10.3 The Inverse Matrix

Multiplicative Inverse of a Matrix

Is A is a square matrix of order n, then the inverse of matrix A , denoted by A^{-1}, has the property that

$$
A \cdot A^{-1}=A^{-1} \cdot A=I_{n}
$$

where I_{n} is the identity matrix of order n.

Procedure for Finding A^{-1}

1. Write A with identity matrix of the same order: $\left[A \vdots I_{n}\right]$
2. Use row operations to transform $\left[A I_{n}\right]$ into the form $\left[I_{n} \vdots B\right]$. If this is possible, then $B=A^{-1}$. If this is not possible, then A^{-1} does not exist. A is called singular matrix.

Example \#1 Find the inverse of each matrix.
a) $\left[\begin{array}{cc}-2 & 3 \\ 1 & 2\end{array}\right]$
b) $\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & 3 \\ 2 & 1 & 3\end{array}\right]$
c) $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 0 & 1\end{array}\right]$

Solving System of Equations Using Inverse matrix

Consider the system of equations

$$
\begin{array}{r}
-2 x+3 y=-2 \\
x+2 y=1
\end{array}
$$

This system is equivalent to the matrix equation $A X=B$, where

$$
A=\left[\begin{array}{cc}
-2 & 3 \\
1 & 2
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad B=\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
$$

Then

$$
\begin{aligned}
& X=A^{-1} B=\left[\begin{array}{cc}
-\frac{2}{7} & \frac{3}{7} \\
\frac{1}{7} & \frac{2}{7}
\end{array}\right] \cdot\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \\
& X=\left[\begin{array}{c}
\frac{4}{7}+\frac{3}{7} \\
-\frac{2}{7}+\frac{2}{7}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

Thus $x=1, y=0$. The solution is $(1,0)$
Example \#2 Solve the system of equations

$$
\begin{aligned}
x+2 y-z & =5 \\
2 x+3 y-z & =8 \\
3 x+6 y-2 z & =14
\end{aligned}
$$

by using inverse matrix method.

