7.3 Vectors

• Quantities that possess both magnitude and direction are called vector quantities.

- A vector is a directed line segment. The length of the line segment is the magnitude of the vector, and the direction of the vector is measured by an angle.
- The vector \overrightarrow{OP} from point O to point P, O called initial point (or tail) of the vector, P called terminal point (or head) of the vector.

• Equivalent vectors have the same magnitude and the same direction

• Vector addition:

u+v called resultant

• Components of vector: Let $p_1(x_1, y_1)$ be the initial point of a vector and $p_2(x_2, y_2)$ its terminal point. Then an equivalent vector \vec{v} has initial point at the origin and terminal point p(a,b), where $a = x_2 - x_1$ and $b = y_2 - y_1$. The vector \vec{v} can denoted by $v = \langle a,b \rangle$; a and b are called the components of the vector \vec{v} .

Example #1 Find the components of a vector whose tail is the point A(2,-1) and its head is B(-2,4). Write an equivalent vector v in terms of its components.

Solution

$$a=-2-2=-4$$
, and $b=4-(-1)=5$
 $v=\langle -4,5 \rangle$.

Do exr. 3 and 5 page 566.

Fundamental Vector Operations

If $v = \langle a, b \rangle$ and $w = \langle c, d \rangle$ are two vectors and k is a real nubmer, then

1.
$$\|\mathbf{v}\| = \sqrt{a^2 + b^2}$$
 magnitude of \mathbf{v} .

2.
$$v + w = \langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle$$

3.
$$kv = \langle ka, kb \rangle$$
 scalar multiplication.

Example #2 Given $v = \langle 2, -3 \rangle$ and $w = \langle 3, 1 \rangle$, find

a)
$$||w||$$
 b) $v + w$ b) $||2v - 3w||$.

Solution

a)
$$||w|| = \sqrt{3^2 + 1^2} = \sqrt{10}$$

b)
$$v + w = \langle 2, -3 \rangle + \langle 3, 1 \rangle = \langle 2 + 3, -3 + 1 \rangle = \langle 5, -2 \rangle$$

c) First we find 2v - 3w

$$2v - 3w = 2\langle 2, -3 \rangle - 3\langle 3, 1 \rangle$$
$$= \langle 4, -6 \rangle - \langle 9, 3 \rangle = \langle -5, -9 \rangle$$

Then
$$||2v - 3w|| = \sqrt{(-5)^2 + (-9)^2} = \sqrt{25 + 81} = \sqrt{105}$$

A unit vector is a vector whose magnitude is 1.

For example, the vector $v = \left\langle -\frac{1}{2}, \frac{\sqrt{3}}{2} \right\rangle$ is a unit vector

because
$$||v|| = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1.$$

• Given any vector v, we can obtain a unit vector in the direction of v by dividing each component of v by the magnitude of v, ||v||.

Example #3 Find a unit vector u in the direction of $v = \langle 2, -3 \rangle$

Solution

$$||v|| = \sqrt{2^2 + (-3)^2} = \sqrt{4+9} = \sqrt{13}$$

$$u = \left\langle \frac{2}{\sqrt{13}}, \frac{-3}{\sqrt{13}} \right\rangle = \left\langle \frac{2\sqrt{13}}{13}, \frac{-3\sqrt{13}}{13} \right\rangle$$

Definition of Unit Vectors i and j

$$i = \langle 1, 0 \rangle$$
 $j = \langle 0, 1 \rangle$

• If v is a vector and $v = \langle a_1, a_2 \rangle$, then $v = a_1 i + a_2 j$

Example #4 Given v = 2i - 3j and $w = \langle -2, 8 \rangle$, find $-2v + \frac{1}{2}w$.

Solution

$$w = -2i + 8j$$

$$-2v + \frac{1}{2}w = -2(2i - 3j) + \frac{1}{2}(-2i + 8j)$$

$$= -4i + 6j - i + 4j$$

$$= -5i + 10j$$

Direction Angle for Vector v

Let
$$v = \langle a_1, a_2 \rangle = a_1 i + a_2 j$$
, $v \neq 0$. Then
$$a_1 = ||v|| \cos \theta \quad \text{and} \quad a_2 = ||v|| \sin \theta$$

where θ is the angle between the positive x-axis and v. a_1 is the <u>horizontal component</u>, and a_2 is the <u>vertical component</u>

$$\frac{a_2}{a_1} = \frac{\|v\|\sin\theta}{\|v\|\cos\theta} = \tan\theta \to \theta = \tan^{-1}\frac{a_2}{a_1}, \text{ is } \underline{\text{direction angle}} \text{ of } v.$$

Example #5 Find horizontal and vertical component of a vector v that has magnitude 9 and direction angle $\frac{2\pi}{3}$.

Solution

$$a_1 = 9\cos\frac{2\pi}{3} = 9(-\frac{1}{2}) = -\frac{9}{2}$$

$$a_2 = 9\sin(\frac{2\pi}{3}) = 9\frac{\sqrt{3}}{2}$$

$$v = -\frac{9}{2}i + \frac{9\sqrt{3}}{2}j$$

Do exr. 35 page 566

xample #6 Find the magnitude and direction angle of the vector

a)
$$v = \sqrt{3}i - j$$
.

b)
$$u = -i - \sqrt{3}j$$

Solution

$$||v|| = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{4} = 2$$

direction angle $\theta = \tan^{-1}(\frac{-1}{\sqrt{3}})$

$$\theta = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$$

b) H.W.

Definition of Dot Product

Given $v = \langle a, b \rangle$ and $w = \langle c, d \rangle$, the dot product of v and w is given by

$$v \cdot w = ac + bd$$

Example #7 Find the dot product of v = 3i + 5j and $w = \langle -2, 4 \rangle$.

Solution

$$v \cdot w = 3(-2) + 5 \cdot 4 = -6 + 20 = 14$$

Properties of Dot Product

In the following properties, u v, and w are vectors and a is a scalar.

1.
$$v \cdot w = w \cdot v$$

2.
$$u \cdot (v + w) = u \cdot v + u \cdot w$$

3.
$$a(u \cdot v) = (au) \cdot u \cdot (av)$$

4.
$$v \cdot v = ||v||^2$$

5.
$$0 \cdot v = 0$$

6.
$$v = \langle a, b \rangle$$
, then $||v|| = \sqrt{v \cdot v}$

Alternative formula for the Dot Product

If v and w are two nonzero vectors and α is the smallest non-negative angle between v and w, then $v \cdot w = ||v|| ||w|| \cos \alpha$, and

$$\alpha = \cos^{-1}\left(\frac{v \cdot w}{\|v\| \|w\|}\right).$$

Example #7 Find the angle between two vectors v = 2i + 2j, and w = -i + j. Solution

$$\cos \alpha = \frac{v \cdot w}{\|v\| \|w\|}$$

$$= \frac{2(-1) + 2 \cdot 1}{\sqrt{2^2 + 2^2} \sqrt{(-1)^2 + 1^2}} = \frac{0}{\sqrt{8}\sqrt{2}} = 0$$

$$\alpha = \cos^{-1}(0) = \frac{\pi}{2}.$$

Definition of The Scalar Projection of v on w

If v and w are two nonzero vectors and α is the smallest positive angle between v and w, then the scalar projection of v on w, $proj_w v$, is given by

$$proj_{w}v = ||v||\cos\alpha$$

• To derive an alternate formula for $proj_w v$, consider the dot product, $v \cdot w = ||v|| ||w|| \cos \alpha$. Solving for $||v|| \cos \alpha$, which is $proj_w v$, we have $proj_w v = \frac{v \cdot w}{||w||}$

Example #8 Given v = -2i - 3j, and w = i + 4j, find $proj_w v$. Solution

$$proj_{w}v = \frac{v \cdot w}{\|w\|} = \frac{-2 \cdot 1 + (-3) \cdot 4}{\sqrt{1^{2} + 4^{2}}} = \frac{-14}{\sqrt{17}} \cdot \frac{\sqrt{17}}{\sqrt{17}} = -\frac{14\sqrt{17}}{17}$$

- Two nonzero vectors are parallel when the angle α between the vectors is 0° or 180° .
- Two vectors are perpendicular (orthogonal) when the angle α between the vectors is 90° .

Example #8 Find the value of k if the following vectors are perpendicular.

$$v = \langle 3k, -2 \rangle, \quad u = 4i + 3j.$$

Solution

u and v are perpendicular \rightarrow $u \cdot v = 0$

$$3k(4) + (-2)(3) = 0 \rightarrow k = \frac{6}{12} = \frac{1}{2}$$
.