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Turning Moment of Rotating Inner Cylinder
in the Entry Region of Concentric Annuli*

M.A.L. EL-SHAARAWI**, M.O. BUDAIR**
and M.S.A. AL-QAHTANI**

This paper is concerned with calculating the tangential shear stress and the torque
required to turn the inner shaft of concentric annuli having a laminar flow with
simultaneously developing tangential and axial boundary layers. The nondimensional
governing equations have been numerically solved over a wide range of the annulus
radius ratio (N=0.5 - 0.95) and the ratio of the square of Reynolds number to Taylor

number (Re?/Ta=0.3 - 10).

The results clarify the effect of these two controlling

parameters (N and Re?/Ta) on the torque and show that the assumption of whole-
channel fully developed flow leads to a considerable underestimation of the values of

the torque.
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1. Introduction

Fluid flow between concentric cylinders with
inner rotating walls is of practical importance in
many industrial applications. In the field of electric
motors and generators, knowledge of the
hydrodynamic features of such fluid flow is needed to
limit the rotor temperature to less than the maximum
allowable value. In the fields of axial flow pumps,
mixers and other rotary machines, the study of this
type of flow can assist in estimating the performance
of such machines and the torque required to rotate
them. In addition to other applications in the fields of
journal bearings, fiber coating and paper manufactur-
ing, there are suggestions of possible future applica-
tions for compact rotary heat exchangers and combus-
tion chambers. These possible future applications
depend on the phenomenon that when the rotational
speed of the inner cylinder becomes sufficiently large,
centrifugal forces cause the fluid to be moved radially
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outward and Taylor vortices appear®. These vortices
can enhance significantly the rates of heat transfer
and momentum transportation in the system. On the
other hand, provided laminar flow conditions prevail,
it is known®~® that the heat transfer characteristics
are slightly affected by the inner cylinder rotation.
The flow of a viscous fluid in the entry region of
an annulus with a rotating inner cylinder has three
simultaneously developing hydrodynamic boundary
layers. Two of these boundary layers are related to
the axial velocity component. They develop on the
inner and outer walls of the annulus. The third
boundary layer is relevant to the tangential (azimuth-
al) velocity component and develop on the inner
rotating cylinder. Astill®® investigated the develop-
ment of these boundary layers experimentally and by
means of a momentum-integral analysis; he devel-
oped an empirical stability criterion for the transition
of tangentially developing flows from the laminar
regime to the secondary-laminar (Taylor-vortex)
flow regime. This stability criterion is the Taylor
number based on the tangential boundary-layer dis-
placement thickness rather than on the annular gap
width. A pertinent semi-empirical stability criterion
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has recently been presented™®, Both the aforesaid
empirical and semi-empirical stability criteria require
knowledge of the developing laminar velocity profiles
in the entry region of the annular channel. The
empirical criterion requires knowledge of the develop-
ing tangential velocity profiles, while the semi-empiri-
cal one needs the developing tangential and axial
velocity profiles at the same time. '

Astill et al.® obtained the developing tangential
velocity profiles for an axially fully developed flow by
uncoupling the interaction between the axial and
tangential profiles through the use of a uniform axial
velocity distribution in the tangential momentum
equation. Martin and Payne® utilized a finite-
difference technique to numerically solve the govern-
ing Navier-Stokes equations and presented some
developing velocity profiles. However, the effect of all
the hydrodynamic similarity parameters which govern
this problem (Reynolds number, Taylor number or
ratio between Taylor and Reynolds numbers, and the
annulus radius ratio) was not investigated in their
work. Coney and El-Shaarawi®? developed a finite-
difference scheme to solve the governing boundary-
layer equations and presented results for the axial and
tangential velocity profiles developing over a wide
range of the flow-controlling parameters. Recently an
improvement of this-difference technique has been
proposed®?,

The main goal of the studies which deal with
tangentially developing laminar flows®-(®»9-01 g
the determination of the axial growth of the tan-
gential boundary -layer displacement thickness;
knowledge of this axial growth is essential to locate
the axial position of the point of origin of
hydrodynamic instability. These papers and a careful
search of the literature failed to uncover any prior
data on the torque needed to rotate the inner cylinder
of concentric annular channels with simultaneously
developing axial and tangential boundary layers. On
the other hand, the turning moment of the rotating
inner cylinder for tangentially fully developed flows,
which have the well-known Couette velocity profile,
can be easily calculated®®. However, the use of such
fully developed torque values gives a conservative
estimation for the real moment needed to operate
machines having flows with simultaneously developing
tangential and axial velocity boundary layers. One of
the objectives of this paper is to present the torque
values for such flows developing over a wide range of
the controlling parameters, Re?/Ta and N.

Nomenclature
b : annular gap width, (r2—71) ;

D : equivalent (hydraulic) diameter of annulus,
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(2b);
N : annulus radius ratio, 71/7;

M*: dimensional torque (moment) required to
rotate the inner cylinder ;

M : dimensionless torque, M*/2prrirQuo ;

My dimensionless torque required to rotate the
inner cylinder if the flow were fully developed
right from the annulus entrance;

p: pressure of fluid at any point ;

Do pressure of fluid at annulus entrance;

P : dimensionless pressure of fluid at any point ;
¥ . radial coordinate ;

7 : inner radius of annulus;

72 : outer radius of annulus;

R : dimensionless radial coordinate, 7/72;

Re : axial Reynolds number, pwuoD/y ;

Ta: Taylor number, 2Q2%720°0* [t (n+ ) ;
u . axial velocity component ;
Uo . entrance or mean axial velocity,

/:Zum’r/'/:rdr :

U : dimensionless axial
M/uo;

: radial velocity component ;

V . dimensionless radial velocity component,
ovrafit:

w: tangential (azimuthal) velocity component ;

W . dimensionless tangential velocity component,
wiQr;

Wy o fully developed W ;

z: axial coordinate ;
Z . dimensionless
—N)/r:Re;

V7. torque increment, M — My ;

U sa: fully developed I ;

£2 . angular velocity of inner cylinder ;
4 : dynamic viscosity of fluid ;
o fluid density ;

. tangential shear stress at the annulus inner
wall, z(0w/or)r ;
7 : dimensionless

(OW/OR ) r=n ;
7ra . fully developed 7 ;

velocity component,

<

axial coordinate 2z(1

shear stress, r*/nQN=

2. Governing Equations and Method of Solution

We consider the forced flow in the entry region of
a concentric annulus whose inner cylinder rotates with
a constant angular velocity £2. Figure 1 illustrates the
geometry, coordinate system and the developing tan-
gential boundary layer on the inner rotating wall. It
is assumed that the flow is steady, axisymmetric, and
enters the annular channel with a uniform axial veloc-
ity profile of a value equal to the mean axial velocity
in the annular gap (#=1uo). The fluid is assumed to
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Fig. 1 Problem geometry and coordinate system

have constant physical properties and body forces are
absent. The boundary-layer equations which govern
this flow are given in Ref.(11). However, these equa-
tions in their dimensionless forms, using the dimen-
sionless parameters given in the nomenclature, are
repeated hereafter for the sake of completeness.

oV , V. oU__

ﬁ%‘ﬁ‘ W_O (1)
sz (1’—N RQZ_QE (2)
R 20%N) Ta 3R

W oW _FW .1 oW W
VRt U = "R an R (3)
U, U _ 0P #U 19U

aR‘*—U-é?——“*a"Z—"i'& z+"j€‘—aﬁ (4)

It is noteworthy that the term W/R?® on the right-
hand side of Eq.(3) was neglected in Ref.(11). Such
a negligence, as a result of a classical order-of-magni-
tude analysis for the derivation of boundary-layer
equations, may be acceptable in narrow-gap annuli.
However, it has been shown®® that this term should
be taken into consideration for greater accuracy,
especially with annuli of small radius ratio, and also in
order that the developing flow can reach the fully
developed Couette tangential velocity profile far from
the channel entrance.

The four coupled equations above are subject to
the following boundary conditions.

for Z=0 and N<R<1l, P=V=W=0, U=1
for Z=20 and R=N, U=V=0, W=1
for Z=0 and R=1, U=V=W=0

(5)

It is worthy of note that due to the negligence of
the axial diffusions of momentum (8*U/3Z%=5*W/32>
=0), the Reynolds number is inherent in the dimen-
sionless formulation of the problem and thus it is not
explicitly needed for the solution. However, two

JSME International Journal

other similarity parameters are explicitly required in
order to solve the problem under consideration: the
annulus radius ratio (N) and the ratio between the
square of Reynolds number and the Taylor number
(Re*/Ta). The former is relevant to geometrical
similarity considerations while the latter is concerned
with kinematic similarity and represents the ratio of
inertia to centrifugal forces. Values of these two
controlling similarity parameters must, therefore, be
chosen for each computer run. The above equations
have been numerically solved using the finite-
difference scheme presented in Refs.(3) and (11).
The obtained numerical results regarding only the
developing tangential shear stress and the torque will
be presented and discussed hereafter since the devel-
oping velocity profiles, pressure and coefficient of
friction were previously reported?.

For a given axial distance from the annulus
entrance (z), the infinitesimal torque (dM*) exerted
by the fluid on a surface element of the inner cylinder
having an area dA=2nndz is due to the local tan-
gential shear stress 7%= pu(0w/d7),, and is given by

dM*= 271/17'3( gz;) )T dz.

Hence upon integration from the annulus entrance (z
=0) to any axial distance z, and using the dimension-
less parameters given in the nomenclature, one
obtains the following expression for the dimensionless
torque (M) required to rotate a dimensionless length
Z of the inner cylinder.

m=[raz= 4% az (6)

The fully developed tangential (or Couette)
velocity profile (Wsa) can be obtained by solving Eq.
(3) with the inertia terms on its left-hand side set at
ZEro.
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Wfdz—i:NNg(%—R) (7)

If the flow were fully developed right from the annulus
entrance, the dimensionless tangential shear stress (7)
would have, for a given radius ratio (), a constant
value () regardless of the axial distance Z. This
fully developed value of the dimensionless tangential
shear stress () is given by the following equation.

(W _ N*+1
de~< oR )R:N_N(I—NZ) (8)

Moreover, the variation of the dimensionless torque
with the axial distance under the assumption of
-whole-channel fully developed flow can be obtained by
substituting Eq.(8) in Eq.(6). This yields the fol-
lowing linear relationship.

2
Mfd=rde=—N%:t§/-—g>Z ( 9 )

If the annulus is sufficiently long, the developing local
tangential shear stress (r) should asymptotically
approach (far from the duct entrance) the correspond-
ing fully developed 7. Moreover, the developing
torque (M) should finally (at large values of Z) follow
a linear relationship with Z, having the same slope
[(N?+1)/{N({1—N?}] as that given by Eq.(9) for the
fully-developed torque (Ms4). The difference between
M and My, will be referred to as the torque increment
(7). This torque increment is due to the inertia forces
in the developing region. For an annulus of a given
radius ratio (N), the torque increment must
asymptotically approach a constant value which will
be referred to as the fully developed torque increment
(Vfd)-

Besides the other means of verification which
have been reported in Ref.(11), the Couette velocity
profile, given by Eq.(7), provides an analytical check
of the present computer code and the obtained numeri-
cal results. The obtained numerical results for the
developing tangential velocity profiles asymptotically
approached (at large values of Z) the Couette veloc-
ity profile. Moreover, validation of the computer code
and its numerical results were also checked on the
basis of the trend of the numerical results at large
values of Z ; the torque (M) and the torque increment
(), for a given N, were found to follow the aforesaid
linear relationship and to have a constant value,
respectively.

3. Results and Discussion

Computations were carried out for seven annulus
radius ratios, namely, N=0.5, 0.6, 0.7, 0.8, 0.85, 0.9, and
0.95, at three values of the rotational parameter
Re?/Ta=0.3,1, and 10. Figures2(a) and 2(b) give
the variation of the local dimensionless tangential
shear stress r with the axial distance Z for some of
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the annuli under consideration at Re®/Ta=1. These
two figures focus on the developing region in which
the shear stress varies nonlinearly with Z. However,
the axial distance required for the flow to reach its
state of full development is shorter for narrow-gap
annuli (i.e., annuli of large radius ratio) than for
annuli of small radius ratio. Therefore, Fig.2(b)
shows the r-Z variation over a larger axial distance
(Z) than does Fig.2(2) ; thus more useful informa-
tion is presented especially for the annulus of radius
ratio 0.5. In both figures, the tangential shear stress
value at the entrance cross section (Z=0) should be
infinite. This is due to the step change in the value of
the tangential velocity component (W) from zero
everywhere to unity on the inner wall at this particu-

lar cross section. Also, this infinite value can be

attributed to the fact that the tangential boundary-
layer thickness is zero at Z=0.

As can be seen from Figs.2(a) and 2(b), for a
given annulus (IV), the local tangential shear stress (r)
increases,

decreases gradually as Z until it
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(a) Shear stress versus axial distance (0<Z<0.01) for
various values of annulus radius ratio, Re?/Ta=1
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(b) Shear stress versus axial distance (0<Z<0.04) for
various values of annulus radius ratio, Re*/Ta=1

Fig. 2
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asymptotically reaches its fully developed value (7).
This expected behavior of 7 is related to the shape of
the tangential velocity profile (W) ; recall that r is
equal to the radial gradient of W at the inner wall.
The steep tangential velocity gradient near the
entrance results in higher values of 7. As the fluid
moves away from the entrance, tangential momentum
diffuses into the annular gap, and hence the tangential
velocity gradient decreases as Z increases.

The effect of the annulus radius ratio (N) on the
developing tangential shear stress can also be seen
from Figs. 2(a) and 2(b). For a given Z, the larger
the annulus radius ratio, the higher the value of the
tangential shear stress. This is because the annular
gap width decreases as the radius ratio increases.
Hence the radial gradient of W at the inner wall
increases as the radius ratio increases ; recall that W
decreases from unity at the inner rotating wall to zero
at the outer stationary wall in a smaller annular gap
width as /N increases.

The effect of the spin or rotational parameter
Re*/Ta on the tangential shear stress r originates
from the effect of this parameter on the developing
tangential velocity profiles (W). It is known®x®aD
that this parameter has a slight effect on tangential
velocity development. Consequently, it is anticipated
that this parameter would similarly have a slight
effect on the tangential shear stress r. To clarify such
an effect, values of r are given in Table 1 for an
annulus of radius ratio 0.9 at various axial positions
for three values of Ra*/Ta (0.3, 1, and 10).

One of the objectives of the present paper is to

Table 1 Effect of the spin parameter Re?/Ta on
the tangential shere stress r for an annulus

of N=0.9
0.5 70.4407 67.6522 66.5212
1.0 48.5206 45.9299 44.6672
1.5 40.3886 38.4630 37.5953
2.0 35.7782 34.2324 33.5722
3.0 30.3996 29,2940 28.8526
4.0 27.2008 26.6673 27.2916
6.0 23.3360 22.7696 22.5665
8.0 20.9199 20.5082 20.3667
15.0 ° 16.2070 16.0723 16.0312
25.0 13.0123 13.0822 13.1110
40.0 11.2040 11.3265 11.3690
60.0 10.6798 10.7435 10.7598
o (7g) 10.5946 10.5946 10.5946
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present results for the torque required to rotate the
inner cylinder in a laminar flow with simultaneously
developing axial and tangential boundary layers.
Such developing-torque results are very much needed
by engineers working in the field of rotary machinery
and, to the best of the authors’ knowledge, these
results are not available in the literature. Therefore,
some detailed results will be given in this regard.
Figures 3 through 6 show the variation of this develop-
ing torque (M) with the axial distance Z for four of
the chosen annulus radius ratios (N=0.5, 0.7, 0.8, and
0.9). For the sake of comparison, the corresponding
fully developed torque, given by the linear relationship
(9), is also shown in each of these figures. Thus,
Figs. 3 through 6 indicate that the assumption of
whole-channel fully developed flow would lead to a
considerable error in the estimation of the torque
needed to rotate the inner cylinder of the annulus;
this assumption gives considerably underestimated
values for the torque. The largest value of Z in each
of these figures is chosen so that the figure mainly

0.300
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0.250[|— - fully developed

—developing

0.200
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0.100
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0050 .0150 0250 .0350 .0400 .0550
z

Fig. 3 Development and fully developed torques versus
axial distance, N=0.5, Re?/Ta=1
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Z

Fig. 4 Development and fully developed torques versus
axial distance, N=0.7, Re*/Ta=1
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represents the entry region in which the developing
torque varies nonlinearly with Z, i.e., before the tan-
gential velocity gradient at the inner wall becomes
hydrodynamically fully developed with linear varia-
tion of torque with Z.

To show the effect of the radius ratio N on the
torque values more clearly, each of Figs.7(a) and 7
(b) shows comparison of such torque values for a
pair of annulus radius ratios over larger value of Z
than that presented in the corresponding Figs. 3
through 6. Thus, each of these two figures can show
the behavior of the developing torque at large values
of Z. As can be seen from these two figures, for a
given value of Z, the larger the radius ratio (IV), the
higher the value of the torque. This is attributed to
the higher values of tangential shear stress in narrow-
gap annuli, as explained previously. For a given
anulus (&), each of Figs.7(a) and 7(b) clearly
shows the developing-torque variation at large values
of Z becomes linear, and consequently, both the
developing and the fully developed solutions become

0.100
0.080 ~==fully developed
— developing
0.060-
- -
P -
0.040) N=0.8 -7
P
P
0.020} -
-
- -
0.000 - 1 1 ) ] i . 1
.0010 .0030 .0050 .0070 .0090
Z

Fig. 5 Developing and fully developed torques versus
axial distance, N=0.8, Re*/Ta=1
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M
—=fully developed
- developing
///
P
0.040 -
-
-~
N=0.9
-~
gooo k"0 0y
0005 .0015 0025 .0035 .0045
z

Fig. 6 Developing and fully developed torques versus
axial distance, N=0.9, Re?/Ta=1
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asymptotically parallel. Thus the developing torque
values ultimately become higher than the correspond-
ing fully developed torque values by a constant incre-
ment (the fully developed torque increment, ).
Since, according to Eq.(6), the torque is the area
under the tangential shear stress curve, the fully
developed torque increment (V) is indeed equal to
the hatched area shown in Fig. 8, which is a schematic
diagram of r against Z.

To expand the idea behind the torque increment
(), the torque results presented in Figs. 5, 6, and 7
(2) are replotted in Fig. 9 in terms of torque incre-
ment. This figure shows the variation of the torque
increment with Z. For a given N, the torque incre-
ment, which is due to the inertia forces in the entry
region, varies nonlinearly with Z and asymptotically
reaches its fully developed value (7s) at large values
of Z where the inertia forces vanish.

More torque results, especially for some annular
radius ratios which have not been presented in the
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(a) Comparison of torque for N=0.8 and 0.9, Ra*/Ta=
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(b) Comparison of torque for N=0.5 and 0.7, Re*/Ta=
1

Fig. 7
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Fig. 8 Schematic diagram for r versus Z
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Fig. 9 Torque increment versus axial distance for N=0.8
and 0.9, Re?/Ta=1
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Fig. 10 Developing torque versus axial distance for vari-
ous values of annulus radius ratio

previous figures, are given in Fig. 10. This figure also
clarifies once more the effect of the annulus radius
ratio on the torque values. Finally, the effect of the
spin parameter on the torque values originates from
its effect on the tangential shear stress r. Therefore,
this effect is slight, as clarified in Table 2 which gives
values of M in an annulus of radius 0.9 at various
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Table 2 Effect of the spin parameter Ra*/Ta on the
developing torque M for an annulus of N=0.9

0.5 0.68630 0.68260 0.68112
1.0 0.96181 0.94338 0.93464
1.5 1.17775 1.14856 1.13480
2.0 1.36502 1.32742 1.30999
3.0 1.69049 1.64008 1.61739
4.0 1.97576 1.91581 1.88939
6.0 2.47553 2.40188 2.37042
8.0 2.91537 2.83215 2.79732
15.0 4.19128 4.09046 4.04971
25.0 5.62966 5.52677 5.48654
40.0 7.47456 7.38903 7.35577
60.0 9.64907 9.58094 9.55320

axial positions for three values of the spin parameter
Re*/Ta (0.3, 1, and 10). Thus, the torque results
corresponding to Re?/Ta=1, which are presented in
Figs. 3 through 6 and 10, can be used with satisfactory
accuracy for other values of the spin parameter
(Re?/Ta).

4. Conclusions

This investigation provides data not available in
the literature, which, however, are needed in many
engineering applications, for the tangential shear
stress and the torque required to turn the inner shaft
of an annulus having a laminar flow with simultane-
ously developing axial and tangential boundary
layers. The problem under investigation is governed
by three controlling parameters, namely, the Reynolds
number (Re), the annulus radius ratio (), and the
ratio between Reynolds and Taylor numbers. The
governing equations were formulated such that the
first of these parameters (Re) becomes inherent in the
dimensionless axial coordinate and hence only the
latter two parameters (N and Re?/Ta) are explicitly
needed for the numerical solution of the problem. The
effects of these two similarity parameters (N and
Re*/Ta) on the developing tangential shear stress and
torque have been investigated. The results show that
the first of these two parameters (N) has marked
effects while the latter parameter (Re?/Ta) has only
slight effects on the developing tangential shear stress
and torque. The negligence of the developing region
(i.e., the assumption of whole-channel fully developed
flow) leads to considerable error in estimating the
torque, especially in short annular configurations
which might exist in many practical situations.
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