shall use the step sizes
Ag, as the scaling constants, so that

b=t (8.16)
/ Aﬂj
The derivative with respect to b, then becomes
2 2
';ib = %3;—_ Aq; (8.17)
i /)

which may be calculated numerically as
ax _ X+ fda) — xa) , _ Xla*fAa) X@) g8

-"E - fag; s I
We can then define a dimensionless gradient <y, with unit magnitude and components
ax}/ab

YT /5 oxt/ ok
In the numerical calculation of Equation (8.18), the quantities Ag, and f occur only
" lhe’l‘alr:f'.u(;?r‘::'::ll:shl'l::‘ ;en:lmn;i:f:feﬁmémoa follows is the direction of steep-
est descent, which is opposite of the gradient . The §camh b.egins by maem;nm;lg
all parameters simulaneously by an amount Aay, wuh_ relative valu;: given “{t ;d :
corresponding component ; of the dimensionless gradient and absolute mag
given by the size constant Aay:

(8.19)

8a, = ~v,Aa, (8.20)

The minus sign ensures that the value of x* decregses. The size constant Ag; of
Equation (8.20) is the same as that of Equation (8:1 ). _ ‘

; Theic are several possible methods of continuing the g.radlcnt search after a
first step. The most straightforward is to recompute the grfnd'sen? after each change
in Ilhe parameters, One disadvantage of this method is that it ls_dnfﬁcult to approach
the bottom of the minimum asymptotically because the gradient t_ends to O at the
minimum. Another disadvantage is that recomputation of the gradient at each step
for small step sizes results in an inefficient search, but the use of larger step sizes

akes location of the minimum less precise. o
i ei‘:gmomhh variation on the method is to search along oznc d.lrec;mn r:if the
ariginal gradient in small steps, caleulating only the value of x until x* begins to
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rise again. At this point, the gradient is recomputed and the search continues in the
new direction. Whenever the search straddles a minimum, a parabolic interpretation
of x* is used to improve the determination of the minimum.

A more sophisticated approach would be to use second pantial derivatives of
x? 1o determine changes in the gradient along the search path:

sz éﬁ " alxz
3a, = ¥ b 8.2
aa,— !q‘{vh‘ aa} 7 hzl &a‘,—aa‘ ay ( 1 )

If the search is already fairly near the minimum, this method does decrease
the number of steps necded, but at the expense of more elaborate computation. If the
search is not near enough to the minimum, this method can acteally increase
the number of steps required when first-order perturbations on the gradient are
not valid.

The efficiency of the gradient search decreases markedly as the search ap-
proaches a minimum because the evaluation of the derivative according to the
method of Equation (8.18) involves taking differences between nearly equal num-
bers. In fact, at the minimum of x2, these differences should vanish. For this reason,
one of the methods discussed in the following sections may be used to locate the ac-
tual minimum once the gradient search has approached it fairly closely.

Program 8.2. GRADSEAR (Appendix E) Routine GRADLS illusirates the
gradient-search method.

On each entry 1o the main search routine, GRADLS, the components of the
gradient GRADLS (J) are calculated numerically from Equation (8.18) in the proce-
dure CALCGRAD. The argument FRACT of this routine, corresponding to the
variable f of Equation (8.18), determines the fraclion of the siep size (DELTAA)
used in the numerical calculation of the partial derivative. Each parameter A(J) is
then changed by the amount STEPDOWN®*DELTAA(J)*GRAD(J), where
STEPDOWN is a scaling factor that is set initially in the main program and read-
justed after cach stage to the size needed 1o locate the minimum.

The initial values of DELTAA(J) determines to some extent the execution
speed of each pass through the routine GRADLS, and the value of CHIC UT deter-
mines when the search will stop. Because of the small gradient near the x2 minimum,
it may take many steps to reach a reasenable value of x2, and the culoff, CHICUT,
may have to be set to a very low value. For such cases, user inlervention can be pro-
vided as an alternate method of stopping the scarch.

At the conclusion of the search, the uncertainties in the parameters are estimated
in the function S1GPARAB as in the routine GRADLS.

Tuble 8.3 shows values of x* and the parameters a, through as for several
stages of the calculation at the beginning, middle, and end of the search. For Exam-
ple 8.1, the gradient search is considerably faster than the grid-search approach
because all the parameters are varied together at each step. However, the gradient-
search method has one disadvantage that is not illustrated. If the starting values of
the parameters are too far from the final values, the grid search has a good chance
of plodding along until it reaches the correct solution. The gradient search, on the
other hand, may tend to get bogged down in local minima that correspond to a long,
flat valley in the parameter space.
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TABLE 8.3 .
Two exponentials plus constant background: gradient-search method
Trial x? a a ay o a,_
0 406.6 10.0 6‘9??.3 gg.g i‘:g gg
82.3 10.6 6 | X i
; 726 9.8 9840 98.8 168 531:
3 69.8 9.9 9669 100.9 36.8 44.'
4 69:3 9.8 9537 10L.6 36.7 242,
) 35.5 233.6
66.6 89 952.2 114.7
;g 66.5 89 954.8 1149 35.6 2339
10
Uncenainiies 0.6 26.5 38 03

x*dof = 1.23; probabifity = 11.8%:; relative time = 4.0

Note: Stages in the fit o counts from the decay of excited states f:f _silv_cr. The valucs of x? and m"p“:;n:fhr:n a;:
listed a1 the beginning, middle, and ead of the scarch. The unc in Lhe p P IS
of 1 in x? from ils value at the cod of the search,

8.5 EXPANSION METHODS

Instead of searching the x? hypersurface to map tl:le variauqn of x* with E:lmt;lers;
we should be able to find an approximate annlqua'l funcuop that dcscnd 5 ; e xd
hypersurface and use this function to locate thf: minimum, with melhod.f c‘;fl op:lzl J
for linear least-squares fitting. The approximations wﬂ! introduce errors !nnla e Llcl .
culated values of the parameters, but successive iterations of the am_xlyn(;:a r:lne e(; -
should approach the x* minimum with im.:rensmg acm;racy. The main a \irla:h Eom-
such an approach is that the number of points on the X hypersyrface at vl.'l I'[‘lu ad-
putations must be made will be fewer than for a grid or grz.ldlent search. Th s;.
vaniage is somewhat offset by the fact that the computations at ‘each point z:;'e
considerably more complicated. Howevelz. the analytical solution ‘ess:nua : ly
chooses ils own step size and, thus, the user is spared the problem of trying to opti-
mize the step size for speed and precision.

Parabolic Expansion of y*

In Equation (8.9) we expanded x* to second order in the parameters about a local
minimum x where a; = aj:

O 13 [ 8 5, 5a] (8.22)
aaj5a1]+22i LN

2oyl 4 o
X Xo ]-El E=1 =1 aﬂjaﬂ*

which is equivalent o approximating lhe' x* hypersurface by a parabolic surface.
Here we define 8a; = a, — a/, and x§ is given by

Xi=3 é[n = y’(xj)]’] (8.23)

where y'(x;) is the value of the function when 8a; = 0.
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Applying the method of least Squares, we minimize x? as expressed in Equa-
tion (8.22) with respect to the increments {8a)) in the parameters, and solve for the
optimum values of these increments (o abtain

2 o, & fohd
6(80‘) aa,‘ = ﬂalaaj

The result is a set of m linear equations in 8a; that we can write as

.r'J =0 k=1Lm (8.24)

Bi— f: Baa)=0 k=1, m (8.25)
=1
with
- __I.laﬁ 1 Fxi "
B.= 3 9a, and = 2 9a9a; (8.26)

The factors % are included for agreement with the conventional definitions of
these quantities,

As in Chapter 7, we can treat Equation (8.25) as a matrix equation:

B=daa 8.27)

where (8 and 8a are row matrices and ¢ {s a symmetric matrix of order nr, We shail
find that e is the curvature mairix discussed in Section 7.2, so named because it
measures the curvature of the y? hypersurface.

Method of Computation

The solution of Equation (8.27) can be obtained by matrix inversion as in Sec.
tion 7.2:

ba=fe 8q,= 2"'*5 (eyB) (8.28)
i

where the error matrix e = = is the inverse of the curvature matrix.

If the parameters are independent of one another, that is, if the variation of x?
with respect to each parameter is independent of the values of the other parameters,
then the cross-pantial derivatives 3, (f # k) will be Oiin the limit of a very large data
sample and the matrix a will be diagonal. The inverse matrix e will alsp be diago-
nal and Equation (8.27) will degenerate into m separate equations:

8&.=Ej-=£x_3-'_a_2x§
Yoy da,  pa?
i /] 7]

Computation of the matrix elements by Equation (8.26) requires knowledge of
the first and second derivatives of x* evaluated at the current values of the parame-
ters. Analytic forms of the derivatives are generally quickest to compute, but may be
difficult or cumbersome to derive. If it is not convenient or possible to provide ana-
lytic forms of the derivatives, then they can be computed by the method of finite dif-
ferences (see Appendix A). In the following expressions, we use forward differences

(8.29)
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Gradicnt-Expansion Algorithm | f

ient search with the me of lin : g
:s:fngdmgy increasing the diagonal terms of the curvature matnx szge:' l;a:r.g; o o
(hat controls the interpolation of the algorithm between the two g

(8.34) becomes

. . a(l+ A) forj=k (8.39)
p=Baa’ with @ = Ok forj+k

If A is very small, Equations (8.39) are similar to the soluliqn of E?Ta:::: éls'.;:)cﬁ:
loped from the Taylor expansion. If \ is very large, the diagonal tc ki
:;:l:: matrix dominate and the matrix equation degenerates into m sep
equations
B; = Abajay; (8.40)

: P i
which yield the vector increment &u in the same direction as the veclor P of Eq

i iie 1o the gradient of x*). )
o (gl.'::l?s?liiggmr the parameter increments Ba; follows from Equations (8.39)

after matrix inversion
S (Bie, Al
ba; = Z(Bkejt) (8.41)
i=
€' is the inverse of the ma-

where the B, are given by Equation (8.37) and the matrix

-« o' with elements given by Equations (8.39).
"~ uT‘t:':!l‘nti:(ii\[ln:nlueg of the constant factor A should be chosen small enough to

i i h that y? decreases. Be-
: f the analytical solution, but large enoug ;
::dul:lcs: ﬁ?sn:i;:gﬁr?mm appro)':lches the gmdicm-searc!a method \Ethisn;allﬁ;er:c:;:
large A, there should exist a value of A such that x¥a + 8a) <X (a).

given by Marquardt is:

1. Compute x*(a).
2. Start initially with A = 0.001. ——
3. Compute Ba and x*(a + Ba) with this chol y
4. 1f x*{a + ba) > x’(a), increase A by a factor of 10 and rf.pcal ,stip 3:’_ o tobe
5, Ifx*(a + Ba) < x2(a), decrease A by a factor of !0. c':onsu'.lera =d
. the new starting point, and retum to step 3, substituting @ fora.

i ents

For cach ileration it may be necessary o ucompu;emlhe palr::l;:lﬁ;'e :l;c:ltgmes

$a, from Equation (8.41), and the elements oy :md B, of the ma “.\ R
(o:apﬁmize A. As the solution approaches the minunum, the value of A wi

and the progr

may be set for the value X,

ini i jterati A lower limit
d locate the minimum with a !‘ew iterations.
e Obul in practice this limit will seldom be reached.
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TABLE 8.5
Two exponentials plus constant background: Marquardt method
Triat X ay a; ay a, ag
(1] 406.6 100 900.0 800 27.0 2250
1 829 1.0 933.5 139.3 339 173.9
2 66.4 10.8 960.1 130.6 338 201.2
k| 66.1 104 958.3 1314 339 205.0
Uncenainties R 499 21.7 2.5 305
x*/dof = 1.22; probability = 12.4%; retauve time = 1.0
Note: All stages in Lhe [il 1o counts from the decay of excited staies of silver. The unc inthep S COt-
respond 10 the square roots of the diagonal ierms in the error matnix.
TABLE 8.6
Elements of the error matrix (Marquardt method)
Lk 1 2 3 4 5
I 338 -3.69 27.98 -2.34 —49.24
2 =369 249226 B1.89 -69.21 ~3.90
3 2798 81.89 468.99 =44.22 -61544
4 -2.34 —69.21 -44.22 6,39 53.80
-1 ~49.24 -390 ~615.44 53.80 929.45

Note: Exvor maurix from a fi 10 the radioactive silver data. The disgonal werms are the variances o | and the off-
diagonal terms are the covanances o, of the pammeters 4,

Program 84. MARQFIT (Appendix E) Rovtine MARQUARDT illustrates fit-
ting by the gradient-expansion algorithm.

The procedure uses the same program units as those in Program 8.3, and is identical to
that program except for the adjustment of the diagonal elements a;; of the matrix o by
the variable LAMB DA according to Equation (8.39).

At the conclusion of the search, the inverse € of the final value of the curva-
ture matrix « is treated as the error matrix, and the errors in the parameters are ob-
tained from the square roots of the diagonal terms by calls to the function
SIGMATRX in the unit FitFunc8. Table 8.5 shows values of x? and the parameters

a through a, for all stages of the calculation. Table 8.6 shows the error matrix from
the fit.

8.7 COMMENTS

Although the Marquardt method is the most complex of the four fitting routines, it
is also the clear winner for finding fits most directly and effictently. It has the strong
advantage of being reasonably insensitive to the starting values of the parameters,
although in a peak-over-background example (Chapter 9), it does have difficulty
when the starting parameters of the function for the peak are outside reasonable
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with insufTicient data to satisfy the requirement of Gaussian statistics for individual
histogram bins and (2) experiments in which the fitting function corresponds to a
different probability density function for each measured event so that binning the
data leads to a reduction in information and a loss of sensitivity in delermining the
parameters. If the data set is sufficiently large, then the least-squares method can be
applied to problems of either type, and that method is generally preferred in view of
its smaller computing requirement. At any rate, it is not possible to extract more
than minimal information from a very smali data set, so we should expect the direct
maximum-likelihood method to be most useful for intermediate problems with

modest data samples.

10.1 INTRODUCTION TO MAXIMUM
LIKELIHOOD

The basic maximum-likelihood procedure is relatively simple. Assume that we have
a collection of N events corresponding 1o the measurement of an independent vari-
able x; and a dependent variable y;, where { runs from 1 1o N, We wish to obtain the
parameters, ay, dy, - . . , 4, of a fitting function y(x)) = y(x; a, da, . . ., 4,,) from
these data. For each event, we convert y(x;) to a normalized probability density
function

Pi=P(x;a,ay...,4,) (10.1)

evaluaied at the observed value x;, The likelihood function £(a,, a,,...,a,)is the
product of the individual probability densities

"
faway....a.)=FIF (10.2)
i=l
and the maximum-likelihood values of the parameters are obtained by maximizing
ZL(ay, ay ..., 4,) with respect to the parameters.

In many experiments, the probability density function P; will be made up of
two components: a theoretical factor corresponding to the underlying principle be-
ing tested and an experimental factor corresponding to the biases introduced by ex-
perimental conditions,

EXAMPLE 0.1 In Example 5.7 we presented a2 Monte Carlo program for studying
biases that could arise in an expenment to measure the mean life of the short-lived K
meson (or kaon), The example includes details of the experiment and Figure 5.4 illus-
trates schematically the expenmental appamtus.

In bnef, the expenment involves measuring the distance between the point of
production and point of decay of the kaon, determining the meson's velocity, and cal-
culating the meson's time of flight from production to decay, After comection for bias
introduced by the finite size of the experimentat apparatus, the mean life of the kaon
could be determined from measurcments of many such events.

The dashed rectangle on Figure 5 4 indicates the region in which events are col-
tected, the fiducial region for the experiment. We select decay veruices onty within this
region (o assure precise measureinents of both the separation of the two vertices and the
trajectones of secondary particles from decay of the kaon. These latter measurements
determine the inomenum, and thus the velocity, of the kaon. Loss of events that do not
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FIGURE 10.1

B e : ”
cmreMng [:h:‘_‘l:;‘l::u:n of times of flight _for 23,565 events that survived fiducial cuts in a 40,000-
. generation, as a.l'uncmm of the proper time (in units of (0~ 5). The exponenti
e as calculated from the nominal value Tk = 0.894 X 10x Wy Y el
istribution of the 40,000 gencrated events, i e

fall within the fiducial repion bi i
gion bias the fi i
we mulst understand the biases and makemcﬁnc:i:'::[:: ik
n the following examples, we zssume thay l|1 i
{ i e coordinates of it

and lht\:v magnitude of the momentum of the decaying kaon have beeg ldh:l;::.u"l:{? o
caon setfou's;d the. Monte Carlo program of Example 5.7, with the mean life of‘ the
s i nonunial value of 1y = 0.894 x 107%, 10 generate 40,000 events in or-

study the Fﬂ_ictency of IJ.n: _delf:cmr with reasonably high precision, It is impar-
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Efficiency function €{T) = N(TYN(T}. calculated from the ratio of observed events (crosses) ta
expected events (smooth curve in Figure 10.1). The dotted line itlustrates the region over which the
efficiency reasonably may be assumed 10 be 100%,

We also used the Monte Carlo program, with different random-number secds
and the same nominal value of 7, to generate a small “data set” of 1000 events, of
which 598 survived the fiducial cut, 10 use in testing our analysis procedures.

We shall discuss several aspects of the analysis of such data in the following
examples.

EXAMPLE 10.1a: Least-squares Method Figure 10.3 shows on a semilogarith-
mic plot the distribution, as crosses (x), of the 598 events that survived the fiducial
cuts from the total sample of 1000 events generated in Example 10.1. The straight line
shows the expected distribution if there had been no efficiency losses. In order to ex-
tract the mean life of the kaon from these data, we apply the efficiency function illus-
trated w0 Figure 10.2 to comrect for losses. The corrected data points are plotied in
Figure 10.3 as da1a points with vertical error bars corresponding to the statistical un-
certauntics in the data, scaled by the efficiency factor. (Uncertainties in the correction
factor were negligible.) The efficiency was assumed (o be 100% in the region indi-
cated by the horizontal dotted line in Figure 10.2. The very large error bars on “cor-
rected"” points at the two ends of the plot result from scaling low-statistics data poinis
and illustrate the problem of using data in regions of low efficiency. Generally, it is
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FIGURE 103
Semilogarithmic plot of the frequency distribution of 598 events that survived fiducial cuts from a

wise to eliminate points that require such | i
; : arge corrections from th 1
they cc[;:nmbule In’t[e to the overall resuit and depend heavily on mezm;ﬂtemuse
" hr:ljlm dl::: lm_enr slope of _lhe logarithmic plot, illustrated by the straigﬁl line
gh the data points, we obtain an “experimental” mean life 7 = (0.925 + 0.058).

Alternatively, we could have used a nonlinear Jeasi-squares fitti echnique
mine 7 directly from a linear plot of the data. e o deter

Direct Maximum Likelihood

Most actual experiments are more com i
t : plex and have efficiency functions that
con:;dembly more compl:_cnled than the one illustrated by our example. Foras::;
‘Pm rr:r:'s, application o!j direct maximum likelihood may be the preferable method
or finding thc_blesl estimate of the parameters. To apply this method we must
define a probability function for each recorded event. '

The probability of observing a single event that survives fora time 1, is
Fo=Aip(n; ) (10.3)




184 Data Reduction and Error Analysis for the Physical Sciences

The first factor A; represents the detection efficiency, or probability that the particle
will decay within a predefined fiducial volume within our apparatus, so that a satis-
factory measurement can be made of its flight time. This factor depends upon the co-
ordinates of the production and decay vertices of the decaying particle, its momentum
vector, and the geometry of the fiducial volume. The second factor p(r; ) is propor-
tional to the probability that a particle of mean lifetime T will decay between time 1;
and r; + di and is therefore proportional to e~*". Equation (10.3) becomes

P. = A‘e—u‘v {l0.4)

It might appear that the two factors in Equation (10.3) are independent, so that
the detection efficiency factor is independent of the decay probability, but, as we
have observed in the previous example, this is not generally true. Because of the fi-
nite size of our measuring apparatus, we may preferentially lose events that survive
for very short times so that we can't make precise measurements of their {light
paths, as well as those that survive for very long times and therefore decay outside
the acceptable limits of our detectors. Losses of both types depend upon the mean
life that we are attempting to determine, the “5" in the second factor of Equation
(10.3). For each particle that is observed to decay within the apparatus, we can de-
fine a potential path length as the distance it would travel if it had not decayed. Be-
cause each decaying particle has a different potential path length, we must calculate
geometric factors to correct for those particles that decay outside the detector. The
correction factors will depend on the parameters and will be a function of the pro-
duction and decay coordinates and the momentum vectors of each decaying parti-
cle. Clearly, one element of good experiment design should be to minimize the
dependence of these geometric correction factors on the parameters sought in the
experiment.

Normalization for Maximum Likelihood

The factor A; in Equation (10.4) comresponds to a normalization for each measure-
ment to assure unit probability for observing in this experiment any event that has
the mean life, coordinates, and kinematics of the observed decaying particle. To de-
termine the normalizing factor A; we refer to Figure 5.4 and consider the fiducial
volume of our apparatus, indicated by the dashed rectangle. From each particle’s
production coordinates and momentum vector, we can determine the minimum dis-
tance d, that the particle must travel to enter the region and the maximum distance
d, it can travel before leaving the region. (We can, of course, observe some events
outside the fiducial volume, but we reject them because they cannot be measured
precisely.) These minimum and maximum distances d, and d, must be converted to
times of flight 1, and ¢, in the rest frame of the decaying particles, and the normaliz-
ing factors A, can then be determined from the condition

n L]
I Bty I e=u/idp, = | (10.5)
i. h

With this normalization, the individual event probability P; of Equation (10.4)
becomes the probability density for observing a single event. The nonmalized joint
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probability or the likelihood function for observi i
pre ng N such events 1
15 just the product of the individual probability l'uicu‘nns: G

N N
L{1)=[] P, = el
(7 I‘Il rn."‘e (10.6)

Parameter Search

?ur object is to find the value of the parameter 7 that maximizes this likelihood
'::ci:::. Bec;mse the probability of observing any particular event is less than |
- pbe uct of a large number of such probabilities (one for each measured event;

1y be a very small number, and may, in fact, be too smail for the computer 1o han-

dle. To avoid problems, it is u imi i
ki is usually preferable to maximize the logarithm of the

M=In s (10.7)

rather than the likelihood function itself. 50 tha i
: ; t the product of Equation (10.6) be-
::::-125 asum, The logm_-!mms should be reasonable, negative numscgrs. For iur pa)m‘c-
xample, the logarithm of the likelihood function of Equation (10.6) is given by

M(7)= ln[!(?}]=E[InA,—EJ {10.8)

with 4, defined by Equation (10 5). Note th i i
.5). at A, is a function of the unk

simnl vol::fr; :, .'::ell as ;:' the production coordinates, momenium vector, andli":c‘!::
iy 2 must be calculated separately for each event, and for every trial

In general, this problem, like the corres i i

E . ponding nonlincar least-squares fitti
pmbl;m. cannot be‘sghfea_i in closed form. However, cither the grids-qor gmc;ie:f
dsea:ci 2 m:lhod of minimizing the x? function discussed in Chapter 8 can be adopted
"rec y. mt is only necessary to search for a maximum of M (or a minimum value of
M) w the same routines we used in Chapter 8 to find a minimum of x?
€ mmay nole a comespondence between the quantit; rined i

\ espo y M(t), dete

Equation (10.7) from the likelihaod function for individual events, and ll-ﬁ:“::o:-l

ness-of-fit parameter 2, determin i ikeli
e dam:x ermined by Equation (8.7) from the likelihood function

x* = =2In[.£(+)] + constant (10.9)

Illl ;he tI]i‘mjt of A large puqnber of events, the two methods must yield the same vailue
; or the maximum-likelihood estimate of the parameter 7. In both cases the likeli-
ood function will be a Gaussian function of the parameter near the oplimum value

‘ T —1')?
A7) exp(-gﬁ—)-) {10.10)

S0 we can expect M(71), like 2 i i i
s orT'f!Bc (7), like x%(7), 10 vary quadratically with the parameter 7 in the
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EXAMPLE 10.1b  Let us consider the simplest form of this problem. Assume that
the unknown mean lifetime is sufficiently short so that our apparatus is large enough
10 include many lifetimes and, therefore, the loss of pasticles that decay at very long
times is negligible. Let us also nssume that our equipment can detect pasticles at very
short as well as very long times. Then the limits on the normalization integral of Equa-
tion (10.5) become ¢, = 0 and 1, = = and A, is the same for every event and is given
by A; = 1/t. The likelihood function becames

.é(f}=l'[Aae""'=I"I%: (10.11)

with loganthm
M(t)=In[£ (7))= -;l-zr,-—N'ln'r (10.12)

We can obtain the maximum of Equation (10.12) by taking the derivative af
M(x) with respect 1o 7 and sekting itto 0:

dd{) _d] | ~
o _d'r[ 1'2':" Nln-rl s
_1 - N_ - (10.13)
et g
The solution is T = Z¢/N; that is, the maximum-likelihood estimate of the mean life is
just the mean of the individual lifetime measurements. We should have reached the
same result if we had found the maximum of £(1) from Equation (10,11).

EXAMPLE 10.1¢  Suppose that we repeat the experiment, but with poorer experi-
mental resolution so thal we cannot distinguish the decay vertex (xz, ¥» ;) from the
creation vertex (x;, ¥, 7)) unless they are separated by o distance d,. For simplicity, we
assumne that the decaying particles are all produced with the same veloeity, so that the
lower cutoff distance o, translates into the sume lower cutoff in time f, for all events.
{In an zcwal experiment, of course, the decaying particles would be produced with
various velocities, so that the calculated lower cutoff time ¢ would vary from event o

evenl.)

For this example, the normalization integral of Equation (10.5) becomes

Ailze-r,ftd,j =1 (10.14)
ty
which gives
er,/t
A= m (10.15)

The liketihood function becomes

N N
L{D)=TTAe™"=T]
=1 i=1

17
Cie e—.l,h
T

10.16)

I
am

VERY Sred AL Lk LR G £l
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so that
= [’l‘f.'l
M=In £ =% = - ST (10.17)
Setting
dM(z)
o =0 (10.18)
gives
4 L fln=1] n-t] N
Lsfstondesfd oo wom
T
or
T I
N N I (10.20}

As we should expect, the lifetime T would h i
s ave been o if we h
neglecied to take account of the cutoff at short times. s

EXAMPLE 10.1d  Let us consider a more realisti ]
. listic problem in which we h:
short and long cutoifs on the observable path. We also assume that the un;nt;:ep::ll:j

¢les are produced at variow i i
5 locations wit i .
vectors p. hin the target and with various momentum

(]05)Fgr this clzxnmple. we must ca_lculme the normalization integral, Equation
ue .mi,mﬁ::mle ):1 for each event with individual values for 1, and r, determined from
m and maximum distance cutoffs, 4, and d,, respective i
i naxi A i ec )
expression for the likelihood function is l s Sepestiiely Rinmsulig

N N 11
L) =[JAe = [—"’—e_,T]] (10.21)

e AL afe-tir
il i =] [
M(x)=1In[.£(x)]
Setting 10 zero the derivative of M(T) with i

£ i respect to 7 gives us the ti
Zc:l' :;tl: ;:fl:l}ur::—l:#ehhu;)ﬂ vatue of 7. However, the resulting equation ;2:2(132

yucally for 7 although it could be solved by inte i

ugh rpolation (see Appendix

A). We chaose, rather, 1o maximize M(7) by a one-dimensional gﬁd-searchpmpelhod

because search methods are more i
: generally applicable to maximum-likeli
problems and can readily be extended to multiple parameter problems. Hhelihoed

10.2 COMPUTER EXAMPLE

Sample Maximum Likelihood Fit

t\:\‘(s Ffje tI}c program MAXLIKE to select and analyze the 598 events that survived
iductal area cuts, from the 1000-event uncorrecied data sample gencrated in




s
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Example 10.1a. The events were generated with 7, = 0.894 % 10 "' 5 and the dis-
tribution of the selected events is illustrated by the crosses in Figure 10.3.

Program 10.1 MAXLIKE (Appendix E) A grid-search method 1o maximize the
logarithm of the likelihood function of Equation (10.21}. The routines have been writ-
ten specifically for Example 10.1d.

STARTUP sets the range of the parameter TAU for the search.

FETCHDATA assigns the input daia file, reads the limits of the fiducial region
{d, and dy), reads data for individual events.

SEARCH sets and increments TAU and calls LOGLIKE, which retums the loga-
rithm of the likelihood function M. Compares each calculated value of M to the pre-
ceding value. Terminates the search when M stops increasing and starts to decrease,
indicaung that M has passed through a local maximum. At termination, fits a parabola
1o the last three points 10 find a better estimate of TAU at the maximum.

LOGLIKE calls LOGPROB to find the logarithm of the probability density for
each event; sums to calculate the fogarithm of the likelihood function.

LoGPROB calculates the logarithin of the probability density for an event.
ERROR calculates the uncertainty SIGTAU in TAUATMIN, the maximum hke-
lihood value of the parameter TAU, by finding the change in TAU needed to decrease
Mby AM = 112,

PLOTLIKECURVE (Not listed) calcutates and plots the shape of the likelihood
function in the region of the maximum. Plots a Gaussian curve with mean and stan-
dard deviation equal to TAUMIN and DTAU.

Grid-Search Solution

At each step the program increments T by a preset amount At and repeats the cal-
culation until M(T) has passed through a maximum and has started to decrease. The
program fits a parabola to the three points that bracket the maximum (o find the
value 7' at the maximum of M(+). For a more detailed problem, the program could
be written to repeat the calculation with smaller values of At to find a better esti-
mate of 7', as in the fitting examples in Chapter B. Either the grid- or gradient-
search method of Chapter 8 could be adapted to solve multiparameter problems.

Results of the Fit

We analyzed the data set twice: first with data selected in the nominal fiducial region
(10 cm to 40 cm), which gave v° = (0.943 = 0.05%) X 10"'% for the 598 evenis that
survived the cut, and then, (o test the sensitivity of the calculation to our choice of
fiducial region, with data selected in the less-appropriate fiducial region with 4, = 10
cmand d; = 20 cm, which gave ' = (0.78 = 0.14) x 10~ "% for the 373 events that
survived this cut. Plots of the relative values of the likelihood function versus trial
values of the parameter 7 are shown as crosses in Figure 10.4a for the data selected
in the nominal fiducial region and in Figure 10.4b for data selected in the less-
appropriate (iducial region. As expected, the incorrect fiducial region clearly selects
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FIGURE 10.4
ll;:lmive values of the likelihood fun
fiducial cuts for the decay veriex, The data points are indicated by crosses; the smooth Gaussian

obtained in the two fits. {a) Nominal fiducial cuts: [0 - 40 cm; 598 events survived: 1° = 0.943 x

10°%s, o = 0,059 X 1095 () In H
0 s o ;f ) Incorrect fiducial cuts: 10 - 20 cm; 373 evenis survived; +' = 078

fewer events and, therefore, gives a less-precise result. In an ac 1
::;“]:, hn\: l;'o cons!d_er a u_-nde-o_ﬂ' between the number of sur\l.:::negxgsz::: l;l:; t‘hv:
* ple, and the precision with wh_ld! those surviving events could be measured, and
oos:‘;murbﬂducml Tegton to maximize the overall quality of the resuit. '
hould ;e observed thm_. fo.ra sufficiently large event sampie, the likelihood function
come Gaussian in the parameters in the vicinity of a x? minimum (or a
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maximum of the likelihood function) accordirllli “lj'l?q::l;g:: C{J ghl%e\zl}l]zr; 1'0 nlsF lll:
AT imizes the likeliho 3
value of the p eter 7 that maximizes i e T
i d from Equation (10.10), wi
.4a and 10.4b Gaussian curves calculate: I p
;rzsellg'ln?ncd by the respective fits. Both the data pou_us and the Gm:;s;a:;l;:ﬁ;
have been scaled to unit height at v = 7', The d_nla points of ﬁilredam. Flascly
follow the curve; in the lower statistics example in Figure 10.4b, the poi

part from the curve considerably.

Uncertainties

i 1 ion of 7', we found the change in 7
i t:i:rz';esm?yat;iiotr fge;]rzlnl;mi:::alue at the m?ximum -r’l(corre-
nececsjsinaryl:roan increase of x2 by I or a change of e~ "2 in the likelihood fu:ncuclm l.‘glj-
SBI::I:mseglhe likelihood function for the larger sample_(ﬁgure llg.t:):)s(; :;:Fagmry,
lowed the Gaussian form, our estimate of the uncertainty shcl)llll e
However, the smaller sample (Figure 10.4b) was skewed from 1: a sl a;nmeler
our estim'nle of the standard deviation might be somewhat lo:}v. n?;;_ mmlz irahi
fits it is often useful to plot contours gf XZC{:: c::'rbl!l) a;s a function of p
I'amﬂg_rhs i ﬂ:ﬁ?:r;n:i?l;l;?s- Eo :eslima?e the uncertainty il! a parameter nl:ler
perfomli‘:lr;a maximum-likelihood fit. If the distribution of ﬂ!e Ilz‘gllli;;Od function
is sufficiently close to a Gaussian, we can find o, from Equation (8.11):

2 [@*M(7 )“'
T =\ o
i i although it is possible for
iti ble to calculate Equation ( ]0.?2) exacdy ( ough o
2:1'1" ;i:?r‘:llpl]):)“:vei:an find the second derivative by taking finite differences as dis

i dix A. .
cmse?flagﬁﬁ:?ihood function does not follow the Gaussian distribution, we can try

i i ikeli i find limiting values that include
ical integration of the likelihood function to g values & ¢
Eggll;l;’ﬂgf the lgrl?tl area, corresponding lg the (ll ;?;)darsoﬂr:zr:’ (l:hrr;t. f;A:lsc:ll:u
ivel ted by Orear w hat, |
tively, we may use a method sugges ; i i
les, where the likelihood function may not very anlike, ;
;‘:gr:mg:f:ﬂ.lculme an average value of the second derivative through the equation

M |[0°M/da?] £(a)da
W |Ll@)da

i the allowable range of
i unknown parameter and the integrals are over :
::\:cmafa::l;?;. This pml::edurc has the advanmge_ov?r t!llc lpelhod of liiqualtlllzn
(10 52) of giving more weight to the tails .of the distribution in cases where they
: lowly than those of a Gaussian curve. )
i 05121;: fnelhgd of determining the uncertainties in the parameters is ::;::; 3
Monte Carlo calculation to produce simulated data sets, comparable to our m:

(10.22)

(10.23)
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data, and to use the method outlined in Chapter 11 for determining confidence lovels
for our results. This method has the advaniage thay it depends only on the assump-
tions made in the Monte Carlo generation, and not on any statistical expeciations
about the shape of the likelihood function. In many experiments, especially those
with low statistics, it provides the most reliable estimate of parameler uncentainties.

Goodness of Fit

One disadvantage of the direct maximum-likelihood method is that it does not pro-
vide a convenient test of the quality of the fit. The value at the peak of the likelihood
function itself is not useful because it represents only the maximized probability for
obtaining our panicular experimental result and we have no way of predicting the
expected probability.

An estimate of the goodness of fit can be obtained by making a histogram of
the data and comparing it to a prediction based on our best estimate of the parame-
ters. A Monte Carlo simulation of the experiment may be required to calculate the
predicted distribution, with o X2 test o compare the data to the prediction.

It is not always clear Just which data variable should be histogrammed for this
purpose. We would like to find that variable on which the paraimelers depend most
strongly. For our sampie prablem, the lifetime  in the rest frames of the particles is
an obvious choice, because that js the variable we would choose if we were o solve
the problem by the least-squares meihod, However, it might be wise 10 iry plots of
several variables 1o be sure that the fit s satisfactory. To test, we could generate with
our Monte Carlo program a large sample of events based on the parameters discoy-
ered in each search, apply the fiducial cuts, and calculate x? from the agreement be-
tween the Monte Carlo results and our data sample. We should be aware that,
because we did not actually minimize y2 for the experimental distribution with re-

spect to the parameters, a satisfactory value of x? may be at best an indication that
nothing is drastically wrong with the solution,

SUMMARY
Normalized Pprobabifity density funcrion:

R-zp(x‘:,ﬂ',az,. . Oam}
Likelihood function:

N
.[(a,, A3 ..., m]= qﬂ
Single-event probability densiry: P = A, p(x; a) where A ; is the detection efficiency
and p(x;; a) is proportional to the interaction probabitity
Logarithm of likelihood functio: M=1n £=3%1n P,
Maximization of £ or of M: 3.£{da; = 0 or dM{da; = 0 for all a
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Gaussian form of likelihood function for large data sample:
2

ceoe(822)

Uncertainties in parameters:

-1

2
day
Method for low statistics:

™M {a*M/8a?) £(a)da

aa’ | £ (a) da

EXERCISES

10.1. In a scattering experiment, the angles of the scnftlzn:d gl:.\nu::llisc ia;:nrtn:::ulr:; :lnl;l a::
cosines of the angles in the center-of-mass rest frame B et
culaied and recorded. Fifty such measurements, " e dit
filz: a;:)c:l a, + a; cos’®, are listed in the table. Use the direct maximum llkehhm::
elh)od o c'.lr.terrtul ine the values of the parameters g, and ay h!o}e thatit is nec:s‘:la:yme
l::mven the distribution function y{x;)to a normaliu_d pmbpbulny function n.nd al
normalization constant will be different for each pair of ial values of 4, and a;.

099 -0983 -0356 ~—0946 -0933  -0923 :&zzg 0910
Cos -o7e  -07M -o71  <071s 0615 -066s O
Tog  -0s; 052 -OS8  -049 04T 040 O
—0403 031 -0305 —0281 =070 0. o 0214

Qe 044 068 0586 06w 0677 0721 OO

076s 0785 0190 0393 0877 089%6 O !

0.948 0993

inties i and a, are
all amount of dala, the uncernainues in |l19 parameters a; 4
Eoc‘lm“x?tralmt;: Talues of the parameters are not very mmngﬁtl. Therefore, to co;ng
plelacrgl:c problem, you should use the Monte Carlo progmm written for Exemsem
mgﬂnmujmemumﬂmymcdculaﬁmlofmqtmmmmmhh
10.2. Students in an undergraduate physics laboratory determined the mur b Imzpcmn“ e
by measuring graphically the energies a.l'«:‘l Lh; momcnl}IE :le::gu; ncmﬁuﬁ dyroa
- meson into which the A hyperons decayed. Because o e frrar's
s, the calculated square of the masses of the decaying p o
&E::::‘T é:ussim distribution that is limited on the Im_v-mass side by _(M,s-a- ::;I)bcm
1.1617 (GeVic?)?, but is not limited an the ‘high-.mn.ss side. 'I'helfullnwmg
n;prescm squares of the calculated masses in units of (GeVIc2y,

3701 12303 13655 12042
12608 12145 12539 14230 13963 1.

::ﬁg(‘) 1.2086 12118 12078 12726 l‘i;;g :‘lg:g :']rﬁg :% :gﬁ
12525 13615 11855 12697 12044 ). it il l-;sm ’.‘743 i
2856 1.1980 1.2595 1.1721 1.2608 1.1 . 4
:2?_(5)-;2 :.2655 12316 12372 12969 12015 1.2000 11677 1.2080 1.1893
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Use the direct maximum-likelihood method to fit a truncated Gaussian to these data 10
determine the maximum-likelihood value of the mass of the squared particle. A search
in two-parameter space will be required since neither the mean nor the width of the
distribution is known.

Note that it is necessary to calculate numerically the normalization of the trun-
cated Gaussian for each pair of trial values of the mean and standard deviation of the
Gaussian function. It is advisable to set up a table of the integral of the standard
Gaussian and to use interpolation 10 find the desired normalizations. A simple aulo-
matic or manual grid search will suffice for maximizing the likelihood function.

103. Use Program 5.4 (available on the website) to generate 1000 sample kaon decay

events with nominal mean life T = 0.894 X [0-'05,

(a) Plot a histogram of the times of flight of all the generated kaoans in their awn rest
frames (proper times).

(b) Use Program 10.1 (available on the website), with nominal fiducial cuts on your
data (d, = 10.0 cm and d, = 40 cm) to repeat the analysis of Example 10.1d 10
find the maximum likelihood solution 7 for the kaon mean life. Plot a histogram
of the events that survive the cus,

(¢) With the value of ', which you determined in part (b), and random number seeds
that are different from those used in par (a), generate 20,000 evenis 1o serve as
your estimate of the parent distribution. Apply the nominal fiducial cuts to these
data and plot a histogram of the data in the same bins as you used in part (b).

(d) Calculate x* for the agreement between your “experimental” histogram and the
surviving events fram the “parent” distnbution. If the numbers of events in your
bins of the parent distribution are large enough, their uncertainties can be ignored

in this calculation. If they are not, you must use the combined statistical errors of
the two distributions when calculating x.

Bt e, e o = . .




CHAPTER

11

TESTING
THE FIT

11.1 x*TESTFOR GOODNESS OF FIT

The method of least squares is based on the hypo_lhcsis that the optimum dezi_rllg‘;
tion of a set of data 1s one that minimizes th.c weighted sum nf_ Llwil squ;r:rsi.ud e
deviation of the data y; from the fitting function y(x). Tlge sum is ; as-nt e
the variance of the fit %, which is an estimate of the variance of t ::ln ata in.ts o
function y(x;}, which is linear in m parameiers and is fitted to N daia points,

have
:,__I_EI |/{J'|1 ' YA II ='—1'—2W.-[)’,--JV(X,)]2 (11.1)
“N=-m  (I/NE(l/e}) N-—m
i dom for fitting N data
he factor v = N — m is the number of degrees of free fiuir
:(:lif\r:: :il:lp.llied in the unlabeled sums) with m parameters and the weighting factor
for each measurement is given by

et __, (11.2)
M 7N/
the inverse of the variance o} that describes the uncertainties in each point, normal-

[ srage of all the weighting factors. - )
red l?l'il::::r:nni: of the fit s? is also characterized by the statistic x* defined in

Equation (7.5) for polynomials:
1
xX'=3 L—‘:[y.- - )'(x.-)]‘] (11.3)
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with
¥ix) = ‘2 afilr)

The relationship between 5* and x* can be seen mast easily by comparing s*
with the reduced chi-square x2,

X = T e (11.4)

where (o) is the weighted average of the individual variances

o WNE((/eed) |1 o L
o= 1) —[NEGE] (11.5)

and is equivalent 1o o? if the uncertainties are all equal, o, = o.

The parent variance of the dawa o2 is a characteristic of the dispersion of the
data about the parent distribution and is not descriptive of the fit. The estimated
variance of the fit 57, however, is characteristic of both the spread of the data and the
accuracy of the fit. The definition of x?, as the ratio of the estimated variance s7 to
the parent variance o2 limes the number of degrees of freedom v, makes il a conve-
nient measure of the goodness of fit.

If the fitting function is a good approximation to the parent function, then the
estimated variance s* should agree well with the parent variance o?, and the value
of the reduced chi-square should be approximately unity, x} = 1. If the fining func-
tion is not appropriate for describing the data, the deviations will be larger and the
estimated variance will be too large, yielding a value of x? greater than 1. A value
of x! less than ! does not necessarily indicate a better fit, however; it is simply a
consequence of the fact that there exists an uncertainty in the determination of 57,
and the observed values of x; will fluctuate from expenment to expenment. A value
of x that is very small may indicate an error in the assignment of the uncertainties
in the measured variables.

Distribution of x2

The probability distribution function for x* with v degrees of freedom is given by
i ()22
P = T G)

The chi-square distribution of Equation (11.6) is derived in many texts on statistics'
but we shall simply quote the results here.

The gamma function ['(n) is equivalent to the factorial function »! extended to
nonintegral arguments. It is defined for integral and half-integral arguments by the
values at arguments of 1 and ¥ and a recursion relation:

(11.6)

'See Pugh and Winslow (1966), Section 12-5.
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r)=1 TIA=Vz r(u—u=ur(n)}

For integrat values of n

T(n+ 1)=n! n=01,... » (11D

For half-integral values of n
T+ 1)=n(n— 1) —2)--- (%) (A V)

n="%.%",...

. For
Calculating factorial functions can lead to computer oyelrtl'.lo:n [;rﬂl;l:r:s F 5
computational purposes it is convenient to replace the factonal fo amm

function by a form of Stirling’s approximation’: )
Iin)= V2we nl~ V(1 + 0.0833/n) (11.8)

' ich i ~ Il n = V3, avoids both the
i imation, which is accurate 10 9.1% for al 2 D .
mfnm’;?r"::emow in calculating factorials and the necessity lD't;'h tis:.lr:fle?:ff
cpll;ooosing the appropriate form for integral or halfxwlgr:}c:ﬁl::::léulnﬁng iy
A : =

i uter speed. Calculating exponel‘mals may be slowt vy
p clsnn;ﬁt highpspeed usually is not required for nonrepetitive calcula;ons —
= If the function of the parent population is denoted by y(x), the va 8

delemlined from lhc pal'ﬂmﬂcrs of the pml mﬂcﬁm
Xo E: Zly‘ jﬂ(x( l (ll_g'
{ci l ) }

i ithy = . If the
is distributed according to Equnlmn_{ll.ﬁ) v:uh v = N degrees o{fe gec‘::n:ame e
function y(x) used in the deu:nnina_um‘l ol: X -::m':lml:l;‘.[.1 m p?:g:; m_io.n i
x* calculated from Equation (11.3) is distributed according
=N~ freedom. _ o )
’ NMo;: ::egﬂrflegn.:im?:urposes than the probability density d;st.nlal.;t.u:n:l p,‘z(x:.‘:?
of Equation (11.6) is the integral probability P{x"; v) between x* = x?and x ;

Bix*v)= L:P,(xz; v) dx? (11.10)

i il dom set of n data points drawn
i .10) describes the probability that a ran,
ﬁgl:l:g: ;:I:ent)disuibulion would yield a value of x? equal to or greater than the

tabulated value.

1. CHiI2PROB (Appendix E) x*-probability. ) )
:):r:ﬁrlg:clilalDENs compuiation of the function g,(x’; v) [Equation (11.6)) using
i A to approximate the gamma function. . . .
'gﬂ;iigﬂﬂf,ﬁ"hﬁ‘m&d caleutation of the integral, Equation (1 uo:;. :;; Slm s
rule. If varinble overflow is a problem, double-precision variables coul em| 5

¥Review of Particle Properties” (1986), p. 53.
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The calculation returns the integral 10 an accuracy of about %0.1%. The wrade-
off on accuracy versus speed of computation is controlled by the value of the constant

DX, the integration step,

For the special case of | degree of freedom, v = |1, the x*-probability density

function of Equation (11.6) takes the form

P(x¥v)= ey

which is difficult to integrate numerically near x = 0, However, the integral is finite,
and the function can be expanded in a Taylor series about x = 0 and integrated ana-

Iytically. We use that technique for v = | and y2 < 2.
Similarly, for v = 2, where the function takes the form

pahv)=er22

the analytic form of the integral is used.

For a fitting function that is a £ood approximation to the parent function, the
experimental value of 2 should be close 10 one and the probability from Equation
(11.10) should be approximately 0.5. For poorer fits, the values of y2 will be larger
and the associated probability will be smaller. There is an ambiguity in interpreting
the probability because x? is a function of the quality of the data as well as the
choice of parent function, so that even correct fitting functions occasionally yield
large values of x2. However, the probability of Equation (11.10) is genenally either
reasonably close 1o 0.5, indicating a reasonable fit, or unreasonably small, indicar-
ing a bad fit. In fact, for most purposes, the reduced chi-square x? is an adequate
measure of the probability directly, The probability will be reasonably close to 0.5

s0 long as y2is reasonably close to 1; that is, less than about L.

Example 11.1. Consider the solution of the problem of fitting two exponentinl
curves plus a linear background to the data from the radioactive silver decay of
Example B.1. The fi1 (see Table 8.5) gave x2 = 66.1 for 54 degrees of freedom, or
X = 1.22, with Py(x* v} = 12.4%. We can interpret this result in the following way.
Assume that the parameters we found are, indeed, ihe Parametcrs of the parent distri-
bution. Then, suppose that we were to Tepeat our experiment many times, drawing
many different data samples from that parent distribution. Our result indicates tha in
12.4% of those experiments we should expect to obtain fits that are no better than that

listed in Table 8.5,

112 LINEAR-CORRELATION
COEFFICIENT

Let us assume that we have made measurements of pairs of quantities x, and ¥ We
know from the previous chapters how to fit a function 10 these data by the least-

xand y. What we are asking here is whether or not the variations in the observed

values of one quantity y are correlated with the variations in the measured
the other quantity x.
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For example, if, as in Example 6.1, we were 1o measure the potential differ-
ence across segments of a current-carrying wire as a function of the segment length,
we should find a definite and reproducible correlation between the two quantities.
But if we were 1o measure the potential of the wire as a function of time, even
though there might be fluctuations in the observations, we should not find any sig-
nificant reproducible long-term relationship between the pairs of measurements.

On the basis of our discussion in Chapter 6, we can develop a quantitative
measure of the degree of correlation or the probability that a linear relationship
exists between two observed quantitics. We can construct a linear-correlation
coefficient r that will indicate quantitatively whether or not we are justified in de-
termining even the simplest linear correspondence between the two quantities.

Reciprocity in Fitting x Versus y
Qur data consist of pairs of measurements (x,, y,). If we consider the quantity y to be
the dependent variable, then we want to know if the data correspond 10 a straight
line of the form

y=a+bx (1.1

We have already developed the analytical solution for the coeflicient b, which rep-
resenis the slope of the fitted line given in Equation (6.12):

Ny, = ZxZy,

b= —-_-_L—NZI}' ) (11.12)
where the weighting factors in o, have been omitted for clarity. If there is no corve-
lation between the quantities x and y, then there will be no tendency for the values
of y 1o increase or decrease with increasing x, and, therefore, the least-squares fit
must yield a horizontal straight line with a slope b = 0. But the value of b by itself
cannot be a good measure of the degree of correlation because a relationship might

exist that included a very small slope.
Because we are discussing the interrelationship between the variables x and y,
we can equally well consider x as a function of y and ask if the data correspond 1o a

straight-line form

x=a' +b'y (11.13)
The values of the coefficients a' and b’ will be different from the values of the co-
efficients a and b in Equation (11.11), but they are related if the variables x and y are

comrelated.
The analytical solution for the inverse slope b’ is similar to that for b in Equa-

tion (11.12):

NZxy,—EZxZy;
b =i 11.14
NIy oy ]

If there is no correlation between the quantitics x and y, then the least-squares fit
must yield a horizontal straight line with a slope &” = 0.
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I there is a complete comelation between x and i
) : . then there exists : ion-
ship b_ctwecn the coefficients a and b of Equation (11.11) and betweel: a:lar:éa::P :f
Equation (11.13). To see what this relationship is, we rewrite Equation (11.13):

a 1
J’=—57+b—,x=a+bx (11.15)
and equate coefficients
- _ 1
=Ty b (11.16)

We see from Equation (11.16) that bb' = 1| for col i
) . Q = mplete correlation. If
1s no correlation, both b and &' are 0 and Equations (11.16) do not apply. \l;fe. mu;:

fore define, as a measure of the de i i
ine, gree of linear correlat i i
correlation coefficient r = \/bp': el xpeciniontul ek

r= Nzxiyl = Ex,va;
(VZx? = (Zx))2[NZyE - (Zy, 72 (11.17)

The value of r ranges from 0, when there is no correlation, 10 =1 i
complete correlation. i i nd 5'), b b
solu!I:aTr::gnitude 0 im?:ns::ngﬁ of ris the same as that of b (and b), but only the ab-

he comrelation coefficient r cannot be used di indi

CDITCli.lI.lOn..A !:rol:_oabiljly distribution for r can be degfrce:%rfu:ntf: :folf]d?mt:ssrfgn::
Gaur:smn distribution, but its evaluation requires a knowledge of the correlation co-
el?icmnl pof lhf, parent Qopulau‘on. A more common lest of ris 1o compare its value
lv;uf:l 'Ihe prpbab:[uy :_ilsmbution for the parent population that is completely uncorre-
ted; that is, for which p= 0. Such a comparison will indicate whether or not it is
probable that the data points could represent a sample derived from an uncorrelated
parent population. If this probability is small, then it is more probable that the data

points represent a sample from a parent population where the variables are correlated
For a parent population with P = 0, the probability that any random sample 0::

uncorrelated experimental data points would yj i i
! ¢ ield an ex -
tion coefficient equal to r is given by’ ’ e Shessoonds

ey e L Ty + 1)/2 o
pAriv) \/;—KP(T/z)L]U = r2ye-2/2 (11.18)

Whele v N = 2 15 thE numbcr of dﬂgleﬂs O leedo (1] in Salllll [
ff m f I an ex l‘lmenlal ]

0‘ Ndnlﬂ POH“S. Thc amma fl.lncllml fﬂ te o ll =inl v ll.l W, £
g rin snll nd alf mn egm! alues was de

Integral Probability

3] ;nom nsdeful distribution than that of Equation (11.18) is the probability P(r; N)
t a random sample of N uncorrelated experimental data points would yi‘elci an

For a derivation ses Pugh and Winstow (1966), Section 12-8.
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experimental linear-correlation coefficient as large as or larger than the observed
value of |r|. This probability is the integral of p,(r; v) forv = N — 2

”riﬂW:zl,:,Px("- Wdr  v=N-2 (11.19)

With this definition, P(r; N) indicates the probability that the observed data
could have come from an uncorrelated {p = 0) parent population. A small value
of P(r; N) implies that the observed variables are probably correlated.

Because Equation (11.19) cannot be integrated analytically, the function must
be integrated either by making a series expansion of the argument and integrating
term by term or by performing a numerical integration. With fast computers, the lat-
ter method is more convenient and generally applicable to such problems.

Progrom 11.2 LCORLATE (Appendix E) Cormelation probability computations.
LCORPROB compues the probability of Equation (11.12) by numerical integra
tion. Input vanables RCORR and NOBSERV comespond to the value of the ex-
perimental linear-correlation coefficient and the number of abservations, respectively.
{The number of degrees of freedom is the number of observations minus 2.) The pro-
gram uses the following rowines: L.INCORREL computes the function p(r; v) of
Equation (11.18) using the approximation of Equation (11.8) for the gamma funcuon
(calculated by the function GAMMA n the program unit GENUTIL). Because
LINCORREL is intended to be used as an argument to the integration routine
SIMPSORN, it can have only one argument. The parameter v is passed in the global
variable PS1MPS by the calling routine.

LINCORPROB computes P,(r; v) of Equation (11.19) by numerically integrating
LiNCORREL by Simpson's rule. The calculation returns the inlegral to an accuracy
of about =0.01, The tade-off on accuracy versus speed of computation is controlled
by the value of the constant DX, the integration step.

Example 11.2. For the data of Example 6.1, the linear-correlation coefficient r can
be calculated from Equation (11.17) with the data of Table 6.1:

. 9% 779.3 — 450.0 % 12.44
V(9 % 28,500 — 450.0%) X {9 X 21.32 — 12.44%)
=0.9998

The probability for determining, from an uncomelated population with® — 2 =7
degrees of frecdom, a value of r equal 10 or larger than the observed value, can be cal-
cuiated from Equation (11.19) {(see Table C.3). The result P.{r; N} < 0.001% indicates
that it is extremely improbable that the variables x and V are linearly uncorrelated. Thus,
the probability 1s high that the vanables are correlated and the lmear fit is justified,

Similarly, in the experiment of Example 6.2, the linear-correlation coeflicient
can be caleulated from Equation (11.17) by including the weighting factors of = y; as
in Table 6.2, 50 that, for example, N is replaced by Zw; and Zx; is replaced by Zw,x;,

and so forth:

e 0.03570 X 81.02 — 0.1868 = 10
VA(0.03570 x 1.912 - 0.18687) X (0.03570 X 3693 — 107)
= 0.9939
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Again, the probability £.({r N) for r = +0 i
! 5 = +0.9938 withv = 10 -2 =8
Ic;i ‘t;:al:dom is very smnll'(< 0.001%), indicating that the change in counting mfeg g‘::
1ly correlated to 3 high degree of probability with x = 1/r?, the inverse s f
the distance between the saurce and counter. ' o

1.3 MULTIVARIABLE CORRELATIONS
if the dependent variable ¥i is a function of more than one variable,

o Vimat by +byxy +byxy 4 (11.20)
;ﬁeﬂught investigate the corre!ntifm between y, and each of the independent vari-
o : n.:?. ob: we might also enquire into the possibility of correlation between differ-
o pmv:;wess :;;Iscl:se:c; we us: :J?e first subseript i to represent the observation, as in

) ussions, and the second subscript f to represent the particuls r vari-
able under investigation. The variables x;; could be different varinbleslt or lf::;r cr:lld

be functions of x, Jx), as in Cha i
) f g, fx), pler 7. We shall rewrite Equati
linear-correlation coefficient r in terms of another quanr:i:; S%l‘lalmn (D forthe

We define the sample covarigice s},:

PO |
=07 Sl S - 5 (1t2n

where the means X; and X, are given by

ij‘l'ZI' and X =l
N2 & NEI’* (11.22)

and the sums are taken over the ran ipt /
1 ! ge of the subscript / from 1 to N, The weights
been omitted for clarity. With this definition, the sample variance for one v.'lf'iabll:fv\;3
fs

) 1
H 2 e ¥
GEGE gy -5 (11.23)

is analogous 1o the sample variance 52 defined in Equation (1.9):

I
o &b ap (11.24)

111[1 ;::lrzgr;?‘::] éor:me lha; the sample variznces s} defined by Equation (11.23) are
n . . - y
rosouie ol ges of varation of the variables and not of the uncertainties in
Equation (11.21) can be rewritten for ¢ i i
Equ om| i
substituting the definitions of Equation (11.22): A Faaion (11 ey

=

1
sh= N=1 PR (EFESATCAES )|

| &
TN Dxyxn — XE,) (11.25)
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If we substitute x;; for x; and x;, for y; in Equation ( I 1.17), we ::;m n;csﬁnc the sample
linear-correlation coefficient between any two variables x; and x;

—i (11.26)
=

5,5
; i 2, 52, and s} given by Equations (11.23) and
ariances and variances 53, 5, an . _
;vllllhzg;?;'l?:s. the linear-comrelation (:Joeﬁicienl between the jth variable x; and the
dependent variable y is given by

=Sk 127

Ty
3j%y

Similarly, the linear-correlation coefficient of the parent population of which
the data are a sample is defined as

=Tk (11.28)

& i d covariances of the parent popula-
where o}, of, and of; are the true variances an ces of the parent popula-
tion. These linear-correlation coefficients are also known as p

i fficients. _ _ . )
Iauon:rt::h these definitions we can consider either the correlation between the de

pendent variable and any other vanable r;, or the correlation between any two vari-
ables ry.

Polynomials .
In Chapter 7 we investigated functional refationships between y and x of the form

y=agtax+axttax+--- (11.29)

In a sense, this is a variation on the linear relationship of Equation (ll..20) w:fi?bilj;z
powers of the single independent vaniable x are cons.'ndered to be vnnglu: v i
x, = x/. The correlation between the independent variable y uqd the mi l.t.:m:l in b
pi)wer series of Equation (11.29), therefore, can be expressed in terms of Eq

(11.23) through (11.27):

sl
...
Ty Fi%
3 --..._!__ P S m 2]
=TT [Er.“" (Zx] (1130)
| 1
S=75 l[zys - chy.)*]

=g E—szm.-]
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Weighted Fit

If the uncenainties in the data points are not all equal (o; # o), we must include the
individual standard deviations o as weighting factors in the definition of variances,
covariances, and correlation coefficients. From Chapter 6 the prescription for intro-
ducing weighting is to multiply each term in the sum by l/al

The formula for the correlation remains the same as Equations (11.26) and
(11.27), but the formulas of Equations (11.21) and (11.23) for calculating the vari-
ances and covariances must be modified:

sh= - DE[1/7) (o = %) (xa - i)

g (/N)Z(1/a7)

AN = DE[(1/0]) (x; ~ 2] (11.31)
(1/N)2(1/a?)

where the means X, and , are also weighted means

S}BJE-B

X= -Ei'ﬁ = E(x,-‘-/u-‘?)
TN X(/a))

The weighting factors

= 1/o?
" 7N (11.32)

for each data point are the inverse of the variances o7 that describe the uncenainties
in each point, normalized to the average of ail the weighting factors.

Multiple-Correlation Coefficient

We can extrapolate the concept of the linear-correlation coefficient, which charac-
terizes the correlation between two variables at lime, to include multiple correla-
tions between groups of variables taken simultaneously. The linear-correlation
coefiicient r of Equation (11.17) betwees ¥ and x can be expressed in terms of the
variances and covariances of Equation (11.31) and the slope b of a straight-line fit
given in Equation ( 11.12):

5! 52
i (11.33)
a2

In analogy with this definition of the linear-correlation coefficient, we define the
multiple-correlation coefficient R to be the sum over similar terms for the variables
of Equation (11.20):

" _‘-2 a
w2 (”’ﬁ) =2 (”:f‘ﬁ,) (11.34)
i - y

4
The linear-correlation coefTicient r is useful for testing whether one particular
variable should be included in the theoretical function that is fitted to the data. The
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multiple-correlation coefficient R characterizes the fit of the data to the entire func-
tion. A comparison of the multiple-correlation coefficient for different functions is
therefore useful in optimizing the thearetical functionazl form.

We shall discuss in the following sections how to use these correlation coeffi-
cients to determine the validity of including each term in the polynomial of Equa-
tion (11.29) or the series of arbitrary functions of Equation (11.20).

114 FTEST

As noted in Section 11.1, the x* test is somewhat ambiguous unless the form of the
parent function is known, because the statistic x* measures not only the discrepancy
between the estimated function and the parent function, but also the deviations be-
tween the data and the parent function simultancously. We would prefer a test that
separates these two lypes of information so that we can concentrae on the former
type. One such test is the F 1est, which combines two different methods of deter-
mining a x* statistic and compares the results to see if their relation is reasonable.

F Distribution
If two statistic x] and x3, which follow the X2 distribution, have been determined,
the ratio of the reduced chi-squareds, xJ; and Xy, is distributed according to the
F distribution®
=Xi/n (11.35)
=38
with probability density function
l"[(‘vl 4 "2)/2] vi w2 flf!(v. 2)

B )= F i) T e (10
where v, and v, are the numbers of degrees of freedom corresponding to x{ and X3
By the definition of x; [see Equation (11.4)), a ratio of ratios of variances

v

X, _st/at
== (11.37)
X3, si/ai
is also distributed as F, where s, and s, are experimental estimates of standard devia-
tions o, and o, pertaining (o some characteristic of the same or different distributions.
As with our tests of x? and the linear-correlation coefficient r, we shall be
more interested in the integral probability

By ) = [l (11.38)
which describes the probability of observing such a large value of F from a random

set of data when compared 1o the correct fitting function. The integral function
PH(F; vy, v;) is wbulated and graphed in Table C.5 for o wide range of F, v;, and v.

15¢c Pugh and Winslow (1966), Section §2-7, for a derivation.

Testing The Fit 205

A word of caution is 1n onder conceming the
A ! ; g the use of these tables. Because the sta-
tisuc F " Equghon (1 1.35? is defined as the ratio of two determinations of ! Wi‘l-hs(ll.ll
specifying which must be in the numerator, we can define two statistics £y, and £,
3 1 )
F =X =
’ - Xn " xn Fo el
whchl;qusl both be distributed according to the F distribution.
in some experiment our calculations yield a panticular valee of F,;, w
- . e :
use Table C.5 to determine whether such a large value is less than S%Ii)robui;}:
(Table C.6 nnd Figure C.6) or less than 1% probable (Table C.7 and Figure C.7). If
the test value is Iesg'. than the tabulated values, we must also make sure that it is not
too small. To do this, we compare the value

Fy=1/Fy (11.40)

to the same tables and graphs, noting that the values

zraphs, of v and v; are reversed. Th
values of v; and v, specified in Table C.5 correspond to ll|1c dcgrlecs of freedom fo‘:
the numerator and denominator of Equation (11.39), respectively.

Example 11.3. Suppose that F;; = 0.2 with v, = 2 and v, = 10. Fi
.2 , = 10. For Table C.6,
gbserved vnltu_e ofF.{m.:my be as high as 4.10 and still be exceeded by about 5% Ofl':l]::
mf observations. Sumflm'ly. we compare Fy = 1/F,; = 5.0 with the 5% point for
vy = 19 n‘nd vy = 2, which has a value of 19.4. Because the values of Fy; and £y, are
well within the 5% limits, we can have confidence in the fit. N !

What we are estimating in this example is the probabili
) is y Pe(F 3 v, vy) that
.F., is not too la'rge :_md the probability Pr(1/F3; vy, v)) that Fj, i.: no:ztoo' smzz)ul It
is tempting to simplify this procedure by assuming that .

Pe{(1/F i v v} = Be(Fiai vy, v2) (tL.41)
50 that our test consists of determining F such that

PF(F; vy, l’;) =0.05
with the requirement that
F>Fn>1/F

This approximation is valid for reasonabl
' : c y large values of v, and v, but not for small
values of either, as in the preceding example, where we have 4.10 > F, > 1/19.4,

Multiple-Correlation CoefTicient

There are two types of F tests that are normall
: : y performed on least-squares fittin
:::::li:lir:sn.coml:;_ls.des%nieﬁo oiesm: the entire fit and can be related 1o the mulliple%
el icient R. r, 10 be discussed later, t i i
i o ey e r, tests the inclusion of an
If we consider the sum of squares of deviations S} i i
: X associated with the d
of the data points around their mean (omitting factors oi‘ o} for clarity), N
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s2=3(y = y) (11.42)

< e u statistic that follows the x* distribution with N — 1 degrees of freedom
I(?:I;so:; l[;.;ltrameu':r § must be determined from the N data poinis). Itis a ch:;mcl::hr;
istic of quantities that follow the x? disu-ibunpn.thql they may be cxglresse :Zr e
sum of other quantities that also follow the.x- distribution such that the aum )
degrees of freedom of the original statistic is the sum of the numbers of degrees

f the terms in the sum. )
fmog;rzuimblc manipulation and reartangement, il can be shown that S} can be

expressed as the sum of the two terms,

si=F(n-¥r= Ji [(y,—s-)j_)”:la,-tﬁ-ﬁ)] + 3= Zafy -

= %03l = )0~ H+ = yeF
I-

where the fitting function is of the form

¥(x)= iﬂ,!}(xe) (11.44)
§=)
and we have
F=y=ht (11.45)

i i is distri 2 with N — 1 degrees
The lefi-hand side of Equation (11.43} is distributed as x~ with /
of I'rced:m. The right-hand term is our definition of % from the Equation (.l l.?) and
has N — m degrecs of freedom. Consequently, the middle term must be distributed
ording to the x? distribution with m = 1 degrees of freedom. ) )
e l;;gco‘:nparzcson with our definition of the mnluplc-copulauon coe[ﬁcugn! R l_:
Equation (11.34), we can express this middle ter as a fraction R2 of the statistic S3:

f‘a,E[(y. N=H=RZ(—3F (11.46)
Equation (11.43) becomes

Sy = =RZ(n-yF+(- RS (yi— ) (11.47)

S‘;' = Rls; + (| — R!)Ss (11.48)

as before, both terms on the right-hand side are distributed as x2, the first
::‘nfff.l ~ | degrees of frecdom and the second with N — m degrees of freedom.
Thus, the physical meaning of the multiplq-cprrelauqn coefficient becomes
evident. It divides the total sum of squares of deviations 5 into two parts. The first
fraction R2S? is a measure of the spread of the dependent and independent vx.mahle
data space. The second fraction, (I — R? )52, is the sum of squares of the deviations
about the regression and represents the agreement between the fit and the data.
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From the definition of Equation (11.35), we can define a ratio Fg of the two
terms in the right-hand side of Equation (11.47) that follow the F distribution with
v =m — | and with v, = N — m degrees of freedom,

__ RYm-=1) _ R? (N=m)

F“_(l —RY)AN=-m) (1 —R’)x(m— 1) G149

From this definition of Fj in terms of the multiple-correlation coefficient R, it is

clear that a large value of Fj corresponds to a good fit, where the multiple correla-

tion is good and K = [. The F test for this statistic is actually a test that the coefTi-

cients are 0 (g; = 0). So long as Fy exceeds the test value for F, we can be fairly

confident that our coefficients are nonzero. If, on the other hand, F < F, we may

conclude that at least one of the terms in the fitting function is not valid, is decreas-
ing the multiple correlation by its inclusion, and should have a coefficient of 0.

Test of Additional Term

Because of the additive nature of functions that obey the x? statistics, we can form
a new x? statistic by taking the difference of two other statistics that are distributed
as 2. In particular, if we it a set of data with a fitting function with s terms, the re-
sulting value of chi-square associated with the deviations about the regression x*(m)
has N — i degrees of freedom. If we add another term to the fitting function, the
corresponding value of chi-square x?(m + 1) has N — m — | degrees of freedom.
The difference between these two must follow the x? distribution for 1 degree of
freedom.

If we form the ratio of the difference x*(m) — x*(m + 1) to the new value
x3(m + 1), we can form a statistic F, that follows the F distribution with v, = 1 and
vw=N—-m-1:

p o= xmt 1) Ay
K_Xz(”‘"' 1)/(N—m— I)- x2

This ratio is a measure of how much the additional term has improved the value of
the reduced chi-square and should be small when the function with m + 1 terms does
not significantly improve the fit over the function with m terms. Thus, we can be con-
fident in the relative merit of the new terms if the value of F, is large. As for Fg, this
is really a test of whether the coefficient for the new term is 0 (a,, ., = 0). If F,
exceeds the test value for F, we can be fairly confident that the coefficient should not
be 0 and the term, therefore, should be included. Table C.5 and Figure C.5 are useful
for testing F,. They give the value of F comresponding to various values of the prob-
ability P=(F; 1, v;) and various values of v, for the case where v, = 1. Thus, rather
than evaluating F for critical values of the probability (for example, 5% ar 1%), we
can evaluate the probability corresponding to the observed value of F,.

A calculation of F, could be built into a linear regression program and the re-
sulting vatue compared 1o a supplied test value F, to indicate whether or not the fast
term in the series is justified, and therefore, to determine how many terms in the se-
ries should be included in the fit. However, it is probably safer, except possibly in a
large, well debugged production run involving fitting polynomials to many similar
data sets, to examine the individual values of x? along with F, and 1o adjust the

(11.50)
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number of terms in the calculation manually. One should, however, be aware that
the important figure of merit for added terms is the difference of the two values of
x 1 divided by the new value x] of the reduced chi-square.

11.5 CONFIDENCE INTERVALS

The object of data fitting is to obtain values for the parameters of the fitted function,
and the uncertainties in the parameters. The quality of the fit is indicated by x* and its
associated probability, and the uncertainties give the probabilities that our values of
the fitted parameters are good estimates of the parent parameters. Whether we esti-
mate our parameters by the least-squares method or by direct application of the max-
imum-likelihood method, as discussed in Chapter 10, we must always estimate the
uncertainty in our parameters to indicate numerically our confidence in our results.

Generally, we assume Gaussian statistics and quote the standard deviation o
in a result, where o appears in the Gaussian probability density function

1 1(x-p}
nﬂxuha)=uV6;eu)—ECL;E)] {11.51)

and determines the width of the distribution. As noted in Chapter 2, approximately
68.3% of the events of the Gaussian distribution fall within > of the mean p. and
approximately 95.4% fall within +20.

Confidence Level for One-Parameter Fit

One way of looking at the 1 standard deviation limit is to consider that, in a series of
repeated experiments, there is approximately a 68% chance of obiaining values within
* o of the mean . Of course, we usually do not know ., and perhaps not o either, but
have determined experimentally only % and s, our estimate of the parameters. How-
ever, as long as our experimental estimates ¥ and s are reasonably closc (o the true val-
ues p and o, we can state that there is approximately a 68% probability that the true
value of the measured parameter lies between £ — s and ¥ + s, or that at the 68.3%
confidence level, the true value of the parameter lies between thesc two limits.
We may wish to quote results in terms of other confidence levels. For exam-
ple, we refer 1o the %2 limit as the 95.4% confidence interval, or we may quole a
99% or 99.9% confidence level for a high-precision experiment. The conventional
lo and 2o limits are based on the Gaussian distribution, which may or may not ap-
ply to the data in question, and even an experimental distribution that nominally fol-
lows Gaussian statistics is apt (o deviate in the tails.
For any distribution, represented by the normalized probability density func-
tion, p.(x; i), we determine the probability that a measurement of the parameter will
{all between £ — a and X + b by the integral

ﬂwr”mmﬂm (11.52)

and could quote a confidence level of £, that the “true” value of the measured para-
meter is between these two values. Note that we have not specified a region that is
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Relative values of the likelihood function versus inal
! | values of the parameter for the 373-ev.
m of Example 10.1d. The data points (from Figure 10.4b}) are indicated by crosses; l:e:::id and
curves represent the results of fitling Gaussian curves separately 10 the two sides of the

distribution. Parameters determined i i
gy in the two fits are indicated on the graph. All measurements are in

symmetrical about the mean. The uncerainties in our measurcments may not be
symmetrical, nllha!.lgh the asymmetry may be hidden if we assume Gaussian statis-
ucs in our calculations. For example, the routines for finding uncenainties in para-
melers found by least-squares fitting (Chapters 7 and 8) generally nssu:m a

Gaussian distributi aram £
uncertainties. Lol eters and hence produce a single number for the

parameter 1. The data points exhibit a marked as dashed
ymumetry about the mean 1°.
curve was calculated from Equation (10.10) with parameters obtained rro;1 IJ.?: fit.

] To make a better determination of o from this curve, we consi

Bions on each side of the mean separately and estimated tw.n sep;::;dsxfii::‘: J:‘

viations, o, and Op, with the aid of Equation (1.11). To reduce the effect of the

right-hand snc!e tail on the value of o,, we imposed a cutoff at T = 1.6 and used onl

those data points below the cutoff in this calculation, d
A composite curve formed of two Gaussians with the same mean 7 but differ-

tcm valifcs of @ is shown as the solid curve in Figure 11.1. It would be reasonable

0 consider the two values of o obtained in this way as appropriale estimates of
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the uncertainty in 7, so that we could report 7' = 0.78 443, as indicated by the ar-
rows on Figure 11.1 rather than 7" = 0.78 = 0.14 as we did in Chapter 10. This is
equivalent to finding the two positions at which the logarithm of the likelihood
function has decreased by AM = V2 as discussed in Section 10.2. Clearly this result
is somewhat subjective if either side of the curve does not follow the Gaussian
form. For this example, the value of o depends on how much of the tail is included
in the calculation.

Confidence Levels for Multiparameter Fits

The definition of the confidence level in a one-parameter experiment is generally
straightforward. We can plot our data and observe if the distribution is Gaussian and
estimate directly from the distribution of the probability that the true result lies be-
ween two specified values. When two or more variables have been determined and
those variables exhibit some correlation, the definition of the confidence level be-
comes a little more difficult. Consider, for example, the detenmination of the mean
lifetimes 7, and 7, of two unstable silver isotopes of Example 8.1. The problem was
treated in Chapter 8 as a five-parameter problem, with parameters a, and as corre-
sponding Lo the two mean lifetimes, 7, and 7,, respectively, and paramelers ay, d,
and a, corresponding to the amplitudes of a uniform background and the two
decaying states. The parameters of most interest in the experiment are a, and as, and
we want to define a joint confidence interval for those two variables.

Figure 11.2 shows two sets of contours for the variation of x? as a function of
a, and as from the least-squares [it by the Marquardt method discussed in Chapter 8.
The small contours, drawn with solid lines, were calculated by holding the parame-
ters ay, 4y, and a, fixed at their optimum values (see Table 8.5) and varying a; and a5
10 obtain increases in x? of 1, 2, and 3 from the minimum value. The large contours,
shown as dashed lines, were calculated by allowing a,, az, and ay to vary to minimize
x? for each pair of values of a, and as. The contour plots cover very different ranges
because of the correlations of the displayed parumeters, a, and as, with the remain-
ing parameters a, through a;. The tilt of the closed figures on each plot indicates the
degree of corrclation of parameters a, and as with each other. In an ideal experiment,
the contours are ellipses in the region of the x* minimum and if a, and as are not cor-
related, then, with suitable scaling of the axes, the ellipses are circles.

Which plot should we use? Additionally, how do we determine a confidence
interval; that is, a region of the a,-a; space in which we estimate there is, for exam-
ple, a ~68% probability of finding the true values of the two parameters?

First, we should note that, because the fitting function, Equation (8.2), is not
linear in the parameters, the methods of testing described in the previous sections
strictly do not apply. However, we are much more likely to run into nonlinear fitting
problems than the easier linear problems, so we shall continue with this example. At
any rate, the function is linear in parameters a, through a;, and we could make a fin-
ear expansion of it, over a limited region, in the parameters a, and as. In fact, this
was the basis of a method of fiting nonlinear functions in Chapter 8.

Then, we should use the larger of the two contour diagrams to define our con-
fidence intervals. That implies that if we wish to find the standard deviation of a;
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Two sets of contours for the varialion of x? wil i i

wo x? with paramelers a, and ay in the region of the x?
minimum. Data are from the Ih:lsl:squa:':s fitby the Mnrqua:d‘l mclhfxl discnuid in Chaplxer 8. The
msmnﬂ‘ contours, drawn with solid lines, were calculated by holding parameters g, through a ﬁ;ed [
“’:Ir:p;l_;:um while varying a, and a; 1o obiain increases in x2of ), 2, and 3 fmmunmini’mum
i -t iagaecmDM..simwn as dashed fines, were calculated by allowing a,, a;, and a, to vary
0 minimize x? for each pair of values of a, and as. ’

from the contour plot, we should consider the full range of imi
Ax" = 1 contour, and not the intersection of that cnnlngur wigihc:eu:lﬂnl;li‘;“'lf,hr:sthiz
equivalent to allowing a, to assume its best values for each chosen valL:e of ¢; as we
!lav_e already assumed for the parameters a, through a;. The two dashed verlit;a;l lines
mdlcalg 'thc two limits on a, that include the | standard deviation, or 68.3% of the
probability, and the two horizontal lines indicate the 1 standard deviation limits for a
How do we know that the vertical lines enclose 68.3% of the probabitity? B;
allowing the four parameters a,, a,, 4;, and aj to find their optimum values for éach
chosen value of a, and varying a,, we have separated our y? fitting problem into two
gans: afitof ¥ d.ntn points to m — 1 parameters with N — m — | degrees of free-
dom and a variation of Ax? with a, about the minimum X2, with | degree of free-
om. As we obscm_ed in the previous section, the two variations separately must
follow their appropriate x* distributions, so our variation of Ax? obeys the x? prob-
gll_nhfy d{slnbnuon for I degree of freedom. If we look at the integrated probability
l:lﬂl:mtn:m P, for 1 d:gree of freedom [Table C.4, or calculated from Equation
(11.10)], we see that x* = 1 corresponds to 31.7% of the probability, or Ax? < |
comesponds 0 68.3%. Similarly, if we wish o ind th limits for 2 standard devia-
mem;s 0; ; n‘:;:d .l'md the limits of a, on the Ax? = 4 contour, with all other para-
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To find the 1 standard deviation region encompassed by the joins variation of
two parameters, a, and as, with all other parameters optimized, we must draw the
contour corresponding to that value of Ay? for 2 degrees of freedom that includes
68.3% of the probability. Referring again to Table C.4 or Equation (11.10}, we find
that we should draw the contour for Ax* = 2.30, and for the 2 standard deviation
contour, we should choose Ax” = 6.14. Joint confidence intervals with more than
two parameters are often of interest, but are difficult to display and are represented
best by two-dimensional projections of contours for pairs of variables.

Confidence Level for a Predicted Value

Suppose the predicted value of a physical quantity is . = 1000.0, and we have
made a measurement and obtained the value ¥ = 999.4 % 2.0. At what confidence
level is the predicted value consistent with our measurement? The question could be
rephrased as, “What is the probability of obtaining from the predicted parent distri-
bution a distribution that is as bad as the one we got, or worse?” Because the shape
of the parent distribution was not predicted, but only the value of the mean, we must
use our value of the standard deviation, o = 2.0, as an estimate of that of the parent
distribution. If the distribution is known to follow Gaussian statistics, then the re-
quired confidence is twice the integral of the standard Gaussian probability function
from x = b to =, where = |p - |/ o = |1000.0 — 999.4]/ 2.0.

Now, suppose that the predicted value was necessarily positive—an intensity,
for example. Then, we might again assume a Gaussian distribution, but only for
positive values of the varinble x, and therefore our confidence integral becomes the
integral of the standard Gaussian from & to . However, because the total probabil-
ity must be normalized to I, we again muluply the integral by 2 so that the proba-
bility or confidence level is the same for both problems.

The method of determining the confidence level thus depends on the Lype
of problem as well as the probability function that is applicable to the problem.
For distributions that are symmetrical about their means, such as the Gaussian dis-
tribution, we generally consider the probability of obtaining a result that is the
specified number of standard deviations from the mean, without regard to sign,
unless a particular sign is excluded by the physical problem. For distributions
such as the chi-square and Poisson distributions, which are only defined for posi-
tive values of their arguments, it is conventional to find a “one-sided” probability
as in the casc of the x? distribution where we quote the probability of obtaining
a value as large as or larger than the value we obtained for a given number of
degrees of freedom.

11.6 MONTE CARLO TESTS

A Monte Carlo calculation can help us understand the statistical significance of our
results and possibly obtain a better estimate of some of the parameters of the exper-
iment. As a by-product, the Monte Carlo program may also help us identify biases
in our analysis procedure.

Suppose, for example, that we have measured a quantity x that is predicted to
have a value . From our experiment we obtain the value ¥ for our estimate of .
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We want to find the probability of obtainin . - 8
2 ! g from a series of simil
value ¥ that differs from the predicted vatue w by s of similar experiments a

Arzlp -zl (11.53)

We can set up a Monte Carlo program 1o simulate our experime -
erate events \\.filh the parameters predicted by the theoretical g:incip;: ?l":; l‘geg i
testing and with the same cuts as those imposed by our experimental apparatus.
S_uc!: a program can be quite complex, but it may already exist at the time of analy-
sus,_lf. f_or example, 2 Monte Carlo program was writien to help plan the experiment
Orit mlgh‘t be possible to use some geometric and kinematic quantities from the ac-‘
tual expenment and only generate those parts of each event that are affected by the
parameters in question.

After the Mo:_ue Carlo program has been written and debugged, we can simu-
late repeated experiments with the same parent parnmeters and the same number of
finai measurements as in our real experiment. The data from each of these simulated
sxpem_nem.s can be processed by our regular analysis program to obtain a group of

experimental” values of %, and from the distribution of these values we can esti-
mate the required probability.

E_xumple 1L5.  Let us use the Monte Carlo method 1o iry to leam more about the sig-
nificance of the small peak in our data of Example 9.2. Examination of Figure 9.2
leaves no doubt about the existence of n large peak at ~1.0 GeV. Without the ﬁlle.d
curve, the .f:maller peak near 0.8 GeV would be considerably less striking and further
analysis might be helpful. (We note that, if the small peak were indeed spurious, we
sh_mnld have to refit the large peak fo obtain a better estimate of its mean energy‘nnd
w:dlh:) l‘n Chapter 9, we estimated the probability to be about 0.01% that the smaller
peak ts just a fluctuation in a single bin above the single-peak background, with a
probability of about 0.6% of such a fluctuation occuming in any one of the 60 I;ins nio
w!wch the data were sorted. These are quite compelling numbers. Cain we support them
with a more detailed calculation by the Monte Carlo method?
chf:lap{ndmlhcsmdy of this problem the Monte Carlo program and the leasi-
squares fitting program, which were used to Egcneraie and analyze the data in Chapter
9. With the Monte Carlo program, we simulated the experiment according to Equation
(9.1} to gencrate 4000 single-peak events in each of 1000 wial “experiments.” The
(rgeadx:l;nenﬁy (ﬁ é]lalf—wi&irlah ([‘l)’, and amplitude of the larger peak, and the amplitudes
1 tarough a,) of the guadratic background, wi I L
¢ thr e inq'l'nhlc oy g ., were set 1o the values obtained tn the six-
© each set of tral data we fitted Equation (9.13), using identical
those used in Chapter 9, with the exception that, starting v;llfcs for the pmpmcodl::s:;
the smaller peak (a;, gy, and a,) were set to the values obtained in the nine-parameter
fits of Chapter 9, listed in calumn 6 of Table 9.1. We selected those fits that yielded pa-
rameters of the lower peak consistent with the values determined in Chapier 9 by im-
posing the I'n.llowing conditions: (1) We required that both the chi-square probability
and the n.mphlud? of the smaller peak (g,) be equal to or greater than the comrespond-
;ncﬁ;i;]:ed value;r h;:[d for ﬂ; fune-parameter it in Table 9.1; (2) We required that the
energy within i istogram bi
el e pl;:km plus or minus one hist bin (0.05 GeV) of
From the 1000 generated expertments, 5 survived these cuts, or 0,
tal tnals. This number considerably exceeds the rough estimate :Jf D.l.ljl‘iutg:ll:fe“i)n
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TABLE 111

Resulis of generating 4000-event “experiments” from
Equations (9.1) and (9.13) with parameters from fits listed
in Table 9.1. We used several values of the amplitude A, of
the smaller peak to test the sensitivities of our analysis to

small and possibly spurious peaks.
Ay Equation Number of experiments Number of successes
3.50 2.13 100 61
1.75 9.13 100 18
0.875 213 100 5
0.000 91 §000 =5

Chapter 9 for a single bin fluctuation. Tests made with other starting values and culs
for the smaller peak yielded similar numbers of survivors.

To check our procedure, we also generated and analyzed 100 two-peak trial “ex-
periments” from Equation (9.13), with the parameters of the smaller peak set to the
values from the nine-parameter fit listed in Tuble 9.1. From these 100 wials, 61, or
61%, survived the cuts, When we repeated the analysis with the smplitude of the
smaller peak reduced by a factor of 2 (i.e., a,/2), the success rate dropped to 18%, and
a further reduction by another factor of 2 {a,/4} reduced the success rate o 5%. The re-
sults of analyses are summanzed in Table 11.1.

These results offer strong support for the existence of the smaller peak, and in-
dicate that in a 4000-event experiment we might detect with reasonable probability
a peak with only one-fourth the amplitude of the current smaller peak. Clearly, a
Monte Carlo simulation should play an important role in planning this type of ex-
periment. A carefully planned Monte Carlo program may be much better (and eas-
ier) than a detailed theoretical analysis for finding an answer 1o the question “How
much data will be needed to establish (or disprove) the existence of a specified fea-
ture in a distibution.”

We offer a final word of caution on using the Monte Carlo technique to
study the statistical significance of experimental results. For Examples 9.2 and
11.5, we used a very simple problem to illustrate this technique. Yet, there are
many opportunities for erors, which can lead to erroncous conclusions about the
significance of our Chapter 9 data. In a larger study, it would be very easy to make
a simple mistake that might lie undetected in the program and have a sublle effect
on the results. It is important to test the program under a variety of conditions, and
1o examine results at intermediate stages before drawing conclusions from the re-
sull. In particular, if the results of the program lead to conclusions that violate in-
wition about the experiment, we should check and recheck the calculation. The
Monte Carlo method is very powerful, and can enable us to solve very difficult
statistical problems in a straightforward manner, but like all powerful tools, it
must be used with care.
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SUMMARY
Variance of the fit:
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F tesr:
X
Pe(Five) = [pfiv ) df

F test for multiple-correlation coefficient R (for v = N —m)
o= RYm—-1) _ _R? >((N— m)
BT «RY/MWN—-m) (1—R)H (m-1)
F test for x? validity of adding (m + Dth term:
2

i i) — xPu+ 1) Ax?
Lt m+ 1Y N-m=1) %

Confidence limits: 1o —> 68.3%; 20 —> 954%: 30 — 99.7%

EXERCISES

11.1. Discuss the meaning of x? and justify the relationship between it and the sample
variance §2 = x2.
11.2. Compare the exact calculation of the gamma function [(n) of Equation (11.7) with
the approximate calculation of Equation (11.8) forn = %, 1, 3, 4, 94,10,
11.3. From Equation {11.6), show that the x*-probability density for 1 degree of freedom
can be wrillen as
i e
P
Calculate to 1% the probability of obiaining a value of x?* that is less than 2.00 by
expanding the function in a Taylor series and integrating term by term.
11.4. For a typical number of degrees of freedom (v = 10}, find, by numerically intcgrat-
ing Equation {11.6), the range of probability £, ( x2, v} for finding x* as small as 0.3
or as Jarge as 1.5. Use the approximation for the gamma function of Equation (11.8).
11.5. By numerically integrating Equation (11.6), find the probability of finding a value of
¥} = 1.5 with v = 100 degrees of freedom. (Note that double-precision variables
wmust be used.) Would you consider this 1o be a reasonably good fit?
11.6. Express the linear-carrelation probability density of Equation (1 1.18) in terms of the
approximation for the gamma function of Equation {11.8).
11.7. Work out the details of the calculation of the linear-correlation coefiicients r for Ex-
amples 6.1 and 6.2
11.8. Lfasetof data yields a zero slope b = 0 when fitted with Equation (11.11), what can
you say about the lincar-corvelation cocfficient r? Justify this value in terms of the
comelation between x; and y,.
11.9. Find the lincar-correlation coefficient | between the independent variable 7, and the
dependent variable V, for the data of Example 7.1.
11.10. Find the correlation coefficient r, between T# and V; for the data of Example 7.1.
Does the correlation justify the use of a quadratic term?
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11.21. Express the multiple correlation £ in terms of X5 ¥ and their averges.
11.12, Evaluate the multiple-comelation coefTicient R for the data of Example 7.1
1L.13. Is a large value of £ good or bad? Explain, -
11.14. If we wish 1o set as an arbitrary criterion a ili
probability of 0.01 for th

would be the reasonable average value for £ test? ' R

:::i What different aspects of a fit do the 5 and F, lesis represent?
«16. Apply the F, test for the quadratic term 10 the data of ;

cunclusiuns.l(Rcfcr fo Table 7.4.) PR EARTIRT. A itk e
1L17. Sh(fw the intermediate steps in the derivation of Equation (11.43).
11.18. Estitnate from Figure 11.2 the 90% confidence limit for each of the two mean life-

times (a, and ay) of Example 8.1 when all variabl i i
BmEL L aniables are allowed 1o find their opti-
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A

NUMERICAL
METHODS

here are several reasons why we might want to fit a function to a data sample,

and several different technigues that we might use. If we wish to estimate para-
meters that describe the parent population from which the data are drawn, then the
maximum-likelihood or least-squares method is best. If we wish to interpolate be-
tween entrics in data tables to find values at intermediate points or io find numeri-
cally derivatives or integrals of tabulated data, then an interpolation technique will
be more useful. Additionally, if we wish to obtain intermediate values between cal-
culated coordinate pairs in order to plot a smooth curve on a graph, then we may
wish Lo use a spline fitting method. In this appendix we shall summarize some stan-
dard methods for treating the latter two types of problems, as well as some methods
of finding the roots of nonlinear functions, a different sort of interpolation problem.

A.1 POLYNOMIAL INTERPOLATION

With modern fast computers, the need for interpolating within tables to find inter-
mediate values of tabulated functions has reduced markedly. Nevertheless, there are
situations in which it may be convenient to represent a complicated function by a
simple approximation over a limited range. For example, in a large Monte Carlo
calculation, where computing time is a significant consideration, we may approxi-
male a complex function by a simpler polynomial that can be calculated quickly. Al-
ternatively, we may save time by creating a probability integral once at the
beginning of the program. and interpolating to find values of x corresponding 1o the
randomly chosen values of y.

For many purposes a linear or quadratic interpolation is satisfactory; that is,
we fit a straight line (o two coordinate pairs, or a parabola to three, and use the
equation of the fitted polynomial to find values of y at nearby values of x. Higher
orders may be necessary for functions that have strong variations, but in general, it
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is better and more convenient 1 i i
5 0 represent a function over a limi i a se
ries of low-order approximations. EPgie

Lagrange’s Interpolation Method

Here is a method that is easy to remember and
‘ can be used to expand a function t
any oﬁe[:. We know it works because of the theorem that states thag if you ca:1 ir“:n((l)
l:.my ’:l “degree polynomial that passes exactly through » + 1 paints, then you have
ound the one nnfl only nth-degree polynomial that passes through those points
Think L;Lbout it. It is obvious for n = 1 (2 points). ’ .
t us start with an easy problem. Supposc we have 1 i i
(xg, yg) and (x;, y,), and we want 1o find the straight li s o
% Y1)y L line th
them. We write a function of the form e

P(x) = yoAa(x) + 3,4 (x) (A1)

and search for a function Ag(x) that is | when x = X
\ 1 = Xpand 0 when x = -
tion A,(x} that is 1 wlhcn X = xyand 0 when x = .r::. We can gucis th?;;“r:jnn ﬂ" l\':e
WTB Ag(x) asa fraction and set its numerator to (x = xy), then Ag(x) will be 0 for
x = xyand will be (x; — x) for x = Xo- But we want Ag(x) = | forx = Xy, SO the

denominator of Aq must be (x, ]
I X0 ~ X;). We can make simil :
thus write as our interpolation equation e A

Plx)=y =) (- )
. P50 w10 e
” ;
e Ppose we want a parabola that passes through three points. Then we simply
P(x) = yyAo(x) + NAx) + y4,(x) (A.3)
and, following the previous arguments, write
Plajs; {x— ) —x) - x=—x) (x—x)
(=)0 —x) " ' {5 = %)y x)
3 (r—x) (x- 5) (Ad)
(x2 = xo) (12 — x;)
The expansion to higher orders should be obvious The i
expansie s . The kth term in an nth -
pansion is given by the following product in which the J = kterm mus’:be(::rdrfilt-i:fl'
S -x) ¥
jmo (0 — .\:,) !

Note that the intervals in x need not be e i
i qually spaced, The int i
well-behaved function y = f(x) is completely geneml.p PRpnn oS

{excluding j = k) (A.5)

Newton’s Divided Differences

Although the Lagrange inte i i i
\ : _rpoluuon method is especially easy to derive and pro-
vides a convenient way of interpolating between points in a function or wl::;e l:lr(:s
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not very convenient for repetitive calculations. It is not very convenient as an ex-
pansion either, because increasing the order of the expansion requires adding an-
other factor to each term as well as adding another term. What we require is a more
familiar form—a discrete analog of the Taylor expansion. For this we turn to New-
ton’s method of divided differences.

There are several forms of the divided differences expansion, roughly charac-
terized by the method we choose 10 define the differences, forward, backward, or
about a central point. We shall restrict ourselves here to forward differences; that is,
we calculate the variation of y with respect 10 x by taking increments in the positive

x direction.

Again, consider a set of data points, (xg, Yoh (X1 Y1) (X2, y2)y ... Letus
assume that we wish to make a linear interpolation from x, to some point x with a
first-degree polynomial. We define the zeroth divided difference as the function

itself f(x) evalunted at x = X
fixa] = f(x0) = Yo (A.6)
The first divided difference is defined to be

ﬂ{ﬂ:_f[‘fd (AT
= xg)

which is the slope of a linear function. Then, for a linear function,
STxxo) = [x0, %1} (AB)

Sxon x)=

flxg) = S0 _ flx] = flx] (A9)
(x0—x) (% — xq) '

which, on rearrangement of the terms, gives the first-order expansion

= f[x} + (x = x0)fTx0. 1] (A.10)

where we have wrilten P,(x) instead of f(x) to indicate that the expansion is a poly-

nomial approximation to the function f(x).
To find the second-order expansion, we consider the second divided differences

X2, X)) Xis
£ 5o 50 5] = R ) (A.11)

which comresponds to the slope of the slope, or the second derivative. This must be
constant for a second-order function, so we have

STx 7001} = flx0. 3132 (A12)
which leads to the second-order expansion
Py(x) = flxo) + (x = xo)f [xo 1] + ( — X} & = x) oo ¥ ] (A13)
The general form for the nth-order expansion should again be obvious.

P R TR I L oAy 1o
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Remainders

The extrapolation formula for an ath-order expansion i

The ¢ . ; pansion is only exact when the func-

;D(t; ;ts:cl::l :lsoza a::!’:e-d;lg.;ee polybn;mml. ﬁ::erwise. the remainder at x after n ler':llcs
(%), erence between igi i i

Sy gt original function f(x) and the cxpansion

R, (x)=f(x) - A(x)
=r—x)x—x) - xS g X ... n] A

Calculation of the remainder requires the value of the function ich i
generally not a".'ailablc. (If it were, we might not be doing this ex;;ragl?i:rll ‘;"I-IT::'::;:
it may be Possublc to make an estimate of f(x), or 10 use a nearby vnll.;e and thu;
find an estimate of R,(x). An expression for the remainder can also be oi:uu' d i
terms of the (» + 1)th derivative of the function.! e

Uniform Spacing

lhr:nc::viil:iid diffcr_?nce e::jfressions have a particular convenient form when the in-
. are uniform; that is, if x; —x;, = x3— 6 =x,—x ivi
difference of the previous discussion can be \mj-itten2 [ g AREEEC

f[xo‘xI]:M:éﬂf_ol

(x1 = xg) h
or
Af(x)=f{x)—f(xo) and h=x,—x, (A.15)
and higher-order differences become
Af(xe)= A[Af(xo)] = Af(x) — Af(xo), etc. (A.16)
If we define the relative distance along the interval by
a=(x—x)/h (A.17)

we can write for the nth-order expansion,
B(x) = f(xo) + adf(xo) + ce( — 1)A%f(xo)/2! + - -
. +afa=1)-- (@=—n-DA"(x)/n! (A.18)
uation (A.18) is a finite difference analog of the familiar Taylo i
; ) I expans;
the important difference that the factors multiplying the coeﬂizicnl.s E‘f(.t:;;:i ;vz::u;
not successive powers of the relative distance from the starting point, but rather the

product of relative distances from successive poi i
_ points used in the expansi
(@ =1)=(x = xy = h)/h = (x — x,)/h, and so forth. paBsiog, hocase

Extrapolation

Equations (A.15) through (A.18) are perfect) i
: (A.18) ly general for fitting exactl -
tial equally spaced data points with a polynomial of degree n —gl‘ In pl{nﬂcm:’fl?c

'See Hildebrand (1956) for a derivation.
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TABLEA.1
Uniform differences for cos 0
0
(degrees) y 4, 4 4y a, Ay
0 1.0000 ~0.0489 ~0.0931 00139 00078 ~0.0021
I8 09511 -01420  -00792 00217 0005
36 0.8090 -0.2212 ~0.0575 00273
54 05878 ~0.2788 ~0.0302
72 0.3090 —0.3090
90 —~0.0000
TABLEA2
Extrapolation from 0 to 10° and from 0 te 75° in various orders
Order
[
(degrees) cos § 1 2 3 4 5
10 0.9848 09728 0.9843 0.9851 0.9848 0.9848
75 0.2588 0.7961 0.1819 0.2481 0.2589 0.2588

position of the first data point (xg, yo) can be anywhere, but for optimum interpola-
1on, the values of x, and x,, should straddle the interpolation point x and be approx-
imately equidistant from it.

The same formula can be used for extrapolating to values beyond the region
of data, but the uncertainties in the validity of the approximation increase as x gets
farther from the average of x, and x,. The approximation is limited by both the de-
gree of the interpolating polynomial and by uncentainties in the coefficients of the
polynomial resulting from fluctuations in the data.

Exnmple A.1. Table A.1 shows a uniform divided difference table for the cosine
function for a range of the argument 8 between 0 and 90°. Table A.2 shows values of
cos @ for @ = 10 and 75" calculated from the divided difference table in orders |
through 5. The interpolation starts at ( sa that only the top row of Table A.1 is used and
thus, 8 = 18° the calculation is an extrapolation. The true value of cos @ is also listed.
As we should expect, the large extrapolation to 75° is very poor in low order. Usually,
an approximation can be improved by increasing the number of termns in the expansion.
However, the better method would be to drop to o different line of the table; that is, 10
ensure that the calculation is an interpolation rather than an extrapolation.

A.2. BASIC CALCULUS:
DIFFERENTIATION AND INTEGRATION

Let us review some basic principles of differential calculus before considering dis-
crete methods that are applicable to computer calculations.
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Differentiation

Let f(x) be a function of the variable v.Ifxi
. Xl xincreases by an amount Ax, the functi
:ealga :y an amount Af = :f(.r + 4Ax) = f(x). The ratio AffAx is 2 measure l.;' IE:
vanation of f{x) with x. In the limit, as Ax becomes infinitesimally small

the ratio A f/A x for a continuous function f(
Falic x) approaches i 5
derivative dffdx of the function Six) with respect to x. ymptotic e, the

df(x) = gii flx+Ax)~ f{x}

dy s Ax (A-19)

. coos il
The denvative of f(x) at x = Xo is wrilten %.r,,) and corresponds (o the slope of the

function evaluated at Xo or the 1angent 1o the curve at that point.

Example A.2 To find the denivauive of
Sflx + Ax) 1o first order in a Taylor series.
Thus, with n = 4, we have f(x) = x* and dfidr = 47,

d!x“!= lim !x"-t—nx""A.r!-—.l‘

Sx) = &, we can expand the function

dr  ai—e Ax
e TlAx i
—_— =
%S nx

Example A3  For flx) = sin X, We can write

sin (r + 4.x) = (sin x)(cos Ax) + (sin Ax)(cos x)
and again expand f{x) to obtain

d(sin -"!g lim sin (x + Ax)—sinx
dx Ax

Ar—0

— (sin x) (cos Ax) + (sin Ax)(cos x) - sinx
Ai—sp Ax
= Sinx +(Ax)(cos x) = sin x
Ax =

Similarly, for f(x) = cos v, we find dffdx = —sin .
SUMS AND PRODUCTS The derivative of a fons i
AND TS T1 sum of function,
the derivatives of the individual functions. Consider the l'uncstI'I:neq“al 10 the sumof
Sx) = g(x) + h(x)
The derivative of this function is the sum of the derivatives of the individual terms

dfix) . dg!x!+ dh(x)
dx dx

dx

The derivative of a produgct of functi !
derivatives. Consider the function s Sl sk atihe
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1z} = g(x) X h{x)}
We can rewrite Equation (A.19} as

df(x
s peeni= g =0l m

and show that

dg(x) X h(x)] = I glx + Ax)h{x + Ax) — g(x)h(x)
dx

Ax—s0 Ax

= fim X [g(x) +Ax df,_(:)] [h(x) +Ax ﬂ%] g{x)h(x}]

Ar=—s0 Ax

= () 2] 4 280

FUNCTIONS OF FUNCTIONS If the function f(x) can be expressed as a function
of a function g(x) of x,
fix)=flagl=))

i i f the derivative of

ivative of f{x) with respect to x can be expressed in tepms o A
“;i)d\evrill;a:::\s,;.clj};)x. if we e';cpand the definition of Equation (A.19) for tl;er dre(;wr
glive we can make use of the relationship of Equation (A.20) to expand still further.

"i(ﬂl— (=)
) /{g(x)wx 0 1g(e
X

Az—0 Ax

x) df{x
7lge)+ s BEELLE sy

= lim .

_ d(s) dgle)

dg(x) dx

(A.21)

bx? 50 that f(x) = [g(x))’.
Ad I f(x) = (o0 = bx*)?, define g{:\') a+

'llz'::l:':gllefnclor in éf]unliun (A.21) is the derivative of a square, and the secand factor
is the derivative of a cubic polynomaal.

4 = dglx) _ 4y
ﬁﬁ(% = 2g(x) = 2{a + bx?) dx 3bx

) _ 30 + br?)3bx? = 6bx%{a + bxY)
dx

i ivati defined as deriva-
ER-ORDER DERIVATIVES Higher-order dEI:IVaIIVCS are d 1S ¢
:-il\l'gif derivatives. For example, the second derivative of a function f(x) is just the

derivative of the first derivative.
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%Ei[m]

dx?  dx| dx

For the nth-order derivative d"f(x)/dx", we simply take the derivative » times in
succession. For example, if f(x) = x*as in Exzmple A.2, the second derivative is
12x2. Similarly, the fourth derivative of either sin x or cos x is equal to itself.

PARTIAL DERIVATIVES If the function f(x, ¥} is dependent on two variables x and
¥. we must define derivatives of the function with respect to each of the independent
variables. To determine the partial derivative of f with respect to x, 3ffdx, we con-
sider that y is a constant and proceed as we would for an ordinary derivative, Simi-
larly, to determine the partial derivative dfdty we consider that x is constant.

xy) fim L&A =f(x.y) _ df(x)
9 Ax dx

X dz=—+0
ME lim f[x-)"" Ay!—f!x,y!=df().!
ay Sy=>0 Ay dy

Higher-order partial derivatives include not only higher-order derivatives with
respect to one variable, but also cross-partial derivatives with respect to two or more
variables simultaneously.

f’_fl_rl=i[m_y)]

dx? ax| ox
) 9 (ofte )] _ o [aree )] a(x.y)
axdy ax| ay | ay| ax 3y ax

MINIMAAND MAXIMA A function f(x) is said 10 have a local mininum atx = x
if the values of f(x.,, * Ax) are larger than the value of f(x ;) for infinitesimal
changes Ax about x ;.. Similarly, the function has a local maximumn if the values of
S (X oy = Ax) are smaller than f (% max)- At either a minimum or a maximum of a func-
tion, the derivative of the function is zero,

corresponding to a tangent that is paratlel to the x-axis.

The question of whether the function is a minimum or a maximum at x,, can
be resolved by examining the second derivative. If the secand derivative is positive,
the curvature of the function is upward and f(x,,) is a minimum. If the second de-
rivative is negative, the f(x,,) is a maximum,

FUNCTIONS OF MORE THAN ONE VARIABLE With functions of more than one
variable, for example f(x, y), we can still consider the function to have a minimum
in parameter space, but we must be careful to assure that the function has a mini-
mum simultancously with respect to all parameters,
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Integration
Integration is the inverse of differentiation. To find the integral F(x) of the func-
tion f(x),

F(x) = | fix)dx

we must find a function F(x) such that %ﬁ = f{x).

However, this definition is not unique. An undetermined constant must be added to
the solution to allow for the fact that the derivative of a constant is zero.

Example A.5 Consider the integral of the function f(x) = x*. We observe that
Fix) = x*4 is a solution!
dF{x) d(x*/4)
R T

However, F(x) = x4 + Cisalsoa solution, where C is any quanuty that is not
a function of x. Thus, the solution (o an indefinite integral must include an added

constani.

A definite integral is the integral of a function between two specific values of
the independent variable, and is written

- e

To find the definite integral of a function, we integrate it, calculate the value of the
integrul at x = band at x = 4, and find the difference between the two values. This
is equivalent 1o calculating the area under the function f(x) between the two limits

aand b.

Example A.6 Consider the integral of the function f(x) = x* between the limits
x=10oandx =20,

0 20 0
1= J = ’ wdx =x‘/4l = (20— 1)/ = 15/4
1.0 10 o
Note that a definite integral 15 not a function of variable of integration x.

From the results of Example A3,
|sinxdy = —cosx+C  and |cosxdx=sinx+C

AJ3. NUMERICAL DIFFERENTIATION

AND INTEGRATION

With the interpolation expressions discussed in Section A.1, it is relatively straight-
forward to obtain expressions for derivatives and integrals in terms of expansions to
order it

o BT R AR T T
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DifTerentiation

We can differentiate Equation (A . _
the function f(x). Wci?:nm’n n (A.18) to find approximations for the derivatives of

dP, 1dP,
_dfi) -1 Jdéﬁ = [Af(%) + (2a = DAY (xg)/2!

+(al- Ga+ DAY+

d*B(x) _ 1 d |dB(:
dv? - 'I;‘i E[ d[(!t) - [Azf(\’u) + (0. = [)A:‘f(.‘-o) s v ] /’],2 (A23)

W(I: stlnm_lld note that the use ul‘_l‘unvard differences introduces an asymmelry in the

::rz:l ;::imt:‘::g;r a ien;ml solution, we could replace the forward differences by cen

, which are tuken symmetrically about a central starti i 1

particular problem, we can usuali i provide reuse il
L y arrange the expansion to provide

symmetry of the differences about the point of interest. Thus wz can r: ll.::tszoél: o

tions (A.22) and (A.23) by ' prce R

dg,i.r! < Afx)/h = Slx+ h/Zl;f(.r — h/2)
) h

(A.24)
and
R _ s . Sl )= 27(x) + flx =
a2 Af(x)/ i = ig‘) fx—h) (A.25)
Integration

:Elsﬁgi:ll:lsgfrg:;m:ine ::: il §) leads :10 expressions for calculating the numerical integral
i i nding on the number of terms in the pol ial i
tion. There are various forms for each order, dependi e it R e
: : , depending on how we choose the limi
of integration. We quote three of the most useful forms with the remainder eslin::::u ;s
First-order, endpoint trapezoidal .

x h
[ ey = ste0) + 1)~ 1000
(first-order closed-end trapezoidal)
J’ ]
L S(x)dx = 2hf(x,) + % SOE) (first-order open end)

x I/
[ a1 =2t + 410 + st~ 22
(second-order closed-end Simpson’s rule)

The factors X&) in the remainder estimates
> represent the nth denivati
the function evaluated at some (unknown) value of x in the range of Ih::::::::n:;f
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Note the large reduction on the error estimate in going from either of the first-order
approximations 1o the second-order approximation.

For an integral over an extended range of x, it is usually advisable to employ
a series of first- or second-order integrals over sections of the function, rather than
10 attempt to fit a large region with 2 higher-order function. In fact, it can be shown
that the gain in accuracy in going from a second- 1o a third-order numerical integral
is relatively small, and, for the same number of calculations of the ordinate y;, the
second-order Simpson rule may be more accurate than the third-order form. This re-
lation applies in general to even and odd orders, so that, to make a significant im-
provement in the numerical integration of a function, one should advance to the
next lagher even order.

Thus, to find the integral by Simpson’s rule of f{x) over an extended range
between x = xg and x = x,, we divide the region into n equal intervals in x, with
nh = (x, — Xg), to obtain

[(tey = B+ 00 + 20 + A1)+
Faf() =S~ Y (A26)

where £ is the value of x somewhere in the range of integration.

Program A.1 SIMPSON (Appendix E) calculates an extended imegral by the
second-order approximation of Equation (A.26). See Progrums 11.1 and 11.2 for ex-
amples of the use of this routine.

The user supplies four arguments:
I. FUNCT: the name of the function to be integrated. The function must have one

real argument. If other arguments are required, they must be made accessible to the

function as global variables.
2. NINT: the number of double intervals. The interval is calculated as DX =

{HILIM-LOLIMM\(2*NINT);
3. LoLiMand
4. HILIM: the integration limits.

A4 CUBIC SPLINES

If we aitempt to represent by an nth-degree polynomial a function that is tabulated
atn + | points, we are apt 1o obtain disappointing results if n is large. The poly-
nomial will necessarily coincide with the data points, but may exhibit large oscilla-
tions between points. In addition, if there are many data points, the calculations can
become rather cumbersome. It is often better to make several low-order polynomial
fits 1o separate regions of the function, and this procedure is usually sausfactory for
simple interpolation in tables. However, if we want a smooth function, which passes
through the data points, the results may not be satisfactory.

Suppose we have calculated a function atn + 1 points, and want to represent
the function as a smooth curve on a graph. The nth-order palynomial is out—too
wiggly. Breaking the curve up into small sections produces disjointed segments on
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the plot. It is unlikely that they will comb

ine to form a smooth curve. Wh '
" \ t . What do w
ﬁo now? Re:u:_h for our pf;n'Cl!. and trusty drafting spline? No, we call up our splin:
uungSSL:l_:routr:mc and let it join up the separate fits for us.
pline fitting procedures have other uses besides plott
J es have ing prett
5r:1:|||:;0but:he p::l::mng funcu?n is of interest to us and is el::lsily iﬁuﬁmlgdcgr::;uzg
se to make a series of cubic fits to successive groups of d i
conditions do we need to produce a smooth i e vl
: curve that passes through the da
points? We want the first and second derivatives ion s, 10 be
L i , as well as the function itself, 1o be
ce:cnlt‘:?:lgc:vsaaltot:e ﬂia;nmp:;ni ::lmnlpposer w;d consider a separate cubic polynomial for
c ¢ i of n polynomials for the # + | points. Then
write the polynomial equation, take derivativ d o he
e Sl i atives, and, at each data point, equate the
i oy atives of the left-side polynomial 10 those of the right-side
Following the method discussed in Thom i
: h : pson (1984), we begin b 11
Taylor series for the cubic polynomial for interval i, expanded nbfll;: lh’;: ‘;;ll:ll‘%mc
i §

¥(x) = ylx) +(x = x) —U"ﬂf‘ +x— .r,-)z—lu";;;" 2!
+x-xP d:’y(:;! /3! (A.27)
X

where the functi ivati i
sk r::nn:s on and derivatives are evaluated at x;, This can be written in a more
¥(x)h =y (x = x)yi + (x — x)?y7/2
+ (= ) (xfr — 1)/6h a8
where y; and y] stand for the first and second derivati
: d yj crivatives evaluated at x = x; and
:: ?;ru': (::g;;m;ve has b;cn replaced by its divided difference form, which s ex-
uncuon. At x = x;, we have y = i c
X = Xiyq = x; + hand solve the equation PRy il oo
YEe) =yi+ (x4 = KWy F (i = 52 yi72
. + (X1 = P (37 +¥7)/6h Sheh
1o obtain
Yier = Yi= by + W 2y7+ 37, )/6 (A.30)
We repeat the calculation, using the equati ini ] i
PV . imdy omp (A,29;;), quation for y(x) in interval i — | [i.e., we
Ho) =y + v —xo ) )yle) +lr—x Pyl /2
+lx = P(yi—yi-))/6h
and again require that y(x) = ¥{x;) at the ith data point and obtain
Ve~ Yoo = hyl + B2y +y7)/6 (A.32)

To establish the continui iti i
Pl et nuity conditions at the data points, we need the first de-

(A.31)




|
|
|
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)= 3+ (e — )i+ (x = xF(yin —i)/2h (A.33)
which we equate to the first derivative in the interval i — | at the position x = X, t0
obtain

Y= Yia =hlyi+yial/2 (A34)
Similarly, equating the derivatives at the boundary x = X; 4 ) BIVCS
Yior = ¥ = hDTe)i)/2 (A35)

i i ivative leads 1o an identity, because
ting the procedure with the second derivative leads bec
Eﬁ:ﬁ :rg the d?vided difference form for the 1h3n{ derivative assures _conpnm;y of
the second derivative ncross the boundaries.) Eliminating the_ﬁrsl den.vnlwes rom
Equations (A.30), (A.32), (A.34), and (A.35) gives us the spline cquation
YAyt yimi=0D, (A.36)

with

D=5 yie = ity /W (A-:::l

i i f the tabulated data

that the D, are proportional o the second differences o _ :

I;:lr":m:ﬂ known. {Ve c:nm write Equation (A.36) as a set 9{ lmt_ear ?quaugni Fe!anng the
unknown variables y”, beginning with i = 2 and ending withi = n = L.

3 3 = A.38a)

yi+dyit ¥s tD), :A 2w
yi+ 43+ = D, :

yioa+4dyi-at Yao =D,z (A.38¢)

yh gt 4yt ¥0 = Dacy (A.38d)

sons can be solved for the second derivatives y‘:..as long as we
knole?:i‘:nmza:fo)?und y . One possibility is to set the second del:wnyves l? 1?1 (:o
obtain natural splines. Allemalive!y, we may use the true second derivatives, it they
numerical approximation. _ .

" kngg'l:xc:;:ple, suppose [\’vpe have only four p_oims to consider. Thﬂl'l;’lf f\we kn::;
% and y 5, we can solve the simultaneous Equations (A.380) nr_ld (A.38b) o;' g;}sa)
4. Similasly, if we have a full set of n equations, we can mwnlc_Equ_auon u;mm
to express yi = (D — ¥ = ¥3)/4, and substitute this e:.;pr_essmn’mlo E& i
(A.38b) to climinate y3. Then, we repeat the procedure to eliminate y3 from : 3
equation. We continue this procedure until we m:ch lhe"lasl equation, whic ;Y:’ !
contain only terms in y7, ¥ - 1, and y". Because y} and y ; are known, we cn:uz iy
this equation for y7 . . and then work back down the chain dater?umng o
sively ¥ - 2, ¥ -3 and so forth, until we reach Equation (A.38a) from \: i
determine the last unknown y3. Once we have found the yalues of the yi we ;::;
find the y! from Equation (A.30) or (A.32), and use Equation (A.28) to interpol

" enc%gl::ﬂv:lli}m of Equation (A.38) is discussed in several tcxtbogks._ Essenui.trlm
one sets up recursion relations to build a table of the second _demfalxres y'c.n -
method is illustrated by the computer routines SPLINEMAKE listed in Appendix I
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An interesting alternative method of solving the set of simultaneous equa-
tions, Equations (A.38), is to set them up in a spreadsheet program. Then, when the
boundary values ¥} and y}, are supplied, the program will readjust the variables un-
til they stabilize at the solutions to Equations (A.38). Although this method is not
very practical for graphical applications where we want to build the solution inte
our ploiting program, it does provide a quick way of finding the second derivatives
and an interesting illustration of the solution.

As with all techniques, a certain amount of care must be exercised in using
spline routines. The choice of a second derivative at the boundary may have an im:
portant effect on the interpolation at the ends of the function, and a wrong choice,
for example, can produce undesirable shapes at the edges of a plot. Then too, al-
though the spline routine assures a smooth variation between the data points, with
continuity of the function and first and second derivative across the points, it cannot
guarantee that there will be no pecnliar oscillation between the points.

ProgramA.2 SPLINE INTERPOLATION (Appendix E)

SPLIN EMAKE numerically calculates a table of second denvatives for a spline in-
terpalation by the method discussed in the previous paragraphs.

SPLINEINT performs the interpolation. For simplicity, we have chosen 1o store
only the second derivatives and to calculate the first and third derivatives as needed in
functions D 1 YDX | and D3YDX3, If speed is important, the derivatives could be
computed and stored in arrays.

A spline interpolation routine is especially useful for plotting curves on graphs.
The routine has been used to produce many of the graphs in this book.

A5 ROOTS OF NONLINEAR EQUATIONS

Finding roots of nonlinear equations is essentially the reverse of an interpolation
problem. When we interpolate a function, our object is to find a value of the depen-
dent variable y at a specific value of the independent variable x. When we are
searching for the root of a function, we are trying to find the valuc of x at a particu-
lar value, usually 0, of y. However, interchanging the vanables completely changes
the nature of the problem. Interpolation involves siraightforward application of
well-defined equations that are independent of the form of the onginal function:
Finding roots of nonlinear equations may require different equations for different
problems and almost always requires some sort of a search and iteration procedure.

The diffraction of light by a single slit provides an interesting example of a
nonlinear equation. It is well known that the position of the interference maxima
and minima from double slits and diffraction gratings can be determined analyti-
cally from consideration of the phase difference between the rays that pass
through each slit, but only the minima of the diffraction pattern of a single slit can
be found in this way. To find the position of a maximum, with the exception of the

central one, we must differentiate the expression for the intensity with respect to
the phase a:

I=1, (i:‘:—?-) with o= %sinﬂ (A.39)
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i i i i tral maximum (68 = 0), /
ation (A.39), g is the intensity of the light at the cen | 6=
:: mEgui:lll:nsi(ly a an];lc 0, \ is the wavelengll? of the light, and a is the slit width.
The position of the maximum is given by solving

é.-="lc,(éi—n--'-m‘)(tll:nsm ~sina)=0 (A40)
da ~ o
to obitain the value a, at the root of the equation

fle)=a,~wuna, =0 {A.4])

i = be calculated analytically and
first root is at a, = 0. The other roots cannot ! |
lhuz! :)e found by an iterative method. An approximate solution can be obtained by

rewnting Equation (A.41) as
o, = lana, (A42)

1 i i ion of the struight
i tely the left and right sides 10 find the intersection o .
?:12 I;::I"('ll:eg tsn%pg:g::t czrvcs. There are several mathematical ways to solve the prob
lem, but making a plot of the function is always a good starting procedure.

Trial-and-Error: The Half-Interval Method

i | computer, tnal-and-error may be a sulml?le me.Lhod for solving the
xz::s?ol;;??::l ﬁndilzlg problem. An orderly nppronch. is ad.wsable and th;al:ag:
interval method is convenient. The procedure is to write 2 hfllelapmgmri' e
quests a trial value of the root and calculates the function and displays its vlhc t:unc-
initial trial value might be obtained from a graph, or perhaps by mnqsmg e o
tion for various values of the independent van'able x until a reasonat l.:esu(1 e
the root has been obtained. Then, a second Ina} X is submitted, wl.nc plr;;'ui u iy
value of y on the other side of the root. The half-mtgrva! method begins at this p e
The procedure is 1o select a third trial value that is midway between the two I
brackel the root. For the fourth trial value, we use the mean ofd}c most recent val 'Il‘l'fé
and whichever of the two previous trials '\jvlasdoq (hde m:::rra :‘;dc of the root.

i til the root is found to the desired ac cY. _ .
prmc%clgl::::;lﬁspl;‘milive method of root finding could be improved WIl_ll? a little
programming to let the program decide which rool to chc_)ose. to cnlcu'lnle e Tin:é
and perform the next trial. The program could proceed in a loop until th;mo
been found 1o a predefined degree of accuracy, or lhc'calcu_lnhon c?ult:' jmgl;p:g
manually. However, if we are willing to program that litde bit of logic, slightly
effort will produce a much faster root-finding program.

Secant Methods _
The gain in speed comes from using the slope of the function in lhebucalculnnan-s\::
begin with two trial estimates of the root, X and x; ), ?mfemhl{., t ?o:eneoﬁﬁon
ily, on either side of the rool. Then we wrile an expression {or a linear interpo
between the two points. Equation (A.10) gives
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)= 3+ (= ) Qe =00 (A43)
(xea1 — 1)
where we have writlen ¥ = fixg) and so forth. Setting flx) = 0 and solving for x
gives us an approximation 1o the value of .x at the root:

Fett T Ky Vs T XNy
Vit = N Jerr ™ N
For the next trial, we replace x4, or x,., by the valee x found in Equation (A.44)
and repeat the calculation. The process can be repeated until the root is approxi-
mated as closely as desired. This is the first-order secant method.

There are various ways of choosing which of the previous values of x (x, or
X +1) to keep for the next iteration, The simplest is 1o keep the most recent value

=05 —y

(A.dd)

[i.e., gives a smaller value of A0). A third js to start the process with two values that
straddle the root (i.e., give opposite signs for y, and y,) and 1o continue 1o choose
values that straddle the root afier each ileration. This is the Regulo-Falsi method,

Clearly any method will find the root most quickly if the starting values are
close to the root, but, in principle, the secant methods will almost always find a root
of the function, eventually. With some functions, such as those that are antisym-
metric about the root, there is the possibility that the search by the Regulo-Falst
method, for example, will Jump back and forth across the root and never approach
it. Additionally, for functions with several roots, we may not always find the one we
want. Problems may also arise if two roots are very close together.

Newton-Raphson Method

Instead of calculating the slope by finite differences, as in the secant method, we
could use the tangent, or derivative of the function, if it can be calculated, Then, we
can replace Equation (A.43) by

S =y +(x-x) 9:%‘) (A.45)

where x; and y, are the values of x and f(x) after the kth iteration. We find the next es-
timale x; ., for the root, as before, by setting f(x) in Equation (A.45) to zero 10 obiajn

df{x)
e .1(:* (A.46)
Example A.7 Table A3 shows steps in an iterative calculation of the second and

third roots of Equation (A.41) by the secant and Newton-Raphson methods. Starting
values were chosen by examining a plot of tan x versus x,

Simultaneous Nonlinear Equations

In the examples of aliernate fitting methods in Section 6.6, we obtained two pairs
of coupled, nonlinear equations, Equations (6.24) and (6.27), which we wished 10





