7.3 Vectors

- Quantities that possess both magnitude and direction are called vector quantities.
- A vector is a directed line segment. The length of the line segment is the magnitude of the vector, and the direction of the vector is measured by an angle.
- The vector $\overrightarrow{O P}$ from point O to point P, O called initial point (or tail) of the vector, P called terminal point (or head) of the vector.
- The magnitude of the vector \vec{v} is denoted by $\|v\|$.
- Equivalent vectors have the same magnitude and the same direction

- Vector addition:

$u+v$ called resultant
- Components of vector:

Let $p_{1}\left(x_{1}, y_{1}\right)$ be the initial point of a vector and $p_{2}\left(x_{2}, y_{2}\right)$ its terminal point. Then an equivalent vector \vec{v} has initial point at the origin and terminal point $p(a, b)$, where $a=x_{2}-x_{1}$ and $b=y_{2}-y_{1}$. The vector \vec{v} can denoted by $v=\langle a, b\rangle$; a and b are called the components of the vector \vec{v}.

Example \#1 Find the components of a vector whose tail is the point $A(2,-1)$ and its head is $B(-2,4)$. Write an equivalent vector v in terms of its components.

Solution

$$
a=-2-2=-4, \quad \text { and } \quad b=4-(-1)=5
$$

$v=\langle-4,5\rangle$.
Do exr. 3 and 5 page 566.

Fundamental Vector Operations

If $v=\langle a, b\rangle$ and $w=\langle c, d\rangle$ are two vectors and k is a real nubmer, then

1. $\|\mathrm{v}\|=\sqrt{a^{2}+b^{2}}$ magnitude of v.
2. $v+w=\langle a, b\rangle+\langle c, d\rangle=\langle a+c, b+d\rangle$
3. $k v=\langle k a, k b\rangle$ scalar multiplication.

Example \#2 Given $v=\langle 2,-3\rangle$ and $w=\langle 3,1\rangle$, find
a) $\|w\|$
b) $v+w$
b) $\|2 v-3 w\|$.

Solution

a) $\|w\|=\sqrt{3^{2}+1^{2}}=\sqrt{10}$
b) $v+w=\langle 2,-3\rangle+\langle 3,1\rangle=\langle 2+3,-3+1\rangle=\langle 5,-2\rangle$
c) First we find $2 v-3 w$

$$
\begin{aligned}
2 v-3 w & =2\langle 2,-3\rangle-3\langle 3,1\rangle \\
& =\langle 4,-6\rangle-\langle 9,3\rangle=\langle-5,-9\rangle
\end{aligned}
$$

Then $\|2 v-3 w\|=\sqrt{(-5)^{2}+(-9)^{2}}=\sqrt{25+81}=\sqrt{105}$

- A unit vector is a vector whose magnitude is 1 .

For example, the vector $v=\left\langle-\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle$ is a unit vector

$$
\text { because }\|v\|=\sqrt{\left(-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=\sqrt{\frac{1}{4}+\frac{3}{4}}=\sqrt{1}=1
$$

- Given any vector v , we can obtain a unit vector in the direction of v by dividing each component of v by the magnitude of $\mathrm{v},\|\nu\|$. Example \#3 Find a unit vector u in the direction of $v=\langle 2,-3\rangle$
Solution

$$
\begin{aligned}
& \|v\|=\sqrt{2^{2}+(-3)^{2}}=\sqrt{4+9}=\sqrt{13} \\
& u=\left\langle\frac{2}{\sqrt{13}}, \frac{-3}{\sqrt{13}}\right\rangle=\left\langle\frac{2 \sqrt{13}}{13}, \frac{-3 \sqrt{13}}{13}\right\rangle
\end{aligned}
$$

Definition of Unit Vectors i and j

$$
i=\langle 1,0\rangle \quad j=\langle 0,1\rangle
$$

- If v is a vector and $v=\left\langle a_{1}, a_{2}\right\rangle$, then $v=a_{1} i+a_{2} j$

Example \#4 Given $v=2 i-3 j$ and $w=\langle-2,8\rangle$, find $-2 v+\frac{1}{2} w$.
Solution

$$
\begin{aligned}
& w=-2 i+8 j \\
& \begin{aligned}
-2 v+\frac{1}{2} w & =-2(2 i-3 j)+\frac{1}{2}(-2 i+8 j) \\
& =-4 i+6 j-i+4 j \\
& =-5 i+10 j
\end{aligned}
\end{aligned}
$$

Direction Angle for Vector \mathbf{v}

Let $v=\left\langle a_{1}, a_{2}\right\rangle=a_{1} i+a_{2} j, v \neq 0$. Then

$$
a_{1}=\|v\| \cos \theta \quad \text { and } \quad a_{2}=\|v\| \sin \theta
$$

where θ is the angle between the positive x -axis and v . a_{1} is the horizontal component, and a_{2} is the vertical component $\frac{a_{2}}{a_{1}}=\frac{\|v\| \sin \theta}{\|v\| \cos \theta}=\tan \theta \rightarrow \theta=\tan ^{-1} \frac{a_{2}}{a_{1}}$, is direction angle of v .

Example \#5 Find horizontal and vertical component of a vector v that has magnitude 9 and direction angle $\frac{2 \pi}{3}$.
Solution
$a_{1}=9 \cos \frac{2 \pi}{3}=9\left(-\frac{1}{2}\right)=-\frac{9}{2}$
$a_{2}=9 \sin \left(\frac{2 \pi}{3}\right)=9 \frac{\sqrt{3}}{2}$
$v=-\frac{9}{2} i+\frac{9 \sqrt{3}}{2} j$
Do exr. 35 page 566
xample \#6 Find the magnitude and direction angle of the vector
a) $v=\sqrt{3} i-j$.
b) $u=-i-\sqrt{3} j$

Solution
$\|\nu\|=\sqrt{(\sqrt{3})^{2}+(-1)^{2}}=\sqrt{4}=2$
direction angle $\theta=\tan ^{-1}\left(\frac{-1}{\sqrt{3}}\right)$
$\theta=2 \pi-\frac{\pi}{6}=\frac{11 \pi}{6}$
b) H.W.

Definition of Dot Product

Given $v=\langle a, b\rangle$ and $w=\langle c, d\rangle$, the dot product of v and w is givenby

$$
v \cdot w=a c+b d
$$

Example \#7 Find the dot product of $v=3 i+5 j$ and $w=\langle-2,4\rangle$. Solution
$v \cdot w=3(-2)+5 \cdot 4=-6+20=14$

Properties of Dot Product

In the following properties, $u v$, and w are vectors and a is a scalar.

1. $v \cdot w=w \cdot v$
2. $u \cdot(v+w)=u \cdot v+u \cdot w$
3. $a(u \cdot v)=(a u) \cdot u \cdot(a v)$
4. $v \cdot v=\|v\|^{2}$
5. $0 \cdot v=0$
6. $v=\langle a, b\rangle$, then $\|v\|=\sqrt{v \cdot v}$

Alternative formula for the Dot Product

If v and w are two nonzero vectors and α is the smallest non-negative angle between v and w , then $v \cdot w=\|v\|\|w\| \cos \alpha$, and

$$
\alpha=\cos ^{-1}\left(\frac{v \cdot w}{\|v\|\|w\|}\right) .
$$

Example \#7 Find the angle between two vectors $v=2 i+2 j$, and $w=-i+j$. Solution
$\cos \alpha=\frac{v \cdot w}{\|v\|\|w\|}$
$=\frac{2(-1)+2 \cdot 1}{\sqrt{2^{2}+2^{2}} \sqrt{(-1)^{2}+1^{2}}}=\frac{0}{\sqrt{8} \sqrt{2}}=0$
$\alpha=\cos ^{-1}(0)=\frac{\pi}{2}$.

Definition of The Scalar Projection of v on w

If v and w are two nonzero vectors and α is the smallest positive angle between v and w , then the scalar projection of v on $\mathrm{w}, \operatorname{proj}_{w} v$, is given by

$$
\operatorname{proj}_{w} v=\|v\| \cos \alpha
$$

- To derive an alternate formula for $\operatorname{proj}_{w} v$, consider the dot product, $v \cdot w=\|v\|\|w\| \cos \alpha$. Solving for $\|v\| \cos \alpha$, which is $\operatorname{proj}_{w} v$, we have $\quad \operatorname{proj}_{w} v=\frac{v \cdot w}{\|w\|}$

Example \#8 Given $v=-2 i-3 j$, and $w=i+4 j$, find $\operatorname{proj}_{w} v$.
Solution
$\operatorname{proj}_{w} v=\frac{v \cdot w}{\|w\|}=\frac{-2 \cdot 1+(-3) \cdot 4}{\sqrt{1^{2}+4^{2}}}=\frac{-14}{\sqrt{17}} \cdot \frac{\sqrt{17}}{\sqrt{17}}=-\frac{14 \sqrt{17}}{17}$

- Two nonzero vectors are parallel when the angle α between the vectors is 0° or 180°.
- Two vectors are perpendicular (orthogonal) when the angle α between the vectors is 90°.
Example \#8 Find the value of k if the following vectors are perpendicular.
$v=\langle 3 k,-2\rangle, \quad u=4 i+3 j$.
Solution
u and v are perpendicular $\rightarrow \mathrm{u} \cdot \mathrm{v}=0$
$3 k(4)+(-2)(3)=0 \rightarrow k=\frac{6}{12}=\frac{1}{2}$.

