King Fahd University of Petroleum and Minerals College of Sciences, Prep-Year Math Program

Code 001

Math 001, Final Exam Term (021) January 18, 2003 Time Allowed: 2 1/2 Hours

Code 001

STUDENT NAME:	
ID #:	SECTION #:

Important Instructions:

- 1. All types of calculators, pagers or telephone are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only
- 3. Use a good eraser. Do NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Math section number on both the examination paper and the OMR sheet.
- 5. Detach the OMR sheet carefully.
- 6. When bubbling your ID number and Math section number, be sure that the bubbles match with the number that you write.
- 7. Match the Test Code Number already bubbled in your answer sheet with the Test Code Number printed on your question paper.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.
- 9. Check that the exam paper has 30 questions.

Page 1 of 11 MATH 001-T021 (FINAL EXAM)

CODE 001

1) If (x+1) is a factor of the polynomial $P(x) = x^3 + kx^2 + 2kx - 2$, then k is equal to:

- a) 6
- b) $\frac{1}{3}$
- **∂** -3
- d) 3
- e) $\frac{-2}{2}$

2) If $g(x) = \frac{3x-1}{2x+1}$, then $g^{-1}(x)$ is equal to:

- a) $\frac{2x+1}{3x-1}$
- $\frac{x+1}{3-2x}$
- c) $\frac{2x-1}{3x-1}$
- d) $\frac{3-x}{2+x}$
- e) $\frac{3+2x}{x-1}$

3) The expression $\frac{3}{4(x^2+x-2)} + \frac{1}{4(x^2+5x+6)}$ simplifies to:

- a) $\frac{4}{(x-1)(x+2)}$
- b) $\frac{-2}{(x-1)(x+3)}$
- c) $\frac{3}{(x+2)(x+3)}$
- e) $\frac{1}{(x-1)(x+3)}$ $\frac{6}{(x-1)(x+3)}$

MATH 001-T021 (FINAL EXAM) Page 2 of 11

CODE 001

4) The far-left and far-right behavior of the graph of the polynomial $P(x) = -5x^7 - 3x^4 + 2x - 1$ is as follows:

- a) Down to the left and down to the right
- b) Down to the left an up to the right
- c) Up to the left and up to the right
- . Up to the left and down to the right
- e) None of the above.

5) A polynomial of lowest degree and real coefficients having 1+i and i as zeros is:

$$x^4 - 2x^3 + 3x^2 - 2x + 2$$

b)
$$x^4 + 2x^3 - 3x^2 + 2x - 2$$

c)
$$x^4 - 2x^3 - 3x^2 - 2x - 2$$

d)
$$x^4 + 2x^3 + 3x^2 + 2x + 2$$

e)
$$x^4 - 2x^3 - 3x^2 + 2x + 2$$

6) If $i = \sqrt{-1}$, then $\frac{(1+i)^2}{1-i}$ is equal to:

- a) -2i
- b) 1+i
- c) 1-i
- d) -1-i
- \bullet -1+i

MATH 001-T021 (FINAL EXAM) Page 3 of 11

- 7) The real zeros of the polynomial $P(x) = (x^2 x)^3 (x^2 + 4x + 4)^2$ are:
 - a) 1 (multiplicity 3), and -2 (multiplicity 4)
 - b) 1 (multiplicity 3), and -2 (multiplicity 2)
 - 0 (multiplicity 3), 1 (multiplicity 3), and -2 (multiplicity 4)
 - d) 0 (multiplicity 1), 1 (multiplicity 3), and -2 (multiplicity2)
 - e) 0 (multiplicity 3), and 1 (multiplicity 3)
- 8) The sum of all solutions of the equation $(y+3)^{\frac{2}{3}} 2(y+3)^{\frac{1}{3}} 3 = 0$ is:
 - a) -27
 - 20
 - c) 28
 - d) 30
 - e) 18
- 9) The solution set of the inequality $\left|x-\frac{1}{2}\right|-\frac{3}{2}>0$ is:
 - $(-\infty,-1)\cup(2,\infty)$
 - b) (-1,2)
 - c) $(-\infty, \frac{1}{2}) \bigcup (\frac{3}{2}, \infty)$
 - d) $(-\infty, -\frac{3}{2}) \cup (2, \infty)$
 - e) (-2,2)

MATH 001-T021 (FINAL EXAM

Page 4 of 11

- 10) The largest negative integer that is a lower bound for the real zeros of the polynomial $P(x) = 3x^3 x^2 2x + 10$ is:
 - a) -3
 - b) -4
 - c) -5
 - **a** -2
 - e) -1
- 11) The domain of the inverse function of $f(x) = 3x^2 12x$, for $x \ge 2$ is equal to:
 - a) $(-\infty, 4]$
 - b) [4,∞)
 - c) $(-\infty, -12]$
 - **⋒** [-12,∞)
 - e) [2,∞)
- 12) One of the factors of $81x^4 72x^2y^2 + 16y^4$ is:
 - a) $9x^2 + 4y^2$
 - 3x+2y
 - c) $3x^2 + 4y^2$
 - d) 27x + 8y
 - e) 9x + 4y

MATH 001-T021 (FINAL EXAM)

Page 5 of 11

- 13) The number of **noninteger rational zeros** of the polynomial $P(x) = 6x^5 + 2x^4 + 9x^3 + 3x^2 + 3x + 1$ is:
 - a) 0
 - b) 2
 - **4** 1
 - d) 3
 - e) 4
- 14) Which one of the following functions has the graph given below?

b)
$$f(x) = \frac{x^2 + x - 2}{(x - 2)^2}$$

c)
$$f(x) = \frac{3x^2 + 3x - 2}{x - 2}$$

d)
$$f(x) = \frac{x^2 + x - 3}{x - 2}$$

- 15) The radius of the circle $2x^2 + 2y^2 + 8x 4y + 8 = 0$ is equal to:
 - a) 5
 - b) 2
 - c) 3
 - d) 4
 - **9** 1

MATH 001-T021 (FINAL EXAM)

Page 6 of 11

16) If (a,b) is the vertex of the parabola $y = -2x^2 + 4x - 4$, then a+b is equal to:

- a) 2
- **b**) -1
- c) -2
- d) 0
- e) 1

17) If the graph of $y = \frac{x-1}{x+3}$ is shifted horizontally two units to left and vertically three units up, then the equation of the new graph is:

$$y = \frac{4x+16}{x+5}$$

b)
$$y = \frac{-2x-13}{x+5}$$

c)
$$y = \frac{2x+14}{x+5}$$

d)
$$y = \frac{-2x-17}{x+5}$$

e)
$$y = \frac{4x + 18}{x + 5}$$

18) The graph of the equation $3x^2 = |2x - 5y|$ is symmetric with respect to:

- a) The y-axis only
- b) The x-axis only
- The origin only
- d) The y-axis and the origin
- e) The x-axis, the y-axis, and the origin

MATH 001-T021 (FINAL EXAM)

Page 7 of 11

- 19) The expression $\left[\left(\frac{x^{-3}}{y^2} \right)^2 \left(\frac{y^{-6}}{xy^3} \right)^{-1} \right]^{\frac{1}{5}}$ simplifies to
 - a) $\frac{1}{xy}$
 - b) $\frac{y^2}{x}$
 - c) $\frac{x}{y^2}$
 - d) xy
- 20) If the perimeter of a rectangle is 30 centimeters and its area is 36 square centimeters, then the length of the rectangle in centimeters is equal to:
 - a) 4
 - b) 6
 - **1**2
 - d) 9
 - e) 15
- 21) The x-intercept of the line through the points (2,-1) and (-1,2) is
 - **(1,0)**
 - b) (-2,0)
 - c) (4,0)
 - d) (-3,0)
 - e) (3,0)

MATH 001-T021 (FINAL EXAM)

Page 8 of 11

FAX NO.: 0096638602979

22) Which one of the following polynomials has the graph given below?

b)
$$P(x) = 3(x-1)^2(x-5)$$

$$P(x) = -3(x-1)^2(x-5)$$

d)
$$P(x) = 3(x+1)^2(x+5)$$

e)
$$P(x) = -3(x+1)(x-5)$$

23) If the graph of $y = \frac{3x^2 + 3x + 2}{kx^2 + 6x + k}$ has the line x = 1 as a vertical asymptote, then it has a horizontal asymptote given by

a)
$$y = 2$$

b)
$$y = 1$$

c)
$$y = 3$$

d)
$$y = -3$$

$$y = -1$$

24) The expression $4\sqrt[3]{72} - \frac{10}{\sqrt[3]{81}}$ simplifies to:

a)
$$\frac{14}{9}\sqrt[3]{9}$$

$$\bullet \frac{62}{9} \sqrt[3]{9}$$

c)
$$-\frac{13}{9}\sqrt[3]{9}$$

d)
$$\frac{-2}{9}\sqrt[3]{9}$$

e)
$$\frac{53}{9}\sqrt[3]{9}$$

MATH 001-T021 (FINAL EXAM)

Page 9 of 11

25) If $f(x) = -\frac{1}{x}$, then $\frac{1}{h} \left[f\left(\frac{1}{2} + h\right) - f\left(\frac{1}{2}\right) \right]$ is equal to:

- a) $\frac{4}{2+h}$
- b) $\frac{-2}{1+2h}$
- c) $\frac{1}{h^2}$
- d) $\frac{2+h}{h(1+2h)}$
- $\bullet \ \frac{4}{1+2h}$

26) The solution set of the inequality $\frac{4}{x} < x$ is equal to:

- a) $(-\infty, -2) \cup (0, \infty)$
- b) $(-\infty, -2) \cup (0, 2)$
- c) $(-2,0) \cup (0,2)$
- d) $(-\infty,0) \bigcup (2,\infty)$
- \bigcirc $(-2,0) \bigcup (2,\infty)$

MATH 001-T021 (FINAL EXAM)

Page 10 of 11

- 27) The graph of the equation |x-y|=1 is:
 - a) Only two points
 - b) Two perpendicular lines
 - c) Only one point
 - Two parallel lines
 - e) A circle
- 28) If $f(x) = \frac{1}{x^2 1}$ and $g(x) = \sqrt{x 1}$, then the value of $(f \circ g)(\frac{11}{2})$ is equal to:
 - a) $\frac{8}{7}$
 - b) $\frac{6}{7}$
 - $rac{2}{7}$
 - d) $\frac{\sqrt{2}}{119}$
 - e) $\frac{5\sqrt{2}}{7}$

MATH 001-T021 (FINAL EXAM)

Page 11 of 11

CODE 001

29) If $f(x) = -x^2 - 4$, x > 0, then the graph of the inverse function $f^{-1}(x)$ lies completely in:

- 💋 Quadrant II
- b) Quadrant I
- c) Quadrant III
- d) Quadrants I an II
- e) Quadrants II and III
- 30) Which one of the following functions has the graph given below?

a)
$$f(x) = \frac{-x^2}{x^2 - 1}$$

$$f(x) = \frac{x^2}{x^2 - 1}$$

c)
$$f(x) = \left(\frac{x^2}{x^2 - 1}\right)^2$$

d)
$$f(x) = \frac{x^2 + 1}{x^2 - 1}$$

e)
$$f(x) = \left(\frac{x^2 + 1}{x^2 - 1}\right)^2$$

