CHAPTER 9 SYSTEMS OF EQUATIONS

9.) 11 Systems of Linear Equations im Two Variables

- A system of equations is two or more equations considered together.
- The following system of equations is a linear system of equations in two variables.

$$
\begin{gathered}
2 x+3 y=4 \\
3 x-2 y=-7
\end{gathered}
$$

- A solution of a system of equations in two variables is an ordered pair that is a solution of both equations, and intersection of the graph of the two lines.

- If the graphs of the two lines are parallel, the system is called inconsistent system and has no solution.
- If the graphs of the two lines are intersect at single point (independent system) or are the same line (dependent system), the system called consistent system.

Substitution Method for Solving a System of Linear Equations

Example \#1 Solve

$$
\begin{align*}
& 2 x+3 y=4 \tag{1}\\
& 3 x-2 y=-7 \tag{2}
\end{align*}
$$

Solution
Solve Eq. (1) for y

$$
\begin{equation*}
\rightarrow y=\frac{4}{3}-\frac{2}{3} x \tag{3}
\end{equation*}
$$

Substitute $\frac{4}{3}-\frac{2}{3} x$ for y in Eq. (2)

$$
3 x-2\left(\frac{4}{3}-\frac{2}{3} x\right)=-7
$$

Solve for x

$$
\begin{aligned}
& 3 x-\frac{8}{3}+\frac{4}{3} x=-7 \\
& 3 x+\frac{4}{3} x=-7+\frac{8}{3} \\
& \frac{13}{3} x=\frac{-13}{3} \\
& x=-1
\end{aligned}
$$

Substitute -1 for x in Eq. (3)

$$
\rightarrow y=\frac{4}{3}-\frac{2}{3}(-1)=\frac{4}{3}+\frac{2}{3}=\frac{6}{3}=2
$$

The solution is $(-1,2)$.

Elimination Method for Solving a System of Linear Equations Example \#2 Solve

$$
\begin{align*}
& 2 x+3 y=4 \tag{1}\\
& 3 x-2 y=-7 \tag{2}
\end{align*}
$$

Solution
To eliminate the variable x multiply each side of Eq. (1) by 3, and each side of Eq. (2) by -2 , and add the equations

$$
\begin{aligned}
6 x+9 y & =12 \\
-6 x+4 y & =14 \\
\hline 0+13 y & =26 \\
y & =2 .
\end{aligned}
$$

Substitute 2 for y in Eq. (1) and solve for x

$$
\begin{aligned}
2 x+3(2) & =4 \\
2 x & =-2 \\
x & =-1
\end{aligned}
$$

The solution is $(-1,2)$.
Example \#3 Solve

$$
\begin{gather*}
2 x-y=3 \tag{1}\\
-4 x+2 y=4 \tag{2}
\end{gather*}
$$

Solution
To eliminate y multiply each side of Eq. (1) by 2, and add the result to Eq. (2).

$$
\begin{aligned}
4 x-2 y & =6 \\
-4 x+2 y & =4
\end{aligned} \quad \begin{aligned}
& \\
& \hline 0+0=10 \\
& 0=10, \quad \text { *A false equation }
\end{aligned}
$$

Then no solution (inconsistent system)

Example \#4 Solve

$$
\begin{array}{r}
4 x+5 y=2 \\
12 x+15 y=6 \tag{2}
\end{array}
$$

Solution
To eliminate x , multiply each side of Eq. (1) by -3 , and add the result to Eq. (2)

$$
\begin{aligned}
-12 x-15 y & =-6 \\
12 x+15 y & =6 \\
\hline 0+0 & =0 \\
0 & =0
\end{aligned} \quad \text { *A true equation }
$$

Then the system has infinite number of solutions (dependent system) Substitute any real number c for x in Eq. (1) and solve for y

$$
\begin{aligned}
4 c+5 y & =2 \\
5 y & =2-4 c \\
y & =\frac{2}{5}-\frac{4}{5} c
\end{aligned}
$$

The solution is $\left(c, \frac{2}{5}-\frac{4}{5} c\right)$.

Example \#4 Find the values of a and b where the system

$$
\begin{aligned}
& 3 x-2 a y=4 \\
& 2 x+3 y=b .
\end{aligned}
$$

A) is inconsistent
B) is independent.
C) Evaluate $3 b-4 a$ where the system is dependent.

Solution:
To eliminate x by multiplying eq.(1) by -2 and eq.(2) by 3

$$
-6 x+4 a y=-8
$$

$$
6 x+9 y=3 b .
$$

$$
0+4 a y+9 y=3 b-8
$$

$$
(4 a+9) y=3 b-8
$$

A)

$$
\begin{aligned}
& 4 a+9=0 \text { and } 3 b-8 \neq 0 \\
& a=-\frac{9}{4} \text { and } b \neq \frac{8}{3}
\end{aligned}
$$

B) $a \neq-\frac{9}{4}, b$ can be any real number
C) $3 b-4 a=3 \frac{8}{3}-4\left(-\frac{9}{4}\right)=17$

