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Chapter 10

Time-Domain Analysis and Design of

Control Systems

A. Bazoune

10.5 STEADY STATE ERRORS AND SYSTEM TYPES

Steady-state errors constitute an extremely important aspect of the system performance, for it
would be meaningless to design for dynamic accuracy if the steady output differed
substantially from the desired value for one reason or another.

The steady state error is a measure of system accuracy. These errors arise from the
nature of the inputs, system type and from nonlinearities of system components such as static
friction, backlash, etc. These are generally aggravated by amplifiers drifts, aging or
deterioration. The steady-state performance of a stable control system is generally judged by
its steady state error to step, ramp and parabolic inputs.

Consider a unity feedback system as
shown in the Figure. The input is R(s),

i i R(s E(s C(s
the output is C(s), the feedback signal (s) ( )> G(s) L)
H(s) and the difference between input
and output is the error signal E(s). H(s)
From the above Figure
C(s)__G() 0
R(s) 1+G(s)
On the other hand
C(s)=E(s)G(s) 2
Substitution of Equation (2) into (1) yields
E(s)=——=—R(5) ®)
1+G(s)

The steady-state error e,, may be found by use of the Final Value Theorem (FVT) as follows:

: . . sR(s)
e =lime(t) =l SE() =l e o) @

Equation (4) shows that the steady state error depends upon the input R(s) and the forward

transfer function G(s). The expression for steady-state errors for various types of standard
test signals are derived next.
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1.  Unit Step (Positional) Input.

Input r(t)=1(t) r(t)

or R(s):L[r(t)]:é $

From Equation (4) 1

o —lim SR s(lfs) .. 111

* U 014G(s) 0 1+G(s) 0 1+G(s) 1+G(0) 1+K, —>

where K, =G(0) is defined as the position error constant.

2. Unit Ramp (Velocity) Input.

Input r(t)=t or 7(t)=1
or R(s)=L[r(1)]=%
s
From Equation (4)
s(1/s’
e, =lim R(s) =lim (/ ) :lim;:hm L1 t
=0 1+G(s) =20 14+G(s) 20s+sG(s) =0sG(s) K,
where K, = linol sG(s) is defined as the velocity error constant.
3.  Unit Parabolic (Acceleration) Input.
Input r(t)=%t2 or #(t)=1 r(f)
or R(s)=L[r(1)]=—
E
From Equation (4)
s(1/s’
eSS:limL(s)zlimM:hm 5 i =lim— L t
=0 1+G(s) =20 14+G(s) =05 +s°G(s) 0s°G(s) K

where K, = linol s°G(s) is defined as the acceleration error constant.
S
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10.6 TYPES OF FEEDBACK CONTROL SYSTEMS

The open-loop transfer function of a unity feedback system can be written in two standard
forms:
¢ The time constant form

c  K(Tys+1)(Tps+1)-+(Tys+1)
(5)= s" (Tpls+1)(Tzzs+1)---(Tzks+1) ®)

where K and T are constants. The system type refers to the order of the pole of G(s) at s=0.
Equation (8) is of type 1.

e The pole-zero form

K‘(s+zl)(s+zz)-~-(s+zj)

s"(s+p,)(s+p,) (s +py)

G(s)=

The gains in the two forms are related by

[1=
K=K'< (10)

Hpk

k

with the gain relation of Equation (10) for the two forms of G(s), it is sufficient to obtain

steady state errors in terms of the gains of any one of the forms. We shall use the time
constant form in the discussion below.

Equation (8) involves the term s" in the denominator which corresponds to number of
integrations in the system. As s— 0, this term dominates in determining the steady-state
error. Control systems are therefore classified in accordance with the number of integration in
the open loop transfer function G(s) as described below.

1. Type-0 System.

K

If n=0, G(s)=— =K the steady-state errors to various standard inputs, obtained from
s

Equations (5), (6), (7) and (8) are

e, (Position) = - L
1+G(0) 1+K 14K
1 1
e.. (Velocit =lim =lim— =
w ( ) =limse T img (1)
e.. (Acceleration) = lim; =lim L

50 SZG(S) 5—0 52_K
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Thus a system with 7 =0, or no integration in G(s) has

® aconstant position error,
® infinite velocity error and
® infinite acceleration error

2. Type-1 System.

K
If n=1, G(s)=—, the steady-state errors to various standard inputs, obtained from
s

Equations (5), (6), (7) and (8) are

e, (Position) __ L lim;=L =0
1+G(0) =0 K 1+
s
1 1 1 1
e.. (Velocit =lim—=lim—=—=—
ss ( Y) 530 SG(S) o 55 K Kz; (12)
s
. . 1 . 1 1
e, (Acceleration) =lim — =lim =—=o0
s—0 g G(S) 50 525 0
s

Thus a system with 72 =1, or with one integration in G(s) has

® a zero position error,
® aconstant velocity error and
® infinite acceleration error

3. Type-2 System.

If n=1, G(s)=—, the steady-state errors to various standard inputs, obtained from
s

Equations (5), (6), (7) and (8) are

e.. (Position) = L im L _ L
1+G(0) =0 K 14e
2
s
e. (Velocity) = i e e (13)
s—0 SG(S) 5—0 SE oo
2
e.. (Acceleration) =lim 21 =lim S
AIGE) MK KK,
2
s

Thus a system with 7 =2, or with one integration in G(s) has

® a zero position error,
® azero velocity error and
® aconstant acceleration error
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TABLE 1.

Steady-state errors in closed loop systems

Acceleration input

Positional input Velocity input
c(t) c(t) c(t)
=
]
w
B
w
<
[«F]
o,
B>
H
=
A
v
B
w
-
[F]
o,
B>
H
=
A
v
B
w
A
[«F]
o,
>
H

K, =lim sG(s)

K, =1lim G(s)

5s—0

5s—0

where K, = G(0) is defined as the position error constant.

where K, = linol sG(s) is defined as the velocity error constant.
5

where K, =lim

id
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10.7 STEADY STATE ERROR FOR NON-UNITY FEEDBACK
SYSTEMS

> G(s) Cls)

Add to the previous block two feedback blocks H, (s)=—1and H,(s)=1

CLS)

Parallel blocks. Can
be combined in one

Feedback. Can be
combined in one block

1+G(s)H

g

s)—G(s)
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Example 1
] p

For the system shown below, find
¢ The system type

* Appropriate error constant associated with the system type, and
¢ The steady state error for unit step input

R(s) E(s)

100

P

s(s+10)

[ Solution
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Fig. SP8.1.1

Sampie Prosuem 8.1

An engine speed control system is shown in Fig. SP8.1.1. The engine itself is
modeled as a first-order system with time constant 7, while the electronic throttle
controller may have the constants K, and K set to arbitrary values.

1. What is the steady-state error for a step of magnitude A if K, = 0?
2. What is the steady-state error for a step of magnitude A when K; # 0?

3. Determine the steady-state error when the input is a ramp of slope A and
(i) K, = 0, (ii)) K, # 0.

4. Given K, = 1.2, K, = 8.4, and T = 0.5, what value of K gives a velocity er-
ror constant of 6 for a unit ramp input? Find the corresponding steady-state 1
error, and sketch the input and output as functions of time for this case. '

Solution

The system has unity feedback; therefore the various error constants and
steady-state errors may be determined from Table 8.1. The open-loop transfer
function is given by

KK s + K)

GO == a + 1)

1. When K, = 0, this transfer function reduces to

KK,

GO =131

which represents a system of type 0. The position error constant for a step
input is obtained by writing the open-loop transfer function in the form of
equation 8.8:

hence
K, = lsl_rg G(s) = KK,
This could also have been obtained directly from

KK,

G(s) = 1 + sT
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without first writing the open-loop transfer function in the form of equation 8.8.
The steady-state error for a unit step input, from table 8.1, becomes

1
1+ K, 1+ KK,

e,(t) =
For a step of magnitude A, therefore

0= T7kx,

2. When K, # 0, the open-loop transfer function reverts to the form

K(K]S + Kz)

GO =~ 1+

which represents a system of type 1. From Table 8.1, the steady-state error for
any magnitude step is zero, i.e.,

ess(t) =0

3. When K, = 0 and the input is a ramp, Table 8.1 indicates that because the
system is of type 0, the steady-state error becomes infinite. Hence

e(t) = ©

This result does not necessarily imply that the system is unstable, but rather
that the output is a ramp like the input but of different slope, as shown in
Fig. SP8.1.2, where it is seen that the error becomes infinite as ¢ becomes large.

When K, # 0, the system becomes type 1, and the open-loop transfer
function may be written in the form

K(Kis + K))  KK,(s + K,/K))
s(1 +sT)  Ts(s + 1/T)

G(s) =

The velocity error coefficient K, is obtained as
K., = KK2

Speed

Y




ME 413 Systems Dynamics & Control Section 10-5: Steady State Errors and System Types

This result may also be obtained from either form of the open-loop transfer
function G(s). The steady-state error becomes

A
0~k " kK,
4. Given K, = 1.2, K, =8.4,and T = 0.5, it is required that
K,=6 =8.4K
Hence the result
K =0714

The steady-state error of the closed-loop system becomes

e,s(t) = Rl— = 0.167

v

The output will be a unit ramp similar to the input but will lag behind it in the
steady state. In order to sketch both the input and output, the transient portion of
the output will also be determined. This may be necessary since the closed-
loop transfer function will be of second order and the transient will be either
underdamped or overdamped. This will lead to two possible types of responses
as indicated in Fig. SP8.1.3. The response may be evaluated from the charac-
teristic equation

1+G@is)=0
which gives
K(Kis + K») _
s(1 + sT)
Substituting known values yields
s*+3716s + 12=0

giving the closed-loop poles

1+

s = —1.858 = 2.94j

A\ J

Fig. SP8.1.3
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v =500 m/s

Radar Gun

Fig. SP8.2.1

Since both closed-loop poles are complex, the system is underdamped, as in-
dicated in Fig. 8.1.3.

Saeree Prosien 8.2

Figure SP8.2.1 shows an antiaircraft system consisting of a ground radar that
measures the distance along the radar beam to an aircraft, together with the po-
sition relative to the tracking system based on the angle of the antenna with the
ground. This information is passed to the gun-pointing system that attempts to
track the aircraft, as shown in Fig. SP8.2.2, where K = 240. If the speed of the
aircraft is v = 500 m/s at a range of 10 km and may be assumed perpendicular
to the line of sight from the radar, by what distance do shells miss the target? If
the required miss distance is to be no greater than 1 m, calculate the required
value of system gain K.

Solution

Although the radar antenna provides an angular position input, the aircraft
motion makes the angle 6 change uniformly with time, at least for the instan-
taneous position shown. This subjects the gun-pointing system to a ramp input.
Note that the system has unity feedback; therefore the results summarized in

Gun

From K(1 +5)
radar + s(s+3)

\
&

Gun

Sensor

Fig. §P8.2.2
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Table 8.1 are valid. The slope of the ramp is given by

dé v 500
&—t = -; = m = 0.05 rad/s

The open-loop transfer function of the system is

K(1 + 5) _ 240(1 + s)
s(s + 3) s(s + 3)

The system is of type 1 and therefore has a steady-state error for a unit ramp
input (obtained from Table 8.1) of

GH(s) =

1
e(t) = X.

where K, the velocity error constant, is obtained from the open-loop transfer
function as

K1 240
B 3

K,

q
k=1 Pk
The steady-state error for a ramp of slope 0.05 rad/s will be, therefore,

0.05
es(t) = 240/3 0.000625 rad
This represents the angular error between the radar antenna that is pointing
directly at the aircraft and the gun. If the shells travel in a straight line, they
will miss the target 10 km away by d, where

d = r56 = 10,000 X 0.000625 = 6.25 m

To reduce the miss distance to no more than 1 m, the value of K has to be in-
creased. Since the miss distance is given by

0.05r 0.05r
d=rob === =%n
which yields the required value of K to be
0.15r
K = = ]
4 500

SameLe Prosiem 8.3

1. Consider the feedback control system shown in Fig. SP8.3.1. For H(s) = 1
and a unit ramp input, determine the velocity error constant and the steady-state
error. After what approximate time interval does the error achieve its steady-
state value?

2. Calculate the steady-state error for the non-unity-feedback case

1

HO =5
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R * 10 C
— >
s(s+4)
H
Fig. SP8.3.1

3. Whatis the steady-state error for H(s) = 1 and a time-domain input given by

) = 0 =0
2t + 5 t>0

Solution
1. For the unity-feedback case, the open-loop transfer function is given by
10
6 =G+ a

and the system is of type 1. The velocity error coefficient is given by
K,= 15119 Gis)=2=25

The steady-state error is therefore

1
w(l) =— =04
es(?) X.
To determine the time taken for the transient to disappear, the 2% settling time
introduced in Module 5 may be used. Although this was defined for a step-
input response, we will assume it is a good measure of the disappearance of
the transient for any input. The closed-loop transfer function is

C _ 10 _ 10
R s(s+4)+10 s>+ 4s+10

yielding
{ =063 w,=3.16rad/s
The settling time is

— 4 —_—
{w,

T, 2s

It may be concluded, therefore, that the system achieves its steady-state error
2 s after the input is applied, and the total response will be as shown in
Fig. SP8.3.2.
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\J

1 2.0
Fig. $P8.3.2

2. Considering the non-unity-feedback case now, the steady-state error will
be calculated using equation 8.59. For this system we have
1+ GH - 1)

1 + GH
_s(s+ 1)(s+4) — 10s

ss+DHs+4)+10

_E.:_=
R

Letting the input

1
R&) =5

the steady-state error becomes

o S+ D +4—10s _ 6
es(t) = 1‘1-5101 SR(s) s6+ D +4)+10 10

An alternative approach is to reduce the system to an equivalent one with unity
feedback. The resulting forward-path transfer function becomes

_1+GH-1 _ 106 + 1)

= 1+ GH  s(s*+ 55 — 6)

This system is of type 1 and third order, with a velocity error constant of

K, = lim G(s) = —%)

The velocity error becomes the same as previously calculated:

1 6
e =% ="

The significance of the negative error becomes clear by recalling that

e=r-—c¢
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Fig. SP8.3.3

implying that, in this case, the steady-state output is larger than the input, as
shown in Fig. SP8.3.3.
3. For the final part of the question, the input takes the form

o) = 0 tr<0
2t + 5 t>0

Because the relationship between the input R and the output C is described by
a linear differential equation, the principle of superposition may be applied.
This means that the steady-state error will be given by the sum of the steady-
state errors due to the individual inputs

r(t) = 2t
and
rit) =25

applied separately. Since the system is of order 1 and the feedback element is
unity, Table 8.1 may be used to determine the steady-state error to each of these
inputs, which may be identified as a ramp of slope 2 and a step of magnitude 5,
respectively. As a system of order 1 has zero steady-state error for any step,
only the ramp will contribute to the steady-state error. Because the ramp input
has a slope twice that of a unit ramp, the steady-state error will be twice that
calculated previously:

es(t) =2 X04=0.8
The total steady-state error is therefore 0.8.
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