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Département de mathmatiques et génie industriel

École Polytechnique de Montréal
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Montréal (Québec) Canada H3C 3A7
slim.belhaiza@gerad.ca

PIERRE HANSEN
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This paper presents two new results on the enumeration of all extreme equilibria of the
sequence form of a two person extensive game. The sequence form of an extensive game
is expressed, for the first time to our knowledge, as a parametric linear 0 − 1 program.
Considering Ext(P ) as the set of all of the sequence form extreme Nash equilibria and
Ext(Q) as the set of all the parametric linear 0 − 1 program extreme points, we show
that Ext(P ) ⊆ Ext(Q). Using exact arithmetics classes, the algorithm EχMIP Belhaiza
(2002); Audet et al. (2006) is extended to enumerate all elements of Ext(Q). A small
procedure is then applied in order to obtain all elements of Ext(P ).

Keywords: Sequence form; extensive game; Nash equilibrium; extreme equilibrium; enu-
meration; EχMIP algorithm.

1. Introduction

Games have been described and represented in different forms. The extensive form
and the strategic (normal) form are the most important forms of games. One goal of
game theorists is to try to predict the way a game will be played by computing an
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equilibrium or by enumerating all of its extreme equilibria. In this scope, previous
work (Belhaiza (2002), Audet et al. (2006)) studied the question of complete enu-
meration of extreme equilibria for strategic form games, i.e. bimatrix and polyma-
trix games. The extensive form is known to be the most richly structured way to
describe game situations. The standard definition of an extensive game is due to
Kuhn (Kuhn, 1953). An extensive form game is usually represented by a finite tree
where the players moves are represented by branches (edges).

Computing equilibrium for an extensive game has generally been achieved
through its conversion to strategic form. Each combination of moves of a player in
the extensive form is then represented by a strategy. To avoid exponential increase
of the game’s description and to reduce the complexity introduced by this conver-
sion, Wilson (1972) and Koller and Megiddo (1996) propose computations that use
mixed strategies with small support. Romanovski (1962), Selten (1988), Koller and
Megiddo (1992) and von Stengel (1996) use a sequence form approach in which
pure strategies are replaced by move sequences.

This work introduces a new mixed 0−1 parametrized formulation of an extensive
game, and extends the EχMIP algorithm for strategic form games (Audet et al.
(2006)) to extensive form games. This formulation is based on the sequence form of
an extensive game. The paper is divided as follows. Section 2 presents extensive form
games in both their strategic form and sequence form representations. Section 3
details the new mixed 0− 1 parametrized formulation. The new implementation of
the EχMIP algorithm is described in Sec. 4 and illustrated on some test problems.
For one of the examples, the sequence form approach allows the identification of a
subgame perfect equilibrium.

2. Extensive Form Games

In an extensive game, game states are represented using tree nodes. The root node
indicates the beginning of the game and each leaf (terminal node) indicates the end
of the game. At the end of the game, each player receives a payoff. In such a game
tree, the nonterminal nodes are considered as the decision nodes and the player’s
moves are attributed to the outgoing branches (edges) of the decision node. As
some events are determined by chance, a node where the next branch is determined
by a random mechanism is called a chance node. Hence, each possible sequence of
moves is represented by a path from the root to one of the terminal nodes. When
the game is played, the path that represents the sequence of moves of the players
is commonly called path of play.

Kuhn (1953) introduced a partition of the decision nodes into information sets.
Considering all nodes in an information set as nodes belonging to the same player
and having the same moves, a deciding player knows only the information set but
not the particular node he is at.

In a n-person extensive game, each nonterminal node has a player label in the
set {0, 1, 2, . . . , n} and nodes with a 0 label are called chance nodes. Thus, the nodes
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with the player-label i define the set of nodes controlled by player i. Hence, and
following Kuhn’s (Kuhn, 1953) partition, each node controlled by a player has a
second label indicating the information set that the player would consider if the
path of play reaches this node. Furthermore, each possible move at a node controlled
by a player has a move label. Considering any pair of nodes k and l that have the
same player and information set labels, for each alternative at the node k there
must be exactly one alternative representing the same move at node l.

It is also generally assumed that all players have perfect recall in an extensive
game. This last condition means that each deciding player remembers all the infor-
mation he knew earlier in the game, including his past moves. Myerson (1997) gives
a more detailed expression to this perfect recall condition.

In a game tree, a subgame is defined as a subtree including all information sets
that contain a node of the subtree. Extensive game equilibria can recursively be
found by considering subgames. However, in this scope a distinction has to be made
between games with perfect information and games with imperfect information. In a
perfect information game, each information set is a singleton and each node is a root
of a subgame, i.e. no two nodes have the same information set. Backward induction
can then be used to compute an equilibrium for a game with perfect information.

2.1. Strategic form representation

For each player i, the set of information sets is denoted Hi. The information sets
are denoted by h and the set of moves at h by Ch. Nash equilibria of an extensive
game are generally defined as equilibria of its strategic form, in particular for games
without subgames.

In an extensive game, a pure strategy of player i is defined as a deterministic
move at each information set. Thus, a pure strategy is an element of Πh∈HiCh.
Moves at information sets that cannot be reached due to an earlier own move are
identified in the reduced strategic form.

A player may also have parallel information sets that can not be distinguished by
his own earlier moves. This happens for example when a player receives information
about an earlier move by another player. The reduced strategic form is generally
exponential in the game tree size and this has limited the use of extensive games.

By applying the Lemke-Howson algorithm to the strategic form of an extensive
game, Wilson (1972) shows that the number of pure strategies can be large during
the computation. Koller and Megiddo (1996) show that by introducing a system
of linear equations for realization weights of the game tree leaves and by using a
basis crashing subroutine, a small support of the computed mixed strategies can be
maintained.

Moreover, while the best response subroutine in Wilson’s algorithm (Wilson,
1972) requires perfect recall, Koller and Megiddo (1996) propose a method to enu-
merate small supports in a way that can be extended to extensive games without
perfect recall.
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Fig. 1. Two person extensive game. (von Stengel et al. (2002))

Figure 1 illustrates a two person extensive game taken from von Stengel
et al. (2002). Player 1 plays once or twice while player 2 plays at most once. For
his first move, player 1 has two alternatives L or R. If player 1 chooses to play L at
his first move, player 2 will have two alternatives l or r. If player 2 decides to play l

or r, player 1 will have two other alternatives S or T . If player 1 decides to play R

at his first play, the game ends and player 1 receives 3 as final payoff while player
2 receives 4 as final payoff. In Fig. 1, the pure strategies of player 1 are the move
combinations 〈L, S〉, 〈L, T 〉, 〈R, S〉 and 〈R, T 〉. It is possible to replace 〈R, S〉 and
〈R, T 〉 by a single reduced strategy that represents the top row of the subsequent
strategic form. Hence, the reduced strategic form of this game is

Ar =


3 3

0 6
2 5


 Br =


4 4

1 0
0 2


 .

By applying the EχMIP algorithm (Belhaiza (2002), Audet et al. (2006)) to this
reduced strategic form, three extreme equilibria are enumerated. x1 and x2 represent
the vectors of mixed strategies of players 1 and 2, while α and β correspond to the
payoffs of the players.

This game has two extreme equilibria Eq1 and Eq2 which are not subgame
perfect. These restrictions to the subgame starting at player 2’s node define no
equilibria to this subgame.

Table 1. Reduced strategic form Extreme
Nash Equilibria.

Eq. x1 x2 α1 α2

1 1 0 0 2/3 1/3 3 4
2 1 0 0 1 0 3 4
3 0 2/3 1/3 1/3 2/3 4 2/3
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Elimination of all redundant strategies leads to a full reduced strategic represen-
tation of the extensive game. Furthermore, elimination of all strongly dominated
strategies yields a residual strategic game easier to solve in order to compute all
extreme equilibria.

2.2. Sequence form representation

The use of sequences of moves instead of pure strategies is also possible in order to
compute equilibria for extensive form games. As the extensive game is represented
by a tree, there exists a unique path linking the root node to any node of such a
tree. This path defines a sequence of moves for player i. Assuming that each player
i has perfect recall means that each pair of nodes in an information set h in Hi

correspond to the same sequence for player i.
In most papers, the sequence of moves leading to h is denoted σh and the set

of move sequences is denoted Si for each player i. Any sequence of moves σ ∈ Si

can either be equal to the empty sequence ∅ or only given by its last move at the
information set h ∈ Hi, which means that σ = σhc. This leads to the following
definition

Si = {∅} ∪ {σhc | h ∈ Hi, c ∈ Ch}.
Following this definition, each player will have a number of sequences that does

not exceed the number of nodes in the tree. As detailed by von Stengel (1996, 2002),
the sequence form of an extensive game is similar to its strategic form reduction.
The only difference between these two conversions is that the sequence form uses
sequences instead of pure strategies which leads to a more compact description of
the original game.

3. Mixed 0 − 1 Formulation

For a given player i, a behavior strategy β is obtained by probabilities β(c) for his
moves c ∈ Ch such that β(c) ≥ 0 and

∑
c∈Ch

β(c) = 1 for each h ∈ Hi. Behavior
strategy’s definition can be extended to the sequences σ ∈ Si simply by the following
formulation

β [c] =
∏
c∈σ

β(c).

In this context, a pure strategy π for a given player is a kind of behavior strategy
with π(c) ∈ {0, 1} for all moves c, which means that π [σ] ∈ {0, 1} for each σ ∈ Si.
Thus, a mixed strategy µ corresponds to a probability µ(π) to every pure strategy
π of a player i. The realization probabilities of playing the sequences σ ∈ Si are
defined as follows

µ [σ] =
∑
∀π

µ(π)π [σ] .

For a player i, a realization plan of µ is then denoted x(σ) = µ [σ] for σ ∈ Si.
For a given player i, xi is the realization plan of a mixed strategy if and only if the
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following conditions are satisfied

x(∅) = 1,∑
c∈Ch

x(σhc) = x(σh), h ∈ Hi,

x(σ) ≥ 0, ∀σ ∈ Si.

Koller and Megiddo (1992) refer to these conditions using realization probabilities
of the game tree. Denoting xi = (xσ)σ∈Si , these conditions can be reformulated for
each player i as follows

xi ≥ 0, (1)

Eixi = ei, (2)

where Ei is a well chosen matrix and ei = (1, 0 . . . , 0)t, both with 1 + |Hi| rows.
In the example illustrated by Fig. 1, the two following payoff matrices A and B

give the different payoffs for each player considering his set of sequences:

A =


3

0 6
2 5


 and B =


4

1 0
0 2


 .

Hence, the sets of sequences are respectively S1 = {∅, L, R, LS, LT} and S2 =
{∅, l, r}. Following conditions (1) and (2), E1, E2, e1 and e2 are written as follows

E1 =


 1
−1 1 1

−1 1 1


 , e1 =


1

0
0


 , E2 =

[
1

−1 1 1

]
, e2 =

[
1
0

]

Koller and Megiddo (1992) show that two mixed strategies µ and µ′ of player
i are realization equivalent if and only if they have the same realization plan, i.e.
µ[σ] = µ′[σ] for all σ ∈ Si.

Moreover, Kuhn (1953) show that for a player with perfect recall, any mixed
strategy is realization equivalent to a behavioral strategy.

Furthermore, Romanovskii (1962) and von Stengel (1996) demonstrate that the
equilibria of a two person game in extensive form with perfect recall are simultane-
ous solutions of the following pair of parametrized linear programs

max
x1

xt
1Ax2 and max

x2
xt

1Bx2 (3)

s.t. E1x1 = e1, s.t E2x2 = e2,

x1 ≥ 0, x2 ≥ 0.

Where E1 and E2 are matrices with all elements equal to 1, 0 or −1. Each
matrix E1 or E2, have as many columns as the number of sequences of play and
as many lines as the number of linked sequences sets, for the corresponding player.
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e1 and e2 are single columns with the same number of lines as E1 and E2, with the
first element equal to 1 and all other elements equal to 0.

The dual formulations of linear programs (3) are expressed as follows

min
α1

et
1α1 and min

α2
et
2α2 (4)

s.t. Et
1α ≥ Ax2, s.t. αt

2E2 ≥ xt
1B.

The complementarity constraints obtained from (3) and (4) are

xt
1(E

t
1α1 − Ax2) = 0 and (αt

2E2 − xt
1B)x2 = 0. (5)

Using these complementarity conditions, von Stengel et al. (2002) define an algo-
rithm able to compute normal form perfect equilibria for two-person games.

By introducing two binary vectors u1 and u2 as detailed in Audet et al. (2006),
with u1 and u2 having as many lines as the number of sequences of the corresponding
player, the complementarity conditions can be linearized as follows, with (3) and
(4) satisfied

xt
1(E

t
1α − Ax2) = 0 ⇔ x1 + u1 ≤ 11,

Et
1α − Ax2 ≤ L1u1,

(6)

and

(αt
2E2 − xtB)x2 = 0 ⇔ x2 + u2 ≤ 11,

αt
2E2 − xt

1B ≤ L2u2.
(7)

where 11 is a vector with all elements equal to one, and L1 and L2 are small scalars
equal to the difference between the largest and the least element of each payoff
matrix, as described in Audet et al. (2006). On one hand, observe that for any
player i, if its ith binary variable is equal to 1 then its ith continuous variable is
equal to 0 and the complementary slackness condition associated is satisfied. On the
other hand, if its ith binary variable is equal to 0 then the complementary slackness
condition associated is also satisfied.

We propose to achieve the enumeration of all extreme equilibria of a two-persons
extensive game by enumerating all extreme points of a set Q defined by the following
conditions

E1x1 = e1, E2x2 = e2,

Et
1α1 ≥ Ax2, αt

2E2 ≥ xt
1B,

x1 + u1 ≤ 11, x2 + u2 ≤ 11,

Et
1α − Ax2 ≤ L1u1, αt

2E2 − xt
1B ≤ L2u2,

x1 ≥ 0, x2 ≥ 0,

u1 ∈ {0, 1} u2 ∈ {0, 1} .

(8)

Let n1 and n2 be the number of sequences of players 1 and 2, respectively. It
follows that each binary combination of u1 and u2 defines a polytope and that Q

is the set of all these disjoint polytopes.
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Theorem 1. Given a two-person extensive game, let the set of all of its equilibria be
P = {X = (x1, x2) : (x1, x2) is an equilibrium} and Ext(P ) the set of its extreme
equilibria.

Let Q be the set of the solutions to conditions (8)and Ext(Q) the set of the
extreme points of the polytopes of Q.

Then,

P = Projx(Q) and Ext(P ) ⊆ Projx(Ext(Q)).

Hence, the projection of Q on the x-space yields P , any element of P defines at
least an element of Q and any element of Ext(P ) can be obtained by a projection
of an element of Ext(Q).

Proof. Romanovski (1962) and von Stengel (1996) show that any element X =
(x1, x2) of P is such that x1 and x2 are simultaneous optimal solutions of the
pair of problems (3). We then defined the dual variables α and β in the lin-
ear programs (4) and introduced the binary variables u1 and u2 in order to
satisfy the complementary slackness conditions (6) and (7). It means that any
element of P is the projection over the x-space of at least one element of Q,
thus P ⊆ Projx(Q). It also implies that the projection of any element of Q

over the x-space is an equilibrium of this sequence form, which means that
Projx(Q) ⊆ P . Then, Projx(Q) = P . Furthermore, Ext(P ) ⊆ P implies that
Ext(P ) ⊆ Projx(Q).

Moreover, any element of Ext(P ) is an equilibrium and can not be expressed as
a convex combination of other equilibria. Suppose that an element X ∈ Ext(P ) is
the projection of q = (X, α, u) ∈ Q, such that q /∈ Ext(Q). Then, q can be expressed
as a convex combination of at least two elements of Ext(Q): q =

∑
i λiqi, such that

∀i : qi = (X i, αi, ui), qi ∈ Ext(Q), λi > 0 and
∑

λi = 1.
Then, q = (

∑
i λiX i,

∑
i λiαi,

∑
i λiui) = (X, α, u). Which means that X =∑

i λiX i, with ∀i: X i = (xi
1, x

i
2) ∈ P . Knowing that X ∈ Ext(P ), we obtain

X i = X , ∀i. Hence, we may conclude that any X ∈ Ext(P ) is also the projection
of at least one element of Ext(Q). Thus Ext(P ) ⊆ Projx(Ext(Q)).

At this point, one can wonder if the projection on the x-space of every
extreme point of Q is an extreme equilibrium of the sequence form of a 2-person
extensive game. Two small examples in Sec. 4 illustrate that the answer to this
question is no: it is possible that the inclusion Ext(P ) ⊂ Projx(Ext(Q)) is
strict.

The EχMIP algorithm (Belhaiza (2002), Audet et al. (2006)) can be applied
to the mixed 0 − 1 program subject to the conditions (8) associated to a sequence
form of a 2-person extensive game, in order to compute all its extreme points. The
mixed 0 − 1 program could have any linear objective function of the variables α1,
α2, x1, x2, u,1 and u2. Typically we use the objective function α1

1 + α1
2.
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By applying this new formulation to the game illustrated in Fig. 1, the following
mixed 0 − 1 program is obtained:

max
X,α,u

α1
1 + α1

2

s.t. x1
1 = 1, x1

2 = 1,

−x1
1 + x2

1 + x3
1 = 0, −x1

2 + x2
2 + x3

2 = 0,

−x2
1 + x4

1 + x5
1 = 0,

−α1
1 + α2

1 ≤ 0, −α1
2 + α2

2 + 4x3
1 ≤ 0,

−α2
1 + α3

1 ≤ 0, −α2
2 + x4

1 ≤ 0,

−α2
1 + 3x1

2 ≤ 0, −α2
2 + 2x5

1 ≤ 0,

−α3
1 + 6x3

2 ≤ 0,

−α3
1 + 2x2

2 + 5x3
2 ≤ 0,

x1
1 + u1

1 ≤ 1, x1
2 + u1

2 ≤ 1,

x2
1 + u2

1 ≤ 1, x2
2 + u2

2 ≤ 1,

x3
1 + u3

1 ≤ 1, x3
2 + u3

2 ≤ 1,

x4
1 + u4

1 ≤ 1,

x5
1 + u5

1 ≤ 1,

α1
1 − α2

1 ≤ 6u1
1, α1

2 − α2
1 − 4x3

1 ≤ 4u1
2,

α2
1 − α3

1 ≤ 6u2
1, α2

2 − x4
1 ≤ 4u2

2,

α2
1 − 3x1

2 ≤ 6u3
1, α2

2 − 2x5
1 ≤ 4u3

2,

α3
1 − 6x3

2 ≤ 6u4
1,

α3
1 − 2x2

2 − 5x3
2 ≤ 6u5

1,

x1 ≥ 0, x2 ≥ 0,

u1 and u2 binary vectors.

4. EχMIP in Exact Arithmetics

A new version of the EχMIP algorithm Belhaiza (2002), Audet et al. (2006) was
implemented in C++. While the former version used Cplex, this new version uses
new exact arithmetic classes. The algorithm explores a binary search tree obtained
by forcing in each step one of the inequality constraints in a primal or dual LP to
be tight, as required by the complementary slackness condition.

4.1. EχMIP implementation in exact arithmetics

In our implementation of exact arithmetic, data is always stored using rationals. A
rational is a pair of integers, a numerator and a denominator. The exact arithmetic
classes consist of, a BigInteger class, a Rational class, a Simplex class and a Node
class.
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The BigInteger class defines the new type of integers to be used during the
enumeration of the extreme equilibria. This class also overloads the elementary
operators for these big integers. During the implementation of EχMIP we observed
that it may happen, that the numerator or denominator of a rational exceeds the
value of the largest representable integer INTMAX. There is no doubt that the
use of this class increases the overall enumeration time. However, the use of exact
arithmetics represented a very interesting challenge which made computing time
not be considered as the main objective of this work.

The Rational class is based on the Biginteger class. A rational consists of two
big integers, a numerator and a denominator. After overloading the elementary
operations for these rationals, a Greatest Common denominator function is applied.

The Simplex class defines a Dictionary (Chvátal, 1998) and the set of simplex
algorithm (Dantzig, 1951) operations that will be applied to this dictionary in order
to find an extreme equilibrium. A dictionary contains an array of rationals. These
rationals represent the coefficients of the variables in the dictionary.

The Node class defines a framework for the algorithm EχMIP. Each node con-
tains the current dictionary and a pointer to its father. This class contains branching
methods that permits to obtain a certain number of sons nodes from a father node.

In general, the EχMIP algorithm can now be used in order to enumerate all
extreme equilibria of a bimatrix game, a three person polymatrix game, or the
sequence form of a two person extensive game. The XGame Solver software
uses this implementation of the EχMIP algorithm and is available on its site
http://www.XGame-Solver.net for free download.

4.2. EχMIP algorithm

The EχMIP algorithm explores a tree. This tree is constructed from a root node
R, containing the initial mixed 0−1 program, by principal branching on the binary
variables u and by secondary branching on the continuous variables x. A current
node C contains a problem to be solved using the Simplex algorithm (Dantzig,
1951).

Once a solution is found, the extreme point is stored and a secondary branching
is made to check if the binary combination of variables u could give other extreme
points. Then, from the father node on the principal tree, a principal branching is
added in order to explore other combinations of binary variables. The algorithm
can then be formally stated.

Step a. Initialization.
Let

— P ; Initial mixed 0 − 1 linear problem.
— X ; Set of P ’s continuous variables.
— U ; Set of P ’s binary variables.
— E = ∅; Set of extreme equilibria.
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— N = 0; Depth level in the principal tree.
— R; Principal tree root node.
— C; Current node.
— xk

i ; Continuous variable associated to player i, (i = 1, 2), kth sequence.
— uk

i ; Binary variable associated to player i (i = 1, 2), kth sequence.

Take C = R and go to step b.

Step b. Solving and Memorizing.
If N ≤ |X |, solve current node problem.
If the problem is infeasible, Go to step d.
Else, let ê be the solution obtained; If ê /∈ E, add ê to E. Go to step c.

Step c. Secondary Branching.
If the current node C belongs to the principal tree:

— Fix binary variables vector û (û ∈ U) at its value in ê.
— For all xk

i ∈ X , such that x̂k
i > 0, Add the branch xk

i = 0 and Go to step b.

Step d. Principal Branching.
If the current node belongs to the principal tree, no extreme point could be found
from this node or its sons.
Else, return to the father node in the principal tree and choose a binary variable
uk

i ∈ U , on which there is no branching in the preceding nodes:
Let p = N + 1,

If p ≤ |X | set N = p:

— Add the branch uk
i = 0, Go to step b.

— Add the branch uk
i = 1, Go to step b.

Else, Go to step e.

Step e. End.
The set |E| contains all extreme points of the mixed 0 − 1 program.

In our paper on the Enumeration of all Extreme Equilibria for Bimatrix and
Polymatix games, Audet et al. (2006), we prove that the EχMIP algorithm enumer-
ates all the extreme points of the associated mixed 0−1 programs. In fact, by capi-
talizing on the Simplex algorithm (Dantzig, 1951) propriety of always returning an
extreme point, if there is an optimal and bounded solution, EχMIP permits to com-
pute all the extreme points satisfying the complementary slackness conditions (5).

By principal branching, Eχ-MIP explores all binary variables combinations
involved in one or more extreme points and by branching on binary variables till
maximum depth equals the overall number of strategies involved in the game.

By secondary branching, EχMIP enumerates all extreme points that could be
obtained from a binary variables combination û by fixing the combination of binary
variables û and by adding branches xk

i = 0. Therefore, this branching enumerates
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from û all extreme equilibria where some complementary slackness conditions are
satisfied from both sides, xk

i and uk
i = 0.

The algorithm explores all possible ways to satisfy complementary conditions
and if ê is an extreme point, there exists necessarily a path in the tree generated
by Eχ-MIP leading to ê.

4.3. EχMIP on some examples

By applying the EχMIP algorithm to von Stengel’s (von Stengel et al. (2002))
game illustrated in Fig. 1, three extreme equilibria are found 2. One can notice
that equilibria 1 and 3 have the same vectors X but have different values of α1 and
α2.

The EχMIP algorithm is also applied to the example in Fig. 2.
The reduced strategic form of this game yields the pure strategies 〈T 〉, 〈M〉,

〈BB〉, 〈BT 〉 for player 1 and 〈R〉, 〈LR〉, 〈LL〉 for player 2. The reduced payoff

Table 2. Extreme points of Q: von Stengel (von Stengel et al. (2002)).

Eq. X x1 x2 α1 α2

1 1 0 1 0 0 1 1 0 3 3 2 4 0
2 1 1 0 2/3 1/3 1 1/3 2/3 4 4 4 2/3 2/3
3 = X1 1 0 1 0 0 1 1 0 3 3 3 4 0
4 1 0 1 0 0 1 2/3 1/3 3 3 3 4 0

M

R

R

B

T

L

L

R

R

L

L

1.1 2.1

1.2
2.2

2 , 2

3 , 3

1 , 1

4 , 4

4 , 4

4 , 4

4 , 4

B

T

0 , 0

Fig. 2. Kohlberg and Mertens.
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matrices are

Ar =




2 2 2
0 3 3
1 −4 4
1 4 −4


 Br =




2 2 2
0 3 3
1 4 −4
1 −4 4


 .

By applying the EχMIP algorithm (Belhaiza (2002), Audet et al. (2006)) to
this reduced strategic form, seven extreme Nash equilibria are enumerated.

While considering the sequence form of this game, the sequences of player
1 are S1 = {∅, T, M, B, BB, BT} and the sequences of player 2 are S2 =
(∅, R, L, LR, LL). Ten extreme points are enumerated for the 0 − 1 mixed integer
program associated to the sequence form of this game.

Equilibria 4 and 5 correspond to the same extreme equilibrium but have different
vectors of dual variables. Moreover, the vector of mixed strategies X2 of equilibrium
2 could be obtained by the convex combination (1

2 , 1
2 ) of those of equilibria 1 and 3.

Equilibrium 2 is enumerated as an extreme point of the mixed integer formula-
tion because it has a different vector of dual variables α1. However Proj(x)(q2) /∈
Ext(P ).

The additional information, present in Table 4 but not in Table 3 can be used for
further equilibria refinement. Equilibrium 2 is found to be subgame perfect. Player
2 plays the mixed strategy 1/2− 1/2 between L and R, in the “matching pennies”

Table 3. Reduced strategic form extreme Nash equilibria
(Kohlberg and Mertens (1986)).

Eq. x1 x2 α1 α2

1 0 1 0 0 0 7/8 1/8 3 3
2 0 1 0 0 0 1/8 7/8 3 3
3 1 0 0 0 1 0 0 2 2
4 1 0 0 0 2/3 0 1/3 2 2
5 1 0 0 0 2/3 1/3 0 2 2
6 1 0 0 0 1/3 13/24 1/8 2 2
7 1 0 0 0 1/3 1/8 13/24 2 2

Table 4. Extreme points of Q: Kohlberg and Mertens (Kohlberg and Mertens (1986)).

Eq. X x1 x2 α1 α2

1 1 0 1 0 0 0 1 0 1 7/8 1/8 3 3 3 3 3 0

2 = 1
2
(X1 + X3) 1 0 1 0 0 0 1 0 1 1/2 1/2 3 3 0 3 3 0

3 1 0 1 0 0 0 1 0 1 1/8 7/8 3 3 3 3 3 0
4 1 1 0 0 0 0 1 1 0 0 0 2 2 0 2 0 0
5 = X4 1 1 0 0 0 0 1 1 0 0 0 2 2 1 2 0 0
6 1 1 0 0 0 0 1 2/3 1/3 1/3 0 2 2 4/3 2 0 0
7 1 1 0 0 0 0 1 2/3 1/3 0 1/3 2 2 4/3 2 0 0
8 1 1 0 0 0 0 1 1/3 2/3 13/24 1/8 2 2 5/3 2 0 0

9 = 1
2
(X8 + X10) 1 1 0 0 0 0 1 1/3 2/3 1/3 1/3 2 2 0 2 0 0

10 1 1 0 0 0 0 1 1/3 2/3 1/8 13/24 2 2 5/3 2 0 0
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subgame. This choice correponds to the unique equilibrium of this subgame. The
reason is that in this equilibrium, the dual variable for the second information set
1.2 of player 1 has value 0 (which is the payoff in the subgame) because both moves
T and B of player 1 at this information set, corresponding to the sequences BT

and BB, have tight constraints relative to the dual variable. This is due to one
of the binary choices of the algorithm. This subgame perfect equilibrium was not
identified while solving the strategic form.

Furthermore, the mixed strategies 7/8 − 1/8 for L and R in the equilibria q1

and q3 give player 1 an expected payoff of 3 at his second information set 1.2.
This produces a tight constraint for only one of the sequences BT or BB, and the
payoff 3 also makes player 1 indifferent between B (which is not chosen) and the
equilibrium choice M at this first information set 1.1. This is the reason why this
defines an extreme equilibrium. Similar observations hold for equilibrium q9 when
compared to equilibria q8 and q10.

This example shows that when using the sequence form of the extensive game,
extreme subgame perfect equilibria can be found while they might be ignored when
only strategic form is used. The sequence form provides more information about
the extensive game than the strategic form.

5. Discussion

This work contains a survey of the main results on equilibria computation for
games in extensive form. The strategic form and the sequence form conversions
were described and a mixed 0− 1 formulation of the sequence form of a two person
extensive game was presented for the first time. This work has shown that the
algorithm EχMIP Audet et al. (2006) can easily be applied to the strategic form
and to the sequence form representations of a two person extensive game in order
to enumerate all its extreme Nash equilibria. Furthermore, the solution under the
sequence form may generate some subgame perfect equilibria that would be missed
under the strategic form.
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