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Abstract

Conditions for the existence of polynomial solutions of certain second-order dif-
ferential equations have recently been investigated by several authors. In this paper
a new algorithmic procedure is given to determine necessary and sufficient condi-
tions for a differential equation with polynomial coefficients containing parameters
to admit polynomial solutions and to compute these solutions. The effectiveness
of this approach is illustrated by applying it to determine new solutions of sev-
eral differential equations of current interest. A comparative analysis is given to
demonstrate the advantage of this algorithmic procedure over existing software.
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1 Introduction

In [3] an approach based on linear algebra for investigating polynomial solutions of dif-

ferential equations of the form
N∑
k=0

pk(x)D
ky = 0, where pk is a polynomial of degree at

most k, is given in detail. However many equations of interest in applications are not of

this form; we may cite for instance [9], where the authors consider certain equations that

arise in mathematical physics but that are not of the form considered in [3]. In [9] Ciftci

et al specifically give conditions for the existence of polynomial solutions of second order

linear differential equations using, in particular, the asymptotic iteration method (AIM)

they introduced in their earlier work [8].

In this paper we consider more general linear differential equations. Using a linear

algebraic approach suggested by ideas of [3], we provide necessary and sufficient conditions

for the existence of polynomial solutions of linear differential equations of arbitrary order

with polynomial coefficients containing parameters and of arbitrary degree as well as an

algorithmic procedure for the verification of this condition and for constructing these

solutions. This is discussed in detail in Section 2. Necessary and sufficient conditions

for the existence of polynomial solutions of Heun’s equation are also given in Section 2.
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In Section 3, the algorithmic procedure of Section 2 is implemented to determine the

conditions that guarantee the existence of polynomial solutions of any degree and to find

them, depending of course on the available computational power.

To illustrate the efficiency of this algorithmic procedure, a Maple code is implemented

in several examples, some of which appear in [9]. We point out that in [9], the authors

state that finding polynomial solutions is a problem that needs to be investigated.

In the last section we describe the advantage of the algorithm given in this paper over

existing software. Let us note that various algorithms addressing different aspects of this

subject have been given, for example, in [1], [2], [5] and [7]. For classical references, the

reader is referred to [4], [6], [12], [14] and [15].

2 Polynomial Solutions

Throughout, P is the space of all real polynomials and Pn is the subspace of polynomials

with degree at most n. Let L : P → P be the linear operator given Ly =
N∑
k=0

pk(x)D
ky,

where D is the usual differential operator and pk(x) =
∑

h≥0 pkhx
h is a polynomial of de-

gree dk ( with the convention that the zero polynomial has degree −∞ and that D0y = y).

Our objective is to find a necessary and sufficient condition for the equation Ly = 0 to

have non-trivial polynomial solutions. Although this can be achieved, for each specific

case, by comparing coefficients (see for example the determinantal necessary condition in

the recent paper [9] on Heun’s equations), or by using the Asymptotic Iteration Method

in the case of second-order equations [8], we feel that a systematic approach that works

for differential equations of all orders and that can easily be implemented in a computer

algebra system is more desirable.

Assume first that for some i (0 ≤ i ≤ N), di > i. Let m = max
0≤i≤N

(di − i) and put y = Dmz.

In this way, the equation Ly = 0 is equivalent to Hz = 0 where H is the linear operator
m+N∑
k=1

ak(x)D
K , and Ly = 0 has a polynomial solution of degree n ≥ 0 if and only if Hz = 0

has a polynomial solution of degree n + m. Clearly, for each nonnegative integer n,Pn

is H-invariant, and H has thus the advantage over L of being directly amenable to an

eigenvalue analysis as demonstrated below. We note here that the case when di ≤ i for

all i has been investigated in detail in [3].

Let ak (k ≥ 1) be the sequence of polynomials defined by ak = 0 if k < m and ak = pk−m

if k ≥ m. Put ak(x) =
∑

h≥0 akhx
h, where akh = 0 if k < h. Since, for each nonnegative

integer n, H(xn) is a scalar multiple of xn plus lower order terms, we see that the matrix

representation of H, with respect to the standard basis Bn = {1, x, ..., xn} of Pn is upper
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triangular and its eigenvalues are the coefficients of xn in H(xn). More specifically, the

(n+ 1)× (n+ 1) matrix An of H operating on Pn has (i, j)-th entry
∑
k≥1

ak, k+i−j(j − k)k,

i.e.

An =

[∑
k≥1

ak, k+i−j(j − k)k

]
1≤i, j≤n+1

where (j − k)k = (j − 1)(j − 2) · · · (j − k), and where each row and column has at most

(N + m + 1) nonzero entries. Clearly, the first m columns of An are zero and An+1 is

obtained by An by adding one row and one column at the end. As diagonal entries of An,

all the eigenvalues of the operator H are real and are given by λn = n!
n∑

k=1

akk
(n− k)!

for

n ≥ 1 (note that λ0 = λ1 = · · · = λm−1 = 0). Each eigenvalue λn has an eigenpolynomial

yn(x) = yn0 + yn1x + · · · + ynnx
n of degree at most n and whose vector representation

(yn0, ..., ynn)
T in the standard basis Bn can be directly computed from the homogeneous

upper triangular system (An − λnI)(yn0, ..., ynn)
T = 0. Our problem is to find necessary

and sufficient conditions for which the operator H has an eigenpolynomial of degree n+m

corresponding to λn+m = 0, that is necessary and sufficient conditions for the homoge-

neous system An+m(yn+m, 0, ..., yn+m,n+m)
T = 0 to have a solution (yn+m, 0, ..., yn+m,n+m)

T

with yn+m,n+m = 1. This will follow from

Lemma 1. Let A be an m × n matrix. Then the homogeneous system AX = 0 has a

solution X = (x1, x2, ..., xn)
T with xk ̸= 0 for some k if and only if rank(A) = rank(Ak)

where (Ak) is the matrix obtained from A by deleting the kth column.

Proof. Put A = [cij]1≤i,j≤n and let ck be the kth column of A. Clearly, A and the

augmented matrix [Ak
...ck] have the same rank. Hence,

rank(A) = rank(Ak) ⇔ rank[Ak
...ck] = rank(Ak) ⇔ the systemAkX = −ck is consistent

⇔ there exists a solution X = (x1, · · · , xk−1, 1, xk+1, · · · , xn)
T to the system AX = 0. 2

Since An+m−1 is obtained from An+m by deleting the last column, the above lemma im-

mediately yields that the differential equation Ly = 0 has a polynomial solution of degree

n ≥ 0 if and only if rank(An+m) = rank(An+m−1 ). In this case, since An+m is upper tri-

angular, the last entry of An+m is zero i.e. λn+m =
∑
k≥1

akk(m+n−k)k = 0, and therefore

the last row of An+m is zero.

Now let Mn and M ′
n be, respectively, the matrices obtained from An+m and An+m−1 by

deleting the first m zero columns. Clearly rank(An+m) = rank(An+m−1) if and only if
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rank(Mn) = rank(M ′
n). It is easy to see that the (i, j)th entry of the (n+m+1)× (n+1)

matrix Mn is

j−1∑
t=0

at+m, t+i−j(j− t)t+m =

j−1∑
t=0

pt, t+i−j(j− t)t+m. This proves the main result

of this note:

Proposition 2. With the above notation, let Mn be the (n +m + 1) × (n + 1) matrix

with (i, j)th entry

j−1∑
t=0

pt, t+i−j(j − t)t+m and let M ′
n be the matrix obtained from Mn by

deleting the last column. Then the differential equation Ly = 0 has a polynomial solution

of degree n ≥ 0 if and only if rank(Mn) = rank(M ′
n).2

It thus follows that if the equation Ly = 0 has a polynomial solution of degree n ≥ 0, then

λn+m =
∑
t≥1

pt, t+m(n− t)(t+m) = 0, and since M ′
n has n columns, rank(Mn) = rank(M ′

n)

implies that rank(Mn) ≤ n and so every (n + 1) × (n + 1) submatrix of Mn has zero

determinant. This generalizes Theorems 5 and 6 of [9].

The following proposition, whose proof is implicit in the proof of Proposition 2, leads to

an alternate algorithm for determining the conditions for existence of polynomial solutions

of differential equations.

Proposition 3. Let L be the operator defined by L(y) =
N∑
k=0

ak(x)D
k(y). Let di be the

degree of ai and let

m = max{0, di : 0 ≤ i ≤ N}.

Let H be the operator defined by by H(y) =
N∑
k=0

ak(x)D
k+m(y). A necessary condition

for the equation L(y) = 0 to have a non-zero polynomial solution of degree at most n is

that 0 must occur as an eigenvalue of the operator H with multiplicity at least (m + 1).

Moreover the eigenvalues of H are the coefficients of xn in H(xn) for n = 0, 1, 2, · · · .

We conclude this section by proving a proposition on polynomial solutions, which

may also be of independent interest and which can be extended to higher-order linear

differential equations through appropriate modifications.

Let y =
∑
j≥0

cjx
j be a solution of the differential equation

Ly ≡ (rx3 + sx2 + tx)y′′ + (bx2 + cx+ δ)y′ + (εx+ f)y = 0 (2.1)
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Standard manipulations give α(k)ck−1 = β(k)ck+γ(k)ck+1, for k ≥ 0 (and c−1 = 0) where

α(k) = r(k − 1)(k − 2) + b(k − 1) + ε

β(k) = −sk(k − 1)− ck − f

γ(k) = −tk(k + 1)− δ(k + 1)

Suppose that y is monic of degree n, then α(n + 1) = n(n − 1) + bn + ε = 0 (since

cn+1 = cn+2 = 0). If n is the smallest positive integer for which there is a monic solution

of (2.1) with degree n, then α(n + 1) = 0 and α(k) ̸= 0 for 1 ≤ k ≤ n, so that ck−1 =
β(k)

α(k)
ck +

γ(k)

α(k)
ck+1.

For each k (1 ≤ k ≤ n), let Ak =

β(k)α(k)

γ(k)

α(k)
1 0

 . Then

[
ck−1

ck

]
= Ak

[
ck
ck+1

]
so that[

c0
c1

]
=

(
n∏

k=1

Ak

)[
1
0

]
.

Putting x = 0 in (1) gives fc0 + δc1 = 0, and this implies
[
f δ

]( n∏
k=1

Ak

)[
1
0

]
= 0. We

have thus proved that if the DE (2.1) has a monic solution of smallest degree n then

α(n + 1) = 0 and
[
f δ

]( n∏
k=1

Ak

)[
1
0

]
= 0. Conversely, assume there exists a positive

integer n such that α(n+ 1) = 0 and
[
f δ

]( n∏
k=1

Ak

)[
1
0

]
= 0. Define a sequence (cj)j≥0

by

cj = 0 if j > n
cn = 1

cj−1 =
β(j)

α(j)
cj +

γ(j)

α(j)
cj+1 if 0 ≤ j ≤ n− 1

It is then easy to verify, by reversing the standard manipulations mentioned above, that

the monic polynomial
∑
j≥0

cjx
j of degree n is a solution of the DE (2.1). We summarize

this in the following result.

Proposition 4. With the above notation, the DE (2.1) has a monic solution of degree n

and no other monic solution of smaller degree iff α(n+1) = 0 and
[
f δ

]( n∏
k=1

Ak

)[
1
0

]
=

0. This monic solution is given by y = xn +
n−1∑
k=0

[
1 0

]( n∏
j=k+1

Aj

)[
1
0

]
xk.

Note that the coefficients of the monic solution above can also be obtained from the

following general result, which can easily be proved by induction.

Lemma. Let a sequence (ck)1≤k≤n+1 be given by cn = 1, cn+1 = 0 and ck−1 = ukck +

vkck+1. Then ck (0 ≤ k ≤ n − 1) is the principal (n− k) × (n− k) minor of the n × n
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tridiagonal matrix

un −1 0 0 0 · · · 0 0 0
vn−1 un−1 −1 0 0 · · · 0 0 0
0 vn−2 un−2 −1 0 · · · 0 0 0
0 0 vn−3 un−3 −1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · v2 u2 −1
0 0 0 0 0 · · · 0 v1 u1



3 Examples

In this section we illustrate the effectiveness of the algorithmic approach of Section 2

by applying it to different types of differential equations. Examples include the general

Heun’s equation as well as some physically significant differential equations that arise in

the study of solutions to Schrödinger equation [9, 13] and radial Schrödinger equation

with shifted potential [9, 10, 11].

These examples show how to implement the method algorithmically to determine the

conditions for the existence of polynomial solutions and also to calculate the corresponding

polynomial solutions. As a test case, the procedure is also applied to obtain polynomial

solutions of a third order differential equation. All the solutions presented here have been

verified using Maple.

In case of examples where the implementation of Proposition 2 involves a higher com-

plexity, the alternate approach based on Proposition 3 can be adopted to obtain polyno-

mial solutions as well as conditions for their existence. This approach is illustrated in the

following example.

Example 1

We consider the general Heun’s differential equation of the form

L(y) =
(
x3 − (a+ 1) x2 + ax

) d2y
dx2

+
(
bx2 + cx+ δ

) dy
dx

+ (ϵ x+ f) y = 0 (3.1)

Since m = 1, in the notation of Proposition 3, the substitution y =
dz

dx
leads to

H(z) =
(
x3 − (a+ 1)x2 + ax

) d3z
dx3

+
(
bx2 + cx+ δ

) d2z
dx2

+ (ϵ x+ f)
dz

dx
= 0 (3.2)

Using

H(xn) = n(n2 − 3n+ 2 + bn− b+ ϵ)xn + n(−an2 + 3an− 2a− n2 + 3n− 2 + cn− c+ f)xn−1

+ n(an2 − 3an+ 2a+ δn− δ)xn−2
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we see that the matrix A of H relative to the basis {1, x, x2, · · · , xn} is upper triangular

and has

A(n+ 1, n+ 1) = n2 − 3n+ 2 + b(n− 1) + ϵ.

So by Proposition 3 or Proposition 4, a necessary condition for ODE (3.2) to have poly-

nomial solution of degree n ≥ 2 is obtained using A(n+ 1, n+ 1) = 0 as

b = −n2 − 3n+ 2 + ϵ

n− 1
.

Further if two rows of A are linearly dependent then the rank of the matrix of H on

Pn equals the rank of matrix of H on Pn−1, which ensures the existence of polynomial

solutions of ODE (3.2) of degree n ≥ 2 and hence of degree (n− 1) for ODE (3.1). This

approach can be implemented easily in many ways as illustrated in the cases below.

Case (1): For any n ≥ 2, the choice of parameters

a ̸= 0, b = −n2 − 3n+ 2 + ϵ

n− 1
, c ̸= −f, δ = −a, ϵ = −(c+ f)f

a
, f ̸= 0

gives A(n+ 1, n+ 1) = 0, and makes rows 1 and 2 of A linearly dependent. Hence

these parameters ensure the existence of polynomial solutions of degree (n − 1) of

ODE (3.1) which can directly be computed via null space of A. Some examples of

solutions for these parameters are given in Table 1 below.

n Polynomial solution of ODE (3.1) of degree (n− 1)
2 2 x+ 2 a

f

3 3 x2 − 6 (2 a−2 c−f+2)ax
cf+f2+2 a

− 6 a2(2 a−2 c−f+2)
(cf+f2+2 a)f

4 4 x3 − 12 (6 a+6−f−3 c)ax2

6 a+fc+f2 + 36
a2(−9 ca−9 c+3 fc+3 c2+6 a2+15 a−4 af+6−4 f+f2)x

(3 a+fc+f2)(6 a+fc+f2)

+36
a3(−9 ca−9 c+3 fc+3 c2+6 a2+15 a−4 af+6−4 f+f2)

(3 a+fc+f2)(6 a+fc+f2)f

5 5 x4 − 20 (12 a+12−f−4 c)ax3

12 a+fc+f2 + 120
a2(24 a2+56 a−6 af−20 ac+24−6 f−20 c+f2+3 fc+4 c2)x2

(12 a+fc+f2)(8 a+fc+f2)

−80 a3Ax
(4 a+fc+f2)(8 a+fc+f2)(12 a+fc+f2)

−80 a4A
(4 a+fc+f2)(8 a+fc+f2)(12 a+fc+f2)f

where
A = 96 + 416a− 176c− 72f + 88fc+ 28f2 + 88caf + 416a2 − 168af − 416ac+ 96c2 − 176ca2

+96ac2 − 15cf2 − 24fc2 − 72a2f + 28af2 − 16c3 + 96a3 − 3f3

Table 1: Polynomial solutions of ODE (3.1)

Higher degree solutions are obtained very efficiently but cannot be reproduced here,

for general parameters, due to space constraint. For example a polynomial solution

of degree 25 of ODE (3.1) for a specific choice of parameters was computed without

difficulty and is provided in [16].
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Case (2): For any n ≥ 2, the choice of parameters

a = −λ(b+ ϵ), b = −n2 − 3n+ 2 + ϵ

n− 1
, c = a+ 1, δ = −2a, f = 0

gives A(n+ 1, n+ 1) = 0, and makes rows 1 and 3 of A linearly dependent. Hence

the existence of polynomial solutions of degree (n− 1) of ODE (3.1) is ensured. As

an example, the solution of degree 5 of ODE (3.1) with the above parameters is

given below.

y(x) = 6x5 − 90
(4λ ϵ− 20λ− 5)x4

ϵ− 20

+ 120
(48λ2ϵ2 − 480λ2ϵ+ λ ϵ2 + 1200λ2 − 145λ ϵ+ 700λ+ 75) x3

(ϵ− 20) (ϵ− 15)

− 120
(4λϵ− 20λ− 5) (48λ2ϵ2 − 480λ2ϵ+ 5λϵ2 + 1200λ2 − 225λ ϵ+ 1000λ+ 75) x2

(ϵ− 20) (ϵ− 15) (ϵ− 10)

+ 192
λ (ϵ− 5) (4λϵ− 20λ− 5) (48λ2ϵ2 − 480λ2ϵ+ 5λϵ2 + 1200λ2 − 225λϵ+ 1000λ+ 75)

(ϵ− 20) (ϵ− 15) (ϵ− 10) ϵ

Case (3): For any n ≥ 2, the choice of parameters

a = −2c2 − 2f − 2c+ 3cf + f 2

2(−c− f + b)
, b = −n2 − 3n+ 2 + ϵ

n− 1
, δ = −2a, ϵ = 0

gives A(n+ 1, n+ 1) = 0, and makes rows 2 and 3 of A linearly dependent. Hence

the existence of polynomial solutions of degree (n− 1) of ODE (3.1) is ensured for

these parameters. An example of the solution of degree 5 of ODE (3.1) with the

above parameters is given below.

y(x) = 6 x5 − 3

2

(15 c2 + 24 cf + 9 f 2 − 20 c− 4 f + 80)x4

c+ f + 4
+

3

4

A3x
3

(c+ f + 4)2

− 1

8

A2x
2

(c+ f + 4)3
− 1

8

A2 (2 c+ f − 2)x

(c+ f + 4)4

− 1

8

A2 (2 c
2 + 3 cf + f 2 − 2 c− 2 f) (2 c+ f − 2)

(c+ f + 4)5 f

where

A3 = 40 c4 + 129 c3f + 153 c2f 2 + 79 cf 3 + 15 f 4 − 120 c3 − 212 c2f − 104 cf 2

− 12 f 3 + 600 c2 + 832 cf + 296 f 2 − 800 c− 224 f + 1280

and

A2 = 120 c6 + 587 c5f + 1184 c4f 2 + 1260 c3f 3 + 746 c2f 4 + 233 cf 5 + 30 f 6 − 720 c5

− 2452 c4f − 3172 c3f 2 − 1916 c2f 3 − 524 cf 4 − 48 f 5 + 4400 c4 + 12240 c3f

+ 12720 c2f 2 + 5936 cf 3 + 1056 f 4 − 12800 c3 − 22528 c2f − 12160 cf 2 − 1920 f 3

+ 30400 c2 + 35584 cf + 11328 f 2 − 37120 c− 13056 f + 30720.
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Other choices of parameters leading to the existence of polynomials solutions are also

possible. In general, the following procedure can be implemented iteratively. Let A∗ de-

note the matrix obtained after making the entries A(1, j) of A zero by using the entries

A(j, j) for j = 2, 3, · · · , n. Then the parameters obtained by solving A(n+ 1, n+ 1) = 0

and A∗(1, n+ 1) = 0 will ensure the existence of a polynomial solution of degree (n− 1)

of ODE (3.1).

Example 2

As a second example, we consider the linear second order ODE arising in the study of

one dimensional Schrödinger problems [13]. The investigation of Krylov and Robnik [13]

about polynomial solutions of one dimensional Schrödinger problems leads to investigation

of polynomial solutions of the following differential equation

x3 d
2y

dx2
+ a

(
x2 − 1

) dy
dx

+ (ϵ x+ f) y = 0 (3.3)

The conditions for the existence of polynomial solutions of this ODE have also been

discussed by Ciftci et al. in [9], by a different approach. Here, we apply our method

to determine existence conditions as well as to compute the corresponding polynomial

solutions of the above differential equation. It is found that the best approach to deal

with this ODE is to utilize Proposition 4.

For f = 0, in the notation of Proposition 4, we have

α(k) = k2 + (a− 3)k + ε− a+ 2

β(k) = 0

γ(k) = (k + 1)a

and Ak =

[
0 ak
1 0

]
where ak =

(k + 1)a

(k2 + (a− 3)k + ε− a+ 2)
.

So, for n = 2m, we have(
n∏

k=1

Ak

)
=

[
a1a3 · · · am 0

0 a2a4 · · · a2m

]
,

implying that
[
0 −a

]( n∏
k=1

Ak

)[
1
0

]
= 0. Hence, by Proposition 4, ODE (3.3) has poly-

nomial solutions of even degree n for f = 0 iff ϵ = −n2+n−an and the solution expression

of Proposition 4 can be implemented directly to generate a sequence of even degree poly-

nomial solutions of ODE (3.3). A further analysis of these solutions yields the following

result.

• For f = 0, ODE (3.3) admits polynomial solutions of degree n = 2m (m ≥ 1), with

ϵ = −(an+ n2 − n), given by

y = x2m +
m∑
i=1

(−1)i
(
m
i

)
aix2m−2i

(a+ 2n− 3)(a+ 2n− 5) · · · (a+ 2n− 3− 2(i− 1))
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For n = 2m− 1 (m ≥ 1), we have(
n∏

k=1

Ak

)
=

[
0 a1a3 · · · am

a2a4 · · · a2m−2 0

]
,

implying that
[
0 −a

]( n∏
k=1

Ak

)[
1
0

]
= −a2a4 · · · a2m−2.Hence, by Proposition 4, ODE (3.3)

has polynomial solutions of odd degree n for f = 0 iff a = 0 and ϵ = −n2 + n, which are

given by y(x) = xn.

For f ̸= 0, there does not seem to be a simple pattern. Nevertheless for any given n

and a, the algorithmic procedure of Proposition 4 can be easily implemented to determine

ϵ, f for which ODE (3.3) admits polynomial solutions of degree n as well as to compute

the corresponding polynomial solution.

As an illustration if we take a = −15
2

and look for a solution of degree n = 6 then

the implementation of Proposition 4 determines ϵ = 15, f = 3(750)1/4 and computes the

corresponding polynomial solution of degree 6 of ODE (3.3) as

y(x) = x6 + 6/5 53/4
4
√
6x5 +

(
6
√
5
√
6 + 15

)
x4 +

(
60 53/4

4
√
6 + 60

4
√
563/4

)
x3

+
(
−2925− 540

√
5
√
6
)
x2 +

(
900

4
√
563/4 + 990 53/4

4
√
6
)
x− 450

√
5
√
6− 2475

Some other lower degree solutions are displayed in Table 2 below.

n ϵ f Polynomial solution of ODE (3.3) of degree n
1 −a ±a x± 1

2 −2a− 2 ±
√
4a2 + 6a x2 ±

√
2a(2a+3)

a+2
x+ a

a+2

3 −3a− 6 ±
√
15a+ 5a2 + aA x3 ± a

√
(5a+15+A)a(−9−2a+A)

6(a+2)(a+3)(a+4)
+ a(3+2 a+A)x

2(a+3)(a+4)
±

√
(5a+15+A)ax2

a+4

±
√
15a+ 5a2 − aA x3 ∓ a

√
(5a+15−A)a(9+2a+A)

6(a+2)(a+3)(a+4)
− a(−3−2 a+A)x

2(a+3)(a+4)
±

√
(5a+15−A)ax2

a+4

where

A =
√
16 a2 + 96 a+ 153

Table 2: Polynomial solutions of ODE (3.3)

Example 3

In this example, we consider a differential equation related to the investigation of the

radial Schrödinger equation with shifted Coulomb potential and which has been discussed

recently in [9, 10, 11]. The anstaz of [9, Eq.35] that the radial Schrödinger equation admits

a solution which vanishes at the origin and at infinity leads to the question of obtaining
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solutions of the following differential equation:

L(y) = x(x+ β)
d2y

dx2
+
(
−2αx2 + 2(K + 1− αβ)x+ 2β(K + 1)

) dy
dx

+ ((−2α(K + 1) + 2Z)x− 2αβ(K + 1)) y = 0 (3.4)

This is a particular case of the confluent Heun equation whose polynomial solutions can be

studied algorithmically using our procedure. While discussing the question of polynomial

solutions of ODE (3.4), Ciftci et al. [9] give conditions on parameters α, β to have

polynomial solutions. However, they state that finding the corresponding polynomial

solutions is an open problem that remains to be solved. Adapting the same approach,

as in Example 1, gives the existence conditions on parameters as well as generate the

corresponding polynomial solutions of ODE (3.4). For instance for n ≥ 2, as in Example

1, the choice of parameters

α =
Z

n+K
, β =

Z

α2(2 +K)
, K = −3

2

gives A(n+1, n+1) = 0, and makes rows 1 and 2 of A linearly dependent, where A is the

matrix of operator H(z) obtained by putting y =
dz

dx
in ODE (3.4). Thus the existence

of polynomial solutions of degree (n − 1) of ODE (3.4) is ensured. Explicit examples of

such solutions are given in Table 3 below.

n Polynomial solution of ODE (3.4) of degree (n− 1)
2 2x+ 1

Z

3 3x2 + 81
4

x
Z
+ 243

8Z2

4 4x3 + 110 x2

Z
+ 1875

2
x
Z2 +

9375
4Z3

5 5x4 + 1435
4

x3

Z
+ 18375

2
x2

Z2 +
3109295

32
x
Z3 +

21765065
64Z4

6 6x5 + 891 x4

Z
+ 51030 x3

Z2 + 1390932 x2

Z3 +
282195171

16
x
Z4 +

2539756539
32Z5

7 7x6 + 7469
4

x5

Z
+ 1613535

8
x4

Z2 +
22407385

2
x3

Z3 +
10669409135

32
x2

Z4 +
631442801913

128
x
Z5 +

6945870821043
256Z6

8 8x7 + 3484 x6

Z
+ 635271 x5

Z2 +
125086195

2
x4

Z3 +
14254081075

4
x3

Z4 +
929027438313

8
x2

Z5

+62844710476561
32

x
Z6 +

816981236195293
64Z7

9 9x8 + 23895
4

x7

Z
+ 1701000 x6

Z2 +
8652774375

32
x5

Z3 +
1671312234375

64
x4

Z4 +
199371259828125

128
x3

Z5

+3545740214296875
64

x2

Z6 +
1079266367548828125

1024
x
Z7 +

16188995513232421875
2048Z8

10 10x9 + 9605 x8

Z
+ 4031550 x7

Z2 + 967934695 x6

Z3 +
291940556215

2
x5

Z4 +
57076142912355

4
x4

Z5

+7182343532112455
8

x3

Z6 +
554919011624111525

16
x2

Z7 +
187627110879149608965

256
x
Z8 +

3189660884945543352405
512Z9

11 11x10 + 58729
4

x9

Z
+ 69512355

8
x8

Z2 +
11984847303

4
x7

Z3 +
5319192752643

8
x6

Z4 +
1581982015774545

16
x5

Z5

+317780871715555941
32

x4

Z6 +
42283382187962949825

64
x3

Z7 +
14118520017945812674887

512
x2

Z8

+1312232950923162294745169
2048

x
Z9 +

24932426067540083600158211
4096Z10

Table 3: Polynomial solution of ODE (3.4)

In general for a given K and a given degree of a polynomial solution, applying Propo-

sitions 2 or 3 can determine conditions on parameters α, β for the existence of polynomial
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solutions of ODE (3.4). We demonstrate this below by presenting a general implementa-

tion of Proposition 3 to obtain a polynomial solution.

If A denotes the matrix of H on Pn then as above A(n+ 1, n + 1) = 0 implies α = Z
n+K

.

Fixing the degree of the required polynomial solution as 7 (i.e. n = 8 in the above

terminology), K = −3 and α = Z
n+K

gives A as

0 4
5
Zβ −8 β 0 0 0 0 0 0

0 14
5
Z −8 + 4

5
Zβ −18β 0 0 0 0 0

0 0 24
5
Z −18 −24β 0 0 0 0

0 0 0 6Z −24− 8
5
Zβ −20β 0 0 0

0 0 0 0 32
5
Z −20− 4Zβ 0 0 0

0 0 0 0 0 6Z −36
5
Zβ 42β 0

0 0 0 0 0 0 24
5
Z 42− 56

5
Zβ 112β

0 0 0 0 0 0 0 14
5
Z 112− 16Zβ

0 0 0 0 0 0 0 0 0


Making the entries A(1, j) zero using A(j, j) for j = 2, 3, · · · , 8 gives

0 0 0 0 0 0 0 0 A(1, 9)

0 14
5
Z −8 + 4

5
Zβ −18β 0 0 0 0 0

0 0 24
5
Z −18 −24β 0 0 0 0

0 0 0 6Z −24− 8
5
Zβ −20β 0 0 0

0 0 0 0 32
5
Z −20− 4Zβ 0 0 0

0 0 0 0 0 6Z −36
5
Zβ 42β 0

0 0 0 0 0 0 24
5
Z 42− 56

5
Zβ 112β

0 0 0 0 0 0 0 14
5
Z 112− 16Zβ

0 0 0 0 0 0 0 0 0


where A(1, 9) = 100

7

β2(Z2β2−50Zβ−75)(−60Zβ+175+4Z2β2)
Z5 . This leads to the condition(

Z2β2 − 50Zβ − 75
) (

−60Zβ + 175 + 4Z2β2
)
= 0

giving

β = 5
5± 2

√
7

Z
, 5

3±
√
2

2Z
.

So for K = −3, α = Z
n+K

= Z
5
and

β = 5
5± 2

√
7

Z
, 5

3±
√
2

2Z

12



ODE (3.4) has a polynomial solution of degree 7 which can be computed directly through

the null space of A. For instance, for β = 5 5+2
√
7

Z
we get the solution

y(x) = 8 x7 + 80

(
9 + 5

√
7
)
x6

Z
+ 300

(
277 + 100

√
7
)
x5

Z2
+ 2500

(
5 + 2

√
7
) (

159 + 56
√
7
)
x4

Z3

+ 25000

(
5 + 2

√
7
)2 (

159 + 56
√
7
)
x3(

1 +
√
7
)
Z4

+ 150000

(
5 + 2

√
7
)3 (

159 + 56
√
7
)
x2(

1 +
√
7
)2

Z5

+ 1125000

(
5 + 2

√
7
)4 (

159 + 56
√
7
)
x(

1 +
√
7
)2 (

5 +
√
7
)
Z6

+ 5625000

(
5 + 2

√
7
)4 (

159 + 56
√
7
)(

5 +
√
7
) (

1 +
√
7
)2

Z7

Example 4

As a test case for an equation of defect 3, we consider a third order differential equation

of the form(
1− x2

)3 d3y
dx3

+ ax
(
1− x2

)2 d2y
dx2

+ a
(
1− x2

) (
bx2 − 1

) dy
dx

+
(
cx3 + δ x

)
y = 0 (3.5)

and implement our procedure to determine the values of parameters for the existence

of polynomial solutions and then finding the corresponding solutions. This leads to the

following ansätze for polynomial solutions of degree 2p of ODE (3.5):

c = 2 p
(
4 p2 − 6 p+ 2− 2 ap+ a+ ab

)
and

δ = −c or δ = −12p(p− 1).

As an example, a 10th degree solution of ODE (3.5) for δ = −c is computed as

y(x) = 1716x10 + 68640
(a− 18)x8

ab− 17 a+ 192
+ 102960

(8 a2 + 3 ab− 307 a+ 2592) x6

(ab− 17 a+ 192) (ab− 15 a+ 150)

+ 137280
(24 a3 + 37 a2b− 1581 a2 − 594 ab+ 28746 a− 153360)x4

(ab− 17 a+ 192) (ab− 15 a+ 150) (ab− 13 a+ 116)

+ 34320
Ax2

(ab− 17a+ 192) (ab− 15a+ 150) (ab− 13a+ 116) (ab− 11a+ 90)

+ 329472
24 a3 + 37 a2b− 1581 a2 − 594 ab+ 28746 a− 153360

(ab− 17 a+ 192) (ab− 15 a+ 150) (ab− 13 a+ 116) (ab− 9 a+ 72)

where

A = 96a4+508a3b+135a2b2−11580a3−18834a2b+374283a2+146556ab−4422204a+17210880.

For δ = −12p(p− 1), an example of solution of ODE (3.5) of degree 2p = 20 is obtained

as

y(x) = 10626x20 − 106260x18 + 478170x16 − 1275120 x14 + 2231460 x12 − 2677752x10

+ 2231460 x8 − 1275120x6 + 478170x4 − 106260x2 + 10626.

In general, for a given degree 2p, this procedure can be implemented to obtain the cor-

responding polynomial solutions of ODE (3.5)- if any exists - for the above choices of

parameters c, δ.
13



4 Comparison with other software packages

Maple has two available options that can be used to find polynomial solutions of differen-

tial equations with polynomial coefficients, namely the command polysols in the package

DEtools and the command PolynomialSolution in the package LinearFunctionalSystems.

Both these commands can only find polynomial solutions if their existence has already

been determined but are unable to handle the existence question of polynomial solutions of

differential equations with polynomial coefficients. Hence these are not suitable to study

polynomial solutions of differential equations with arbitrary parameters, where the poly-

nomial solutions may exist for some values of parameters; this deficiency is highlighted

below.

Using the Maple commands polysols or PolynomialSolution for the ODE (3.3)

x3 d
2y

dx2
+ a

(
x2 − 1

) dy
dx

+ (ϵ x+ f) y = 0

returns no polynomial solution. However, after fixing those values of a, ϵ, f for which there

is a solution of a given degree n, the Maple commands polysols or PolynomialSolution can

find the corresponding polynomial solution.

The algorithmic procedure we presented here improves this deficiency in available

Maple options as summarized below.

Given an ODE (with arbitrary parameters) having polynomial coefficients of any degree,

the algorithm procedure of this paper

• Takes input as n which is the degree of desired polynomial solution.

• For this n,

– it first finds the conditions on parameters for which polynomial solutions exist

– and then it determines the corresponding polynomial solutions.

Hence it significantly improves upon the existing Maple commands for finding polyno-

mial solutions of ODEs (with arbitrary parameters) having polynomial coefficients. In

case of ODEs without arbitrary parameters it is as good as the existing Maple options.

To our knowledge, there are no options available in Mathematica or Matlab that can

treat the question of finding polynomial solutions of differential equations (with arbitrary

parameters) having polynomial coefficients in as general manner as our algorithm does.

Acknowledgments

The authors thank King Fahd University of Petroleum & Minerals for its support and

excellent research facilities.

14



References

[1] Abramov S A and Kvashenko K Yu 1991, Fast algorithms to search for the rational
solutions of linear differential equations with polynomial coefficients. ISSAC’91. New
York, 267-270

[2] S.A. Abramov S A, Bronstein M and Petkovsek M 1995 On polynomial solutions of
linear operator equations. ISSAC’95. ACM Press, 290–296

[3] H. Azad, A. Laradji and M. T. Mustafa 2011 Polynomial solutions of differential
equations. Advances in Difference Equations 2011:58 (doi:10.1186/1687-1847-2011-
58)
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