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Abstract and Keywords

Harmonic morphisms are maps between Riemannian manifolds which preserve
germs of harmonic functions. These can be described as the harmonic maps which
are horizontally (weakly) conformal.

A class of harmonic morphisms directly related to a physically significant geomet-
ric structure is the class of harmonic morphisms of warped product type. Such maps
are characterized as non-constant horizontally homothetic harmonic morphisms with
totally geodesic fibres and integrable horizontal distribution.

The principal aim of this project is to investigate constraints on the existence of
harmonic morphisms of warped product type from Einstein manifolds. A Bochner
type technique is developed which leads to general restrictions on the existence of
harmonic morphisms of warped product type. These restrictions are utilized to obtain
non-existence results for harmonic morphisms of warped product type from Einstein
manifolds.

As an application, the Bochner type technique for harmonic morphisms of warped
product type is adapted to address existence questions related to certain Einstein
warped products and warped space-times.

KEYWORDS:
Harmonic morphisms, warped products, Bochner technique, Einstein manifolds.



Chapter 1

Harmonic morphisms of warped
product type from Einstein
manifolds

Summary

Weitzenböck type identities for harmonic morphisms of warped prod-
uct type are developed which lead to some necessary conditions for their
existence. These necessary conditions are further studied to obtain many
non-existence results for harmonic morphisms of warped product type
from Einstein manifolds.

1.1 Introduction

Harmonic morphisms are maps between Riemannian manifolds which preserve germs
of harmonic functions, i.e. these (locally) pull back real-valued harmonic func-
tions to real-valued harmonic functions. Harmonic morphisms are characterized
as harmonic maps which are horizontally (weakly) conformal. On the one hand
this characterization endows harmonic morphisms with analytic as well as geomet-
ric properties. On the other hand, it puts strong restrictions on their existence
as solutions of an over-determined system of partial differential equations. This
makes the investigation of questions related to their existence, classification and con-
struction of prime interest. Many interesting results in this regard can be found in
[1, 2, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26].

A class of harmonic morphisms directly related to a geometric structure of phys-
ical interest is the class of harmonic morphisms of warped product type. Such maps
have been investigated in [11, 13, 25, 26, 27]. In [25, 26], these have been particularly
studied in the context of Einstein manifolds where the constructions involving har-
monic morphisms of warped product type are discussed. However, the results have
not led to any non-trivial example of harmonic morphisms of warped product type
from compact Einstein manifolds; where by a trivial harmonic morphism of warped

3



Harmonic morphisms of warped product type from Einstein manifolds 4

product type we mean a map which is locally the projection of a Riemannian product.
The only known result in this context, proved in [9, Proposition 12.7.1], is for one
dimensional fibres.
Let φ : (Mn+1, g)→(Nn, h)(n ≥ 3) be a harmonic morphism of warped product type
from a compact manifold. If M is Einstein then, up to a homothety, φ is locally the
projection of a Riemannian product.

Motivated by the above result and the fact that there are natural obstructions to
the existence of harmonic morphisms from compact domains, the purpose of this
chapter is to investigate constraints on the existence of harmonic morphisms of
warped product type (with compact fibres of any dimension) from Einstein mani-
folds. A Bochner type argument is developed, in Section 3, which leads to general
restrictions on the existence of harmonic morphisms of warped product type. These
restrictions are applied, in Section 4, to obtain several non-existence results for har-
monic morphisms of warped product type from Einstein manifolds.

Remark 1.1.1 In this chapter we are interested in restrictions on harmonic mor-
phisms of warped product type from Riemannian manifolds, but the technique can
easily be adapted to obtain restrictions on harmonic morphisms of warped product
type, with compact Riemannian fibres, from semi-Riemannian manifolds.

1.2 Harmonic morphisms of warped product type

The formal theory of harmonic morphisms between Riemannian manifolds began
with the work of Fuglede [12] and Ishihara [19].

Definition 1.2.1 A map φ : Mm → Nn is called a harmonic morphism if for every
open subset U of N (with φ−1(U) non-empty) and every harmonic function f : U →
R, the composition f ◦ φ : φ−1(U) → R is harmonic.

Harmonic morphisms are related to horizontally (weakly) conformal maps which can
be defined in the following manner.

For a smooth map φ : Mm → Nn, let Cφ = {x ∈ M |rankdφx < n} be its critical
set. The points of the set M \Cφ are called regular points. For each x ∈M \Cφ, the
vertical space at x is defined by Vx = Ker dφx. The horizontal space Hx at x is given
by the orthogonal complement of Vx in TxM .

Definition 1.2.2 A smooth map φ : (Mm,g) → (Nn,h) is called horizontally (weakly)
conformal if dφ = 0 on Cφ and the restriction of φ to M \Cφ is a conformal submer-
sion, that is, for each x ∈ M \ Cφ, the differential dφx : Hx → Tφ(x)N is conformal
and surjective. This means that there exists a function λ : M \ Cφ → R+ such that

h(dφ(X), dφ(Y )) = λ2g(X, Y ) ∀X, Y ∈ Hx and x ∈M \ Cφ.

By setting λ = 0 on Cφ, we can extend λ : M → R+
0 to a continuous function on M

such that λ2 is smooth. The extended function λ : M → R+
0 is called the dilation of

the map.
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Let gradHλ
2 and gradVλ

2 denote the horizontal and vertical projections of
gradλ2.

Definition 1.2.3 A smooth map φ : Mm → Nn is called horizontally homothetic if it
is a horizontally conformal submersion whose dilation is constant along the horizontal
curves i.e. gradHλ

2 = 0.

Recall that a map φ : Mm → Nn is said to be harmonic if it extremizes the
associated energy integral E(φ) = 1

2

∫
Ω ‖φ∗‖2dυM for every compact domain Ω ⊂M .

It is well-known that a map φ is harmonic if and only if its tension field τ(φ) =
trace∇dφ vanishes.

Harmonic morphisms can be viewed as a subclass of harmonic maps in the light
of the following characterization, obtained in [12, 19].
A smooth map is a harmonic morphism if and only if it is harmonic and horizontally
(weakly) conformal.

The following result of Baird-Eells [3, Riemannian case] and Gudmundsson [16,
semi-Riemannian case] reflects a significant geometric feature of harmonic morphisms.

Theorem 1.2.4 Let φ : Mm → Nn be a horizontally conformal submersion with
dilation λ. If

1. n = 2, then φ is a harmonic map if and only if it has minimal fibres.

2. n ≥ 3, then two of the following imply the other,

(a) φ is a harmonic map

(b) φ has minimal fibres

(c) φ is horizontally homothetic.

Here we deal with a class of harmonic morphisms, closely related to a physically
significant geometric structure, namely harmonic morphisms of warped product type
which are defined as follows.

Definition 1.2.5 [9, 27] A map is called a harmonic morphism of warped product
type if it is a non-constant horizontally homothetic map with totally geodesic fibres
and integrable horizontal distribution.

Note that, due to Theorem 1.2.4, these maps are harmonic morphisms and are related
to the usual warped product structures through following characterization.

Proposition 1.2.6 [9, 27]

1. The projection F×f2N → N of a warped product onto its second factor is a hor-
izontally homothetic map with totally geodesic fibres and integrable horizontal
distribution.

2. Conversely, any horizontally homothetic map (M, g) → (N, h) with totally geo-
desic fibres and integrable horizontal distribution is locally the projection of a
warped product.
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The reader is referred to [2, 9, 12, 28] for fundamental results and properties of
harmonic morphisms and to [11, 13, 25, 26, 27] particularly for constructions and
classifications involving harmonic morphisms of warped product type.

1.3 Restrictions on harmonic morphisms of warped

product type

The Weitzenböck type identities established in the following Theorem are the main
tool for drawing results about the non-existence of certain harmonic morphisms of
warped product type.

Theorem 1.3.1 Let φ : (Mm, g
M

)→(Nn, g
N
) be a non-constant harmonic morphism

of warped product type between Riemannian manifolds. If λ denotes the dilation of
φ then

(i) −nλ∆
V 1

λ
=

∑m
r=n+1RicM(er, er)− ScalV

(ii) RicM(X, Y ) = RicN(dφ ·X, dφ · Y ) + g
M

(X, Y )∆
M

lnλ

where X, Y are horizontal vectors, (er)
m
r=n+1 is a local orthonormal frame for vertical

distribution, ScalV is the scalar curvature of fibres of φ and ∆
V

is the Laplacian on
fibres defined as ∆

V
f = ∆

F

(f |F ) for the fibre F = φ−1(φ(x)) with ∆
F

denoting the
Laplacian on F .

Proof. We start with a curvature identity for submersive harmonic morphisms,
proved in [9, Theorem 11.5.1(i)], which relates the Ricci curvatures of M and fi-
bres of φ.

RicM(U, V ) = RicV(U, V ) +
n∑

a=1

〈(∇eaB
∗)Uea, V 〉 + 2(n− 1)dlnλ(BUV )

+n∇dlnλ(U, V )− nU(lnλ)V (lnλ) +
1

4

n∑
a,b=1

〈U, I(ea, eb)〉〈V, I(ea, eb)〉

(1.3.1)

where U , V are vertical vectors and (ea)
n
a=1 is a local orthonormal basis for the

horizontal distribution. Since the fibres of φ are totally geodesic, the horizontal
distribution is integrable and φ is horizontally homothetic we have

dlnλ(BUV ) = 0, (1.3.2)

n∑
a,b=1

〈U, I(ea, eb)〉〈V, I(ea, eb)〉 = 0, (1.3.3)

and
m∑

r=n+1

〈(∇eaB
∗)erea, er〉 = 0. (1.3.4)
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Taking trace over vertical vectors in Equation 1.3.1 and using Equations 1.3.2, 1.3.3,
1.3.4 gives

m∑
r=n+1

RicM(er, er) = ScalV + n
m∑

r=n+1

∇dlnλ(er, er)− n
m∑

r=n+1

[er(lnλ)]2 . (1.3.5)

Because of totally geodesic fibres we can write

∇dlnλ(er, er) = er (er(lnλ))−
(
∇M

er
er

)
(lnλ) = er (er(lnλ))−

(
∇V

er
er

)
(lnλ),

therefore, Equation 1.3.5 implies

m∑
r=n+1

RicM(er, er) = ScalV + n∆
V
lnλ− n

m∑
r=n+1

[er(lnλ)]2 .

Formula (i) now follows by using the relation

∆
V
lnλ−

m∑
r=n+1

[er(lnλ)]2 = −λ∆
V 1

λ
,

which can be established from

er (er(lnλ)) = [er(lnλ)]2 − λer

(
er(

1

λ
)
)
.

Formula (ii) follows directly from [9, Theorem 11.5.1 (iii)] and hypothesis. 2

Lemma 1.3.2 A harmonic morphism of warped product type is totally geodesic iff
it has constant dilation.

As an immediate consequence of Theorem 1.3.1, we have

Corollary 1.3.3 Let φ : Mm→Nn be a (non-constant) harmonic morphism of warped
product type with compact fibres. If

1. either RicM ≥ 0 and the fibres have scalar curvature ScalV ≤ 0

2. or RicM ≤ 0 and the fibres have scalar curvature ScalV ≥ 0

then ScalV ≡ 0 and, up to a homothety, φ is a totally geodesic Riemannian submer-
sion.

Proof. λ is constant from Theorem 1.3.1(i), hypothesis and compactness of fibres.
Rest follows by using Theorem 1.3.1(i) and Lemma 1.3.2. 2

On rewriting the Weitzenböck type identities, we obtain applications involving
only the curvature of domain manifolds.
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Corollary 1.3.4 Every (non-constant) harmonic morphism φ : Mm→Nn of warped
product type, with compact fibres, from a Riemannian manifold of non-negative sec-
tional curvature or non-positive sectional curvature is, up to a homothety, a totally
geodesic Riemannian submersion.

Proof. Since the fibres of φ are totally geodesic, the Riemannian curvature tensor RV

of fibres agrees with the Riemannian curvature tensor RM of M on vertical vectors.
Hence

m∑
r=n+1

RicM(er, er)− ScalV =
m∑

r=n+1

n∑
a=1

g
M

(RM(ea, er)ea, er)

where ScalV is the scalar curvature of fibres, (er)
n
a=1 and (er)

m
r=n+1 are local ortho-

normal frames for horizontal and vertical distributions respectively.
Using above in Theorem 1.3.1(i) gives

−nλ∆
V 1

λ
=

m∑
r=n+1

n∑
a=1

g
M

(RM(ea, er)ea, er).

The proof then follows from the hypothesis and compactness of fibres. 2

1.4 Applications to harmonic morphisms of warped

product type from Einstein manifolds

By using the Einstein metric in Theorem 1.3.1 we have the following Weitzenböck
type identity for harmonic morphisms of warped product type from Einstein mani-
folds.

Proposition 1.4.1 Let φ : Mm→Nn be a (non-constant) harmonic morphism of
warped product type with dilation λ. If M is Einstein with Einstein constant cM

then

−nλ∆
V 1

λ
= (m− n)cM − ScalV (1.4.1)

and
ScalN

n
=
cM −∆

M

lnλ

λ2 .

For n ≥ 3, N is Einstein with Einstein constant cN satisfying

cN =
cM −∆

M

lnλ

λ2 . (1.4.2)

In order to obtain applications we first find some necessary conditions for the
existence of non-trivial harmonic morphisms of warped product type from Einstein
manifolds.
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Theorem 1.4.2 Let φ : Mm→Nn be a harmonic morphism of warped product type
with non-constant dilation λ. If M is Einstein with Einstein constant cM and the
fibres of φ are compact then

(a) inf(ScalV) < (m− n)cM < sup(ScalV),

(b) the total scalar curvature SV =
∫

ScalVυF of fibres satisfies SV > 0.

Furthermore if M is compact then, for n ≥ 3,

(c) cM > 0 and hence the Einstein constant cN of N satisfies cN > 0,

(d) λ2 is neither bounded below nor bounded above by cM

cN .

Proof.

(a) ScalV ≥ (m− n)cM or ScalV ≤ (m− n)cM makes 1
λ

a subharmonic or superhar-
monic function. Since fibres are compact λ must be constant; a contradiction.

(b) Integrating Equation 1.4.1 and using Green’s formula gives

SV =
∫

ScalVυF = n
∫
λ2‖grad

1

λ
‖2υF + (m− n)cMVol(F ) > 0

where Vol(F ) is the volume of fibre.

(c) Assume cM ≤ 0. Equation 1.4.2 gives

cN

Vol(M)

∫
λ2υM = cM , (1.4.3)

hence cN ≤ 0.
Since M is compact, 1

λ
assumes its minimum on M . Let p0 be minimum point

of 1
λ

on M then

1

λ(p0)
> 0, grad

1

λ
(p0) = 0, and ∆

M 1

λ
(p0) ≥ 0.

On the other hand, using

λ∆
M 1

λ
= λ2‖grad

1

λ
‖2 −∆

M

lnλ

we have

λ(p0)∆
M 1

λ
(p0) = −∆

M

lnλ(p0)

= cNλ2(p0)− cM {From Equation 1.4.2}

=
cN

Vol(M)

∫ (
λ2(p0)− λ2

)
υM {Using Equation 1.4.3}

≤ 0.

Hence 1
λ

must be constant, which contradicts the hypothesis.
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(d) If λ2 ≤ cM

cN or λ2 ≥ cM

cN then from Equation 1.4.2, lnλ is a subharmonic or
superharmonic function. Since fibres are compact, this gives a contradiction.

2

The above result obviously eliminates, for instance, the possibility of (non-trivial)
harmonic morphisms of warped product type from Einstein manifolds to have com-
pact fibres which

• are Einstein (or have constant scalar curvature),

• compact locally symmetric spaces of non-compact type (or spaces of negative
scalar curvature)

Theorem 1.4.3 Let (Mm, g) (m > n ≥ 3) be a compact manifold conformally equiv-
alent to a manifold with non-positive scalar curvature. If M is Einstein then there
are no harmonic morphisms φ : Mm→Nn of warped product type, with non-constant
dilation.

Proof. Let g1 be the metric conformal to g and set g1 = ψ
4

m−2 g for a function ψ > 0
on M . If Scalg

1

, ScalM denote the scalar curvatures of g1, g, respectively, then by
standard computations cf. [3, Page 59]

ψ
m+2
m−2 Scalg

1

= 4
m− 1

m− 2
∆ψ + ScalMψ.

Therefore, by hypothesis we must have

4
m− 1

m− 2
∆ψ + ScalMψ ≤ 0

or mcM
∫

M
ψυM ≤ 0

where cM is the Einstein constant of M . This contradicts Theorem 1.4.2 if there ex-
ists a harmonic morphism φ : Mm→Nn of warped product type, with non-constant
dilation. 2

Proposition 1.4.1 and Theorem 1.4.2 yield the following non-existence result for har-
monic morphisms of warped product type to surfaces.

Corollary 1.4.4 There are no harmonic morphisms of warped product type, with
non-constant dilation, from a compact Einstein manifold to a Riemann surface N2

of genus g ≥ 1.

Proof. The notion of harmonic morphisms to a Riemann surface does not depend
on any specific Hermitian metric on N2. The proof then follows from above and the
fact that every compact Riemann surface of genus g ≥ 2 and genus g = 1 has a
Hermitian metric of constant negative and zero curvature, respectively. 2

In case of symmetric domains we have
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Corollary 1.4.5 There exist no harmonic morphisms φ : Mm→Nn of warped prod-
uct type, with non-constant dilation, in each of the following case:

(i) M is an irreducible symmetric space of compact type,

(ii) M is a compact locally symmetric space of non-compact type,

(iii) M is an irreducible symmetric space of non-compact type and φ has compact
fibres.

Proof. Follows from Corollary 1.3.4 by using the facts about the curvatures of sym-
metric spaces of compact and non-compact type. 2

A nonexistence result for harmonic morphisms of warped product type, with 1-
dimensional fibres, from compact manifolds is obtained in [9, Proposition 12.7.1].
Corollary 1.4.6 relaxes the hypothesis by replacing the compactness of domain with
the compactness of fibres.

Corollary 1.4.6 Let Mn+1 be an Einstein manifold.Then there are no harmonic
morphisms φ : Mn+1→Nn of warped product type, with non-constant dilation and
compact fibres.

Proof. Follows directly from Theorem 1.4.2(a). 2
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Chapter 2

A non-existence result for compact
Einstein warped products

Summary

Warped products provide a rich class of physically significant geo-
metric objects. The existence of compact Einstein warped products was
questioned in [3, Section 9.103]. Using the methods of Chapter 1, it
is shown that there exists a metric on every compact manifold B such
that (non-trivial) Einstein warped products, with base B, cannot be con-
structed.

2.1 Introduction

Warped product construction is a construction in the class of Riemannian manifolds
that generalizes direct product. This construction was introduced in [3] where it was
used to construct a variety of complete Riemannian manifolds with negative sectional
curvature. Warped products have significant applications, in general relativity, in the
studies related to solutions of Einstein’s equations [1, 2]. Besides general relativity,
warped product structures have also generated interest in many areas of geometry,
especially due to their role in construction of new examples with interesting curva-
ture and symmetry properties cf. [3, 5, 6, 5].

Definition 2.1.1 Let (B, g
B
) and (F, g

F
) be Riemannian manifolds with f : B →

(0,∞) a smooth function on B. The warped product M = B×fF is the product
manifold B × F equipped with the metric

g = π∗(g
B
)⊕ (f ◦ π)2σ∗(g

F
),

where π : B×F → B, σ : B×F → F are usual projections and ∗ denotes pullback.
(B, g

B
) is called the base, (F, g

F
) is called the fiber and f the warping function of the

warped product.

14



A non-existence result for compact Einstein warped products 15

If the warping function ‘f ’ is constant then the warped product B×fF (up to a
change of scale) is a (global) Riemannian product, which we call as trivial warped
product.

The reader is referred to [3, 5] for the fundamental results and properties of
warped products.

A Riemannian manifold (Mm, g) is said to be Einstein if its Ricci curvature is a
constant multiple of g. The notion of Einstein manifolds coincides with manifolds of
constant curvature for m ≤ 3 but Einstein manifolds constitute quite a large class in
higher dimensions. Many new examples of Einstein manifolds have been obtained us-
ing warped products, cf. [3]. Einstein warped products, due to their useful curvature
and symmetry properties, provide a rich class of examples of practical interest in Rie-
mannian as well as semi-Riemannian geometry. Yet there are no known examples of
(non-trivial) compact Einstein warped products. This is what was questioned in [3,
Section 9.103]: Can a (non-trivial) compact Einstein warped product be constructed?

The purpose of this chapter is to study this conjecture about non-existence of
(non-trivial) compact Einstein warped products and to show that there exists a metric
on every compact manifold B such that a (non-trivial) Einstein warped product
M = B×fF cannot be constructed.

2.2 Main result

We begin by proving some necessary conditions for the existence of (non-trivial)Einstein
warped products with compact base.

Proposition 2.2.1 Let Mm = B×fF be a warped product of an (m-n)-dimensional
compact Riemannian manifold B and an n-dimensional Riemannian manifold F . Let
ScalB denote the scalar curvature of B. If M is Einstein with Einstein constant cM

and
either ScalB ≤ (m− n)cM or ScalB ≥ (m− n)cM

then the warping function f is constant and, up to a scale, M is a Riemannian prod-
uct.

Proof. Using Theorem 1.3.1 or the well-known curvature identity [5, Page 211] re-
lating the Ricci curvatures of the warped product M and the base B, we have

−n
f

∆Bf =
m∑

i=n+1

RicM(ei, ei)− ScalB

where Ric denotes the Ricci curvature of M and ∆B is the Laplacian on B.
For the Einstein metric, the above equation becomes

−n
f

∆Bf = (m− n)cM − ScalB.

Now the conditions

ScalB ≤ (m− n)cM or ScalB ≥ (m− n)cM
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make f a subharmonic or superharmonic function. Since B is compact, f must be
constant. 2

The above necessary conditions yield the following non-existence result for com-
pact Einstein warped products.

Theorem 2.2.2 There exists a metric on every compact manifold B such that there
are no (non-trivial) Einstein warped products Mm = B×fF with base B.

Proof. For 1-dimensional base with any metric, ScalB ≡ 0. Every 2-dimensional
manifold admits a metric of constant curvature. Every compact manifold of dimen-
sion at least 3 carries a metric of constant negative curvature [4]. Using Proposi-
tion 2.2.1 and the above facts completes the proof. 2

The question of existence of compact Einstein manifolds has also been addressed
recently in [7] where it is shown necessary for these manifolds to have positive scalar
curvature.
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Chapter 3

Restrictions on warped
space-times with Riemannian base

Summary

Warped space-times provide several well-known examples of exact so-
lutions to Einstein’s field equations. Yet there are no known examples of
(non-trivial) warped space-times with compact Riemannian base. Using
the methods of Chapter 1, it is shown that the Ricci curvature imposes
restrictions on the existence of such space-times. As a consequence, non-
existence results are established for Einstein warped space-times with
compact Riemannian base.

3.1 Introduction

Warped product construction is a construction in the class of Riemannian manifolds
that generalizes direct product. This construction was introduced in [3] where it was
used to construct a variety of complete Riemannian manifolds with negative sectional
curvature. The connection with general relativity was established due to their role
in the studies related to solutions of the Einstein’s equations [1, 2, 5]. In fact, many
of the well-known solutions of the Einstein’s equations are semi-Riemannian warped
products.

Definition 3.1.1 Let (B, g
B
) and (F, g

F
) be semi-Riemannian manifolds with f :

B → (0,∞) a smooth function on B. The warped product M = B×fF is the product
manifold B × F equipped with the metric

g = π∗(g
B
)⊕ (f ◦ π)2σ∗(g

F
),

where π : B × F → B, σ : B × F → F are usual projections and ∗ denotes pullback
operator. (B, g

B
) is called the base, (F, g

F
) is called the fiber and f the warping

function of the warped product.

18



Restrictions on warped space-times with Riemannian base 19

If the warping function ‘f ’ is constant then the warped product B×fF (up to
a change of scale) is a semi-Riemannian product, which we call as trivial warped
product.
Definition 3.1.2 A warped space-time is a 4-dimensional warped product equipped
with a Lorentzian metric.

Due to their construction, warped space-times exhibit useful curvature and sym-
metry properties, and hence provide a rich class of examples of solutions to Ein-
stein field equations. For instance Schwarzchild space-time, Robertson-Walker space-
times, de-Sitter space-time, generalized Robertson-Walker space-times and standard
static space-times are all examples of warped space-times.

The class of warped space-time of practical interest mostly consists of warped
products of the form B×fF where B is a Lorentzian manifold and F is a Riemannian
manifold i.e. the warping function is defined on a Lorentzian manifold and acts on the
positive definite metric on Riemannian manifold F . On the other hand it is possible
to construct warped space-times by considering warped products of the form B×fF
where B has a positive definite metric and F is a Lorentzian manifold i.e. the warping
function is defined on a Riemannian factor and acts on the Lorentzian metric on F
(See [2]). Well known examples of such warped products are

• the Minkowski space-time,

• the Einstein static universe which is the trivial warped product R × S3 with
the metric g = −dt2 + (dr2 + sin2rdθ2 + sin2rsin2θdφ2)

• and the universal covering space of anti de-Sitter space-time which is the warped
product H3×f R where the warping function is defined on the hyperbolic 3-space
with a Riemannian metric of constant negative sectional curvature −1.

Though the class of standard static space-times provides further examples of such
warped space-times, yet there are no known examples of non-trivial warped space-
times where the warping function is defined on compact Riemannian factor. We
treat such warped space-times in this chapter and investigate the restrictions on the
existence of non-trivial warped space-times with the warping function defined on
compact Riemannian factor.

3.2 Constraints on warped space-times with Rie-

mannian base

In this section we consider warped space-times of the form B×fF where B is a
manifold with positive definite metric, and study obstructions to their existence.
Proposition 3.2.1 Let M = B4−n×fF

n (n = 1, 2, 3) be a warped space-time. Then

−n
f

∆Bf =
4∑

r=n+1

RicM(er, er)− ScalB
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where RicM , ScalB denote the Ricci curvature and scalar curvature of M and B re-
spectively, and ∆B is the Laplacian on B.

Proof. The proof follows from the well-known curvature identity [2, Proposition
3.76(4)] relating the Ricci curvatures of the warped product M and the base B. 2

As a consequence, we see that the Ricci curvature of the space-times places restric-
tions on the existence of warped space-times under consideration.
Theorem 3.2.2 Let M = B4−n×fF

n (n = 1, 2, 3) be a warped space-time, with B a
compact manifold with a positive definite metric.

(a) For n = 3, if either RicM ≥ 0 or RicM ≤ 0 then the warping function f is
constant and up to a scale M is a Lorentzian product.

(b) For n < 3, if

• either RicM ≥ 0 and ScalB ≤ 0

• or RicM ≤ 0 and ScalB ≥ 0

then the warping function f is constant and up to a scale M is a Lorentzian
product.

Proof. From the hypothesis and Proposition 3.2.1, f is a subharmonic or superhar-
monic function on B. Since B is compact, f must be constant. 2

Corollary 3.2.3 Let M = B4−n×fF
n (n = 1, 2, 3) be a warped space-time, with

B a compact manifold with a positive definite metric. If M is Einstein with Einstein
constant cM then the warping function f is constant in each of the following case.

(i) ScalB ≤ (4− n)cM or ScalB ≥ (4− n)cM .

(ii) If cM ≥ 0 and the total scalar curvature SB =
∫

ScalBυB of B is non-positive.

Proof. If cM is the Einstein constant of M then from Proposition 3.2.1

−n
f

∆Bf = (4− n)cM − ScalB. (3.2.1)

(i) If ScalB ≤ (4−n)cM or ScalB ≥ (4−n)cM then f is constant due to Equation 3.2.1
and compactness of B.

(ii) Integrating Equation 3.2.1 and using Green’s identity gives

SB =
∫

ScalBυB = n
∫ 1

f 2
‖gradf‖2υB + (4− n)cMV ol(B)

If SB ≤ 0 the f must be constant.
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2

The above result obviously eliminates the possibility of constructing non-trivial Ein-
stein warped space-times M = B4−n×fF

n with B a compact Riemannian manifold
with Einstein metric (or with a metric of constant scalar curvature).

Next we present a non-existence result for non-trivial Einstein warped space-times
with 1-dimensional base.

Corollary 3.2.4 Let M = B×fF be an Einstein warped space-time, with B a com-
pact manifold with a positive definite metric. If B is 1-dimensional then f must be
constant.

Proof. Follows from Theorem 3.2.2. 2

For Einstein warped space-times with 2 or 3 dimensional base, we have
Corollary 3.2.5 Let M = B4−n×fF

n (n = 1, 2) be an Einstein warped space-time,
with B a compact manifold with a positive definite metric. Then there exists a metric
on the base B such that the warping function f cannot be non-constant.

Proof. Every 2-dimensional Riemannian manifold admits a metric of constant cur-
vature. Every compact Riemannian manifold of dimension at least 3 carries a metric
of constant negative scalar curvature [4, Corollary 5.4]. Using the above facts in
Corollary 3.2.3 completes the proof. 2
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