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I. The shapes or the individual poisson distributions governing the nuctuallons 10 

the observed Yi arc nearly Gaussian. 
2. The uncertainties (11 in the observations Yi may be oblained from the uncertain­

ties in the data and may be approximated by a~ ::.. )', ror statistical uncertainties. 

SUMMARY 

Linear ftmc,;cm: y(x) = a + bx. 
CI,;asqllare: 

x' ~ 'Z [;,(y, - 0 - bX'l)' 

Least_squuresjiuing procedure: Minimize Xl with respect to each of the par.unetcrs 

simultaneously. 
SolulionsJor least-squartsji, of a s,raigh,line: 

\
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\
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a, • 

Es,im,ued IIni/oml ,'uriance r: 

a' =s' = N ~ 2 'Z(Y, - y)' 

Statistical flut:,ua,ions: 

0'1 CII:)'/ {row data counts} 

Uncertainties ;11 coefficients: 

I x; 
a~ = ~ L cr; 

I I 
al=~Ia1 , 
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EXERCISES 

6.1. Fit (he data or Example 6.2 as ir all the data had equal uncertainties a, a c Hr.!), 
where a is the a,,·cr.age of the given values of a. NoCe th:It the filled parameters '" in 
dependent of the value of a, but the values of Xl. a .. , und u" are not. 

6~ Derive Equtuion (6.23) from Equations (6.21) and (6.22). 
6.3. Show that Equation (6.12) mJuccs to Equation (6.13) If trl • tr. 

6.4. Derive a fonnula for making a linear fit to data with an intercept at the origin so that 
y - bx. Apply your method to fit a straiahtline through the origin 10 \lu: following co­
ordinale pairs. Assume unifonn uncenainties U j 2 1.5 in )',. Fiod X! for the fit and Ihe 
uncertainlY in h. 

z. 2 , 6 8 10 12 I" 16 " 20 22 2' 

" 5.3 lolA 20.7 30.t 350 41.3 52.7 55.7 630 72.1 805 ". 
6.5. A student hungs masses on a spring nnd measures Ihe spring's e~;lension as a function 

of the applied force in oruer to find the spring constant k. Her mCASurements are: 

MIIU(kg) 200 300 400 SO) 600 700 800 900 

ExtensIOn (cm) 5.1 5.5 59 6.8 7.01 1.5 8.6 9.4 

There is un uncertainty of 0.2 in each measurement of the extension. The uncenainty in 
the I1l3Sses is negligible. For a perfect spring. the extension AL of the spring will be 0:: ­

lilted to the applied forte by the rr:lalion kat • F. where F = "'8, nnd ~L = L - Lo. 
and Lo is the unslrCtched length of the spring. Use these data and the method of least 
squares to find the spring constant k. the unstrctched length of the spring La. and their 
unccrtnintics. Find 'i for lhe fit and the 3.iSOCiated probability. 

6.6. OutJine a procedurr: for solving the simultaneous Equations (6.27). Refer to Ap­
pendix A. 

6.7. A student measures the temperature (1) of waler in an insu1D.lcd n3Sk at limes (tl scpa.· 
rated by I minute and obtains the following values: 

lis) 0 2 3 " 5 6 7 8 
n·e} 98.51 98.50 98.50 98,49 98.S2 98.49 98.S2 98.45 98,47 

(a) Calculate Lhc mean temperature IUld lis standard error. 
(b) To test whc!theror not the waler is cooling. plot a graph of the temperatures versus 

the: time and make a lcast-squares fit ofa strnightline to the dau.ls then: a statisti· 
cally signific:lnt slope to the graph? 

(c) NOle that the intercept is not identical to the mean va1ue of the temperature you cal­
culated in ~ (a). Now. shifl the lime coordinates by 4 s so that the mean time is 
O. Refit the data with the new vn1ucs ofT. Is !.he inlercept now ide:nticalto the mean 
value ofT? 

(d) Clearly. the results of this experiment cnnnoc depend upon the time at which the 
measurements were made. Show th .... if tbe mean value of x is equal to zero, then 
the intercept b calculated from Equation (6.13) is identically equal to the me.lJl 
value afy. 
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Computer Ilts Routines used for filling a series of Legendre polynomio.ls 10 these data 
are included in Program 7.1. 1be procedure LECPOLY in the program unit 
FITFUNC7 c.aJCU~les the terms of the l...egcoore polynomials throtIgh tenth order. 
The procedure is selected through 0. br.ulch on the nri .. blc PAE in the function Nnel 
with PAE = 'A' for all tem\S tDorder" - III - l,or PAE - 'E' to fit witbjust the 
eYen terms. Note that the index I: of the lenn in the fining (unction. in general, does 
nol cCK1'eSpOnLIIO lhe order L of the Legendre polynomial. 

The efficiency of the calculation (and therefore the speed of the linear regression 
calculillion) could be improved in a number of ways. The simplest change would be 
to calculate the functions once at each value of the independent vtui.able and store 
the calcuhued values in an array. 

Parameters obtained by fining a series in Legendre polynominls for terms up 
10 L ~ 4 are lisled in Table 7.7. Separate fits were made with all temlS and with only 
the even lenns in the series. As expecled. the coefficients of tcnns involving odd or­
ders are comparable 10 their uncertainlies and negligible compared to those involv­
ing even poynomials. The full error mauix for the fit with even lenns is listed in 
Table 7.8. 

In view of the strong Iheoreticnl argument that only even Legendre polynomi­
als are required for this reaction. it would be appropriate to fil a series that includes 
only me even terms. The parameters obtained in this fit are also displayed in Table 
7.7. and Ole numbers of counts calculated from these parameters are listed. The func­
tion cWcul.:ncd with even tenns is illustrated as a curve on the data of Figure 7.2. 

Because we are fitting wilh orthogonal functions, we might have expected 10 

obtain identical vnlues for the coefficient Do from both fits. (We expect the higher­
order even coefficients to change because the presence or absence of lower-order 
coefficients must affect the higher coefficients.) The fact that there is some depen­
dence of 00 on higher-order tenns is a result of lhe faclmal a given experiment does 
not sample unifonnly the entire range of the Legendn.: polynomial. so the orthogo­
nality relation Equalion (7.43) is not satisfied by a finilc data set. This is in contrast 
10 the situation in the previous section. where we set up orthogonal functions based 
on the data themselves. Nevertheless, it is generally good practice to use orthogonal 

TABLE 1.1 
Coemclents und Xl from least-squares fit to Legendre polynomiul series 

Allknns 
Even tenns 

TABLE 1.8 

x' " 
11.2(14%) 937.4:!: 7.6 
t1.6(22%) 938.1 ::!: 7.S 

" " 
0.7 ::!: 12.8 159 = 14 

261 = 14 

" 
to::!: 11 

Error mutrill: for u least-squares fit to even Legendre polynomials 

[ 

>6.24 
- S.256 
- 6.212 

- S.256 
186.S 

- 26.90 

-6.272] 
- 26.90 

279.8 

" 
158::!: 18 
161 ::!: 16 
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fitting functions whenever possible to minimize both the correlations between co­
efficients and rhe dependence of higher coeffICients on the presence of lower ones. 

The values of Xl and the Xl·probability for the two fits are also given in Table 
7.7. We note rhat Xl (or the thfee..parameter fie is necessarily higher thnn (hat ror the 
five-parameter fit, but Xl per degree of freedom is smaller and the xl-probability is 
higher. 

7.4 NONLINEAR FUNCTIONS 

In all the procedures developed so far we have assumed that the fitting funclion was 
linear in the coefficients. By that we mean thai the function can be expressed as a 
sum of sep3r.lle tenns each muhiplied by a single coefficient. How can we fil data 
with a funclion that is not linear in the coefficients? For example, suppose we have 
measured the distribution of decay times of an unstable state and lhllilhe distribu­
tion can be represented by (he nonnaIized funclion pet) = (IIT)e-'", where T is the 
mean lifetime of the slate. Can we find the parameter T by the least-squares method? 
The melhod of least squares does not yield a straightforward analytic3.1 solution for 
such functions. In Chapter 8 we investigale methods of searching p3JillJleter space 
for values of the coefficients that will minimize the goodness-of-fit criterion X? 
Here we consider approximate solutions to such problems using linear-regression 
lechniqucs. 

Linearization 

It is possible to lr.lnsform some functions inlo linear funclions. For example, If we 
were to fil an exponential decay problem of the fonn 

y = ae-b (7.46) 

where Q and b are the unknown parameters, it would seem reasonable to take loga­
rithms of both sides and to fit the resulting straighlline equation 

Iny=lna-bx (7.47) 

The melhod o( least squares minimizes the value of Xl with respect to each of 
the coefficients In Q and In b where Xl is given by 

X' = ~ {al
.! [In Y, + In a - bXIJ'} (7.48) 

where we mUSl use weighted uncertainties u; instead of u, to account for rhe trans­
fonnation of the dependent variable: 

• d(ln y;) - 1. (749) 
~- ~- ~ . dy Y, 

The importance o( weighling the uncertainties is illustrated in Figure 7.3. which 
shows the function or Equation (7.46) graphed both on a Ilnear and on a logarithmic 
scaJe. (For plotting. We use Jognrilhms to base 10 mther Ihan nllturaJ lognrilhms.) 
The uncenainties are given by u, - yy, and therefore increase with increasing Yj. 
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FUNCTION 

S.I NONLINEAR HITING 
The ml!thod!> of least squares aoo multiple regression de"eloped in the previous 
chaph:rs arc restricted 10 fiuing functions thnt arc lincar in the paro1nlCICrS as in 

Equation (7.3): 

y(x) - i;[<l,1i('<)) (8.1) 

1-' 
This limiHuioll is impos«:d by thl! fact 1Mi. in gCl\I!ral. minimizing X1 can yield a set 
of coupled equations that afC Iincar in the III unknown panllnelcrs only if lhe fining 
funclions \'(x) arc Ihcmsdvcs line .. r in Ihe parameters. We shall distinguish between 
the two Iypes of problems by fl!fcrring to {mear fiuing for problems that involve 
equation.; that arc linear in the parumetcrs. such as those discussed in Chapters 6 and 
7. and IJO,,/inl!llr jilting for those problems that arc nonlinear in the parameters. 

1~2 

I£.xlIUlplc H.I. In a popular und~rgr.adUiue phyliic~ labor.uory experiment, a real sil­
\'ef quarl~r is irr.ldialCd with Ihennal neutrons to create two shoO-lived iwtopes o( 
siltOcr. dAgUIli and W\gIlO, that subsequently decay by bela emission. Siudents counl 
th~ ~millcd beta panicle:s in 15-s intervals for about" min to oblain a decay curve, 
Data collected from such an experiment ,so: listed in Tabl!! 8.1 and plocled on a semi­
logaritiunic @raph in Figure H.1. The dalu are reponed al the end of each 15-s inter­
\'al. just us th~y were recorded by a scakr. TIle dala points do not faU on a ~raight 

I .. 
i z 

FIGUREU 
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300.0 450.0 

Tunc "I 

600.0 750.0 '100.0 

Number or counts d~h."Cled rrom Ihe decllY ofl",,"o e:cdlcd stales of 5Ih·.:r as a runcuon of ume 
f&:unp/e 8.1 ) lime IS reported althe end of extl IDlerv:l1. St:llisllcai unceJt.1inlies arc QUumed. The 
curve W.l.S obtained by a nonhnear ka.st-$qllaJCS fit of EqWllion (8.21 to the lbta. 

line because the probability function that describes the process is the sum of two ex­
ponential functions plus a conslant background. We can rcpresent the decay by t~ 
fiuing function 

)'(Xi};::: tfl + " l l!-,/., + a,«' -'·' (8.2) 

whcre thc par:utlCtcr a, corresponds to lhe background r.ldillllon and til and d) cone­
spond 10 the amplitudes of the two excited states wilh me3J1 Jives a~ and d,. respec­
th·cly. Clearly. Equauoo (8.2) is not linear in the parameters u, and D). although it is 
linear in the parumcters " I' til' and oJ. 

We can use a graphical analysis method to find Ihe two mcan lifetimes by plot­
ling the data on s.c:miklgarithmic paper utler first subtracting from exh lbta point the 
constant background contribution. which has been measured separately. (NOle that the 
background counts have not betn SUbtractL'CI 10 Figure 8.1.) We then consider two re­
gions of the ploc: region d.at small values of T(e.g., T < 1205) in which lhe short­
livcd state dominates the plol. and region h, at large vlllues of T(e.g .• T> 200 sl in 
which only the long-lived sl>Kc: contributes to the lb.ta. We can estimate the me.ln lire­
time uflhe long-Jived state by finding the slope of our best estimate oflhc strai~ht line 
Ihat passes through the data points in reBion b. From Ihis result we can estimate the 
conlribulion of the long-lived component to region 0 and sublr:lct thM contribution 
from each of the data points. and Ihus make It new plot of the number of counts in re­
gion D. which we attribute to lhe shon-livcd stale alone, 'The slope of the hoe through 
the cortUtcd poinlS gives us lbc mean lifctime of the shoo-lived Slate. Linear reg.n:s­
sion techniques discussed 10 Seclion 7.4 could be USL"<i to lind the slope of the graph in 
coch region. 

"" It hI ,, :r" F • 'j 
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TABLES.' 
Geiger counter dalD rrom aR irrudlated silver piece, recorded in 15·5 intenals 

PoiDI Measuml CaJc:ua.ttd Point MeaMlml Cakttlakd 
nu.ber 

2 
3 
4 , 
6 
7 

• • 
10 
II 
12 
13 
14 
IS 
16 
17 

" I. 
20 
21 
22 
23 
24 
15 
26 
27 

'" 29 
30 

TIme 

IS 
30 

4' 
60 
7S 
90 

10' 
120 
m 
ISO 
16' 
ISO 
10' 
2ID 
ill 
240 
m 
270 
l8S 
300 
)15 

330 

34' 
360 
m 
390 
40' 
420 
m 
4SO 

counts 

m 
47. 
3SO 
302 
185 
IS7 
137 
110 
110 
.9 
74 
61 
66 
68 
4. 
54 
51 
46 

" 20 

'" 37 
49 
26 
3S 
29 
31 
24 
15 
3S 

""'.~ 
748.3 
!U9.S 
310.4 
21l.0 
206.7 
162.7 
132.5 
ilLS 
96.3 
85.0 
765 
69.7 
... 2 
'95 
.55.5 
51.9 
48.8 
4'9 
43.3 
409 
38.7 
36.7 
34 .8 
33.1 
31.5 
30.0 
28.6 
21.3 
26.1 
25.0 

nwnlH!r 11me counll counts 

31 
32 
33 
34 
3' 
36 
37 
38 
39 
40 
41 
42 
43 
44 

4' 
46 
47 
48 
49 
SO 
51 

" 53 

'4 
" 56 
57 
58 

'9 

46' 
4.0 
49' 
510 
m 
S40 
m 
570 
m 
600 
61S 
630 .. , 
660 
675 
690 
70' 
720 
m 
7SO 
76' 
7SO 
79' 
BID 
.15 
840 
m 
",0 
885 

• 30 
U 

'" 21 

I' 20 
27 
17 
17 
M 
17 

• 
II 
11 
17 
12 
10 
13 
16 

• 
9 

M 
21 
17 
13 
12 
I. 
10 

24.0 
23.0 
11.1 
21.3 
205 
19.8 
19.2 
185 
18.0 
17.4 
16.9 
165 
16.0 
15.6 
lS.l 
14.9 
14.6 
14.3 
14.0 
13. 
n.s 
13.3 
13.1 
12.9 
12.1 
12.6 
12A 
12.3 
12.1 

N"lt: The lime is reponed althe end or ~h inlttVal. 1be ~ubled numba or counts was rOWMl by method 4. 

Because unalytic melhods of least-squares filting cannot be used for nonlinear 
fitting problems. we muse consider approximation melhods and milke scnn::hes of 
parameter space. In the following sections we discuss four nonlinear fining meth­
ods: a simple grid-search method in which we simplY calculate X2 at trial values of 
the parameters, and search for those values of the parameters that yield a minimum 
value of Xl, a gradienl-search method thm uses Ihe slope of the function to improve 
the efficiency of the search, and twO semianalytic methods thai make use of the ma­
trix method developed in Chapter 1, with a linear approximation to the nonlinear 
functions. As examples, we shall detennine the parameters (a l ••• as) by fitting 
Equation (8.2) to the data of Example 8.1 using each of the four methods. The curve 
on Figure 8.1 is the resuh of such a fit. 
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fIGURE8.1 
Chi·square b)')lt:nurface lIS 01 functioa of IWO par;uneteB. 

Melhod of Leasl Squares 

We can generalize the probability function. or IikeliJlOodfimcliol', of Equation (6.7) 
to any number of parumelers, 

- [_I ] [_! [Yi - X(X,)],] PIal. a, • . ..• a.) - n u,vz:;; exp 2 ~ Ui (8.3) 

and, as in the previous chapters, maximize the likelihood with respect to the para­
meters by minimizing the exponent, or the goodness-of-fit parameter Xl: 

X' '" ~ [:1 [y, - y(X,)],) (8.4) 

where XI and )" are the measured variables, UI is the uncenainty in Yit and Y(XI) ;lre 

values of the function caJculated at XI' According to the method of least squares. the 
optimum values of the parameters aj are obtained by minimizing X2 simullaneously 
with respect 10 each panuneler, 

•• ' • { 1 ) .=. = - ~ ,[y, - y(xi)l' - 0 ao, aaj aj 

_ -2~{.!.[Y. - y(x,)] .Y(Xi») aT I aaj 

(8.5) 

Taking poutial derivatives of x! with J'elpect to each oflbe 111 parameters Uj will yidd 
", coupled equations in the 111 unknown panunelers aJ as in Section 7.1. If these eqUQ­
tions ilJ'C ootlinear in all the parameters, we must. in general, treal Xl as a continuous 
funclion of the In parameters, describing a hypersurface in an m-dimensional space. 
as expressed by Equation (8.4). and seDlCh that space for the appropriate minimum 
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value of Xl. Figure 8.2 illustrates such a hyper.;pace for a function of two paramete~. 
Alternatively, we may apply to the III equations obtained from Equations (8.5) ap­
pro~malion methods developed for finding roots of coupled, nonlinear equations. A 
combination of both methods is often used. 

Variation of Xl Near a Minimum 
For a sufficiently large event sample, the likelihood function becomes a Gaussian 
function of each paro1meter centered on those values oj that minimize Xl: 

P(aj} = Ae-(II,-,,;W2.r. (8.6) 

where A is a function of the other parameters. but not of a j ' Comparing Equation 
(8.3) for ahe likelihood function with Equation (8.4) for X2, we observe thill we can 
express Xl as 

x' ~ -2In{P(u,. u, •...• am)) + 2 L In(Ui yT,;) (8.7) 

Then. from Equation (8 .6), we cllll write 
(a. - a')l 

x' ~~+C (8.8) 
Uj 

to show the variation of X2 with any single parumeter OJ in the vicinity of a mini­
mum with respect to that parameter. The constant C is a function of the uncertain­
ties UJ and the panlmeters a, for k *' j. Thus X2 varies as the square of distance from 
a minimum, nnd an increase of I standard deviation (0-) in the parameler from the 
value aJ at Ihe minimum increases X2 by I . For a more generol proof, see Arndt and 
MacGregor (1966). appendix II. 

We can see thai this result is consistenl with that obtained from a second-onler 
Taylor expansion of Xl about the values aj. where the values of Xl and its deriva­
tives at a :; a' are wrinen as X60 axaJitaj' and so forth: 

-[ax' ) 1 - -[ a'x' 1 x'=xi+ L ~(aJ-aj) +:;L L ~(a.-a')(aj-aj) (8.9) 
, .. , eraj _._1 J-I lIalllal 

Because the condition for minimizing Xl is that the first panial derivative with re­
spect to each parameter vanish (i.e .• aX2/itoj = 0). we can expect that near a local 
minimum in any parameter aj. Xl will be a quadratiC function of ltHli parameter. 

We can obtain another useful relation from Equation (8.8) by taking the sec-
ond derivative of X' with respecllo the parameter OJ to obtain 

alx"! 2 _~_ (S. IO) 
aa] (7J 

We obtain the following expression for the uncertainty in the par.uneter in teoos of 
the curvalure of the X2 function in the region of the minimum: 

, (ti)' ui~2 aaJ (8.ll) 
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,. 
76 ._ 

~ 
n 

'" 68 

.. 
i 
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.. 
130 '" , .. '" '90 ,os 220 

0, 
FIGURE8.J 
PIoc of xl VerniS a ~nglc par.tmelet a in the region of a local mirumum. The Jocattoo or lhe minimum 
15 caJculaled by fillina 3. parabola lhrough the three Indicated Iofuta points. 

We note that (or uncanelated parnmele~. Equation (8.11) is equivalent 10 Equation 
(7.22) with Equation (7.25) foroblaining the uncenainties from the curvature matrix. 

We can a.lso use the quadratic relation to find the approximate location ofaXl 
minimum by considering the equation of a parabola Ihat passes through three paints 
that straddle the minimum. and solving for the value of the par.unelcr at the mini· 
mum, as illustrated in Figure 8.3. If we have calculated three values of X2, 
xi = x2(aJI)'X~ = x2(aJ2),andxl = x2(a))). whereaj, = all + Aaj and ajl = aj2 + 
Aaj • Ihen me villue oj of the parameter at the minimum of the parabola is given by 

aj~ajl-aaj[ ,~l2-IX! ' +-2
1
] (8.12) 

X, X + Xl 

In addition. we can estimate the errors in the fining panuneters OJ by varying each 
parameter about its minimum to increase Xl by I from the minimum value. The 
vnriation aJ in the parameter aj • which will increase X2 by I from its value at the 
minimum of the parabola. is given by 

uj = aa j y"'i('x'I--;;2-x l'+"--x j"t"" (8.13) 

Alternatively. we can attempt to calculate the second derivative of X2 at the mini­
mum and find the standard deviation from Equation (8.11). 

If the panuneters nrc correlalcd. the method summarized in Equation (8.13) for 
dcteooining uncertainties in the parameters is valid only under the condition Ihal. 
with oJ = aj :t aJ• Xl be minimized with respecllO all other parameterS. This condi­
lion severely limits the usefulness of this procedure for detemtining the uncertainties. 
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we choose initial step sizes to be proportional to the starting values of the parame­
ters and readjust them if necessary oCter each local minimum is found. In the simple 
grid-search calculation. we adjust the step sizes to be those values that increase Xl 
by approximately 2 from its value Dt abe local minimum. 

Condition for Convergence 

A change in X' per degree offr=Jom (x'/dol) o[Jess than about 1% from onetriol 
set of parumelers to the next is probably nOl significant. However. because of the 
problems of local minima and very flat valleys in the parameter space, it may nO( be 
sufficient (0 set an arbiU'Ilry condition for convergence. start a search. and let it run 
to completion. If the starting parameters are not chosen very carefully, the search 
may SlOp in a nat valley with an inappropriately large value of Xl. If this happens, 
there are several possible ways to proceed. We can choose different starting vnlues 
and retry the fit. as suggested in the previous scctions, or we can set tighter conver­
gence requirements (e.g .• AX1/dof < 0.1 " ) and rerun the search in the hope that the 
program will escape from the valley and reach the appropriate minimum. A conve­
nient approach for small problems is to observe the process of the search and to cut 
it off manually when it appenrs that a stable minimum has been found. If a suitable 
minimum cannot be found, then different starting values should be tried. When fit­
ting curves to several similar samples of data. we may find it satisfactory to estab­
lish suitable starting parameters. step sizes, and a cutoff criterion for the first SCI, 

and employ an automatic method for the remaining sets. 

Computer Illustration of Nonlinear Fitting 
Melhods 
In Ihe following sections we discuss and illuslr.1te with computer routines four 
methods of fitting Equation (8.2) to the d:tta of Exnmple 8.1. 

Program 8.0. NONLiNFT (Appendix E) Common calling routine to (est the 
four different fiuing methods. Repeats me calculations until a xl-minimum is found. 
Variables nrc defined in the progr.un until F ITVARS ond data input and output are 
handled in the program unit F j TUT t L as in lhe filling programs of Chapters 6 and 7. 
FITFUNCB calculates the fitting function. 

Step sizes for the fit are sct Initially in the routine FETCH PARAM ETERS 
to be a fmclion of the staning values of lhe panunetets. (The step sizes must not be 
M:a1ed to the parameters throughout the calculation, however. lest they become 0 when 
a parameter is 0, which would hillt the search in that parameter.) 

Tables 8.2. 8.3, 8.4. and 8.S show values of X] and the PanlIDctcrs a, through as 
for several stages of the calculation at the beginning. middle. and end of each of the 
four types of sean:h. The tnbles include the time 10 find the solution relative to the time 
for the faslest procedure. 

Program 8.1. GR t OSEAR lAppendix.E) Routine GRtDLS ilIustrntesthe grid­

search method. 

Program 8.2. GRADS EAR (Appendi~ E) Routine GRADLS iUustn\les the 
gr.uJieol·se;uch method. 
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Program 8.3. EXPNDFIT (Appendix E) Roulinc CHI FIT illustrates fitung by 
cxpansion of thc fitung funclion. 

Program 8.4. MARQFIT (Appendix E) Routine MARQUARDT illuslCates fit­
ting by the gradient·cxpansion algorilhm. 

Program 8.5. FITFUNB (Appendix. E) Fining function and X' ·caJculotton foc 311 
fits called from Program 8.0. 

Program 8.6. MAKEASe (Appendix E) Malrix set-up for noR-linear fits. 

ProgramS.7. NUMDERIV (Websile)Numericaideriv3tives. 

Program B.l. MATR IX (Appendix E) Matrix products and inversion. 

8.3 GRID-SEARCH METHOD 

If the variation of X Z wilh each parameter 4 J is not very sensitive to the values of the 
oaber parameters, then the optimum parameter values can be obtained most simply 
by minimizing Xl with respect to each of the parameters separalely. This is the grid. 
search method. The procedure is simply to select starting values of Ihe parameters, 
find the value of one of Ihe parameters dUll minimizes X 1: with respect to that para­
meter. set the parameter 10 that value. and repeat the procedure for each parameter 
in tum. The entire process is then repealed until a stable X J mimmum is obtained. 

Grid seartb. The procedure for a grid search may be summarized as follows: 

1. Select starting values oJ and step or increment sizes /10, for each par.uneltt:md 
c:1k:ulatc Xl with the swting patnmetU'S. 

2. Increment one panuneteroj by :!::/10, and calculate X2, where the sign is chosen 
so that X l decreases. 

J. Repeal step 2 until X2 stops decreasina and begins to increase. 1be increase in 
Xl indicates Ibat Ihe se3l"Ch has crossed a ravine and started up the other side. 

4. Use the Insl three values of oJ (which bracket the minimum) and Ibe associated 
values of X 1 to delenrunc the minimum of the paruboln. which passes through 
the three points as iIIustrnletl in Figuet 8.3. rSee Equalion (8.12).) 

5, Repeal to minimize Xl with respect (0 each parameter in turn. 

6. Continue 10 repeat the procedure until thc last iteration yiclds a predefined neg­
ligibly small decrease in Xl. 

The main advanlage of the grid-se.nrch method is its simplicity. With succes­
sive iterations of the search, the absolute minimum of the Xl function in parameter 
space can be located to any desired precision. 

The main diSlldvantage is thai, if the voriations of Xl with the parameters are 
slrongly correlated, then the approach to the minimum may be very slow. Consider. 
for example, the contour plot of X? as a. function of two parameters in Figure 8.4. 
The Xl contours are generally approximately elliptiell) near the minimum. The 
degree of correlation of the parameters is indicllted by the tilt of the ellipse. If two 
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FIGURERA 
Conlour plot or Xl iU a (unction of IWO tughly comlatcd 'YiU1ables. 1be 1igug line ~presenlS the 
search path appro;v;h 10 a local minimum by the grid-sean:h method. 

parameters Ilte not correlated. so that the varia'ion of Xl with each parumeter is in­
dependeDI of Ihe variation with the other, lhen the axes of the ellipse will be paml­
lei 10 the coordinate axes. Thus. if a grid selUCh is initiated near one end of II tilted 
ellipse, the search may follow a zigzag path as indicated by the solid line in Figure 
8.4 and the search will be very inefficient. Nevenheless. lhc simplicity of the calcu­
lations involved in a Brid search often compensates for this inefficiency. 

Program 8.1. GA I o5EAR (Appendix E) Routine GRIOLS iUustI'l11es the gnd­
search method. 

The mnin sem:b routine. G R IOLS, is enlerui with \he value of Xl 
(CH ISQR) IlS argument. In a loop over each ofw m paramders in IlIm, Ihe vruue of 
Ihe parameter is varied until X2 has passed tJuough Il local minimum in the parameter. 
The Iluec most recent values of x2 lhat bnu::kel Ihe minimum are stored in the varinbles 
CHISQ 1. CHISQ2. nod CHISQ3. The best estimate of the panuneter at this 
stage of Ihe calculation is delennined from Ihe minimum of Ihe parabola that passes 
lhrougb the th"e points. The step size (OELTAA(J)) is lhen adjusted to be that 
value Ihlll increases X? by 2 from its value at the local minimum. 

One pass duough G R I DLS corresponds to a single zigzag along the palh of 
Figure 8.4. The seDlCh is "peated until X 1 does not chllllge by more lIum the preset 
level. CHICUT. 

A call to the function SIGPARAB in t.be program unit FITUTIL at the end 
of the sean:h n:turns DO estimate of the uncer1;unty in each par.unCle(l in lurn from III 
calculation of Ihe IOdependent variation needed 10 incre:lSe Xl by I from its minimum 
value. 
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TABLE 8.2 

Two exponentials plus constant background: grid·search method 

nul .. " " " " " 
0 ...... )0.0 900.0 80.0 27.0 ::!2l.0 I IUD .. ~ 1332.3 IOtiS 27.1 "".2 2 96.9 12.6 1233.9 127.9 28.2 198.4 3 79.4 11 .6 1155.1 140.2 28.8 192.2 • 72.9 11.2 1100.3 147.0 29.3 189.2 

16 66.7 ILl 9635 1488 32.3 185.3 17 66.7 11.3 962.5 148.2 32A 18.5 .8 

39 66.3 10.1;1 959.3 139.1 33.3 19SA 40 662 10.8 959.2 138.9 33.3 lVi.7 

Ul1CeJUJnties 0.' 28.3 '.5 0 .• ' .0 

1( ' /do( . 1.23; probability - 12.t'll; ret:.u\·c lime _ 9.1 

NO/t ' Slales in the fillO cuunlS from the decay of ached swes or litver. Tbe values or xl and the par.uncrcrs are 
lined III the belirullDI. middle, and end of the se:an:h. The uncenainlies In !he p:In/I'Itla1 correspood 10 a thanl< of 
I ill r (rom lIS value &I the end or !be ~h. 

Table 8.2 shows values of Xl and the parameters 0t through OJ for several 
smges of lhe c.1lculation allhe beginning. middle, and end of the search, The search 
is relatively slow, but eventually a satisfaclory solution is found. Note thatlhe cal~ 
culated uncertainties correspond to the diagonaltenns in the error matrix for uncor. 
related pammelers. If correlations are considered to be imponant, the matrix 
inversion methods discussed in the following sections could be used to find beller 
approximations to the uncertainties. 

8.4 GRADIENT·SEARCH METHOD 

The search could be improved if the zigzagging direclion of travel in Figure 8.4 
were replaced by a more direct vector loward the appropriate minimum. In the gra­
dient-search method of leasl squares, all the parameters oJ are incremented simulta. 
neously. with relative magnirudes adjusted so that the resultant direction of travel in 
parameter space is along the gradient (or direction of maximum variation) of X 7. 

The gradient V)( 1 is a vecior that points in the direction in which )( 1 increases 
most rapidly and has components in parameter space equal 10 the rale of change of 
Xl along each axis: 

Vxl a ±[axld;] (8.14) 
J a t aa, 

where Uj indicates a unit vector in the direction of the oJ coordinate axis. In oruer to 
detennine the gradient. we estimate the partial derivatives numerically as discussed 
in Appendix A: 

.j'J .MlJ.~;;;=-:;;::'''~~~~~~~ ---
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ax' x'(a + 'Ila .) - x'(a ·) 
(
V ') =_~ I J' I I (8.15) 
x ~ aa

j 
fdD} 

where lis a fnactioR of the step size ~, by which OJ is changed in order to determine 

the derivative. 
The gradient has both magnitude and dimensions and, if the dimensions of the 

various parameters oJ are nol nil the same (which is usually the case), the compo­
nents of the gradient do not even have the stunt dimensions. Let us define dimen­
sionless parilmeters h

j 
by rescaling each of the parameters Dj to a size that 

characterizes the variation of X" with OJ ruther rough\y. We shall use the step sizes 
1101 as the scaling constants, so that 

a 
h, =.::L 

AUj 

The derivative with respect to bj then becomes 

aX' ~ -- l1aJ 
iJbj aOj 

which may be calculated numerically as 

aX' x'(aj + fllaj) - x' (aj) x'(a, + fila,) - x'(aj) 
_"'" 4a.:::: 
iJb) fila, I J 

(8.16) 

(8.17) 

(8.18) 

We cootheD define a dimensionless grJ.dicnt 'Y. with Uoil magnitude and components 

aX'/iJb, (8.19) 
1,= Y'i:j.,(aX'/abY 

In the numerical calculation of Equation (8.18), the quantities AaJ andJ occur only 
in the argument of X" and not os scale fadors. 

The direction thai the gradient-search method follows is the directioll of sleep-
est descem. which is opposite of the gradienl"'l. The search begins by incrementing 
all par.tmetcrs simultaneously by an amount il.a). with relative value given by the 
corresponding component "'11 of the dimensionless gradient and absolute magnitude 
given by the size consUlnt Ilai 

Sa) - - "'I}il.a} (8.20) 

The minus sign ensures that the value of X I decreases. The size constant l1aj of 
Equation (8.20) IS the same as that of Equation (8.16). 

There are several possible methods of continuing the gradient search after a 
first step. The most str.rlghtforwartl is to recompute the gradient after each change 
in (he parameters. One disadvantage of this method is that it is difficult to approach 
the bollom of the minimum asympt01ically because the gradient tends to 0 al the 
minimum. Another disadvantage is ilial recomputation of the gradient at each step 
for small step sizes results in an inefficient search. but Ihe use of larger step sizes 
makes location of the minimum \css precise. 

A reasonable variation on the method is to search along one direction of the 
original gradient in small steps. calculating only the value of X I until X

l 
begins to 
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rise again. At thiS point, the gradient is recomputed and the search contmucs in the 
new direction. Whenever the search straddles a minimum. a parabolic interpretation 
of Xl is used to improve the determination of the minimum. 

A more sophisticated approach would bc to use second panial derivatives of 
x! to detennine changes in the gradient along the search path: 

ax'~ av'~. ( a'X' ) - ==- +~ --Sa, 
80j ,"k, 00) I ,i_I oaj 8o! 

(8.21) 

If Ihe search is already fairly near the mlDlmum. this method does decrease 
the number of steps needed. bUI at the expense of more elaborate computation. If the 
search is not near enough to the minimum. this method can actually increase 
Ihe number of steps required when first-order perturbations on the gnldient are 
not valid. 

The efficiency of Ihe grndient search decreases markedly as the search ap­
proaches a minimum beciluse the evaluation of the derivative according 10 the 
method of Equation (8.18) involves tnking differences between nearly equal num­
bers.ln fact. althe minimum of X2. these differences shoull.l vanish. For this reason. 
one of the methods discussed in the following sections may be used to locate dlc ac­
tual minimum once the gradient search ha.r; approached it fairlY closely. 

Progrum 8.2. GRADS EAR (Appendix E) Routine GRADLS iIIustratcs the 
gndienl-sean:h method. 

On each entry to the main senteh routine. GRAOLS, the components of the 
grodient GRAOLS{J) are~kulilted numerically from Equation (S.l8) in the proce­
dure CALcGRAO. The argument FRACT of Ihis routine. corresponding 10 the 
variable! of Equation (8.18), detennincs the fraction of the step siz.e (DEL TAA) 
used in the numerical calculation of the partial derivative. Each p;uumcter A(J) is 
then changed by the amount STEPDOWN-OELTAA(J)-GRAO(J), where 
STEPOOWN is a scaling factor thai is SCt initially in the main program and read· 
jusled oiler each stllge to the size needed 10 locate the minimum. 

TIle initial vlllues of DELTAA(J) detennines to some extent the execution 
speed of each pass tbrough the routine GRAOLS. Ilhd the value of CH tCUT deler­
mines when the seareh will stop. Because of the small gradiem near the X2 minimum, 
it may take m:my steps 10 reach a reasonable value or Xl. nnd lhe cUloff. CH t CUT, 
may have to be set 10 a very low va'ue. For such cases, user intervention can be pro­
vided as an alternate method or Slopping the seOU'Ch. 

AI the conclusion ofthc search. the uncen..a.imies in lhc par.uncters are estimated 
in the funclion sIGPARA8 as in the routine GRAOLS. 

Table 8.3 shows values of Xl and the parume(ers al through Us for several 
stages of the calculation nt the beginning. middle. and end of the search. For Exam­
ple 8.1. the gradient search is considerably faster than the grid-search approach 
because allihe paramelers are varied logether 01.1 each step. However. the gradieR(­
search method has one disadvanlage that is not illustrated. If the sL1rting values of 
the paramelers arc 100 far from the final values. the grid search has a good chance 
of plodding along unlil it reaches (he correct solulion. The gradient search, on the 
other hand. mlly tend to get bogged down in local minima that correspond to a long, 
fiat valley in the parameter space. 
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TABLE8.J 
Two exponentials plus constunt background: gradient-search method 

1\iW .' a, a, a, a, 

0 406.6 10.0 900.0 80.0 27.0 
I 82.3 10.6 1061.0 .... 0 3-\.4 
2 72.6 '.8 '84.0 98.8 36.8 
3 69.8 ••• 966.' 100.9 36.8 
4 69.3 '.8 953.7 101.6 36.7 

I' 66 .• 8.' 952.2 114.7 3.5.5 
20 66.' 8.' 95·1.8 114.9 35.6 

Uncertainties D •• 263 3.8 0.8 

X2/dor:c 1.23; probability"" J 1.8%; relative lime'" 4.0 

a, 

ill.O 
rn.2 
237.4 
244.6 
242.1 

233.6 
233.9 

7.0 

HOle: Stages in the fillO counts from lhc decay of e~iled s~ of siher. 1bc values of ,,1 and Ibc parameters are 
lislCd at the bcaiMing, middle. and end or lhe ~ 1bc ~ntics in lhe paramclCn corresponding 10 a cbange 
of I in "J (rum iu. value AI abe end of Ihc iCattb. 

8.5 EXPANSION METHODS 

Instead of searching the Xl bypersurface 10 map the variation of X 2 wilh parameters, 
we should be able to find an approximate analytical function that describes the X J 

hypersurface and use this function to locate the minimum, with methods developed 
for linear least-squares fitting. The approximations will introduce errors into the cal­
culated values of the parameters. but successive iterations of the analytical method 
should approach the X l minimum with increasing accuracy. The main advantage of 
such an approach is thai the number of points on the X J hypersurface at which com­
putations must be made will be fewer than for a grid or gradient search. 1bis ad­
vantage is somewhat offset by the fact that the computations at each point are 
considerably more complicated. However. the analytical solution essentially 
chooses its own step size and, Ihus. the user is spared the problem of trying to opti­
mize the step size for speed and precision. 

Parabolic Expansion of Xl 

In Equation (8.9) we expanded Xl to second order in the parameters about aloca) 
minimum xa where uJ - oj : 

X' - xl + i: {aaX6 Ba,) + -2
1 i: i:{aa'aX! Ba,Ba,) (8.22) 

I-I OJ t-I j_1 OJ 0t 

which is equivalent 10 approximating the Xl hypersurface by a parabolic surface. 
Here we define &oj!:!: ai - oj. and xfi is given by 

X. = ~ {:i [Y' -Y'(X/Jl') (8.23) 

wherey' (xj) is the value of the function when OOj = O. 
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Applying the method of least squares, we minimize X? as expressed in Equa­
tion (8.22) with respect to the increments (Bo}) in the parameters, and solve for the 
optimum values of these increments to obtain 

~-~ '" f a2
xfi )- -a« }-a +~ a aBa, -0 k-I.m (8.24 ) 00, a, )-1 a, aj 

The result is a set of m linear equations in &oj that we can write as 

~, - i: (Ba,Il,.) = 0 
}-I 

k= I,m (8.25) 

with 

- I axfi I a2xii fJt=--2-a and QjtS-2-a a (8.26) at oJ at 

The factors :t Y.!: are included for agreement with the convemional definitions of 
these quantities. 

As in Chapter 7, we can treat Equation (8.25) as a matrix equation: 

P e 6no. (8.27) 
where P and 6n are row matrices and 0. is a symmetric matrix of order Ill. We shall 
find that 0. is the CUIVature matrix discussed in Sec lion 7.2, so named because it 
measures the curvature of the X2 hypersurface. 

Method of Computation 

The solution of Equation (8.27) can be obtained by matrix inversion as in Sec_ 
tion 7.2: 

3n ;:;:r PE Ba, ~ i: (E,)~;l ,., (8.28) 

where the error matrix E ~ 0.-1 is the inverse of the curvature matrix. 
If the parameters are independent of one another, that is, if the variation of X 1: 

with respect to each parameter is independent of the values of the other parameters. 
then the cross-partial derivatives ait U '* k) will be 0 in the limit of a very large data 
sample and the matrix 0. will be diagonal. The inverse matrix E will also be diago­
nal and Equation (8.27) will degenerale into In separate equations: 

fJ· aX6. a2xa BQ.==n=_~ __ 
"J aJi aa) aaJ (8.29) 

CompulD.tion of the matrix elements by Equation (8.26) requires knowledge of 
the first and second derivatives of X2 evaluated at the current values of the parame­
ters. Analytic fonns oftbe derivatives are generally quickest to compute, but may be 
difficult or cumbersome to derive. If it is not convenient or possible to provide ana­
lytic fonns of the derivatives. then they can be computed by the method of finite dif­
ferences (see Appendix A). In the following expressions, we use forward differences 

""'" __ r··"" -: T ""· ··~ .. ~ .. '_:":f ... ,,-:~ ..... J':r~ '!"I'~--=--~ ..... :,--.---". \ _''''''~'\'''' ". ~"';\~ .. ~~ 

'ii' i:~/fI,~,:·~'~',\'··· '~' .. :"'" "'~\~:t:~·.:~~, 
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Gradient-Expansion Algorithm 
A convenient algorithm (see Marquordl '963), which combines the best fC1ltures of 
the gnldient search with the method of linearizing the fitting function. can be ob­
uuned by increasing the diagona\ tenus of the curvature matrix Cl by a factor I + A 
that controls the interpolation of the algorithm between the two extremes. Equation 

(S.34) becomes 

p _ Saa.1 
. \h • ta;.(1 + l.) for j ~ k 

W1 a · 2 
It ajt forj '* k 

(S.39) 

If A is very small, Equations (8.39) are similar 10 the solution of Equation (8.34) de­
veloped from the Taylor expansion. If A is very Inrge, the diagonallenns of the cur­
vature matrix L10minate and the matrix equation degenerates into In separate 

equations 
(S.40) 

Jli :;:tO A5up.jj 

which yield the vector increment liu in the same direction as the vector IJ of Equa­
lion (8.37) (or opposite to the gradient of Xl). 

The solution for the parameter increments OOj follows from Equations (8.39) 

after matrix inversion 

Sa, ~ f (f~ •• ;.) ,-, 
(S.41) 

where the (3. are given by Equation (8.37) and the matrix E' is the inverse of the ma­
trix 0' with elements given by Equations (8.39) . 

The initial value of the constant factor A should be chosen small enough to 
take advantage of the nna\ytica\ solution. but large enough that Xl decreases. Be­
cause this algorithm approaches the gradient-senrch method with small steps for 
large A. Ihere shou\d ex,st a value of A such that Xl(a + 00) < Xl(a). The recipe 

given by Marquardt is: 

1. Compule x' (a). 

2. Stun ini.ian)' with A = 0.001 . 
3. Compute &a and Xl(a + Sa) with this choice of A. 
4. If Xl(a + 50) > Xl (a), increase A by a factor of 10 and repeat step 3. 
5. If Xl(a + 00) < X1(a). decrease A by a factor of 10. consider a' = a + &a to be 

the neW starting·point, and return to step 3. substituting a' for a. 

For each ueralion it may be necessary to recompute the parameter increments 
OOj from Equation (8.41). and the elements ajt Ill1d f!J of the matrices. several times 
to optimize A. As the so\ution approacheS the minimum. the value of >.. will decrease 
and the program should locate the minimum with a few iterations. A lower limil 
may be set for the value A, but in practice this limit will seldom be reached. 
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TABLE8.S 

Two exponentials plus conswnt background: Marquardt method 

Trilll xJ 

o 
I 
2 
3 

...... 
82.9 .... 
" .1 

a, 

10.0 
tl.O 
10.8 
10.4 

a, 

900.0 
933.5 
960.1 
958.3 

Uncertainties 1.8 .. 9.' 

r /dof - 1.22; probabililY • 12.4%; reI,lIlve lime - 1.0 

a, ., a, 

SO.O 17.0 12.5.0 
139.3 33.9 173,9 
130.6 33.8 201.2 
131A 33.9 :roS.O 

21 .7 2.5 30.5 

N(lu' All SUlei in lbe fittoCOWlu (rom lbe ~y of UQted uaw; 01' ul.VItf. "J'be Wl«'rwtllI(.l in the ~en cur­
~pond 10 abe $quare JtIOI$ or the cUaa(JD;IJ IttnU in lhc CIJUf maDix. 

TABLE &6 

Elements of Ule error matrix (Marquardt method) 

til 

I 
2 
3 

• 
S 

3.38 
- 3.69 
27.98 
- 2.3-1 

- 49.24 

2 

- 3.69 
2492.26 

81 .89 
- 69.21 
- 3.90 

J 

21.98 
81.89 

468.99 
- -14.22 

- 615.01-1 

• 
- 2.14 

- 69.21 
-~.22 

6.39 

• 
- 49.24 
- 3.90 

- 615.44 
53.80 

53.80 929.45 

NOlt: Enol matril (rom:a fit 10 the ndioxuvc sih'u data. 'The dbaQl\llJ 1cnnS:arc the vanartccs ul nn.J the vff· 
diaaon:allWnS arc the CO\"ari:ances os fl of the p.u;tmC1CI"S al' 

Program 8.4. MARQFIT (AppendiJl E) Rou,ine MARQUARDT iIIustr.ues fit­
ting by Ihe gradienl-eJlpansion algorithm. 
The procedure uses the same program units lIS Ihose in Program 8.3, and is idcnlical (0 

that prognun except for the Ildjus.tmenl of d-.e dmgooal elements aJiof the malrix a by 
the variable LAM 8 OA according (0 Equation (8.39). 

At the conclusion of the senrch, the inverse E of the final value of the curva­
ture matrix a: is treated as the error matrix, and the errors in lhe parameters are ob· 
tained from the square roots of the diagonal terms by calls to the function 
SIGMATRX in the unit FitFunc8. Table 8.S shows values of Xl and the parameters 
a, through a5 for all stages of the calculation. Table 8.6 shows the error matrix from 
the fit. 

8.7 COMMENTS 

Although the Marquardt method is the most complex of the four fitting routines. it 
is also the clear winner for finding fits most directly and efficienlly.lt has the strong 
advantage of being reasonably insensitive to the starting values of the parameters. 
although in a peak-over-bilckground example (Chapter 9), it docs have difficulty 
when the staning parameters of the function for the peak are oUlSide reasonable 

" •• ..u-~ •. ?:~'!.t;,"""'~ ... ---.JI'~~~A . 
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with insufficient data to satisfy the requirement of Gaussian statistics for individual 
histogram bins and (2) experiments in which the fitting function corresponds to a 
different probability density function for each measured event so that binning the 
data leads 10 a reduction in infonnation and a loss of sensilivilY in delennining the 
parameters. lethe data set is sufficiently large. then the least-squares method can be 
applied to problems of either type, and that method is generally preferred in view of 
its smaller computing requirement At any rate. it is not possible to extrncl more 
than minimal infonnation from a very small data set, so we should expect the direct 
maximum-likelihood method to be most useful for intennediatc problems with 
modest data samples. 

10.1 INTRODUCTION TO MAXIMUM 
LIKELIHOOD 

The basic maximum-likelihood procedure is relatively simple. Assume that we have 
a coUeclion of N events corresponding to the measurement of an independent vari­
able X j and a dependent variable ),;. where i runs from I to N. We wish to obtain the 
pammelers, a" a2' .. . , am. of a fitting function y(x/) ;or y(x/; a" a2' .•• , am) from 
these data. For each event, we conven y(x;) to a nonnalized probabililY densilY 
function 

P; .'!!! P(x;; a" a2, ... , am) (10.1) 

evaluated at the observed value Xi' The likelihood function ..L(a" a2"'" am) is the 
product of the individual probability densities 

• ,( (a,. a,., ... am) = IT P, ,., (10.2) 

and the maximum-likelihood values of lhe parameters are obtained by maximizing 
./(a" a2"'" tIm) wilh respect 10 the parameters, 

In many experiments, the probability density function PI will be made up of 
two components: a theoretical factor corresponding to the underlying principle be­
ing tested and an experimental factor corresponding to the biases introduced by ex­
perimental conditions, 

EXAMPLE 10.1 In Example 5.7 we presented a Monte Carlo program for studying 
biases that could nose in an expenmentto measure Ihe mean life of Ibe shon-lived K! 
meson lor kaon), The example Includes details of Ibe experiment and Figure 5.4 illus­
trates schemallcally the expenmenlal apparotus. 

In bnef, the experiment involves measuring the distance between Ibe point of 
productIOn and point of decay of Ibe knon. detennining the meson's velocily, and cal­
culating the meson's lime of night from production to decay, After correclion for bias 
Introduced by the finile size of the experimental apparotus, the mean life of the kaon 
could be detennined from measurements of many such events. 

TIle dashed rectangle on Figure 5,4 indicates Ihe region in which events are col­
lected. Ihe fidUCial region for Ihe experiment We select decay venlccs only within this 
region to assure precise measurements of both the separation of the two venices and the 
trajectories of secondary panicles from decay of the kDon. These latter measurements 
detennine the momentum, and thus Ihe velocity, of the kaon. Loss of events that do not 
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FIGURE 10.1 

Frequency wSlribulion of limes offlighl for 23,.565 evenlS IIlat survived fiduciaJ Cllis in a 40.000-
evenl Monle Carlo geocration. as a fUnction of the proper time (in IInilS of 10-10 $). The exponential 
curve was calclllnled from the nominal vaJue TIC = 0.894 X lOll. '0 S 10 represem the expected 
dislribulion ofthc 40,000 gencralcd evenlS. 

faU within the fiducial region bias Ibe final calculation of the mean life and therefore 
we must undersland the biases and make col'TCCtions. 

In the following examples, we assume that the COOrdinates of the two venices 
and the magnitude of the momentum of the decaying kaon have been detennined. 

We used the Monte Carlo program of Example 5.7. wilb the mean life of the 
kaon set to its nominal value of TIC = 0.894 X 10-1°5, to generate 40,000 events in or­
der to study the efficiency of the detector with 1US0nably high precision. It is impor­
tant that the statistical uncenainties introduced in lbe deICnninalion of Ibe efficiency 
function be negligible compared to the statistical and other uncenainties in the actual 
experiment The distribution of the 23.s65 generated events lbar surviVed fiducial cuts 
is shown as crosses in Figure 10.1 with the expected exponential distribution of the to­
IaI 40.000-evenr sample shown as a smooth curve. 

In Figure 10.2 we have plotted the resulting efficiency as a function of the times 
of flight of the kaons (the proper lime) in their individual rest frames. with the effi­
ciency funclion defined as the ratio of observed to expected events lor the point­
by-point rotio E(D = N'(T)lN(DJ from Equation (5.31). The dOlled line in Figure 
10.2 illUstrates lite region over which the efficiency reasonably may be assumed to be 100%. 
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Efficiency functlOll ,(TI - N{T)IN(T). akulatcd (rom lhc ratio of observed events (cros.scs) co 
ClI.pected cvcnLS (smooth C\lf\IC in FisuR: 10.1). The dolled line illustrates the re.ion over which the 
efficiency re:uonably may be wumcd 10 be 100,". 

We also used the Monic C:u-Io program, with different random-number seeds 
and the slime nominal vniuc of Tit. to genemtc a small "dala set" of 1000 events, of 
which 598 survIVed the fiducial CUI. 10 use In testioa Our Illlalysis procedures. 

We shall discuss sevcrnlllSp«:ts of the analysis of such dnta in the (aUowin& 
examples. 

EXAMPLE 10.la: Least·squara Method Figure 10.3 shows on a semHoSllrith­
mic plot the distribullon. IlS crosses (xl, of the 598 events thaI survived the fiducial 
cuts from the total sample of 1000 events generated In Example: IO.I .Th strDlghtline 
shows me expected distribution if there had been no efficiency losses. In order to ex­
traCI the mean life of the bon from these data, we apply the efficiency function ilIus­
tnlled In Figure 10.2 10 COrTeCt for losses. 1be corrected data POints arc plotlct.l in 
Figure: 10.3 as dlIta points with vertical error bars corresponding to the statistical un­
certainties in the data, scaled by the efficiency factor. (Uncertainties in the correction 
factor were negligible.) The efficiency was assumed to be 100% in the region indi­
cated by the horizontal dotted line in Figure 10.2. The very large error bars on "cor­
rected" poin15.at the two ends of the plol ~It from SOIling Jow-SIAIistics data points 
and iIIustrute the problem of using cia", in regions or low etftciency. Generally, it is 
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Semiloa2rilhmic plo! 0( the: rrequcncy disltibulion of 598 events Ihalsucvived fiducial cuts from a 
lOOO-evenl (Mome Carlo) dati. sample. The: \/nCOlTeCled (bla an: shown as crosses; me dab cOITCCled 
for efficiency losses are shown as dam points with ehUr bars. The suaiglu line sbows the resuh or a 
linear leasl ' Squares fillo !he COITCClcd semilo&arithmic dala. 

wise to eliminale points thac require: such truge COlTCClions from the swnple, bec.ause 
they contribute lillie 10 the overall result and depend heavily on the corrections. 

From the linear slope of the logarithmic plot, illustrated by the straighl line 
through the data points, we oblllin an "expcrimenlOll" mean life T t::z (0.925 :t 0.058). 
Alternatively, we could have used.:1 nonli~ Ieasf-squom:s fitting Technique to (Jerer­
mine T d~dy (rom a linear plot of the dlIta. 

Direct Maximum Likelihood 

Most actual experiments ilfe: more complex and have efficiency functions that ilTC 

considerably more complicated Ihan the onc illustrated by our example. For such 
problems, upplication of direct maximum likelihood may be the pR:ferable method 
for finding the best eslimule of the parameters. To upply this method, we must 
define n probability function for each recorded event. 

TIle probability of observing a Single eVenllh.l1 survives for a Ume II is 

p. iii Ajp(lj; T) (10 .3) 

..... u~-;''L.''''-''=-'~~''''I _ r-~-1tt - .. =:;:"'_-T-
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The first factor Aj represents the delectioll eJlide"C)~ or probability that the particle 
will decay within a predefined fiducial volume within our apparatus, so that a satis­
factory measurement can be made of its flight time, This factor depends upon the co­
ordinates of the production and decay vertices of the decaying particle. its momentum 
vector. and the geometry of the fiducial volume. The second factor P(II;") is propor­
tional to the probability that a particle of mean lifetime ,. will decay between time II 

and II + dt and is therefore proportional to e- I/'. Equation (10.3) becomes 

~ ;::; Aje·'; ' (10.4) 

It mightllppeat that the two faclors in Equation (10.3) are independent, so that 
the detection efficiency factor is independent of the decay probability, bUI, as we 
have observed in the previous example, Ibis is not generally true. Because of lhe fi­
nite size of our measuring appanllus, we may preferentially lose events that survive 
for very short times so that we can't mm precise measurements of their night 
paths, as well as those lhat survive for very long times and therefore decay outside 
(he acceptable limits of our delectors. Losses of both types depend upon the mean 
life that we are auempling to determine, the ",." in the second factor of Equation 
(10.3). For each particle that is observed to decay within the apparatus, we can de­
fine a pOle",ial palll lengt" ns the dislance it would travel if it had not decayed. Be­
cause each decaying particle has a different potential path length, we must calculate 
geomeuic factors to correct for those particles that decay outside the detector. The 
correction faclors will depend on the parameters and will be a function of the pro­
duction and decay coordinates and the momentum vectors of each decaying pani­
cle. Clearly, one element of good experiment design should be to minimize the 
dependence of these geometric correction factors on the parameters sought in the 
experiment. 

Normn1ization ror Maxlmum Likelihood 

'The factor Ai in Equation (10.4) corresponds to a normalization for each measure­
ment to assure unit probability for observing in Ibis experiment any event that has 
the mean life, coordinates, and kinematics of the observed decaying particle. To de­
tennine the normalizing factor AJ we refer to Figure 5.4 and consider the fiducial 
volume of our apparatus. indicated by the dashed rectangle. From each panicle's 
production coordinates and momentum vector, we can detennine the minimum dis­
tance dl that the panicle musllrDvel to enter Ibe region and the maximum distance 
d1 it can trnvel before leaving the region. (We can, of course, observe some events 
outside the fiducial volume, but we reject them because they cannot be measured 
precisely.) These minimum and maximum distances dl and dz must be convened to 
times of flight 'I and 11 in the rest fr.une of the decaying panicles, and the nonnaliz­
ing factors Ai can then be determined from the condition 

f" f" I p;dl/ ;::; AI e- I, 'dl l = I 
I, I, 

(10.5) 

With this normalization, the individual event probability P, of Equation (10.4) 
becomes the probability density for observing a single event The nonnalized joint 

• 
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probability or the likelihood function for observing N such events in our experiment 
is just the product of the individual probability functions: 

N N 
-f(T) = II P, ~ II -1,.-'.1. 

I - I j ~ 1 (10.6) 

Porameter Search 

Our object is to find the value of the pilmmcter T thai maximizes this likelihood 
function. Because the probOlbility of observing any Pill1icular event is Jess than I, 
the product of a large number of such probabilities (one for each measured event) 
may be a very small number. and may. in fact, be too small for the computer to han­
dle, To avoid problems. it is usually preferable to maximize the logarithm of the 
likelihood function 

M:a In .t' 
(10.7) 

rather than the likelihood function itself, so thOlt the product of Equation (10.6) be­
comes a sum. The logarithms should be reasonable, negative numbers. For our panic­
ularexample, the logarithm of the likelihood function of Equation (10,6) is given by 

M(T) = In[ .f(T)] D L[lnA' -;] (10.8) 

With AI defined by Equation (10.5). Note that AI is a function of the unknown 
parameter T, as well as of the production coonlinates, momentum vector, and fidu­
cial volume, and must be calculated separately for each event, alld/or every trial 
value 0/,.. 

In general, lhis problem, like the corresponding nonlinear least-sqUMeS fitting 
problem, CaMet be soJved in cJosed form. However, either the grid- or gradient­
~h method of minimizing the Xl function discussed in Chapter 8 can be adopted 
directly. It is only necessary to search for a m:I.Ximum of M (or a minimum value of 
- AI) with the same routines we used in Chapter 8 to find a minimum of Xl. 

We may note a correspondence between the quantity M(T), detennined in 
Equation (10.7) from the likelihood function for i"dividual evenls, and the good_ 
ness-of-fit parameter XZ

, detennim:d by Equation (8.7) from the likelihood function 
P(a) for binned dala: 

X, = - 2In[ '£(T)J+ ConSlanl (10.9) 

In the limit of a large number of events, the two methods must yield the same value 
T' for the maximum-likelihood estimate of the parameter 1'. In both cases the likeli­
hood function will be a Gaussian function of the parnmeter near the optimum value 

( !!..=..!T\ oi (T) " .xp - 2a' ) (10.10) 

so we can expect M(1'), like Xl(T), 10 vary quadratically with the parameter l' in the 
vicinity of 1" • 
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EXAl\.lPLE IO.lb lei us consider the simplest (onn of this problem. Assume that 
the unknown mean lifetime IS sufficiently short so that our apparalUs is large enough 
to include many lifetimes and. therefore. the loss of particles that decay at very long 
limes is negligible. Let us also nssume lbat our equipment can detect panicles at very 
shol1llS well as very long times. Tho the limits on the nonnalization integral of Equa­
tion (10.5) become '. - 0 and'l ", CCI and AJ is the same for every event and is given 
by Ai " Ill. The likelihood function becomes 

e- /,h 
1 (T) = II A.,-'''' = II -T- (10.11) 

with logarithm 

1 
M(T) = In[1 (T») = -~ L" - NlnT (10.12) 

We can obtain the maximum of Equation (10.12) by taking the derivative of 

M(T) with respect to T and selling ilia 0: 

dM(/) d! 1 1 =- --~I·-NlnT 
dT dT T.iJ· 

1 N 
=,"'1--=0 

T-.iJ' T 

(10.13) 

The solution is l' :: "i.t/N: that is. the maximum-likelihood estimate of the mean life is 
just the mean of the individual lifetime measurements. We should have reached the 
same result if we had found the maximum of L (I) from Equation (10.11). 

EXAMPLE IO.le Suppose Ihat we repeat the experiment. but with poorer experi­
menwl resolution so Ihat we cannot distinguish the decay vertex (Xl. Yl. ::2) from the 
creation vertex (.t,. YI' ::,) unless they are separated by a distance d,. For simplicity. we 
assume that the decaying particles are all produced with the same velocity. so that the 
lower cutoff diswnce d, translates inlo the same lower culoff in time I, for all events. 
(In an actual experiment. of course. the decaying particles would be produced with 
various velocities, so thai the calculated lower cutoff time '1 would vary from event to 
evenl.) 

For this example, the normalization integral of Equation (10.5) becomes 

which gives 

Ai' e-·,1'dr = I • • '. 

A. = e"IT 
• T 

The likelihood function becomes 

N N e,,1T N e(II-IY' 
.L(T) =Il Aje- I,,, = Il-e-"It =TI--

j"l jal T i-I '1' 

(10.14) 

(10.15) 

(10.16) 
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so that 

Setting 

gIVes 

or 

[I, - I,) 
M =ln 1 - ~ - ~ lnT 

T 

dM(T) a 0 
cfr 

d 1[/ - ") ) 1" - ") N -~ ---lnT =- ~ - ,- --- 0 
dT '1' '1'- '1' 

T 
~[/, - I ,) 

N 

~/I 
N - I I 

(10.17) 

( 10.18) 

(10.19) 

(10.20) 

As we should expect. the lifetime T would have been overestimated if we hud 
neglected to take account of the cutoff at short times. 

EXAMPLE IO.ld Let us consider a more realistic problem in which we have bOlh 
short and long cutoffs on the observable path. We also assume thai the unstable purtl­
cles are produced at various locations withm the target and with various momentum 
vectors p. 

For this example, we must calculate the normalization integml, Equation 
(10.5), separately for each event with individual values for I . and '1 delennined from 
the minimum and maximum distance cutoffs. d l and d1• respectively. The resulting 
expression for the likelihood function is 

N N[ e" " 1 L T - A e- f,h-( ) - IT, - IT T[e '." e"") ,,'1 '''I 
(10.21) 

with 

M(T) = In[L (T») 

Setting to zero the derivative of M(T) with respect to T gives us the equation 
for the maximum-likelihood value of T. However, the resulting equation cannot be 
solved analYlically forT although it could be solved by interpolation (see Appendix 
A). We choose, rather, to maximize M(T) by a one-dimensional grid-search method 
because search methods are more generally applicable to maximum-likelihood 
problems and can readily be extended to multiple parameter problems. 

10.2 COMPUTER EXAMPLE 

Sample Maximum Likelihood Fit 

We use the program MAXLIKE to select and analyze the 598 events that survived 
the fiducial area cuts, from the l000-event uncorrecled data sample gencr.ned in 
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Example 10.la. The events were generated Wilh TC ;; 0.894 X 10 10 S and the dis­
tribution of the selecled events is illustrated by the crosses in Figure 10.3. 

Program 10,1 MAXLI KE (Appendix Ej A grid-search method to maximize the 
logaritlun of the likelihood function of EqualioD (10.21 ). The roUlines have been writ­
ten specifically for Example IO.ld. 
STARTUP sets the ronge o(the paramelerTAU farthe search. 
FETCH DATA assigns the input data file. reads the linuts of the fidUCial regIOn 
(d, and d2), reads data for mdivldual events. 
SEARCH sets and increments TAU and calls LOGLIKE, which returns the loga­
rithm D(lhe likelihood function M. Compares each ca1cuhlled value of M to Iile pre­
ceding value. Tenninales the search when M stops increasing and starts (0 decrease, 
indical1ng that M has passed lhrough a local maximum. AI lennination, fits a parabola 
to Ihe last Ihrce points to find a better estimate of TAU at the maximum. 
LOGLI KE calls LOGPROS to find the logarithm of the probability density for 
each event; sums 10 calculate the logarithm of the likelihood function. 
LOG PROS calculates the logarithm of the probability density for an event 
ERROR calculates the uncertainlY StGTAU In TAUATMIN, the maximum like­
lihood value of the parameter TAU, by finding the change in TAU needed to decrease 
M by I!.M = In. 
PLOTLI KEC URVE (Nollisted) calculates and plots the shape of the likelihood 
function in the region of the maximum. Plots a Gaussian curve with mean and stan­
dard devialion equal to TAUMIN and OTAU. 

Grid-Search Solution 

At each step the program increments T by a preset amount 4T and repeats the cal­
culation until M(T) has passed through a maximum and has started to decrease. The 
program fits a parabola to the three points that bracket the maximum to find the 
value T' at the maximum of M(T). For a more detailed problem, the program could 
be wrilten to repeal Ihe calculalion with smaller values of dT to find a better esti­
mate of T', as in the filting examples in Chapter 8. Eilher Ihe grid- or gradient­
search melhod of Chapter 8 could be adapted to solve muhiparameter problems. 

Rcsulls or the Fit 

We analyzed the data set twice: first with data selected in the nominal fiducial region 
(lOcm to 40 cm), which gave T' = (0.943 ± 0.059) X 1O-IOs forllIe 598 events that 
survived the cui, and then, to test the sensitivity of the calculation 10 our choice of 
fiducial region, with data selected in the less-appropriate fiducial region willI dl = 10 
cm anddl = 20 em, which gaveT' = (0.78 ~ 0.14) X 10-IOS for the 373 events that 
survived this CUI. Plots of the relative values of the likelihood function versus trial 
values of the parameter T are shown as crosses in Figure lO.4a for the data selected 
in the nominal fiducial region and in Figure IOAb for data selected in the less­
appropriate fiducial region. As expected, the incorrect fiducial region clearly selects 
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Relative values oflhc likelihood function versus trial values of the par;:uneter for events thaI passed 
the fiducial cuts for the decay vene.x. The data points are indicmed by crosses; the smooth Gaussian 
curves were calculated from Equation (10.10) with the values of the means and standard deviations 
obtained in the Iwo fits. (a) Nominal fiducial cuts: 10 - 40 cm: .598 events survived: T' _ 0.943 x 
1O~· s, a - 0.0.59 X 10~- s. (b) Incorrecl fiducial cuts: 10 - 20cm; 373 events SurviVed; T' _ 0,18: 
X 10·lf s•a _ O.l4X 1O 'lf s. 

fewer events and, therefore, gives a less-precise result. In an actual experiment. we 
should have 10 consider a trade-off between the number of surviving events in Ihe 
sample, and the precision with which those surviving events could be measured, and 
choose our fiducial region to maximize the overall qualily of Ihe result. 

We observed that, for a SUfficiently large event sample, Ihe likelihood function 
should become Gaussian in the paramelers in the vicinity ofaX2 minimum (or a 
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maximum of the likelihood function) according 10 Equation (10.10), where T f is the 
value of the parameter T that maximizes the likelihood function. We show on Fig­
ures 10Aa and 10Ab Gaussian curves calculated from Equation (10.10). with T' and 
0' detennined by the respective fits. Both the data points and the Gaussian curves 
have been scaled to unit height at T g T' . The data points of Figure IOAa closely 
follow the curve; in the lower statistics example in Figure 10Ab, the data points de­
pan from the curve considerably. 

Uncertainties 

To estimate the uncertainty 0' in our detenrunation of T', we found the change 10 T 

necessary to decrease M by 11M - 112 from its value at the maximum T' (corre­
sponding to an increase ofX2 by I or a change of e- In in the likelihood function .L). 
Because the likelihood function for the larger sample (Figure IOAa) closely fol­
lowed the Gaussian fonn. our estimale of the uncertainty should be salisfactory. 
However, the smaller sample (Figure 1O.4b) was skewed from the Gaussian, so that 
our estimate of the standard deviation might be somewhallow. For multiparameter 
fits it is often useful to plot contours of X2 (or of M) as a function of pairs of the pa­
rameters to study the uncenainties. (See Chapter 11.) 

There are several other ways 10 estimate the uncertainty in a parameter afler 
perfonning a maximum-likelihood fit. If the dislribution of the likelihood function 
is sufficiently close to a Gaussian, we can find 0', from Equation (8.11): 

, = (~)-' 0',. aT2 (10.22) 

If il is not possible to calculate Equation (10.22) exactly (although it is possible for 
our example), we can find the second derivative by taking finite differences as dis­
cussed in Appendix A. 

If lIle likelihood function does nOl follow lIle Gaussian dislribution, we can try 
a numerical integration of the likelihood function to find limiting values that include 
-68.3% of the lotal area. corresponding to the 1 standard deviation limit. Alterna­
tively, we may use a melllod suggested by Orear(1958) who points out that, for small 
event samples. where the likelihood function may not be very Gaussianlike, it may be 
preferable to calculate an average value of the second derivative through the equation 

oW J[a'M/aa']L(a)da 
aa' - (L(a)da 

(10.23) 

where a is the unknown parameter and the integrals are over the allowable range of 
the parameter. This procedure has the advanlage over the method of Equalion 
(10.22) of giving more weight to the tails of the dislribution in cases where they 
drop off more slowly than those of a Gaussian curve. 

Another method of detennining the uncenninties in the parameters is to use a 
Monte Carlo calculation to produce simulated data sets, comparable to our measured 
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data. and 10 use the method outJined in Chapter II for determining confidence levels 
for our reSUlts. This method has the advantage that it depends only on the assump_ 
tions made in the Monte Carlo generation, and not on any statistical expectations 
about the shape of the likelihood funclion. In many experiments, especially diose 
with low statistics, it provides the most reliable estimate of parameter uncertainties. 

Goodness of Fit 

One disadvantage of the direct maximum-likelihood method is that it does nOl pro­
vide a convenient test of the quality of the fit. The value at the peak of the likelihood 
function itself is not useful because it represents only the maximized probability for 
obtaining our panicular experimenral resuh and we have no way of predicting the 
expected probability. 

An estimate of the goodness of fit can be obtained by making a histogram of 
the data and comparing it to a prediction based on Our best estimate of the parame­
lers. A Monte Carlo simulation of the experimenr may be required to calculate the 
predicted distribution, with a X2 test to compare the data to the prediction. 

It is not always clear just which data variable should be histogrammed for this 
purpose. We would like to find that variable on which the parameters depend most 
strongly. For our sample problem. the lifetime T in the rest frames of the panicles is 
an obvious chOice, because that is the Variable we would choose if we were to solve 
the problem by the least-squares method. However. it might be wise to try plots of 
several variables to be sure thai the fit is satisfactory. To test. we could generate with 
our Monte Carlo program a large sample of events based on the parameters discov~ 
ered in each search. apply the fiducial cuts. and calculale X2 from the agreement be­
tween the Monte Carlo results and our data sample. We should be aware that. 
because we did not actually minimize X2 for lIle experimental distribution with re­
spect to the parameters, a satisfactory value of Xl may be al best an indication that 
nothing is drastically wrong with the solution. 

SUMMARY 

Nonnalized probability denSity junction: 

Likelihoodfimclion: 
P; a P(x" al' a2, ... , a/ll ) 

N 
L (a,. a, •...• am ) = II P, 

j"' l 

Single-evem probability dellSit}': PI ~ Aj 'P(Xj; a) whereA
j 
is the detection efficiency 

and p(xj ; a) is proponionalto the interaction probability 
Logarithm of Iike/il.ood junctioll: M = In L = l: In PI 
Ma:cimizatioll of L or of M: iJ L/lJa) = 0 or aM/aaj = 0 for all OJ 
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Gaussianfonll of likelillood funct;oll for large data sample: 

( 
(a, - at)') 

J. (aJ) cr; c"P 20'1 

Ullcerta;mies ill parameters: 

Methodfor low statistics: 

EXERCISES 

IT; = (a'M(al))-' 
aa] 

iiW f[a'M/aa') ..c(a)da 
aa' - (.[(a)da 

10.1. Ina sCllltering elperiment, the nngles of the scauered particles are measured and the 
cosines of the angles in the center-of-mass rest frame of the incident and uuget parti­
cles are calculuted and recorded. Fifty such measurements, dmwn from the distribu­
tion }'(.l") CI "1 + "1 cos28, are listed in the lIlble. Use the direct maximum·likelihood 
method to determine the vnlues of the panuneters 01 nnd 01. Note that il is necessary to 
conven the distribution function y{.l"j) to a nonnaliz.ed probability function and that the 
normalizntion consWlt win be different for each pair of trial values of "I and 61' 

- 0.999 -0.983 -0.956 -0.9-$6 -0.9)) -0.925 -0.916 -0.910 

-0.881 -0.7)9 -0.734 -0.717 -0.71.5 -0.675 -0.665 -0.649 

- 0.621 -0.531 -0.522 -0.508 -0.499 -0.471 -0.0160 -0.419 

-0.403 -0.311 - 0.305 -0.281 -0.170 -0.162 -0.063 0.214 

0.438 0 ...... 0508 0586 0.6)8 0.677 0.721 0.730 

0.768 0.785 0.790 0.793 0.877 0.896 0.931 0.9)8 

0.9018 0.993 

Because of the sm31t amount of data, the uncertainties in the parameten 01 and 01 are 
so large that the values of the parameters are not very menningful. 1beRfore, to com­
plete the problem. you should use the: Monte C4t1o program written for Exercise 5.8 
to genel1lte 500 events mnd use yourcakul~Km tofmd the panmetcrs from thosedntB... 

10.2. Students in an undergraduate physics labor.llOl}' detennined the mass of the A hyperon 
by measurins graphically the energies and the: momentum vectors of !he proton ond 
11' meson intO which the A hyperons decayed. Because of the large uncertainties in the 
measurements, lhe calculated square of the masses of the decaying particles fonns a 
truncated Gaussian distribution that is limited on the low-mass side by (M, + M.)l = 
1.1617 (GeVIc1}l, but is not limited on the high-mass side. The followiog 30 numbers 
represent squares of the calculated masses in units of (GeV/c2)l. 

1.2981 1.2618 1.114S 1.2.539 1.01230 1.3963 1.3701 1.2303 1.3655 1.1().12 

1.3190 1.2086 1.2118 1.2078 1.2726 1.2438 1.1838 1.1666 1.1908 1.1922 

1.2525 1.3615 1.1855 1.2691 1.10>1 1.3391 1.01317 \.2113 I.l103 U8n 

1.21).16 1.2856 1.1980 1.2595 1.1721 1.2608 1.1689 1."8)8 1.17"3 1.2954 

1.2586 1.2655 1.2316 1.2372 1.2969 1.2015 1.2000 1.1677 1.2080 1.189) 

10.3. 
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Use the direct maltimum·hkelihood method to fit a truncated Gaussian to these: data to 
detennine the maximum·likelihood value of the mass of the squared particle. A search 
in two-parameter space will be required since neither the mean nor the width of thc 
distrib1.lcion is known. 

Note thut il is ne~ 10 calculate numeric""ly the nonn:tliz.ation of tJ)C trun­
cated Gaussian for each pair of trilll values of the mean nod stnndard deviation of the 
GaussilUl function. It is advisable to set up a table of the integral of the slolndanJ 
Gaussian and 10 use inlerpolalion 10 find the desired normalizations. A simple aUla­
malic or manual grid searth will suffice for maximiung the likelihood function. 
Use Program SA (available on the website) to ge"erole 1000 sample kaon decay 
events with nominnl mean life T = 0.894 X ID-IO s. 
(a) Plot a histogram of the Limes of flight of all the gener:lIed knons in their own rest 

framcs (proper times). 
(b) Use Program 10.1 (available on the website), with nominal fiducial cuts 00 your 

ililta (dl = 10.0 em and d1 = 40 cm) to repeat the: :mnlysis of Example 1D.ld 10 
find the maximum likelihood solutioo T' for lhe bon mean life. Plot n hi~ogram 
of the events that survive the cuts. 

(c ) With the value OfT', which you detennined in pan (b), nnd rundom number seeds 
that nrc different from those used in part (a), generote 20,000 events to serve as 
your estimate of the parent distribution. Apply the nominal fiducial cuts to these 
data and plot a histogram of the data in the same bins 4S you used in part (b). 

(c/) Calculate x. l for the agreement between your "experimental" histogram and the 
surviving events from the "parent" distnbution. If the numbers of events IR your 
bins of the parent distnbulion are huge enough, their uncert:unties can be Ignored 
in this cnk'uhuion. If they are nol, you must use the combined statistic"" errors of 
the tWD distributions when calculating,c. 



CHAPTER 

11 
TESTING 
THE FIT 

11.1 X'TESTFORGOODNESSOFFlT 
The method of least squares is based on the hypothesis that the optimum descrip­
tion of Ii set of data is one that minimizes the weighted sum of the squares of the 
deviation of the data)'j from the fining function Y(Xj)' The sum is characterized by 
the variance of the fit s2. which is an estimate of the variance of the dlua ul. For a 
function y(x;), which is linear in III paramelers and is fitted to N datu points, we 

have 

= _I_~III/lTmY'-y(xIWI_~ -' s' N _ //I II/N)~(I/lTll N _ //I ~ IV,[y, yl<,») (ILl) 

where the factor I' = N - III is !.he number of degrees of freedom for filling N data 
points (implied in the unlabeled sums) with III parameters and the weighting factor 
for each measurement is given by 

liar 
1"1 - II/N)~ll/lTn' (ll.2) 

the inverse of the variance a; that describes the uncenainties in each point, nonnal­
ized to the avcrJgc of all the weighting factors. 

The variance of the fit il is oJso characterized by lhe statistic Xl defined in 

Equation (7.5) for polynomials: 

X'.~ l~1[Y' - YI<llJ'} (11.3) 

19~ 

~--~J~-"-"~ 
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with 

r (,',)= f •. J"lx,) 
••• 

The relationship belween sl and X2 can be seen most easily by comparing 52 

Wilh the reduced chi-square x;. 
2_X:_~ 

X,· - I' - (a!) 

where (an is Ihe weighted average of the individual variances 

( ') = II/N)~ II I /lTn"i) = [-'-~ 1.]-1 
IT, II/N)~II/ITI> N'" IT; 

and is equivalent 10 a 1 if the uncertainties are all equal, aj = a. 

(IIA) 

(11.5) 

The parent variance of the data a l is a characteristic of the dispersion of the 
d.na about the parent distribution and is not descriptive of the fit. The estimated 
variance of the fit 5 1, however, is characteristic of both the spread of the data Wld the 
accuracy of the fit. The definition of X2, as the ratio of the estimated variance s' to 
the parent variance a 2 times the number of degrees of freedom I', makes it a conve· 
nient measure of the goodness of fit. 

If the fitting funelion is a good approximation to the parent function. thcn the 
estimated variance 5 2 should agree well with the parent variance a 2, and the value 
oflhe reduced chi-square should be apprmdmately unity, X ~ 0::::: I. If lhe fining func. 
lion is not appropriate for describing the data. the deviations will be larger and the 
estimated variance will be too large, yielding a value of X~ greater thun I. A value 
of X ~ less than I does nOI necessarily indicate a better fil, however; it is simply a 
consequence of the fact Ihat there exists an uncenainty in the detenninalion of S l , 

and the observed values oC X! will fluctuate from experiment 10 experiment. A value 
of X~ that is very small DU)Y indicate an error in the assignment of the uncertainties 
in the measured variables. 

Distribution of X' 

The probability distribution funclion for Xl with v degrees of freedom is given by 

(x2)IIl(o·-1Ie #V! 
p,I<'; v) a 2,l' r(v/2) 111,6) 

The chi·square distribution of Equation (11.6) is derived in many lexts on statistics I 
but we shall simply quote the results here. 

The gamma function nil) is equivalent to the factorial function II! extended 10 

nonintegrnl arguments. It is defined for integral and half-integral arguments by the 
values al arguments of J and VI: and a recursion relation: 

'See Pugh::lJ1d Winslow (1966). Section 12·5. 

_ ......t t .. ~ d ·- j-- df, s din t "",. " E O. '. 
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r{ I)~ I l1'hJ - v:;, r{II - I) c IIr{II) 

For integral values of II 

I1n+ I )~ II! 11 - 0.1 •. . . 

For half-integml values of II 

r{1I + I) ~ II{II - I}(II - 2)··· ('f,}(y,v:;,) 

II = Y2, )/2 , 0/2 , ... 

«(11.7) 

, 
Calculating factorial functions can lead to computer overflow problems. For 

comput:uional purposes it is convenient to replace the faclorial (arm of the gamma 
funclion by 4 fonn of Stirling's approximation' : 

r[1I] ~ Yhe-'II(' - IIlI(1 + 0.0833/ 11) (11.8) 

This approximation, which is accurate to -0.1 % for all II ~ V2. avoids both the 
problems of overflow in calculating factorials and the necessity of testing and 
choosing the appropriate form for integral or half-integral argument The ttade-off 
is computer speed. Calculating exponentials may be slower than calculating faclo­
rials. but high speed usually is not required for nonrepetitive calculations. 

If the function of the parent population is denoted by yo(.:t), the value of X~ 
determined from the parnmeters of the parent function 

X6 = ~! ~I [Yi- YO{XIlJ'j (11.9) 

is distributed according to Equalion (11.6) with v = N degrees of freedom. If the 
function ,,(x) used in the determination of X' contains m parameters, the value of 
Xl calculated from Equation (11.3) is distributed according to Equation (11.6) with 
v D N - m degrees of freedom. 

More useful for our purposes than the probability density disuibution Px(x2; v) 
of Equation (11.6) is the integral probability Px(X2

; v) between.:tl - X2 and X' = CD: 

P,( X'; v) g 1; P,(x'; v) dx' (11.10) 

Equation (11.10) describes the probability that a random set of n data points drawn 
from the parent dislribution would yield a value of Xl equal to or sreater than the 
tabulated value. 

Progn&m 11.1. CHI2PROB (Appendix E) X2-probability. 
CHIPROBDENS computation of lite runctionp.(xl ; v) (Equation (1L.6)) using 
rUllCtion GAM MA to approximate lite gamma runction. 
CH I PRoe Numerical cakuLntion or the integral, Equation (11.10), by Simpson's 
rule. If v:u'inble overflow is .II. problem. double·precision vnrinbks coukl be empkryed. 

J"Revicw of P3Ric1e Prop:nies" (t9&6), p. 53. 
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The calculation ~turns the inaegral to an accurney of about :':0.1 $ . The trade­
off on accuracy versus speed or computation is controlled by the value o( the conSCarll 
ox. the imclr.lLion step. 

for the special case 0( I deg~e of frttdom. I ' = I. the x'-probability density 
runction o( Equ.3.tion (11 .6) takes the (oon 

p.(x2
; I') = e-~IIl/(21tx~11l 

which is difrlCUll to inlegrnle numerically near of = O. However. tbe inteVoIl is linite. 
and the (unction can be expanded in a Taylor series about of = 0 and integr.ucd ana­
lytically. We use Ihal technique for v = I and Xl < 2. 

Similuly, for .' ""' 2. where the function takes the fonn 

p.( ... 2; I') = e-~'h./2 

the analytic (Omt o( the inlegrnl is used. 

For a filling function thai is a good approximalion 10 the parent function. the 
experimental value of X~ should be close to one and the probability from Equation 
(11.10) should be upproximately 0.5. For poorer fits, the values of X~ will be larger 
and the associated probability will be smaller. There is an ambiguity in inlerpreting 
the probability because x.~ is a function of the quality of the data as well as the 
choice of parent function, so that even correct fining functions occasionally yield 
large values of X~. However, the probability of Equation (II.IO) is generally either 
reasonubly close to 0.5, indicating a reasonable fil, or unreasonably small, indicat­
ing a bad fit. In fuci. (or most purposes, the reduced chi-square X~ is iUl adequate 
measure of the probability directly. The probability will be reasonably close to 0.5 
so long as X~ is reasonably close 10 I: that is, less than aboul J ,5. 

Example JJ.I. Consider the solution of lhe problem o( fining two ellponenliul 
curves plus a linear baekground to the dala from the rndiooctive silver decay or 
Example 8.1. The fil (s~ Table 8.5) gave Xl = 66.1 for S4 degrees of freedom, or 
X~ = 1.22, with Pix l

; v) oz 12.4%. We can interpret this result in the (ollowing way. 
Assume that the paramelers we found are, indeed. the parameters of the parent distri­
bution. Then, suppose lItat We were to repeat our experiment many times. dfllwing 
many different datil samples rrom thai parent distribution. Our ~sult indicalC$ Ih:l( in 
12.4% of those ellperimenlS we should expect to obtain filS Ihal are no beller than dlat 
listed in TabJe 8.5. 

11.2 LINEAR-CORRELATION 
COEFFICIENT 

Let us assume that we have made measurements of pairs of quunlilies XI and )'1' We 
know from the previous chapters how to fit a function 10 these dala by the leasr.­
squares method. but we should SlOp and ask whether the filting procedure IS justi­
fied and whether, indeed. there aisls a physical relationship between the variables 
z and y. What we IU"e asking here is whether or not the vwiations in lhe observed 
values of one quantity y nrc co~/aled with the Variations in the measured values of 
the other quantily z. 
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For example, if, as in Example 6.1, we were to measure the potential dirrer· 
cncc .. cross segments of.Q currenl-cwrying wire as a function of the segmcntlength. 
we should find a definitc and reproducible correlation between the two quantities. 
But if we were to measure the potential of (he wire as a (unction of time. even 
though there might be fluctuations in the observations. we should not find any sig· 
nificant reproducible long·tenn relationship between the pairs of measurements. 

On the basis of our discussion in Chapter 6, we can develop a quantitative 
measure of the degree of correlation or the probability that a linear relationship 
exists between two observed quantities. We clln construct a linear--correlation 
coefficient r that will indicate quantitatively whether or not we are justified in de· 
(ennining even the simplest linear correspondence between the two quantities. 

Reciprocity in Fitting x Versus y 

Our data consist of pairs of measurements (x/, y.). If we consider the quantity y to be 
Ihe dependent variable, then we want to know if the data correspond to a straight 
line of the fo"" 

,::;: Q + bx (11.11) 

We have already developed the analytical solution for the coefficient b, which rep· 
resents the slope of the filted line given in Equation (6.12): 

b 211: N'Z.'CJ·j - ~x,l:)', 

NIxl (u,)' 
(11.12) 

where the weighting factors in u , have been omiued for clarity. If there is no corre­
lation between the quantities.r und y, then there will be no tendency for the values 
of)' to increase or decrease with increasing x, and. therefore. the least·squares fit 
must yield a horizontal slraighlline with a slope b ~ O. Bu, lhe value of b by itself 
cannot be a good measure of the degree of correlation because a relationship might 
exist that included a vcry small slope. 

Because we IlfC discussing the inierreilltionship between the variables x and )', 
we can equally well consider x as D: function of y and ask if the data correspond to a 
stmight-line form 

x "" a' +b'y (11.13) 

The values of the coefficients a' and b' will be different from the values of the co­
efficients a and b in Equation (11 .11), but they are related if the variables .t and y an:: 
correlated. 

The analytical solution for the inverse slope b' is similar to that for b in Equa­
tion (\ 1.12): 

b' 
N!xJ)'; - ~.t;~Yt 

NIl'1 - (Il'i)' 
(11.14) 

If there is no correlation between the quantities x and y. then the leasHquares fit 
must yield a horizontal Strojghlline with a slope b' - O. 
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If there is a complete correlation between x and,., then there exists II relation­
ship between the coefficients a and b of Equation (I 1.11) and between Q' and b' of 
Equation (11.13). To see What this relationship is. we rewrite Equation (J J .13); 

a' I 
Y ::':--+-x=a+bx (1115) r r . 

and equlUe coefficients 

a' I 
a= -- b=- (1116) h' b' . 

We see from Equation (11.16) that bb' = I for complete correlation. If there 
is no correlation, both h and b' an: 0 und Equ.nions (I J .l6) do not apply. We. there. 
fore define. as a measure of the degree of linear correlation. the experimental linear­
correlation coefficient r II! \fbij: 

NI.x,y, - ~X;~Yi 
r - [NIx/- {Ixl)'JIIl[N~yl- {~YiJ'Jln (11.17) 

The value of r ranges from 0, when there is no correlation. to :t I. when there is 
complete correlation.1be Sign of r is the same as Ihal of b (and b'), but only the ab­
solUie magnitude is imponant. 

The correlation coefficient r cannot be used directly to indicate the degree of 
correlation. A probabiUty distribution for r can be derived from the two.£iimensional 
Gaussian distribution. but ies eVAluation requires a knowledge of the correlation co. 
efficient p of the pacem popUlation. A more common test of r is to compare its value 
with the probability distribution for the pmnl population that is completely uncorre. 
lated; that is, for which p = O. Such a comparison will indicale whether or not it is 
probable that the data points could represent a sample derived from an uncorrelated 
parent population. H Ihis probabilily is small, then it is more probable that the data 
poines represent a sample from a parent popUlation where the variables ace correloted. 

For a parent population with p == 0, the probability that any random sample of 
uncorrelated experimental data points would yield IlJ1 experimental line.lr-correla. 
tion coefficient equal to r is given by) 

p,{r; v) . J;; r[(;{:/~r2J{1 - r')I.- ')12 01.18) 

Where v - N - 2 is the number of degrees of freedom for an experimental sample 
of N data points. The gamma function for integral and half·inlegral values was de. 
fined in Equution 01.7). 

Integral Probability 

A more useful distribution than c.h.at of Equation (11 .18) is thc probability P,(r, N) 
that a random sample of N uncorrelated experimenlal dala points would yield an 

'Foraderivilticn see Pugh and WUlSlow (1966). Seclion 12.8 . 
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experimental linear-correlation coefficient as large as or larger than lhe observed 
value or ld . This probability is the integral of p,(r; v) for v - N - 2: 

p, (r; N) = 2 r'p,(r. v)dx 
J'rl 

v = N - 2 (11.19) 

With this definition. Peer; N) indicates lhe probability that lhe observed data 
could have come from an uncorrelated (p = 0) parent population. A small value 
or Peer; N) implies thatlhe observed variables are probably correlated. 

Because Equation (11 .19) cannot be integrated analytically. the function must 
be integrated either by mak.ing a series expansion of the argument and integrating 
term by tenn or by performing a numerical integration. With fast computers, the lat­
ter method is more convenient and generally applicable to such problems. 

Progrum 11.2 LCORLATE (Appendix E) Correlation probability computations. 
LCORPRoe computes the probability of Equation ( 11.19) by numerical integra­
tion.lnput variables RCORR and NOeSERV correspond to the value of the ex­
perimentallineac-correlation coefficient and the number of observations. respectively, 
(The number of degrees of freedom is the number of observations minus 2.) The pro­
gram uses the following routines: Lt NCOR REL computes the function PI~ r; ~.) of 
Equation (11.18) using the approximation of Equation (11.8) for the gamma function 
(calculated by the function GAMMA in the program unit GENUTIL). Because 
LlNCORREL is intended to be used as an argument to the integration routine 
5 I MPSON. it can have only one argument. The parumeler v is passed in the global 
variable pS IMPS by the caJling routine. 
Ll NCOR PROe computes pter; ". of Equation t Il , 19) by numerically integrating 
Lt NCOR R EL by Simpson's rule. The calculation returns the integral to an accuracy 
of about ::to.OI. The tnlde-off on accuracy versus speed of computation is conuolled 
by the value of the constant OX, the integration step. 

Exumple 11.2. For the data of Example 6.1. the linear-correlation coefficient r can 
be calculated from Equation (11.1 7) with the data of Table 6.1: 

, 9 X 779.3 - 450.0 x 12.44 

V (9 x 28.500 - 450.0') x (9 X 21.32 - 12.44' ) 

= 0.9998 

The probability for delennining. from an unoorrelated population with 9 - 2 = 7 
degrees of freedom. a value of r equal to or larger than the observed value. can be cal­
culated from Equation (11.19) (see Table C.3). The result P~(r; N) < 0.001% indicates 
that it is extremely improbable that the variables x and V are linearly uncorrelated. Thus. 
the probability is high that the variables are correlated and the linear fit is justified. 

Similarly. in the experiment of Example 6.2. the linear-correlation coefficient 
can be cruculated from Equation ( 11.17) by including the weighting factors ar = Y. as 
in Table 6.2. so that. for example. N is replaced by 1:11'; and!xr is replaced by III';x;. 
and so forth: 

r 
0.03570 X 81.02 - 0.1868 X 10 

V (0.03570 x 1.912 - 0.1868') X (0.03570 X 3693 
= 0.9939 

10') 
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Again. the probability P Jr, N) for r = +0.9938 with v = 10 - 2 = 8 degrees 
of freedom is very small « 0.001 %). indicating that the change in counting rate C is 
linearly correlated to a high degree of probability with x = I/r2. the inverse square of 
the distance between the source and counter. 

11.3 MULTIVARIABLE CORRELATIONS 

If the dependent variable y, is a function of more than one variable. 

y, = a + btxiJ + b2Xi2 + bjXil +... (11.20) 
we might investigate the correlation between Yi and each of the independem vari­
ables Xi} or we might also enquire into the possibility of correlation between differ­
ent variables Xi)' Here, we use the first subscript i to represent the observation. as in 
the previous discussions, and the second subscriptj to represent the particular vari­
able under investigation. The variables xij could be different variables. or they could 
be functions of XI'/(X;), as in Chapter 7. We shall rewrite Equation (11.17) for the 
linear-correlation coefficient r in terms of another quantity sA. 

We define the sample covariance sJt: 

s]. 5 N ~ 12:[(.<. - I;){.<;, - x,) (11.21) 

where the means Xi and.it are given by 

X;5~2:'<;1 and x'=~2:.<;, (11.22) 

and the sums are taken over the range of the subscript i from I to N. The weights have 
been omiUed for clarity. With this definilion.lhe sample variance for one variable sJ. 

s] is sJ) = N ~ 1 ~ (Xi) - .\j)2 (11.23) 

is analogous to Ihe sample variance ~ defined in Equation (1.9): 

s' = N ~ 1 2:('<; - x)' (11.24) 

It is imponanl to note that the sample variances sJ defined by Equation (11.23) are 
measures of the ranges of variation of Ihe variables and not of lhe uncenainties in 
the variables. 

Equation (11.21) can be rewrillen for comparison with Equation (11.17) by 
substituting the definitions of Equation (11.22): 

1 
sJ, ~ N _ 1 2: [(x;; - I;){-,;, - .f,)] 

= N ~ I ~(x;jX;.t - .iji~J ( 11.25) 

= N ~ 1 2: (-,;;.<;, - ~ 2:-';;2:.<;,) 
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If we substitute Xi} for XI and Xi t for )'1 in Equation (11 ,17). we can define the sample 
linear-correlatioll coefficiellt between any two variables XI and xJ llS 

s1. 
r}4 " ;;e. 

SJS" 
(11.26) 

with the covarlances and variances sJt. sl. and sl given by Equations (11.23) and 
(11.25). Thus. the linear-correlation coefficient between the jth variable xJ and the 
dependent variable)' is given by 

.' fj, _ ::.iJ.. 
SIS, 

(11.27) 

Similarly. the linear-correlation coefficient of the parent population of which 
the data ;ue a sample is defined as 

(J' 
PJ' =::..J!.. o;;a. 

(11.28) 

where ai, al. and aft are the true variances and covanances of the parent popula­
tion. These linear-correlation coefficients are also known as product-moment corre­
lation coefficients. 

With these definitions we can consider either the correlation between the de­
pendent variable nod any other variable rn or the correlation between any two vnri­
abies fil' 

PolynomIals 

In Chapter 7 we investigated fuoclional relalionships belween y and;c of Ihe fonn 

y g ao+olx + alxl + alxl + ... (11.29) 

In a sense. Ihis is a variation on the linear relationship of Equation (11.20) where the 
powers of the single independenl variable;c are considered to be vnrious variables 
xJ - .f ', The correlation between the independent vnriable y o.nd the mth tenn in the 
power series of Equation (11.29), therefore, can be expressed in lerms of Equations 
(11.23) !hmugh (11.27): 

_5t.. 
r .. , -

s,.s, 

s: = _1- [};x!o _l (};XO)'] 
'" N-I I N j 

.: = N ~ I [};Yi- ~{};yJ'] 
(11.30) 

s~, = A [};.tfYI - ~ };Xr};YI] 
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Weighted Fit 

Iflhe uncenainties in the data points are not all equal (al * a), we must include the 
individual standard deviations a, as weighting factors in the definition of vnriances. 
covwiances, and correlation coefficients, From Chapler 6 the prescription for intro­
ducing weighting is to mulliply each teon in the sum by 1/0'1. 

1be formula for the correlation remains the same ilS Equations (J 1.26) and 
(11.27), bul!he formulns of Equations (11.21) and (11.23) for calculating !he yari­
ances and covariances must be modified: 

.' B I/{N - 1)};[{I/a;){xl/ - il){x" - -'oJ! 
)0 (I/N)};{I/(JIJ 

I , l/{N-I)};[{I/(Ji){xCi;)'l 
s) .. So ~ (I/N)};{l/(JIJ 

where the means Xj and Xl are also weighted means 

The weighting factors 

X
J
= IXijWi 

N 
I(Xi;!CJ}) 
};{I/(JIJ 

(11.31) 

l/a' 
IV, ~ (l/N)};{i/(JIJ (11.32) 

for e.tI.ch data point are the inverse of the variances af rh.n describe the uncertainties 
in each poinl. nonnalized to the IJverDge of .!llthe weighting factors. 

Multiple-Correlation Coefficient 

We can extnlpolole the concept of the linear-correlation coefficient, which charac­
terizes the correlation between two variables at a time, 10 include multiple correla­
tions between groups of vouiabJes taken simultaneously. The linear-correlation 
coefficient r of Equation (11,17) between y and x can be expressed in ICons of the 
variances and covariances of Equation (11.31) and lhe slope b of a strWght-line fit 
giYen in Equation (11.12): 

S" Sl 

"==-=b:!l (11.33) s~s; s; 
In analogy with this definition of the linear-correlation coefficient. we define the 
multiple-correlation co~fficit!nt R to be the sum over similar leml$ for the variables 
of Equation (11.20): 

• (.,) • ( s ) R''''L b)": =L b):J.,!, 
}-I s, i"l S7 

(11.34) 

1be linear-correl.o.tion coefficient r is useful for testing whether one particular 
variable should be included in the theoretical function thai is fitted 10 the data. The 

1f8s'r ,11;'61-;-' ·1 hi ' .. • . ... 



.... 

204 Data Roouction and Error Analysis for the Physical Sciences 

multiple-correlalion coefficient R char,Jcterizes the fit of the data to ahe entire rune­
tion. A comparison of the multiple-correlation coefficient for different functions is 
therefore useful in optimizing thc theoretical functional fonn. 

We shall discuss in the following sections how to use these correlation coeffi­
cients to determine the validity of including each u:nn in the po1ynomi3.1 of Equa­
tion (11 .29) or the series of urbllnll)' functions of Equation (11.20). 

11.4 FTEST 
As nOled in Section 11 . 1. the X 1 test is somewhat ambiguous unless the fonn of the 
parent function is known. because the Slalistic Xl measures not only the discrepancy 
between the estimated function and the parent function. but also abe deviations be­
tween the data and the parent function simultaneously. We would prefer a test that 
separ,Jtes these two types of infonnation so that we can concentrate on the fanner 
type. One such test is Ihe F test. which combines two different methods of deter­
mining a X:! statistic and compares the results to see if their relation is reasonable. 

F Distribution 
If two statistic xi and X~' which follow the Xl distribution, have been delennined. 
the rouio of the reduced chi-squareds. X~ I and X ~l ' is distributed according to the 

F distribution"' 

f= xl/,', 
xiiI', 

with probability density function 

. . , _ fR,', + ",)/2] (!:!)"" I'"(o, ') 
l}(J; ',. " ) - f(",/2)f(v,/2) ", (I + ft" / ,,, ),I1(o,+;,) 

(I \.35) 

(11.36) 

where \', and "1 are the numbers of degrees of freedom corresponding to xl and xl· 
By abe delimlion of x! (see EquBtion (11.4)1, a ratio of ratios of variances 

)( ~ si/ai = =--
X~ s!la! 

(11.37) 

is also distributed as F. where SI and S2 are experimental estimates of standard devia­
tions " I and a l pertaining to some characteristic of the same or different distributions. 

As with our tests oC Xl and the iioear-correlation coefficient r. we shull be 
more interested in the intcgral probability 

PF(F; v,. 1',) = J;P/(J; 1',. 1',) df (11 .38) 

which describes the probability of observing such [tlarge value of F from a random 
set of data when compared to the correct fitting function. The integral function 
P,(F; ~' I ' Vl) is tabulaled and graphed in Table C.S for a wide range of F, VI. and Vl' 

~Sec Pugh and Winstow (1966). Section (2·7. ror a derivation . 
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A word of caution is in onJcr concerning the use of these tables. Because the sta­
tistic F in Equation (I 1.35) is defined as Ihe ratio of two determinations of Xl without 
specifying which must be in the numer,Jtor, we can define two statistics F12 and F21 , 

v~ . FBI 
F l2 !:II O-f 21 = 2 =-

XI"] XI'I FI2 
(11.39) 

which must both be distributed according to the F t.listribution. 
If in some experiment our cllicuiations yield u particular value of F 12• we can 

use Table C.S to detennine whether such a large value is less than 5% probable 
(Table C.6 and Figure C.6) or less than 1% probable (Table C.7 and Figure C.7).lf 
the test value is less than the Ulbulated values. we must also make sure that it is not 
too small. To do this. we compare the value 

FlI = I/FIl (11.40) 

to the same tables and graphs. noting that the values of "~ I and "l are reversed. The 
values of VI and "'l specified in Table C.S correspond to the degrees of freedom for 
the numerator and denominatoro( Equation (11.39), respectively. 

Esnmple Uol. suppose thlll Fu - 0.2 with ", - 2 and Y2 = 10. For Table C.6. the 
observed value of FIl may be as high as 4.10 and w.dl be exceeded by Ilbout5% ofrnn~ 
dam observations. Similarly, we compare F11 ~ IIFu = 5.0 with the 5% point for 
VI = 10 and "'1 = 2. which has a value of 19.4. Because Ihe values of Fu and Ft. are 
well within the 5% limits. we can have confidence in the fil. 

What we are estimating in Lhis example is the probability PF(Fr: ; VI ' v2) Ihat 
FI2 is noltoo large and the probability PF(l/FI2 ; V2. "I) that FI2 is nOltoo small. II 
is tempting to simplify this procedure by assuming !.hal 

PF(I/FIl; v,. v,) = PF(FIl ; "" ",) (11041) 

so that our test consists of determining F such that 

PF(F; v,. ",) = 0.05 

with the requirement that 

F> FIl > I/F 

This approximation is valid for reasonably large values of 1'1 and v: but not for small 
values of either. as in the preceding example. where we have 4.10 > FI2 > 1/19 .... 

Multiple-Correlation Coemcient 

There are two types of F tests that are normally perfonned on least-squares fiuing 
procedures. One is designed to test the entire fit nod can be related to the multiple­
correlation coefficient R. TIle other. to be discussed later. tests the inclusion of an 
:tddiLionaltenn in the fitting function. 

If we consider the sum of squares of deviations S; associated with the spread 
of the data poinlS around Iheir mean (omitting factors of liar for clarity). 
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S; . ~(y; - y)t ( 11 ,42) 

this is a statistic thai follows the Xl distribution with N - 1 degrees of freedom 
(only one parameter y must be detennined from tbe N data points). It is II charocler­
iSlic of quantities that follow Ihe X ~ distribution that they may be expressed as the 
sum of other quantities that also follow the Xl distribution such that the number of 
degrees of freedom of the original statistic is the sum of the numbers of degrees oC 
freedom oC Ihe terms in the sum. 

By suitable manipulation and reammgcmenl. it can be shown that S: can be 
expressed as the sum of the two lenns, 

Sl = ~( )'i - y)' = f [( y,- 5') f., (f; -h)] + ~(y, -~.,/, )' 
j-I J-I } - (11.43) 

= ~ l.,~l()',- 5')(/' - 1;)]] + ~ll', - y(x,)f 
,~ 

where the fiuing function is of the fonn 

),(x,) = f.,/'(x,) (11.44) 

i'" 

and we have 
- I 
J, = N~/,(·t,) (11.45) 

The le£l-hand side of Equation (11.43) is distribuled as X2 with N - 1 degrees 
of freedom. The right-hand term is our definition ofX J from the Equation (11.3) and 
has N - III degrees of freedom. Consequently. the middle term must be distributed 
according to the Xl distribution with til - I degrees of freedom. 

By comparison with our definition of the multiple-correlation coefficient R in 
Equation (11.34). we can express this middle tem os a fraction R2 of the statistic S~: 

fa,~[(y, - YJ(/, - jj)l = R'~(Y, - y)' (11.46) 

!" , 

Equation (11.43) becomes 

~()" - y)' = R'~(y, - Y l' + (I - R')~(Y; - i'l' (11.47) 

or 
S; = R'S; + (I - R')S; (11.48) 

where. as before, both terms on the right-hand side are distributed as X
2
,lhe first 

with III - I degrees of freedom and the second with N - III degrees of freedom. 
Thus, the physical meaning of the multiple-correlation coefficient becomes 

evident. It divides the lotal sum of squares of deviations S~ into two parts. The first 
fraction R1S; is a measure of the spread of the dependent and independent variable 
data space. The second fraction, (I - Rl )S: , is the sum of squares of the deviauons 
aboutlhe regression and represenlS the agreement between Ihe fit and the data. 
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From the definition of Equation (11.35), we can define a ralio F If of the two 
lerms in the right-hand side of Equation (11.47) that follow the F distribution with 
l', ::z III - I and with Vl ::z N - III degrees of freedom, 

F. 
R'/(III-I) ~X(N-III) 

(I R')/(N III) (I - R') (III - I) 
(11.49) 

From this definition of F If in lenns of the multiple-correlation coefficient R. it is 
clear that a large value of F. corresponds to a good fil, where the mUhiple correla­
tion is good and R == I. The F test for this statistic is actually a lesl thatlhe coeffi­
cients nrc 0 (aJ = 0). So long os Fit ex-ceeds the test vnJue for F, we can be fairly 
confident that our coefficients are nonzero. If, on the other hand, F If < F, we may 
conclude that at least one of Ihe lenns in Ihe filling function is not valid, is lIccreas­
ing the multiple correlation by its inclusion, and should have a coefficient of O. 

Test or Additional Term 

Because of the additive nature of functions that obey the X2 statistics, we can form 
a new Xl statistic by Inking the difference of two other statistics that are distributed 
as X2• In particular, if we fit a set of data with a filling function with III tenns, the re­
sulting value of chi-squ~ associated with the deviations about the regression x2(m) 

has N - '" degrees of freedom. If we add another leon to the fitting funclion, the 
corresponding value of Chi-square x?(m + I) has N - m - 1 degrees of freedom. 
The difference between these IWO must follow the Xl distribution for I degree of 
freedom. 

If we form the ratio of the difference X1(1II) - XZ(III + I) to the new value 
XUIII + 11 we can form a stalistic F). that follows the F distribution with VI = I and 
v1=N-m-l: 

F = X'(III) - X'(III + I) ~ (II SO) 
, x'(m + I)/(N m I) X! . 

This ratio is a measure of how much the additional leon has improved the value of 
the reduced chi-square and should be small when the function with In + I lenns does 
not Significantly improve the fit over the function with In terms. Thus, we can be con­
fident in the relative merit of the new lenns if the value of F). is large. As for FR , this 
is really a lest of whether the coefficient for the new term is 0 (a/ll + I - 0). If Fx 
exceeds the test value for F. we can be fairly confident that the coefficient should not 
be 0 and the term. therefore, should be included. Table C.S and Figure C.S are useful 
for testing Fx' They give the value of F corresponding to various values oftbe prob­
a.bility PF (F; I, vz) and various values of Vl for the Cil5e where V, = I. Thus, ralher 
than evaluating F for critical values of the probability (for example, 5% or 1 %), we 
can evaluate the probability corresponding to the observed value of F,,: 

A calculation of Fx could be built into a linear regression progr.un and the re­
sulting value compared to a supplied test value F. to indicate whether or not the last 
term in the series is justified, and therefore, to deleonine how many terms in the se­
ries should be included in the fit. However. it is probably safer, except possibly in a 
large. well debugged production run involving fiuing polynomials to many similar 
data selS, to examine the individual values of XZ along with F'I. and 10 adjust the 
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number of tenns in the calculation manually. One should. however. be aware that 
the imponont figure of merit for added lenns is the difference of the two values of 
Xl divided by the new value X~ of the reduced chi·square. 

11.5 CONFIDENCE INTERVALS 

The object of daro fitting is to obtain values for the parameters of the filled function. 
and 1hc uncenainties in the parnmcters. The quality of the fit is indicated by Xl and its 
associated probability, and the uncertainties give the probabilities that our values of 
the fitted parameters are good estimates of the parent parameters. Whether we esti­
mate our p;uumeters by the least-squares method or by direct application or the max­
imum-likelihood method, as discussed in Chapter 10, we must always estimate the 
uncertainty in our pammeters to indicate numerically our confidence in our results. 

Generally, we assume Gaussian statistics and quote the standard deviation a 
in a result, where a appears in the Gaussian probability density function 

A;(x;J."a) = a0;exp[-Hx: "=)'] (11.51) 

and detennines the width or the distribution. As noted in Chapter 2. approximately 
68.3% of the events of the Gaussian distribution fnll within ~a of the mean,...:md 
approximately 95.4% fall within ±2a. 

Confidence Level Cor One-Parameter Fit 

One woy of looking at the I standard deviation limit is 10 consider that, in a series of 
repeated experiments. there is approximately a 68% chance of obtaining values within 
!:' a of the mean J.1. or course, we usually do nol know fL' and perhaps not a either. but 
have detennined experimentally only .i and s, our estimate of the parameters. How­
ever, os long os our experimental estimates j i1nd s are reasonably close to the true val­
ues fL and fT. we can Slate Wt there is approximately a 68% proOObility that the true 
value of the measured pilr.U11eter lies between i - S WId j + S, or that at the 68.3% 
cotljidellu lel'el, the true value of the parnmeter lies between these two limits. 

We may wish to quote results in tenns of other confidence levels. For exam­
ple, we refer to the :t2a limit as lhe 95.4% confidence interval, or we may quole a 
99% or 99.9% confidence level for a high·precision experiment. The conventional 
la and 2a limits are based on the Gaussian disuibulion, which mayor may not ap· 
ply to the data in question. and even an experimental distribution that nominally fol· 
lows Gaussian statistics is apt to deviate in the lails. 

For any disuibution, represented by the nonnalized probability density func­
tion. Pl(X: J.L). we delennine the probability that a measurement of the parameter will 
fall between j - a and x + b by the integral 

J
H' P. - . p~ {x; x) cU-. -, (11.52) 

and could quote a confidence level of p~ that the "true" value of the measured para­
meter is between these two values. Note thul we have not specified a region that is 
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ReI:nive value.!: orthe tikelihood function vmu.s Inat VlLli.les orlhe p3I11mtltr for lhe 373-evem 
J.ampk ofE.IlUUple ID.Jd. Thedm: poiAu (from Figure IOAb) oUt indicalccJ by CItllses; the wlid and 
dnshed curve.!: l'qlresenlthe results of fining Gaussian Ctll\'CS sepamte)y 10 the IWo ,ides of the 
dislribulion. Par.unelen determined in the Iwo fits are iruJicalcd on lbe gr:Iph. All rneasumnenl5 ~ In 
llJUls of 10-11 s. 

symmetrical about the mean. The unceJ1aintjes in our measufCments may not be 
symmetrical, allhough the asymmetry may be hidden ir we 3Ssume Gaussian statis­
tics in our Calculations. For example, the routines for finding uncenainties in pm. 
meters found by Jeast·squares filling (Chaplers 7 and 8) generully assume a 
Gaussian disuibution of the pararnelers and hence produce 3. single number for the 
uncenwnfies. 

Example 11.4. As an example of an asymmetrical probabililY dislJibution, consider 
the 37.J.cvetK daca wnple of eAample fO.ld. In Figure to.4b we plot as crosses the 
scaled values of the lihlihood function for these 00101 Q.5 a function of bini vnlues of Ule 
pammelerT.1be dalll points ahibil3 nwked ltSyrnrDetJy abool the mean T'. The dashed 
curve was calculaled from Equation (10.10) with panuneJers obtained from the fit 

To make a beuer dClennination of a rrom this curve, we considered the reA 
gions on each side or the mean separately and estimated Iwo separate standard de. 
viations, aL and a.t. with the aid of Equation (1.11). To reduce the effect or the 
right·hand side wi on the vulue ofa~. we imposcd a cutoff at T = 1.6 and used only 
those data points below the cutoff in this calcUlation . 

A composite curve formed of two Gaussians with the same mean T but differ­
ent values of a is shown as the solid curve in Figure 11.1. It would be reasonable 
to consider the two values of a oblainetJ in this WOly as appropriate estimates of 

. 
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the uncenainly in T. so Ihol we could rcpon T' = 0.78 ~~ ~~. as indicated by the Ilf­
rows on Ficure J 1.1 rather than T' - 0.78 ::t 0.14 as we did in Chapler 10. This is 
equivnlenl 10 finding the two posilions at which the lognrithm of lhe likelihood 
function hos decreased by ilM ... Vi as discussed in Section 10.2. Clearly this result 
is somewhat subjective if either side of the curve docs not follow the Gaussian 
fonn. For this example, the value of C1 ~ depends on how much of lhe tail is included 
in the calculation. 

Confidence Levels Cor Mulliparameler Fils 
The definition of the confidence level in a one-parameter experiment is generally 
strnightforward. We cao plot our data and observe if the distribution is Gaussian and 
estimate directly from the distribution of the probability that the nue result lies be­
tween two specified values. When two or more variables have been detennined and 
those variables exhibit some correlation. the definition of the confidence level be­
comes a lillie more difficult. Consider. for example. the detennin;uion of the mean 
lifetimesTI and T., of two unstable silver isotopes of Example 8.1. The problem was 
treated in Chapter 8 as a five-parameter problem. with parameters a-4 and a, corre­
sponding 10 the two mean lifetimes. TI and T2. respectively. ond parameters al' a2. 
ond aJ corresponding to the amplitudes of a uniform background and the two 
decaying states. TIle parameters of most interest in the experiment IlI'e a-4 und as. and 
we want to define ajoint confidence interval for those two variables. 

Figure 11.2 shows two sets of contours for the variation of X" il5 II function of 
a.a and as from the least-squares fit by the Marquardt melhod discussed in Chapler 8. 
The small contours. drawn with solid tines. were calculated by holding the parame­
ters al' 02. and uJ fixed at their optimum values (see Table 8.5) and varying a-4 and as 
to obtain increases in X2 of I. 2. and 3 from the minimum value. The large contours, 
shown as dashed lines. were calculated by allowing ai' al. and OJ to vary to minimize 
>c? for each pair of values of U-4 and as. The contour plots cover very different ranges 
because of the correlations of the displayed parameters. a.a and as. with the remain­
ing parameters al through oJ. The tilt of the closed figures on each plot indicates the 
degree of correlation of parameters 0-4 and as with each other. In on ideal experiment, 
the contours are ellipses in the region of the X2 minimum and if 0-4 nod oJ. are not cor· 
related. then, with suitable scaling of the axes. the ellipses are circles. 

Which plot should we use? Additionally, how do we determine a confidence 
interval; that is. a region of the a.a-as space in which we estimate there is. for exam­
ple. a-68% probability of finding the true values of the two parameters? 

First. we should note that. because the fining function, Equation (8.2), is not 
linear in the parameters. the methods of testing described in the previous sections 
strictly do not apply. However. we are much more likely to run inlo nonlinear fitting 
problems than the e35ler linear problems. so we shall continue with litis e~i1ffiple. At 
any rate. the function is linear in parameters a, lhrough aJ. and we could milke II lin­
ear expansion of il. over a limited region. in the parnmeters a .. IUld as. In fact. this 
was the basis of a method of filling nonlinear functions in Otapter 8. 

lOen. we should use the larger of the two contour diagrams to define our con· 
fidence intervals. Thilt implies that if we wish to find the standard deviation of 0" 
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theiroplimum ..... hile vilr}iflg a. anti 0) 10 obtain increases ifI Xl of I. 2,;md 1 from the minimum 
vakaei.1be lar&e COOlOWS, shown as d;uhed lines, were cakul.a.1Qt by aUowin, a •• aJ. :lnd 0, 10 vary 
to minimize Xl fot each pair or valua of a~ IZnd a,. 

from the contour plot, we should consider the full range of the outer limit of the 
dXl = I contour, and not the intersection of that contour with the a4 axis. This is 
equivalent to allowing as to assume its best values for each chosen value of a-4' as we 
have already assumed Cor the parameters al through aJ. The two dashed vertical lines 
indicate the two limits on a-4 that include the 1 standard deviation. or 68.3% of the 
probability, nod Ihe two horizontal lines indicate the 1 standard. deviation limjts for as. 

How do we know that the vertical lines enclose 68.3% of the probability? By 
allowing the four parameters al' 02. aJ. and as to find their optimum values for each 
chosen value of 0-4 and varying a", we have separated our X2 fitting problem into two 
parts: D fit of N data points to m - I parameters wilh N - m - 1 degrees of free­
dom and D variation of dX2 with 0-4 about the minimum Xl, with I degree of free­
dom. As we observed in the previous section, the two variations sepilr.ltely must 
follow their appropriote Xl distributions. so our variation of dX" obeys the Xl prob­
ability distribution for I degree of freedom. If we look at the inlegrated probability 
dislribution Px for I degree of freedom [Table C.4. or calculnled from Equnlioo 
(11.10»). we see Iha, X' 2: I corresponds '0 31.7% of ihe prob.bili,y. Of 4x' < I 
corresponds to 68.3%. Similarly, if we wish to find the limits for 2 SUlndard devia­
tions, we should find the limits of a-4 on the dX2 

Q" 4 contour. with all other para­
meters optimized. 
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To find the I standard deviation region encompassed by the joint variatiolJ of 
two parameters, a4 and a" with all other parameters optimized, we must draw the 
contour corresponding 10 that value of ~X2 for 2 degrees of freedom that includes 
68.3% of lbe probability. Referring again (0 Table C.4 or Equation (11.10), we find 
that we shouJd draw the contour for ~Xl c. 2.30, WId for the 2 standard deviation 
contour, we should choose ~Xl - 6.14. Joint confidence intervals with more than 
(WO parameters are often of interest, but a.r-e difficult to display nnd are represented 
best by two-dimensional projections of contours [or pairs of variables. 

Confidence Level for a Predicted Value 

Suppose the predicted value of a physical quantity is IJ. ~ 1000.0, and we have 
made a measurement and obtained the value x >I;: 999.4 ± 2.0. At what confidence 
level is the predicted value consistent with our measurement? The question could be 
rephrosed as, "What is the probability of obtaining from the predicted parent distri­
bution a distribution that is QS bad as the one we got. or worse?" Because the shape 
of the parent distribution WQS not predicted, bUI only the value of the mean. we must 
use our vwue oflhe scandard deviation, a =- 2.0, as nn estimnte of that of the pa.r-ent 
distribution. If lhe distribution is known 10 follow Gaussian statistics, then the re­
quired confidence is twice the integral of the Stllndard Gaussian probability function 
from x = SIO~, whereS Q II< - xii" =11000.0 - 999.41/2.0. 

Now, suppose that the predicted value was necessarily positive-an intensily, 
for example. Then. we might again assume a Gaussian distribulion, but only for 
positive values of the variable x. and therefore our confidence inregml becomes the 
integral of the standard Gaussian from 8 to to. However, because the totu.l probabil­
ity must be nonnalized to I, we again multiply the integral by 2 so that the proba­
bility or confidence level is the same for both problems. 

The method of delennining the confidence level thus depends on the type 
of problem as wellns the probability funclion that is applicable to the problem. 
For distributions thai are symmetrical aOOul their means, such os the Gaussian dis~ 
(ribution, we genernlly consider the probability of obtaining a result that is Ihe 
specified number of standard deviations from the mean, without regard to sign, 
unless a particular sign is excluded by the physical problem. For dislributions 
such as the chi-square nnd Poisson distributions, which are only defined for posi­
tive values of their arguments, it is convenlionallo lind a "one·sided" probability 
as in lhe case of the Xl distribution where we quote the probnbility of oblaining 
a volue as large as or larger Ihan the value we obtained for Q given number of 
degrees of freedom. 

11,6 MONTE CARLO TESTS 

A Monle Curio calculation can help us undersLillld the statistical significance of our 
results and possibly obtnin a better estirtulle of some of the parnmelers of Ihe exper­
iment. As a by-product. the Monte Carlo progrnm DUly also help us identify biases 
in our analysis procedure. 

Suppose, for example, that we have measured a quanlily .r that is predicted to 
have n value IJ.. From our experiment we obtain Ihe value x for our estimale of fL. 
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We want to find the probability of obtnining from a series of similar experiments a 
value l' that differs from the predicted value fL by 

Axc:1fL-jl (11.53) 

We C1UI sel up a Monte Carto program 10 simulate our experiment and to gen­
craie events wilh the parameters predicted by the theoretical principle that we are 
testing and with the snme CUIS as those imposed by our experimentalnpparatus. 
Such a progmm can be quite complex, but it may already exisl at the lime of analy~ 
sis, if, for example, a Monte Carlo program was wrillen to help plan the experiment. 
Or it might be possible to use some geometric and kinematic quantities from lhe ac_ 
tual experiment and only geDer-lie those parts of each event that are affected by the 
parameters in question. 

After the Monte Carlo program has been written and debugged, we can simu­
late repeated experimenlS with Ihe Same parent panuneters and the same number of 
final measuremenLs as in our real experimenl The oota from ench of these simulated 
experimenlS can be processed by Our regular analysis program to obtain 3 group of 
"experimental" voJues of .tt and from (he distribution of Ihese values we can esti­
mate the required probability. 

Exmop1e U.s. Let us use the Monte Carlo method 10 try to learn more aboulthe sig­
nificance of the small peak in our data of Example 9.2. Examination of Figure 9.2 
leaves no doubt about the exislence of a large peak at _ J.O GeV. Without the fiued 
curve, the smaller peak ncar 0.8 GeV would be considerably less striking IIOd further 
an4lysis might be hcfpful. (We note that. if the small peak were indeed spurious. we 
should have 10 relit the large peak 10 obtain a better estimate of ilS mean energy and 
width.) In Chapter 9, we t5lima.ted the probability to be about O.ot'il thai the smaller 
peale is just a nucluation in a single bin above the single-peak background, with a 
probabiliry of about 0.6% of such II nucluaUon occurring in anyone of the 60 bins into 
which the data were sorted. These ilR quite compelling numbers. Can we suppan them 
with a more dela..iJed calculation by the Monte Carlo method? 

We Ikbpfed to Ihcstudy of this probkm the Monte Carlo program and the Je.ul­
squares filling prognun. which wcre used to gener.He IUId analyze the data in Chaptcr 
9. With the Monte Carlo pmgrnm, we simulated the experimenl according 10 Equalion 
(9.1) 10 gcner.lle 4000 single-peak events in each of 1000 mal "cxperiments." The 
mean cne'8Y (Eo). half-width CO. and amplitude or the Iwger peak, and the ampliludes 
(a. through 03) of the quadralic background, were sci to the villues obtained In the six. 
parameter fit, listed in Table 9.1. 

To e.xh set of lriaJ datA we fined Equation (9.13). using idcolJca.l procedures to 
those used in OJapter 9. with the exception that, staning values for the parameters of 
the smaller peak (01, al. and a,) were set 10 the values obtained in the nine-parameter 
fits of Chapler 9, lisled in column 6 of Table 9.1. We selected those fits that yielded pa_ 
rameters of thc lower peak consistent with the values dclennined in Chapler 9 by im­
posing the following conditions: (I) We required thai both the chi-squilR probabihly 
and the I1lllplitude of the smaller peak (a,) be cquallo or greater than the ~pand­
ing fined values listed forthe rune·parnme1er fit in Tablc 9.1; (2) We required thatl.hc 
central energy of that peak be within plus or minus one hislognun bin (0.05 GeV) or 
the values oblained in that fiL 

From the 1000 generaled experiments,S survived these cuts, or 0.5$ of the 10-
tal trials. This number considembly exceeds the rough estimate of 0.01 1\\ madc in 
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TABLE 11.1 
Results of generatinu; 4000·event "experiments" from 
Equations (9.1) and (9.13) with parameters from fits listed 
in Tobie 9.1. We usOO severul values of the amplitude AI of 
the smaller peak to test the sensitivities of our 8nulysis to 
small und possibly spurious peaks. 

A, 

3.50 
1.75 
0.815 
0.000 

Equation Number or expe:rimenlS Number or 5UCC'C:SSC:S 

9.13 100 61 

9.13 100 18 
9.13 100 , 
' .1 1000 -, 

CltotpIcr 9 for a single bin Ouctu:uion. TeslS made with other SIaJ1ing values and cuts 
for the smaller peak yieldet.lsirnitar numbers of SurviVDfS. 

To ched .. our procedure, we also generated and nnaJyud 100 two-peak lrial"u· 
perimcnts" from Equation (9.13), wilh the parameters oflhe smallerpcak set to the 
volues from Ihe nine,par.lmcter fit Iisled in Table 9.1. From these 100 lrials, 61. or 
61%. survived the cuts. When we repealed the analysis with the amplitude of the 
smaller peak reduced by a factor of2 (i.e., oJ2), the success role dropped to 18%. 11m! 
a further reduction by nnother faclOr of 2 (0}4) reduced the success rate to 5%. The re· 
suits ofanaJyses arc summnrized in Tnble 11.1. 

These results offer strong support for Ute existence of the smaller peak, nnd in· 
dicate that in a 4000·event experiment we might detect with reasonable probability 
a peak with only one·founh the amplitude of the current smaller peak. Clenrly, a 
Monte Carlo simulation should play an important role in planning Utis type of ex­
periment. A carefully planned MonIc Carlo program may be much beller (nnd eas· 
ier) than a dcroiled theoretical nnalysis for finding an answer to Ute question "How 
much duta will be needed to establish (or disprove) the existence of a specified fea­
ture in a distribution." 

We offer a final word of caution on uSing the Monte Carlo technique to 
study the slatisticul significunce of experimental results. For Examples 9.2 and 
11.5, we used a very simple problem to illustrate this technique. Yet, there arc 
muny oppoc1unitjes for errors, which c.m lead to erroneous conclusions about the 
significance of our Chapter 9 data. In a larger study. it would be very easy to make 
a simple mistake that might lie undetected in the program and have a subtle effect 
on the results. It is important to test the program under a variety of conditions, Ilnd 
to examine results at intermediate stages before drawing conclusions from the reo 
sult. In particular, if the results of the program lead to conclusions that violate in­
tuilion about lhe experiment. we should check and recheck the calculation. The 
Monte Carlo method is very powerful, and can enable us to solve very difficult 
statistical problems in a siraightforward manner, but like all powerful tools, it 
must be used with care. 
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SUMMARY 

Variallce of Ihe fil: 

S' 1 :!:1(I/a1)[y; - }'(x,)],) 
N - M (I / N):!:(I/a!) N _ //I L " ,[y, - y(.' ,)J! 

Weigillillg factors: 

l/a; 
w/ 

(I/N):!:(l/a ll 
RelQliollship benl·eelJ jl and X 2: 

, s' 
X'~,L=-( ') ~ v a/ 

where 

[ I 1 ] - ' (a1) = - L-• N a; 
Probability P." (X 1; v) ,lral alll' ra"dom sel of N data poilJls will yield a value of 
chi·sqllare as large as or larger Ilion Xl: 

('" Z 112(~-1)e-:/2 

P,(x'; v) = J" 2'''f(v/2) dz 

Lillear-correloliOIl coefficient: 

NIXiYl- Ix;Il'! 
r-[N:!:xl- (:!:x,)'JII, [N:!:)7 (:!:y;),J'" 

Probability Pt(r, N) thaI allY ra"dom sample of ""correlated experimemal daw 
poillls would yield all experimental linear·correlalio" coefficielll as large us or 
larger lhall r rr: 

[ ' 1 r[(v + 1)l2JO _ r,)(.-')12 
p,(r; v + 2) = ,,' V;; f(v/2) 

Sample covariance: 

, I/(N - 1)~[(I/al){'C x,){,. - x,)] 
Sit - ( I/N)~(I/ai) 

Sample variance: cij .. aJI 
Sample linear·correlalion coefficient: 

Multiple·correlalion coefficient: 

S' 
Tj,=~ 

SjS, 

with 

• ~ S') • ~ sl ) R'''' L b,:/f =L bl- ri, 
j -I s, 1'_1 S, 

~(xlai) 
- ---'--
' ,- :!:(I/ u il 
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Ftrt.u : , 
F _ Xv, 

X~2 

P,(F; v" ",) = f:PJ(f; "" ",) df 

FIest/or mulliple-correlalio,. coefficienl R (jor l' • N - m): 

R'/(III - I) R' (N - III) 
F = .... ---X 

R (I - R')/(N -III) (I - R') (III - I) 

FIest for Xl l'aUdio' of adding (m + I )Ih ten,,: 

F x 2(m) - x2(m + 1) _ ~ 
, X'(I11+ I)/(N-m - I) X~ 

Confidence limits: la ~ 68.3%; 2a ~ 95.4%; 3a --+ 99.7% 

EXERCISES 
11.1. Discuss the meaning of X2 and justify the relationship between it and the sample 

variance $1 = X~. 
11.2. Compare the exact calculation of the gamma function nn) of Equation (11 .7) with 

the approximate calculation of Equation (11.8) for II = ~. I. ¥.t. 4. '¥.t,IO. 
11.3. From Equation (11.6). show that the xl-probability density for I degree of freedom 

can be written as 

per) e-"n 

~ 
Calculate to I % the probabihty of obtaining a value of Xl that is less than 2.00 by 
expanding Ihe function in a Taylor series and integrating term by tenD. 

11.4. For u typical number of degrees of freedom (v .,.. 10). find, by numerically integrat­
ing Equation (11.6), the range of probability P'I.(X 1

• 1') for finding Xl as small as O.S 
or as large as 1.5. Use the approximation for the ganuna function of Equation (11.8). 

11.s. By numerically integrallng Equution (11.6), find the probability of finding a value of 
X~ - I.S with l ' "" 100 degrees of freedom. (Note that double'precision variables 
must be used.) Would you consider this to be u reasonably good fit? 

11.6. Express the linear-correlation probability density of EqUation (11.18) in tenns of the 
approximation for the ganuna function of Equation (11.8). 

11.7. Work oul the details of the calculation of the linear-correlation coefficients, for Ex­
amples 6.1 and 6.2. 

II.S. If a set of data yields u zero slope b = 0 when fitted with Equation (11.11), what can 
you suy about the linear·correlation coefficient ,? Justify this value in terms of the 
correlation between XI and Yj. 

11.9. Find the linear-correlation coefficient', between the independent variable TI and the 
dependent variable VI for the data of Example 7.1. 

11.10. Find the correlation coefficient Tl between T; and VI for the datu of Example 7.1. 
Does the correlation justify the use of a quadratic term? 
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11.11. Express the multiple correlation R in tenns of xi}. y,. and their averuges. 
11.12. Evaluate the multiple·correlation coefficient R for the data of Example 7.1. 
11.13. Is a large value of F good or bad? Explain. 

11.14. If we wish to set as an arbitrary criterion a probability of 0.01 for the F. test. what 
would be the reasonable averuge value for Fiest? 

11.15. What different aspects of a fit do the F" and F_ tests represent? 
11.16. Apply the F. lest for the quadralic term 10 the dala of Example 7.1 and state your 

conclusions. (Refer to Table 7.4.) 
11.17. Show the intermediate steps in the derivation of EquBtion (11.43). 
11.1S. Estimate from Figure 11.2 the 90% confidence limit for each of the two mean life­

times (04 and aj) of Example 8.1 when all variables arc allowed to find their opti­
mum values. 
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APPENDIX 

A 
NUMERICAL 

METHODS 

There are several reasons why we might want to fit a function to a dala sample. 
and several different techniques that we might use. If we wish to estimate para­

meters Ihat describe the parent population from which the data are drawn. then the 
maximum-likelihood or least-squares method is best. If we wish to interpolate be­
tween entries in daHl tables to find values at intermediate poinl5 or 10 find numeri­
cally derivatives or inlcgnlis of tabulated data. then an interpolation technique will 
be more useful. Additionally. if we wish to obtain intermediate values between cal­
culated coordinate pairs in order to plot a smooth curve on a graph, then we may 
wish to use a spline filling method. In this appendix we shnll summariu: some stan­
dard methods for lreilling the laner two types of problems, as well as some methods 
of finding the roots of nonlinear functions, a different son of interpolation problem. 

A.I POLYNOMIAL INTERPOLATION 

With modem fast computers. the need for interpolating within tables to find inter­
mediate values of tabulated functions has reduced markedly. Nevenheless, there are 
situations in which it may be convenient to represent a complicated function by a 
simple approximation over a limited range. For example, in OJ large Monle Carlo 
calculation. where computing time is a significant considerntion, we may approxi­
mate a complex function by II simpler polynomial that can be calculated quickly. Al­
ternatively, we may save time by creating a probability intcgml once at the 
beginning of the program. and interpolating 10 find values of x corresponding 10 the 
r.mdomly chosen values of y. 

For many purposes a linear or quadratic interpolation is satisfactory; th.u is. 
we fit a straight line to two coordinate pairs, or a parubola 10 three. and use the 
equation of the fined polynomial to find values of y al nearby values of x. Higher 
orders may be necessary for functions that have strong variations, but in general, it 
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is bener and more convenienllo represent a funclion over a limited region by a se­
ries of low~order approximalions. 

Lagrange's Interpolulion Method 

Here is a method Ihat is easy to remember and can be used to expJnd a function to 
any order. We know it works because of the thcorem Ihat slales that if you can find 
any nth .degree polynomial that passes exactly through" + 1 points. then you have 
found the one and only IIth·degree polynomial that passes through those points. 
Think about it. It is obvious for " - 1 (2 poinlS). 

Let us stan with an easy problem. Suppose we have two coordinate pairs 
(Xo. )'0) and (x,. JI), nm.! we Wanlto fim.! the straight line that passes through both of 
them. We write a function of the fDnn 

P(x) - )'ollo(x) + ),,11 ,(x) (A. I ) 

and search for a function Ao(l') that is I when x = Xo nnd 0 When x _ XI. and II func­
tion AI(x) Ihnt is I when X - x, and 0 when x = Xo- We can guess the Conn. If we 
write ..toCx) 0lS a fraction MId sec its numerator to (x - x,), chen AoCx) will be 0 (or 
x • XI and will be (xo - XI) for .t - Xo. But we want Ao(x) = I for x "" .to, so the 
denominator of Ao must be (xo x,). We can milke similar argumcDls for A

2
(x) and 

thus write as Our interpolation equation 

P( ) - , (,-x,) + ' (x-" o) (A?) 
x )o( - ) ), f _ _ ol ._ 

"'0 XI ,",I X 

Suppose we want a parabola that passes through three points. Then we simply 
write 

P(x) = Yollo(x) + )"II,(x) + )',II,(x) 
and, following the previous arguments, write 

(A.l) 

P( ) _ (x - .1,* -x,) (x - xu) (, - x,) 
f -)'0 + )', 
. ~-~)~ -~ ~-~~ -~ 

+ (x-xo) (x-x,) 
)" (x, - xo) (x, - x,) 

(A.4) 

The expansion 10 higher orders should be obvious. The l1h tenn in an 11th order ex­
pansion is given by the following product in which lhej = k tenn must be omined: 

• (x-x.) 
IT( ~ »" (excludingj = k) (A.S) 
i-O x. - Xi 

Note that the intervals in x need nOI be equally spaced. The interpolation for a 
well-behaved function), = I(x) is completely general. 

Newton's Divided Ditrerences 

Although the Lagrange interpolation method is especially easy to derive and pro­
vides a convenient way of interpolating between points in a function or table. it is 
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nOI very convenient for repetitive calculations. It is nol very convenient as an ex­
pansion either. because increllSing the order of the expansion requires adding an­
other roetor to each lenn as well as adding nnother term. Wh31 we require is 11 more 
ramiliM fonn-a discrete analog of the Taylor expansion. For this we tum to New­
ton's method of divided differences. 

1bere are several fonus afme divided differences expansion. roughly chamc­
terizcd by the method we choose to define the di((crences, forward. backward. or 
about n cenlr.ll poine. We shall restrict ourselves here to forward differences; that is. 
we calculate the variation of y with respect to x by lllking increments in the positive 

x direction. 
Again, consider a set of data points. (.1'0. Yo), (XI. YI), (Xl. Yl)' •••• Let us 

assume that we wish to make a linear interpolation from.to to some point x with a 
first.degree polynomial. We define the zeroth divided difference as the function 
itself/ex) evaluated atx = xo: 

/[Xo] ~ f(xo) = )'0 

The first divided difference is defined to be 

f[x • x ] e /[x,)- flxo] 
o 1 (Xl-XO) 

which is the slope of 3 linear function. 'Then. for a linear function. 

f[x. xo] = f[x •• x,] 

Of 

f[Xo)- f[x] 
(xo - x) 

f[x,) - f[Xo) 
(x, -.tol 

which. on rearrangement of the tenus, gives the flfSt·order expansion 

P,(x) = f[xo] + (x - xo) f\;~ = ~!io) 

(A.6) 

(A.7) 

(A.S) 

(A.9) 

= f[x,,] + (x - xo)f[x •• x,] (A.lO) 

where we have wrilten P1(x) instead of/ex) to indicate that the expansion is a poly­
nominl approximation to the function/(x). 

To fUld the second-order expansion, we consider the second divided differences 

f[ x,j. f[x,.x,) - f[x, • .r,,] (All) 
-~. ~-~)~-.tol . 

which corresponds to the slope of the slope. or the second derivative. 'J'hjs must be 

constant ror a second·order function, so we have 

f[x._x,] ~f[_x,.x,j (A.12) 

which leads to the second-order expansion 

P,(x) = /["0] + (x - xalf[x •• x,J + (x - xal(x - x,)f[x" x,. x,] 

The generul ronn ror the IIth·order expansion should agnin be obvious. 

(A.\3) 
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Remainders 

The eXlr.lpolalion rormula for an nth-order expansion is only exact when the runc· 
tion itselr is an IIth..<Jegree polynomial. Otherwise, the rt!tnai"der at x after" tenns 
R.(x), dtfined as the difference between the original function/(x) i1JKl the c}I;pansion 
p.(x), is given by 

R,(x) = f(x) - p.(x) 
a (x - Xo)(x - x,) ... (x - x.)f[x. Xo. x, • .... x,J (A.14) 

Calculation of the remainder R:quires the value of the function/(x) at x, which is 
generally not available. (If it were, we might nOI be doing this expansion.) However. 
it may be possible to make an estimate of !,.(x), or to use a nearby value, and thus 
find an estimate of Rn(x). An expression for the remainder can also be obtained in 
tenns of the (n + I)th derivative oCthe function. I 

Unifonn Spacing 

The divided difference eJ\pressions have a particular convenient form when the in­
tervals in x are uniform; that is. if Xl - XI = Xl - Xl = XI - XI-! 0::0 II. The divided 
difference of the previous discussion can be written 

f[ ] f[x,J - J[x.J = <1f(Xo) 
Xo. x, (x, Xo) h 

or 

<1f(Xo) e f(x,) - f(Xo) and h = x, - x, 

and higher·ordcr diffeR:nce5 become 

<1'/("0) '" <1[<1f(x.)J = <1f(x,) - <1f(xo). ele. 

If we define the relative distance along the interval by 

a = (x - x.)/1I 

we can write for the nth·order expansion, 

J!(x) = f(x.) + a<1f(x.) + a (a - 1)<1'f(XoY2! + ... 
+ a(a - I) ... (a - n - 1)<1'f(XoYn! 

(A. IS) 

(A. 16) 

(A. 17) 

(A. IS) 

Equation (A.18) is a finite difference analog of the familiar Taylor expansion with 
the important difference that the factors multiplying the coefficients aiJ(XfJ)/n! are 
not successive powers of the relative distance from the starting point. but rather the 
product of relative distances from successive points used in the expansion. because 
(a - I) - (x - Xo - h)lh = (x - x,)lh. and so Conh. 

Extrapolation 

Equ.tions (A.IS) lIuough (A.IS) ore perfec~y general Cor filting exactly II sequen­
tial equally spaced data points with a polynomial of degree n - 1. In principle, the 

'See Hildebnnd (1956) ror. derivation. 
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TABlEA.l 
Unirorm differences ror cos 0 

• (degrus) y a, a, a, &, 

0 1.0000 -0.~89 - 0.0931 0.0139 0 .0018 
18 0.9511 - 01420 -0.0792 0.0217 0.0056 
36 0.8090 - 0.2212 - 0.0575 0.0173 
54 0.5878 - 0.2788 ~0.0302 

72 0.3090 - 0.3090 
90 - 0.0000 

TABlEA.l 
Extrapolution from 0 to 10° Dnd frum 0 to 15° in various orders 

o 
(degnes) 

10 
75 

"" 0 

0.9848 
0.2588 

0.9728 
0.1961 

1 

0.9843 
0.1819 

Onter 

J 

0.9851 
0.1481 

4 

0.9848 
0.2589 

a. 
- 0.0021 

5 

0.9848 
0.2588 

position of the first data point (xo. yo> can be anywhere. but for optimum interpola­
tion. the values of XII and x" should stroddle the interpolation point x and be approx· 
imately equidistant from it. 

The same [ormula can be used [Of extrapolating 10 values beyond lhe region 
of data. but the uncertainties in the validity of the approx.imalion increase as x gelS 
farther from the average Of.\""1 and XII' The approximation is limited by both the de­
gree of the interpolating polynomial and by uncertainties in ahe coefficients of lhe 
polynomial resulting from nucluations in the data. 

Example A.t. Table A. I shows a uniform divided difference table for the cosine 
function for a r.ange of the argument 0 between 0 and 90". Table A.2 shows values or 
cos 0 for 8 - 10 and 75· caicuJllted from the divided difference Ulble in orders I 
through S. The interpolation starts al lr' so that only the lop row of Table A. J IS used and 
thUS, 8 > IS-, the calculation is an extnpoll1tion. The lrue value of cos 8 is also li~ted. 
As we should expect. the large extrapolation to 75" is very poor in low onIcr. Usually. 
an approximation can be improved by incJ"C3Sing the number of tenns in the expansion. 
However. the better method would be to drop 10 a different line of the table; that is. to 
ensure that the calculation is an interpolation rather than an extrapolation. 

A.2. lIASIC CALCULUS: 
DIFFERENTIATION AND INTEGRATION 

let us review some basic principles of differential calculus before considering dis­
crete methods that are applicable to computer calculations. 
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Differentiation 

Letf(x) be II function ofthc variable.r. If.r increases by an Qffloum6x. Ihe function 
vanes by an amount AI = /(x + 6x) - /(x). The ratio 11/ll1x is a measure of the 
relalivc van.uion of fl.:f) with x. In the limje. as I1x becomes infinitesimally small. 
the ratio I1fll1x for a conlinuDUs fUJlC,jon / (x) approaches an asymptotic value. the 
deril'alive dJldx of Ihe function./tx) with respect to x. 

~~ lim f (x+tu)-[ (.,) (A.19) 
d.r .11_0 Ax 

The derivative of /(x) al x :;;: .to is wriuen d1;0) QDd corresponcJs 10 lhe slope of the 

funclion evalualed at .to or the tangcRllo the curve at that poinl. 

Example A.2 To find the deriVQuve of 1(X) = z·, we can expand the function 
f(x + .Ax) to first order in a Taylor .senes. 

Thus, with " = 4. we havef(.t) _ x~ and djldx _ 4r J. 

d(x") = Urn (x" + II.r"-la.t) -~ 
dx .1._0 /l.t" 

nx--'ux 
=-crnx,,-I 

<Ix 

Example A.3 Forj{x) "'" sin x, we can Wrile 

sin (x + ax) = (sinx)(cos ~x) + (sin 4x) (CDS x) 
and agOlin expand j{x) 10 obtain 

d(sin x) c 11m sin (x + 4x) - sin x 
dx .h_O 4x 

• lim (sinx)(cos 4x) + (sin 4x){cos x) - sin x 
~_o 4x 
sin x + (Ax) (cos x) - sin z 

... ""'cosx <1x 

Similarly. forf(x) = cos x. we find dfldt = -sin..-. 

S[}MSAND PRODVcrs The derivative o[ a sum of functions is equal 10 the SUm of 
the derivatives of the individwtJ functioos. Consider the function 

[(x) ~ g{x) + I.(x) 

TIle derivalive oflhis (unction is the sum of the derivalives oflbe individuallenns. 

~g dg(x) + dfl(x) 
dx dx dx 

The derivative of a produci of (unctions, however. is nOl equal 10 the product ofrhc 
derivatives. Consider Ihe function 
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f (x) = g(x) X lI(x) 

We can rewrite Equation (A. 19) as 

lim f (x + ax) = lim [f (x) = ax d[(d x)] 
.h_O .l..(_0 x 

(A.20) 

and show that 

d[g(x) X II(x») r g(x + ax)II(x + ax) - g(.<)II(x) 
dx .1.(~o ax 

= ,~~o L [[8(X) + ax d~~)][II(X) + ax d~~)] _ g(X)II(x») 

= ()dl,(x)+/( )dg(x) 
gx dx IX dx 

FUNCTIONS OF FUNCTIONS If the function/(x) can be expressed as II function 
of a function g(x) of x, 

f(x) = 11g(x») 

the derivative affix) with respect to x can be expressed in lenns oflbe derivative of 
g(x) with respect to x. If we expand the definition of Equation (A.19) for the deriv­
ative, we can make use of the relationship of Equation (A.20) to expand still further. 

g(x) + ax~ - f [g(x») 

A. 

(A.21) 
;), .(_0 uX 

_ df(x) dg(x) 
dg(x) dx 

Example A.4 If/(x) = (a - bX1) l , define g(x) • a + bx1 so that/ex) = [g(x)] !. 
The first factor in Equation (A.21 ) is the derivative of a square, and the second factor 
is the derivative of a cubic polynomial. 

df(x) = 2g(x ) = 2(a + bx') 
dg(x) 

dR(X) = 3bx' 
dx 

~ "" 2(a + bx1)3bx1 = 6bx1(a + bx1
) 

dx 

HIGHER-ORDER DERIVATIVES Higher-order derivatives nee defined as deriva­
tives of derivatives. For example. the second derivative of a functionj(x) is just the 
derivative of the first derivative. 

d'J(x) 5.!!. [df(x)1 
dx2 dx dx J 
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For the 11th-order derivative d"/(x)ldx", we simply take the derivative II times in 
succession. For example, if/ex) = x" as in Example A.2. the second derivative is 
12x 2

• Similarly, the founh derivative of either sin x or cos x is equal to itself. 

PARTIAL DERIVATIVES Iflhe function/(x, y) is dependent on two variables x and 
y. we must define derivatives of the function with respect to each of the independenl 
variables. To detennine the partial derivative of/ with respect 10 x, iJjlax, we con~ 
sider that y is a constant and proceed as we would for an ordinary derivative. Simi­
larly, to detennine the panial derivative ajlay we consider Ihat x is constant. 

af(x. y) ~ lim f(x + ax. y) - f(x. y) = d[(x) 
ax ;),,_0 .dx dx 

af«. y) '" lim f(x. y + ay) - f(x. y) = dj(y) 
ay .1)'_0 .dy dy 

Higher-order partial derivatives include not only higher-orderderivDlives with 
respect to one variable, but also cross-panial derivatives with respect to two or more 
variables simultaneously. 

aw,.y) 5.2.. [af(x. y)1 
ax2 iJx iJx J 

a'f(x. y)",.2.. [af(x. y)t .2.. [a[(x. y)t a'f(x.y) 
ax ay ax ay J ay ax J ayax 

I\fINIMAAND I\(AXIMA A function/(x) is said to have a local millimum alx = xmill 
if the values of /(x min ± ax) nee Jarger than the value of /(x min) for infinitesimal 
changes .dx about XmilI' Similarly, the function has a local maximum if the values of 
/(xrov. ± ax) are smaller than/(xnw,). At either a minimum ora maximumofa func­
tion, the derivative of the function is zero, 

dj(x. ) ~ 0 
dx 

corresponding to a tangent that is parallel to the x-axis. 
The question of whelher the function is a minimum or a maximum at x", can 

be resolved by examining the second derivalive. If the second derivalive is positive, 
the curvature of the function is upward and/(x .. ) is a minimum. If the second de­
rivative is negative, the/(x",) is a maximum. 

FUNCTIONS OF MORE TlIAN ONE VARIABLE With functions of more than one 
variable, for example /(x, y), we can still consider the function to have a minimum 
in parameter space, but we must be careful to assure that the function has a mini­
mum simultaneously with respect to all parameters. 
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Integrollon 
Intcgrluion is the inverse of differentiation. To find Ihe integral F(:c) of the func-

lion/Ix). 
F(x) ~ /Jlx)Jx 

we must fin<l a fUIIClion F(x) ,uch thai J~~t) - /(x~ 
However. this definition is not unique. An undetermined constant must be alldell to 
the solution to allow for the facl thallhe derivative of a constant is zero. 

E.ample A.5 Consider the integral of the function j(x) - ",,1. We observe that 

F('d • s"/4 is a solution: 

dF(x) = d(x'/4) = x' = I(x) 
dx dx 

However. F(x) = x"/4 + C is also a solution. where C is :11\)' quanut)' that is not 
0. function of x. Thus, the solulion to an ;tldtji/!;,t illltgrol must include an added 

constant. 

A dejinilt i"'egral is the integral of a function between twO specific values of 
the imlcpendent variable, Dod is wonen 

1- L Jlx)Jx 

To find the definite integrJ.I of a function. we integrate ii, calculate the value of the 
inlegrJI at :c = b and at x = a, and find the difference belween lhe twO values. This 
is equivalent to calculating the area under the functionj(x) between the two limits 

a and b. 

Enmple A.6 Consider the integral of the funclionj(x ) - Xl between the limits 

x - t.Oandx = 2.0. 

1= I(.t)dx= x'dx=x'/4 ~(2'-I'J/4= 15/4 Jw IW IW 

1.0 1» 1.0 

Note that a definite integnllls not a function or variable or iDlcgralion x. 

From the results of Example A.3. 

' sinxdx = -cosx+C and I cosxdx:o::; sinx + C 

A.3. NUMERICAL DIFFERENTIATION 
AND INTEGRATION 
With the inlerpohnion expressions discussed in Section A.I. it is relatively strrught­
forwa.rd 10 obtain expressions for derivatives and integrals in tenns of expansions to 

order II. 
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DllTerentialion 

We can differentiate Equation (A. IS) 10 find approximalions for the derivalhes of 
the function/(x). We obtain 

J~!x) = f. Jj~x) = [~/( .•• ) + (2a - tja'/(xo)/2! 

+ (la' - 6a + 2)~'/(xo)/3! + -' -]/11 
(A.22) 

and 

J'P.(x) =.!...!!... [JP.(x)] ~ [~'f("') + (a - l).l'/(xo) + .. V II' 
d.r. 2 ,,2 da da (A.23) 

We shoultl nole thaI the use of forward differences introduces an asymmclry in the 
calculation. For u general solution, we could replace the forwanl differences by cen­
tral differences. which are laken symmelrically about a central starting point. For a 
panicular problem. we can usually arrange the expansion to provitlc reasonable 
symmetry of the differences about the point of interest. Thus, we can replace Equa­
lions (A.22) and (A.23) by 

JP.d"(x) = ~/(x")/II I(x + 10/2); I(x - 10/2) (A.24) 
.t I 

and 

d'P.(x) = Alf( )II' = I(x + II) - 2/(·') + I(x - h) dr '-t Xu I It! (A.25) 

Integration 

InlCgntting Equation (A. IS) leads 10 expressions for calculating the numerical iotegrJ.1 
in various orders. depending on the number of tenns in the polynomial approxima­
tion. There are various fonns for each order. depending on how we choose the limits 
of integration. We quole Ihrec of the most useful fonns with the remainder eSlimales. 

First-order, endpoint trapezoidal 

r~'" 11
3 

)./(.t)dt = 2[/(xo) + I(x,)] - i2jll)(~) 

(first-order closed-end trJ.pezoidal) 
(J j 113 
)./(x)<1< - 21>/(x,) + "3 Jl"(~) (fi"l-order open end) 

f
~' /, irs 
..I(x) dx = 3[1(·"" + 4/(x,) + fIx,)] - 9Ojl')(~) 

(second-oruer closed-end Simpson's rule) 

The factors/ .... '(E) in the remainder estimales represenllhe mh derivative of 
the funclion evaluated at some (unknown) value of x in the r.mge of the inlcgral. 
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NOle the large reduction on the error estimate in going from either of the first-order 
approximations to the second-order approximation. 

For an integral over an extended range of x, it is usually advisable to cmploy 
a series of first- or second-order integrals over sections of the function, rather than 
to attempt to fit a large region with a higher-order function. In fact, it can be shown 
lIlat the gain in accuracy in going from a second- to a third-order numerical integral 
is relatively small, and. for the same number of calculations of the ordinate Yj' the 
second-order Simpson rule may be more accurate tbon the third-order fonn. This re­
lation applies in gencroilo even and odd orders, so thnt, to make a significant im­
provement in the numerical integration of 11 function. one should advance to lhe 

next higher ll'ell order. 
Thus, to find the integrol by Simpson's rule off(~) over an extended range 

between x = Xo and x = XII' we divide the region into" equal intervals in x. with 

11/1 = (XII - xo), to obtain 

J
'. II J(x) dx = :3 [f(xo) + 4/(x,) + 2/(x,) + 4f(x,) + ... 

nh' 
+ 4/(x._,) = /(x.)j- 180f'~~) (A.26) 

where t is the value of X somewhere in the range of integrotion. 

Program A.l SIMPSON (Appendix E) caiculales an cXlcnded inlegrnl by Ihe 
second-order appro~imation of Equation (A.26). See Progr.uns Il.I and 11.2 for ex­
amples of the usc of Ihis routine. 

The user supplies four arguments: 
I . Fu NeT: lhe name of the funclion 10 be inlegnled. The function must have one 
real argumenl. If other lllgument5 IlI'C required, they must be made accessible 10 Ihe 
fUBclion il5 global variables. 
2. N I NT: the number of double inlervals. The interval is calculated IlS ox • 
(H I U M-LOU M )\(2· N (NT); 

3. 1.0UM and 
4. HILI M: the integrution limits. 

A.4 CUBIC SPLINES 
If we attempt to represent by an 11th-degree polynomial a function that is tabulated 
at n + I points. we nre apt to obtain disappointing results if II is large. The poly­
nomial win necessarily coincide with the data points, but may exhibit lnrge oscilla­
tions between points. In additkm, if there an: m:my datD points, the Wculations can 
become rather cumbersome. It is often better to mate scverallow-order polynominl 
filS 10 separate regions of the function. and this procedure is usually satisfactory for 
simple interpolation in tables. However, if we W:ll1t a smooth function, which passes 
through the data points, the results may not be salisfactory. 

Suppose we have calculated a function at n + I points, and want to represent 
the function as a smooth curve on a graph. The tlth-order polynomial is out-too 
wiggly. Breaking the curve up into small sections produces disjoinled segments on 
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the plot. It is unlikely that they will combine to fonn a smooth curve. What do we 
do now? Reach for our pencil and trusty drafting spline'} No, we call up our spline 
fitting subroutine and let it join up the separate fits for us. 

Spline fiUing procedures have other uses besides plolting prelly curves on 
grnphs. but the plaiting function is of interest to us and is easily illustrated. Suppose 
we choose to make n series of cubic filS to successive groups of data points. What 
conditions do we need to produce a smooth curve that passes through the data 
points? We want the first and second derivatives. as well as the fuoclion itself. to be 
continuous at the data poims. Suppose we consider a separ.ue cubic polynomial for 
each interval on the grnph. or a ,otal of n polynOmials for the II + I points. Then we 
write the polynomial equation, take derivatives, and, at each data point. equate the 
first and second derivatives of the left-side polynomial to those of the right· side 
polynomial. 

Following the method discussed in Thompson (1984), we begin by writing the 
Tnylor series for the cubic polynomial for interval i, expanded about the point x/ 

d"'x' d''''f''/ >1x) e y(x,) + (x - Xi)~ + (x - x,)'''-;tT' 2! 

+ (x - x.)' '3' d'y(x )1 (A.27) 
, dxJ . 

where the function and derivatives are evaluated alxl' This Cun be written in a morc 
concise fonn as 

y(x) = Y, + (x - x,)y, + (x - .f,)' Yi/2 
+ (x - Xi)'(y", - yi)/611 (A.28) 

where yi and yj stand for the first and second derivatives evaluated at .r = x/ and 
the third derivative has been replaced by its divided difference [onn. which is ex­
acl for a cubic function. At .r = x" we have Y :::t y,. as required. We can also set 
x = xl+l = XI + h and solve the equution 

to obtmn 

)'(x/+I) = Yi + (Xi .. 1 - xi)yi + (Xi+ 1 - .rJ2 )'i/2 
+ (Xi + 1 - ·\"j)l(yi+, + )'7)/6" (A.29) 

Y'+I - Yi = "yj + ,,2[2y:+ )'7+,1/6 (A.30) 

We repeat the calculation, using the equation for }~:r) in interval; - J (i.e., we 
replace; by ; - I in Equation (A.29». 

y(x) ~ y,-, +(x - X,_, )y,_, + (x - x,- ,f Yi_,/ 2 (A.31) 
+ (x - X,_,)'(y; - yi_,)/611 

and again require that y(x) :::t Y(Xt) at the ith data point and obtain 

y, - y, - , = IIy:_, + II'[2y,"_, + y,"j/6 (A.32) 

To establish the continuity conditions at the data points. we need the first de­
rivative in the interval i, 

.r:~ ';--:,::;.~ '~'. ~ ~~}~~ .. • 
"": .," '- .... , 

-'-::. :. : ,I d'_,·, .-i::,#f. 
, ,. -... 

'« .',' . ~ 
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y'(x) ~ J': + (x - x.»), j+ (x - x, )'( yi., - )'j)/ 21' (A,))) 

which we equate 10 the fir.;l derivative in the interval; - I at the position x 

obtain 

XI' to 

(A,J4) yi - Yl-I -1I[y; + )'1_1]/2 

Similarly. equaling the derivatives at the boundary .t = Xi + ) gives 
y;., _ y, = "[J'i.,)'i!/2 (A.35) 

(Repeating the procedure with the second derivative leads to an identity. because 
our usc of the divided difference fonn (or the third derivative assures continuity of 
the second derivative aCross the boundaries.) Eliminating the first derivatives from 
Equations (A.30l. (A.32), (A.34), and (A.3S) gives us the spline equation 

yj_. + 4y~+ yj+l = D, (A.36) 

with 
D. = )'( )' •• , - 2),. +)" ,]II,' (A.37) 

Note that the D/ are proportional to the second differences of the tabulated data and 
are all known. We can write Equation (A.36) IlS a set of linear equations relating the 
unknown variables y", beginning with i -; 2 and ending with i • n - 1: 

= D , (A.38.) 
_ D, (A.38b) 

y~+4Yl + yO; 
li + 4yj + y: 

Y: w) + 4Y:- 1 + Y: I = D • • 1 (A.38c) 

Y: 1 + 4Y:_1 + y: . D"_I (A.38d) 

These equations cun be solved for the second derivatives y~, as long as we 
know the values of yi tuld y:. One possibility is to set the second derivatives to 0 to 
obtain lIalura' splill~s. Alternatively. we may use the true second derivatives, if they 
are known, or a numerical approximation. 

For example, suppose we have only four points to consider. Then, if we know 
yi and)' 4. we can solve the simulUUlcoUS Equations (A.38a) and (A.38b) for Y1 and 
Yl' Similarly. if we have a full set of II equations. we can rewrite Equation (A.38a) 
to express Y2 = (D, - Yt - yj)/4. and substitute lhis expression into Equation 
(A.38b) 10 eliminate y~. Then. we repeat lite procedure to eliminate yj from the next 
equation. We conlinue this procedure until we reach the last equalion. which wiU 
contain only tenns in yj.y; _ I. andy: . Becauseyj andy: are known. we can solve 
this equation for Y: .. I' and then work back down the chain detennining succes­
sively Y: - l . Y: - l. and so forth. until we reach Equation (A.38a) from which we 
determine the last unknown yi . Once we have found Ihe values of the y 7. we can 
find the yt from Equation (A.30) or (A.32). and use Equation (A.28) to interpolate 

in each interval. 
1be solution of Equation (A.38) is discussed in severol textbooks. Essentially, 

one sets up recur.;ion relations to build a table of the second· derivati.ves /. The 
melltod is illustrated by the computer routines SPLI N EMAKE listed in Appendix E. 
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An interesting allernative method of solving the sct of simuhaneous equa­
tions, Equations (A.38), is to set them up in a spreadshect program. Thcn. when Ihe 
boundary valucs y~ and)'~ nrc supplied. the progmm will readjust the variables un­
til they stabilize at the solutions to Equations (A.38). Although this method is not 
very practical for graphical applications where we want 10 build Ihe so1ution inlo 
our plouing program, it does provide a quick way of finding the second derivalh'cs 
and an interesting illustration of the solution. 

As with nil techniques. a cenain amount of care must be e:<ercised in using 
spline routines. The choice of a second derivative allhe boundary may have an im­
portant effect on the interpolation ;n the ends of the function. and a wrong choice. 
for example, can produce undcsiroble shapes at the edges of a plot. Then tou. al­
though the spline routine assures a smooth variation between the data points, with 
continuity of the function and first and second derivative across the points, it cannot 
guarantee that there will be no peculiar oscillation between the points. 

ProJramA.l SPLINE INTERPOLATION (Appcndi:< E) 
SPLt NEMAKE numerically calculates a table of second denvatives for a splim: III· 
terpolation by the method discussed in the previous pat:lgruphs. 
SPLtNEINT pedonns the intnpol:nioo. For simplicity. we have chosen 10 store 
only the second derivatives and 10 calculate the first and Ihird derivatives as needed in 
functions 01 yoX 1 and 03vox3. If speed is imponant,the derivatives could be 
comptued and stom.l in arrays. 

A spline intcrpolation rouline is especially useful for plotting curves on 8n:aphs. 
The routine has been used 10 produce many of the graphs in Ihis book. 

AS ROOTS OF NONLINEAR EQUATIONS 

Finding roots of nonlinear equations is essentially the reverse of an inlerpolution 
problem. When we interpolate a function, our object is to find a value of the depen­
dent variable y at a specific value of the independent variable x. When we are 
searching for the root of n function, we are llylOg to find the value of x al a panicu. 
lar value. usually O. of y. However. interchanging the vnriables completely changes 
the nature of the problem. Interpolation involves straightforward application of 
well-defined equations that are independent of the form of the onginal function : 
finding roots of nonlinear equalions may require differenl equations for different 
problems and almost always requires some son of a search and iteration procedure. 

The diffraction of light by a single slit provides an interesting example of a 
nonlinear equation. It is well known that the position of the interference maxima 
and minima from double slits and diffroction gratings can be delennined analyti­
cally from consideration of the phase difCerence between the ruys that pass 
through each slit. but only the minima of the diffraction pattern of a single slit can 
be found in this way. To find Ihe position ofa maximum. with the exceplion oflhe 
central one. we must differen1iate the expression for the intensity with respect to 
the phase a: 

J_JO(si:ay wilh a - !!!! sin 0 
X 

(A,39) 

---'";iiiii">'r"- f'" _.- -.' , • • ,A , ~.~:,Y"'" :-." < : ~.-.,-.~ ''''~.,......". 
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In Equation (A.39). J. is the intensity of die light.n the central maximum (9 = 0),1 
is the intensity at angle O. A is the wavelength of the light. and a is (he slit width . 
The position of the maximum is given by solving 

dl ('in a) . - . 210 -- (a cos a - sma) ;; O 
da a J 

to obtain tht: value o.~ at the root of the equation 

f(a ) - a,. - tnna,- O 

(AAO) 

(A.41) 

11le first root is at a, • O. The other roots cnnnOl be calculated :malylicaJly and 
must be found by an iterntive method. An npproximule solution can be obtained by 
rewriting Equation (A.41) as 

a, = tan 0., (A.42) 

and plauing separately the left and right sides to find Ihe inlersection of Ihe slraight 
line and lhe langent curves. There tl.I1:: several milthemalicul ways 10 solve the prob· 
Jcm, but making .a pIC)( of the function is always :1 good starting procedure. 

Trial-and-Error: The Half·lnterval Method 

With a personal compuler, lrial·und-error may be a suilllble method for solving the 
occasional root finding problem. An orderly approach is advisable and the half· 
interval method is convenient. The procedure is to write a little progrurn thaI re­
quests a trial value of !.he root and calculilles the function and displays its value. 1ltc 
initial trial value might be obtained from a graph, or perhaps by mapping the func­
tion for various values of the independent variable x, until a reasonable estimate of 
Ihe root has been oblained. Then, a second lrial x is submitted. which produces a 
value of y on the other side of the rool. The half-interval method begins allhis poinl 
The procedure is 10 select a third lrial value that is midway between the two tbat 
bracket the £00(. For the fourth trial value. we use the mean of the most recent value. 
and whichever of the two previous trials was on the other side of the coot. The 
process continues unlillhe root is found to the desired accur.lcy. 

ThtS ruther primitive method of root finding could be improved with a little 
progr.lmming 10 lellhe program decide which root to choose, 10 calculate the mean. 
Dnd pcrfonn the nexllrial. The program could proceed in a loop until the root had 
been found to a predefined degree of acculilCY. Of the calculalion could be SlOPped 
manually. However. if we arc willing 10 program that litlle bit of logic, slighlly more 
erfort will produce a much faster root·finding program. 

Secant Methods 

The gain in speed comes from using Ihe slope of the function in the calculation. We 
begin wilh two trial eSlim.ales or the root. x. and .... + "prefembly. but nO( necessar­
ily, on either side of the root. Then we write an expression for a linear interpolation 
between the two points. Equation (A. 10) gives 
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( ) c ( )(J".'-J',) 
fx J', + x-x, () (AA3) 

X'i' x, 
where we have wriuen)" = j{x,) and so fanh. Seuingj{x) = 0 and solving for x 
gi\'es us 3n approximation 10 the value ofx at the mol: 

- . _ • Xi.1 - r, .rIY • • I x •• 1)" (A ") x -.l, J! ."t"+ 

)'4+'-)'t )" " ' - Yt 

For the nexltrial. we repl3ce x,., or Xl +] by the value x found in Equillion (A.44) 
and repeat Ihe calculalion. The process can be repeated until the root is approxi­
mated as closely as desired. This is Ihe filSl-onJer secant method. 

There are various ways of choosing which of the previous values of x (Xl or 
x, + ,) to keep for the next iler..uion. The simplest is to keep the most recent value 
and discard the older value. Anolher way is to choose whichever is closer to the root 
Ii.e., gives a smaller value ofj{x»). A third is to start the process with two values that 
slraddle the root (i.e., give opposile signs for )" and )'2) and to conlinue 10 choose 
values Ihat straddle (he root after each iteration. This is the Regulo-Falsi lTlClhod. 

Clearly any melhod will find the coot most quickly if the starting values are 
close 10 the root, bUI, in principle, the secant melhods wiU ulmost always find a root 
of lhe function, eventually. Wilh some functions, such as those lhat are antisym­
metric about the mot, there is the possibility that Ihe search by the Regulo-Falsi 
method, for example, will jump back and forth across Ihe roO( and never approach 
it. Additionally. for functions with sevemJ COOlS, we may nOl always find the one we 
want. Problems may 31so nrise if two roolS arc very close together. 

Newton-Ruphson Method 

Instead of calculating the slope by finite differences, as in the secant method, we 
could use the tangent, Or derivative of Ihe function, if il can be calculated. Then. we 
ean repl.e. Equation (A.43) by 

f(x) ~ J', + (x - .r,) d1:') (AA5) 

where xt andYt are the values of x and/(x) after the kth iteration. We find the next es­
tim3te.1'HI for the root. as before, by sertingj(.1') in Equillion (A.45) 10 zero to oblain 

df(x,) 
Xt+l = Xt - J', -7- dx (A.46) 

Example A.7 Table A.3 shows steps in an ileralivc: calculation of Ihe second and 
third roolS of Equ.uion (AA J) by the secanl and Newlon-Raphson methods. SUlrting 
values were chosen by examining a plol of tan x versus x. 

Simultaneous Nonlinear Equations 

In the examples of alternate filling methods in Section 6.6. we obtained two pairs 
of coupled, nonlinear equations, Equations (6.24) and (6.27), which we wished 10 
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