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a b s t r a c t

In this paper, we introduce the notion of set of ϵ-proper equilibria for a bimatrix game. We define a
0–1 mixed quadratic program to generate a sequence of ϵ-proper Nash equilibria and show that the
optimization results provide reliable indications on strategy profiles that could be used to generate proper
equilibria analytically. This approach can be generalized in order to find at least one proper equilibrium
for any bimatrix game. Finally, we define another 0–1 mixed quadratic program to identify non-proper
extreme Nash equilibria.

Crown Copyright© 2011 Published by Elsevier Ltd. All rights reserved.

r é s u m é

Dans cet article nous établissons la définition de l’ensemble d’équilibres ϵ-propres pour un jeu bimatriciel.
Nous définissons un programme quadratique mixte 0–1 afin de générer une séquence d’équilibres
ϵ-propres et de montrer que les résultats de l’optimisation de ce programme permettent d’indiquer
les choix stratégiques succeptibles de générer un ou plusieurs équilibres propres analytiquement. Cette
approche peut être généralisée afin de trouver au moins un équilibre propre pour tout jeu bimatriciel.
Nous définissons aussi un autre programme quadratiquemixte 0–1 afin d’identifier les équilibres de Nash
non-propres.

Crown Copyright© 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

A bimatrix game is a strategic confrontation of two players, I and
II. A bimatrix game G(A, B) is defined by a pair of n × m payoff
matrices A and B. Each player has a finite number of actions to
choose from. The deterministic choice of an action is called pure
strategy. Player I has to choose between n pure strategies, while
player II has to choose betweenm pure strategies.

Each player attempts to maximize his own payoff by selecting
a probability vector over his set of pure strategies. These vectors
are combinations of pure strategies, called mixed strategies, and
represented by probability vectors x1 ∈ Rn and x2 ∈ Rm. Hence,
player I’s payoff is xt1Ax2 and player II’s payoff is xt1Bx2.

✩ The material in this paper was partially presented at the 12th Annual
Congress of the French National Society of Operations Research and Decision
Science (ROADEF 2011), March 2-4, 2011, Saint-Etienne, France. This paper was
recommended for publication in revised formunder the direction of the Editor, Berç
Rüstem.

E-mail addresses: slimb@kfupm.edu.sa, slim.belhaiza@gerad.ca (S. Belhaiza),
charles.audet@gerad.ca (C. Audet), pierre.hansen@gerad.ca (P. Hansen).
1 Tel.: +966 38601054; fax: +966 38602340.
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A Nash equilibrium is defined as a profile of strategies such that
simultaneously, player I maximizes his payoff given the strategic
choice of player II and player II maximizes his payoff given the
strategic choice of player I. A number of papers have addressed
the problem of enumeration of all Nash extreme equilibria for
bimatrix games (see Audet, Belhaiza, & Hansen, 2006; Audet,
Hansen, Jaumard, & Savard, 2001).

When confronted with a situation where a large number of
equilibria can be considered to solve a game, decision makers
would have to refine their choices using some other rational
concepts in addition to the concept of Nash equilibrium. Perfect
and Proper equilibria are two refinements of the concept of Nash
equilibrium based on the idea that a reasonable equilibrium
should be stable against slight perturbations in the equilibrium
strategies. It is alsowell known that a subgame perfect equilibrium
for a two-person extensive game corresponds to a proper
equilibrium for its corresponding reduced normal form bimatrix
game representation. One can find a short review of these concepts
at the end of this paper.

Lack of analytical and numerical tools that can be used to
generate such equilibria with robustness properties made these
refinements rarely used in practice. This paper tries to answer
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the following question: How can we automatically detect proper
extreme Nash equilibria?

Section 2 recalls the definition of proper refinement concept
and introduces the definition of the set of ϵ-proper equilibria.
Section 3 proposes a mixed 0–1 quadratic program in order to
detect ϵ-proper equilibria. This section details different cases
of convergence results and discusses a theoretical procedure to
generate proper equilibria and conclude on the non-properness of
an equilibrium.

2. Set of ϵ-proper equilibria

The main idea behind the proper refinement of Nash equilibria
is that a reasonable player would try harder to avoid important
mistakes than he or she would try to avoid small ones. While any
proper equilibrium profile is perfect, a perfect equilibrium profile
could be non-proper. Let us note Ai and Ah respectively as the ith
and hth rows of the payoff matrix A. Similarly, we note Bj and Bl
respectively as the jth and lth rows of the payoff matrix B.

Definition 2.1. A bimatrix game profile (x1, x2) is said to be
ϵ-proper equilibrium, for some ϵ > 0, if the following conditions
are satisfied:

if Aix2 < Ahx2, then x1i ≤ ϵx1h, ∀i, h ∈ {1, 2, . . . , n} , (2.1)

if x1Bj < xk1Bl, then x2j ≤ ϵx2l, ∀j, l ∈ {1, 2, . . . ,m} , (2.2)

x1i > 0, ∀i ∈ {1, 2, . . . , n} ,

x2j > 0, ∀j ∈ {1, 2, . . . ,m} .
(2.3)

To provide a practical tool to identify ϵ-proper equilibria and
non-proper equilibria, for any ϵ ≥ 0 and σ ≥ 0, we introduce
the set

Ωσ
ϵ = {(x1, x2) :

∃u, v such that 1x1 = 1, 1x2 = 1,
σ ≤ x1i, ∀i ∈ {1, 2, . . . , n} ,
σ ≤ x2j, ∀j ∈ {1, 2, . . . ,m} ,

Ahx2 ≤ Aix2 + Luih, ∀i, h ∈ {1, 2, . . . , n} , i ≠ h,
x1i + uih ≤ ϵx1h + 1, ∀i, h ∈ {1, 2, . . . , n} , i ≠ h,
uih + uhi ≤ 1, ∀i, h ∈ {1, 2, . . . , n} , i < h,
uih ∈ {0, 1} , ∀i, h ∈ {1, 2, . . . , n} , i ≠ h,
x1Bl ≤ x1Bj + Lvjl, ∀j, l ∈ {1, 2, . . . ,m} , j ≠ l,
x2j + vjl ≤ ϵx2l + 1, ∀j, l ∈ {1, 2, . . . ,m} , j ≠ l,
vjl + vlj ≤ 1, ∀j, l ∈ {1, 2, . . . ,m} , j < l,
vjl ∈ {0, 1} , ∀j, l ∈ {1, 2, . . . ,m} , j ≠ l}.

While u and v are two binary vectors, the parameter L ∈ R+ is
chosen to be sufficiently large.

The following proposition ensures that each element of Ωσ
ϵ is

an ϵ-proper equilibrium.

Proposition 2.2. If a strategy profile (x1, x2) ∈ Ωσ
ϵ for some ϵ > 0

and σ > 0, then (x1, x2) is an ϵ-proper equilibrium.

Proof. Suppose that (x1, x2) belongs to Ωσ
ϵ , for some ϵ > 0 and

σ > 0. Let i and h be indices in {1, 2, . . . , n} such that i ≠ h. Then
the inequality uih + uhi ≤ 1 ensures that the combination uih = 1
and uhi = 1 is not possible. Furthermore,
• if uih = 0 and uhi = 0 then Ahx2 = Aix2.
• if uih = 1, then ϵx1i ≤ x1i ≤ ϵx1h ≤ x1h implies that x1h ≥ ϵx1i

and uhi = 0, thus Aix2 ≤ Ahx2.

It follows that conditions (2.1) are satisfied. In a similar way,
conditions (2.2) are satisfied using binary variables vjl, for all j, l ∈

{1, 2, . . . ,m} with j ≠ l.
Finally, with 0 < σ ≤ x2j, for all j ∈ {1, 2, . . . ,m}, the

conditions (2.3) are satisfied. �
Conversely, the following proposition ensures that any
ϵ-proper equilibrium belongs to Ωσ

ϵ for all sufficiently small val-
ues of σ .

Proposition 2.3. If a profile (x1, x2) is an ϵ-proper equilibrium for
some ϵ > 0, then there exists a σ̄ > 0 such that (x1, x2) ∈ Ωσ

ϵ for
every 0 ≤ σ ≤ σ̄ .

Proof. If a profile (x1, x2) is an ϵ-proper equilibrium for some
ϵ > 0, conditions (2.1) can be reformulated using binary variables
uih, for all i, h ∈ {1, 2, . . . , n} , i ≠ h:

If

Aix2 < Ahx2,
x1i ≤ ϵx1h,

then


Aix2 ≤ Ahx2 + Luhi,
x1i + uih ≤ ϵx1h + 1,
uhi = 0,
uih = 1.

If

Ahx2 < Aix2,
x1h ≤ ϵx1i,

then


Ahx2 ≤ Aix2 + Luih,
x1h + uhi ≤ ϵx1i + 1,
uih = 0,
uhi = 1.

If

Aix2 = Ahx2,
x1i ≤ 1,
x1h ≤ 1,

then

Aix2 ≤ Ahx2 + Luhi, x1i + uih ≤ ϵx1h + 1,
Ahx2 ≤ Aix2 + Luih, x1h + uhi ≤ ϵx1i + 1,
uhi = 0, uih = 0.

In a similar way, conditions (2.2) can be reformulated using
binary variables vjl, for all j, l ∈ {1, 2, . . . ,m} , j ≠ l.

And finally, conditions (2.3) ensure that there exists a σ̄ > 0,
such that σ̄ ≤ x1i, for all i ∈ {1, 2, . . . , n} and σ̄ ≤ x2j, for all
j ∈ {1, 2, . . . ,m}.

Then, for every σ such that 0 ≤ σ ≤ σ̄ and σ > 0:

σ ≤ x1i, for all i ∈ {1, 2, . . . , n} ,

σ ≤ x2j, for all j ∈ {1, 2, . . . ,m} .

Thus, (x1, x2) ∈ Ωσ
ϵ for every σ , such that 0 ≤ σ ≤ σ̄ and

σ > 0. �

Jansen (1993) and Myerson (1978) define a proper equilibrium
to be the limit of an infinite sequence of ϵk-proper equilibria, with
ϵk converging to zero.

Definition 2.4. An equilibrium (x̂1, x̂2) is said to be proper if there
is a sequence of ϵk-proper equilibria (xk1, x

k
2) such that

lim
k→∞

ϵk = 0 and lim
k→∞

(xk1, x
k
2) = (x̂1, x̂2). (2.4)

The main difficulty in applying this definition is to find a con-
vergent sequence {ϵk}k∈N of positive real numbers making the
sequence


(xk1, x

k
2)

k∈N converge to (x̂1, x̂2), where (xk1, x

k
2) are

ϵk-proper for each k ∈ N. However, since Myerson (1978) showed
that every bimatrix game possesses at least one proper equilib-
rium, we can be sure that such a sequence exists for every bima-
trix game. In Section 3 we will show how such sequences can be
obtained on some examples.

3. Detection of ϵ-proper equilibria

In order to generate such sequence of positive real numbers,
we define a family of parametrized mixed 0–1 quadratic programs
such that their solutions define a sequence of ϵ-proper equilibria,
when the parameter σ converges to 0.

Proposition 3.1. The perfect equilibrium profile (x̂1, x̂2) is a proper
equilibrium if and only if the following 0–1-mixed quadratic program
is feasible for all σ̄ > 0, and if limσ→0+ f (σ ) = 0.
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f (σ ) = min
(x1,x2)∈Ωσ

ϵ ,ϵ
ϵ

s.t. x̂1i − ϵ ≤ x1i ≤ x̂1i + ϵ,
∀i ∈ {1, 2, . . . , n} ,

x̂2j − ϵ ≤ x2j ≤ x̂2j + ϵ,
∀j ∈ {1, 2, . . . ,m} ,

0 ≤ ϵ ≤ 1.

(3.5)

Proof. Let (x1(σ ), x2(σ ), ϵ(σ )) be the optimal solution to (3.5) for
some given perfect equilibrium profile (x̂1, x̂2). Proposition 2.2 en-
sures that (x1(σ ), x2(σ )), is an ϵ(σ )-proper equilibrium. Condi-
tions (2.4)were reformulated using theminimization of ϵ such that

x̂1i − ϵ ≤ x1i ≤ x̂1i + ϵ, ∀i ∈ {1, 2, . . . , n} ,

x̂2j − ϵ ≤ x2j ≤ x̂2j + ϵ, ∀j ∈ {1, 2, . . . ,m} ,

in order to make the ϵ-proper equilibrium converge to (x̂1, x̂2).
Hence, if the mixed 0–1 quadratic program (3.5) is feasible

for all σ , when σ > 0 converges to 0, we can conclude from
Proposition 2.3 that there is always an ϵ-proper equilibrium
(x1, x2) ∈ Ωσ

ϵ .
Moreover, if the perfect equilibrium (x̂1, x̂2) is proper then the

optimal objective function value f (σ ) = ϵ(σ ) should necessarily
converge to 0, when σ > 0 converges to 0, to make the solution
(x1(σ ), x2(σ )) converge to (x̂1, x̂2) at the same time. One can also
notice that f (0) = 0.

Else, if f (σ ) does not converge to 0, when σ > 0 converges to 0,
then such a sequence of (x1(σ ), x2(σ )) ϵ(σ )-proper does not exist,
when ϵ converges to 0. In this case, it is trivial that the equilibrium
point is not proper. �

In conclusion, if f (σ ) converges to 0, when σ > 0 converges
to 0, it is possible to find a sequence of (x1(σ ), x2(σ )) ϵ(σ )-proper
converging to (x̂1, x̂2), when ϵ(σ ) converges to 0.

We use this result by computing the value of f (σ ) for some
small values of σ . The 0–1-mixed quadratic program (3.5) is solved
using the NEW-QP algorithm (Perron, 2005). This algorithm is
a new version of the QP algorithm (Alarie, Audet, Jaumard, &
Savard, 2001). The QP algorithmprovides an ξ -optimal solution for
feasible quadratic programs, where ξ is the precision parameter.
In order to solve the 0–1-mixed quadratic program (3.5) using
NEW-QP, we have written the binary value constraints on the u
and v variables using the quadratic constraints uih − u2

ih = 0 and
vjl − v2

jl = 0. Because of the discrete values taken by these binary
variables, we can be sure that the NEW-QP algorithm provides the
optimal solution to themixed 0–1 quadratic program (3.5). In some
cases, the numerical noise which might appear makes it difficult
to conclude numerically that an equilibrium is proper. Therefore,
it would be risky to use the result provided by the optimization
to certify that an equilibrium is proper. However the result of
the optimization can be used in order to focalize on some sets
of equilibria profiles and analytically find sequences of ϵ-proper
equilibria.

Corollary 3.2. Let (x1(σ ), x2(σ ), ϵ(σ )) be an optimal solution
to (3.5) for some σ > 0. Then (x1(σ ), x2(σ )) is an ϵ(σ )-proper
equilibrium, and if σ ′′ > σ ′ > 0, then ϵ(σ ′′) ≥ ϵ(σ ′) ≥ 0.

Proof. If σ ′′ > σ ′ > 0, the 0–1 mixed quadratic program (3.5) for
σ ′ > 0 is a relaxation of 0–1 mixed quadratic program (3.5) for
σ ′′ > 0. In fact the only difference between these two programs is
in the constraints of Ωσ ′

ϵ and Ωσ ′′

ϵ :

σ ′
≤ x1i, ∀i ∈ {1, 2, . . . , n} ,

σ ′
≤ x2j, ∀j ∈ {1, 2, . . . ,m} ,

and

σ ′′
≤ x1i, ∀i ∈ {1, 2, . . . , n} ,

σ ′′
≤ x2j, ∀j ∈ {1, 2, . . . ,m} .

⇒
σ ′ < σ ′′

≤ x1i, ∀i ∈ {1, 2, . . . , n} ,
σ ′ < σ ′′

≤ x2j, ∀j ∈ {1, 2, . . . ,m} .
Thus, Ωσ ′′

ϵ ⊆ Ωσ ′

ϵ and ϵ(σ ′′) ≥ ϵ(σ ′) ≥ 0. �

There are two possible outcomes when evaluating f (σ ) for
some small values of σ . The first possibility is that f (σ ) appears
to converge to zero. The second possibility is that f (σ ) appears to
be bounded below by some strictly positive value, say ϵ̄.

3.1. Case 1: f (σ ) converges to zero

This numerical result is not enough to conclude on the
properness of the equilibrium profile. However, we can use it
as an indication to find proper equilibria by focusing on some
profiles. In fact, if f (σ ) converges to zero one can conclude that
there exists at least one sequence of ϵ-proper equilibria that is
very close to the equilibrium profile being tested for properness.
We can then analytically find a sequence of ϵ-proper equilibria
that converges to the equilibrium profile. As shown by Myerson
(1997) this can be performed by iteratively satisfying ϵ-proper
equilibrium conditions (Definition 2.1). The following example
shows how this procedure can be applied.

Example 3.3. The following (5 × 5) bimatrix game has 7 extreme
Nash equilibria identified in Table 1.

A = B =


y1 y2 y3 y4 y5

x1 2 4 5 6 7
x2 2 1 0 8 1
x3 2 5 6 0 1
x4 0 2 5 4 7
x5 2 3 6 5 7

 .

We have used the algorithms EχMIP (Audet et al., 2006) to
enumerate all seven extreme Nash equilibria of this game.

This game has four maximal Nash subsets T1 = {1, 2, 6},
T2 = {3, 4} , T3 = {5} and T4 = {7}.

The optimization results in Table 2 indicate that there exist
sequences of ϵ-proper equilibria close to extreme equilibria 3, 5,
6 and 7. We will use the information provided by these extreme
equilibria to analytically generate such sequences.

a. Equilibrium 3
With extreme equilibrium 3 strategy profile player 1 plays only

x3 and player 2 plays only y3. For player 1, a sequence of ϵ-proper
equilibria would then take into account that x3 is his best choice
and the probability of playing x3 should be very close to 1. At the
same time for player 2, a sequence of ϵ-proper equilibria would
then take into account that y3 is his best choice and the probability
of playing y3 should be very close to 1. According to the payoff
matrix, player 1 has to choose between:

Ay =


2y1+ 4y2+ 5y3+ 6y4+ 7y5
2y1+ y2+ 8y4+ y5
2y1+ 5y2+ 6y3+ y5

2y2+ 5y3+ 4y4+ 7y5
2y1+ 3y2+ 6y3+ 5y4+ 7y5

 .

Since player 1 would have to consider x3 as his first best, x5
should be his second best (because y3 is very close to 1). Thus

2y1 + 5y2 + 6y3 + y5 > 2y1 + 3y2 + 6y3 + 5y4 + 7y5
⇒ 2y2 > 5y4 + 7y5.

Therefore, y2 > y4 and y2 > y5. Player 2 should have incentive to
givemore probability to y2 compared to y4 and y5. According to the
payoff matrix, player 2 has to choose between:

xB =


2x1+ 2x2+ 2x3+ 2x5
4x1+ x2+ 5x3+ 2x4+ 3x5
5x1+ 6x3+ 5x4+ 6x5
6x1+ 8x2+ 4x4+ 5x5
7x1+ x2+ x3+ 7x4+ 7x5


t

.
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Table 1
Extreme Nash equilibria for (5 × 5) bimatrix game.

Eq. x y α β

1 0 0 0 0 1 0 0 0 0 1 7 7
2 0 0 0 1 0 0 0 0 0 1 7 7
3 0 0 1 0 0 0 0 1 0 0 6 6
4 0 0 1/6 0 5/6 0 0 1 0 0 6 6
5 0 1 0 0 0 0 0 0 1 0 8 8
6 1 0 0 0 0 0 0 0 0 1 7 7
7 7/8 1/8 0 0 0 0 0 0 3/4 1/4 25/4 25/4
Table 2
Example (5 × 5).

Eq. Perfect Proper ϵ̄ σ̄ Quasi-strong Isolated Regular

1 Yes No 0.2894 5 × 10−3 No No No
2 No No 0.7325 10−3 No No No
3 Yes Yes 0.05627 10−5 No No No
4 Yes No 0.2000 10−6 Yes No No
5 Yes Yes 0.0564 10−5 Yes Yes Yes
6 Yes Yes 0.054 10−5 No No No
7 Yes Yes 0.0776 6 × 10−5 Yes Yes Yes
Since x3 is very close to 1, one can observe that player 2 has
indeed good incentive to prefer y2 to y4 and y5 because the payoff
provided by these strategies are:

4x1 + x2 + 5x3 + 2x4 + 3x5 > 6x1 + 8x2 + 4x4 + 5x5

and

4x1 + x2 + 5x3 + 2x4 + 3x5 > 7x1 + x2 + x3 + 7x4 + 7x5.

In order to comply with the conditions of Definition 2.1, player
2 can play for example: (y1 =

1
2ϵ

2, y2 =
1
2ϵ, y3 = 1−

1
2 (ϵ + ϵ2

+

ϵ3
+ ϵ4), y4 =

1
2ϵ

4, y5 =
1
2ϵ

3).
At the same time, player 1 can play for example:

x1 =
1
2
ϵ2, x2 =

1
2
ϵ4, x3 = 1 −

1
2
(ϵ + ϵ2

+ ϵ3
+ ϵ4),

x4 =
1
2
ϵ3, x5 =

1
2
ϵ


.

It is now made clear that we have a sequence of ϵ-proper
equilibria that converges to the extreme equilibrium 3 when ϵ
converges to 0.

b. Equilibrium 6
The same procedure applied to the extreme equilibrium 6

suggests that one possible sequence of ϵ-proper equilibria that
converges to the extreme equilibrium 6 is:
x1 = 1 −

2
3
(ϵ + ϵ2

+ ϵ3
+ ϵ4), x2 =

2
3
ϵ3, x3 =

2
3
ϵ4,

x4 =
2
3
ϵ2, x5 =

2
3
ϵ


and
y1 =

2
3
ϵ4, y2 =

2
3
ϵ3, y3 = 1 −

2
3
ϵ2, y4 =

2
3
ϵ,

y5 = 1 −
2
3
(ϵ + ϵ2

+ ϵ3
+ ϵ4)


.

These analytical results are confirmed also by the optimization
results presented in Table 2.

Regarding extreme equilibria 5 and 7,we can similarly find such
sequences of ϵ-proper equilibria. Moreover these two extreme
Nash equilibria are found to be regular. Regular equilibria have all
kind of robustness properties including properness. Jansen (1987)
showed that an equilibrium point of a bimatrix game is regular
if and only if it is isolated and quasi-strong. One can find at the
end of this paper a short review of these refinements of the Nash
equilibrium concept.

c. Equilibrium 5
C(x1) = {2} and C(x2) = {4},M(A, x2) = {2} and M(x1, B) =

{4} ⇒ quasi-strong. The determinant of

8

is equal to 8 ≠ 0 ⇒

isolated. This equilibrium is regular, essential, perfect and proper.
d. Equilibrium 7
C(x1) = {1, 2} and C(x2) = {4, 5},M(A, x2) = {1, 2} and

M(x1, B) = {4, 5} ⇒ quasi-strong. The determinant of

6 7
8 1


is

equal to −50 ≠ 0 ⇒ isolated. This equilibrium is also regular,
essential, perfect and proper.

As in Audet, Belhaiza, and Hansen (2010) we have used a pair
of linear programs to conclude on the perfectness of each extreme
equilibrium.

We conclude this example by providing two other sequences
of ϵ-proper equilibria converging to non-extreme equilibria of this
game.

Using the extreme equilibria 3 and 4, if player 1 has to ran-
domize on strategies x3 and x5, in order to comply with the con-
ditions of Definition 2.1 player 2 would have to play such that
2y2 = 5y4 + 7y5. It means that player 2 would be indifferent
between y2 and y4 or between y2 and y5.

The first case is only possible when 4x1+x2+5x3+2x4+3x5 =

6x1 + 8x2 + 4x4 + 5x5 which yields x3 =
2
5x1 +

7
5x2 +

2
5x4 +

2
5x5.

Since x3 + x5 is expected to be very close to 1 one can conclude
that x5 should be very close to 5

7 while x3 should be very close to 2
7 .

Thus player 2 would have to order his best strategies in the follow-
ing order G(y3) > G(y5) > G(y4) > G(y2) > G(y1). This strategic
order is impossible because 2y2 would be less than 5y4 + 7y5.

The second case is only possible when 4x1 + x2 + 5x3 + 2x4 +

3x5 = 7x1 + x2 + x3 +7x4 +7x5 which yields x3 =
3
4x1 +

5
4x4 + x5.

Since x3+x5 is expected to be very close to 1 one can conclude that
x3 and x5 should be very close to 1

2 . Thus, player 2 would have to
order his best strategies in the following order G(y3) > G(y5) =

G(y2) > G(y4) > G(y1). This strategic order is possible when
player 2 plays for example:
y1 =

1
4
ϵ3, y2 =

7
8
ϵ +

5
8
ϵ2,

y3 = 1 −
9
8
ϵ −

7
8
ϵ2

−
1
4
ϵ3, y4 =

1
4
ϵ2, y5 =

1
4
ϵ


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and player 1 plays for example:
x1 =

3
8
ϵ2, x2 =

3
8
ϵ3, x3 =

1
2

−
3
64

ϵ +
3
64

ϵ2
−

3
16

ϵ3,

x4 =
3
8
ϵ, x5 =

1
2

−
21
64

ϵ −
27
64

ϵ2
−

3
16

ϵ3


which converges to the proper equilibrium
x1 = 0, x2 = 0, x3 =

1
2
, x4 = 0, x5 =

1
2


and

(y1 = 0, y2 = 0, y3 = 1, y4 = 0, y5 = 0).

Using the extreme equilibria 1 and 6 by randomizing on strate-
gies x1 and x5 for player 1, we also find the proper equilibrium
x1 =

1
2
, x2 = 0, x3 = 0, x4 = 0, x5 =

1
2


and

(y1 = 1, y2 = 0, y3 = 0, y4 = 0, y5 = 0).

e. Discussion
Following the analysis of this gameone can ask: ‘‘Do all bimatrix

games have at least one extreme proper equilibrium’’? The answer
is ‘‘No’’. One can find many bimatrix games in the literature where
all proper equilibria found are not extreme.

In such a case we can easily prove that there exists at least one
pair of perfect extreme equilibria belonging to the same Selten
subset that could be used to find a sequence of ϵ-proper equilibria
converging to a proper equilibrium. This is mainly due to the
fact that if no extreme proper equilibrium can be found, we still
know there exists at least one proper equilibrium for the bimatrix
game and this proper equilibrium is by definition also perfect.
This proper and perfect equilibrium can then be obtained by a
convex combination of at least a pair of extreme perfect equilibria
belonging to the same Selten subset. Since Borm, Jansen, Potters,
and Tijs (1993) proved that any extreme perfect equilibrium is also
an extreme equilibrium, if no extreme proper equilibrium is found
we can always find at least a pair of perfect extreme equilibria
that could be used to generate a proper equilibrium. The following
example illustrates this case.

Example 3.4. In this zero-sum bimatrix game we have two ex-
treme Nash equilibria:

A =


0 1 0
0 0 1


B =


0 −1 0
0 0 −1


.

{X = (0, 1) with Y = (1, 0, 0)} and {X = (1, 0) with Y =

(1, 0, 0)}. These two extreme equilibria are perfect but none of
them is proper. In fact the optimization of the corresponding
quadratic programs (3.5) shows that ϵ̄ = min f (σ ) converges to 1

2
when σ converges to zero. By randomizing over the two strategies
of player 1 we find the following sequence of ϵ-proper equilibria:

X =


1
2
,
1
2


and Y =


1 − ϵ,

ϵ

2
,

ϵ

2


.

The generalization of this procedure makes it possible to define
an algorithmic approach to find a proper equilibrium for any
bimatrix game:
Step 1. Enumerate all extreme Nash equilibria.
Step 2. Identify all Nash maximal subsets.
Step 3. Identify extreme perfect equilibria and maximal Selten
subsets.
Step 4. For each extreme perfect equilibrium generate the con-
vergence results of the corresponding quadratic program (3.5).
Table 3
Extreme Nash equilibria for Myerson (1997).

Eq. x1 x2 α1 α2

1 0 0 1 0 1 0 6 6
2 0 1 0 0 0 1 4 4
3 0 1 0 0 1/3 2/3 4 4
4 1 0 0 0 0 1 4 4
5 1 0 0 0 1/3 2/3 4 4

Step 5. If an extreme equilibrium appears very close to a sequence
of ϵ-proper equilibria find such a sequence analytically.
Step 6. Else randomize on the strategy profiles of extreme
perfect equilibria (belonging to the same Selten subset) closest
to a sequence of ϵ-proper equilibria to find such a sequence
analytically.

3.2. Case 2: f (σ ) ≥ ϵ̄

The case where f (σ ) appears to be bounded below by some
strictly positive value ϵ̄ implies that there are no ϵ-proper
equilibrium near (x̂1, x̂2) for values of ϵ less than ϵ̄, and therefore
(x̂1, x̂2) would not be proper.

In (3.5), let us suppose that f (σ ) converges to ϵ̄ > 0, when
σ > 0 converges to 0. We define a 0–1 mixed quadratic
program with the same conditions as Ω , with ϵ ≤ ϵ̄/2 and
maximizing σ . If the optimal objective function of this program
is equal to zero we can conclude that it would be impossible to
find a sequence of (x1(σ ), x2(σ )) ϵ(σ )-proper converging to this
equilibrium. Therefore the equilibrium is not proper.

Theorem 3.5. If the optimal objective value of the following 0–1mixed
quadratic program

max
(x1,x2)∈Ωσ

ϵ ,ϵ,σ
σ

s.t. x̂1i − ϵ ≤ x1i ≤ x̂1i + ϵ,
∀i ∈ {1, 2, . . . , n} ,

x̂2j − ϵ ≤ x2j ≤ x̂2j + ϵ,
∀j ∈ {1, 2, . . . ,m} ,

0 ≤ ϵ ≤ ϵ̄/2

(3.6)

is zero for some ϵ̄ > 0, then the equilibrium (x̂1, x̂2) is not proper.

Proof. If the optimal objective value is equal to 0, it is impossible
to find a sequence of (x1(σ ), x2(σ )) ϵ(σ )-proper converging to
(x̂1, x̂2). The equilibrium (x̂1, x̂2) is not proper. �

With this result, automatic detection of non-proper extreme
Nash equilibria can be carried out over any set of extreme Nash
equilibria of a bimatrix game.

The first example shows how the objective function does not
converge to zero in the case of a non-perfect equilibrium.

Example 3.6. Let A and B be the payoffmatrices of a bimatrix game
taken from Myerson (1997)

A =

4 4
4 4
6 3
0 2

 B =

4 4
4 4
6 0
0 2

 .

Both algorithms EχMIP Audet et al. (2006); Audet, Belhaiza,
and Hansen (2009) and EEE Audet et al. (2001) enumerated five
extreme Nash equilibria (Table 3).

As mentioned by Myerson (1997), the first extreme Nash
equilibrium is the only proper equilibrium of this game. While
the optimal values of ϵ seem to converge to ϵ̄ = 0.618, as σ
approaches 0 (Fig. 1) with non-perfect extreme equilibria 2, 3, 4
and 5. We define a 0–1 mixed quadratic program with the same
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Fig. 1. Plot of ϵ = min f (σ ).

conditions as in (3.6), with ϵ ≤ ϵ̄/2 and maximizing σ . Such a 0–1
mixed quadratic program has an optimal objective equal to zero.

The set of extreme proper Nash equilibria defines the set of
extreme points of all Maximal Myerson sets (Jansen, 1993). There
is only one maximal Myerson subset for the bimatrix game taken
from Myerson (1997).

4. Conclusion

In this paper we presented a mathematical programming
approach for the refinement of Nash equilibria. After complete
enumeration of all extreme Nash equilibria, ϵ-proper sequences
of equilibria are found using the indications provided by the
convergence numerical results of a 0–1 mixed quadratic program.
Even in the worst case where no extreme proper equilibrium
is found, we have shown that we can always find a pair of
extreme perfect equilibria belonging to the same Selten subset in
order to find a proper equilibrium. Finally, non-proper extreme
Nash equilibria are found using the result of another 0–1 mixed
quadratic program. One can conclude that these results could
be useful to generate subgame perfect equilibria for two-person
extensive games.

Appendix

A.1. Extreme Nash equilibrium

The set NE of all equilibrium points of a bimatrix game is the
union of a finite number of polytopes called maximal Nash subsets
(Millham, 1974). A subset T ⊂ NE is a Nash subset if and only if
every pair of elements in T is interchangeable:
(x1, x2) ∈ T , (y1, y2) ∈ T ⇔ (x1, y2) ∈ T and (y1, x2) ∈ T .

A Nash subset T is called maximal if it is not properly contained
in another Nash subset (Jansen, 1993). Each extreme point of one
of these maximal Nash subsets is called extreme Nash equilibrium.
Each Nash equilibrium can be obtained by a convex combination
of some extreme Nash equilibria.

A.2. Perfect equilibrium

According to Myerson (1997) and Selten (1975) there is always
at least one perfect equilibrium for any strategic form game.
Definition A.1. Let (x̂1, x̂2) be a Nash equilibrium of a bimatrix
game G(A, B). If there is a unit vector x1 such that x1A ≥ x̂1A and
x1A ≠ x̂1A, or if there is a unit vector x2 such that Bx2 ≥ Bx̂2 and
Bx2 ≠ Bx̂2 then (x̂1, x̂2) is not perfect. Otherwise, (x̂1, x̂2) is said to
be perfect.

In other words, every perfect equilibrium is undominated.

A.3. Essential equilibrium

According to Wu and Jiang (1972) the Essential refinement is
based on the concept of stability of an equilibrium against slight
perturbations in the payoffs of the game.

Definition A.2. A strategy profile (x1, x2) is an essential equilib-
rium of a bimatrix game G(A, B) if there exists, with every neigh-
borhood Nx of (x1, x2) a neighborhood NG of (A, B) such that
G(A′, B′) has no equilibria in Nx for all (A′, B′) ∈ NG.

It is known that every essential equilibrium is perfect
(van Damme, 1983). Jansen (1981) paid special attention to equi-
librium points that are Quasi-strong and isolated at the same time;
these equilibria were found to be essential.

A.4. Quasi-strong equilibrium

For an equilibrium profile (x1, x2) of a bimatrix game G(A, B),
let N = {1, . . . , n} and M = {1, . . . ,m}. Then M(A, x2) is defined
as the set of pure best replies of player I against x2:

M(A, x2) = {i ∈ N; eiAx2 = max
k∈N

ekAx2}, (A.7)

and similarly,

M(x1, B) = {j ∈ M; x1Bej = max
k∈M

x1Bej}, (A.8)

is the set of pure best replies of player II against x1 (Harsanyi, 1973).
The carrier of x1, C(x1) is the set {i ∈ N; x1i > 0} and carrier of

x2, C(x2) is the set {j ∈ M; x2j > 0}.

Definition A.3. Any equilibrium profile (x1, x2) is quasi-strong if

C(x1) = M(A, x2) and C(x2) = M(x1, B).

Jansen (1981) showed that a quasi-strong and isolated equilib-
rium point is stable against slight perturbations of the payoffs of
the game.

A.5. Isolated equilibrium

An equilibrium profile (x1, x2) of a bimatrix game G(A, B) is said
to be isolated if there exists a neighborhood Nx of (x1, x2) such that
it is the only equilibrium of G(A, B) in this neighborhood Nx. In
other words, any isolated equilibrium is an extreme equilibrium
defining an isolated maximal Nash subset. Enumeration of all
maximal Nash subsets can be used in order to automatically
detect isolated equilibria. Moreover, Jansen (1981) proposed the
following definition.

Definition A.4. Let (x1, x2) be a quasi-strong equilibrium of a
bimatrix game G(A, B) with A, B > 0. Then (x1, x2) is isolated if
and only if |C(x1)| = |C(x2)| and the matrices [aij]i∈C(x1),j∈C(x2) and
[bij]i∈C(x1),j∈C(x2) are nonsingular.

While this definition applies only for bimatrix games G(A, B)
such that A, B > 0, it is well known that every bimatrix game can
be modified in order to make A, B > 0 and without changing the
set of maximal Nash subsets. For example, this can easily be done
by adding 1+ |amin|, with amin = min aij, to each element of A and
1 + |bmin|,with bmin = min bij, to each element of B.
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Jansen (1981) points out that an isolated equilibrium is essential
if and only if it is quasi-strong. Moreover, van Damme (1983)
showed that an isolated and quasi-strong equilibrium point is
perfect and proper. This was also obtained by Okada (1984) for
bimatrix games.

A.6. Regular equilibrium

For any Regular (Jansen, 1981, 1987) equilibrium we can con-
clude that it is proper. A Regular equilibrium profile was first
defined by Harsanyi (1973) such that the Jacobian of amapping as-
sociated with the game evaluated at the equilibrium point is non-
singular. This definition was later improved by van Damme (1983)
for a two-person case. He proved that an equilibrium is regular
if and only if it is quasi-strong and isolated and showed that such
equilibria are strongly stable and proper.
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