CHAPTER 8

Topic in Analytic Geometry

8.1 Parabolas

Definition of Parabola

A parabola is the set of points in the plane that are equidistant from a fixed line (the directrix) and fixed point (the focus) not in the directrix.

Standard Forms of the Equation of a Parabola with Vertex at (h,k)

• Vertical Axis of Symmetry

$$\frac{1}{(x-h)^2} = 4p(y-k)$$

The focus is (h, k + p), and the equation of the directrix is y = k - p.

* If p>0 the parabola opens up. If p<0 the parabola opens down.

• Horizontal Axis of Symmetry

$$(y-k)^2 = 4p(x-h)$$

The focus is (h + p, k), and the equation of the directrix Is x = h - p.

* If p>0 the parabola opens to the right. If p<0 parabola opens to the left.

2

Example #1 Find the vertex, focus, directrix, and axis of symmetry of each parabola. Sketch the graph.

a)
$$(y+4)^2 = -4x+8$$

Solution

horizontal parabola

$$(y+4)^2 = -4(x-2)$$
, $vertex = (2,-4)$
 $4p = -4 \rightarrow p = -1$, open to the left
 $focus(h+p,k) = (2-1,-4) = (1,-4)$
 $directrix x = h - p = 2 + 1 = 3$

b)
$$4x^2 - 12x + 12y + 7 = 0$$

Solution

Vertical parabola

First rewrite the equation in standard form,

by complete the square on x.

by complete the square off x.

$$4x^{2} - 12x + 12y + 7 = 0, \quad 4x^{2} - 12x = -12y - 7$$

$$4\left(x^{2} - 3x\right) = -12y - 7$$

$$4\left[x^{2} - 3x + \left(\frac{3}{2}\right)^{2} - \left(\frac{3}{2}\right)^{2}\right] = -12y - 7, 4\left[\left(x - \frac{3}{2}\right)^{2} - \frac{9}{4}\right] = -12y - 7$$

$$4\left(x - \frac{3}{2}\right)^{2} - 9 = -12y - 7$$

$$4\left(x^{2} - \frac{3}{2}\right)^{2} = -12y + 2, \quad 4\left(x - \frac{3}{2}\right)^{2} = -12\left(y - \frac{1}{6}\right)$$

$$\left(x - \frac{3}{2}\right)^{2} = -3\left(y - \frac{1}{6}\right), \quad vertex\left(\frac{3}{2}, \frac{1}{6}\right)$$

$$4p = -3 \rightarrow p = -\frac{3}{4}$$

$$focus\left(h + h\right) = \left(\frac{3}{2} - \frac{1}{4}\right) - \left(\frac{3}{4} - \frac{7}{4}\right)$$

focus
$$(h, k + p) = \left(\frac{3}{2}, \frac{1}{6} - \frac{3}{4}\right) = \left(\frac{3}{2}, -\frac{7}{12}\right)^{\frac{2}{12}}$$

$$directrix \ y = k - p = \frac{1}{6} - \left(-\frac{3}{4}\right) = \frac{11}{12}$$

c)
$$2x - y^2 - 6y + 1 = 0$$

H.W.

Do exr. 3, 11, 22, and 24, page 592.

Example #2 Find the equation in standard form of the parabola with vertex at (1,3) and focus at (-1,3).

Solution

focus(-1,3), vertex(1,3)

horizontal parabola open to the left

$$(y-k)^2 = 4p(x-h)$$

p = the distance between the vertex and the focus

$$=1-(-1)=2$$

Then the equation of the parabola is

$$(y-3)^2 = 4(-2)(x-1)$$
* p is negative because the
$$(y-3)^2 = -8(x+1)$$
parabola open to the left.

Example # 3 Find the equation in standard form of the parabola with vertex at (3,-3) and directrix y = -5.

Solution

or

Vertical parabola open up

$$(x-h)^2 = 4p(y-k)$$

p = the distance between the vertex and the directrix

$$=-3-(-5)=2$$

Then the equation of the parabola is

$$(x-3)^2 = 4(2)(y+3)$$
 * p is positive because
or $(x-3)^2 = 8(y+3)$ parabola open up.

• Do exr. 29,32 and 34 page 592.