CHAPTER_10 MATRICES

10.2 The Algebra of Matrices

- $A=\left[\begin{array}{llll}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]$
is m by n matrix, $\left(A_{m \times n}\right)$ with $\underline{\mathrm{m}}$ rows
and $\underline{\mathrm{n}}$ columns is said to be of order $m \times n$ or dimension.
- $a_{i j}$ denotes the element in $i^{t h}$ row and $j^{\text {th }}$ column of a matrix A.

For example $A=\left[\begin{array}{ccc}2 & 1 & 5 \\ 0 & -2 & 4\end{array}\right]$, has order 2×3.
$a_{12}=1, a_{22}=-2, a_{23}=4$.

- The elements $a_{11}, a_{22}, a_{33}, \cdots$ are called the main diagonal of a matrix A.
- A matrix that has n rows and n columns is called square matrix.
- A matrix that has only one column is called column matrix.
- A matrix that has only one row is called row matrix.
- A square matrix that has zeros for all its elements off the main diagonal is called diagonal matrix
- Two matrices are equal if they have the same order and elements placed in corresponding position are equal. For example
$\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \neq\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$.

Definition of Addition of Matrices

If A and B are matrices of order $m \times n$, then the sum of the matrices is the $m \times n$ matrix given by

$$
A+b=\left[a_{i j}+b_{i j}\right]
$$

Here is an example. Let $\mathrm{A}=\left[\begin{array}{cc}2 & -4 \\ 6 & 9 \\ -3 & 5\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}3 & 6 \\ 8 & 7 \\ -2 & 11\end{array}\right]$. Then
$A+B=\left[\begin{array}{cc}2+3 & -4+6 \\ 6+8 & 9+7 \\ -3-2 & 5+11\end{array}\right]=\left[\begin{array}{cc}5 & 2 \\ 14 & 16 \\ -5 & 16\end{array}\right]$.
Now let $\mathrm{C}=\left[\begin{array}{cc}2 & -1 \\ 5 & 4\end{array}\right]$. Here $\mathrm{A}+\mathrm{C}$ is not defined because order of A and C not the same.

- Given the matrix $\mathrm{A}=\left[a_{i j}\right]$, the additive inverse of A is $-A=\left[-a_{i j}\right]$
- The $m \times n$ zero matrix, denoted by \mathbf{O}, is the matrix whose elements are all zeros.

Properties of Matrix Addition

Given matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and the zero matrix O , each of order $m \times n$, then the following properties hold.

Commutative $\quad A+B=B+A$
Associative $\quad A+(B+C)=(A+B)+C$
Additive inverse $A+(-A)=O$
Additive identity $A+O=O+A=A$

- Given $m \times n$ matrix $\mathrm{A}=\left[a_{i j}\right]$ and the real number c, then the scalar multiplication is $c A=\left[c a_{i j}\right]$.

Properties of Scalar Multiplication

Given real numbers \mathbf{a}, \mathbf{b}, and \mathbf{c} and matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ each of order $m \times n$, then

$$
\begin{aligned}
& (a+c) A=a A+c A \\
& c(A+B)=c A+c B \\
& a(b A)=(a b) A
\end{aligned}
$$

Example \#1 Given $A=\left[\begin{array}{ccc}-3 & 2 & 4 \\ 0 & -2 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}5 & -8 & 6 \\ 3 & 2 & 0\end{array}\right]$.
Find $2 A+3 B$
Solution

$$
\begin{aligned}
2 A+3 B & =2\left[\begin{array}{ccc}
-3 & 2 & 4 \\
0 & -2 & 1
\end{array}\right]+3\left[\begin{array}{ccc}
5 & -8 & 6 \\
3 & 2 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-6 & 4 & 8 \\
0 & -4 & 2
\end{array}\right]+\left[\begin{array}{ccc}
15 & -24 & 18 \\
9 & 6 & 0
\end{array}\right]=\left[\begin{array}{ccc}
9 & -20 & 26 \\
9 & 2 & 2
\end{array}\right]
\end{aligned}
$$

Definition of the Product of Two Matrices

Let $A=\left[a_{i j}\right]$ be a matrix of order $m \times n$, and $B=\left[b_{i j}\right]$ be a matrix of order $n \times p$. Then the product $A B$ is the matrix of order $m \times p$ given by $A B=C=\left[c_{i j}\right]$, where each element $c_{i j}$ is

$$
c_{i j}=\left[\begin{array}{lllll}
a_{i 1} & a_{i 2} & a_{i 3} & \cdots & a_{i n}
\end{array}\right]\left[\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
b_{3 j} \\
\vdots \\
b_{n j}
\end{array}\right]=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}
$$

Example \#2 Given
$A=\left[\begin{array}{cc}2 & -2 \\ 3 & 1 \\ 4 & 6\end{array}\right], B=\left[\begin{array}{ccc}-1 & 3 & 0 \\ 5 & 7 & 2 \\ 4 & -3 & 1\end{array}\right]$, and $C=\left[\begin{array}{ll}2 & 9 \\ 8 & 3\end{array}\right]$. Find
a) AC
b) AB
c) BA

Properties of Matrix Multiplication

Associative Given matrices A of order $m \times n$ and B of order $n \times p$, and C of order $p \times q$, then

$$
A(B C)=(A B) C
$$

Distributive Given matrices A and B of order $m \times n, \mathrm{C}$ of order $n \times p$, and D of order $p \times m$ then

$$
\begin{aligned}
& (A+B) C=A C+B C \\
& D(A+B)=D A+D B
\end{aligned}
$$

- The identity matrix of order n , denoted by I_{n} is the $n \times n$ matrix

$$
\begin{gathered}
I_{n}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]_{n \times n} \\
\text { For example } I_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

- $A I_{n}=I_{n} A=A$, where A of order n .
- $A^{2}=A A$, where A is square matrix
- If A and B are matrices of order n , then discuss
- $(A+B)^{2}=A^{2}+2 A B+B^{2}$.
- If $A B=O$, then $A=O$ or $B=O$.

