### 8.2 Ellipses

Definition of an Ellipse
An ellipse is the set of all points in the plane, the sum of whose distances from two fixed points (foci) is a positive constant.


Notes:

- The graph of an ellipse has two axis of symmetry 1. The longer axis is called the major axis, and its length denoted by 2 a . The foci of the ellipse are on the major axis.

2. The shorter axis is called minor axis, and its length denoted by 2 b .

- The center of the ellipse is the midpoint of the major axis.
- The endpoints of the major axis are the vertices of the ellipse.


## Standard Form of the Equation of an Ellipse with

## Center at (h,k)

1. Major Axis Parallel to x-axis

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1, a>b
$$

The length of major axis is $2 a$. The length of minor axis is 2b.
The coordinates of the vertices are $(h+a, k)$ and $(h-a, k)$, and the coordinates of the foci are $(h+c, k)$ and $(h-c, k)$, where $c^{2}=a^{2}-b^{2}$.
2. Major Axis Parallel to y-axis

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1, a>b
$$

The length of major axis is 2 a . The length of minor axis is 2b.
The coordinates of the vertices are $(h, k+a)$ and $(h, k-a)$, and the coordinates of the foci are $(h, k+c)$ and $(h, k-c)$, where $c^{2}=a^{2}-b^{2}$.


Major axis parallel to y -axis

Example \#1 Find the center, vertices, and foci of the ellipse. Sketch the graph.
a) $\frac{(x+2)^{2}}{25}+\frac{y^{2}}{16}=1$

## Solution

Horizontal ellipse center $(-2,0)$
$a=5, b=4$
$c^{2}=a^{2}-b^{2}=25-16=9$
$c=3$
The vertices are $(-2+5,0)=(3,0)$ and $(-2-5,0)=(-7,0)$
The foci are $(-2+3,0)=(1,0)$ and $(-2-3,0)=(-5,0)$

b) $16 x^{2}+9 y^{2}-64 x-54 y+1=0$

Solution
First rewrite the equation in standard form by completing the square.

$$
\begin{aligned}
& 16 x^{2}-64 x+9 y^{2}-54 y+1=0 \\
& 16\left(x^{2}-4 x\right)+9\left(y^{2}-6 y\right)=-1 \\
& 16\left[x^{2}-4 x+\left(\frac{4}{2}\right)^{2}-\left(\frac{4}{2}\right)^{2}\right]+9\left[y^{2}-6 y+\left(\frac{6}{2}\right)^{2}-\left(\frac{6}{2}\right)^{2}\right]=-1 \\
& 16\left[(x-2)^{2}-4\right]+9\left[(y-3)^{2}-9\right]=-1 \\
& 16(x-2)^{2}-64+9(y-3)^{2}-81=-1 \\
& 16(x-2)^{2}+9(y-3)^{2}=-1+64+81 \\
& 16(x-2)^{2}+9(y-3)^{2}=144 \quad \text { * divide by } 144
\end{aligned}
$$

$$
\frac{(x-2)^{2}}{9}+\frac{(y-3)^{2}}{16}=1
$$

Vertical ellipse center $(2,3)$
$a=4, b=3$
$c^{2}=a^{2}-b^{2}=16-9=7 \quad c=\sqrt{7}$
Vertices $(2,3+4)=(2,7)$ and $(2,3-4)=(2,-1)$
Foci $(2,3+\sqrt{7})$ and $(2,3-\sqrt{7})$


Do exr.7, 9, 29, and 31, page 602.
Example \#2 Find the standard form of the equation of the ellipse with foci at $(6,4)$ and $(-2,4)$, and major axis of length 10.

## Solution

Because foci are horizontal the major axis is horizontal. The length of major axis is $2 a$. Thus $2 a=10$ and $a=5$.
The center is the midpoint between two foci. Therefore, $(2,4)$. The distance between the center and a focus is $c$. Therefore, $c=4$.
To find $b^{2}$, use the equation $c^{2}=a^{2}-b^{2}$.
$16=25-b^{2}$
$b^{2}=9$

Thus the equation in standard form is

$$
\frac{(x-2)^{2}}{25}+\frac{(y-4)^{2}}{9}=1 .
$$

Do exr. 33, 36, 38, and 39, page 605.

## Eccentricity (e) of an Ellipse

The eccentricity e of an ellipse is the ratio of c to a , where c is the distance from the center to the focus and a is one-half the length of the major axis. That is,

$$
e=\frac{c}{a}
$$

Example \#3 Find the standard form of the equation of the ellipse with vertices at $(3,4)$ and $(3,0)$, and eccentricity $\frac{1}{4}$.

## Solution

Because vertices are vertical the major axis is vertical.
The distance between the vertices is $2 a$. Therefore $a=2$.
$e=\frac{c}{a} \rightarrow \frac{1}{4}=\frac{c}{2} \rightarrow c=\frac{1}{2}$
$c^{2}=a^{2}-b^{2} \rightarrow \frac{1}{4}=4-b^{2} \rightarrow b^{2}=4-\frac{1}{4}=\frac{15}{4}$
Center $=$ midpoint between two vertices $=(3,2)$.
Thus the equation in standard form is

$$
\frac{(x-3)^{2}}{\frac{15}{4}}+\frac{(y-2)^{2}}{4}=1
$$

Do exr. 47, 49, and 51, page 605 .

