10.4. Determinants

Definition of a Determinant of order 2

For a given 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

the determinant of A is $\operatorname{det}(A)=|A|=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.

Example \#1 Evaluate the determinant of each the following matrices.
a) $A=\left[\begin{array}{cc}2 & 4 \\ 3 & -5\end{array}\right]$
b) $B=\left[\begin{array}{ll}4 & 3 \\ 8 & 6\end{array}\right]$

Definition of Minors and Cofactors

The minor $M_{i j}$ of the element $a_{i j}$ of a square matrix A of order $n \geq 3$ is the determinant of the matrix of order $n-1$ obtained by deleting the $i^{\text {th }}$ row and the $j^{\text {th }}$ column of A. The cofactor $C_{i j}$ of the element $a_{i j}$ of a square matrix A is given by $C_{i j}=(-1)^{i+j} M_{i j}$, where $M_{i j}$ is the minor of $a_{i j}$.

Note: $C_{i j}=\left\{\begin{array}{cl}M_{i j}, & i+j \text { is an even integer } \\ -M_{i j}, & i+j \text { is an odd integer }\end{array}\right\}$

Example \#2 Given
$A=\left[\begin{array}{ccc}6 & -3 & 2 \\ 0 & 1 & -2 \\ 2 & 4 & 5\end{array}\right]$, find M_{21}, C_{21}, and C_{22}

Cofactor Expansion

Given the square matrix A of order $n \geq 3$, the value of the determinant of A is the sum of the product of the elements of any row or column and their cofactor. For $i^{\text {th }}$ row of A,

$$
|A|=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} .
$$

For $j^{\text {th }}$ column of A,
$|A|=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}$.
Example \# 3 Evaluate the determinant of
$A=\left[\begin{array}{ccc}3 & 2 & 1 \\ 0 & -1 & 5 \\ -3 & -4 & -2\end{array}\right]$ by expanding by cofactor.

Zero Expansion Property

If every element in one row (or one column) of a square matrix A is zero, then $|A|=0$.

Interchange Property

If the matrix B is obtained from a matrix A by interchanging any two rows (column) of A , then $|B|=-|A|$.

Multiplication Property

If the matrix B is obtained from a matrix A by multiplying each elements of a row (column) of A by the same number c, then $|B|=c|A|$.

Addition Property

If the matrix B is obtained from a matrix A by adding a multiple of one row (column) to another row (column), then $|B|=|A|$.

Determinant of a Matrix in Triangular Form

Let $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ 0 & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & a_{n n}\end{array}\right]$ be a square matrix of order n
in triangular form, then $|A|=a_{11} a_{22} \ldots a_{n n}$.
Example \#4 Evaluate $\left|\begin{array}{cccc}1 & 2 & -1 & 2 \\ 1 & -2 & 0 & 3 \\ 3 & 0 & 1 & 5 \\ -2 & -4 & 1 & 6\end{array}\right|$
Note: $\left|I_{n}\right|=1$

Product Property of Determinant

If A and B are square matrices of order n, then

$$
|A B|=|A||B|
$$

Existence of the Inverse of a Square Matrix
If A is a square matrix of order n, then A has a multiplicative inverse if and only if $|A| \neq 0$. Furthermore

$$
\left|A^{-1}\right|=\frac{1}{|A|}
$$

Example \#5 If A and B are square matrices of order 3, and $|A|=3,|B|=-2$, the evaluate
a) $|A B|$
b) $\left|B^{-1}\right|$
c) $|3 \mathrm{~A}|$

Solution
a) $|A B|=|A||B|=3(-2)=-6$
b) $\left|B^{-1}\right|=\frac{1}{|B|}=\frac{1}{-2}=-\frac{1}{2}$
c) $|3 A|=2^{3}(3)=24$.

