
©January 2010-December 2010

Project Final Report

AUTOMATIC REFINEMENT OF EQUILIBRIA IN GAME THEORY

JF10002

King Fahd University of Petroleum and Minerals

Dhahran

 Saudi Arabia

Slim Belhaiza, Ph.D.

Assistant Professor

Department of Mathematics and Statistics

Automatic Refinement of Equilibria in Game Theory-Final Report

 1

Abstract

This document is the final report to our project entitled “Automatic Refinement of Equilibria

in Game Theory” realised between January 2010 and December 2010 under the DSR Junior

Faculty Grant JF100002.

This document mainly presents the architecture of the software XGame-Solver we have

designed and improved for this purpose.

Keywords: Game Theory, Refinement, Bimatrix, Sequential, Polymatrix, XGame-Solver.

Automatic Refinement of Equilibria in Game Theory-Final Report

 2

Table of Contents
Introduction ... 5

Definitions, Acronyms and Abbreviations ... 6

2. Architectural Goals and Constraints ... 7

2.1. Technical Platform .. 7

2.2. Concurrency ... 7

2.3. Security .. 7

2.4. Performance .. 7

3. Use Cases .. 7

4. Packages ... 11

4.1. Qt package .. 12

4.2. QtSolutions package ... 12

4.3. QIron package .. 13

4.4. XS::Core package .. 13

4.5. XS::Solver package ... 13

4.6. XS::Game package .. 13

4.7. XS::Services package .. 13

4.8. XS::Editor package ... 13

4.9. XS::Console package ... 13

5. Components ... 14

5.1. Editor component .. 14

5.1.1. Game Management component .. 14

5.1.2. Solver Management component .. 15

5.1.3. Log Handling component .. 15

5.1.4. Views component ... 16

5.2. Command Prompt component .. 16

5.2.1. Console Controller component ... 16

5.2.2. Solver Management component .. 16

Automatic Refinement of Equilibria in Game Theory-Final Report

 3

5.2.3. Log Handling component .. 17

5.2.4. Command Interpreter component .. 17

5.3. Solver Engine component .. 17

5.4. Code Generator component... 17

5.5. GERAD Game plugins ... 17

5.5.1. Ca.Gerad.XS.BimatrixGamePlugin component ... 18

5.5.2. Ca.Gerad.XS.SequentialGamePlugin component ... 18

5.5.3. Ca.Gerad.XS.PolymatrixGamePlugin component ... 18

5.6. GERAD Solver plugin .. 18

5.6.1. XBig.exe component ... 19

5.6.2. EEE.exe component ... 19

5.6.3. PEX.exe component ... 19

6. Classes .. 19

6.1. XSEditor module .. 20

6.1.1. EditorApplication class .. 21

6.1.2. MainWindow class .. 21

6.1.3. MainWindowController class .. 21

6.1.4. GamePanel class ... 21

6.1.5. LogPanel class ... 21

6.1.6. LogViewStack class .. 21

6.1.7. LogView class .. 21

6.1.8. LogPanelProperty class ... 21

6.1.9. LogPanelPropertyEditor class .. 22

6.1.10. LogHandler class ... 22

6.1.11. Log class .. 22

6.1.12. GameManager class ... 22

6.1.13. SolverManager class ... 22

6.1.14. ProcessingRequest class .. 22

6.2. XSCodeGenerator module .. 23

6.2.1. CodeGenerator class ... 23

6.2.2. ProjectPluginWizard component .. 23

Automatic Refinement of Equilibria in Game Theory-Final Report

 4

6.3. XSCommandPrompt module ... 24

6.3.1. ConsoleApplication class ... 24

6.3.2. ConsoleController class ... 25

6.3.3. CommandInterpreter class .. 25

6.3.4. CommandParser class ... 25

6.3.5. LogHandler class ... 25

6.3.6. Log class .. 25

6.3.7. SolverManager class ... 25

6.4. XSSolverEngine module ... 25

6.4.1. SolverEngine class ... 26

6.4.2. ThreadPool class .. 26

6.4.3. SolverEngine::Request class .. 27

6.4.4. TaskInfo class ... 27

6.4.5. ThreadPoolTask class .. 27

6.5. XSCoreLib module .. 27

6.5.1. Game Framework .. 27

6.5.2. Matrix Framework .. 29

6.5.3. Solver Framework ... 30

6.6. GERAD Game plugins ... 31

6.6.1. Bimatrix Game plugin .. 31

6.6.2. Sequential Game plugin .. 33

6.6.3. Polymatrix Game plugin .. 33

7 Conclusion ... 33

Automatic Refinement of Equilibria in Game Theory-Final Report

 5

Introduction

This document provides a comprehensive architectural overview of the XGame Solver©
application, using a number of different architectural views to depict different aspects of
the application. It is intended to capture and convey all significant architectural choices.

XGame Solver© is an intuitive, extensible, modern cross-platform (Windows, Linux, Mac
OS) Qt-based application developed by Alexandre Dzimi Mvé (Software Developer at CMLabs
Simulation, Montreal, Canada) and Slim Belhaiza which aims to provide a very powerful
tool for constructing and solving Bimatrix, Sequential and Polymatrix games.

Unlike its previous versions, XGame Solver 2.5 can be run in GUI mode (Editor) or Console
mode. This has been made possible by decoupling the Solver Engine from the application
presentation layer. In a distributed system, the Solver Engine could be run in a separate
machine as a backend service to serve processing requests of applications over the
network. This future architecture is not covered in this document though. The picture
below shows the actual Control Flow of the system:

Automatic Refinement of Equilibria in Game Theory-Final Report

 6

Figure 1: Control Flow diagram of the system

All diagrams throughout this document have been generated using SmartDraw 2010.

Definitions, Acronyms and Abbreviations

Bimatrix game In Game Theory, a Bimatrix game represents a confrontation of two
players in normal form. In a Bimatrix game, there are two players who
effectively make their moves simultaneously without knowing the
other player's action.

Sequential game A Sequential game represents a sequential form of two person

extensive form. In a sequential game, there are two players who
effectively make their moves sequentially basing on the other player's
action.

Polymatrix game A Polymatrix game represents a confrontation of n players as a

collection of n(n-1)/2 Bimatrix games.

UML Unified Modeling Language

SAD Software Architecture Document

Automatic Refinement of Equilibria in Game Theory-Final Report

 7

1. Architectural Goals and Constraints

This section describes the software requirements and objectives having significant impact
on its architecture.

1.1. Technical Platform

The target operating systems are Windows XP, Windows Vista,Windows 7, Mac OS X Tiger,
Mac OS X Leopard and Linux.

1.2. Concurrency

Multiple solvers can be run simultaneously. However, only one task can be run on a game
at once. This is to prevent generated output files from corruption since solvers may
generate the same output files of which names are based on the source game’s file name. In
such case, concurrent solvers may edit the same files at the same time, which induces data
corruptions. Qt Concurrency and Thread Support will be used to fulfill this requirement
efficiently. As XGame Solver 2.5 is not (yet) a distributed system, no other complex
mechanisms will be used to manage concurrency.

1.3. Security

Currently, there is no way to efficiently secure plugin support of the system (user plugins
have read/write permissions on disk). User has thus to ensure that unofficial plugins are
safe. Any contributor who wants to make their plugins official has to provide us with
sources.

1.4. Performance

Solvers (or post-processings) must complete within reasonable delays depending on

complexity of the algorithm used. Complexity of each algorithm must be estimated and

then be used as metric to define what its reasonable execution time must be. Memory usage

of solver should not exceed 70 MB.

2. Use Cases

This section presents the significant use cases of the system. All actions performed on

games are available in GUI mode only. Figure 2 shows the Use Case diagram of XGame

Solver.

Automatic Refinement of Equilibria in Game Theory-Final Report

 8

Figure 2: User Class diagram

Automatic Refinement of Equilibria in Game Theory-Final Report

 9

 Create new game

Use case Create new game
Actor: User
Type Primary
Description Create a new strategic game.

 Create new Bimatrix game

Use case Create new Bimatrix game
Actor: User
Type Primary
Description Create a new Bimatrix game.

 Create new Sequential game

Use case Create new Sequential game
Actor: User
Type Primary
Description Create a new Sequential game.

 Create new Polymatrix game

Use case Create new Polymatrix game
Actor: User
Type Primary
Description Create a new Polymatrix game.

 Open existing game

Use case Open existing game
Actor: User
Type Primary
Description Open an existing game loading a file from

the local machine.

 Edit game

Use case Edit game
Actor: User
Type Primary
Description Edit an opened game.

Automatic Refinement of Equilibria in Game Theory-Final Report

 10

 Save game

Use case Save game
Actor: User
Type Primary
Description Save a modified game.

 Print game

Use case Print game
Actor: User
Type Primary
Description Print opened game.

 Close game

Use case Close game
Actor: User
Type Primary
Description Close an opened game.

 Process game

Use case Process game
Actor: User
Type Primary
Description Solve or post-process a game.

 Solve game

Use case Solve game
Actor: User
Type Primary
Description Solve a game.

 Post-process game

Use case Post-process game
Actor: User
Type Primary
Description Post-Process a game. User must run solver

on the target game beforehand.

Automatic Refinement of Equilibria in Game Theory-Final Report

 11

 Create Plugin project

Use case Create Plugin project
Actor: User
Type Secondary
Description Create a Qt/C++ project for creating Solver

or Game plugins.

 Create Game Plugin project

Use case Create Game Plugin project
Actor: User
Type Secondary
Description Create a Qt/C++ project for creating Game

plugins.

 Create Solver Plugin project

Use case Create new game
Actor: User
Type Secondary
Description Create a Qt/C++ project for creating Solver

plugins.

3. Packages

This section presents the layered Package diagram of the system in figure 3. It is used as a
central view to represent the software system compile-time logical architecture.

Automatic Refinement of Equilibria in Game Theory-Final Report

 12

Figure 3: Layered Package diagram of the system

3.1. Qt package

Qt package is a cross-platform application development framework developed by Nokia,
widely used for the development of GUI programs, and also used for developing non-GUI
programs such as console tools and servers. It contains the QtCore, QtGui, QtXml and
QtNetwork modules which provide most of GUI, XML, Network components and classes to
XGame Solver.

3.2. QtSolutions package

QtSolutions is a catalogue of add-on components and tools to make development with Qt
more efficient. It is also developed by Nokia as merged package to Qt and mainly used to
make XGame Solver a single instance application by inheriting the domain Application class
from the QtSingleApplication class provided by QtSolutions.

http://www.nokia.com/

Automatic Refinement of Equilibria in Game Theory-Final Report

 13

3.3. QIron package

QIron is a framework developed by Alexandre Dzimi Mvé that provides a set of stunning and
very customizable Qt-based widgets for creating professional user interface with ease.

3.4. XS::Core package

The XS::Core package is a domain component package providing reusable Core components
and model objects to XGame Solver such as matrices, transformations, value types (Big
Integers), utilities. It also provides plugins support for user plugins.

3.5. XS::Solver package

The XS::Solver package is a domain component package that provides reusable Solver-
related components to XGame Solver such as abstract Processing models and abstract Solver
factory.

3.6. XS::Game package

The XS::Game package is a domain component package providing reusable Game-related
components to XGame Solver such as abstract Game model and view, Game editor interface
and abstract Game factory.

3.7. XS::Services package

The XS::Services package provides services used by the applications. These services include
the Solver Engine and the Code Generator.

3.8. XS::Editor package

As the name suggests, the XS::Editor (XGame Solver Editor Application) package represents
the XGame Solver application in GUI mode. It contains views of games, solvers, and matrix
transformations; and their corresponding controllers (MVC architecture).

3.9. XS::Console package

As the name suggest, the XS::Console (XGame Solver Console Application) represents the
XGame Solver application in Console mode. It mainly contains a command interpreter
(which interprets user entries and then invokes the Solver Engine with the appropriate
arguments) and a Redirected Standard OutputsHandler.

Automatic Refinement of Equilibria in Game Theory-Final Report

 14

4. Components

This section presents the Component diagrams of the system. The diagram in figure 4
presents the implied top-level components connected with association relationships or
interfaces.

Figure 4: Top-level Component Diagram

4.1. Editor component

The Editor component represents the entire Editor application or the GUI application. It

contains several sub-components which are the Game Manager, the Streaming Handler, the

Solver Manager and the Main Window components is illustrated below in figure 5.

4.1.1. Game Management component

As its name suggests, the Game Management component manages all opened games and

loaded game plugins. It gets notified of any changes of game states and then dispatches

these events to all game observers to get them up to date. For example, when user modifies

a game using the corresponding view, the Game Management component gets notified first

and then forwards this modification event to all game observers including the Main

Window’s controller which updates the Main Window. This update may involve disabling

the Solve button if the current game gets into invalid state and enabling it back when it gets

back to valid.

Automatic Refinement of Equilibria in Game Theory-Final Report

 15

Figure 5: Editor ComponentSolver Management Component

The Solver Management component is used as an interface between the Main Window’s

controller and the Solver Engine. Indeed, the Main Window’s controller does not invoke the

Solver Engine directly when user run a solver or a post-processing on a game. It invokes the

Solver Manager which posts the execution request to the Solver Engine. It allows the

application to get some information about the Solver Engine such as the list of all available

solvers and post-processings.

4.1.2. Log Handling component

As the name suggests, the Log Handling component handles standard outputs redirected

from the running processes. Starting a solver or post-processing involves starting a process

with the corresponding executable. Since the started process (executable) does not share

the same stream buffers as the application, Stream Redirection is then simplest way to

retrieve those outputs in order to be displayed through the application. The Streaming

Handler is thus in charge of retrieving these buffered outputs and sending them to Main

Window for displaying in the Output View.

Automatic Refinement of Equilibria in Game Theory-Final Report

 16

4.1.3. Views component

The Views component represents the main application and its child views. The central child

view is the game view.

4.2. Command Prompt component

The Command Prompt component represents the XGame Solver application in Console

mode. It contains several sub-components which are the Console Manager, the Streaming

Handler, the Solver Manager and the Console Controller components as illustrated in figure

6.

Figure 6: Command Prompt component

4.2.1. Console Controller component

This component handles commands entered by user and then forwards them to the

Command Interpreter component for parsing these commands. It also prints redirected

process outputs on screen.

4.2.2. Solver Management component

The Solver Management component is used as interface between the Command Interpreter

and the Solver Engine. Indeed, the Command Interpreter does not invoke the Solver Engine

directly to execute a command. It invokes the Solver Management component which posts

Automatic Refinement of Equilibria in Game Theory-Final Report

 17

the execution request to the Solver Engine. It allows the application to get some information

about the Solver Engine such as the list of all available solvers and post-processings.

4.2.3. Log Handling component

This component works the same as the GUI application. The only difference is that after

retrieving the redirected outputs, the Log Handling component sends them to the Console

Controller to be printed on screen.

4.2.4. Command Interpreter component

The Command Interpreter component parses command lines entered by user and invokes

the Solver Manager to execute them if they are valid. These command lines are string lists

containing the actual command to run and some arguments. The command could be a

solver or post-processing to run, a help command to get some helps, or an info request

command to get some information about the Solver Engine such as the list of all available

solvers.

4.3. Solver Engine component

The Solver Engine component represents the solver engine of the application. It is used to

solve games specifying what solver to use with some extra arguments. To achieve that

efficiently, it holds a set of solvers mapped using their unique key names to distinguish a

solver from another. Running a solver on a given game involves invoking the solver engine

with the solver’s unique key name, the algorithm’s unique key name to use, the game’s path

name and some algorithm-specific arguments. Solver executions are tasks run by threads

supplied and managed by the solver engine’s thread pool.

4.4. Code Generator component

The Code Generator component is used to generate C++/Qt skeleton code for Game and

Solver plugin projects.

4.5. GERAD Game plugins

The GERAD Game Plugins (figure 7) components are the default game plugins provided

alongside the application. They make it possible to create or edit Bimatrix, Sequential and

Polymatrix games.

Automatic Refinement of Equilibria in Game Theory-Final Report

 18

Figure 7: GERAD Game plugins

4.5.1. Ca.Gerad.XS.BimatrixGamePlugin component

This plugin provides the default capability to create, load, edit and save Bimatrix games.

4.5.2. Ca.Gerad.XS.SequentialGamePlugin component

This plugin provides the default capability to create, load, edit and save Sequential games.

4.5.3. Ca.Gerad.XS.PolymatrixGamePlugin component

This plugin provides the default capability to create, load, edit and save Polymatrix games.

4.6. GERAD Solver plugin

The GERAD Solver Plugin (figure 8)component is the default solver plugin provided

alongside the application. It provides solvers to solve Bimatrix, Sequential and Polymatrix

games.

Automatic Refinement of Equilibria in Game Theory-Final Report

 19

Figure 8: GERAD Solver plugin

4.6.1. XBig.exe component

This component is an executable used to solve Bimatrix and Sequential games using the

ExMIP algorithms developed by Slim Belhaiza.

4.6.2. EEE.exe component

This component is an executable used to solve Bimatrix and Sequential games using EEE

algorithm developed by Charles Audet.

4.6.3. PEX.exe component

This component is an executable used to solve Polymatrix games using ExMIP algorithm

developed by Slim Belhaiza.

5. Classes

This section presents the class diagrams of the system grouped by modules.

Automatic Refinement of Equilibria in Game Theory-Final Report

 20

5.1. XSEditor module

As mentioned above, the Editor represents the GUI application. Figure 9 shows its

complete class diagram (class members are hidden for better illustration).

Figure 9: Editor Class diagram

Automatic Refinement of Equilibria in Game Theory-Final Report

 21

5.1.1. Editor Application class

This class represents XGame Solver application in GUI mode.

5.1.2. MainWindow class

This class manages the main window of the application. It contains the Game panel which

displays loaded games and the Log panel which displays logs streamed by the running

processings (solvers or post-processings).

5.1.3. MainWindowController class

This class represents the controller of the main window. It handles user actions and sends

the corresponding commands to the appropriate receivers. Use of commands is a

convenient way to undo and redo changes applied to editing objects. For instance, use of

commands allows user to undo changes applied to games such as modifying payoffs or

strategies of players in a game.

5.1.4. GamePanel class

The GamePanel class provides a stack of opened game (views) and displays them under

tabs.

5.1.5. LogPanel class

The LogPanel class provides a stack of log views. Each log view is associated with one of the

opened games.

5.1.6. LogViewStack class

This class is a stack of log views held by the LogPanel Class.

5.1.7. LogView class

This class provides a text area displaying logs streamed by the processing running on its

associated game.

5.1.8. LogPanelPropertyclass

This class allows user to personalize the appearance of the log views. It makes it possible to

change the background color, the text color and font of all stacked log views.

Automatic Refinement of Equilibria in Game Theory-Final Report

 22

5.1.9. LogPanelPropertyEditor class

This class provides a dialog to edit the appearance of the log views.

5.1.10. LogHandler class

The LogHandler class handles logs streaming by all the running processings and forwards

them to the controller of the main window and then to the appropriate log views.

5.1.11. Log class

This class represents a log streamed by a running processing. A log is actually nothing but a

redirected standard output (using std::cout, printf or std::cerr in C++) from the process

associated with a running processing.

5.1.12. GameManager class

This class manages all loaded games and game factories. It gets notified of any changes of

game states and then dispatches these events to all game observers to get them up to date.

5.1.13. SolverManager class

The SolverManager class provides an interface between the rest of the application and the

actual solver engine. Indeed, the main window does not invoke the solver engine directly to

run solvers since it has no visibility on it. It makes it through the solver manager which

posts processing requests to the engine. It also allows the application to get some

information about the engine such as the list of all available solvers and post-processings.

5.1.14. ProcessingRequest class

This class represents a request made by user to run a processing (solver or post

processing). Processing request is sent by the solver manager to the solver engine and

contains all information about a processing to run and a target game file. It is also used by

the engine to send logs to the application. By analogy with client-server model, a

processing request may be considered as a socket the solver manager (as client) and the

engine (as server) communicate through. The request closes when the associated

processing finishes (completion or killed at user’s request).

Automatic Refinement of Equilibria in Game Theory-Final Report

 23

5.2. XSCodeGenerator module

As mentioned above, the Code Generator is used to generate C++/Qt skeleton code for Game

and Solver plugin projects. Figure 10 shows its complete class diagram (class members

are hidden for better illustration).

Figure 10: CodeGeneratorClass diagram

5.2.1. CodeGenerator class

This class provides functionalities to generate codes. It is used to generate Qt/C++ project

in order for users to implement their own plugins for the application.

5.2.2. ProjectPluginWizard component

This class provides a wizard spawned by the code generator to guide the user through

creation of game or solver plugin projects.

Automatic Refinement of Equilibria in Game Theory-Final Report

 24

5.3. XSCommandPrompt module

As mentioned above, the CommandPrompt module represents the Console application.

Figure 11 shows its complete class diagram (class members are hidden for better

illustration).

Figure 11: Command Prompt Class diagram

5.3.1. ConsoleApplication class

This class represents XGame Solver application in Console mode.

Automatic Refinement of Equilibria in Game Theory-Final Report

 25

5.3.2. ConsoleController class

This class handles user inputs and forwards them to the interpreter. It locks the console

when a processing is running, which prevents user from entering multiple commands. It

releases the console when the processing stops.

5.3.3. CommandInterpreter class

The CommandInterprete rclass interprets user input. It extracts the processing unique

name from the command and requests a task to the solver manager.

5.3.4. CommandParser class

The CommandParser class parses user entry splitting it into processing unique name, target

game file path and extra arguments.

5.3.5. LogHandler class

The LogHandler class handles logs streaming by all the running processing and forwards

them to the console controller which prints them on console.

5.3.6. Log class

This class represents a log streamed by a running processing. A log is actually nothing but a

redirected standard output (using std::cout, printf or std::cerr in C++) from the process

associated with a running processing.

5.3.7. SolverManager class

The SolverManager class provides an interface between the rest of the application and the

actual solver engine. Indeed, the console controller does not invoke the solver engine

directly to run solvers since it has no visibility on it. It makes it through the solver manager

which posts processing requests to the engine. It also allows the application to get some

information about the engine such as the list of all available solvers and post-processings.

5.4. XSSolverEngine module

As mentioned above, the SolverEngine module represents the solver engine used by the

applications to solve games. Figure 12 shows its complete class diagram (class members

are hidden for better illustration).

Automatic Refinement of Equilibria in Game Theory-Final Report

 26

Figure 12: Solver Engine Class diagram

5.4.1. SolverEngine class

This class represents solver engine used by the application to solve games. It manages a

collection of all available processings to be executed at user’s request. To serve user’s

processing request, it makes use of a thread pool which manages a collection of thread pool

tasks (threads). Indeed, when the solver engine receives a processing request from the

application, it creates a TaskInfo object from details pulled from the request and then

invokes the tread pool. The thread pool starts the first available threads picked up from its

non-running thread queue using the TaskInfo object and returns a unique token (task id) to

the solver engine. Any communication between the solver engine and thread pool is made

using these tokens to specify what running processing or thread execution is concerned by

a given message. For instance, a returned token may be used to kill a specific task or to

dispatch processing logs to the proper execution flow.

5.4.2. ThreadPool class

This class manages a collection of threads (thread pool tasks) to run solvers.

Automatic Refinement of Equilibria in Game Theory-Final Report

 27

5.4.3. SolverEngine::Request class

This class represents a request made by user to run a processing (solver or post

processing). Processing request is sent by the solver manager to the solver engine and

contains all information about a processing to run, the target game file and some extra

arguments. It is also used by the engine to send logs to the application. By analogy with

client-server model, a processing request may be considered as a socket the solver

manager (as client) and the engine (as server) communicate through. The request closes

when the associated processing finishes (completion or killed at user’s request).

5.4.4. TaskInfo class

This class contains all information about a processing to run, the target game file and some

extra arguments. It is used by the thread pool to just set up a thread pool task before

running.

5.4.5. ThreadPoolTask class

The ThreadPoolTaskclass represents a thread managed by the thread pool and used to run a

specific processing.

5.5. XSCoreLib module

The XSCore module provides reusable core classes to XGame Solver. Basically, it includes
abstraction of games, solvers, matrix transformations. It also provides plugins support for
user extensions.

5.5.1. Game Framework

The Game Framework provides base classes to build up games and to develop user game
extensions. It is an implementation of the MVC, Abstract Factory and Observer patterns.
Figure 13 shows its complete class diagram (class members are hidden for better
illustration).

Automatic Refinement of Equilibria in Game Theory-Final Report

 28

Figure 13: Game framework Class diagram

5.5.1.1. Game class

The Game class is the base class of all games. In the MVC pattern, this class represents the

Model whereas the GameView class represents the View. In the Observer pattern, it

represents the Subject observed by GameObserver objects.

5.5.1.2. GameView class

The GameView class is the base class of view of games. Basically, it represents the graphical

representation of a game. Any game view should inherit from this class to be used by the

Editor application.

5.5.1.3. GameObserver class

The GameObserver class provides a way to get informed of any changes in games.

5.5.1.4. GameWizard class

The GameWizard class represents a wizard used to guide users through creation of new

games. Ideally, there should be a wizard created for each type of games. That means there

should be a different wizard for Bimatrix games, Sequential games and

Automatic Refinement of Equilibria in Game Theory-Final Report

 29

5.5.2. Matrix Framework

The Matrix Framework provides classes to manipulate and visualize matrices. It mainly
uses to build up games as they expose their data as matrices. Figure 14 shows its complete
class diagram (class members are hidden for better illustration).

Figure 14: Matrix Framework Class diagram

5.5.2.1. Matrix class

This class represents an-m matrix of integers.

5.5.2.2. MatrixView class

The MatrixView class represents a view of matrix.

5.5.2.3. MatrixViewController class

The MatrixViewController class represents the controller of a matrix view.

5.5.2.4. Transformation class

This class represents a matrix transformation.

Automatic Refinement of Equilibria in Game Theory-Final Report

 30

5.5.2.5. TransformationCollectionclass

This class represents a collection of all available matrix transformations.

5.5.2.6. TransformationListView class

This class provides a- view of the matrix transformation collection from which user can

select a matrix transformation to apply.

5.5.2.7. TransformationDialog class

This class represents a dialog which displays a matrix transformation list view.

5.5.3. Solver Framework

The Solver Framework provides base classes to create solver and post-processing. It is also
used to enable support for user solver extensions. It provides NashSubset, QuasiStrong and
Perfect post-processings. Figure 15 shows its complete class diagram (class members are
hidden for better illustration).

Figure 15: Solver Framework Class diagram

Automatic Refinement of Equilibria in Game Theory-Final Report

 31

5.5.3.1. Processing class

The Processing class is the base class of all processing runnable by the solver engine.

5.5.3.2. Solver class

The Solver class is the base class of all solvers runnable by the solver engine. Each solver

contains a collection of algorithms, which allow it to solve various types of games.

5.5.3.3. Algorithm class

The Algorithm class defines what algorithm a solver must use to solve a game of a given

type. The specified algorithm must be contained in the collection of algorithms of the

specified solver.

5.5.3.4. Post-processing class

This class represents the base class of all post-processings.

5.5.3.5. NashSubset class

This class represents the Nash-Subset post-processing.

5.5.3.6. QuasiStrong class

This class represents the Quasi-Strong post-processing.

5.5.3.7. Perfect class

This class represents the Perfect post-processing.

5.6. GERAD Game plugins

The GERAD Game Plugins components are the default game plugins provided alongside the

application. They make it possible to create or edit Bimatrix, Sequential and Polymatrix

games.

5.6.1. Bimatrix Game plugin

The Bimatrix game plugins allows user to create Bimatrix games. Figure 16 shows its
complete class diagram (class members are hidden for better illustration).

Automatic Refinement of Equilibria in Game Theory-Final Report

 32

Figure 16: Bimatrix Game plugin Class diagram

5.6.1.1. BimatrixGamePlugin class

The BimatrixGamePlugin class represent the plugin loaded by the application on startup which

allows user to create Bimatrix games.

5.6.1.2. BimatrixGame Class

The BimatrixGame class represents a Bimatrix game.

5.6.1.3. BimatrixGameView class

The BimatrixGameView class represents a graphical representation of a Bimatrix game.

Automatic Refinement of Equilibria in Game Theory-Final Report

 33

5.6.1.4. BimatrixGameWizard class

The BimatrixGameWizard class provides a wizard to guide user at the creation of a new Bimatrix

game.

5.6.2. Sequential Game plugin

The Sequential game plugin allows user to create Sequential games. The picture below
shows its complete class diagram (class members are hidden for better illustration).

5.6.2.1. SequentialGamePlugin class

The SequentialGamePlugin class represent the plugin loaded by the application on startup which

allows user to create Sequential games.

5.6.2.2. SequentialGame Class

The SequentialGame class represents a Sequential game.

5.6.2.3. SequentialGameView class

The SequentialGameView class represents a graphical representation of a Sequential game.

5.6.2.4. SequentialGameWizard class

The SequentialGameWizard class provides a wizard to guide user at the creation of a new Sequential

game.

5.6.3. Polymatrix Game plugin

The Polymatrix game plugin allows user to create Polymatrix games. The picture below
shows its complete class diagram (class members are hidden for better illustration).

5.6.3.1. PolymatrixGamePlugin class

The PolymatrixGamePlugin class represent the plugin loaded by the application on startup which

allows user to create Polymatrix games.

Automatic Refinement of Equilibria in Game Theory-Final Report

 34

Figure 17: Polymatrix Game plugin Class diagram

5.6.3.2. PolymatrixGame Class

The PolymatrixGame class represents a Polymatrix game.

5.6.3.3. PolymatrixGameView class

The PolymatrixGameView class represents a graphical representation of a Polymatrix game.

Automatic Refinement of Equilibria in Game Theory-Final Report

 35

5.6.3.4. PolymatrixGameWizard class

The PolymatrixGameWizard class provides a wizard to guide user at the creation of a new

Polymatrix game.

6. Conclusion

I this document we presented the different aspects of the XGame Solver software new architecture.

We hope that the scientific benefit from our work as it is the case of our previous versions. This

new version of the XGame Solver Software will be soon available at http://www.Xgame-Solver.net for

free download by the scientific community.

Acknowledgments

We here thank the Deanship of Scientific Research at KFUPM for their financial support.

References
 Pattern-Oriented Software Architecture, Volume 2, Patterns for Concurrent and

Networked objects, Douglas C. Schmidt, Michael Stal, Hans Rohnert, Frank

Buschmann, September 2000.

 Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design

and the Unified Process (2nd Edition), Graig Larman, July 13, 2001.

 The Unified Modeling Language User Guide. Addison-Wesley, Ooch, G., Rumbaugh, J.

and Jacobson, I. 1999.

http://www.xgame-solver.net/

Automatic Refinement of Equilibria in Game Theory-Final Report

 36

KFUPM RESEARCH COMMITTEE

This report must be submitted to the Deanship of Scientific Research before the release of final payments

The information should be brief and concise. It should concentrate on the specific points
related to the scholarly outcomes of the completed project including journal publications,
conference publications, students’ training, patents, seminars, invited speeches and other
academic-related achievements.

Please provide a concise list of all such achievements.

You are greatly encouraged to directly use (fill in) the formatted Sections below

__

A. PROJECT GENERAL INFORMATION

Project Type:

Project Title: AUTOMATIC REFINEMENT OF EQUILIBRIA IN GAME THEORY

Project Number: JF100002

Name of Principal Investigator Dr. Slim Belhaiza

Department Mathematics and statistics

Name(s) of Co-Investigator(s)

[or Project Consultant(s)]

1.

2.

3.

Details
Start Date: 01-12-2009

Completion Date: 30-11-2010

Automatic Refinement of Equilibria in Game Theory-Final Report

 37

Approved Budget: 58,220 SR

B. DETAILS OF THE SCHOLARLY OUTCOMES

Status: A = Accept/ Published S = Submitted UP = Under Preparation

 In this Section, list the details as mentioned above
 (Kindly make sure to include the full details of each item including the dates and the status).

Status

I

Journal Publications

XGame Solver Software for Enumeration and Refinement of Equilibria

in Game Theory. To be submitted to ACM Transactions on

Mathematical Softwares.

UP

II

Conference Publications

/Presentations

 B. DETAILS OF THE SCHOLARLY OUTCOMES (continued)

 Status: A = Accept/ Published S = Submitted UP = Under Preparation

 In this Section, list the details as mentioned above
 (Kindly make sure to include the full details of each item including the dates and the status).

Status

Automatic Refinement of Equilibria in Game Theory-Final Report

 38

III

Book/Book Chapters

IV

Patents

V

Students’ Training

VI

Invited Speeches

delivered by the

Investigators

VII

Seminars/Talk delivered

within the University

Automatic Refinement of Equilibria in Game Theory-Final Report

 39

VIII

Seminars/Talk delivered

outside the University

IX

Others , Specify

XGame Software Installation Package Online at

http://www.Xgame-Solver.com

Principal Investigator: Dr. Slim Belhaiza

Signature: Slim Belhaiza Date: 03-January-2011

