
Section 11.9  Representations of functions as power series 

 

 
Learning outcomes 

 

After completing this section, you will inshaAllah be able to  

 

1. understand what is meant by representation of a function as power series 

2. learn different methods of writing power series representation of a function 

using a known power series 

3. use power series of 1( )
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 to make new power series representations 
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Basis of application of power series 

is 

representation of functions by power series 



Meaning of representation of a function by power series 

 

• We look at an example to understand. 

• Recall from geometric series that  
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The expression  
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gives the power series representation of 1( )
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The interval of convergence is 1x < . 



Methods for finding power series representation of a function 

(using known power series) 
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Method 2 

By algebraic operations on known series 

See example 1  

done in class 

Method 3 

Combination of Methods 1 & 2 
See example 2  

done in class 

Method 1 

By substitution 

Method 4 

By differentiating or integrating kmown series 
See next page for 

explanation 

• Here we will only make new power series representations using  
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• But the methods work in general. 



Finding power series representation of functions  

(by differentiating & integrating known power series representations) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

End of 11.9 
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Let 0
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Both have radius of convergence R .  

See examples 3, 4 done in class 

Note that radius of convergence stays the same but the interval of convergence 

may not be the same. There may be a difference at the end points of interval. 


