8.3 Hyperbollas

Definition of a Hyperbola

A hyperbola is the set of all points in the plane, the difference between whose distances from fixed two points

- The transverse axis is the line segment joining the vertices, and its length is denoted by 2 a .
- The midpoint of the transverse is the center of the hyperbola.
- The conjugate axis passes through the center of hyperbola and perpendicular to the transverse axis, and its length denoted by 2 b .
- The distance between the two foci is denoted by 2 c .
- Each hyperbola has two asymptotes that pass through the center of the hyperbola.

Standard Form of the Equation of a Hyperbola with

Center at (h, k)

1. Transverse Axis Parallel to the x -axis

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The coordinates of the vertices are $V 1(h+a, k)$ and $V 2(h-a, k)$. The coordinates of foci are $F 1(h+c, k)$ and $F 2(h-c, k)$, where $c^{2}=a^{2}+b^{2}$.
The equations of the asymptotes are

$$
y-k= \pm \frac{b}{a}(x-h)
$$

2. Transverse Axis Parallel to the y-axis

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The coordinates of the vertices are $V 1(h, k+a)$ and $V 2(h, k-a)$. The coordinates of foci are $F 1(h, k+c)$ and $F 2(h, k-c)$, where $c^{2}=a^{2}+b^{2}$.
The equations of the asymptotes are $y-k= \pm \frac{a}{b}(x-h)$.

Notes: To find the equation of asymptotes of a hyperbola in standard form replace 1 by 0 and solve for y.

Example \# 1 Find the vertices, foci, center, and asymptotes of each hyperbola.
a) $\frac{(x+6)^{2}}{9}-\frac{9 y^{2}}{4}=1$

Solution
Rewrite in standard form $\frac{(x+6)^{2}}{9}-\frac{y^{2}}{4 / 9}=1$
Horizontal center $(-6,0)$
$a=3, b=\frac{2}{3}, c^{2}=a^{2}+b^{2}=9+\frac{4}{9}=\frac{85}{9} \rightarrow c=\frac{\sqrt{85}}{3}$
Vertices $(-6+3,0)=(-3,0),(-6-3,0)=(-9,0)$
Foci $\left(-6+\frac{\sqrt{85}}{3}, 0\right),\left(-6-\frac{\sqrt{85}}{3}, 0\right)$
To find asymptotes replace 1 by 0 and solve for y

$$
\begin{aligned}
& \frac{(x+6)^{2}}{9}-\frac{y^{2}}{4 / 9}=0 \\
& \frac{(x+6)^{2}}{9}=\frac{y^{2}}{4 / 9} \\
& y^{2}=\frac{4}{9 \cdot 9}(x+6)^{2} \\
& y= \pm \frac{2}{9}(x+6) .
\end{aligned}
$$

b) $4 x^{2}-25 y^{2}+16 x+50 y-109=0$. Graph the hyperbola Solution

$$
\begin{gathered}
4 x^{2}+16 x-25 y^{2}+50 y=109 \\
4\left[x^{2}+4 x\right]-25\left[y^{2}-2 y\right]=109 \\
4\left[x^{2}+4 x+2^{2}-2^{2}\right]-25\left[y^{2}-2 y+1^{2}-1^{2}\right]=109 \\
4\left[(x+2)^{2}-4\right]-25\left[(y-1)^{2}-1\right]=109 \\
4(x+2)^{2}-16-25(y-1)^{2}+25=109 \\
4(x+2)^{2}-25(y-1)^{2}=100 \\
\frac{(x+2)^{2}}{25}-\frac{(y-1)^{2}}{4}=1 \\
a=5, b=2 c^{2}=a^{2}+b^{2}=25+4=29 \rightarrow c=\sqrt{29} \\
\text { Horizontal hyperbola center }(-2,1)
\end{gathered}
$$

Vertices $(-2+5,1)=(3,1),(-2-5,1)=(-7,1)$
Foci $(-2+\sqrt{29}, 1),(-2-\sqrt{29}, 1)$
Asymptotes $\frac{(x+2)^{2}}{25}-\frac{(y-1)^{2}}{4}=0$

$$
\frac{(y-1)^{2}}{4}=\frac{(x+2)^{2}}{25} \rightarrow y= \pm \frac{2}{5}(x+2)+1 .
$$

c) $16 y^{2}-9 x^{2}+32 y-36 x-164=0$. H.W.

Do exr.3, 15, 25, page 604 .
Example \# 2 Find the equation in standard form of each hyperbola.
a) Vertices $(6,3)$ and $(2,3)$, foci $(7,3)$ and $(1,3)$

Solution

Since both vertices lie on the horizontal line, the transverse is horizontal, the standard equation is

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Length of transverseaxis $=$ distance between vertices

$$
\begin{aligned}
2 a & =|6-2|=4 \\
a & =2
\end{aligned}
$$

The center (h, k) is the midpoint of the vertices

$$
(\mathrm{h}, \mathrm{k})=\left(\frac{6+2}{2}, \frac{3+3}{2}\right)=(4,3)
$$

$c=$ distance between the center and focus $=|7-4|=3$

$$
c^{2}=a^{2}+b^{2} \rightarrow 9=4+b^{2} \rightarrow b^{2}=5
$$

Then the standard form is

$$
\frac{(x-4)^{2}}{4}-\frac{(y-3)^{2}}{5}=1
$$

b) Foci $(-2,1)$ and $(-2,7)$, slope of an asymptote $5 / 4$.

Solution

Since foci lie on the vertical line, the transverse axis is vertical.
The standard equation is $\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$.

$$
\text { Center }\left(\frac{-2+-2}{2}, \frac{1+7}{2}\right)=(-2,4)
$$

$c=$ distance between the center and focus

$$
=|7-4|=3
$$

To find equation of an asymptotes

$$
\begin{gathered}
\frac{(y-4)^{2}}{a^{2}}-\frac{(x+2)^{2}}{b^{2}}=0 \rightarrow(y-4)^{2}=\frac{a^{2}(x+2)^{2}}{b^{2}} \\
y-4= \pm \frac{a}{b}(x+2) \\
\text { slope }=\frac{5}{4}=\frac{a}{b} \rightarrow a=\frac{5 b}{4} \rightarrow a^{2}=\frac{25 b^{2}}{16} \\
c^{2}=a^{2}+b^{2} \rightarrow 9=\frac{25 b^{2}}{16}+b^{2} \\
9=\frac{41 b^{2}}{16} \\
b^{2}=\frac{144}{41} \rightarrow a^{2}=\frac{25 \frac{144}{41}}{16}=\frac{225}{41}
\end{gathered}
$$

Then the standard equation is

$$
\frac{(y-4)^{2}}{\frac{225}{41}}-\frac{(x+2)^{2}}{\frac{144}{41}}=1
$$

Eccentricity (e) of a Hyperbola

The eccentricity e of a hyperbola is the ratio of c to a , where c is the distance from the center to a focus and a is the length of the semi-transverse axis.

$$
e=\frac{c}{a}
$$

Do exr. 33, 39, 44, 45, page 605.

