KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS
 Department of Mathematical Sciences
 Dhahran, Saudi Arabia

Math 202 Sample Second Major Examination.

1. The solution of $y^{\prime \prime \prime}-2 y^{\prime \prime}+2 y^{\prime}=0$ is given by $y_{C F}(x)=c_{1}+e^{x}\left(c_{2} \cos x+c_{3} \sin x\right)$.

In each section of the box below is an ode with its particular solution.

ODE	Particular solution
$y^{\prime \prime \prime}-2 y^{\prime \prime}+2 y^{\prime}=2 \cos 4 x$	$y_{P 1}(x)=\frac{1}{65}\left(\cos 4 x-\frac{7}{4} \sin 4 x\right)$
$y^{\prime \prime \prime}-2 y^{\prime \prime}+2 y^{\prime}=-\cos 2 x$	$y_{P 2}(x)=\frac{1}{10}\left(\frac{1}{2} \sin 2 x-\cos 2 x\right)$
$y^{\prime \prime \prime}-2 y^{\prime \prime}+2 y^{\prime}=3$	$y_{P 3}(x)=\frac{3}{2} x$

Obtain the general solution of $y^{\prime \prime \prime}-2 y^{\prime \prime}+2 y^{\prime}=130 \cos 4 x-10 \cos 2 x+6$.
2. Find a linear constant coefficient ode with $\left\{1, e^{-x} \sin x, e^{-x} \cos x\right\}$ as a fundamental set of solutions.
3. Find the general solution of $y^{\prime \prime \prime}-9 y^{\prime \prime}+25 y^{\prime}-17 y=0$ given that $y=e^{x}$ is a solution
4. Obtain the general solution of the differential equation $y^{\prime \prime}+y=\sec ^{3} x$ given that $y_{1}(x)=\sin x, y_{2}(x)=\cos x$ form a fundamental set of solutions for $y^{\prime \prime}+y=0$.
5. Use the annihilator approach to determine the form of the particular solution for the differential equation

$$
y^{\prime \prime}+9 y=\cos 3 x
$$

6. Obtain the general solution of the differential equation: $x y^{\prime \prime}-2(1+x) y^{\prime}+(x+2) y=0$. (Hint: Try $y=e^{x}$.)
